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Abstract

Monotonic modal logics form a generalisation of normal modal logics in which the ad-
ditivity of the diamond modality has been weakened to monotonicity: 3p∨3q → 3(p∨q).
This generalisation means that Kripke structures no longer form an adequate semantics.
Instead monotonic modal logics are interpreted over monotonic neighbourhood structures,
that is, neighbourhood structures where the neighbourhood function is closed under super-
sets. As specific examples of monotonic modal logics we mention Game Logic, Coalition
Logic and the Alternating-Time Temporal Logic. This thesis presents results on mono-
tonic modal logics in a general framework. The topics covered include model constructions
and truth invariance, definability and correspondence theory, the canonical model con-
struction, algebraic duality (for monotonic neighbourhood frames), coalgebraic semantics,
Craig interpolation via superamalgamation, and simulations of monotonic modal logics by
bimodal normal ones. The main contributions are: generalisations of the Sahlqvist corre-
spondence and canonicity theorems, a detailed account of algebraic duality via canonical
extensions, an analogue of the Goldblatt-Thomason theorem on definable frame classes,
results on the relationship between bisimulation and coalgebraic notions of structural
equivalence, Craig interpolation results, and a simulation construction which preserves
descriptiveness of general frames.
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1 Introduction

Monotonic modal logics form a generalisation of normal modal logics in which the additiv-
ity principle, that is, the distribution of the diamond modality over disjunction, has been
weakened to the monotonicity axiom: 3ϕ∨3ψ → 3(ϕ∨ψ). Why this axiom is called mono-
tonicity comes out more clearly when we formulate it as a derivation rule: From ` ϕ → ψ
infer ` 3ϕ→ 3ϕ.

Classical (or non-normal) modal logics, of which monotonic modal logics are a special
case, are traditionally interpreted over neighbourhood structures. A neighbourhood model is
a triple M = (W, ν, V ) where W is the set of worlds, V is a valuation, and ν :W → P(P(W ))
is a neighbourhood function which associates a set of neighbourhoods with each world. A
modal necessity operator ∇ is interpreted by ν as follows: M, w ° ∇ϕ iff V (ϕ) ∈ ν(w), where
V (ϕ) = {x ∈ W | M, x ° ϕ}. When there are no restrictions on ν, the distributivity axiom
and other principles of normal modal logics will generally not hold in a neighbourhood model.
The class of monotonic (neighbourhood) frames in which ν is closed under supersets form the
adequate semantics of monotonic modal logics.

In early history, classical modal logics are always mentioned but hardly used, and they
seem to be studied mainly for their mathematical properties. However, in the past 15 years or
so, applications have been found where the requirement of additivity turns out to be too strong
or hold undesirable consequences. This is, for example, the case in Concurrent Propositional
Dynamic Logic, see Goldblatt [32], and more recently, in Parikh’s Game Logic [53], Pauly’s
Coalition Logic [58] and the Alternating-Time Temporal Logic of Alur et alii [2]. In the latter
three cases, the (coalitional) ability of agents is formalised in languages containing modalities
of the form ∇ϕ. Loosely stated, ∇ϕ has the interpretation “the agent can bring about ϕ”.
This is made precise by the semantics which is defined in terms of strategic games, and thus,
in game terms, ∇ϕ expresses that the agent has a strategy to achieve an outcome of the game
where ϕ holds. In general, an agent cannot ensure that the outcome will be one particular
state, as the outcome depends on which strategy the other agents choose; rather the agent
can only ensure that the outcome falls within a certain set of states. Given this intended
interpretation, it should be clear that additivity is not a valid principle. As an example,
suppose that the set of agents is a group of friends who can all choose to go to the cinema
or stay at home. Then an agent A has a strategy to ensure that the outcome is that she
goes to the cinema with friends or she goes on her own, which we may specify in the formula
∇A(cinema with friends ∨ cinema alone). But she cannot ensure one or the other, that is,
∇A(cinema with friends) ∨∇A(cinema alone) is not the case, since the outcome will depend
on what the other agents decide to do (assuming that if several of them go, then they go
together). Similarly, with this interpretation, ∇ is not a ‘box’-modality either, that is, the
principle ∇p∧∇q → ∇(p∧ q) is not valid, since the availability of strategies to achieve p and
q separately need not imply a strategy where both p and q can be achieved simultaneously.
However, monotonicity is clearly a valid principle: If a player has a strategy which ensures
the outcome to be in X and X ⊆ Y , then the same strategy will ensure the outcome to be in
Y .

Non-normal modal logics have also been suggested as adequate systems for deontic logic,
where the formalisation of conditional obligation in terms of normal modal logic leads to
paradoxes or counter-intuitive interpretations, see e.g. Chellas [14] and van der Torre [70].
Similar objections to normality are found when reasoning about knowledge and belief (the
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omni-science problem), see Fagin and Halpern [19], and Vardi [71, 72]. Furthermore, the
topological models of Aiello and van Benthem [1] are specific examples of neighbourhood
models.

Literature specifically devoted to monotonic modal logic is rather scarce. Early works
on classical modal logics and neighbourhood semantics include Segerberg [62], and Chellas
and McKinney [15], which mainly focus on completeness results. More recently, Gasquet
[21] investigates completeness of monotonic multi-modal logics, and the relationship between
neighbourhood completeness and Kripke completeness is treated in [64, 65, 12]. Bull and
Segerberg [9] only mention neighbourhood semantics very briefly.

Chellas [14] is one of the few textbooks which treats non-normal modal logic and neigh-
bourhood semantics in some detail. Pauly’s work on Coalition Logic [57, 58] covers many
aspects of monotonic modal logic and its semantics, including bisimulation invariance (see
also Pauly [55]), and safety under bisimulation of the game constructions in Game Logic. To
our knowledge, the only published work on algebraic duality for neighbourhood frames is by
Došen [18], where full categorical duality is proved between neighbourhood frames and certain
kinds of modal algebras. Although some of Došen’s results easily adapt to the monotonic case,
this is not entirely so when put into a unified framework of monotonic and algebraic seman-
tics. On the algebraic side, Blok and Köhler [7] give an early account of algebraic semantics
for non-normal modal logics in terms of so-called filtered modal algebras, and Gehrke and
Jónsson [24] describe canonical extensions of algebras expanded with monotone operations.

As a more indirect way of gaining knowledge, some authors, including Gasquet and Herzig
[22] and Kracht and Wolter [44], show how to simulate monotonic modal logics by bimodal
normal ones. Simulations are a way of interpreting one logic in another, and by showing that
properties such as decidability, completeness and canonicity are preserved or reflected by the
simulation, one may transfer results on these properties between the two logics. In this way
Kracht and Wolter [44] obtain a general completeness result for monotonic logics.

The emergence of modal systems such as Game Logic and Coalition Logic has given us
motivation to study monotonic modal logics in more detail. Moreover, much of the existing
knowledge is considered to be folklore, and as the above suggests, results are scattered and
occur in different contexts. This indicates a clear need for a unified theory of monotonic modal
logics. For normal modal logics, such a theory has over and over again proved its use: When
dealing with normal modal logics, we immediately have a number of general results available
such as the van Benthem Characterisation Theorem, definability via the Goldblatt-Thomason
theorem, and Sahlqvist correspondence and canonicity. Thus the question naturally arises
whether similar results hold for monotonic modal logics.

With this thesis, we hope to remedy part of the above problem by bringing together
both known and new results pertaining to a general theory of monotonic modal logic. In
particular, a detailed account of algebraic duality for monotonic structures will be presented,
and in many situations we will see that it is due to this duality that we may generalise some
important results on normal modal logic to monotonic modal logics. These results include
some of the main contributions of this thesis which we list here: Theorem 5.4 (an analogue of
the Goldblatt-Thomason theorem on definability of monotonic frame classes), Theorem 5.14
(an analogue of the Sahlqvist Correspondence theorem for monotonic modal logics), Theorems
8.35 and 8.37 (which link the notions of bisimulation and behavioural equivalence known from
coalgebras to monotonic frame bisimulations), Theorem 9.10 (Craig interpolation), Theorems
10.34 and 10.44 (analogues of the Sahlqvist Canonicity theorem). Below is a more detailed
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description of the contents.

Outline

The basic definitions of classical and monotonic modal logics and their semantics are given
in section 3.

In section 4 we define the notions of disjoint union, bounded morphism, bisimulation,
generated submodel and unravelling of monotonic structures, and show that truth is invariant
under these constructions. We also define filtrations and ultrafilter extensions of monotonic
structures, and prove some standard technical results.

In section 5 we investigate the notions of frame definability and (first-order) correspon-
dence, and present analogues of the Goldblatt-Thomason theorem (Theorem 5.4) and the
Sahlqvist Correspondence theorem (Theorem 5.14). In the last subsection we present Pauly’s
[55] adaptation to monotonic modal logic of the van Benthem characterisation theorem.

In section 6, we define the canonical model, which, it should be noted, is different from the
one found in Chellas [14] and Pauly [57]. Completeness for most of the standard monotonic
logics is already known, but we give an alternative proof based on simulations and canonicity.

In section 7 we first describe the algebraisation of monotonic modal logics, and proceed to
defining canonicity in terms of canonical extensions as in the tradition of Jónsson and Tarski
[39]. Due to the lack of additivity of the function with which we have expanded our boolean
algebras, the notion of canonicity splits into two variants: σ-canonicity and π-canonicity. In
subsection 7.4 the basic duality between monotonic frames and algebras (Theorem 7.21) is
shown, and in 7.5 we show full categorical duality between descriptive general monotonic
frames and algebras (Theorem 7.36). Section 7 is concluded with a discussion of the relation-
ship between the two notions of canonicity in subsection 7.6.

In section 8 we offer an alternative view on monotonic structures as coalgebras, and com-
pare the coalgebraic notions of bisimulation and system equivalence with the model theoretic
one. This section presents joint work with Clemens Kupke, ILLC, University of Amsterdam.

Section 9 centres around the relationship between the Craig interpolation property and
superamalgamation of varieties, and we will see that our work on coalgebras and the rela-
tionship between the σ- and π-constructions of section 7 has further merit when we prove a
monotonic analogue of the Zigzag Lemma in Marx [51], which in turn allows us to conclude
that a large class of monotonic modal logics have the Craig interpolation property (Theorem
9.10).

Finally, in section 10, we show how to simulate monotonic modal logics by bimodal normal
ones in such a way that (σ-)canonicity is reflected by the simulation. This is an improvement
on the results in [22, 44], and is obtained by a simulation construction which preserves descrip-
tiveness of general frames. We immediately obtain σ-canonicity for formulas which translate
to bimodal Sahlqvist formulas (Theorem 10.34). We also briefly return to the relationship
between the dual notions of σ- and π-canonicity which is captured by the dual simulation
of subsection 10.6. The dual simulation provides us with π-canonicity of all formulas whose
dual translation is σ-canonical (Theorem 10.44).
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2 Preliminaries

The starting point for this paper was to collect and investigate results about monotonic
modal logics which are well-known for normal modal logics. Therefore, it is assumed that the
reader is familiar with the general theory of normal modal logics, more or less as presented in
Blackburn et alii [6], which also accounts for most of the notation and terminology employed
here. Other normal modal logic references include [11, 43]. For non-normal modal logic and
neighbourhood semantics, see [14, 18, 63]. Furthermore, a large part of the theory presented
here has been driven by interests in algebraic duality, hence a good knowledge of Stone spaces,
boolean algebras with operators and (descriptive) general frames together with some basic
category theory is particularly useful, see [29, 30, 37, 61, 18, 31, 43]. Also some exposure to
the theory of canonical extensions [39, 40, 23, 24] will help. For the Algebra, Coalgebra and
Interpolation sections, some familiarity with universal algebra [10] is expected, but no prior
knowledge of coalgebra is assumed. For background knowledge on coalgebras, the reader may
consult [59, 46, 54, 45].

3 Basic Concepts

3.1 Syntax

We will be working with the basic modal similarity type throughout most of this thesis,
that is, a language L∇ which contains one unary modality ∇. For a fixed (countable) set of
proposition letters prop, the well-formed formulas of L∇ (L∇-formulas) are given by,

ϕ := ⊥ | p | ¬ϕ | ϕ ∨ ϕ | ∇ϕ where p ∈ prop.

>,∧,→ and ↔ are defined as the usual abbreviations, and ∆ abbreviates ¬∇¬. In most of
the literature, including Chellas [14], the necessity-modality ∇ is denoted by 2. However, the
2-symbol which is also traditionally used for normal necessity-modalities, has an intuitive
universal character, whereas the interpretation of a monotone necessity-modality has both a
universal and an existential component, as we will see later (Remark 3.7). For notational
convenience we will sometimes write ϕ ∈ L∇ instead of “ϕ is an L∇-formula”, and Σ ⊆ L∇
instead of “Σ is a set of L∇-formulas”.

Recall the following definition from Blackburn et alii [6]: A set of modal formulas Λ over
a language L is a modal L-logic if Λ contains all propositional tautologies and is closed under
modus ponens and uniform substitution. In order to define classical and monotonic modal
logics, consider the following inference rules:

(RE∇)
ϕ↔ ψ

∇ϕ↔ ∇ψ

(RM∇)
ϕ→ ψ

∇ϕ→ ∇ψ

Definition 3.1 Let L be a modal language with unary, primitive modalities ∇i, i ∈ I, and
let Λ be a modal L-logic. Then ∇i is classical in Λ if Λ is closed under RE∇i

, and ∇i is
monotone in Λ if Λ is closed under RM∇i

. Λ is classical if for all i ∈ I, ∇i is classical in Λ,
and Λ is monotonic if for all i ∈ I, ∇i is monotone in Λ. a
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Remark 3.2 One can easily show that when ∇ is monotone in a modal L∇-logic Λ, then so
is ∆, since for any modal L∇-logic Λ, if Λ is closed under the RM∇ rule, then Λ is also closed
under the rule RM∆:

(RM∆)
ϕ→ ψ

∆ϕ→ ∆ψ

Furthemore, readers familiar with [6] and [14] will notice that we do not include the axiom
(Dual) ∇p ↔ ¬∆¬p in our definition of monotonic and classical modal logics. The reason
for this is that we have chosen ∇ as our primitive symbol and ∆ as an abbreviation.

