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Abstract

We describe ongoing research to support the construction of terminologies with
Description Logics. Both in explanation of subsumption and in learning of termi-
nologies we search for particular concepts because of their syntactic and semantic
properties. More precisely, the set of explanations for a subsumption P v N is the
set of optimal interpolants for P and N , and similarly for the learning application.
We provide definitions for optimal interpolation and an algorithm based on Boolean
minimisation of concept-names in a tableau proof for ALC-satisfiability.

1 Introduction

Building ontologies is a time consuming and error-prone process and one of
the bottle-necks in a number of AI applications. We have recently suggested
various methods to tackle this problem. First, we investigated methods to
automatically learn terminologies from data [14] and, secondly, we added ex-
planation facilities to terminological reasoning [16]. Modern Description Logic
(DL, see Chapter 1 and 2 of [1] for a detailed introduction) reasoning systems
efficiently answer queries, e.g., whether a concept ∃child.> u ∀child.Doctor
is subsumed by ∃child.(Doctor t Rich), i.e. whether one is a subclass of the
other. Unfortunately, they do not provide explanatory information. In our
approach a suitable explanation for this subsumption is that the former con-
cept is more special than a third concept ∃child.Doctor which, again, is more
special than the latter. Not only is this concept, which we will call an illus-
tration, strongly linked by the common vocabulary to both the subsumer and
the subsumed concept, it is also the simplest such illustration.

A traditional approach to supervised learning of terminological axioms is
to iteratively build least common subsumers (lcs) summarising the properties
of as many examples as possible, making sure that none of the counterex-
amples is covered (e.g. [4]). Our approach has a more “inductive” flavour as
we search for generalisations of the examples which are interesting because of
their syntactic properties. Let us illustrate the general idea with a toy exam-



ple. Suppose we try to learn the definition of a concept Rabbit from an example
rab:LongEars u Fur u Paw and counterexamples croco:¬LongEars u ¬Fur u
Paw and seal:¬LongEars u Fur u ¬Paw. The result of lcs-learning is now sim-
ply LongEars u Fur u Paw which means that a previously unknown animal
with long ears and fur will not be classified as a rabbit unless we find out that
it has got paws. An alternative is top-down learning: take the negation of
the properties of the counterexamples as upper bound of the possible learning
concepts. From these concepts, e.g. LongEars u Fur or Fur u Paw, one then
looks for those defining smallest axioms (e.g. RabbitvLongEars), or for those
built from an non-reducible set of concept-names (e.g. RabbitvFur u Paw).
Formally, we look for concepts which are more general than the examples P
and inconsistent with the counterexamples N. This corresponds to the sub-
sumption relation: |=

⊔
P∈P

P v LD v
d

N∈N
¬N and it remains to choose

the most suitable of all LD as definitions in our target axioms.

The solutions we propose for our applications can be generalised; given
two concepts C and D we need to find an interpolant, i.e. a concepts I such
that |= C v I v D, and where I is syntactically related to both C and D.
Moreover, we need interpolants which are optimal with respect to particular
syntactic properties such as number of concept-names or size. Algorithms
for interpolation for concept subsumption in ALC are well known (e.g. [13])
as ALC is a notational variant of modal K. In this paper we extend these
algorithms in order to calculate an interpolant I with a minimal number of
concept-names, i.e., where there are no interpolants built from a proper subset
of the concept-names occurring in I. For this purpose we saturate a tableau
according to the usual rules for ALC-satisfiability. Boolean minimisation then
renders reducts, minimal sets of concept-names preserving the existence of
interpolants. Finally, given reducts we calculate optimal interpolants.

The remainder of the paper is organised as follows: In Section 2 we discuss
the applications of explanation and concept learning in more detail. Section 3
introduces interpolation for DL, more specifically for ALC, with the vocabu-
lary L of a concept, and formal notions of optimality. In Section 4 we provide
an algorithm to calculate optimal L-interpolants based on Boolean minimisa-
tion of concept-names w.r.t. the closure of a tableau for ALC-satisfiability. We
finish with an evaluation and a brief discussion of related and further work.

This report is an extended version of a paper presented at M4M-03, Models
for Modalities 2003. It contains the relevant proofs in the Appendix A.

2 Applications

Both in explanation of subsumption and learning of terminologies we require
concepts which turn out to be particular interpolants. We only sketch the
basic ideas to motivate the need for optimal interpolants deliberately skipping
some interesting discussion and alternatives related to the applications.
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2.1 Explaining Subsumption by Illustration

Recently, the DL community has shown growing interest in explanation of
reasoning (e.g. [6]) to provide additional information to increase the accep-
tance of logical reasoning, and to give additional insights to the structure of
represented knowledge. Let us consider a variant of an example introduced in
[3] for the author’s “explanation as proof-fragment” strategy, where a concept
Cex := ∃child.∃child.Rich u ∀child.¬((∃child.¬Doctor) t (∃child.Lawyer)) is
subsumed by Dex :=∃child.∀child (Rich t Doctor). Instead of providing a
concise and simplified extract of a formal proof as an explanation as done in
[3] we suggest an alternative, more static approach, which we call explaining
by illustration. Imagine the above information is given in natural language:
Suppose somebody has a rich grand-child, and each child has neither a child which

is not a doctor nor a child which is a Lawyer. Then, this person must have a child,

every child of which is either rich or a doctor. A natural language explanation
for this statement is: The person described above must have a child every child

of which is a doctor. This intermediate statement can be considered an illus-
tration of |= Cex v Dex. It can be formalised as Iex := ∃child.∀child.Doctor,
and it subsumes Cex and is subsumed by Dex. Moreover, it is constructed
from vocabulary both in Cex and Dex, e.g., the information that the person’s
grandchildren might be a Lawyer is irrelevant as, just from Dex, we don’t know
anything about grandchildren being Lawyers or not. Finally, the illustration
should use a minimal number of concept-names and be of minimal size, as this
increases the likelihood of it being understandable.

2.2 Learning Terminologies from Examples

A related problem is the automatic construction of terminologies from exam-
ples. Let the following ABox A describe the experience from which the author
of a scientific paper wants to devise a procedure to improve the quality of his
new publications, given the knowledge that his previous paper p1 had been
accepted, whereas papers p2 and p3 had been rejected before.

p1 :∀statement.(Theorem t Footnote→Interesting) u ∀statement.∀implies.(Corr
→Interesting) u ∃statement.∃proof.(Proof u Understandable) =: P1

p2 :∃statement.(Theorem u ¬Interesting u ∃implies.(Corr u ¬Interesting)) =: N1

p3 :∃statement.(Theorem u ¬Interesting) u
∀statement.∀proof.(¬Understandable t Simple) =: N2

From this ABox AP the author would like to learn a new TBox axiom such as
Accept v LAccept, where LAccept :=∀statement.(Theorem →Interesting) is a new
concept defining the previously undefined concept-name Accept.

