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Abstract

We provide a theoretical basis for studying termination of (general) logic programs with
the Prolog selection rule. To this end we study the class of left {erminating programs. These
are logic programs that terminate with the Prolog selection rule for all ground goals. We
offer a characterization of left terminating positive programs by means of the notion of an
acceptable program that provides us with a practical method of proving termination. The
method is illustrated by giving a simple proof of termination of the quicksort program for
the desired class of goals.

Then we extend this approach to the class of general logic programs by modifying the
concept of acceptability. We prove that acceptable general programs are left terminating.
The converse implication does not hold but we show that under the assumption of non-
floundering from ground goals every left terminating general program is acceptable. Finally,
we prove that various ways of defining semantics coincide for acceptable general programs.
We illustrate the use of this extension by giving simple proofs of termination of a “game”
program and the transitive closure program for the desired class of goals.

Keywords and Phrases: general Prolog programs, termination, declarative semantics, left
terminating programs, acceptable programs.

1985 Mathematics Subject Classification: 68Q40, 68T15.

CR Categories: ¥.3.2., F.4.1, H.3.3, 1.2.3.

Notes. This research was partly done during the authors’ stay at the Department of Com-
puter Sciences, University of Texas at Austin, Austin, Texas, U.S.A. . First author’s work
was partly supported by ESPRIT Basic Research Action 3020 (Integration). Second author’s
work was partly supported by ESPRIT Basic Research Action 3012 (Compulog) and by the
Ttalian National Research Council — C.N.R.. This paper is based on our previous papers
[AP90] and [AP91].




1 Introduction

Background

Prolog is a programming language based on logic programming. However, the use of a fixed
selection rule combined with the depth first search in the resulting search trees makes Prolog
and logic programming different. As a consequence various completeness results linking the
procedural and declarative interpretation of logic programs cannot be directly applied to Prolog
programs. This mismatch makes it difficult to study Prolog programs using only the logic
programming theory. Clearly the main problem is the issue of termination: a Prolog interpreter
will miss a solution if all success nodes lie to the right of an infinite path in the search tree.

In this paper we propose to study Prolog programs that terminate for all ground goals. By
termination we mean here finiteness of all possible Prolog derivations starting in the initial goal.
We call such programs left terminating. The restriction to such programs leads to a simple
method of proving termination that is applicable to an overwhelming class of Prolog programs.
To show that a Prolog program exhibits a proper termination behaviour we first show that it is
left terminating and then that it terminates for certain types of non-ground inputs. Our method
of showing the former will also allow us to establish the latter.

When studying Prolog programs from the point of view of termination it is useful to notice
that some programs terminate for all ground goals for all selection rules. Such programs are
extensively studied in Bezem [Bez89] where they are called terminating programs. These are
usually programs whose termination depends on a simple reduction in one or more arguments.
Examples of terminating programs are append, member, N queens, various tree insertion and
deletion programs and several others.

However, some Prolog programs satisfy such a strong termination property but fail to ter-
minate for certain desired forms of inputs for some selection rules.

An example is the following append3 program in which the append program is used:

append3(Xs, Ys, Zs, Us) «
append(Xs, Ys, Vs),
append(Vs, Zs, Us).

Then append3 is a terminating program which terminates for the goal « append3(xs, ys, zs,
Us), where xs, ys, zs are lists and Us a variable, when the Prolog selection rule is used but
fails to terminate when the rightmost selection rule is used.

Worse yet, some programs fail to be terminating even though they terminate for the Prolog
selection rule for the desired class of inputs. An example is the flatten program which collects
all the nodes of a tree in a list:

flatten(nil, []) «.
flatten(t(L, X, R), Xs) «
flatten(L, X1s),
flatten(R, X2s),
append(Xis, [X | X2s], Xs).

flatten is not a terminating program but it terminates for the goal « flatten(x, Xs), where
x is a ground term and Xs a variable, when the Prolog selection rule is used.

In general, the problem arises due to the use of local variables, i.e. variables which appear
in the body of a clause but not in its head. Several left terminating Prolog programs use local
variables in an essential way and consequently fail to be terminating. Examples of such programs




are various sorting and permutation programs and graph searching programs. Programs which
fall into this category are usually of the form “generate and test” or “divide and conquer”.

In this paper we provide a framework to study left terminating programs. To this end we
refine the ideas of Bezem [Bez89] and Cavedon [Cav89] and use their concept of a level mapping.
This is a function assigning natural numbers to ground atoms. OQur main tool is the concept
of an acceptable program. Intuitively, a program P is acceptable if for some level mapping and
a model I of P, for all ground instances of the clauses of the program, the level of the head
is smaller than the level of atoms in a certain prefix of the body. Which prefix is considered
is determined by the model I, which embodies the limited declarative knowledge about the
program that is used in the termination proof.

We prove that the notions of left termination and acceptability coincide. The proof of this
fact uses an iterated multiset ordering. This equivalence result provides us with a method of
proving left termination. Moreover, it allows us to prove termination of a left terminating Prolog
program for a class of non-ground goals. The method is illustrated by proving termination of
the quicksort program.

Then we extend this approach to termination to general Prolog programs, i.e. programs
allowing negative literals. More precisely, we consider here general logic programs executed
with the leftmost selection rule used in Prolog. The approach is based on a modification of the
concept of acceptability. In the case of general Prolog programs we require that the interpretation
T should be a model of the considered program P and a model of Clark’s completion of the
“negative” fragment of P. We prove that acceptable general programs are left terminating.
However, the converse implication does not hold due to the possibility of floundering. On the
other hand, we show that for general programs that do not flounder from ground general goals
the concepts of left termination and acceptability do coincide. Also, we prove that various ways
of defining semantics coincide for acceptable general programs.

As before, once the left termination of a general Prolog program is established, non-ground
terminating goals can be identified. We illustrate the use of this extension by providing simple
proofs of termination of a “game” program and the transitive closure program for the desired
class of goals.

Plan of the paper

This paper is organized as follows. In the next section we introduce the concept of a left termi-
nating program. This is a program that terminates for all ground goals w.r.t. Prolog selection
rule. Then we provide a useful characterization of left terminating programs by introducing the
notion of an acceptable program and proving that the notions of acceptability and left termina-
tion coincide. The crucial concept here is that of a bounded goal. It allows us to characterize
terminating goals.

Then, in Section 3 we prove left termination of the quicksort program by providing a simple
proof of its acceptability. Using the concept of boundedness we show that the quicksort program
terminates w.r.t. a desired class of non-ground goals.

In Section 4 we extend the notions of left termination and acceptability to general pro-
grams. We show that acceptable programs are left terminating, and that left terminating,
non-floundering programs are acceptable. This allows us to extend our method to reason about
termination of general Prolog programs.

Then, in Section 5 we apply this method to a “game” and a transitive closure program, by
establishing their acceptability. Again, by using the concept of boundedness we prove that these
programs terminate w.r.t. a desired class of goals.




In Section 6 we prove that various ways of defining semantics of general programs coincide.
In particular, we show that the completion of an acceptable program has a unique Herbrand
model, which coincides with its unique 3-valued Herbrand model. For non-floundering acceptable
programs, this model coincides with the set of facts which can be inferred using the SLDNF-
resolution with the leftmost selection rule.

Finally, in Section 7 we assess the proposed proof method and discuss related work.

Preliminaries

We use standard notation and terminology of Lloyd [L1o87] or Apt [Apt90] with the exception
that general logic programs are called in Lloyd [L1087] normal logic programs. In particular, we
use the following abbreviations for a (general) logic program P (or simply a (general) program):
Bp for the Herbrand Base of P,

Tp for the immediate consequence operator of P,

Mp for the least Herbrand model of P,

ground(P) for the set of all ground instances of clauses from P,

comp(P) for Clark’s completion of P.

Also, we use Prolog’s convention identifying in the context of a program each string starting
with a capital letter with a variable, reserving other strings for the names of constants, terms
or relations. So, for example X s stands for a variable whereas zs stands for a term.

In the programs we use the usual list notation. The constant [ ] denotes the empty list and
[.].]is a binary function which given a term z and a list #s produces a new list [z | zs] with
head z and tail s. By convention, identifiers ending with “s”, like zs, will range over lists. The
standard notation [ #1,...,2, ], for n > 0, is used as an abbreviation of [ 21 |[...[z.|[]]--]]-
In general, the Herbrand Universe will also contain “impure” elements that contain [ ]Jor [. | .]
but are not lists - for example ([ ]) or [s(0) | 0] where 0 is a constant and s a unary function
symbol. They will not cause any complications.

Throughout the paper we consider SLD-resolution with one selection rule only — namely that
of Prolog, usually called the leftmost selection rule. As S in SLD stands for “selection rule”, we
denote this form of resolution by LD (Linear resolution for Definite clauses). The concepts of
LD-derivation, LD-refutation, LD-tree, etc. are then defined in the usual way. By “pure Prolog”
we mean in this paper the LD-resolution combined with the depth first search in the LD-trees.

By choosing variables of the input clauses and the used mgu’s in a fixed way we can assume
that for every program P and goal G there exists exactly one LD-tree for P U {G}.

2 Left Termination of Positive Programs

Our interest here is in terminéting Prolog programs. This motivates the following concept.

Definition 2.1 A program P is called left terminating if all LD-derivations of P starting in a
ground goal are finite. a

In other words, a program is left terminating if all LD-trees for P with a ground root are
finite. When studying Prolog programs, one is actually interested in proving termination of a
given program not only for all ground goals but also for a class of non-ground goals constituting
the intended queries. Qur method of proving left termination will allow us to identify for each
program such a class of non-ground goals.

Let us consider now how to prove that a program is left terminating. Starting from Floyd
[Flo67] the classical proofs of program termination have been based on the use of well-founded
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orderings. This approach has been successfully used in the area of logic programming (see e.g.
Bezem [Bez89], Cavedon [Cav89]) but with no attention paid to Prolog programs. The notable
exception is Deville [Dev90].

We obtain the desired method by a modification of the ideas of Bezem [Bez89] and Cavedon
[Cav89].

Recurrent Programs
It is useful to recall first some concepts from Bezem [Bez89] and Cavedon [Cav89).

Definition 2.2

(i) A level mapping for a program P is a function | | : Bp — N of ground atoms to natural
numbers. For A € Bp, |A| is the level of A.

(ii) An atom A is bounded with respect to a level mapping | | if | | is bounded on the set [A] of
ground instances of A.

(iii) A goal is bounded if all its atoms are.