An L∇-formula ϕ is a theorem of Λ (notation: `Λ ϕ) if ϕ ∈ Λ. Derivations in a modal
logic are Hilbert-style proofs, and we define deducibility in terms of the local consequence
relation: Let Σ ∪ {ϕ} ⊆ L∇ and let Λ be a modal L∇-logic, then ϕ is deducible from Σ in
Λ (notation: Σ `Λ ϕ) iff there are σ1, . . . , σn ∈ Σ such that `Λ σ1 ∧ . . . ∧ σn → ϕ. If ϕ is
not deducible from Σ in Λ, we write Σ 0Λ ϕ. Σ is Λ-consistent iff Σ 0Λ ⊥ and Λ-inconsistent
otherwise. Λ is consistent iff 0Λ ⊥ and consistent otherwise.

The smallest monotonic modal L∇-logic will be called M and later we shall be looking at
various extensions of M with one or more of the following axioms:

M ∇(p ∧ q)→ ∇p
N ∇>
P ¬∇⊥
C ∇p ∧∇q → ∇(p ∧ q)
T ∇p→ p
4 ∇∇p→ ∇p
4’ ∇p→ ∇∇p
5 ∆p→ ∇∆p
B p→ ∇∆p
D ∇p→ ∆p

If Σ is a set of L∇-formulas, then M.Σ denotes the smallest monotonic modal L∇-logic
containing Σ. We will also say that M.Σ is the monotonic L∇-logic generated by Σ.

It is straightforward to show that a monotonic modal logic is also classical, and that a
classical modal logic is monotonic iff it contains the axiom M iff it contains ∆p∨∆q → ∆(p∨q),
which is the dual version of M. Normal modal logics are usually defined in terms of the K
axiom (∇(p → q) → (∇p → ∇q)) and the Necessitation rule (p/∇p): Λ is a normal modal
L∇-logic if Λ contains K, and is closed under the Necessitation rule. Recall again that the
axiom (Dual) is not needed, since ∇ is our primitive modality. However, one could equally
well have defined normal modal logics to be the monotonic modal logics containing C and
N, thus supporting our view of monotonic modal logic as a generalisation of normal modal
logic. Note that the dual of axiom C, which is equivalent with ∆(p∨ q)→ ∆p∨∆q, expresses
that ∆ is additive. The axiom N, which is equivalent with ∆⊥ ↔ ⊥, expresses normality
of ∆. In M, ∆ only satisfies monotonicity: Defining ϕ ≤ ψ by ϕ ∨ ψ ↔ ψ, we have ϕ ≤ ψ
implies ∆ϕ ≤ ∆ψ. See [14, 63] for more details on alternative characterisations of classical,
monotonic and normal modal logics.

Example 3.3 As an example of a monotonic modal logic, we will consider Coalition Logic
[57, 58, 36]. Coalition Logic formalises the ability of groups of agents to achieve certain
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outcomes in strategic games. The language of Coalition Logic contains modalities of the form
[C], and a formula [C]ϕ is to be interpreted as “coalition C has a strategy to achieve an
outcome state where ϕ holds”. This will be made precise in the next section where we will
look at the semantics of Coalition Logic. The language LCL(N) of Coalition Logic is defined
for a non-empty set (of agents) N and a fixed (countable) set of proposition letters prop.
The well-formed formulas of LCL(N) are,

ϕ := ⊥ | p | ¬ϕ | ϕ ∨ ϕ | [C]ϕ where p ∈ prop, C ⊆ N.

In the context of Coalition Logic, we will always assume a fixed set of agents N and use
C (possibly with subscripts) to denote a coalition of agents, i.e. C ⊆ N . A set of LCL(N)-
formulas Λ is a coalition logic for N , if Λ contains all propositional tautologies, is closed under
modus ponens, uniform substitution and for all C ⊆ N , Λ is closed under the inference rule

p→ q

[C]p→ [C]q
RM[C]

and contains the following axioms:

(⊥) ¬[C]⊥
(>) [C]>
(N) ¬[∅]¬p→ [N ]p
(S) [C1]p ∧ [C2]q → [C1 ∪ C2](p ∧ q)) where C1 ∩ C2 = ∅.

Note that the axioms (⊥) and (>) are the LCL(N)-versions of the axioms P and N. We will
see later that the above axioms express exactly the properties of the semantic interpretations
of the [C]-modalities which are needed to obtain a semantics in terms of strategic games.

3.2 Models and Frames

The generalisation of normal modal logic to monotonic modal logic means that Kripke frames
no longer constitute an adequate semantics. For example, the C axiom, ∇p∧∇q → ∇(p∧ q),
is valid on all Kripke frames, but it is not a theorem of monotonic modal logics in general.
The standard semantic tool used to interpret classical (non-normal) modal logics is neigh-
bourhood semantics [26, 14, 18, 63]. In the possible world scenario, propositions are identified
with sets of worlds, and in a neighbourhood model each world w is associated with a set of
propositions (‘neighbourhoods’) via a neighourhood function ν. These are the propositions
that are necessarily true at w. Hence a neighbourhood function is a map from the universe
W to P(P(W )).

Definition 3.4 (Neighbourhood structures) A neighbourhood frame for the language L∇
is a pair F = (W, ν) where W is a non-empty set (of worlds) and ν : W → P(P(W )) is a
neighbourhood function.

If F = (W, ν) is a neighbourhood frame and V : prop→ P(W ) a valuation on F, then
M = (W, ν, V ) is a neighbourhood model based on F. a

We will call a neighbourhood frame for the language L∇ an L∇-frame, and a neighbour-
hood model based on an L∇-frame will be referred to as an L∇-model. The particular class
of L∇-frames that we will be working with are the ones in which ν is closed under supersets.
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Definition 3.5 (Monotonic structures) Amonotonic L∇-frame is an L∇-frame F = (W, ν)
in which ν is closed under supersets: ∀w ∈ W, ∀X,Y ∈ P(W ) : X ⊆ Y,X ∈ ν(w) ⇒ Y ∈
ν(w). For convenience, we will also say that such a ν is monotone. A monotonic L∇-model
is a model based on a monotonic L∇-frame. a

The notion of a formula being true in an L∇-model is inductively defined for boolean
connectives, the same way as for Kripke models. Only the interpretation by ν of the necessity
operator ∇ is different. In accordance with the above interpretation of neighbourhoods as
necessary propositions, ∇ϕ is true at a world w ∈ W , if the proposition expressed by ϕ is a
neighbourhood of w.

Definition 3.6 (Truth conditions) Let M = (W, ν, V ) be an L∇-model. Truth of an L∇-
formula at w in M is defined inductively as follows:

M, w ° ⊥ never,
M, w ° p iff w ∈ V (p), p ∈ prop,
M, w ° ¬ϕ iff not M, w ° ϕ,
M, w ° ϕ ∨ ψ iff M, w ° ϕ or M, w ° ψ,
M, w ° ∇ϕ iff V (ϕ) ∈ ν(w).

where V (ϕ) = {w ∈W |M, w ° ϕ}. a

Remark 3.7 In a monotonic L∇-model, M, w ° ∇ϕ iff ∃X ∈ ν(w) ∀x ∈ X : M, x ° ϕ,
and by definition of ∆, M, w ° ∆ϕ iff ∀X ∈ ν(w) ∃x ∈ X : M, x ° ϕ. This combination of
a universal and an existential quantification is the reason why we have chosen the symbol
∇ instead of 2, since the 2-symbol is thought of as having a universal meaning only, when
interpreted in a Kripke model.

Global truth, satisfaction and frame validity are defined in the usual way: If ϕ is an L∇-
formula and M = (W, ν, V ) is an L∇-model, then ϕ is globally true in M (notation: M ° ϕ) if
for all w ∈W , M, w ° ϕ, and ϕ is satisfiable in M if there is some w ∈W such thatM, w ° ϕ.
If F = (W, ν) is an L∇-frame, then ϕ is valid in F (notation: F ° ϕ) if for all valuations V
on F and all w ∈ W , (F, V ), w ° ϕ. When Σ is a set of L∇-formulas, (F, V ), w ° Σ means
(F, V ), w ° σ for all σ ∈ Σ etc. We say ϕ is a local semantic consequence of Σ in F (notation:
Σ °F ϕ), if for all valuations V on F and all w ∈W , (F, V ), w ° Σ implies (F, V ), w ° ϕ.

If K is a class of L∇-frames, then ϕ is satisfiable in K is ϕ is satisfied in some model based
on a frame in K, and ϕ is valid on K (notation: K ° ϕ) if ϕ is valid in all F ∈ K. Furthermore,
ϕ is a local semantic consequence of a set of formulas Σ in K (notation: Σ °K ϕ) if Σ °F ϕ
for all F ∈ K. We will write ΛK or Th(K) for the set of L∇-formulas that are valid on K. For
any class of neighbourhood (monotonic) frames K, ΛK is a classical (monotonic) modal logic
[14].

Similarly to Kripke semantics, a neighbourhood function ν defines a map mν : P(W ) →
P(W ):

mν(X) = {w ∈W | X ∈ ν(w)} ,(1)

and we have mν(V (ϕ)) = V (∇ϕ). Note also that mν is monotone whenever ν is.
It will sometimes be convenient to think of a neighbourhood function ν :W → P(P(W )) as

a relation Rν between W and P(W ) where wRνX iff X ∈ ν(w). This relational perspective
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on ν will be put to good use in sections 5 and 10 where we look at correspondence and
simulations of monotonic modal logic.

Furthermore, for monotonic L∇-frames it is often useful to consider what we will call the
(non-monotonic) core of ν denoted by νc.

Definition 3.8 (Non-monotonic core) For a monotonic L∇-frame F = (W, ν), we define
the (non-monotonic) core of ν, νc, as follows:

X ∈ νc(w) iff X ∈ ν(w) & ∀X0 ( X : X0 /∈ ν(w). a

It should be noted that it is not always the case that a neighbourhood contains a core
neighbourhood as the following example shows.

Example 3.9 Let R be the set of real numbers, and F = (R, ν) the monotonic L∇-frame
where ν(0) = ↑ {(0, ε) | 0 < ε}. That is, ν(0) contains all subsets X of R for which (0, ε) =
{x | 0 < x < ε} ⊆ X for some ε > 0. It should be easy to see that νc(0) = ∅.

The frames in which this kind of infinite descending chain of neighbourhoods does not
occur will be called core-complete.

Definition 3.10 (Core-complete) Let F = (W, ν) be a monotonic L∇-frame. Then F is
core-complete if for all w ∈W and all X ⊆W the following holds: If X ∈ ν(w), then there is
a C ∈ νc(w) such that C ⊆ X. A monotonic L∇-model M = (F, V ) is core-complete if F is
core-complete. a

Remark 3.11 Finite models form an interesting class of core-complete structures, and since
in a core-complete model, we may think of νc as an irredundant representation of ν, it
seems relevant to study properties of the core when investigating complexity issues. In fact,
Pauly [57] introduced the notion of non-monotonic core when analysing the size of finite
coalition models in connection with model checking. Although, we will not be concerned
with complexity here, we will give a number of results concerning the model constructions of
section 4 for core-complete models.

Just as monotonic modal logics are a generalisation of normal ones, neighbourhood se-
mantics can be seen as a generalisation of Kripke semantics. It is well-known (see e.g. Chellas
[14]) that there is a 1-1 correspondence between the class of all Kripke models (for the basic
modal similarity type) and the class of augmented L∇-models such that corresponding models
are point-wise equivalent. An L∇-model is augmented whenever X ∈ ν(w) iff

⋂
ν(w) ⊆ X

for all w ∈ W , or equivalently,
⋂
ν(w) ∈ ν(w). Thus, augmented models are core-complete.

The correspondence between Kripke models and augmented L∇-model is shown as follows.
In one direction, given a Kripke frame (W,R) the neighbourhoods of a state w are defined by:
X ∈ ν(w) iff R[w] ⊆ X, where R[w] = {s ∈W | Rws} is the set of R-successors of w. In the
other direction, given an L∇-frame (W, ν), we define the R-successors of w by R[w] =

⋂
ν(w).

As we will be looking at extensions of M by the axioms listed in the previous section, we
will also be interested in which properties these axioms impose on frames. For convenience,
we will list a set of properties here.
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(n) ∀w ∈W :W ∈ ν(w).
(p) ∀w ∈W : ∅ /∈ ν(w).
(c) ∀w ∈W ∀X1, X2 ⊆W : X1 ∈ ν(w) & X2 ∈ ν(w)→ X1 ∩X2 ∈ ν(w).
(t) ∀w ∈W ∀X ⊆W : X ∈ ν(w)→ w ∈ X.
(iv) ∀w ∈W ∀X,Y ⊆W : (X ∈ ν(w) & ∀x ∈ X : Y ∈ ν(x))→ Y ∈ ν(w).
(iv’) ∀w ∈W ∀X ⊆W : X ∈ ν(w)→ mν(X) ∈ ν(w).
(v) ∀w ∈W ∀X ⊆W : X /∈ ν(w)→W \mν(X) ∈ ν(w).
(b) ∀w ∈W ∀X ⊆W : w ∈ X →W \mν(W \X) ∈ ν(w)
(d) ∀w ∈W ∀X ⊆W : X ∈ ν(w)→W \X /∈ ν(w).