Usually, a minimal requirement for supervised learning is that most posi-
tive examples are instances of the newly learned concept, but none of the coun-
terexamples. This means that p1 ∈A LAccept, p2 6∈A LAccept and p3 6∈A LAccept. The
first condition corresponds to |= P1 v LAccept. We strengthen Conditions two
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and three as we want a learned axiom to hold even if new information becomes
available about the negative examples. Making sure that N1 uLAccept = ⊥ and
N2 u LAccept = ⊥ this “exclusiveness” is guarantied and conditions two and
three follow. 1 Let us define our approach to learning of terminologies in more
detail.

Let P and N be sets of concepts with positive and negative examples of
an new concept D. We say that an axiom D v LD is correct if |= P v LD

and N u LD = ⊥ for all P ∈ P and N ∈ N. In machine learning ter-
minology the set of concepts LD in the corresponding subsumption relation
|=

⊔
P∈P

P v LD v
d

N∈N
¬N determines the version space [11]. Find-

ing the appropriate targets depends on the choice of bias. Note, that not
every correct axiom is an appropriate learning target. The axiom Accept
v∀statement.(Footnote t Theorem →Interesting) requires all footnotes to be
interesting for a paper to be accepted. This, however, cannot be inferred, as
there is no information about footnotes in the counterexamples. We need to
ensure that new axioms are also syntactically related to examples and coun-
terexamples. In Definition 3.1 we define such a notion of syntactic relation
which takes quantifiers and polarity into account, i.e., ∃r.(Ct∀s.D) is related
to ∃r.∀s.D, but not to C or ∃r.¬C. Moreover, following Occam’s razor, we
assume that simpler axioms are better learning results. The learning targets
of concept learning are therefore optimal axioms defined as follows; let N (C)
be the set of concept-names occurring in a concept C, P and N be the posi-
tive and negative examples for a class D. A correct TBox axiom D v LD is
optimal if there is no correct axiom D v L′

D where L′
D is also syntactically

related to P and N, and where N (L′
D) ⊂ N (LD).

3 Optimal Interpolation

Calculating illustrations and optimal TBox axioms are interpolation problems,
more precisely, problems of finding optimal interpolants. Remember that an
axiom D v LD is correct if |=

⊔
P∈P

P v LD v
d

N∈N
¬N for examples

P and counterexamples N of a concept D, and that an illustration for the
subsumption |= C v D was a concept I s.t. |= C v I v D. In both cases we
have argued that common vocabulary and syntactic minimality is desirable.

An interpolant for concepts P (for the positive) and N (the negative exam-
ples), where |= P v N , is a concept I which is more general than P but more
special than N . Furthermore, I has to be built from the vocabulary occurring
both in P and N . In the standard definition of interpolation [5] the vocabulary
of a formula ϕ is defined as the set of non-logical symbols in ϕ. Because we
use interpolants for learning and explanation we propose a stronger notion of
vocabulary for concepts: including information about the context in which the

1 In this paper we assume that the msc ([10]) exists for each individual, and use sets of
concepts describing the properties of individuals. To both sets of concepts and sets of
individuals for positive and negative examples we will simply refer to as examples.
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non-logical symbols (such as concept- and role-names) occur. Formally, L(C)
is a set of pairs (A,+)S or (B,−)S of concept-names A,B and polarity + or
−, labelled with sequences S of role-names. A concept-name A has positive
(negative) polarity if it is embedded in an even (odd) number of negations. ⊥
and > always occur without polarity (represented by pairs (⊥, ) and (>, )).
L(C) denotes the set L(C) where the polarity of each pair is interchanged
(i.e. + replaced by − and vice versa). Furthermore, for a set S, let Sr denote
that the sequence of role-names for each element of S has been extended by
r. The vocabulary L(C) of a concept C is then defined as follows.

Definition 3.1 L is a mapping from ALC to triples of concept-names, polar-
ities and sequences of role-names defined as follows:

• L(>) = L(⊥) := {(>, )ε, (⊥, )ε} • L(C uD) := L(C) ∪ L(D)

• L(A) := (A,+)ε ∪ L(>) if A is atomic • L(C tD) := L(C) ∪ L(D)

• L(∃r.C) = L(∀r.C) := L(C)r ∪ L(>)ε • L(¬C) := L(C)

Take a concept ∀r.(D u ¬∃s.C). The related language is the set {(C,−)rs,
(D,+)r, (>, )ε, (>, )r, (>, )rs, (⊥, )ε, (⊥, )r, (⊥, )rs}. Note that this defini-
tion implies that L(⊥) ∈ L(C) and L(>) ∈ L(C) for every concept C.

The set of interpolants w.r.t. L will be denoted by I(P,N). In applications
where interpolants are used for explanation or learning, additional restrictions
are important to identify optimal illustrations or learning targets. There are
several types of syntactic restrictions, e.g., interpolants with a minimal set of
concept- or role-names or of minimal size, but we will focus on concept-name
optimal interpolants. To simplify the presentation we only consider concept
interpolation, i.e. interpolation for concept subsumption w.r.t. empty TBoxes.

Definition 3.2 Let P and N be concepts, and let N (C) denote the set of
concept-names occurring in an arbitrary concept C. A concept I is an optimal
interpolant for P and N if |= P v I and |= I v N , L(I) ⊆ L(P )∩L(N), and
if there is no interpolant I ′ for P and N with N (I ′) ⊂ N (I).

Take Iex := ∃child.∀child.Doctor from Section 2.1 which is an interpolant
for Cex :=∃child.∃child.Rich u ∀child.¬((∃child.¬Doctor) t (∃child.Lawyer))
andDex := ∃child.∀child.(Rich t Doctor), as L(Iex)= {(Doctor,+)child child, . . .}
is a subset of L(Cex) ∩ L(Dex). Moreover, the set of concept-names in Iex is
{Doctor} which is minimal, and Iex is an optimal interpolant for Cex and Dex.
Such a minimal set of concept-names will be called a reduct.

To define reducts we need some more notation. Let S be an arbitrary sub-
set of the common language of two concepts P and N . The set of interpolants
for P and N built from concept-names in S only will be denoted as IS(P,N).
For Cex and Dex and a set S ={Doctor,Rich} the set I{Doctor,Rich}(Cex, Dex) then
contains, e.g., ∃child.∀child.Doctor and ∃child.∀child.Doctor t Rich. Reducts
now determine smallest sets S such that IS(P,N) 6= ∅.
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Definition 3.3 A reduct for two concepts P and N is a minimal set of
concept-names R to preserve existence of an interpolant, i.e. where IR(P,N) 6=
∅ and IR′(P,N) = ∅ for every R′ ⊂ R.

The set {Doctor, Rich} is not minimal, as I{Doctor}(Cex, Dex) 6= ∅. On the
other hand, {Doctor} is a reduct. Also, each interpolant in I{Doctor}(Cex, Dex)
is optimal for Cex and Dex. This observation can be generalised:

Lemma 3.4 Let R be a reduct for two concepts P and N . Every interpolant
I ∈ IR(P,N) is optimal for P and N .

This lemma, which is proved in Appendix A, allows to calculate reducts
and interpolants separately, and is used in the algorithms in the next section.