(iv) A program P is called recurrent with respect to a level mapping | |, if for every clause
A« By,...,B, in ground(P)

|A| > |B;| for i € [1,n].
A program P is called recurrent iff it is recurrent with respect to some level mapping. O

Thus level mapping is defined only on ground atoms, but the concept of boundedness allows
us to “lift” the level mapping to non-ground atoms. Boundedness is crucial when considering
termination.

Definition 2.3 A program is called terminating, if all its SLD-derivations starting in a ground
goal are finite.

Hence, terminating programs have the property that the SLD-trees of ground goals are finite,
and any search procedure in such trees will always terminate, independently from the adopted
selection rule.

The following results of Bezem [Bez89] show the connection between these concepts.

Theorem 2.4

(i) Let P be a recurrent program and G a bounded goal. Then all SLD-derivations of PU{G}
are finite.

(ii) A program is recurrent if and only if it is terminating. m|

Because of this result recurrent programs and bounded goals are too restrictive concepts to
deal with Prolog programs, as a larger class of programs and goals is terminating when adopting
a specific selection rule, e.g. Prolog selection rule.

Example 2.5
(i) Consider the following program even which defines even numbers and the “less than or equal”
relation:



even(0) «.
even(s(s(X))) « even(X).

1te(0,Y) «.
1te(s(X),s(Y)) « lte(X,Y).

even is recurrent with |even(s™(0))] = n and |Ite(s™(0), s™(0))| = min{n, m}. Now consider the
goal:

G =« lie(z, s'°°(0)), even(z)

which is supposed to compute the even numbers not exceeding 100. The LD-tree for G is finite,
whereas there exists an infinite SLD-derivation when the rightmost selection rule is used. As a
consequence of Theorem 2.4 (i) the goal G is not bounded, although it can be evaluated by a
finite Prolog computation.

Actually, most “generate and test” Prolog programs are not recurrent, as they heavily depend
on the left-to-right order of evaluation, like the example above.

(ii) Consider the following naive reverse program:

reverse([1, [1) «.

reverse([X | Xs], ¥Ys) «
reverse(Xs, Zs),
append(Zs, [X], Ys).

append([], Ys, ¥s) «.
append([X | Xs], Ys, [X | Zs]) « append(Xs, Vs, Zs).

The ground goal « reverse(zs,ys), for arbitrary lists s and ys, has an infinite SLD-
derivation, obtained by using the selection rule which selects the leftmost atom at the first two
steps, and the second leftmost atom afterwards. By Theorem 2.4(ii) reverse is not recurrent.

(iii) Consider the following program DC, representing a (binary) “divide and conquer” schema;
it is parametric with respect to the base, conquer, divide and merge predicates.

dec(X,Y) «
base(X),
conquer (X,Y).

dc(X,Y) «
divide(X,X1,X2),
dc(X1,Y1),
dc(X2,Y2),
merge(Y1,Y2,Y).

Many programs naturally fit into this schema, or its generalization to non fixed arity of the
divide/merge predicates. Unfortunately, DC is not recurrent: it suffices to take a ground instance
of the recursive clause with X = a, X1 =a,Y = b, Y1 = b, and observe that the atom dc(a,b)
occurs both in the head and in the body of such a clause. In this example, the leftmost selection
rule is needed to guarantee that the input data is divided into subcomponents before recurring
on such subcomponents. O



Acceptable Programs
To cope with these difficulties we modify the definition of a recurrent program as follows.

Definition 2.6 Let P be a program, || a level mapping for P and I a (not necessarily Herbrand)
model of P. P is called acceptable with respect to || and I if for every clause A « Bi,..., Bpin
ground(P) the following implication holds for i € [1,n]:

if Ik AL} B;then |A| > |Bil.

In other words, we have for every clause A « By,..., B, in ground(P)
|A| > |B;| fori € [1,n],
where
= min({n} U {i € [1,n]|I [£ Bi}).

P is called acceptable if it is acceptable with respect to some level mapping and a model of
P. O

The use of the premise I |= /\fi;l1 B; forms the only difference between the concepts of
recurrence and acceptability. Intuitively, this premise expresses the fact that when in the evalu-
ation of the goal By, ..., B, using the leftmost selection rule the atom B; is reached, the atoms
Bi,... B;_; are already refuted. Consequently, by the soundness of the LD-resolution, these
atoms are all true in 7.

Alternatively, we may define 72 by

- { n ifI|= By A...A By,
- i iflE ByA...ABi_yandI|E By A --- A B;.

Thus, given a level mapping | | for P and a model I of P, in the definition of acceptability
w.r.t. || and I for every clause A « Bjy,..., By, in ground(P) we only require that the level of
A is higher than the level of B;’s in a certain prefix of By, ..., B,. Which B;’s are taken into
account is determined by the model I. If I = By A ...A By, then all of them are considered
and otherwise only those whose index is < 7, where 7 is the least index 4 for which I [~ B;.

The following observation is immediate.

Lemma 2.7 Every recurrent program is acceptable. a

Our aim is to prove that the notions of acceptability and left termination coincide.

Multiset ordering

To prove one half of this statement we use the multiset ordering. A multiset, sometimes called
bag, is an unordered sequence. Given a (non-reflexive) ordering < on a set W, the muliiset
ordering over (W, <) is an ordering on finite multisets of the set W. It is defined as the transitive
closure of the relation in which X is smaller than Y if X can be obtained from Y by replacing
an element a of Y by a finite (possibly empty) multiset each of whose elements is smaller than
a in the ordering <.



In symbols, first we define the relation < by
X <Yif X =Y - {a} U Z for some Z such that b < afor b€ Z,

where X,Y, Z are finite multisets of elements of W, and then define the multiset ordering over
(W, <) as the transitive closure of the relation <.

It is well-known (see e.g. Dershowitz [Der87]) that multiset ordering over a well-founded
ordering is again well-founded. Thus it can be iterated while maintaining well-foundedness.

What we need in our case is two fold iteration. We start with the set of natural numbers N
ordered by < and apply the multiset ordering twice. We call the first iteration multiset ordering
and the second double multiset ordering. Both are well-founded. The double multiset ordering
is defined on the finite multisets of finite multisets of natural numbers, but we shall use it only
on the finite sets of finite multisets of natural numbers. The following lemma will be of help
when using the double multiset ordering.

Lemma 2.8 Let X and Y be two finite sets of finite multisets of natural numbers. Suppose that

Ve € X Jy € Y (y majorizes z),

where y majorizes £ means that ¢ is smaller than y in the multiset ordering.
Then X is smaller than Y in the double multiset ordering.

Proof. We call an element y € Y majorizing if it majorizes some ¢ € X. X can be obtained
from Y by first replacing each majorizingy € Y by the multiset M,, of elements of X it majorizes
and then removing from Y the non-majorizing elements. This proves the claim. O

Below we use the notation bag (a1, . . ., an) to denote the multiset consisting of the unordered
sequence ai, . . ., dn.

Boundedness

Another important concept is boundedness. It allows us to identify goals from which no diver-
gence can arise. Recall that an atom A is called bounded w.r.t. alevel mapping || if || is bounded
on the set [A] of ground instances of A. If A is bounded, then |[A]| denotes the maximum that
| | takes on [A]. Note that every ground atom is bounded.

Our concept of a bounded goal differs from that of Bezem [Bez89] (see Definition 2.2(ii) ) in
that it takes into account the model 7. This results in a more complicated definition.

Definition 2.9 Let P be a program, | | a level mapping for P, I a model of P and k > 0.

(i) With each ground goal G = « Aj,..., A, we associate a finite multiset |G|r of natural
numbers defined by
|Glr = bag(|4il,. ., |45l),

where

= min({n} U {i € [1,n]|T |£ A;}).
(i) With each goal G we associate a set of multisets |[G]|; defined by

I[G]l; = {|G’|1 | G' is a ground instance of G}.



(iii) A goal G is called bounded by k w.r.t. || and I if & > £ for £ € U|[G]|;-
A goal is called bounded w.r.t. || and I if it is bounded by some k > 0 w.r.t. || and I.

a

It is useful to note the following.

Lemma 2.10 Let P be a program, || a level mapping for P and I a model of P. A goal G 1is
bounded w.r.t. || and I iff the set |[G]|; is finite.

Proof. Consider a goal G that is bounded by some k. Suppose that G has n atoms. Then each
element of |[G]|; is a multiset of at most n numbers selected from [0, k]. The number of such

multisets is finite.
The other implication is obvious. O

For goals with one atom it is often easy to establish boundedness by proving a stronger
property. '

Definition 2.11 Let || be a level mapping. A goal « A is called rigid w.r.t. || if || is constant
on the set [A] of ground instances of A.

This definition is inspired by the considerations of Bossi, Cocco and Fabris [BCF91] where
level mappings applied to non-ground atoms are studied. Obviously, rigid goals are bounded.
The following lemma is an analogue of Lemma 2.5 of Bezem [Bez89].

Lemma 2.12 Let P be a program that is acceptable w.r.t. a level mapping || and a model I.
Let G be a goal that is bounded (w.r.t. || and I) and let H be an LD-resolvent of G from P.
Then

(i) H is bounded,
(i) |[H]|; is smaller than |[G]|; in the double multiset ordering.

Proof. Let G =« Ay,..., A, (n > 1). For some input clause C = A « By,..., B (k> 0) and
mgu 8 of A and A;, H = « (By,..., Br, Az, ..., A,)0.

First we show that for every ground instance Hg of H there exists a ground instance G’ of
G such that | Ho|s is smaller that |G’|r in the multiset ordering.

So let Hy be a ground instance of H. For some substitution §

Ho=+« By,...,B,, A, .., A}
and A} is ground, where for brevity for any atom, clause or goal B, B’ denotes B6§. Note that
C'= Ay« Bi,...,B,

and

G'= A,lr";A:n
since A’ = A} as A0 = A,40.
Case 1 Fori € [1,k] I = B;.

Then
IHOII = ba‘g(lBilll77lB;eI7 |A;|7a|A:’¢I)
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where

min({n} U {i € [2,n]]| & 4i}).
Additionally, since I is a model of P, I |= A}. Thus

n

Il

|G'|1 = bag (|A1], |43, - |45])-

This means that |Ho|s is obtained from |G’|1 by replacing |Af| by |Bil, ..., |B;|. But by the
definition of acceptability :
|Bi| < |41
for 7 € [1, k], so |Ho|r is smaller than |G'|; in the multiset ordering. a

Case 2 For some i € [1,k] I |£ B;.
Then
|Holr = bag(|Bil,. . |Bgl)

where B
F= min({ie 1|1 £ BY).
Also by the definition of acceptability

|Bi| < |A}]

for i € [1, k], so |Ho|r is smaller than |G’|; in the multiset ordering. o

This implies claim (i) since G is bounded. By Lemma 2.10 |[H]|; is finite and claim (ii) now
follows by Lemma 2.8. |

Corollary 2.13 Let P be an acceptable program and G a bounded goal. Then all LD-derivations
of PU{G} are finite.