Example 3.12 The semantics of Coalition Logic are given by strategic games and effectivity
functions. A strategic game form G = (N, {Σi|i ∈ N}, o, S) consists of the set of agents
N , a non-empty set of strategies or actions Σi for every player i ∈ N , the set of states S
and an outcome function o : Πi∈NΣi → S which associates with every tuple of strategies of
the players (strategy profile) an outcome state in S. An effectivity function is any function
E : P(N)→ P(P(S)) which is outcome-monotonic: ∀C⊆N,X⊆Y⊆S: X∈E(C)⇒ Y ∈E(C).
Thus E is a C-indexed collection of neighbourhood functions on S, and the neighbourhoods
are the outcome sets for which C is effective.

A strategic game form defines an effectivity function as follows: Given a strategic game
form G = (N, {Σi|i ∈ N}, o, S) a coalition C ⊆ N will be α-effective for a set X ⊆ S iff C
has a joint strategy which will result in an outcome in X no matter what strategies the other
players choose. More formally, its α-effectivity function Eα

G : P(N)→ P(P(S)) is defined as
follows:

X ∈ Eα
G(C) iff ∃σC∀σN\C o(σC , σN\C) ∈ X.

Here σC = (σi)i∈C denotes the strategy tuple for coalition C ⊆ N which consists of player
i choosing strategy σi ∈ Σi, and o(σC , σN\C) denotes the outcome state associated with the
strategy profile induced by σC and σN\C .

A strategic game form G is now said to represent an effectivity function E : P(N) →
P(P(S)) if E = Eα

G. Thus every strategic game form can be linked to an effectivity function,
but not every effectivity function will be the α-effectivity function of some strategic game
form. The properties required to obtain a precise characterisation result are the following.

An effectivity function E : P(N) → P(P(S)) is playable if it satisfies the following four
conditions:

1. ∀C ⊆ N : ∅ 6∈ E(C).

2. ∀C ⊆ N : S ∈ E(C).

3. E is N -maximal: for all X, if S\X 6∈ E(∅) then X ∈ E(N).

4. E is superadditive: for all X1, X2, C1, C2 such that C1 ∩ C2 = ∅, if X1 ∈ E(C1) and
X2 ∈ E(C2) then X1 ∩X2 ∈ E(C1 ∪ C2).

The main characterisation result (see [58]) states: E has a strategic game form representation
iff E is playable. Note that the Coalition Logic axioms are a straightforward translation of
the playability conditions into the language LCL(N).
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A coalition model for the language LCL(N) is a tripleM = (S,E, V ), where S is a nonempty
set of states, V : prop→ P(S) is a valuation and

E : S → (P(N)→ P(P(S)))

is the playable effectivity structure of M. That is, for all s ∈ S, E(s) is a playable effectivity
function. We will use the notation sECX for X ∈ E(s)(C). A coalition model may thus be
seen as a generalisation of a monotonic model, as we no longer have just one neighbourhood
function, but a whole family of neighbourhood functions for each state.

The truth of an LCL(N)-formula is defined as usual for atomic propositions and boolean

connectives. For the modalities, truth is given by: M, s ° [C]ϕ iff sECϕ
M, where ϕM = {s ∈

S | M, s ° ϕ}. Due to the main characterisation result, we can associate a strategic game
form G(s) with each state s ∈ S in a coalition model M, which implies that [C]ϕ holds at a
state s iff the coalition C is effective for ϕM in G(s).

3.3 General Frames

Although neighbourhood semantics allows for completeness results of many monotonic modal
logics, it still suffers from the same so-called inadequacy as Kripke semantics. Namely, there
are monotonic modal logics which are not complete with respect to any class of neighbourhood
frames, see e.g. Gerson [26]. The analogue with Kripke semantics goes further, since this
inadequacy does not occur at the algebraic level, and by considering a type of structures
which are essentially set-theoretic representations of certain algebras, a general completeness
result is possible. These structures are, of course, the neighbourhood versions of general
frames, which we will introduce here.

Definition 3.13 (General Frames) A general monotonic L∇-frame is a pair G = (F, A)
where F = (W, ν) is a monotonic L∇-frame, and A is a collection of admissible subsets of
W which contains ∅ and is closed under finite unions, complementation in W and the modal
operation mν . We will refer to F as the underlying frame of G.

A model based on a general monotonic L∇-frame is a triple M = (F, A, V ) where (F, A)
is a general monotonic L∇-frame, and V : prop→ A is an admissible valuation on G.

The definition of general L∇-frames etc. is obtained by leaving out the requirement that
the underlying neighbourhood frame F is monotonic. a

Remark 3.14 In [18], Došen requires that in a general (neighbourhood) frame G = (W, ν,A)
all neighbourhoods must be admissible, i.e. ν :W → P(A). This requirement is also adopted
by Kracht and Wolter [44] in their definition of general monotonic frames (“general N h-
frames”). But this has the undesirable consequence that the underlying frame of a general
monotonic frame in most cases will not be monotonic. Little seems to depend on this extra
requirement, and later, in the Algebra and Simulation sections, we will see that our definition
is easier to work with, and we can still obtain full algebraic duality.

Validity in general monotonic frames is defined as usual: An L∇-formula ϕ is valid in a
general monotonic L∇-frame G (notation: G ° ϕ) if for all admissible valuations V and all
w ∈ W , (G, V ), w ° ϕ. If G is a class of general monotonic L∇-frames, then ϕ is valid on G

(notation: G ° ϕ) if ϕ is valid in all G ∈ G.
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4 Models

Models are structures with which we can reason about truth and satisfaction. In Kripke
semantics, the four main operations on Kripke models which leave truth invariant are disjoint
unions, generated submodels, bounded morphisms and ultrafilter extensions, and, as is well-
known, these operations may all be seen as special cases of bisimulations. In this section we
will define their analogues and also look at the filtration technique.

Throughout this section, we assume that we are working in the basic modal similarity
type unless otherwise stated. I.e. “model” should be read as “L∇-model” and “formula” as
L∇-formula”, etc.

4.1 Invariance Results

Disjoint unions

Given a collection of disjoint monotonic models, Mi = (Wi, νi, Vi), i ∈ I, we wish to make a
monotonic model M = (W, ν) which contains the Mi as disjoint substructures. Note that we
cannot simply take ν =

⋃
i∈I νi, since then ν would not be closed under supersets. However,

this problem is easily fixed, we simply add the supersets in W of the neighbourhoods from
each νi. This leads to the following definition.

Definition 4.1 (Disjoint Unions) Let Mi = (Wi, νi, Vi), i ∈ I be a collection of dis-
joint models. Then we define their disjoint union as the model

⊎
Mi = (W, ν, V ) where

W =
⋃

i∈I Wi, V (p) =
⋃

i∈I Vi(p) and for X ⊆W , w ∈Wi,

X ∈ ν(w) iff X ∩Wi ∈ νi(w). a

Note that in Definition 4.1, even though ν is not exactly the disjoint union of the νi, that
is the case when considering the core, i.e., νc =

⋃
i∈I ν

c
i .

Proposition 4.2 Let Mi = (Wi, νi, Vi), i ∈ I, be a collection of disjoint models and
⊎
Mi =

(W, ν, V ) their disjoint union. Then for each formula ϕ, for each i ∈ I and each element
w ∈Wi, we have:

Mi, w ° ϕ iff
⊎
Mi, w ° ϕ.

Proof. It should be clear that the proposition states that V (ϕ) =
⋃

i∈I Vi(ϕ) for all modal
formulas ϕ. The proof is by induction on ϕ. Let i ∈ I and w ∈Wi. The atomic case holds by
definition of V , and the boolean cases are straight forward. For the modal case, i.e. ϕ ≡ ∇ψ,
we need to show that Vi(ψ) ∈ νi(w) iff V (ψ) ∈ ν(w). So suppose that Vi(ψ) ∈ νi(w). By the
induction hypothesis Vi(ψ) ⊆ V (ψ), hence by the definition of ν, we have V (ψ) ∈ ν(w). Now
suppose V (ψ) ∈ ν(w), then by the definition of ν, V (ψ) ∩Wi ∈ νi(w). Now the induction
hypothesis tells us that V (ψ) ∩Wi = Vi(ψ), and hence Vi(ψ) ∈ νi(w). qed

Bounded morphisms

Bounded morphisms should be structure preserving and reflecting maps between monotonic
models. More precisely, the structure which can be described in our modal language should
be preserved and reflected.
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Definition 4.3 (Bounded morphism) Let M = (W, ν, V ) and M′ = (W ′, ν ′, V ) be mono-
tonic models. A function f : W → W ′ is a bounded morphism from M to M′ (notation:
f :M→M′) if

(BM0) w and f(w) satisfy the same proposition letters.
(BM1) If X ∈ ν(w), then f [X] ∈ ν ′(f(w)).
(BM2) If X ′ ∈ ν ′(f(w)), then there is an X ⊆ W such that f [X] ⊆ X ′ and

X ∈ ν(w).

If there is a surjective bounded morphism from M to M′, then we say that M′ is a bounded
morphic image of M and write M³M′. a

Remark 4.4 In Definition 4.3 the conditions (BM1) and (BM2) taken together are equivalent
with the following condition:

f−1[X ′] ∈ ν(w) iff X ′ ∈ ν ′(f(w))(2)

For suppose (BM1) and (BM2) hold, then we can show (2) as follows. Assume f−1[X ′] ∈ ν(w),
then by (BM1), X ′ ⊇ f [f−1[X ′]] ∈ ν ′(f(w)), hence by monotonicity of ν ′, X ′ ∈ ν ′(f(w)).
Now assume that X ′ ∈ ν ′(f(w)), then by (BM2), there is an X ⊆ W such that f [X] ⊆ X ′

and X ∈ ν(w). From f [X] ⊆ X ′ it follows that X ⊆ f−1[f [X]] ⊆ f−1[X ′], and again by
monotonicity of ν, f−1[X ′] ∈ ν(w).

To see that (2) implies (BM1) and (BM2), assume that (2) holds. For (BM1), suppose
that X ∈ ν(w), then by monotonicity of ν, f−1[f [X]] ∈ ν(w) and by (2) f [X] ∈ ν ′(f(w)).
For (BM2), suppose X ′ ∈ ν ′(f(w)), then by (2), f−1[X ′] ∈ ν(w), and since f [f−1[X ′]] ⊆ X ′,
we may take f−1[X ′] to be the required X.

Condition (2) ties up with the algebraic notion of bounded morphism and, as we will see
in section 8, also with the coalgebraic one. However, the (BM1) and (BM2) conditions are
chosen to reflect the fact that bounded morphisms are functional bisimulations, which we will
define in the next subsection.

From (2) it follows more or less immediately that truth of modal formulas is invariant
under bounded morphisms.

Proposition 4.5 Let M = (W, ν, V ) and M′ = (W ′, ν ′, V ′) be monotonic models. If f :W →
W ′ is a bounded morphism from M to M′ then for each formula ϕ and each w ∈W :

M, w ° ϕ iff M′, f(w) ° ϕ.

Or equivalently, f−1[V ′(ϕ)] = V (ϕ).

Proof. The proof is again by induction on ϕ. As before, the atomic case holds by definition,
and the boolean cases are easily shown. The modal case is immediate by (2) and the induction
hypothesis. qed

For core-complete models, we will now define the notion of a bounded morphism with respect
to the core structure.
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Definition 4.6 (Bounded core morphism) Let M0 = (W0, ν0, V0) and M1 = (W1, ν1, V1)
be two core-complete, monotonic models. A function f : W0 → W1 is a bounded core mor-
phism from M0 to M1 if

(BM0)c w and f(w) satisfy the same proposition letters.
(BM1)c If X ∈ νc0(w), then f [X] ∈ νc1(f(w)).
(BM2)c If Y ∈ νc1(f(w)), then there is an X ⊆ W0 such that f [X] = Y and

X ∈ νc0(w).
a

When we talk of bounded core morphisms, we will always assume that we are dealing with
core-complete models (or frames). It is easy to show that bounded core morphisms are also
bounded morphisms, so truth is also invariant under bounded core morphisms. The other
implication does not hold in general, as the following simple counter example shows.

Example 4.7 Consider the two models M = {{s, t, u, v}, ν, V } where νc(s) = {{t, u}, {v}},
ν(t) = ν(u) = ν(v) = ∅, and M′ = {{s′, t′, u′}, ν ′, V } where ν ′c(s′) = {{u′}}, ν ′(t′) = ν ′(u′) =
∅, together with the function f : s 7→ s′, t 7→ t′, u 7→ u′, v 7→ u′. The valuations are not
important in this example, and we may assume that V (p) = V ′(p) = ∅ for all p ∈ prop. It
is easy to see that f is a bounded morphism from M to M′, but f is not a bounded core
morphism, since {t, u} ∈ νc(s), but f [{t, u}] = {t′, u′} /∈ ν ′c(s′).

It is also not the case that (BM1)c and (BM2)c are equivalent with:

f−1[X] ∈ νc0(w) iff X ∈ νc1(f(w)).(3)

Example 4.8 Consider the two models Mi = {{si, ti, ui}, νi, Vi}, for i ∈ {1, 2}, where
νci (si) = {{ti}}, νi(ti) = νi(ui) = ∅. , together with the function f : s1 7→ s2, t1 7→ t2, u1 7→ t2.
Then f is a bounded core morphism, but (3) does not hold, since {t2} ∈ νc2(s2), but
f−1[{t2}] = {t1, u1} /∈ ν

c
1(s1).

The equivalence between (BM1)c and (BM2)c together and (3) only seems to hold when
f is a bijection. However, we do have the following result.

Proposition 4.9 Let M0 = (W0, ν0, V0) and M1 = (W1, ν1, V1) be core-complete, monotonic
models and f : W0 → W1 a function. Then f is a bounded core morphism from M0 to M1 if
f is an injective bounded morphism from M0 to M1.