4 Algorithms for Optimal Interpolation

Optimal interpolants will be constructed using Boolean minimisation of the
concept-names needed to close an ALC-tableau. This calculation can be split
into three steps. First, we saturate a labelled tableau as described in Section
4.1. Secondly, we calculate reducts from tableau proofs using the algorithm
of Fig. 2. Finally, optimal interpolants can be constructed from the tableau
proofs and the reducts according to Fig. 3. Step 1 and 3 closely follow well-
known procedures that can be found, e.g., in [2] (for the saturation of the
tableau) and [9] (for the calculation of interpolants). New is the calculation of
reducts in Section 4.2 and their application in Section 4.3 to ensure optimality
of the calculated interpolants.

4.1 Saturating Labelled Tableaux

Concept subsumption |= P v N can be decided by a proof deriving a closed
tableau starting from a tableau with one branch {(i : P )p, (i : ¬N)n} (for
an arbitrary individual i). The information whether a formula has its origin
in P or N is needed to construct interpolants from the proof. Each formula
stemming from P will be labelled with (·)p, each created from N with (·)n.
A formula has the form (i : C)x where i is an individual, C a concept and
x ∈ {p, n} a label. The labelling mechanism follows [9]. A branch is a set of
formulas and a tableau a set of branches. A formula can occur with different
labels on the same branch. A branch is closed if it contains a clash, i.e. if there
are formulas with contradictory atoms on the same individual. The notions
of open/closed branches and tableaux are defined as usual and do not depend
on the labels. Formulas are always assumed to be in negation normal form.

To calculate reducts and optimal interpolants for two concepts P and N

we construct a proof from a tableau containing a branch {(i : P )p, (i : ¬N)n}
(for a new individual i) by applying the rules in Fig. 1 as long as possible. The
rules are ALC-tableau rules (adapted from those of [2]) and have to be read
in the following way; suppose that there is a tableau T = {B,B1, . . . , Bn}
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(u): if (i : C u D)x ∈ B, but not both (i : C)x ∈ B and (i : D)x ∈ B
then B′ := B ∪ {(i : C)x, (i : D)x}.

(t): if (i : C t D)x ∈ B, but neither (i : C)x ∈ B nor (i : D)x ∈ B.
then B′ := B ∪ {(i : C)x} and B′′ := B ∪ {(i : D)x}.

(∃): if (i : ∃r.C)x ∈ B, all other rules have been applied, and {(i : ∀r.C1)
x1 ,

. . . , (i : ∀r.Cn)
xn} are all universal formulas for i and r in B,

then B′ := {(j : C)x, (j : C1)
x1 , . . . , (j : Cn)

xn}, where j is new in B.

Fig. 1. Tableau rules for saturating a labelled ALC-tableau (similar to [2])

with n + 1 branches. Application of one of the rules on B yields the tableau
T ′ := {B′, B1, . . . , Bn} for the (u) and (∃) rule or T ′′ := {B′, B′′, B1, . . . , Bn}
in case the (t)-rule has been applied. Application of one of the rules is called
to expand a tableau or a branch. If no more rule can be applied, branches and
tableaux are saturated. Finally, a proof is a sequence of tableaux T1, . . . , Tn

where each Ti+1 has been created by application of one of the rules in Fig. 1
on a branches B ∈ Ti (for i, i+ 1 ∈ {1, . . . , n}), and where Tn is saturated.

4.2 Calculating Reducts

From a proof starting with {{(i : P )p, (i : ¬N)n}} we find reducts by calcu-
lating a maximal reduct-function. To define such an interpolation-preserving
propositional formula we need to introduce interpolants for branches and in-
dividuals. Let B be a branch, i an individual and {(i : C1)

p, . . . , (i : Ck)
p,

(i : D1)
n, . . . , (i : Dl)

n} the set of formulas for i in B. An interpolant for B

and i is an interpolant for C1 u . . . u Ck and ¬D1 t . . . t ¬Dl.

The set of interpolants for B and i will be denoted by I(i, B), or IS(i, B) for
the interpolants built from concept-names occurring in a particular set S only.
Reduct-functions are then interpolation-preserving propositional formulas.

Definition 4.1 Let B be a branch in a proof, i an individual and ϕ a proposi-
tional formula built from conjunction, disjunction and propositional variables.
Let, furthermore, tr(v) denote the (unique) set of propositional variables true
in a valuation v, called the truth-set of v. If I(i, B) 6= ∅, ϕ is a reduct-function
for B and i if, and only if, Itr(v)(i, B) 6= ∅ for any valuation v(ϕ) = T . Oth-
erwise, i.e., if I(i, B) = ∅, ⊥ is the only reduct-function.

The idea to calculate reducts is as follows: As reduct-functions determine
the sets of concept-names preserving interpolation a smallest set of this kind is
a reducts. If a reduct-function is maximal, i.e. implied by all reduct-function,
its prime implicants determine precisely these most general, i.e. smallest sets
of concept-names. 2 A maximal reduct-function is calculated from a tableau
proof: all branches of the saturated tableau must close even with a reduced
set of concept-names available for closure. Therefore at least one clash per

2 A prime implicant of ϕ is the smallest conjunction of literals implying ϕ (see, e.g., [12]).
The term prime implicant refers both to the conjunction and to the set of conjuncts.

7



if rule = (u) has been applied on (i : C u D)label and B′ is the new branch
rf(i, B) := rf(i, B′);

if rule = (t) has been applied on (i : C t D)label and B′ and B′′ are new
rf(i, B) := rf(i, B′) ∧ rf(i, B′′);

if rule = (∃) has been applied on (i : ∃r.C)label, B′ and j are new
rf(i, B) :=rf(i, B′) ∨ rf(j, B′);

if no more rule can be applied (for arbitrary x and y)
rf(i, B) := > if there are formulas (i : A)x ∈ B, (i : ¬A)y ∈ B s.t. x = y;
rf(i, B) :=

∨
(i : A)x ∈ B, (i : ¬A)y ∈ B

A otherwise; i.e. if (x 6= y).

Fig. 2. rf(i, B): A maximal reduct-function for a branch B and individual i

branch needs to be retained and a maximal reduct-function is the disjunction
of the concept-names in all clashes. For each branch in a tableau proof complex
maximal reduct-functions are then constructed recursively according to Fig. 2.

Theorem 4.2 Let P and N be concepts and i an arbitrary individual-name.
The prime implicants of rf(i, {(i : P )p, (i : ¬N)n}) as calculated by the algo-
rithm described in Fig. 2 are the reducts for P and N .