Proof. The double multiset ordering is well-founded. |
Corollary 2.14 Every acceptable program is left terminating.

Proof. Every ground goal is bounded. o

LD-trees

To prove the converse of Corollary 2.14 we analyze the size of finite LD-trees. To this end we
need the following lemma, where nodesp(G) for a program P and a goal G denotes the number
of nodes in the LD-tree for P U {G}.

Lemma 2.15 Let P be a program and G a goal such that the LD-tree for P U {G} is finile.
Then

10



(i) for all substitutions 8, nodesp(GO) < nodesp(G),
(i) for all prefizes H of G, nodesp(H) < nodesp(G),
(iii) for all non-root nodes H in the LD-tree for P U{G}, nodesp(H) < nodesp(G).

Proof.

(i) By an application of a variant of the Lifting Lemma (see e.g. Lloyd [L1087]) to LD-derivations
we conclude that to every LD-derivation of P U {G6} with input clauses Cy,Cl, .. ., there corre-
sponds an LD-derivation of P U {G} with input clauses C1,C3, ... of the same or larger length.
This implies the claim.

(i) Consider a prefix H = « Ay,..., A of G = « Aj,..., A, (n > k). By an appropriate re-
naming of variables (formally justified by the Variant Lemma 2.8 in Apt [Apt90]) we can assume
that all input clauses used in the LD-tree for P U{H} have no variables in common with G. We
can now transform the LD-tree for PU{H} into an initial subtree of the LD-tree for PU{G} by
replacing in it a node «— By,..., By by « By,..., Bi, Ag10, ..., A0, where 0 is the composition
of the mgu’s used on the path from the root H to the node « By, ..., B;. This implies the claim.
(iii) Immediate by the definition. ]

As stated at the beginning of Section 2, we are interested in proving not only left termination
of a program, but also its termination for a class of non-ground goals. We now show that the
concepts of acceptability and boundedness provide us with a complete method for proving both
properties.

Theorem 2.16 Let P be a left terminating program. Then for some level mapping | | and a
model I of P

(i) P is acceptable w.r.t. || and I,

(i) for every goal G, G is bounded w.r.t. || and I iff all LD-derivations of PU{G} are finite.
Proof. Define the level mapping by putting for A € Bp
|A] = nodesp (« A).
Since P is left terminating, this level mapping is well defined. Next, choose
I = {A € Bp | there is an LD-refutation of P U {« A}}.

By the strong completeness of SLD-resolution, I = Mp, so I is a model of P.
First we prove one implication of (ii).

(ii1) Consider a goal G such that all LD-derivations of P U {G} are finite. We prove that G is
bounded by nodesp(G) w.r.t. || and I.
To this end take £ € U|[G]|;. For some ground instance « Aj,..., A, of G and i € [1,7)],

where
7 = min({n} U {i € [1,n]| I [£ A;}),

we have £ = | A;|. We now calculate
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nodesp(G)
{Lemma 2.15 (i)}
nodesp(— A, ..., An)
{Lemma 2.15 (ii)}
nodesp(+— Ay, ..., Az)
{Lemma 2.15 (iii), noting that for j € [1,7 — 1]
there is an LD-refutation of P U {« Ay,..., 4;}}
nodesp(«+ A;, ..., Az)
{Lemma 2.15 (ii)}
nodesp (— 4;)
=  {definition of | |}
|44
= L.

v

v

[\

v

(i) We now prove that P is acceptable w.r.t. || and I. Take a clause A < Bi,..., B, in P and
its ground instance Af «— B0, ..., B,0. We need to show that

|A8] > |B;8| for i € [1,7],
where
A= min({n} U {i € [1,n]| I |£ B;9}).

We have 406 = A6, so A9 and A unify. Let up = mgu(A0, A). Then § = ué for some §. By
the definition of LD-resolution, « By, ..., Bou is an LD-resolvent of «— A4.
Then for i € [1,7]

| 49|
{definition of | |}
nodesp («— Af)
>  {Lemma 2.15 (iii), « Big,..., Bap is a resolvent of « Af}

nodesp («— Bif, ..., Bap)
{part (iil), noting that B;# € U|[«— Biy, ..., Bnplls}
| B;i6|.

v

(ii2) Consider a goal G which is bounded w.r.t. | | and I. Then by (i) and Corollary 2.13 all
LD-derivations of P U {G} are finite. m]

Corollary 2.17 A program is left terminating iff it is acceptable.

Proof. By Corollary 2.14 and Theorem 2.16. O
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3 Example — Quicksort

The equivalence between the left terminating and acceptable programs provides us with a method
of proving termination of Prolog programs. The level mapping and the model used in the proof
of Theorem 2.16 were quite involved and relied on elaborate information about the program
at hand which is usually not readily available. However, in practical situations much simpler
constructions suffice. The level mapping can be usually defined as a simple function of the terms
of the ground atom and the model takes into account only some straightforward information
about the program. We illustrate it by means of an example.
First, we define by structural induction a function | | on ground terms by putting:

|[z]zs]] = |z +1,
|f(21,- - »2n)l = 0 f# [.].].

It is useful to note that for a list zs, |zs| equals its length. The function || is called listsize
in Ullman and Van Gelder [UvG88].
Consider now the following program QS (for quicksort):

(gs1) qs(d, [1) «.

(gs2) qs([X | Xs], Ys) «
£(X, Xs, Xis, X2s),
gs(X1s, Yis),
gs(X2s, Y2s), »
a(Yis, [X | Y281, Ys).

(f) £, 00, 0O, [1) «.

(f2) £, [Y | Xs1, [Y | Yis], ¥2s) «
X >V,
f(X, Xs, Yis, Y2s).

(fs) £, [Y | Xs1, Yis, [Y | ¥Y2s]) «
X<y,
(X, Xs, Yis, Y2s).

(a1) a(ll, ¥s, ¥s) «
(az) a([X | Xs1, Ys, [X | Zs]) «
a(Xs, Ys, Zs).

We assume that QS operates on the domain of natural numbers over which the built-in
relations > and <, written in infix notation, are defined. This domain can be incorporated
into the Herbrand universe of QS by adding to the language of QS the constant 0 and the successor
function s (for example by adding to QS the clause s(0) > 0 «.).

Denote now the program consisting of the clauses (f1), (f2), (f3) by filter, and the program
consisting of the clauses (a1), (a2) by append.

Lemma 3.1 filter is recurrent with |f(z,zs,z1s,22s)| = |zs|. O

We adopted here the simplifying assumption that built-in’s > and < are recurrent w.r.t. the
level mapping |s >t/ = 0 and s <¢| = 0.

Lemma 3.2 append is recurrent with |a(zs,ys, zs)| = |zs]|. a
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Lemma 3.3 QS is not recurrent.
Proof. Consider clause (gsz) instantiated with the ground substitution
{X/a, Xs/b, Ys/c, X13/[a|b], V1s/c}.

Then the ground atom g¢s([a|b], ¢) appears both in the head and the body of the resulting clause.
O

To prove that QS is left terminating we show that it is acceptable. We define an appropriate
level mapping | | by extending the ones given in Lemmata 3.1 and 3.2 with

lgs(zs, ys)| = |zs-

Next, we define a Herbrand interpretation of QS by putting

I = {gs(zs,ys)| |=s| = ysl}
U {f(e,2s,yls,925) | |zs| = |yls| + |y2sl}
U {a(zs,ys,zs)| s| + lys| = |2}
U [X>Y]
U [X<Y).

Recall that [A] for an atom A stands for the set of all ground instances A.
Lemma 3.4 I is a model of QS.

Proof. First, note that |[]| +|ys| = |ys| and that |zs|+|ys| = |zs| implies [z]zs]| +|ys| = |[=|zs]|-
This implies that I is a model of append.

Next, note that |[]| + [[]| = |[]| and that |2s| = |yls| + |y2s| implies |[y|=s]| = |[ylyLs]|+[y2s|
and |[y|es]| = |y1s| + |[y|y2s]|. This implies that I is a model of filter.

Finally, note that |[]| = |[]| and that |zs| = |z1s| + |22s], |z1s] = |yls|, |z2s| = |y2s| and
lyls| + |[z|y2s]| = |ys| imply |[z|zs]| = |ys|. This implies that I is a model of @S. O

We now prove the desired result.

Theorem 3.5 QS is acceptable w.r.t. || and I.

Proof. As filter and append are recurrent w.r.t. | |, we only need to consider clauses (gs1)
and (gss). (gs1) satisfies the appropriate requirement voidly.

Consider now a ground instance C of (¢gs3). C is of the form A « B, By, B3, By. We now
prove three facts which imply that C' satisfies the appropriate requirement.

Fact 1 |A| > |Bil.
Proof. Note that

lgs([z|zs], ys)]| = |[=z]zs]| > |zs| = |f(z,zs,zls,223)|.

Fact 2 Suppose I |= B;. Then |A| > |B;| and |A| > |Bs].
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Proof. By assumption |zs| = |z1s| + |22s], so
|gs([z]es],ys)| > |zs| > |21s| = |gs(<1s, y13)|

and analogously
lgs([z]|zs], ys)| > |gs(x2s,y2s)|.

Fact 3 Suppose I = By and I |= By. Then |A| > |By|.
Proof. By Fact 2 |gs([z|zs],ys)| > |gs(ls,yls)| = |z1s| and by assumption |z1s| = |yls], so

lgs([z]zs],ys)| > |yls| = |a(yls,[e|y2s],ys)|.

O
O

So far we only proved that QS is left terminating. We now prove that it terminates for a
large class of goals.

Lemma 3.6 For all terms t,ty,...,t,, k > 0, a goal of the form
A 98([t1, o ')tk])t)
is rigid w.r.t. | |.

Proof. Let A be a ground instance of ¢s([t1,--.,%],t). Then |A| = |[t1,..., ]| = k. O

It is worth noting that every “ill typed” goal « ¢s(s,t), where s is a non-variable, non-list
term is also rigid w.r.t. | |, as |s’| = 0 for every ground instance s’ of s.

Corollary 3.7 For all terms t,ty,...,tx, k > 0, all LD-derivations of
Qs U{« gs([t1,---,t&], 1)} are finite.

Proof. By Corollary 2.13. a

4 Left Termination of General Programs

We now address the problem of extending the notions of left termination and acceptability to
general programs, i.e. programs that admit negative literals in clause bodies.