Proof. Assume that f : M0 → M1 is an injective bounded morphism. We must now show
that (BM0-2)c hold. (BM0)c is clear. For (BM1)c, suppose X ∈ νc0(w), then by (BM1)
for f , we have f [X] ∈ ν1(f(w)), but we need to show that f [X] ∈ νc1(f(w)). Suppose for
contradiction that there is an X1 ( f [X] such that X1 ∈ ν1(f(w)). Then from (BM2) for
f , there is an X0 ∈ ν0(w) and f [X0] ⊆ X1 ( f [X]. Applying the injectivity of f , we obtain
X0 ( X from f [X0] ( f [X]. But then X0 ∈ ν0(w) and X0 ( X which is a contradiction with
X ∈ νc0(w). To show that (BM2)c holds for f , assume that Y ∈ νc1(f(w)), then by (BM2)
for f there is an X ∈ ν0(w) such that f [X] ⊆ Y . So there is also an X0 ∈ ν

c
0(w) such that

X0 ⊆ X, and hence f [X0] ⊆ f [X] ⊆ Y . By (BM1) for f , we also have f [X0] ∈ ν1(f(w)), but
then f [X0] = Y since f [X0] ⊆ Y and Y ∈ νc1(f(w)). qed
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Bisimulations

In modal logic, the central notion of model equivalence is that of bisimulation. Bisimulations
for Kripke models were introduced in van Benthem [4], where one also finds the well-known
characterisation result which states that modal logic is the bisimulation invariant fragment
of first-order logic.

Bisimulation, being a much weaker notion of equivalence than isomorphism, may be seen
as a measure of the expressivity of modal languages: If two states are bisimilar then they
should not be distinguishable by a modal formula. Classes of models for which the converse
implication holds are called Hennessy-Milner classes, and we will return to these in subsection
4.3.

For monotonic models, bisimulations have been presented by Pauly [55]. In [56, 57]
Pauly generalises the definition to dynamic effectivity models (of which coalition models and
models for Game Logic [53] are a special case), and analyses the expressivity of the language
of Game Logic. Also in Pauly [55], results on the relationship between Kripke and monotonic
bisimulations can be found, together with a version of the van Benthem characterisation
theorem for monotonic modal logic. We will treat this result in subsection 5.3.

Furthermore, in coalgebra, various notions of equivalence exist, and in section 8, we will
relate these with the model theoretic bisimulations of this section. But for the time being we
will only concern ourselves with the invariance of truth under bisimulations.

Definition 4.10 (Bisimulation) Let M = (W, ν, V ) and M′ = (W ′, ν ′, V ′) be monotonic
models. A non-empty binary relation Z ⊆ W × W ′ is a bisimulation between M and M′

(notation: Z :M ↔ M′) if

(prop) If wZw′ then w and w′ satisfy the same proposition letters.
(forth) If wZw′ and X ∈ ν(w), then there is an X ′ ⊆W ′ such that X ′ ∈ ν ′(w′)

and ∀x′ ∈ X ′ ∃x ∈ X : xZx′.
(back) If wZw′ and X ′ ∈ ν ′(w′), then there is an X ⊆ W such that X ∈ ν(w)

and ∀x ∈ X ∃x′ ∈ X ′ : xZx′.

If w ∈ M and w′ ∈ M′, then we will say that w and w′ are bisimilar states (notation:
M, w ↔ M′, w′) if there is a bisimulation Z :M ↔ M′ such that wZw′.

If dom(Z) =W and ran(Z) =W ′, then we will call Z a full bisimulation. a

Comparing Definitions 4.3 and 4.10, we see that bounded morphisms are the same as
functional bisimulations (where dom(Z) = W ). For example, for a bounded morphism f ,
the (forth) condition is satisfied by taking X ′ = f [X], and the (back) condition by taking X
equal to the set obtained by the (BM2) condition for f .

The following proposition states that truth of modal formulas is invariant under bisimu-
lations.

Proposition 4.11 Let M = (W, ν, V ) and M′ = (W ′, ν ′, V ) be monotonic models. If Z ⊆
W ×W ′ is a bisimulation between M and M′ then for each formula ϕ and w ∈ W,w′ ∈ W ′

such that wZw′ we have

M, w ° ϕ iff M′, w′ ° ϕ.
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Proof. As usual, the modal case is the only nontrivial part of the proof: So assume that
wZw′. For the direction from left to right, we have M, w ° ∇ϕ iff V (ϕ) ∈ ν(w), hence by the
(forth) condition for Z there is an X ′ ⊆ W ′ such that X ′ ∈ ν ′(w′) and for all x′ ∈ X ′ there
is an x ∈ V (ϕ) such that xZx′. By the induction hypothesis, it follows that X ′ ⊆ V ′(ϕ) and
by upwards closure of ν ′(w′), V ′(ϕ) ∈ ν ′(w′), hence M′, w′ ° ∇ϕ. The other direction follows
similarly from the (back) condition for Z. qed

When working with core-complete models, it will often be more convenient to show that
the underlying core structure of two models are bisimilar. We therefore introduce the notion
of core bisimulations.

Definition 4.12 (Core Bisimulation) Let M = (W, ν, V ) and M′ = (W ′, ν ′, V ′) be core-
complete, monotonic models. A non-empty binary relation Z ⊆W×W ′ is a core bisimulation
between M and M′ (notation: Z :M ↔c M′) if

(prop) If wZw′ then w and w′ satisfy the same proposition letters.
(forth)c If wZw′ and X ∈ νc(w), then ∃X ′ ⊆ W ′ such that X ′ ∈ ν ′c(w′), and

∀x′ ∈ X ′ ∃x ∈ X : xZx′.
(back)c If wZw′ and X ′ ∈ ν ′c(w′), then ∃X ⊆ W such that X ∈ νc(w), and

∀x ∈ X ∃x′ ∈ X ′ : xZx′.

a

Just as for bounded morphisms, we will always assume that we are working with core-
complete models when talking about core bisimulations. Unlike the case for bounded mor-
phisms, there is no essential difference when considering bisimulations of the core and bisim-
ulations of the entire neighbourhood structure. This also complies with the idea that the core
neighbourhoods really characterise the structure of core-complete models.

Proposition 4.13 Let M = (W, ν, V ) and M′ = (W ′, ν ′, V ′) be core-complete, monotonic
models, and let Z ⊆ W ×W ′ be a non-empty binary relation. Then Z is a core bisimulation
between M and M′ iff Z is a bisimulation between M and M′.

Proof. Assume first that Z is a core bisimulation between M and M′. We will show that Z
satisfies (forth). So suppose wZw′ and X ∈ ν(w). Then there is an Xc ∈ νc(w) such that
Xc ⊆ X. From (forth)c there is an X ′c ∈ ν ′c(w′) such that ∀x′ ∈ X ′c ∃x ∈ Xc : xZx′, and
since Xc ⊆ X, also ∀x ∈ X ′c ∃x ∈ X : xZx′. I.e., X ′c satisfies the (forth) condition, since
X ′c ∈ ν ′c(w′) implies X ′c ∈ ν ′(w′). The (back) condition is shown analogously.

Now assume that Z is a bisimulation between M and M′. We only show that (forth)c
holds, since (back)c can be shown in a similar way. So suppose wZw′ and X ∈ νc(w). It
follows that X ∈ ν(w), and by (forth) there is an X ′ ∈ ν ′(w′) such that ∀x′ ∈ X ′ ∃x ∈ X :
xZx′. From X ′ ∈ ν ′(w′), we obtain an X ′c ∈ νc(w′) for which X ′c ⊆ X ′, and hence also
∀x′ ∈ X ′c ∃x ∈ X : xZx′. qed

One might expect that functional core bisimulations and bounded core morphisms are
also the same, but this is not so. It is easy to show that a bounded core morphism is also a
core bisimulation, but a functional core bisimulation need not be a bounded core morphism.
The above proposition also tells us so, since we know that bounded core morphisms really are
a strict subset of the bounded morphisms.
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Generated submodels

So far the model operations we have seen, have been fairly straightforward analogues of their
Kripke counterparts. In this subsection, we will see that only core-complete models turn out
to have a characterisation of generated submodels in terms of a heredity condition for core
neighbourhoods. We start by defining submodels.

Definition 4.14 (Submodel) Let M = (W, ν, V ) be a monotonic model. Then M′ =
(W ′, ν ′, V ′) is a submodel of M if W ′ ⊆ W , V ′(p) = V (p) ∩ W ′ for all p ∈ prop, and
ν ′ = ν ∩ (W ′ × P(W ′)). That is,

∀s ∈W ′ : ν ′(s) = {X ⊆W ′ | X ∈ ν(s)}. a

Given a monotonic model M = (W, ν, V ) and W ′ ⊆ W , we can construct the submodel
M′ = (W ′, ν ′, V ′) by taking V ′ and ν ′ as in Definition 4.14. In this situation, we will use
the notation M¹W ′= (W ′, ν¹W ′ , V ¹W ′) for M′. Just as for Kripke models, submodels do not
necessarily preserve the truth of modal formulas since a state in the submodel may have lost
neighbourhoods when restricting ν to the submodel’s universe.

In Kripke semantics, generated submodels provide the desired invariance result, and a
similar notion can be defined for monotonic models in the obvious way by demanding that
a submodel M′ = (W ′, ν ′, V ′) of M = (W, ν, V ) satisfies the following heredity condition: If
w′ ∈ W ′ and X ′ ∈ ν(w′) then X ′ ⊆ W ′. However, due to the upwards closure of ν, the only
generated submodels from some point w ∈ W are the models ({w}, ∅, V ¹{w}) and M itself.
The first case being the result when ν(w) = ∅, and the latter resulting when ν(w) 6= ∅, since
then W ∈ ν(w). Truth invariance is still obtained, but clearly in a rather trivial manner. The
problem is caused by the neighbourhoods generated by the upwards closure of ν. Instead we
will define generated submodels of monotonic models by requiring that the identity/inclusion
map is a bounded morphism. With this definition, truth invariance is immediate.

Definition 4.15 (Generated Submodel) Let M = (W, ν, V ) be a monotonic model and
M′ = (W ′, ν ′, V ′) a submodel of M. Then M′ is a generated submodel of M (notation: M′½

M) if the identity map i : W ′ → W is a bounded morphism. That is, for all w′ ∈ W ′ and all
X ⊆W ,

i−1[X] = X ∩W ′ ∈ ν ′(w′) iff X ∈ ν(w′).

Given a monotonic model M = (W, ν, V ) and a subset X ⊆ W , we define the submodel
generated by X in M as the submodel M¹W ′ where W ′ is the intersection of all sets Y such
that X ⊆ Y and M¹Y is a generated submodel of M. a

Truth invariance now follows directly from Proposition 4.5.

Proposition 4.16 Let M0 = (W0, ν0, V0) be a generated submodel of M = (W, ν, V ). Then
for all modal formulas ϕ and all w0 ∈W0:

M0, w0 ° ϕ iff M, w0 ° ϕ.

The following Proposition should also be clear.



4 MODELS 21

Proposition 4.17 Let M0 = (W0, ν0, V0) and M1 = (W1, ν1, V1) be monotonic models. Then
the following holds: If f : M0 → M1 is an injective bounded morphism, then M1¹f [W0] is a
generated submodel of M1.

As mentioned above, for core-complete models we have an alternative characterisation of
generated submodels, which resembles the definition of generated Kripke submodels.

Lemma 4.18 Let M = (W, ν, V ) be a core-complete, monotonic model and M′ = (W ′, ν ′, V ′)
a submodel of M. Then M′ is a generated submodel of M if and only if the following closure
condition holds:

If w′ ∈W ′ and X ∈ νc(w′), then X ⊆W ′.(4)

Proof. “⇒”: Assume that M′ is a generated submodel of M, w′ ∈ W ′ and X ∈ νc(w′).
We must show that X ⊆ W ′. But this follows almost immediately, since by the definition
of generated submodel, X ∈ νc(w′) implies X ∩ W ′ ∈ ν ′(w′), hence by Definition 4.14,
X ∩W ′ ∈ ν(w′). From X ∩W ′ ⊆ X ∈ νc(w′) we may then conclude that X = X ∩W ′, thus
X ⊆W ′.
“⇐”: Assume that (4) holds, and let w′ ∈ W ′, X ⊆ W . Suppose first that X ∩W ′ ∈ ν ′(w′),
then by Definition 4.14, X ∩W ′ ∈ ν(w′) and by upwards closure, X ∈ ν(w′). Suppose now
that X ∈ ν(w′), then asM is core-complete, there is a C ⊆ X such that C ∈ νc(w′), so by (4),
C ⊆W ′, hence again by the definition of submodel and C ∈ ν(w′), it follows that C ∈ ν ′(w′),
and finally from C ⊆ X ∩W ′ we conclude that X ∩W ′ ∈ ν ′(w′). qed

Thus for a core-complete, monotonic model M = (W, ν, V ) and X ⊆ W , the submodel
generated by X in M may also be seen as the submodel obtained by restricting M to the
subset Sω(X), which we define now.

Definition 4.19 Let M = (W, ν, V ) be a core-complete, monotonic model. For X ⊆ W , we
define νcω(X) and Sω(X) inductively by

S0(X) = X , νc0(X) =
⋃

x∈X νc(x)
Sn+1(X) =

⋃
Y ∈νcn(X)

Y , νcn+1(X) =
⋃

x∈Sn+1(X)
νc(x)

Sω(X) =
⋃

n∈ω Sn(X) , νcω(X) =
⋃

x∈Sω(X)
νc(x)

If Sω({w}) =W , then we call M a rooted or point-generated model with root w. a

Intuitively, at each stage n, νcn(X) are the core neighbourhoods of the states found at stage
n, and Sn(X) is the set of states which are contained in a core neighbourhood of some state
found at the previous stage. Thus Sω(X) is the closure of X under the condition in (4), and
νcω(X) are all the core neighbourhoods which we will encounter by tracing through the entire
model starting from a state in X. Due to this characterisation, we may think of generated
submodels of core-complete models as being generated by the core neighbourhoods, and we
shall use the term core generated submodel. For core generated submodels, the inclusion map
is a bounded core morphism by Proposition 4.9.