Proof. The proof consists of three parts. First, we show that rf(i, B) is
a reduct-function for every branch B. The proof is by induction over the
tableaux in a proof, where we construct interpolants for B and i from the
truth-sets of the valuation making rf(i, B) true. The rules for construction of
interpolants correspond to those we will later give explicitly in Fig. 3. If B is
saturated there are several cases: first, if there are contradicting atoms with
positive or with negative labels only, the interpolant is⊥ or> respectively, and
the reduct-function is >. If there are only clashes on atoms which occur both
positively and negatively labelled in B any of the literals occurring positively
is an interpolant, and the maximal reduct function is the disjunction of all
the corresponding concept-names. Finally, a branch without clashes on the
individual i does not have an interpolant for B and i, and ⊥ is the only
reduct-function. If the branch B is not saturated, one of the rules of Fig. 2
must have been applied, and we can construct an interpolant for B and i

from the interpolants of the newly created branches. If a disjunctive rule had
been applied, two new branches B ′ and B′′ have been created, and it can
easily be checked that the disjunction of an arbitrary interpolant for B ′ and i

with an arbitrary interpolant for B ′′ and i is an interpolant for B and i. The
conjunctive case is even more simple, as any interpolant for the new branch B ′

and i is also an interpolant for B and i. The only slightly more complicated
case is when an existential rule has been applied on a formula in B because
we need to take into account that the interpolant for the new branch and the
new individual might be ⊥. In this case, however, we can show that ⊥ is also
an interpolant for B and i, which finishes the proof.

Next, we show that rf(i, B) is maximal, again by induction over the tableaux
in the proof. For each branch B we show that ϕ→rf(i, B) for each reduct-
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function ϕ of i and B. Again, if B is saturated it is easy to show that rf(i, B)
is maximal for each of the cases mentioned above. For a non-saturated B

we again have branches B ′ (and possibly B′′), and we can easily show that
ϕ→rf(i, B) whenever ϕ→rf(i, B ′) (and possibly ϕ→rf(i, B ′′)).

Finally, we prove that the prime implicants of maximal reduct-functions
for the branch B = {(i : P )p, (i : ¬N)n} are the reducts for P and N .
Here, we show that there is an interpolant for P and N , and that there is no
interpolant for any subset of the reduct. The other direction, i.e. the fact that
every reduct R is the prime-implicant of the maximal reduct-function of B,
follows immediately from the minimality of the reducts. See Appendix A for
the technical details of the proof. 2

4.3 Calculating Optimal Interpolants

Given a tableau proof and a reduct R we construct optimal interpolants for
each branch B and each individual i recursively according to the rules in Fig. 3.
It is well-known how to calculate interpolants from a tableau proof [9,13]. If a
rule had been applied on a formula (i : C)x in B for an arbitrary label x, and
one or two new branches B ′ (and B′′) have been created, the interpolant for
B and i can be constructed from interpolants for B ′ (and B′′). It can easily
be checked that oi(i, {(i : P )p, (i : ¬N)n}, R) is an interpolant for P and N .
By Lemma 3.4 we now immediately know that if R is a concept-reduct for P

and N , this interpolant is also optimal.

Theorem 4.3 Let R be a reduct for two concepts P and N . The concept
oi(i, {(i : P )p, (i : ¬N)n}, R) as calculated by the algorithm defined in Fig. 3
is an optimal interpolant for P and N .

Proof. Lemma 3.4 states that the interpolants built from concept-names in
reducts are the optimal interpolants. Therefore, it suffices to show that the
rules in Fig. 3 produce interpolants. This proof follows Kracht’s proof in [9],
we simply construct interpolants recursively for each branch in the proof. Full
details can be found in Appendix A. 2

4.4 Complexity

Calculating interpolants for two ALC concepts P and N is in pspace as we
can apply the algorithm described in Fig. 3 in a depth-first way on one branch
(of maximally polynomial space) at a time. This gives a simple bottom-up
procedure to calculate optimal interpolants in pspace: for all subsets of the
concept-names occurring in P and N we check whether there are interpolants
or not, starting with the smallest, systematically increasing the size. Each of
these checks can be done using only polynomial space. As soon as we find the
first interpolant, i.e. as soon as oi(i, B,R) is defined for some subset R, we
know that R is a reduct, and the interpolant must be optimal. For a lower
bound consider the subsumption relation C v ⊥ which has an interpolant if,
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if rule = (u) has been applied on (i : C u D)label and B′ is the new branch
return oi(i, B′, R);

if rule = (t) has been applied on (i : C t D)label and B′ and B′′ are new
if label = p return oi(i, B′, R) t oi(i, B′′, R);
else if label = n return oi(i, B′, R) u oi(i, B′′, R);

if rule = (∃) has been applied on (i : ∃r.C)label, B′ and j are new
if oi(i, B′, R) exists

if oi(j, B′, R) exists
if label = p if oi(j, B′, R)= ⊥ return oi(i, B′, R);

else return oi(i, B′, R) t ∃r.oi(j, B′, R);
else if label = n if oi(j, B′, R)=> return >

else return oi(i, B′, R) t ∀r.oi(j, B′, R);
else return oi(i, B′, R);

else if oi(j, B′, R) exists
if label = p if oi(j, B′, R)= ⊥ return ⊥; else return ∃r.oi(j, B ′, R);
else if label = n if oi(j, B′, R)= > return >; else return ∀r.oi(j, B ′, R);

else return undefined;
if no more rule can be applied. For all concept-names A in R.

if there is a clash on a concept-name A ∈ R

if there are formulas (i : A)n ∈ B and (i : ¬A)n ∈ B return: >
else if there are formulas (i : A)p ∈ B and (i : ¬A)p ∈ B return: ⊥
else return:

⊔
(i:A)p∈B,(i:¬A)n∈B,A∈R A t

⊔
(i:A)n∈B,(i:¬A)p∈B,A∈R ¬A

else return: undefined.

Fig. 3. oi(i, B, R): Optimal interpolants

and only if, C is unsatisfiable. This means that interpolation must be at least
as hard as concept satisfiability in ALC, which is well known to be pspace.

Although the problem of calculating optimal interpolants is in pspace the
algorithm described above might be infeasible in practice. To be sure that we
have calculated all optimal interpolants we might have to check all elements
of the power-set of the set of concept-names, i.e., we might have to saturate
an exponential number of tableaux. Instead, our approach expands a single
tableau once, from which we calculate the reducts and read off the optimal
interpolants. Computing reducts is the computational bottle-neck of our algo-
rithm as we calculate prime implicants on formulas which can be exponential
in the size of the concepts. Given that calculating prime implicants is np-hard,
we must ensure that the size of the reduct-function is as small as possible. Our
current implementation comprises simple on-the-fly elimination of redundan-
cies, but more evolved methods need to be investigated. Our algorithms have
an exponential worst case complexity in the size of the concepts P and N .
As the number of variables in the reduct-function is linear in the number of
concept-names in P and N we can calculate the prime implicants in exponen-
tial time branch by branch (instead of constructing the full reduct-function
first). This simple method requires exponential space as we have to keep max-
imally e

n
e prime implicants (of size smaller than n) in memory, where n is the
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number of concept-names in P and N and e the base of natural logarithm.