General Programs and LDNF-resolution

Recall that a general clause is a construct of the form

A L1, .y Ln
(n > 0) where A is an atom and Ly, ..., L, are literals. In turn, a general goal is a construct of
the form
— Ll) e Ln
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(n > 0) where Ly, ..., L, are literals. A general program is a finite set of general clauses.

In this paper we consider SLDNF-resolution with one selection rule only - namely that
of Prolog, that is the leftmost selection rule. As S in SLDNF stands for “selection rule”, we
denote this form of resolution by LDNF (Linear resolution for Definite clauses with Negation
as Failure).

When studying termination of general Prolog programs, i.e. programs executed using the
LDNF-resolution it is necessary to revise the standard definitions of Lloyd [Llo87]. Indeed,
according to his definitions there is no LDNF-derivation for {p < -p} U { < p} whereas the
corresponding Prolog execution diverges.

The appropriate revision is achieved by viewing the LDNF-resolution as a top down in-
terpreter which given a general program P and a general goal G attempts to build a search
tree for P U {G} by constructing its branches in parallel. The branches in this tree are called
LDNF-derivations for P U {G} and the tree itself is called the LDNF-tree for P U {G}.

Negative literals are resolved using the negation as failure rule which calls for the construction
of a subsidiary search tree. If during this subsidiary construction the interpreter diverges, the
main LDNF-derivation is considered to be infinite. Adopting this view the LDNF-derivation
for {p « -p} U { < p} diverges because the goal « p is resolved to « —p and the subsequent
construction of the subsidiary LDNF-tree for {p « —p} U { — p} diverges.

It is useful to mention here that recently Martelli and Tricomi [MT91] proposed a new
definition of the SLDNF-tree which allows us to formalize the above revision of the LDNF-
resolution.

Summarizing, by termination of a general Prolog program we actually mean termination of
the underlying interpreter. By choosing variables of the input clauses and the used mgu’s in
a fixed way we can assume that for every general program P and general goal G there exists
exactly one LDNF-tree for PU{G}. The subsidiary LDNF-trees formed during the construction
of this tree are called subsidiary LDNF-trees for P U {G}.

The following definition extends the notion of left termination to general programs.

Definition 4.1 A general program P is called left terminating if all LDNF-derivations of P
starting in a ground general goal are finite. a

In other words, a general program is left terminating if all LDNF-trees for P with a ground
root are finite. Again, our method of proving left termination will allow us to identify a class of
terminating non-ground general goals which constitute the intended queries for the program.

The following lemma will be of use later.

Lemma 4.2 Suppose that all LDNF-derivations of P starting in a ground goal are finite. Then
P is left terminating.

Proof. It suffices to show that for all ground literals L all LDNF-derivations of PU { « L} are
finite. When L is positive it is a part of the assumptions and when L is negative, say L = -4,
it follows from the fact that by assumption the subsidiary LDNF-tree for P U { « A} is finite.

a

Acceptable General Programs

Our aim is to generalize the concept of acceptability of Section 2 to general Prolog programs.
First, we extend in a natural way a level mapping to a mapping from ground literals to natural
numbers by putting |[-A| = |A|. Next, given a general program P, we define its subset P~.
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In P~ we collect the definitions of the negated relations and relations on which these relations
depend. More precisely, we define P~ as follows.

Definition 4.3 Let P be a general program and p, g relations.

(i) We say that p refers to g iff there is a general clause in P that uses p in its head and ¢ in
its body.

(i) We say that p depends on g iff (p,q) is in the reflexive, transitive closure of the relation
refers to.

O

Of course, not every relation needs to refer to itself, but by reflexivity every relation depends
on itself.

Definition 4.4 Let P be a general program. Denote by Negp the set of relations in P which
occur in a negative literal in a body of a general clause from P and by Negp the set of relations
in P on which the relations in Negp depend on. We define P~ to be the set of general clauses
in P in whose head a relation from Negp occurs. a

We can now introduce the desired generalization of the notion of acceptability.

Definition 4.5 Let P be a general program, || a level mapping for P and I a model of P
whose restriction to the relations from Negp is a model of comp(P~). P is called acceptable
with respect to || and I if for every general clause A « Ly, ..., L, in ground(P) the following
implication holds for i € [1,n]:

if T AZ] Ljthen |A] > |Li.

In other words, we have for every general clause A « Ly,..., L, in ground(P)
|A| > |L;| forie [1,R],
where
A= min({n} U {i € [1,n]| I £ Li}).

P is called acceptable if it is acceptable with respect to some level mapping and a model of P
whose restriction to the relations from Negp is a model of comp(P ™). O

Note that for a program P we have Negp = 0, so P~ is empty and the above definition
coincides with the definition of acceptability for programs.

The idea underlying the definition of acceptability for general programs is similar to that of
programs and can be illustrated as follows. Consider a general program P, a level mapping || for
P and a model I of P whose restriction to the relations from Neg} is a model of comp(P~), such
that P is acceptable with respect to || and I. Let C be a ground instance of a general clause from
P, and - A a negative literal in the body of C, such that I [£ - A. By the fact that the restriction
of I to the relations from Neg} is a model of comp(P~), we have that comp(P~) [£ ~A. This
condition (by the soundness of SLDNF-resolution) excludes the existence of a refutation for - A4,
and consequently there is no point in checking that the level mapping decreases from the head
of the general clause C' to any literals occurring to the right of =4 in the body of C.

The concept of an acceptable general program also generalizes that of an acyclic program
studied in Cavedon [Cav89] and Apt and Bezem [AB90].
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Definition 4.6 Let P be a general program, | | a level mapping for P. P is called acyclic with
respect to | | if for every general clause A «— Ly, ..., L, in ground(P)

|A| > |L;| fori € [1,n].
P is called acyclic if it is acyclic with respect to some level mapping. o

Lemma 4.7 Every acyclic program is acceptable.

Proof. Let P be acyclic w.r.t. some level mapping | |. By Theorem 4.1 of Apt and Bezem
[AB90] comp(P) has a unique Herbrand model, Mp. Then P is acceptable w.r.t. || and Mp. O

As in the case of recurrent and acceptable programs, the use of the premise I |= /\_f',-;l1 L;
forms the only difference between the concepts of acyclicity and acceptability. Apt and Bezem
[AB90] proved among others that all SLDNF-derivations of an acyclic program starting in a
ground general goal are finite. This implies that all acyclic programs are left terminating, so
the concept of acyclicity is of obvious importance when studying termination of general Prolog
programs. Indeed, in Apt and Bezem [AB90] the usefulness of this concept was demonstrated
by proving termination of a general program which formalizes the Yale Shooting problem of
Hanks and McDermott [HM87]. However, as we shall see in Section 5 of this paper, there exist
natural left terminating general programs which are not acyclic. Thus the concept of acyclicity
is of limited applicability when considering general Prolog programs.

Boundedness

The concept of boundedness also extends directly to literals and general programs. A literal L
is called bounded w.r.t. a level mapping || if | | is bounded on the set [L] of ground instances
of L. If L is bounded, then |[L]| denotes the maximum that | | takes on [L]. Note that every
ground literal is bounded. _

Our concept of a bounded general goal directly generalizes that of a bounded goal given in

Definition 2.9.

Definition 4.8 Let P be a general program, | | a level mapping for P, I a model of P whose
restriction to the relations from Negp is a model of comp(P~), and k > 0.

(i) With each ground general goal G = « Ly,..., L, we associate a finite multiset |G|r of
natural numbers defined by

|Gl = bag(|La],- - [Lal),

where
n

min({n} U {é € [1,n]| I [~ Li}).
(ii) With each general goal G we associate a set of multisets |[G]|; defined by

I[Gll; = {IG'l1 | G' is a ground instance of G}.

(iii) A general goal G is called bounded by k w.r.t. || and I if & > £ for £ € U|[G]|;, where
U|[G]]; stands for the set-theoretic union of the elements of |[G]|;.
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(iv) A general goal is called bounded w.r.t. || and I if it is bounded by some k > 0 w.r.t. ||
and I.

O
Lemma 2.10 immediately extends to general programs.

Lemma 4.9 Let P be a general program, || a level mapping for P and I a model of P whose
restriction to the relations from Negp is a model of comp(P~). A general goal G is bounded
w.r.t. || and I iff the set |[G]|; is finite. ]

The following lemma is an analogue of Lemma 2.12 for general programs.

Lemma 4.10 Let P be a general program that is acceptable w.r.t. a level mapping || and an
interpretation I. Let G be a general goal which is a descendant of a goal and which is bounded
(w.r.t. || and I) and let H be an LDNF-resolvent of G from P. Then

(i) H is bounded,

(1) |[H]|; is smaller than |[G]|; in the double multiset ordering.

Proof. The proof is analogous to the proof of Lemma 2.12. Due to the presence of negative
literals we only have to consider one additional case.

First we show that for every ground instance Ho of H there exists a ground instance G’ of
G such that |Hy|s is smaller that |G’|f in the multiset ordering.

In the case that H is obtained from G by the proper resolution step, the proof is the same
as in the proof of Lemma 2.12. Otherwise, H is obtained from G by the negation as failure
rule. Let G = « Ly,..., L, (n > 1). Then L, is a ground negative literal, say L; = - A, and
H =« Lz,...,Ln.

Denote by T the finitely failed LDNF-tree for P U { «— A}. By the definition of Negp and
the fact that G is a descendant of a goal, the relation occurring in A is in Negp. Thus all
relations which occur in the general goals of the tree T are elements of Negp. So T is in
fact a finitely failed LDNF-tree for P~ U { « A}. By the soundness of the SLDNF-resolution,
comp(P™) = —4,sol | L.

Let Hy be a ground instance of H. For some substitution §

Ho = Liz,. "’L:IJ
where L. denotes L;§. Thus
G, =< L11L127 .. '7L:1’
is a ground instance of G. Then
|Holr = bag (|L3], - . -, | L5l)

where
7 = min({n} U {i € [2,7] |7 }£ L}}).

and, since I |= L,

IGIII = bag(|L1|7 lLI2|’)|L:‘1 )
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This shows that | Ho|s is smaller than |G’|; in the multiset ordering.

The statement we just proved implies claim (i) since G is bounded. By Lemma 4.9 |[H]|; is
finite and claim (ii) now follows by Lemma 2.8. O

Corollary 4.11 Let P be an acceptable general program and G a bounded general goal. Then
all LDNF-derivations of P U {G} are finite.

Proof. The double multiset ordering is well-founded. O
Corollary 4.12 FEvery acceptable general program is left terminating.