Remark 4.20 The invariance result for disjoint unions may be seen as a special case of
Proposition 4.16, since each of the components of the disjoint union is a generated submodel.
Also, just as for Kripke models, we may assume that a satisfiable formula is satisfied on a
generated submodel.
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Unravelling monotonic models

Another well-known property of Kripke frames is that they can be unravelled into a tree-like
structure that is bisimilar to the original model, which in turn shows that normal modal logic
has the tree model property: If ϕ is satisfiable in some model, then ϕ is satisfiable at the root
of a tree-like model.

We can do something similar for monotonic models, the only problem being that a tree-
like neighbourhood model can never be a truly monotonic model. However, we can unravel
a monotonic model into a model whose underlying core structure is tree-like in the following
sense. First recall the definition of Sn({w}) and Sω({w}) in 4.19.

Definition 4.21 (Tree) Let M = (W, ν, V ) be a core-complete, monotonic model, and
root ∈W . Then Mroot is a tree-like monotonic model if the following hold:

(i) W = Sω({root}),

(ii) For all w ∈W : w /∈
⋃

n>0 Sn({w}),

(iii) For all w0, w1, v in W and for all X0, X1 ⊆W :
If v ∈ X0 ∈ ν

c(w0) & v ∈ X1 ∈ ν
c(w1) then X0 = X1 & w0 = w1. a

That is, we consider a monotonic model to be tree-like if it is core-complete, all states
are reachable from the root through a sequence of core neighbourhoods, and when tracing
through the core neighbourhoods starting in w, we will not encounter a core neighbourhood
which contains w (no cycles), and furthermore, all core neighbourhoods must be unique and
disjoint (total branching). We now wish to define the unravelling of a monotonic model M
from a state w0 in M. The result should be a rooted tree-like monotonic model.

Let M = (W, ν, V ) be a monotonic model and w0 ∈ W . The unravelling of M from w0 is
defined as the model ~Mw0 = ( ~Ww0 , ~νw0 ,

~Vw0), where
~Ww0 , ~νw0 and ~Vw0 are as follows. Let

~Ww0 = {(w0X1w1X2w2 . . .Xnwn) | n ≥ 0 & ∀i ∈ {1, . . . , n} : Xi ∈ ν(wi−1) & wi ∈ Xi}.(5)

That is, ~Ww0 consists of the sequences of states and neighbourhoods obtained by tracing
through all non-empty neighbourhoods starting in w0. Note that for each neighbourhood X
in which an element w occurs, there will be a sequence (w0 . . . Xw).

For (w0X1w1 . . .Xnwn) ∈ ~Ww0 , the maps pre and last are defined by

pre : (w0X1w1 . . .Xnwn) 7→ (w0X1w1 . . . Xn−1wn−1Xn)
last : (w0X1w1 . . .Xnwn) 7→ wn.

In particular, pre : (w0) 7→ ε where ε is the empty sequence, and last : (w0) 7→ w0.
We now define a neighbourhood function µ : ~Ww0 → P(P( ~Ww0)) as follows. Let s ∈ ~Ww0

and Y ⊆ ~Ww0 ,

Y ∈ µ(s) iff ∀y ∈ Y (pre(y) = sX) & last [Y ] = X ∈ ν(last(s)), for some X ∈ P(W ).

Thus every neighbourhood X ∈ ν(last(s)) gives rise to exactly one neighbourhood Y in µ(s),
and all these Y are disjoint. Furthermore, ∅ ∈ µ(s) if and only if ∅ ∈ ν(last(s)).
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Now, we simply define ~νw0 to be the monotone neighbourhood function obtained by closing
µ under supersets,

Y ∈ ~νw0(s) iff ∃Y ′ ∈ µ(s) : Y ′ ⊆ Y.(6)

Note that µ = ~ν c
w0
. Finally, we define the valuation ~Vw0 by,

s ∈ ~Vw0(p) iff last(s) ∈ V (p).(7)

It should now be clear that ~Mw0 is a tree-like monotonic model, and the map last : ~Mw0 →
M is a surjective bounded morphism. Hence we have for all modal formulas ϕ:

M, w0 ° ϕ iff ~Mw0 , (w0) ° ϕ.

Proposition 4.22 (Tree model property) Let ϕ be a modal formula. If ϕ is satisfiable
in some monotonic model, then ϕ is satisfiable at the root of some tree-like motonone model.

Proof. Given a monotonic model M and a point w0 in M, such that M, w0 ° ϕ, M can be
unravelled from w0 to produce the rooted tree-like monotonic model ~Mw0 = ( ~Ww0 , ~νw0 ,

~Vw0),
where ~Ww0 , ~νw0 and

~Vw0 are defined as in (5), (6) and (7) such that for all modal formulas ψ:
M, w0 ° ψ iff ~Mw0 , (w0) ° ψ. Hence ϕ is satisfied at the root (w0) in ~Mw0 . qed

Remark 4.23 The unravelling of a monotonic model M = (W, ν, V ) will generally be a
much ‘richer’ structure than M in the sense that states in the unravelling will have a lot
more neighbourhoods, since every neighbourhood in M produces a core neighbourhood in the
unravelling. In particular, if the root w0 has at least one neighbourhood, then the unravelling
will have an infinite number of states because w0 ∈ W ∈ ν(w0). If M is core-complete then
the above construction can be restricted to the core structure of M. More precisely, we can
replace ν with νc in the definition of ~Ww0 and µ, and still obtain a tree-like model which is
bisimilar toM. In fact, by doing so, the map last will be a bounded core morphism. Moreover,
this kind of ‘core-unravelling’ will, in general, be more succinct than the unravelling of the
entire neighbourhod structure. For example, consider the two kinds of unravellings of the
model ({s, t}, ν, V ) where ν(s) = {{t}} and ν(t) = ∅.

4.2 Filtrations

Filtrations are a tool for obtaining finite models from infinite ones, but just as core generated
submodels, they may also be seen as a means to reduce a model to what is essential when
evaluating truth of a modal formula ϕ. The inductive definition of truth implies that we only
need to know the truth of the subformulas of ϕ in order to say whether ϕ is itself true at some
state. Hence, if a set of states in the model make exactly the same subformulas of ϕ true,
then we may as well identify them. This gives rise to an equivalence relation, and a filtration
of a model is a model over this equivalence relation, and thus a quotient of the original model.
This is the idea behind filtrations of Kripke models as well as monotonic models. Many of
the results in this section can be found in Chellas [14], although most of the proofs in [14] are
left as exercises.
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LetM = (W, ν, V ) be a monotonic model and Σ a subformula closed set of modal formulas.
Then ≡Σ is the equivalence relation induced by Σ on W which is defined as follows for all
w, v ∈W :

w ≡Σ v if and only if for all ϕ ∈ Σ (M, w ° ϕ iff M, v ° ϕ).

Let WΣ = { |w| | w ∈ W} be the set of equivalence classes induced by Σ on W . For
X ⊆ W , denote by |X| the set {|w| |w ∈ X}, and for Y ⊆ WΣ let -Y - be the set {w ∈ W |
|w| ∈ Y }. Then we have the following equivalences and identities which will be used without
further reference:

|V (ϕ)| ⊆ |V (ψ)| ⇔ V (ϕ) ⊆ V (ψ) for ϕ,ψ ∈ Σ,
-|V (ϕ)|- = V (ϕ) for ϕ ∈ Σ,
|-X-| = X for X ⊆WΣ,
-X ∩ Y - = -X- ∩ -Y - for X,Y ⊆WΣ,
WΣ \ |V (ϕ)| = |V (¬ϕ)| for ϕ ∈ Σ,
W \ -X- = -WΣ \X- for X ⊆WΣ.

Definition 4.24 (Filtration) LetM = (W, ν, V ) be a monotonic model and Σ a subformula
closed set of formulas. A monotonic model Mf = (W f , νf , V f ) is a filtration of M through Σ
if

(i) W f =WΣ.
(ii) For all ∇ϕ ∈ Σ : if V (ϕ) ∈ ν(w) then |V (ϕ)| ∈ νf (|w|) .
(iii) For all ∇ϕ ∈ Σ : if X ∈ νf (|w|) and -X- ⊆ V (ϕ) then V (ϕ) ∈ ν(w).
(iv) For all p ∈ prop : V f (p) = |V (p)|.

a

Remark 4.25 In Definition 4.24(iii), the condition -X- ⊆ V (ϕ) is equivalent with X ⊆
|V (ϕ)|, which may be the expected formulation. However, since most of the subsequent
proofs rely on the properties of ν in the original model, it is more convenient to use the
formulation in 4.24(iii).

Furthermore, taken together the conditions (ii) and (iii) of Definition 4.24 ensure that

For all ∇ϕ ∈ Σ : V (ϕ) ∈ ν(w) iff |V (ϕ)| ∈ νf (|w|)(8)

This means that for the neighbourhoods definable by modal formulas of the form ∇ϕ, the
natural map | · | is a bounded morphism, hence the truth of ∇ϕ-formulas is guaranteed to be
invariant under | · |. Chellas [14], in fact, defines filtrations in terms of (8).

Theorem 4.26 (Filtration Theorem) LetM = (W, ν, V ) be a monotonic model andMf =
(W f , νf , V f ) a filtration of M through Σ. Then for all formulas ϕ ∈ Σ and all w ∈ W we
have:

M, w ° ϕ iff Mf , |w| ° ϕ.

In other words, for all ϕ ∈ Σ : V f (ϕ) = |V (ϕ)|.
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Proof. The proof is by induction on the complexity of ϕ. The atomic case holds by condi-
tion (iv) of Definition 4.24. The boolean cases are straightforward, since we may apply the
induction hypothesis using that Σ is subformula closed, and as remarked above, the modal
case follows from (8):

M, w ² ∇ϕ ⇐⇒ V (ϕ) ∈ ν(w)
(8)
⇐⇒ |V (ϕ)| ∈ νf (|w|)

I.H.
⇐⇒ V f (ϕ) ∈ νf (|w|) ⇐⇒ Mf , |w| ° ∇ϕ.

qed

We have seen that conditions (ii) and (iii) of Definition 4.24 are designed to make the
modal induction step go through in the above proof, but they also provide us with concrete
examples of filtrations. Condition (ii) tells us which neighbourhoods we must add, thus
only adding these required neighbourhoods gives rise to the smallest filtration in which the
neighbourhood function ν s is given by

X ∈ ν s(|w|) iff there is a ∇ϕ ∈ Σ such that V (ϕ) ⊆ -X- and V (ϕ) ∈ ν(w).(9)

To see that (9) is well-defined, we should check that for all ∇ϕ ∈ Σ, if w ≡Σ w′ then
V (ϕ) ∈ ν(w) iff V (ϕ) ∈ ν(w′), but this is clear since w and w′ satisfy the same formulas in
Σ, thus V (ϕ) ∈ ν(w) iff M, w ° ∇ϕ iff M, w′ ° ∇ϕ iff V (ϕ) ∈ ν(w′). It is also easy to see
that ν s is indeed upwards closed, since X ⊆ Y implies -X- ⊆ -Y -, so if V (ϕ) ⊆ -X- then also
V (ϕ) ⊆ -Y -. The minimality of ν s may be summarised in

X ∈ ν s(|w|) implies -X- ∈ ν(w), for all X ⊆WΣ,(10)

which is immediate from (9).
Condition (iii) tells us which neighbourhoods we are allowed to add. Hence by adding all

the allowed neighbourhoods we obtain the largest filtration where the neighbourhood function
ν l is given by

X ∈ ν l(|w|) iff for all ∇ϕ ∈ Σ : If -X- ⊆ V (ϕ) then V (ϕ) ∈ ν(w).(11)

Again, ν l is well-defined due to the properties of equivalent states, and it is also clear that
ν l is upwards closed, since X ⊆ Y implies -X- ⊆ -Y -, hence if for all ∇ϕ in Σ, -X- ⊆ V (ϕ)
implies that V (ϕ) ∈ ν(w), then it is certainly also the case that -Y - ⊆ V (ϕ) implies that
V (ϕ) ∈ ν(w). The maximality of ν l is expressed by

X /∈ ν l(|w|) implies -X- /∈ ν(w), for all X ⊆WΣ,(12)

which follows directly from (11).

Lemma 4.27 Let M = (W, ν, V ) be a monotonic model and Σ a subformula closed set of
formulas. Then (WΣ, ν

s, V f ) and (WΣ, ν
l, V f ), where V f (p) = |V (p)| for all p ∈ prop, are

both filtrations of M through Σ.

Proof. We have already seen that ν s and ν l are both upwards closed. So for ν s we only
need to check that condition (iii) holds, since we have taken condition (ii) as the definition
of ν s. So assume that X ∈ ν s(|w|). By (9), there is a ∇ϕ ∈ Σ such that V (ϕ) ⊆ -X- and
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V (ϕ) ∈ ν(w). Now take any ∇ψ ∈ Σ such that -X- ⊆ V (ψ). Then V (ϕ) ⊆ V (ψ), and by
upwards closure of ν, we have V (ψ) ∈ ν(w).

For ν l we only need to check condition (ii), and we will do that by contraposition: Let
∇ψ ∈ Σ be arbitrary and suppose that |V (ψ)| /∈ ν l(|w|). By (11), there must be a ∇ϕ ∈ Σ
such that -|V (ψ)|- ⊆ V (ϕ) and V (ϕ) /∈ ν(w). From the upwards closure of ν and V (ϕ) /∈ ν(w)
it cannot be the case that -|V (ψ)|- = V (ψ) ∈ ν(w). qed

When we filtrate models, we are interested in preserving as many properties of the model
as possible in the filtration. In particular, when we wish to show that a monotonic modal
logic Λ has the finite model property, we often know that Λ is complete with respect to some
class of models K. It is therefore interesting to know which classes of models admit filtrations.