5 Evaluation

Optimal interpolants are not unique, and a certain leeway exists for choosing
suitable interpolants according to a given application. The algorithm in Fig. 3
was developed with the learning application of Section 2 in mind and, for this
reason, calculates very general interpolants. Whenever we have a choice we
construct an interpolant in the most general way. This is the case when ap-
plying a (∃)-rule as well as when calculating an interpolant for a saturated
branch. Note that this choice might lead to rather complex concepts with a
relatively big size. Our decision was to separate the two problems of opti-
mal interpolation and rewriting of concepts with minimal size for conceptual
clarity. If optimal interpolants are applied to explain a subsumption relation
things might be different: first, the size of an explanation should be as small
as possible and, secondly, we might also want to have different levels of gen-
erality, such as the most specific optimal interpolant. It is straightforward to
adapt the algorithm of Fig. 3 to calculate smaller or more specific optimal
interpolants and we plan to evaluate different strategies for both described
applications in future research.

We implemented interpolation as part of the Wellington’s KAT system
[7] and applied it to learn a terminology about cardiac arrhythmias [8]. This
implementation did not calculate optimal interpolants and over-generalises
on previously unknown data. This motivated the current minimisation tech-
niques. Although the problem of calculating interpolants for two concepts in
ALC is in pspace the results were encouraging as interpolants could be calcu-
lated efficiently given the relatively simple structure of the application. Pro-
totypical implementations of the algorithms for optimal interpolants confirm
that prime-implicants are indeed difficult and that current method based on
a reduction to integer programming is impractical. We are working on a more
robust implementation. Given the high complexity, optimisation techniques
to reduce the size of reduct-functions will have to be developed.

6 Conclusions

We introduce an algorithm to find interpolants with a minimal number of
concept-names for two concepts in the description logic ALC, with a rigid
definition of the common vocabulary. The principal novelty is that we min-
imise the number of concept-names in order to find most simple interpolants.
These optimal interpolants are used in applications as divers as explanation
and learning of terminologies.

We are currently robustly implementing the algorithms, in order to evalu-
ate learning and explanation by interpolation on real-life data. We also plan
to extend the algorithms to more expressive languages. An open problem is

11



how to calculate interpolants of minimal size, as redundancy elimination will
be crucial for optimal interpolants to be useful in newly learned terminologies
or as illustrations.
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A Proofs

Proof of Lemma 3.4

Lemma 3.4 (reminder) Let R be a reduct for two concepts P and N . Every
interpolant I ∈ IR(P,N) is optimal for P and N .

Proof. The proof is a straightforward consequence of the definitions. Let R

be a reduct for P and N . This means, by definition, that IR(P,N) 6= ∅ but
IR′(P,N) = ∅ for every R′ ⊂ R. For each interpolant I ∈ IR(P,N) we show
that there is no interpolant I ′ for P and N such that N (I ′) ⊂ N (I). But this
is obvious, as N (I) ⊆ R and therefore N (I ′) ⊂ R. The interpolant I ′ would
therefore be in IN (I′)(P,N), which contradicts the fact that IR′(P,N) = ∅ for
each proper subset R′ of R. 2

Proof of Theorem 4.2

Theorem 4.2 (reminder) Let P and N be concepts and i an arbitrary
individual-name. The prime implicants of rf(i, {(i : P )p, (i : ¬N)n}) as calcu-
lated by the algorithm described in Fig. 2 are the reducts for P and N .

Proof. The proof consists of three parts. First, we show that rf(i, B) is a
reduct-function for every branch B in the proof. The proof is by induction
over the tableaux in a proof by constructing interpolants for B and i from
the truth-sets of the valuation making rf(i, B) true. This is Lemma A.1 Next,
in Lemma A.2 we show that rf(a,B) is maximal, again by induction over
the tableaux in the proof. Finally, we prove that the prime implicants of a
maximal reduct-function for the branch {(i : P )p, (i : ¬N)n} are the reducts
for P and N . This Lemma A.3 finishes the proof of Theorem 4.2.

The first lemma shows that our algorithm returns reduct-functions.

Lemma A.1 Let B be a branch occurring in a proof T1, . . . , Tn, and let i be
an arbitrary individual. The propositional formula rf(i, B) as defined in Fig.
2 is a reduct-function for B and i.

Proof. To show that rf(i, B) is a reduct-function for B and i we prove that for
every valuation v(rf(i, B)) = T there is an interpolant for B and i constructed
from concept-names in tr(v) only, i.e. that Itr(v)(i, B) 6= ∅. The proof is by
induction over the sequence of tableaux in a tableau proof:

Induction Hypothesis: For every tableau T in a tableau proof the propo-
sitional formula rf(i, B) is a reduct-function for any branch B ∈ T and
individual i.

(i) The base-case is a saturated tableau, where no rule is applicable. Then,
for every branch B, we have four cases:
(a) x = y = p; There are formulas (i : A)p ∈ B and (i : ¬A)p ∈ B. In

this case ⊥ is an interpolant for B and i, as
• A u ¬A u . . . v ⊥ v C and
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• L(⊥) ⊆ L(A u ¬A u . . .) ∩ L(C) for any concept C.
This implies that I∅(i, B) 6= ∅ and, therefore, that Itr(v)(i, B) 6= ∅

for any valuation v. Thus, rf(i, B) = > is a reduct-function.
(b) x = y = n; There are formulas (i : A)n ∈ B and (i : ¬A)n ∈ B. This

case is dual to the previous one. In this case > is an object-related
interpolant for B and i, as

• C v > v ¬A t A t . . . and
• L(>) ⊆ L(C) ∩ L(¬A t A t . . .) for any concept C.
This implies that I∅(i, B) 6= ∅ and, therefore, that Itr(v)(i, B) 6= ∅

for any valuation v. Thus, rf(i, B) = > is a reduct-function.
(c) x 6= y; There is no “internal” contradiction, but there are clashes

involving positively and negatively labelled formulas. In this case
rf(i, B) =

∨
(i:A)x∈B,(i:¬A)y∈B A is a reduct-function, as v(rf(i, B)) = T

implies for every valuation v that tr(v) contains at least one concept-
name A such that (i : A)x and (i : ¬A)y, where x 6= y. This, however,
means that either A (if x = p) or ¬A (if x = n) is an interpolant for
B and i. In both cases we know I{A}(i, B) 6= ∅ for an arbitrary
A ∈ tr(v), and therefore also Itr(v)(i, B) 6= ∅.

(d) Finally, if there is no clash, there is no interpolant for B and i, i.e.,
I(i, B) = ∅, and ⊥ is a reduct-function by definition.