Proof. By the fact that every ground general goal is bounded, Corollary 4.11 and Lemma 4.2.
O

Thus to prove that a general program is left terminating it suffices to show that it is accept-
able.

To apply Corollaries 4.11 and 4.12 we need a method for verifying that an interpretation is
a model of comp(P~). In the case of Herbrand interpretations this task becomes much simpler
thanks to the following theorem due to Apt, Blair and Walker [ABW88]. Here an interpretation
is supported if for all ground atoms A, I |= A implies that for some general clause A « Lq,..., L,
in ground(P) we have I |= Ly A ... A L.

Theorem 4.13 A Herbrand interpretation I is a model of comp(P) iff it is a supported model
of P. a

Non-floundering LDNF-trees

The converse of Corollary 4.12 does not hold. This is in contrast to the case of programs. Below
we say that an LDNF-derivation flounders if there occurs in it or in any of its subsidiary LDNF-
trees a general goal with the first literal being non-ground and negative. An LDNF-tree is called

non-floundering if none of its branches flounders.

Example 4.14 Consider the general program P which consists of only one general clause:
p(0) « —p(X). Then the only LDNF-derivation of P U { « p(0)} flounders, so it is finite. By
the definition of SLDNF-resolution the only LDNF-derivation of P U { « —p(0)} flounders, as
well. Thus P is left terminating, since the only ground general goals are of the form G = «
Li,..., L, (n > 1) where each L; is either p(0) or —p(0). On the other hand P is not acceptable
since p(0) « —p(0) is in ground(P) and by definition for any level mapping |p(0)| = |-p(0)|. O

The above example exploits the fact that SLDNF-derivations may terminate by floundering.
We now show that in the absence of floundering Corollary 4.12 can be reversed. We proceed
analogously to the case of programs and study the size of finite LDNF-trees. We need the
following analogoue of Lemma 2.15, where nodesp(G) for a general program P and a general
goal G denotes the total number of nodes in the LDNF-tree for PU{G} and in all the subsidiary
LDNF-trees for P U {G}.

Lemma 4.15 Let P be a general program and G a general goal such that the LDNF-tree for
P U {G} is finite and non-floundering. Then
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(i) for all substitutions 8, the LDNF-tree for P U {G6} is finite and non-floundering and
nodesp(GO) < nodesp(G),

(i) for all prefizes H of G, the LDNF-tree for P U {H} is finite and non-floundering and
nodesp(H) < nodesp(G),

(ii) for all non-root nodes H in the LDNF-iree for P U {G}, nodesp(H) < nodesp(G).

Proof. Because of the additional requirement of non-floundering the proof is more complicated

than that of Lemma 2.15.
(i) The proof proceeds by structural induction on the LDNF-tree T for P U {G}.

The Base Case. Then T is formed by the only node G. The following three subcases arise.

Subcase 1 G = O. Then G = G4, and the claim trivially holds.

Subcase 2 G = « A, L, ..., L. Then A does not unify with the head of any general clause in
P and neither A8 does. As a consequence, the general goal G also immediately fails, and the
LDNF-tree T for P U {G#8} is formed by the only node G#.

Subcase 3 G = « —A,L,,...,L;. By the fact that T has no floundering derivation, A is
ground. The general goal G immediately fails, so by the definition of the LDNF-resolution there
is an LDNF-refutation of P U { « A}. Then G@ also immediately fails as A = Af. Hence the
LDNF-tree T for P U {G8} is formed by the only node G4. By definition

nodesp(GO) = 1+ nodesp( — Af) = 1 + nodesp( — A) = nodesp(G).

The Induction Case. Two subcases arise here.

Subcase 1 G = «— A, L,y,..., L. Assume that Hy,..., H,, are the resolvents of G from P.
Consider G6 = « (4, Ls, ..., Lt)0, and let Hy,..., H] be the resolvents of G8 from P. Clearly,
for all 4 in [1,1] there exist j in [1,m] and a substitution § such that H! = H;§. By the induction
hypothesis, nodesp(H!) < nodesp(H;). Hence:

nodesp(GO) = 1+ nodesp(H{) + ...+ nodesp(H]) <
1+ nodesp(H1) + ...+ nodesp(H,,) = nodesp(G).

Moreover, the LDNF-tree for P U {G6} is finite and non-floundering and by the induction
hypothesis the LDNF-trees for the resolvents of G8 are finite and non-floundering.
Subcase 2 G = « —A,L,y,... L. By the fact that T has no floundering derivation, A is
ground. The fact that G is not a terminal node in T implies that there exists an LDNF-
refutation of P U { « —A}, i.e. the LDNF-tree for P U { «— A} is finitely failed. Then G
has only one resolvent, namely « Lj,..., Lt. Moreover, G& = « —A,(Ly,..., L)d, since
A is ground, so « (Lg,...,L)0 is the only resolvent of GA. By the induction hypothesis,
nodesp( « (Lz,. .., Lr)0) < nodesp( « Ls,..., Lt). Hence:

nodesp(G8) = 1 + nodesp( — A) + nodesp( « (La, ..., Lr)f) <
1+ nodesp( «— A) + nodesp( « Ly, ..., L;) = nodesp(G).

Moreover, the LDNF-tree for P U {G#} is finite and non-floundering, since by the induction
hypothesis the LDNF-tree for the resolvent of G4 is finite and non-floundering.

(ii) Consider a prefix H = « L1,...,Lr of G = « L1,...,L, (n > k). By an appropriate
renaming of variables (formally justified by a straightforward extension to the LDNF-resolution
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of the Variant Lemma 2.8 in Apt [Apt90]) we can assume that all input general clauses used
in the LDNF-tree for P U {H} have no variables in common with G. We can now transform
the LDNF-tree for P U {H} into an initial subtree of the LDNF-tree for P U {G} by replac-
ing in it a node « My,...,M; by « My,..., M, Lgi10,..., La0, where 6 is the composition
of the mgu’s used on the path from the root H to the node « Mj,..., M;. This implies the
claim, since every subsidiary LDNF-tree for PU{H} is also a subsidiary LDNF-tree for PU{G}.

(iii) Immediate by the definition. O
The following definition will now be useful.

Definition 4.18 We call a general program P non-floundering if all its LDNF-derivations start-
ing in a ground general goal are non-floundering.

We now show that Corollary 4.12 can be reversed under the additional assumption of non-
floundering, thus obtaining an analogue of Theorem 2.16 for general programs.

Theorem 4.17 Let P be a left terminating, non-floundering general program. Then for some
level mapping | | and a model I of comp(P)

(i) P is acceptable w.r.t. || and I,

(1) for every general goal G, G is bounded w.r.t. || and I iff all LDNF-derivations of PU{G}
are finite.

Proof. The proof is similar to that of Theorem 2.16 though more work is needed to determine
the model I. Define the level mapping by putting for A € Bp

|A| = nodesp («— A).

Since P is left terminating, this level mapping is well defined. Note that by definition, for
A€ Bp
nodesp( «— —A) > nodesp( — A) = |4| = |-4|,

$0
nodesp( — —A) > |-A|. (1)

Next, choose

I = {A € Bp |there is an LDNF-refutation of P U {«— A}}.

Let us show that I is a model of comp(P). To this end, we use Theorem 4.13 and show that I
is a supported model of P.

To establish that I is a model of P, assume by contradiction that some ground instance
A« Li,..., L of ageneral clause C from P is falsein I. Then I |= L{ A ... A L], and T |£ A.
Since P is left terminating and non-floundering, I [~ A implies that the LDNF-tree for PU{« A}
is finitely failed and non-floundering.

For some ground substitution 7y, A = By where B is the head of the general clause C. Thus
Avy = Byy = By, so A and B unify.

Let « Lj,..., L, be the resolvent of «— A from the general clause C. The LDNF-tree for
PU{« Ly,..., Ly} is also finitely failed and non-floundering. As L{,... L} = (Ly,...,L,)8
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for some substitution 8, we have by Lemma 4.15(i) that the LDNF-tree for PU{ « Lj,..., L.}
is non-floundering. Moreover, it is finitely failed, since a direct consequence of the proof of
Lemma 4.15(i) is that the general goals present in the LDNF-tree for P U { « Lj,..., L} are
all instances of the general goals present in the LDNF-tree for PU{ « L1,..., L,}. But the fact
that the LDNF-tree for PU{ « Li,..., L} is finitely failed and non-floundering contradicts the
hypothesis that I = L] A ... A L},

To establish that I is a supported interpretation of P, consider A € Bp such that I |= A, and
let C be the first input general clause used in the leftmost LDNF-refutation of P U {« A}. Let
«— Lq,...,L, be the resolvent of «— A from the general clause C. Clearly, an LDNF-refutation
for PU { « Ly,...,Ln}, with a computed answer substitution 6, can be extracted from the
LDNF-refutation of P U {« A}. Let Li,... L}, be a ground instance of (L1,..., Ln)0. By a
straightforward generalization of Lemma 3.20 in [Apt90] to the LDNF-resolution there exists an
LDNF-refutation for PU{ « Li,..., L} }. We conclude that I |= L{ A ... A L,. This establishes
that I is a supported interpretation of P.

We are now in the position to prove (i) and (ii). First we prove one implication of (ii).

(ii1) Consider a general goal G such that all LDNF-derivations of P U {G} are finite. We prove
that G is bounded by nodesp(G) w.r.t. | | and I.

To this end take £ € U|[G]|;. For some ground instance « Ly,...,L, of G and ¢ € [1,7],
where

A= min({n} U {i € [L,n]| T} L;}),

we have £ = |L;|. We now calculate

nodesp(G)
{Lemma 4.15 (i)}
nodesp(«— L1,..., Ly)
{Lemma 4.15 (ii)}
nodesp(«— L1,...,Lz)
{Lemma 4.15 (iii), noting that for j € [1,7 — 1]
there is an LDNF-refutation of P U {« Ly,..., L;}}
nodesp(« Li,..., L)
{Lemma 4.15 (ii)}
nodesp (« L;)
> {definition of | |, (1)}
| Zi]
= 4.

v

v

v

\%

(i) We now prove that P is acceptable w.r.t. || and I. We showed that I is a model of comp(P),
so the restriction of I to the relations in Negy is trivially a model of comp(P~). To complete
the proof, take a general clause A « L,..., L, in P and its ground instance Af «— L40,..., L,60.
We need to show that

|A8| > |L;f| for i € [1,7],
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where

A= min({n} U {i € [1,n]| I | L;6}).