Definition 4.28 A class K of models admits filtrations, if for all M ∈ K and all subformula
closed sets of formulas Σ, there is a filtration Mf of M through Σ such that Mf ∈ K. a

Proposition 4.29 The following model classes admit filtrations:

(M) The class of all monotonic models.
(N) The class of monotonic models satisfying

(n) ∀w ∈W :W ∈ ν(w).
(P) The class of monotonic models satisfying

(p) ∀w ∈W : ∅ /∈ ν(w).
(D) The class of monotonic models satisfying

(d) ∀w ∈W : X ∈ ν(w)→W \X /∈ ν(w).
(C) The class of monotonic models satisfying

(c) ∀w ∈W ∀X1, X2 ⊆W : (X1 ∈ ν(w) & X2 ∈ ν(w))→ X1 ∩X2 ∈ ν(w).
(T) The class of monotonic models satisfying

(t) ∀w ∈W ∀X ⊆W : X ∈ ν(w)→ w ∈ X.
(4’) The class of monotonic models satisfying

(iv’) ∀w ∈W ∀X ⊆W : X ∈ ν(w)→ mν(X) ∈ ν(w).
(5) The class of monotonic models satisfying

(v) ∀w ∈W ∀X ⊆W : X /∈ ν(w)→W \mν(X) ∈ ν(w).

Proof. Throughout the proof, M = (W, ν, V ) is a monotonic model, Σ is a subformula closed
set of formulas, Ms = (WΣ, ν

s, V f ) is the smallest filtration of M and Ml = (WΣ, ν
l, V f ) is

the largest filtration of M. Recall from (10) and (12) that the following hold for all w ∈ W
and all Y ⊆WΣ:

Y ∈ ν s(|w|)⇒ -Y - ∈ ν(w)

Y /∈ ν l(|w|)⇒ -Y - /∈ ν(w)

These implications, also in their contraposed versions will be used without warning in the
proofs below. We will also use that for all∇ϕ ∈ Σ and all w ∈W : |mν(V (ϕ))| = mνf (|V (ϕ)|),
which is easily shown from the Filtration Theorem.

Proof of (M): Follows from Lemma 4.27.
Proof of (N): When M satisfies (n) then Ml also satisfies (n), since WΣ /∈ ν l(|w|) implies

W /∈ ν(w).
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Proof of (P): When M satisfies (p) then Ms also satisfies (p), since ∅ ∈ ν s(|w|) implies
∅ ∈ ν(w).

Proof of (D): When M satisfies (d) then Ms also satisfies (d): X ∈ ν s(|w|) implies -X- ∈
ν(w) and by (d) for M, W \ -X- = -WΣ \X- /∈ ν(w), hence WΣ \X /∈ ν s(|w|).

Proof of (C): Assume thatM satisfies (c). Let ν− be the neighbourhood function obtained
by closing ν s under finite intersections, that is,

X ∈ ν−(|w|) iff there are ∇ϕ1, . . . ,∇ϕn ∈ Σ such that
V (ϕi) ∈ ν(w), i ∈ {1, . . . , n} and

⋂
i∈{1,...,n} V (ϕ) ⊆ -X-.

Define M− = (WΣ, ν
−, V f ). Then M− is clearly a monotonic model satisfying (c). We will

now show that M− is a filtration of M through Σ. Condition (ii) of Definition 4.24 holds
because ν s ⊆ ν− and ν s satisfies (ii). For condition (iii) of Definition 4.24, assume that
X ∈ ν−(|w|) and let ∇ϕ ∈ Σ be arbitrary such that -X- ⊆ V (ϕ). We must show that
V (ϕ) ∈ ν(w). From X ∈ ν−(|w|) we have ∇ϕ1, . . . ,∇ϕn ∈ Σ such that V (ϕi) ∈ ν(w)
for all i ∈ {1, . . . , n} and V (ϕ1) ∩ . . . ∩ V (ϕn) ⊆ -X-. As M satisfies (c), it follows that
V (ϕ1) ∩ . . . ∩ V (ϕn) ∈ ν(w) and from V (ϕ1) ∩ . . . ∩ V (ϕn) ⊆ -X- ⊆ V (ϕ) we may now
conclude that V (ϕ) ∈ ν(w).

Proof of (T): When M satisfies (t), then Ms satisfies (t): X ∈ ν s(|w|) implies -X- ∈ ν(w),
and since M satisfies (t), w ∈ -X-, hence |w| ∈ |-X-| = X.

Proof of (4’): Assume that M satisfies (iv’). We will show that Ms also satisfies (iv’).
Assuming X ∈ ν s(|w|), then there is a ∇ϕ ∈ Σ such that V (ϕ) ⊆ -X- and V (ϕ) ∈ ν(w). We
need to prove mν s(X) ∈ ν s(|w|). Since M satisfies (iv’), it follows that mν(V (ϕ)) ∈ ν(w).
From mν(V (ϕ)) = V (∇ϕ) and ∇ϕ ∈ Σ we obtain from the Filtration Theorem 4.26 that
|V (∇ϕ)| = |mν(V (ϕ))| ∈ ν s(|w|), and since |mν(V (ϕ))| = mν s(|V (ϕ)|), also mν s(|V (ϕ)|) ∈
ν s(|w|). Finally, from V (ϕ) ⊆ -X- ⇒ |V (ϕ)| ⊆ X and the monotonicity of m s

ν , we may
conclude that mν s(X) ∈ ν s(|w|).

Proof of (5): Assume thatM satisfies (v). We will show thatMl also satisfies (v). Suppose
X /∈ ν l(|w|). Then there is a ∇ϕ ∈ Σ such that -X- ⊆ V (ϕ) and V (ϕ) /∈ ν(w). As M satisfies
(v), we have W \ mν(V (ϕ)) ∈ ν(w). Suppose now for contradiction that WΣ \ mν l(X) /∈
ν l(|w|). Then there is a ∇ψ ∈ Σ such that -WΣ \mν l(X)- ⊆ V (ψ) and V (ψ) /∈ ν(w). From
-X- ⊆ V (ϕ) it follows by monotonicity of mν that W \ mν(V (ϕ)) ⊆ W \ mν(-X-). Using
the Filtration Theorem, it is easy to show that W \mν(V (ϕ)) = -WΣ \mν l(V (ϕ))-, hence
W \ mν(V (ϕ)) ⊆ V (ψ). Now, since V (ψ) /∈ ν(w), we have arrived at a contradiction with
W \mν(V (ϕ)) ∈ ν(w) due to the upwards closure of ν. qed

Filtrations are not only good for showing the finite model property, they are also a way
of transforming the canonical model into a model of the right kind. The best known exam-
ple of this method is perhaps the completeness proof of propositional dynamic logic (PDL),
but filtrations have also been the key tool in obtaining completeness for some better known
monotonic modal logics: In Goldblatt’s concurrent propositional dynamic logic (CPDL) [32],
as in PDL, the canonical model is not regular, or standard, with respect to all program con-
structions, but the canonical model can be filtrated to produce a regular CPDL model. In
[36], a characterisation of Nash-consistency for finite coalition models results in completeness
with respect to the class of all Nash-consistent coalition models by filtrating the canonical
coalition model of CLNC, the smallest coalition logic together with an added inference rule.
Most recently, completeness for the alternating-time temporal logic (ATL) [2] has been shown
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in [33], where filtrations are used to obtain a model which is standard with respect to the
effectivity functions interpreting the temporal fixed-point operators.

4.3 Hennessy-Milner Classes and Ultrafilter Extensions

The last model construction, we will treat is that of taking ultrafilter extensions. For Kripke
models, ultrafilter extensions may be seen as a completion of the underlying frame struc-
ture, and in the Algebra section we will see that the same holds for ultrafilter extensions of
monotonic models. But perhaps more interestingly, ultrafilter extensions of Kripke models
are modally saturated structures, which implies that modally equivalent states are bisimilar.
This result is a basis for the slogan “modal equivalence implies bisimilarity somewhere else”,
namely in the ultrafilter extensions, see e.g. Blackburn et alii [6]. We were hoping to obtain
an analogous result for ultrafilter extensions of monotonic models, but unfortunately, we must
leave this as an open problem. Nevertheless, the basic construction will be presented here,
together with some results which will be needed or helpful when looking for a solution.

The classes of models for which modal equivalence implies bisimilarity are called Hennessy-
Milner classes.

Definition 4.30 (Hennessy-Milner Classes) Let K be a class of monotonic models. K is
a Hennessy-Milner class, or has the Hennessy-Milner property, if for every two models M and
M′ in K and any two states w,w′ of M and M′, respectively, if w and w′ satisfy the same
modal formulas (notation: M, w!M′, w′), then M, w ↔ M′, w′. a

For Kripke models, image finiteness or finite branching, is sufficient for the Hennessy-
Milner property. For monotonic models, the Hennessy-Milner property is ensured for classes
of locally core-finite monotonic models, that is, core-complete models in which νc(w) consists
of a finite collection of finite neighborhoods for each state w. Note that there may well be
infinitely many core neighbourhoods in the entire model, if W is inifinite. The case where
there are only finitely many core neighbourhoods has been proved in [57] (Theorem 3.5) in
the context of Coalition Logic. Simply observe that Pauly’s definition of a uniformly finitary
coalition model is the same as requiring that the model is core-complete, has finitely many core
neighbourhoods, and all core neighbourhoods are finite. The proof of the following proposition
is essentially the same as in [57] (Theorem 3.5), but we include it for completeness’ sake.

Proposition 4.31 Let K be a class of locally core-finite monotonic models. Then K is a
Hennessy-Milner class.

Proof. Let M = (W, ν, V ) and M′ = (W ′, ν ′, V ′) be two models in K, s ∈ W and s′ ∈ W ′.
Assume that M, s! M′, s′. We will show that the modal equivalence relation! is a core
bisimulation between M and M′, which suffices by Proposition 4.13.

The (prop) clause is immediate. To show the (forth)c condition, suppose that sZs′ and
X ∈ νc(s). We need an X ′ ⊆ W ′ such that X ′ ∈ ν ′c(s′) and for all x′ ∈ X ′ there is an
x ∈ X such that M, x!M′, x′. Since both W and W ′ are assumed to be locally core-finite,
ν ′c(s′) = {X ′1, . . . , X

′
n} and X = {x1, . . . , xk} for some n, k ∈ ω.

In order to derive a contradiction, suppose that for all X ′
i ∈ ν ′c(s′) there is an x′i ∈ X ′i

such that for all xj ∈ X, it is not the case that M, xj ! M′, x′i. Let these x′i be fixed for
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i = 1, . . . , n. Now, there must be formulas witnessing this, i.e., for each x′i we have for all
xj ∈ X a formula ϕij such that M′, x′i ° ϕij and M, xj 1 ϕij . Consider the formula

ϕ =
∨

i=1,...,n

∧

j=1,...,k

ϕij .

It should be clear that for each of the x′i, M′, x′i °
∧

j=1,...,k ϕij . It follows that

M′, s′ ° ∆ϕ.

However, the formula ϕ cannot be satisfied at any xj in X, hence, as X ∈ ν(s),

M, s 1 ∆ϕ.

But this is a contradiction with the assumption that M, s!M′, s′.
The (back)c condition is shown in a similar way. qed

The next step would naturally be to define a notion of modal saturation for monotonic
models, which implies that classes of modally saturated models have the Hennessy-Milner
property. Inspecting the proof of Proposition 4.31, we see that if we are no longer ensured
to work with locally core-finite models, then both the disjunction and the conjunction in the
formula ϕ may be infinite. In practice, modal saturation should thus allow us to encode
(lack of) modal equivalence in a formula, i.e., we must be able to reduce the possibly infinite
number of witnessing formulas to a single one. The definition below is due to Pauly [55].
Independently, we also found a definition of m-saturation which we believe to be equivalent
with the one below, but its formulation was rather baroque. Hence our choice to use Pauly’s
version.

Definition 4.32 (m-saturation) Let M = (W, ν, V ) be a monotonic model. Then M is
m-saturated if the following conditions hold.

(m1) For any Γ ⊆ L∇, w ∈W and X ⊆W such that X ∈ ν(w), if Γ is finitely
satisfiable at some state in X, then Γ is also satisfiable at some state in
X.

(m2) For any Γ ⊆ L∇ and w ∈ W , if for every finite Γ0 ⊆ω Γ there is an
X ∈ ν(w) such that all x ∈ X satisfy Γ0, then there is an Y ∈ ν(w) such
that all y ∈ Y satisfy Γ.

a

With Definition 4.32 above, it is fairly straightforward to show that classes of modally
saturated monotonic models have the Hennessy-Milner property.

Proposition 4.33 Classes of m-saturated models are Hennessy-Milner classes.

Proof. The proof, which may be found in [55], is similar to the proof of Proposition 4.31,
and we leave out the details. qed
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Before we define ultrafilter extensions, recall that for any set W we can construct the
powerset algebra over W , P(W ) = (P(W ),∪,−W ,W ), and the dual Stone space of P(W ) is
the zero-dimensional, compact and Hausdorff topological space SP(W ) = (Uf (W ), τS), where
Uf (W ) is the set of ultrafilters over W , and the topology τS is generated by the clopen basis
consisting of the sets â = {u ∈ Uf (W ) | a ∈ u} for each a ∈ P(W ). The set of closed sets
in SP(W ) will be denoted by K(SP(W )). If w ∈ W , then πw denotes the principal ultrafilter
generated by w.