(ii) t-rule; A disjunctive rule was applied on a formula and two new branches
B′ and B′′ have been created. We will prove that, Itr(v)(i, B) 6= ∅ for
every valuation such that v(rf(i, B)) = T . Let us construct such an
interpolant.
By induction hypothesis rf(i, B ′) and rf(i, B′′) are reduct-functions,

i.e. Itr(v′)(i, B
′) 6= ∅ for any valuation v′(rf(i, B′)) = T ; and similarly for

B′′. As we know that v(rf(i, B)) = T if, and only if, v(rf(i, B ′)) = T and
v(rf(i, B′′)) = T for any valuation v by the definition in Fig. 2 this implies
Itr(v)(i, B

′) 6= ∅ and Itr(v)(i, B
′′) 6= ∅. Let us now choose two arbitrary

interpolants I ′ ∈ Itr(v)(i, B
′) and I ′′ ∈ Itr(v)(i, B

′′) for each branch.
(a) Suppose that the t-rule was applied on a positively labelled formula

and that {(i : C tD)p, (i : C1)
p, . . . , (i : Ck)

p, (i : D1)
n, . . . , (i : Dl)

n}
is the set of formulas for i in the branch B. We will show that I ′tI ′′ is
an interpolant for B and i built from concept-names in tr(v) only. We
know that I ′ is an interpolant for CuC1u. . .uCk and ¬D1t. . .t¬Dl,
and that I ′′ is an interpolant for DuC1u . . .uCk and ¬D1t . . .t¬Dl,
i.e. that

• C u C1 u . . . u Ck v I ′ v ¬D1 t . . . t ¬Dl and D u C1 u . . . u Ck v
I ′′ v ¬D1t . . .t¬Dl. But then both (CtD)uC1u . . .uCk v I ′tI ′′

and I ′ t I ′′ v ¬D1 t . . . t ¬Dl.
• Concerning the common vocabulary we know that L(I ′) ⊆ L(C u

C1 u . . . u Ck) ∩ L(¬D1 t . . . t ¬Dl) and L(I
′′) ⊆ L(D u C1 u . . . u

Ck) ∩ L(¬D1 t . . . t ¬Dl). As L(I) = L(I
′ t I ′′) = L(I ′) ∪ L(I ′′)

it follows immediately that: L(I) ⊆ L((C t D) u C1 u . . . u Ck) ∩
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L(¬D1 t . . . t ¬Dl).
• Finally, N (I ′ t I ′′) ⊆ tr(v), as both N (I ′) ⊆ tr(v) and N (I ′′) ⊆

tr(v).
(b) Suppose that the t-rule was applied on a negatively labelled formula.

This case is dual to the previous one, and I ′u I ′′ is an interpolant for
B and i built from concept-names in tr(v) only.

(iii) u-rule; A conjunctive rule was applied on a formula and a new branch B ′

has been created. We will prove that Itr(v)(i, B) 6= ∅ for every valuation
such that v(rf(i, B)) = T . Let us construct such an interpolant.
By induction hypothesis rf(i, B ′) is a reduct-functions, i.e. for any val-

uation v′(rf(i, B′)) = T implies that Itr(v′)(i, B
′) 6= ∅. As we know that

v(rf(i, B)) = T if, and only if, v(rf(i, B ′)) = T for any valuation by the
definition in Fig. 2 this implies Itr(v)(i, B

′) 6= ∅. By definition of in-
terpolation for a branch and an individual, every interpolant for B ′ is
also an interpolant for B and vice versa. It follows immediately that
Itr(v)(i, B) 6= ∅.

(iv) ∃-rule; An existential rule was applied on a formula and a new branch B ′

has been created. We will prove that Itr(v)(i, B) 6= ∅ for every valuation
such that v(rf(i, B)) = T . Let us construct such an interpolant.
By induction hypothesis rf(i, B ′) and rf(j, B′) are reduct-functions,

i.e. Itr(v′)(i, B
′) 6= ∅ for any valuation v′(rf(i, B′)) = T and similar for

j. We know that v(rf(i, B)) = T if, and only if, v(rf(i, B ′)) = T or
v(rf(j, B′)) = T by the definition in Fig. 2. Therefore there must be
either an I ′ ∈ Iv(tr)(i, B

′) or I ′′ ∈ Itr(v)(j, B
′). It remains to show that

either I ′ ∈ Itr(v)(i, B) or I ′′ ∈ Itr(v)(i, B) to finish the proof. There are
now 2 main cases:

1.) Suppose a ∃-rule was applied on a positively labelled formula and

{(i : ∃r.C)p, (i : C1)
p, . . . , (i : Ck)

p, (i : ∀r.Ck+1)
p, . . . , (i : ∀r.Cm)

p,
(i : D1)

n, . . . , (i : Dl)
n, (i : ∀r.Dl+1)

p, . . . , (i : ∀r.Do)
p}

is the set of formulas for i in the branch B (where C1, . . . , Ck and
D1, . . . , Dl are not universally quantified over r).

(a) Suppose I ′ is an interpolant for B ′ and i. As we add precisely one new
formula for a new individual j to create the new branch B ′ it follows
immediately that I ′ is also an interpolant for B and i.

(b) Suppose I ′′ is an interpolant for B ′ and j. This means that
· C uCk+1u . . .uCm v I ′′ v ¬Dl+1t . . .t¬Do, which in turns implies
∃r.C u∀r.Ck+1u . . .u∀r.Cm v ∃r.I

′′ v ∃r.¬Dl+1t . . .t∃r.¬Do. But
this also implies that ∃r.C uC1 u . . . uCk u ∀r.Ck+1 u . . . u ∀r.Cm v
∃r.I ′′ v ¬D1 t . . . tDl t ∃r.¬Dl+1 t . . . t ∃r.¬Do.
· We also have to show that:

L(∃r.I ′′) ⊆ L(LHS) ∩ L(RHS) (A.1)

where LHS is an abbreviation for the concept ∃r.C uC1 u . . .uCk u
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∀r.Ck+1u. . .u∀r.Cm on the Left Hand Side of the subsumption, RHS

an abbreviation for the Right Hand Side ¬D1t . . .t¬Dlt∃r.¬Dl+1t
. . . t ∃r.¬Do. Remember that

L(∃r.I ′′) = L(I ′′)r ∪ {(>, )ε, (⊥, )ε} (A.2)

according to Definition 3.1. We know by the definition of L that

L(LHS)=L(∃r.C u C1 u . . . u Ck u ∀r.Ck+1 u . . . u ∀r.Cm)
=L(C1 u . . . u Ck) ∪ L(∃r.C)
∪ L(∀r.Ck+1) ∪ . . . ∪ L(∀r.Cm)

=L(C1 u . . . u Ck) ∪ L(C)
r

∪ L(Ck+1)
r ∪ . . . ∪ L(Cm)

r ∪ {(>, )ε, (⊥, )ε}

(A.3)

Because of the presence of ∃r.C we know that (>, )ε and (⊥, )ε are
necessarily elements of L(LHS). This is not the case for L(RHS).
Here we have to consider two cases.
− If o > l + 1 we also know that

L(RHS)=L(¬D1 t . . . t ¬Dl t ∃r.¬Dl+1 t . . . t ∃r.¬Do)
=L(¬D1 t . . . t ¬Dl) ∪ L(∃r.¬Dl+1) ∪ . . . ∪ L(∃r.Do)
=L(¬D1 t . . . t ¬Dl)
∪ L(¬Dl+1)

r ∪ . . . ∪ L(¬Do)
r ∪ {(>, )ε, (⊥, )ε}

(A.4)
But then our claim is true. By induction hypothesis L(I ′′) ⊆ L(C u
Ck+1u. . .uCm)∩L(¬Dl+1t. . .t¬Do), and L(I