We have A00 = A6, so Af and A unify. Let y = mgu(Af, A). Then § = ud for some §. By
the definition of LDNF-resolution, « Lqy, ..., Loy is an LDNF-resolvent of «— A#.
Then for ¢ € [1,7]

146)
=  {definition of | |}
nodesp (— Af)
>  {Lemma 4.15(iii), « L1k, .., Lyp is a resolvent of — A6}
nodesp («— L1pt, ..., Lnp)
{part (iil), noting that L;0 € U|[« L1y, ..., Lap]|r}
|L;6).

I\

(ii2) Consider a general goal G which is bounded w.r.t. | | and I. Then by (i) and Corollary
4.10 all LDNF-derivations of P U {G} are finite. O

Corollary 4.18 A non-floundering general program is left terminating iff it is acceptable.

Proof. By Corollary 4.12 and Theorem 4.17. |

5 Examples — the Game and Transitive Closure Programs

Theorem 4.17 shows that our method of proving termination based on the concepts of acceptabil-
ity and boundedness is complete for left terminating, non-floundering general Prolog programs.
In this section we illustrate its use by proving termination of two simple, well-known programs.
None of them can be handled within the framework of Apt and Bezem [AB90].

A GAME Program
Suppose that G is an acyclic finite graph. Consider the following general program GAME:

win(X) « move(X,Y), — win(Y).
move(a,b) « for (a,b) € G.

Lemma 5.1 GAME s not acyclic.

Proof. For any ground instance win(a) « move(a, a), ~win(a) of the first general clause and a
level mapping || we have |win(a)| = |~win(a)). O

We now proceed to show that GAME is acceptable. Since G is acyclic and finite, there exists
a function f from the elements of its domain to natural numbers such that for a € dom(G)

f(a) = 0 if for no b, (a,b) € G
=\ 1+ maz {f(b)](a,b) € G} otherwise.
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We define appropriate level mapping by putting for all (a,b) € dom(G)
|move(a, b)| = f(a)
and for a € dom(G)
[win(a)| = £(a) +1.

Next, since G is acyclic and finite, there exists a function g from the elements of its domain
to {0, 1} such that for a € dom(G)

_Jo if for no b, (a,b) € G
g(a) = 1 —min {g(b)|(a,b) € G} otherwise.
Let
I = {move(a,b)| (a,d) € G}

U {win(a)| gla)= 1}.
Lemma 5.2 [ is a model of comp(GAME).

Proof. The following two statements hold.
(a) I is a model of GAME.
Indeed, consider a ground instance

win(a) «— move(a, b), ~win(b)
of the first general clause of GAME and suppose that
I |E move(a,b) A ~win(b).
Then (a,b) € G and g(b) = 0, so g(a) = 1 and consequently
I  win(a).
Additionally, T is a model for all move clauses.

(b) I is a supported interpretation of GAME.
Indeed, consider an atom win(a) € I. Then g(a) = 1, so for some b € G we have (a,b) € G
and g(b) = 0. We conclude that

I'= move(a,b) A ~win(b).

By Theorem 4.13 we conclude that I is a model of comp(GAME). O

We can now prove the desired result.

Theorem 5.3 GAME is acceptable w.r.t. || and I.
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Proof. For a general program P every model of comp(P) is also a model of P, thus I is a model
of GAME. Moreover, GAME™ = GAME.
Consider a ground instance
win(a) «— move(a,b), ~win(b)
of the first general clause of GAME. Then by definition
|win(a)| = f(a)+ 1 > f(a) = |move(a, b)|.

Suppose now that I = move(a,b). Then move(a,b) € I, so (a,b) € G and consequently f(a) >
f(). Thus

|win(a)| = f(a) + 1> f(b) + 1 = [~win(d)|.

Corollary 5.4 GAME is left terminating.
Proof. By Corollary 4.12. ]
Corollary 5.5 For all terms t, the goal — win(t) is bounded w.r.1. || and I.

Proof. The goal « win(t) is bounded by maz {f(a) + 1|a € dom(G)}. Note that because of
the syntax of GAME, ¢ is either a variable or a constant. In the latter case we can improve the
bound to f(¢) + 1. O

Corollary 5.6 For all terms t, all LDNF-derivations of GAMEU{ « win(t)} are finite.
Proof. By Corollary 4.11. ]

Transitive Closure
Consider the following general program computing the transitive closure of a graph.

(r1) rX,Y,E,V) «
member([X,Y],E).

(r2) r(X,Z,E,V) «
member([X,Y] ,E),
- member(Y,V),
r(Y,Z,E,[Y|V]).

(m1) member(X,[XI|T]) « .
(m2) member(X,[Y|T]) «
member (X,T).

In a typical use of this program one evaluates a goal « 7(z,y,e,[]) where z,y are nodes
and e is a graph specified by a list of its edges. The nodes of e belong to a finite set 4. This
goal is supposed to succeed when [z,y] is in the transitive closure of e. The last argument of
r(%,y, e, v) acts as an accumulator in which one maintains the list of nodes which should not be
reused when looking for a path connecting z with y in e (to keep the path acyclic).

To ensure that the elements of .4 are in the Herbrand Universe of the program we add to
the program the clauses
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(¢) element(a) « fora € A,

and call the resulting general program TRANS.
Lemma 5.7 TRANS is not acyclic.

Proof. By Lemma 4.1 of Apt and Bezem [AB90] all SLDNF-derivations of an acyclic program P
starting with a ground goal are finite. Thus it suffices to exhibit an infinite SLDNF-derivation of
TRANS starting in a ground goal. Such a derivation is obtained by using the rightmost selection
rule and starting with the ground goal « 7(z, z, e, v) repeatedly using general clause (rp). O

We now prove that TRANS is acceptable. Below we call a list consisting of two elements a
pair.

First, we define by structural induction a function set by putting

set([z|zs]) = {2} U set(zs),
set(f(z1,..2n)) = Qif f# [.|.]

Then for a list z3, set(zs) is the set of its elements.
Define now a Herbrand interpretation I by

I=[r(X,Y,E,V)]UI U {element(z) |z € A}
where
I = {member(z,z3) |z € set(zs)}.

Recall that for an atom A, [A] stands for the set of all ground instances of A.
We now prove two lemmata about I and I.

Lemma 5.8 [ is a model of TRANS.

Proof. I is clearly a model of (71), (72) and of the clauses (e). I is also a model of the clauses
(m1) and (m3) because by definition # € set([«|t]) holds and z € set(t) implies z € set([y|t]). O

Lemma 5.9 I is a model of comp(TRANS™).

Proof. Note that TRANS™ = {(m,),(m2)}. We prove that I; is a supported interpretation of
{(m1), (my)}. Consider an atom member(z,zs) € I;. We prove that there exists a ground
instance member(z,zs) « L1, ..., L, of (my) or (my) such that I |= L1 A ... A L,.

By definition z € set(zs), so for some y and t we have zs = [y|t] and z € {y} U set(t). If
z = y, then zs = [2|t], and the desired clause is an instance of (m;). Otherwise z € set(t), so
member(z,t) € I,i.e. I |= member(z,t). In this case the desired clause is an instance of (m;).

By Lemma 5.8 I; is a model of {(m1), (m2)}, so by Theorem 4.13 we now conclude that I,
is a model of comp({(m1), (m2)}). O

We now define an appropriate level mapping. We use here the listsize function || which maps
ground terms to natural numbers and is defined in Section 3. It is clear that by putting
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|member(z,y)| = |y|

we obtain the desired decrease for clause (m2). Having made this choice in order to obtain the
desired decrease for clause (r1) we need to have
|r(2, 2, €,v)| > |e|. (2)

Additionally, to obtain the desired decrease for general clause (ry) we need to have (assuming
that I |= member([z,y],€) )

(2, 2, €,0)| > |v] (3)
and, assuming
I |= member([z,y],e) A “member(y,v), (4)
we need to prove
Ir(z,2,€,0)| > [r(y, 2, &, [y]v])]. (5)

To define |r(z, 2, e, v)| we first define two auxiliary functions. Let

nodes(e) = {z | for some pair b, = € set(b) and b € sei(e)}.

If e is a list of pairs that specifies the edges of a graph G, then nodes(e) is the set of nodes
of G.
Let
out(e,v) = {z | ¢ € nodes(e) and = ¢ set(v)}.

If e is a list of pairs that specify the edges of a graph G and v is a list, then out(e, v) is the
set of nodes of G that are not elements of v.
We now put

|r(z, z,e,v)| = |e| + |v| + 2 - card out(e,v) + 1,

where card X stands for the cardinality of the set X.

Then (2) and (3) hold. Assume now (4). Then [z,y] € sei(e) and y ¢ set(v). Thus
y € nodes(e) and consequently y € out(e,v).

On the other hand set([y|v]) = {y} U set(v). Thus y ¢ out(e, [y|v]) and out(e,v) = {y} U
out(e, [y|v]) so card out(e,v) = card out(e, [y|v]) + 1.

We now have

|r(z, z,e,v)| = |e| + |v| + 2 - card out(e,v) + 1

le] + |v] + 2 - card out(e, [y|v]) + 3

lel + [[ylv]| + 2 - card out(e, [y|v]) + 1
I7(y, 2, €, [ylv])]

v

which proves (5).
Summarizing, we proved the following result.
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Theorem 5.10 TRANS is acceptable w.r.t. || and I. a
Corollary 5.11 TRANS is left terminating.

Proof. By Corollary 4.12. O
Corollary 5.12 For all terms =,y and lists e, v, the goal « r(z,y,e,v) is rigid w.r.t. ||.

Proof. For any ground instance A of r(z,y,e,v) we have |A| = |e| + |[v| 4 2 - card out(e,v) + 1.

O
Corollary 5.13 For all terms z,y and lists e, v, all LDNF-derivations of
TRANSU{ « r(z,y,e,v)} are finite.
Proof. By Corollary 4.11. |

6 Semantic Considerations

In this section we study semantics of acceptable general programs. We show here that various
ways of defining their semantics coincide.

We recall first the relevant definitions and results. Given a monotonic operator 7' on a
complete partial ordering L with the least element |, we define the upward ordinal powers of T
starting at 1 in the standard way and denote them by T' T a where « is an ordinal. If L has the
greatest element, say T, (this is the case when for example L is a complete lattice) we define
the downward ordinal powers of T starting at T in the standard way and denote them by T' | c.

We use below Fitting’s approach to the semantics of general programs. Fitting [Fit85] uses
a 3-valued logic based on a logic due to Kleene [Kle52]. In Kleene’s logic there are three truth
values: t for true, f for false and u for undefined.

A Herbrand interpretation for this logic (called a 3-valued Herbrand interpretation) is defined
as a pair (T, F) of disjoint sets of ground atoms. Given such an interpretation I = (T, F) a
ground atom A is true in I if A € T, false in I if A € F and undefined otherwise; -4 is true in
Iif A isfalse in I and —A is false in [ if A is true in I.