Definition 4.34 (Ultrafilter Extension) Let F = (W, ν) be a monotonic frame. We define
the ultrafilter extension ueF of F to be

ueF = (Uf (W ), νue)

where for u ∈ Uf (W ), X ⊆ Uf (W ),

X ∈ νue(u) iff ∃C ∈ K(SP(W )) : C ⊆ X & ∀a ∈ P(W ) : C ⊆ â→ mν(a) ∈ u.(13)

For a monotonic model M = (F, V ), the ultrafilter extension ueM of M is the model

ueM = (ueF, Vue),

where

Vue(p) = V̂ (p).(14)

a

Remark 4.35 For clopens â in the Stone space SP(W ), i.e., for a ∈ P(W ), (13) reduces to

â ∈ νue(u) iff mν(a) ∈ u.(15)

For closed elements C in SP(W ), (13) reduces to

C ∈ νue(u) iff ∀a ∈ P(W ) : C ⊆ â→ mν(a) ∈ u.(16)

The following truth lemma is one of the steps on the way to showing that modal equivalence
implies bisimilarity in the ultrafilter extension, since it implies that: If w! v then πw! πv,
hence if ultrafilter extensions can be shown to be m-saturated, the result is immediate.

Lemma 4.36 Let M = (W, ν, V ) be a monotonic model and ueM = (Wue, νue, Vue). Then
for any modal formula ϕ and any ultrafilter u ∈ Wue, we have, V (ϕ) ∈ u iff ueM, u ° ϕ. In

other words, Vue(ϕ) = V̂ (ϕ). Hence we have for all w ∈W , w! πw.

Proof. The proof of the first part is as expected by induction on ϕ, and as usual, the
atomic case holds by definition. The boolean cases follow easily from the defining properties
of ultrafilters, so we only show the modal case:

V (∇ϕ) ∈ u ⇐⇒ mν(V (ϕ)) ∈ u
(15)
⇐⇒ V̂ (ϕ) ∈ νue(u)
(I.H.)
⇐⇒ Vue(ϕ) ∈ νue(u)
⇐⇒ ueM, u ° ∇ϕ.



5 DEFINABILITY AND CORRESPONDENCE 31

The last part of the proposition follows from the first:

M, w ° ϕ⇔ w ∈ V (ϕ)⇔ V (ϕ) ∈ πw ⇔ πw ∈ V̂ (ϕ) = Vue(ϕ)⇔ ueM, πw ° ϕ.

qed

As mentioned already, we have to leave the question of whether modal equivalence implies
bisimilarity in the ultrafilter extension as an open problem. The difficulty is to show that
ultrafilter extensions of monotonic frames are m-saturated.

5 Definability and Correspondence

The topics of this section are definability and correspondence [5, 41], as the title says. But we
will also lay some groundwork for the simulations of section 10, which, in the current context,
may be thought of as offering correspondence between monotonic modal logic and normal
modal logic.

In the last subsection 5.3, we present Pauly’s [55] adaptation to monotonic modal logic of
the van Benthem characterisation theorem.

5.1 Definability

When we wish to characterise a class of structures satisfying certain properties, we are often
mainly interested in the frame theoretic properties, thus abstracting away from particular
model instances. The notion of frame validity gives us a handle on definability of frame
classes. We first extend the definition of frame validity and recall the definition of modal
definability.

An L∇-formula ϕ is valid at a state w in an L∇-frame F (notation: F, w ° ϕ) if for every
model (F, V ) based on F, (F, V ), w ° ϕ. Similarly, if Γ is a set of L∇-formulas, then Γ is valid
at a state w in an L∇-frame F (notation: F, w ° Γ) if for all ϕ ∈ Γ, F, w ° ϕ.

Let K be a class of L∇-frames and ϕ an L∇-formula. Then ϕ defines K if for all L∇-frames
F, F ∈ K iff F ° ϕ. A set Γ of L∇-formulas defines K if for all L∇-frames F, F ∈ K iff F ° Γ.
A class of frames K is modally definable if there is a set of L∇-formulas that defines K.

Proposition 5.1 The following formulas define the class of monotonic L∇-frames satisfying
the indicated condition.

N ∇> (n) ∀w ∈W :W ∈ ν(w).
P ¬∇⊥ (p) ∀w ∈W : ∅ /∈ ν(w).
C ∇p ∧∇q → ∇(p ∧ q) (c) ∀w ∈W ∀X1, X2 ⊆W :

(X1 ∈ ν(w) & X2 ∈ ν(w))→ X1 ∩X2 ∈ ν(w).
T ∇p→ p (t) ∀w ∈W ∀X ⊆W : X ∈ ν(w)→ w ∈ X.
4 ∇∇p→ ∇p (iv)∀w ∈W ∀X,Y ⊆W :

(X ∈ ν(w) & ∀x ∈ X : Y ∈ ν(x))→ Y ∈ ν(w).
4’ ∇p→ ∇∇p (iv’)∀w ∈W ∀X ⊆W : X ∈ ν(w)→ mν(X) ∈ ν(w).
5 ∆p→ ∇∆p (v) ∀w ∈W ∀X ⊆W : X /∈ ν(w)→W \mν(X) ∈ ν(w).
B p→ ∇∆p (b) ∀w ∈W ∀X ⊆W : w ∈ X →W \mν(W \X) ∈ ν(w)
D ∇p→ ∆p (d) ∀w ∈W ∀X ⊆W : X ∈ ν(s)→W \X /∈ ν(w).



5 DEFINABILITY AND CORRESPONDENCE 32

Proof. Let F = (W, ν) be a monotonic L∇-frame. For each of the listed formulas ϕ, we
must show that F ° ϕ if and only if F satisfies the indicated condition. The proof of the “if”
direction is quite trivial in all cases, so we only show the “only if” direction, and the method
for proving this is the same for all formulas ϕ: We assume that F does not satisfy the condition
in question, and use this assumption to find a suitable valuation V such that we can refute ϕ
at some state in (F, V ). Some abuse of notation will simplify the formulations: F 2 (n) will
denote that F does not satisfy condition (n); similarly for the other frame conditions.

N: Assume F 2 (n), then there is a w ∈ W such that W /∈ ν(w). It follows that for any
valuation V , V (>) /∈ ν(w), hence (F, V ), w 1 ∇>, i.e., F 1 N.

P: Assume F 2 (p), then there is a w ∈ W such that ∅ ∈ ν(w). Hence for any valuation
V , V (⊥) ∈ ν(w), and (F, V ), w ° ∇⊥, i.e., F 1 P.

C: Assume F 2 (c), then there are w ∈ W and X1, X2 ⊆ W such that X1 ∈ ν(w) and
X2 ∈ ν(w), but X1 ∩X2 /∈ ν(w). Let V be a valuation with V (p) = X1 and V (q) = X2, then
(F, V ), w ° ∇p ∧∇q, but (F, V ), w 1 ∇(p ∧ q), and hence F 1 C.

T: Assume F 2 (t), then there are w ∈ W and X ⊆ W such that X ∈ ν(w) and w /∈ X.
Let V be a valuation with V (p) = X, then (F, V ), w ° ∇p and (F, V ), w 1 p, hence F 1 T.

4: Assume F 2 (iv), then there are w ∈ W and X,Y ⊆ W such that X ∈ ν(w), ∀x ∈
X : Y ∈ ν(x) and Y /∈ ν(w). Let V be a valuation with V (p) = Y , then for all x ∈ X,
(F, V ), x ° ∇p, so X ⊆ V (∇p) and by upwards closure of ν(w), (F, V ), w ° ∇∇p. But
Y = V (p) /∈ ν(w), hence (F, V ), w 1 ∇p, and it follows that F 1 4.

4’: Assume F 2 (iv’), then there are w ∈ W and X ⊆ W such that X ∈ ν(w) and
mν(X) /∈ ν(w). Let V be a valuation with V (p) = X, then (F, V ), w ° ∇p, but V (∇p) =
mν(X) /∈ ν(w), thus (F, V ), w 1 ∇∇p, and hence F 1 4’.

5: Assume F 2 (v), then there are w ∈ W and X ⊆ W such that X /∈ ν(w) and
W \mν(X) /∈ ν(w). If now V is a valuation with V (p) = W \X, then V (¬p) = X /∈ ν(w)
and W \ V (∇¬p) = V (∆p) /∈ ν(w), and hence (F, V ), w 1 ∇¬p, i.e., (F, V ), w ° ∆p and
(F, V ), w 1 ∇∆p, thus we may conclude that F 1 5.

B: Assume F 2 (b), then there are w ∈W and X ⊆W such that w ∈ X and W \mν(W \
X) /∈ ν(w). If V is a valuation with V (p) = X, then w ∈ V (p) and W \mν(W \ V (p)) =
V (∆p) /∈ ν(w). Hence (F, V ), w ° p and (F, V ), w 1 ∇∆p, so F 1 B.

D: Assume F 2 (d), then there are w ∈ W and X ⊆ W such that X ∈ ν(w) and
W\X ∈ ν(w). Let V be a valuation such that V (p) = X, then V (p) ∈ ν(w) and V (¬p) ∈ ν(w),
hence (F, V ), w ° ∇p and (F, V ), w 1 ∆p, and it follows that F 1 D. qed

The frame theoretic analogues of the model constructions of the previous section are
obtained by simply leaving out the clauses concerning the valuation, and the truth invariance
results for models translate more or less immediately into results on preservation of frame
validity when forming disjoint unions, generated subframes, bounded morphic images and
ultrafilter extensions. These in turn tell us about the limitations of definability via frame
validity.

Definition 5.2 For a family of disjoint monotonic L∇-frames {Fi = (Wi, νi) | i ∈ I} their
disjoint union is the L∇-frame

⊎
i∈I Fi = (W, ν) where W =

⊎
i∈I Wi and for X ⊆ W ,

X ∈ ν(w) iff X ∩Wi ∈ νi(w).
A bounded morphism from a monotonic L∇-frame F = (W, ν) to a monotonic L∇-frame

F′ = (W ′, ν ′) is a function satisfying



5 DEFINABILITY AND CORRESPONDENCE 33

(BM1) If X ∈ ν(w), then f [X] ∈ ν ′(f(w)).
(BM2) If X ′ ∈ ν ′(f(w)), then there is an X ⊆ W such that f [X] ⊆ X ′ and

X ∈ ν(w).

If there is a surjective bounded morphism from F to F′, then we say that F′ is a bounded
morphic image of F (notation: F³ F′).

For monotonic L∇-frames F′ = (W ′, ν ′) and F = (W, ν), F′ is a generated subframe of F
(notation: F′ ½ F) if W ′ ⊆ W , and the identity map i : W ′ → W is a bounded morphism
from F′ to F. For a subset X ofW , the subframe generated by X in F is the subframe (W ′, ν ′)
whereW ′ is the intersection of all sets Y such that X ⊆ Y and (Y, ν ′) is a generated subframe
of F. a

The proof of the following proposition is standard, and we leave it to the reader.

Proposition 5.3 Let ϕ be an L∇-formula. Then the following holds for monotonic L∇-
frames.

(i) If for all i ∈ I, Fi ° ϕ, then
⊎

i∈I Fi ° ϕ.
(ii) If F′½ F, then F ° ϕ implies F′ ° ϕ.
(iii) If F³ F′, then F ° ϕ implies F′ ° ϕ.
(iv) If ueF ° ϕ, then F ° ϕ.

It is now clear that any modally definable frame class K must be closed under disjoint
unions, generated subframes and bounded morphic images, and K must reflect ultrafilter
extensions, that is, if ueF is in K, then F is in K. It turns out that within the class of frames
which are closed under taking ultrafilter extensions, these (anti) closure conditions are also
sufficient for definability. This is stated in the following analogue of the Goldblatt-Thomason
theorem, which we will prove in section 7.

Theorem 5.4 (Monotonic frame definability) Let K be a class of monotonic L∇-frames
which is closed under taking ultrafilter extensions. Then K is modally definable iff K is closed
under disjoint unions, generated subframes and bounded morphic images, and reflects ultra-
filter extensions.

Theorem 5.4 may be seen as a frame theoretic analogue of Birkhoff’s characterisation
of equationally definable classes of algebras as varieties, i.e. classes of algebras which are
closed under taking direct products, subalgebras and homomorphic images. In section 7.4,
we will see that disjoint unions, bounded morphic images and generated subframes are the
dual notions of these algebraic constructions.

5.2 Correspondence

In correspondence theory, we compare modal languages with other languages such as first-
and second-order logic for the purpose of expressing properties of models and frames. At first
glance, there seems to be a problem when it comes to the correspondence theory of mono-
tonic modal logic, namely, neighbourhood frames have a second-order character. However, we
will see that we can treat monotonic frames as two-sorted relational structures for a suitable
first-order language, by viewing the neighbourhood function as a relation Rν between the
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universe W and P(W ) (cf. the remark after (1)). This is also the idea behind the simula-
tion of section 10, where we will simulate monotonic modal logics by normal bimodal ones.
The observation, also made by Kracht and Wolter [44], that a certain class of L∇-formulas
correspond to Sahlqvist formulas in a language which is interpreted over Kripke structures
will allow us to apply the Sahlqvist Correspondence Theorem to obtain a similar result for
monotonic modal logic (Theorem 5.14).

Model Correspondence

We will start by looking at correspondence on models, as this is interesting in its own right,
but subsequently we will also use some of the definitions and results for models when treating
frame correspondence.

As mentioned, the key to viewing a monotonic model as a first-order structure is to think
of the neighbourhood function as a relation Rν between the universe W and P(W ). This
means that the first-order language must contain variables which can be assigned to sets of
states. One way to achieve this would be with a two-sorted first-order language, but we will
instead use a unary relation symbol to distinguish the two kinds of variable interpretations.
Furthermore, by turning a monotonic model into a relational structure we can view it as
a Kripke model. Therefore, we also define a modal language which will be interpreted via
Kripke semantics.

Definition 5.5 (Model Correspondence Languages) For a (countable) collection Φ of
proposition letters, L1∇(Φ) is the first-order language of L∇ which has equality =, first-order
variables x, y, z, . . ., unary predicates Q0, Q1, Q2, . . . for each q0, q1, q2, . . . in Φ, two binary
relation symbols Rν and R3 and one unary relation symbol P .
L3 denotes the modal language (over Φ) which contains two unary modalities (diamonds),

3ν and 33, and a nullary modality (constant) pt. a

An L∇-model M = (W, ν, V ) may now be seen as a Kripke model by viewing ν as a
relation Rν , and interpreting R3 by the element-of relation and P by W . That is,

Rνwu iff u ∈ ν(w),
R3uw iff w ∈ u,
P = W.