′′)r ⊆ L(CuCk+1u. . .u
Cm)

r∩ L(¬Dl+1 t . . . t ¬Do)
r follows by definition of L(C)r (where

simply the role-name r is added to each sequence of role-names for
each concept-name/polarity pair). Finally, this gives us, by definition
of the conjunctive case of Definition 3.1,

L(I ′′)r ⊆ L(LHSr) ∩ L(RHSr) (A.5)

where LHSr abbreviates L(C)r∪L(Ck+1)
r∪ . . .∪L(Cm)

r and RHSr

abbreviates L(¬Dl+1)
r ∪ . . . ∪ L(¬Do)

r.
The subset relation (A.1) follows from (A.5) and (A.2), as both

L(LHSr) ⊆ L(LHS) and L(RHSr) ⊆ L(RHS) by (A.3) and (A.4).
− Otherwise (i.e. if o = l + 1), i.e. L(RHS ′) = ∅ which implies

that (>, )ε and (⊥, )ε do not necessarily belong to the language of
the right-hand side, i.e. L(RHS). This, however, was needed to prove
relation (A.1) from (A.5). But it also means that the interpolant I ′′

for B′ and j must be ⊥, as by induction hypothesis

C u Ck+1 u . . . u Cm v I ′′ v ⊥ (A.6)

(remember that the empty disjunction is equivalent to ⊥). But in
this special case I = ⊥ can easily been shown to be an interpolant.
The subsumption relation (A.6) and Definition 3.1 for L imply that

∃r.C u ∀r.Ck+1 u . . . u ∀r.Cm v ∃r.I
′′ v ⊥ and

L(⊥) ⊆ L(∃r.C u ∀r.Ck+1 u . . . u ∀r.Cm) ∩ L(⊥).

which finishes the proof.
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2.) Suppose a ∃-rule was applied on a negatively labelled formula. This
case is dual to the previous one, but this time we show that ∀r.I ′′ is
an interpolant for B and i. Again, special care needs to be taken when
there is no universally quantified concept, this time on the left-hand
side of the subsumption. In this case > is an interpolant for B ′ and j,
and therefore also for B and i.

(v) If a rule was applied on a formula (j : C)x for an arbitrary j 6= i, C ∈ ALC
and label x the set of object-related interpolants for i does not change.
This is even the case if two new branches are created, and it is sufficient
to choose one.

This finishes the proof of Lemma A.1. 2

Next we show that rf(i, B) is maximal w.r.t. propositional consequence in
the set of all reduct-functions, i.e. that ϕ →rf(i, B) is valid for any reduct-
function ϕ for i and B.

Lemma A.2 Let B be a branch occurring in a tableau proof T1, . . . , Tn, and
i an individual. The reduct-function rf(i, B) as defined in Fig. 2 is a maximal
reduct-function for B and i.

Proof. We have shown that rf(i, B) is a reduct-function. The proof that it
is maximal is by induction over the rules applied in a tableau proof. We will
have to show that ϕ →rf(i, B) for every reduct function ϕ for B and i.

Induction Hypothesis: For every tableau T in a tableau proof the reduct-
function rf(i, B) is maximal for any branch B ∈ T and individual i.

(i) In the base case, the tableau T is saturated and no rule can be applied.
There are 4 cases:
(a) x = y; There are formulas (i : A)x ∈ B and (i : ¬A)y ∈ B for x = y.

As rf(i, B) = > the claim follows trivially.
(b) x 6= y; There is no “internal” contradiction, but there are clashes

involving positively and negatively labelled formulas. To close the
branch, at least one A ∈ tr(v) is needed in tr(v) for each reduct-
function. But then ϕ →

∨
(i : A)x ∈ B, (i : ¬A)y ∈ B

A.

(c) Finally, if there is no clash, there is no interpolant, i.e. I(i, B) = ∅

and ⊥ is the only reduct-function by definition.

(ii) Suppose a t-rule has been applied and two new branches B ′ and B′′

were created. Every reduct function ϕ for B is also a reduct function for
B′ and B′′, as Itr(v)(B, i) 6= ∅ for any valuation v(ϕ) = T implies that
Itr(v)(B

′, i) 6= ∅ and Itr(v)(B
′′, i) 6= ∅. We will show in Lemma A.4 that

the concept oi(i, B,R) is undefined if, and only if, there is no interpolant
I for i and B with N (I) ⊆ R. This can only happen if there is an open
branch on the saturated tableau derived from B. Assume, however, that
there is an open branch for the saturated tableaux derived from either
B′ or B′′. In this case the saturated tableau derived from B would have
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an open branch, and there would be no interpolant for B and i with
concept-names in R only. Take now R = tr(v) and we get an immediate
contradiction.
Therefore every reduct-function ϕ for B and i is also a reduct-function

for B′ and B′′, and ϕ it must be maximal. This follows from the induction
hypothesis as both ϕ →rf(i, B ′) and ϕ →rf(i, B′′) are valid, which implies
validity of ϕ →rf(i, B ′)∧rf(i, B′′).

(iii) The conjunctive case follows immediately from the induction hypothesis
as the set of reduct-functions for B and i is the same as the reduct
functions for B ′ and i, because the interpolants for B and B ′ are identical
for i.

(iv) Suppose a ∃-rule has been applied and created a new branch B ′ and a new
individual b. Every reduct-function ϕ for B must be a reduct-function
for B′ and either i or j (or both), because, as before, the tableau derived
from B must close on concept-names in tr(v).
This finishes the proof as by induction hypothesis now either ϕ →rf(i, B ′)

or ϕ →rf(j, B′) are valid, which implies validity of ϕ →rf(i, B ′)∨rf(j, B′).

This finishes the proof of Lemma A.2. 2

Lemma A.3 Let P and N be concepts and P v N . Let ϕ be an maximal
reduct-function for an arbitrary individual i and a branch B = {(i : P )p, (i :
¬N)n}. The set of prime implicants for ϕ is the set of reducts for P and N .

Proof. First we study two special cases, before moving to the general one.

• ϕ = ⊥; by definition we have that I(i, B) = ∅, and therefore I(P,N) = ∅.
But this implies P 6v N , which is a contradiction to the assumption.

• ϕ = >; (⇒) Every prime implicant of ϕ is a reduct. Every valuation makes
ϕ true, i.e. also the valuation with an empty truth-set. This implies that
I∅(a,B) 6= ∅. But ∅ is a subset of any set, and therefore of any truth-set
of any satisfying valuation for ϕ. (⇐) Every reduct for P and N is a prime
implicant of ϕ, i.e. the empty set ∅. That is trivial ∅ is already the smallest
set to preserve existence of an interpolant for P and N .