Every binary connective takes the value t or f if it takes that value in 2-valued logic for all
possible substitutions of u’s by t or f; otherwise it takes value u.

Given a formula ¢ and a 3-valued Herbrand interpretation I, we write ¢ is trues in I
(respectively ¢ is falses in I) to denote the fact that ¢ is true in I (respectively that ¢ is false
in I) in the above defined sense.

Given I = (T, F) we denote T by I" and F by I~. Thus I = (I*,I7). f ITUI~ = Bp, we
call I a total 3-valued Herbrand interpretation for the general program P.

Every (2-valued) Herbrand interpretation I for a general program P determines a total 3-
valued Herbrand interpretation (I, Bp — I) for P. This allows us to identify every 2-valued
Herbrand interpretation I for a general program P with its 3-valued counterpart (I, Bp — I).
For uniformity, given a (2-valued) Herbrand interpretation I we write ¢ is truey in I instead of
I|= ¢ and ¢ is false, in I instead of I [£ ¢. The following proposition relates truth in 3- and
2-valued interpretations and will be useful later.

Proposition 6.1 Let I be a 3-valued interpretation and L a literal. Then

(i) L is trues in I implies L is truep tn IT,
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(i) L is trues in I implies L is not falses in I, i.e. L is either trues or undefined in I.

Proof.

(i) If L = A, L is trues in I implies A € I, hence A is true; in IT. L =-A4, -Ais trues in
I implies A € I, which implies A ¢ I't. Hence — A is truep in 7.

(ii) If L = A, L is true, in I implies A € IT, hence A is truez in I. If L = ~A, ~A is true; in
It implies A ¢ It. Hence —A is either trues or undefined in 1. ]

Given a general program P, the 3-valued Herbrand interpretations for P form a complete
partial ordering with the ordering C defined by

ICJiFITCIJtAI"CJ™

and with the least element (§,0). Note that in this ordering every total 3-valued Herbrand
interpretation is C -maximal. Intuitively, I C J if J decides both truth and falsity for more

atoms than I does.
Following Fitting [Fit85], given a general program P we define an operator ®p on the com-
plete partial ordering of 3-valued Herbrand interpretations for P as follows:

§P(I) = (T, F))

where

T = {A|for some A « Ly,... Lt in ground(P), L1 A ... A Ly is trueg in I},
F= {A|forall A« Ly,... Lyin ground(P), L1 A ... A Ly is falses in I}.

It is easy to see that T and F are disjoint, so ®p(]) is indeed a 3-valued Herbrand interpre-
tation. ®p is a natural generalization of the usual immediate consequence operator Tp to the
case of 3-valued logic. ®p is easily seen to be monotonic.

The upward ordinal powers of ®p, denoted by ®p T a, are defined starting the iteration at
the C -least 3-valued Herbrand interpretation, (§, ). In particular

dptw=|J &p1n

n<w

Before studying semantics of acceptable general programs we prove a number of auxiliary
results about the operators Tp and ®p. The following lemma relates these two operators.

Lemma 6.2 Let I be a S-valued interpretation and P a general program. Then
®p(I)* CTp(I") C Bp — &p(I)".
Moreover, if I is total then ®p(I)t = Tp(I*) = Bp — &p(I)".
Proof. By definition of Tp and ®p we obtain:
A€ &p()t iff for some A « Ly,..., L in ground(P) Ly A ... A Ly is truezin I,

A e Tp(It) iff for some A « Ly,..., Ly in ground(P) Ly A ... A Ly is true, in I,
A € Bp — ®p(I)” iff for some A — Ly,..., Lt in ground(P) Ly A ... A Ly is not falsez in I.
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Hence, the implication A € &p(I)* = A € Tp(I*) (respectively A € Tp(It) = A €
Bp — ®p(I)") directly follows from Proposition 6.1(i) (respectively Proposition 6.1(ii)).
If I is total, then L1 A ... A Ly istruegin T iff L4 A ... A Ly is truey inITiffFLy A ... A Ly

is not falseg in I. O

The following corollaries relate the fixpoints of the operators Tp and ®p.

Corollary 6.3 LetI = (IT, Bp—I") be a total 3-valued interpretation and P a general program.
Then IT is a fizpoint of Tp if and only if I is a fizpoint of ®p.

Proof.

(=) Assume It = Tp(IT). By Lemma 6.2 we have &p(I)* = Tp(I*) = Bp — ®p(I)”. Hence
It = @p([)"' and I~ = Bp — It = QP(I)—, ie. I = @p(I).

(<) Assume I = ®p(I). Then by Lemma 6.2 we have

It =8p()T CTp(I*)CBp—®p(I)" =Bp I~ =1I".
Hence It is a fixpoint of Tp. ' O

Corollary 6.4 If ®p has ezactly one fizpoint I and I is total, then I is the unique fizpoint of
Tp.

Proof. By Corollary 6.3. 0

The fixpoints of the operator Tp are of interest for us because of the following result of Apt,
Blair and Walker [ABW88].

Theorem 6.5 A Herbrand interpretation I is a model of comp(P) iff it is a fizpoint of Tp. O
Corollary 6.6 If I is a Herbrand model of comp(P) then ®p 1w C (I, Bp — I).

Proof. Suppose I is a Herbrand model of comp(P). Then by Theorem 6.5 I is a fixpoint of Tp,
so by Corollary 6.3 (I, Bp — I) is fixpoint of ®p. By the monotonicity of ®p the least fixpoint of
®p, Ifp(®p), exists and ®p T w C Ifp(®p). But Ifp(®p) C (I,Bp—1I),s0 ®p TwC (I,Bp -1).

O

We are now ready to analyze the semantics of acceptable general programs.
Theorem 6.7 Let P be an acceptable general program w.r.t. || and I. Then $p T w s total.

Proof. To establish that $p T w is total we prove that, for n € w and A € Bp, |A| = n implies
that A is not undefined in $p 1 (n + 1), i.e. A is either trues or falses in $p T (n + 1). The
proof proceeds by induction on n. Fix A € Bp.

In the base case we have |A| = 0 and since P is acceptable, two possibilities arise: (i) there
is a unit clause A « in ground(P) and (ii) there is no general clause in ground(P) with A as
conclusion. In case (i) A is truez in ®p T 1, and in case (ii) A is falsez in &p T 1.

In the induction case we have |A| = n > 0. Consider the set C4 of the general clauses
in ground(P) with A as conclusion. If C4 is empty then A is falsez in ®p T 1 and, by the
monotonicity of ®p, it is falsez in $p T (n + 1). If C4 is non-empty, take a general clause
A« Ly,..., Ly from Cy4, and let k = min({k} U {i € [1,k]]| L; is falsey in I}. We now prove
that Ly A ... A Lj is not undefined in ®p T n. To this end we consider two subcases.
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Subcase 1. k = k and Ly, is truep in I. Then, by the acceptability of P, n = |A| > |Ly| for
i € [1,k]. By the induction hypothesis L; is either trues or falses in &p 1 n, for i € [1, k].

Subcase 2. k < k and Ly is false; in I. Then n = |A| > |Li| for i € [1,k]. By the induction
hypothesis, L; is either trues or falsez in p T n, for i € [1, IE]. Moreover, we claim that Ly is
falsez in ®p 1 n. To establish this point, the following two possibilities have to be taken into
account.

Suppose the relation occurring in L is in Negp. A simple proof by induction on n shows
that &p T n and $p- T n coincide on the relations in Negp. Thus Ly is truez in $p T n implies
Ly is trues in ®p- 1 n. Hence, by Corollary 6.6 and Proposition 6.1(i), L; is truez in the
restriction of I to the relations in Negp which is a model of comp(P~). This contradicts the
fact that Lg is falsep in I.

If the relation occurring in Lg is not in Negp, then Ly is a positive literal. We show that in
this case Ly is trueg in p | n implies Ly is truey in I by induction on the stage i at which Lj
becomes trues in $p T . For 2 = 0 there is nothing to prove. If Ly becomes trues in ®p T 1,
then there is a general clause Ly «— My, ..., My, in ground(P) with My A ... A M,, being trues
in ®p 1 (¢ — 1). For j € [1,m], if the relation occurring in M; is in Negp, then M; is trues in
®p T (¢ — 1) implies M; is true, in I by Corollary 6.6 and Proposition 6.1(i). If the relation
occurring in M; is not in Negp, then M; is trues in p T (i — 1) implies M; is true, in I by the
induction hypothesis. Hence My A ... A M,, is truep in I, which implies Ly is truey in I, since
I is a model of Ly « Mj,..., My,. This contradicts the fact that Lg is falses in I.

In both Subcase 1 and 2, we have that L; A ... A L is not undefined in ®p 1 n, as it is
either trueg or falsez in Subcase 1, and falsesz in Subcase 2. As a consequence, A is either
trues or falseg in ®p T (n + 1), which establishes the claim. m]

Corollary 6.8 Let P be an acceptable general program. Then ®p T w s the unique fizpoint of
$p.

Proof. We have $p Tw C ®p T (w+1),ie. 8p 1w C 3p(®p T w). By Theorem 6.7 $p T w
is total, so in fact ¢p T w = ®p(®p T w), i.e. ¥p T w is a fixpoint of Ep. Moreover, by the
monotonicity of ®p, every fixpoint of p of the form $p T a is contained in any other fixpoint,
so in fact ®p T w is the unique fixpoint of $p. m]

The following corollary summarizes the relevant properties of Np = $p T w.

Corollary 6.9 Let P be an acceptable general program. Then

(i) Np is total,

(i) Np is the unique fizpoint of ®p,

(#it) Np is the unique 3-valued Herbrand model of comp(P),

(iv) N§ is the unique fizpoint of Tp,

(v) Ni is the unique Herbrand model of comp(P),

(vi) for all ground atoms A such that no LDNF-derivation of P U { «— A} flounders,

A € Nf iff there ezists an LDNF-refutation of P U { «— A}.

In particular, this equivalence holds for all ground atoms A when P is non-floundering.

3
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Proof.

(i) By Theorem 6.7.

(ii) By Corollary 6.8.

(iii) By (ii) and the result of Fitting [Fit85] stating that a 3-valued Herbrand interpretation is
a model of comp(P) iff it is a fixpoint of ®p.

(iv) By Theorem 6.7 and Corollaries 6.8 and 6.4.

(v) By Theorem 6.5.