• For all other cases we have to show that R ∈ pi(ϕ) iff R is a reduct, i.e.:
(i) IR(P,N) 6= ∅

(ii) IR′(P,N) = ∅ for any set R′ ⊂ R.
(⇒) Suppose R is a prime implicant of ϕ. We will show that R fulfils
Conditions i and ii. There is a valuation v′ which makes

∧
A∈R A true,

otherwise R = ∅ and therefore ϕ = >, which we covered in the case above.
As R is a prime implicant of ϕ the implication

∧
A∈R A → ϕ is valid, and

therefore v(
∧

A∈R A) = T implies v(ϕ) = T for any valuation v. Therefore ϕ

must also be true in v′, which implies that IR(a,B) 6= ∅ and therefore also
IR(P,N) 6= ∅ as ϕ is a reduct-function. This proves Condition i. Now take
a subset R′ ⊂ R. R is a prime implicant of ϕ, so that

∧
A∈R′ A → ϕ is not

valid. Maximality of ϕ implies that
∧

A∈R′ A is not a reduct-function. But
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then, by definition, there must be a valuation v′ such that v′(
∧

A∈R′ A) = T

and Itr(v′)(i, B) = ∅. But as R′ ⊆ tr(v′) we must also have that IR′(a,B) =
∅, which implies IR′(P,N) = ∅.
(⇐) Suppose R is a reduct. We show that R is a prime implicant of ϕ.
Condition 1. implies that IR(a,B) 6= ∅. From this follows that

∧
A∈R A

is a reduct-function because R ⊆ tr(v) for all valuations v(
∧

A∈R A) = T .
Maximality of ϕ implies validity of

∧
A∈R A → ϕ. But now we are done:

assume that R is not prime, i.e. that there is a smaller set R′ ⊂ R where∧
A∈R′ → ϕ is valid. This, however, implies that IR′(P,N) 6= ∅, which

contradicts Condition 2.

This finishes the proof of Lemma A.3. 2

Theorem 4.2 now follows immediately from Lemmas A.1, A.2 and A.3. 2

Proof of Theorem 4.3

Theorem 4.3 (reminder) Let R be a reduct for two concepts P and N . The
concept oi(i, {(i : P )p, (i : ¬N)n}, R) as calculated by the algorithm defined
in Fig. 3 is an optimal interpolant for P and N .

Proof. As we have already noted that interpolants built from concept-names
in reducts only, determine the set of optimal interpolants it suffices to show
that the rules in Fig. 3 produce interpolants. We show, in Lemma A.4 that the
concept oi(i, B,R) is an interpolant for an arbitrary branch B in a proof and
an individual i and that it is built from concept-names in R only. The proof
is by induction over the tableaux in a proof, and we simply have to construct
an interpolant for B from the branches B ′ (and B′′). Note that we have some
leeway in the construction of the interpolant, and that we usually chose the
most general interpolant. 3

Lemma A.4 Let B be a branch in a tableau proof, i be an individual name.
If defined, the concept oi(i, B,R) as calculated by the rules in Fig. 3 is
an interpolant for B and i such that N (oi(i, B,R)) ⊆ R. The concept
oi(i, B,R) is undefined if, and only if, there is no interpolant for B and i

with N (oi(i, B,R)) ⊆ R.

Proof. To prove Lemma A.1 we had to show that we could construct an
interpolant for each branch consisting of the vocabulary only which occurred
in the truth-set of a valuation making the reduct-function true. There, we have
already seen how to construct the interpolants, and we use this information in
the following proof. The proof of Lemma A.4 is by induction over the tableau
proofs as before.

3 This arbitrary choice is motivated by the application of optimal interpolants in learning
of terminologies where we aim to learn most general TBox axioms.
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Induction Hypothesis: For every tableau T in a proof and every branch
B ∈ T the concept oi(i, B,R) (if defined) as calculated by the algorithm in
Fig. 3 is
(i) an interpolant for B and i

(ii) such that N (oi(i, B,R)) ⊆ R.
If oi(i, B,R) is undefined there is no interpolant with N (oi(i, B,R)) ⊆ R

for B and i.

(i) The base-case is a saturated tableau, where no rule is applicable. Then,
for every branch B, we have four cases:
(a) x = y = p; There are formulas (i : A)p ∈ B and (i : ¬A)p ∈ B. In

this case ⊥ is an interpolant for B and i as shown in case 1.(a) of the
proof of Lemma A.1. Condition (ii) follows trivially as N (⊥) = ∅

(b) x = y = n; There are formulas (i : A)n ∈ B and (i : ¬A)n ∈ B. In
this case > is an interpolant for B and i, as shown in case 1.(b) of the
proof of Lemma A.1. Condition (ii) follows trivially as N (⊥) = ∅

(c) x 6= y; oi(i, B,R) is defined, but there is no “internal” contradiction,
i.e. only clashes involving positively and negatively labelled formu-
las. Let P (and N) denote the conjunction (disjunction) of concepts
occurring positively (negatively) labelled in B in formulas for the in-
dividual i. For every atom A ∈ R where (i : A)x and (i : ¬A)y (with
x 6= y) either A (if x = p) or ¬A (if x = n) is an interpolant for B and
i w.r.t. R, i.e. P v A v N (if x = p) or P v ¬A v N (if x = y). Then
also P v

⊔
(i:A)p∈B,(i:¬A)n∈B,A∈R At

⊔
(i:A)n∈B,(i:¬A)p∈B,A∈R A v N . As

L(A) ⊆ L(P ) ∩ L(N) for all A is follows L(oi(i, B,R)⊆ L(P ) ∩
L(N) which implies that oi(i, B,R) is an interpolant for i and B.
N (oi(i, B,R)) ⊆ R follows trivially.

(d) Suppose oi(i, B,R) is undefined. This means that there is no clash
in B on formulas containing i with concept-names in R. But then
there can be no interpolant for i and B built from concept-names in
R only.

(ii) t-rule; A disjunctive rule was applied on a formula and two new branches
B′ and B′′ have been created. It was shown in case 2. of the proof of
Lemma A.1 that the combination of two interpolants for B ′ and B′ yield
interpolant for B and i: a conjunctive combination if the rule was applied
on a negatively labelled formula, a disjunctive combination otherwise.
The language constraint N (oi(i, B,R)) ⊆ R follows trivially from the
induction hypothesis.

(iii) u-rule; A conjunctive rule was applied on a formula and a new branches
B′ has been created. By definition every interpolant for B ′ and i is also an
interpolant for B and i. Again, the language constraint follows trivially.

(iv) ∃-rule; An existential rule was applied on a formula and a new branches
B′ has been created.
• Suppose the rules was applied on a positively labelled formula. It was
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shown in case 4.(a) of the proof of Lemma A.1 that ∃r.I ′ is an inter-
polant for B and i if I ′ is an interpolant for B ′ and j, and that I is an
interpolant for B and i if it is an interpolant for B ′ and i. It is easy to
check that I t ∃r.I ′, I or ∃r.I ′ are interpolants for B and i depending
on the existence of the interpolants for B ′ and i and j. Again, the
language constraint follows trivially by induction hypothesis.

• The same arguments hold if the rule was applied on a negatively labelled
formula, this time with the interpolant ∀r.I ′.

This finishes the proof of Lemma A.4. 2

By definition of interpolation for branches and individuals it follows that
oi(i, {(i : P )p, (i : ¬N)n}, R) is an interpolant for P and N , and if R is a
concept-reduct for P and N , this interpolant is optimal by Lemma 3.4.

This finishes the proof of Theorem 4.3. 2
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