(vi) Consider a ground atom A such that no LDNF-derivation of P U { « A} flounders. By the
soundness of the SLDNF-resolution and (v) if there exists an LDNF-refutation of P U { — A}
then A € N#. To prove the converse implication assume A € N#. By Corollary 4.11 all LDNF-
derivations of P U { « A} are finite. Suppose by contradiction that none of them is successful.
Then the LDNF-tree for P U { « A} is non-floundering and finitely failed. By the soundness of

the SLDNF-resolution and (v), Nj |= -4, i.e. A ¢ N7 which is a contradiction.
O

Clause (vi) of the above Corollary can be seen as a completeness result for acceptable general
programs that relates the LDNF-resolution to the model N ; .
By restricting our attention to programs we get the following additional conclusions.

Corollary 6.10 Let P be an acceptable program. Then
(i) Tp T w is the unique fizpoint of Tp,
(i) Tp Tw=Tp | w.

Proof. By the result of Fitting [Fit85]

®pla= (TpTa, Bp~Tp | a),

SO
TpT(d:(@pTuJ)‘*’ :N;.

Now (i) follows by Corollarry 6.9 (iv) and (ii) follows by Corollarry 6.9 (i). O

7 Conclusions

Assessment of the method

Our approach to termination is limited to the study of left terminating (general) programs, so
it is useful to reflect how general this class of programs is. The main result of Bezem [Bez89]
states that every total recursive function can be computed by a recurrent program. As recurrent
programs are left terminating, the same property is shared by left terminating programs.

For a further analysis of left terminating programs we first introduce the following notions,
essentially due to Dembinski and Maluszynski [DM85]. We follow here the presentation of
Pliimer [P1ii90a]. Given an n-ary relation symbol p, by a mode for p we mean a function d, from
{1,...,n} to the set {+,—}. We write d,, in a more suggestive form p(d,(1),...,dp(n)).

Modes indicate how the arguments of a relation should be used. If d,(i) = ‘+/, we call 7 the
input position of p and if dy(i) = ‘~’, we call ¢ the output position of p (both w.r.t. dp) . The
input positions should be replaced by ground terms and the output positions by variables. This
motivates the following notion.
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Given a mode d,, for a relation p, we say that an atom A = p(t1,...tn) respects dy if for
i € [1,n], t; is ground if ¢ is an input position of p w.r.t. d, and #; is a variable if ¢ is an output
position of p w.r.t. dp.

A mode for a program P is a function which assigns to each relation symbol of P a non-
empty set of modes. Given a mode for a program P, we say that an atom A respects moding if
A respects some mode in the set of modes associated with the relation p used in A.

As an example consider the mode for the program append represented by the following set:

{append('l" +a —')’ append(_’ ] +)}

It indicates that append should be called either with its first two arguments ground and the
third being a variable, or with its first two arguments being a variable and the third argument
ground. Then any atom append(zs,ys, z3), where either zs,ys are ground and zs is a variable,
or zs,ys are variables and zs is ground, respects moding.

The following simple theorem shows that the property of left termination is quite natural.

Theorem 7.1 Let P be a program with a mode such that for all atoms A which respect moding,
all LD-derivations of P U {«— A} are finite. Then P is left terminating.

Proof. Consider a ground atom A. A is a ground instance of some atom B which respects
moding. By a variant of the Lifting Lemma applied to the LD-resolution we conclude that all
LD-derivations of P U {«— A} are finite. This implies that P is left terminating. a

The assumptions of the above theorem are satisfied by an overwhelming class of Prolog
programs.

As Theorem 2.16 shows, the method presented in this paper is a complete method for proving
termination of left terminating Prolog programs. We believe that it is also a useful method, since
it allows us to factore termination proofs into simpler, separate proofs, which consist of checking
the guesses for the level mapping | | and the model I. Moreover, the method is modular, because
termination proofs provided for subprograms can be reused in later proofs.

In this paper, the method is used as an “a posteriori” technique for verifying termination
of existing Prolog programs. However, it could also provide a guideline for the program de-
velopment, if the program is constructed together with its termination proof. A specific level
mapping and a model could suggest, in particular, a specific ordering of atoms in clause bodies.

It is worth noting that some fragments of the proof of accceptability can be automated, at
least in the case of the examples presented in Section 3, and in Apt and Pedreschi [AP90]. In
our examples, where the function listsize is used, the task of checking the guesses for both the
model I and the level mapping | | can be reduced to checking the validity of universal formulas in
an extension of Presburger arithmetic by the min and maz operators. The validity problem for
such formulas is decidable. In fact, Shostak [Sho77] presented for this class a decision algorithm
which is exponential. This is substantially lower than the complexity of the decision procedure
for Presburger arithmetic. To illustrate this point, consider the following program PERM (for
permutation):

(p1) pC0O, .

(p2) pEs, [X | ¥s]) «
a(X1s, [X|X2s], Xs),
a(X1s, X2s, Zs),
p(Zs, Ys).
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augmented by the clauses (a;) and (az) of Section 3 which define the relation a (for append).
The intention is to invoke p with its first argument instantiated. Clause (p;) states that the
empty list is a permutation of itself. Clause (p,) takes care of a non-empty list zs - one should
first split it into two sublists z1s and [z|z2s] and concatenate z1s and z2s to get zs. If now ys
is a permutation of zs, [¢|ys] is a permutation of zs.
Consider now the following guess I for a model for the program PERM:

I = {p(zs,ys)||zs| = |ys}
U {a(zls,z2s,zs)||zls| + |22s| = |zs|}.

To show that I is a model of, say clause (p2), we have to prove the following implication:
{a(zls,[z|22s],z3),a(z1s,22s,23),p(2s,y8)} C I = p(zs,[z|ys]) € I.

By homomorphically mapping lists onto their lengths, i.e. by mapping [] to 0 and []|] to the
successor function s(.), we get the following formula of Presburger arithmetic:

zitestl=c Az1+23=2zANz=y=>z=y+1

where 21 = |zl1s|, 22 = |223|,2 = |zs|,z = |zs|,y = |ys]|.
The level mapping for PERM can be given by:

lp(zs,ys)| = |z¢] +1,
la(z1s, 223, 23)| = min(|z1s],|zs]|).

Then, for example, to establish that

|p(23, [2]ys])| > [p(23, y3)|

under the assumption that I |= a(z1s, [z|22s],z3) A a(z1s,22s, z3) it suffices to verify the fol-
lowing formula of Presburger arithmetic:

z1tzotl=c A e1t+ezy=z=>2+1>z+1.

Finally, it is useful to notice a simple consequence of our approach to termination. By
proving that a program P is acceptable and a goal G is bounded, we can conclude by Corollary
2.13 that the LD-tree for P U {G} is finite. Thus, for the leftmost selection rule, the set of
computed answer substitutions for P U {G} is finite and consequently, by virtue of the strong
completeness of SLD-resolution, we can use the LD-resolution to compute the set of all correct
answer substitutions for P U {G}. In other words, query evaluation of bounded goals can be
implemented using pure Prolog. The same remark applies to general programs.

Related work

Of course the subject of termination of Prolog programs has been studied by others. Without
aiming at completeness we mention here the following related work.

Vasak and Potter [VP86] identified two forms of termination for logic programs — existential
and universal one and characterized the class of universal terminating goals for a given program
with selected selection rules. However, this characterization cannot be easily used to prove
termination. Using our terminology, given a program P, a goal G is universally terminating
w.r.t. a selection rule R if the SLD-tree for P U {G} via R is finite.
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Baudinet [Bau88] presented a method for proving existential termination of (general) Prolog
program in which with each program a system of equations is associated whose least fixpoint is
the meaning of the program. By analyzing this least fixpoint various termination properties can
be proved. The main method of reasoning is fixpoint or structural induction. In her proposal
negation is treated indirectly by dealing with termination in presence of the cut operator using
which negation can be simulated.

Recently, Bal Wang and Shyamasundar [BS91] provided a method of proving universal ter-
mination based on a concept of so-called U-graph in which the relevant connections through
unification between the atoms of the goal and of the program are recorded. The method can
also be used to establish termination of general Prolog programs. This method calls for the use
of pre- and post-conditions that are associated with the nodes of the U-graph.

Bossi, Cocco and Fabris [BCF91] refined this method by exploiting level mappings applied
to non-ground atoms. These level mappings are constructed from level mappings defined on
non-ground terms. The key concept is that of rigidity that allows us to identify the terms whose
level mapping is invariant under instantiation.

Ullman and Van Gelder [UvG88] considered the problem of automatic verification of termi-
nation of a Prolog program and a goal. In their approach first some sufficient set of inequalities
between the sizes of the arguments of the relation symbols are generated, and then it is verified
if they indeed hold. Termination of the programs studied in the Section 3 and 5 is beyond the
scope of their method. This approach was improved in Pliimer [P1i90b], [Pli90a], who allowed
a more general form of the inequalities and the way sizes of the arguments are measured. This
resulted in a more powerful method. The quicksort program studied in Section 3 can be handled
using Pliimer’s method. However, the examples in Section 5, as well as the mergesort exam-
ple considered in Apt and Pedreschi [AP91] remain beyond its scope. It is worth noting the
complementary aim of our approach with respect to that of Ullman and Van Gelder [UvG88]
and Plimer [Pli90b, Pli90a]. Their goal is the automatic verification of termination of a pure
Prolog program and a goal. In their approach, some sufficient conditions for termination are
identified, which can be statically checked. Obviously, such an approach cannot be complete
due to the undecidability of the halting problem.

We propose instead a complete proof method, which characterizes precisely the left termi-
nating (non-floundering, general) programs. Additionally, in the present paper and in Apt and
Pedreschi [AP90] we provide simple proofs of termination for programs and goals which can-
not be handled using the cited approach. On the other hand, we do not determine here any
conditions under which our method could be automated. This should form part of a future
research.

Deville [Dev90] also considers termination in his proposal of systematic program develop-
ment. In his framework, termination proofs exploit well-founded orderings together with mode
and multiplicity information, the latter representing an upper bound to the number of answer
substitutions for goals which respect a given mode. For instance, a termination proof of the pro-
gram DC of Example 2.5(iii) for the goal «— dc(z,Y’) would involve verification of the following
statements (assuming that  is a ground term):

1. the goal « divide(z, X1, X 2) respects moding, and both X1 and X2 are bound to ground
terms, z1 and =2 respectively, by any computed answer substitution for such a goal;

2. both z1 and z2 are smaller than z w.r.t. some well-founded ordering;

3. the mode divide(+, —, —) has a finite multiplicity.
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Our approach seems to be simpler as it relies on fewer concepts. Also, it suggests a more
uniform methodology. On the other hand, in Deville’s approach more information about the

program is obtained.
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