(17)

More precisely, we are viewing M as the Kripke model M• = (W ∪ P(W ), Rν , R3, P, V ),
where elements of P(W ) have been added as new states, and Rν , R3 and P are defined as
above. The truth definition in M• is as usual in Kripke models:

M•, w ° ⊥ never,
M•, w ° qi iff w ∈ V (qi),
M•, w ° 3νϕ iff ∃u(Rνwu &M•, u ° ϕ),
M•, w ° 33ϕ iff ∃u(R3wu &M•, u ° ϕ),
M•, w ° pt iff w ∈ P (=W ).

When interpreting L1∇(Φ)-formulas on a monotonic model M = (W, ν, V ) (in which case
we will write M1 for M), we assume that an assignment θ on M1 assigns either an old state
(in W ) or a new state (in P(W )) to each variable. The unary predicates Qi are interpreted
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by V (qi), and Rν , R3 and P as above. It should be clear that M1 is just M• viewed as a
first-order model.

We will see that the unary relation P is only needed to obtain global correspondence,
therefore we will also define two translations into L1∇(Φ), a local and a global one.

Definition 5.6 (Standard Translation) Let x be a first-order variable. The local standard
translation stx : L∇ → L1∇(Φ) is defined inductively by

stx(⊥) = x 6= x,
stx(q) = Qx,
stx(¬ϕ) = ¬stx(ϕ),
stx(ϕ ∨ ψ) = stx(ϕ) ∨ stx(ψ),
stx(∇ϕ) = ∃y(Rνxy ∧ ∀z(R3yz → stz(ϕ))).

The global standard translation ST x : L∇ → L1∇(Φ) is defined by

ST x(ϕ) = Px→ stx(ϕ). a

We also need a translation which will take an L∇-formula to an L3-formula, and its
definition should not come as a surprise.

Definition 5.7 (Diamond Translation) Define the translation (·)t : L∇ → L3 inductively
as follows:

⊥t = ⊥
pt = p

(¬ϕ)t = ¬ϕt

(ϕ ∨ ψ)t = ϕt ∨ ψt

(∇ϕ)t = 3ν23ϕ
t .

Define the translation (·)¦ : L∇ → L3 by

ϕ¦ = pt→ ϕt. a

With these translations, the following proposition should be almost immediate. Ob-
serve that if ST ¦x(·) denotes the standard translation for normal modal logic, then stx(ϕ) =
ST ¦x(ϕ

t), and ST x(ϕ) = ST ¦x(ϕ
¦), when defining ST ¦x(pt) = Px.

Proposition 5.8 (Correspondence on Models) Let ϕ be an L∇-formula. Then

(i) For all monotonic L∇-models M = (W, ν, V ) and all states w in M:

M, w ° ϕ iff M•, w ° ϕt iff M1 ² stx(ϕ)[w]

(ii) For all monotonic L∇-models M = (W, ν, V ):

M ° ϕ iff M• ° ϕ¦ iff M1 ² ∀xST x(ϕ).
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Proof. The proof of the first equivalence in (i) is by straightforward induction on ϕ. We
only show the modal case:

M, w ° ∇ϕ iff V (ϕ) ∈ ν(w)
(ν monotone) iff ∃u ∈W ∪ P(W ) : u ∈ ν(x) & ∀y ∈ u :M, y ° ϕ

(IH) iff ∃u ∈W ∪ P(W ) : u ∈ ν(x) & ∀y ∈ u :M•, y ° ϕt

(def. M•) iff ∃u ∈W • : Rνxu & ∀y ∈W • : R3uy →M•, y ° ϕt

iff M•, w ° 3ν23ϕ
t

iff M•, w ° (∇ϕ)t .

The second equivalence in (i) follows from the first and local correspondence on Kripke models
together with the observation that stx(ϕ) = ST ¦(ϕt). The proof of the first equivalence of
(ii) is also easy:

M ° ϕ iff for all w ∈W :M, w ° ϕ
iff for all w ∈W ∪ P(W ) :M•, w 1 pt or M•, w ° ϕt

iff for all w ∈W ∪ P(W ) :M•, w ° pt→ ϕt

iff M• ° ϕ¦.

Again, the second equivalence follows from the first together with global correspondence on
Kripke models and the observation that ST x(ϕ) = ST ¦x(ϕ

¦). qed

Frame Correspondence

As mentioned at the beginning of this section, frame validity is really a second-order property.
This is well-known and unsurprising, since validity factors out valuations by quantifying over
all possible subsets of the universe. The interesting cases are those in which the monadic
second-order correspondent is equivalent to a first-order formula. We start by defining the
first- and second-order languages for monotonic frames, and recall the definition of local and
global frame correspondence.

Definition 5.9 (Frame Correspondence Languages) L1∇ denotes the first-order frame
language of L∇. L

1
∇ has equality =, first-order variables x, y, z, . . ., two binary relation sym-

bols Rν and R3 and one unary relation symbol P .
The monadic second-order frame language L2∇ is obtained from L1∇ by allowing second-

order quantification, that is, L2∇ has everything L1∇ has, and in addition L2∇ contains monadic
predicate variables Q0, Q1, Q2, . . . over which may be quantified. a

Definition 5.10 (Frame Correspondence) Let ϕ be an L∇-formula and α(x) a formula
of the corresponding first- or second-order language (x is assumed to be the only free variable
in α). Then ϕ and α(x) are each other’s local frame correspondents if for any L∇-frame F
and any state w in F,

F, w ° ϕ iff F ² α[w].

That is, for any valuation V , (F, V ), w ° ϕ iff (F, V )1 ² α[w].
If a class K of L∇-frames is definable by both ϕ and α(x), then we say that ϕ and α(x)

are each other’s global frame correspondents. a
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The second-order translation of an L∇-formula ϕ is obtained from the standard translation
of ϕ by quantifying over the proposition letters occurring in ϕ. When interpreting an L2∇-
formula on a monotonic frame F, we will write F2 for F. And just as we can view a monotonic
L∇-model as a Kripke model, we can view a monotonic L∇-frame F as a Kripke L3-frame,
F• = (W ∪ P(W ), Rν , R3, P ), where Rν , R3 and P are interpreted as in (17). We can now
show the following frame analogue of Proposition 5.8.

Proposition 5.11 (Correspondence on Frames) Let ϕ be an L∇-formula. Then

(i) For all monotonic L∇-frames F and all states w in F:

F, w ° ϕ iff F•, w ° ϕt iff F2 ² ∀Q1, . . . , Qnstx(ϕ)[w]

(ii) For all monotonic L∇-frames F:

F ° ϕ iff F• ° ϕ¦ iff F2 ² ∀Q1, . . . , Qn∀xST x(ϕ).

Proof. Let F = (W, ν) be a monotonic L∇-frame. For the first equivalence in (i), note that
a valuation on F is also a valuation on F•, and a valuation V on F• induces a valuation V ¹W
on F where V ¹W (q) = V (q) ∩W . Moreover, these valuations agree on W , that is, for all
w ∈W , w ∈ V (q) iff w ∈ V ¹W (q).

Claim 1 If V and V ′ are valuations on F and F•, respectively, and V and V ′ agree on W ,
then we have for all w ∈W and all L∇-formulas ϕ,

(F, V ), w ° ϕ iff (F•, V ′), w ° ϕt.

Proof of Claim The proof is by induction on ϕ and is more or less the same as in the proof
of item (i) of Proposition 5.8. We leave out the details. J

The direction from left to right now follows by contraposition: If F•, w 1 ϕt then there is a
valuation V on F• such that (F•, V ), w 1 ϕt. By Claim 1 it follows that (F, V ¹W ), w 1 ϕ, hence
F, w 1 ϕ. The other direction is shown similarly, and the second equivalence in (i) follows from
local frame correspondence on Kripke frames and the observation that stx(ϕ) = ST ¦x(ϕ

t).
The first equivalence of (ii) is also shown by using Claim 1. For the direction from left to

right, assume that F• 1 ϕ¦. Then there is a w in W ∪ P(W ) and a valuation V on F• such
that (F•, V ), w 1 pt → ϕt, hence (F•, V ), w ° pt and (F•, V ), w 1 ϕt. By the definition of P
in F• it follows that w ∈W and so by Claim 1, (F, V ¹W ), w 1 ϕ, hence F 1 ϕ.

The direction from right to left is also shown by contraposition. So suppose F 1 ϕ, then
there is a w ∈W and a valuation V on F such that (F, V ), w 1 ϕ. Since V is also a valuation
on F• it follows from Claim 1 that (F•, V ), w 1 ϕt, hence (F•, V ), w ° pt ∧ ¬ϕt, and we
may conclude that F• 1 ϕ¦. Again, the last equivalence in (ii) follows from global frame
correspondence on Kripke frames and the observation that ST x(ϕ) = ST ¦x(ϕ

¦). qed

Remark 5.12 Note that when we are looking for a first-order correspondent it suffices to find
a local first-order correspondent, since if α(x) locally corresponds with ϕ, then ∀x(Px→ α(x))
is a global correspondent of ϕ.
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In the above, we have in fact established second-order frame correspondence by simulat-
ing monotonic L∇-frames by Kripke L3-frames, and using known correspondence results for
Kripke frames. Even though, up until now, we could have left out all mentioning of Kripke
frames and the translation (·)t and simply shown the correspondence results directly, it is
clear that this correspondence between neighbourhood semantics and Kripke semantics is
useful. In section 10, we will return to the topic of simulations in more detail, but for now we
will use the simulation of monotonic frames by Kripke frames to obtain an analogue of the
Sahlqvist Correspondence Theorem for monotonic modal logic.

Recall that the Sahlqvist Correspondence Theorem gives us a syntactic characterisation
of modal formulas which have first-order frame correspondents. In [44], Kracht and Wolter
simulate monotonic modal logic with bimodal normal modal logic via the translation (·)t, and
they use the observation that a certain class of L∇-formulas translate into bimodal Sahlqvist
formulas via (·)t to obtain results concerning their simulation. However, in the current context
the usefulness of this L∇-formula fragment is to obtain automatic first-order correspondence.

Definition 5.13 (KW-formulas) An L∇-formula ψ → χ is a KW-formula if ψ is of the
form

∧
i≤n∇pi ∧

∧
j≤m qj and χ is built from propositional variables by using ∧,∨,∇,∆ only.

An L∇-formula ψ → χ is a dual KW-formula if ψ is of the form
∧

i≤n ∆pi ∧
∧

j≤m qj and
χ is built from propositional variables by using ∧,∨,∇,∆ only. a

Theorem 5.14 (First-Order Correspondence) If ϕ is a KW-formula, then ϕ locally cor-
responds to an L1∇-formula aϕ(x) on monotonic frames, and aϕ(x) is effectively computable
from ϕ.

Proof. By Proposition 5.11, ϕ locally corresponds to ϕt, and when ϕ is a KW-formula, then
ϕt is a Sahlqvist L3-formula, hence it has a first-order correspondent cϕt(x), so we can take
aϕ(x) = cϕt(x). Furthermore, using the Sahlqvist-van Benthem algorithm (see e.g. Blackburn
et alii [6]) cϕt(x) is effectively computable from ϕt and since ϕt is also effectively computable
from ϕ, so is aϕ(x). qed

Example 5.15 If we apply Theorem 5.14 to the KW-formula q → ∇∆q (B), then we should
obtain an L1∇-formula which is equivalent with the frame condition (b) ∀w ∈ W ∀X ⊆ W :
w ∈ X →W \mν(W \X) ∈ ν(w). We have,

Bt = (q → ∇∆q)t = q → 3ν232ν33q.

Applying the Sahlqvist-van Benthem algorithm to Bt, we obtain the L1∇-formula,

c(x) = ∃y(Rν(x, y) ∧ ∀z(R3(y, z)→ ∀u(Rν(z, u)→ ∃r(R3(u, r) ∧ r = x)))).

On a monotonic L∇-frame F = (W, ν), c(x) expresses the condition {z | ∀u ∈ ν(z) : x ∈ u} ∈
ν(x) which by upwards closure of ν(x) is equivalent with

{z |W \ {x} /∈ ν(z)} ∈ ν(x) (∗)

Using the upwards closure of ν again, and the fact that x ∈ {x}, it is easy to show that (∗)
is equivalent with the implication x ∈ X →W \mν(W \X) ∈ ν(x).
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Example 5.16 Applying Theorem 5.14 to the KW-formula ∇q → ∆q (D), we first obtain
the translation Dt = 3ν23q → 2ν33q, and from Dt we compute the first-order correspondent
c(x) with the Sahlqvist-van Benthem algorithm,

c(x) = ∀y∀z(Rν(x, y) ∧Rν(x, z)→ ∃u(R3(y, u) ∧R3(z, u))).

On a monotonic L∇-frame F = (W, ν), c(x) expresses the condition,

X1 ∈ ν(x) and X2 ∈ ν(x)→ X1 ∩X2 6= ∅,

which is easily shown to be equivalent with X ∈ ν(x)→W \X /∈ ν(x).

5.3 Monotonic Modal Fragment of FOL

The characterisation due to J. van Benthem [4] of the modal fragment of first-order logic as
the bisimulation invariant fragment, is one of the highlights in (normal) modal correspon-
dence theory. Pauly [55] has adapted van Benthem’s proof to achieve an analogous result for
monotonic modal logic.

To avoid confusion between the notion of standard translation (as defined in 5.6) for
monotonic model logic and the standard translation for normal modal logic, we will use the
prefixes ‘monotonic’ and ‘normal’ explicitly in this subsection. Similarly, for bisimulation we
will speak of monotonic bisimulations and Kripke bisimulations. If we refer to the fragment of
first-order logic which consists of the monotonic standard translations of L∇-formulas, then
Pauly’s result can be stated as (Theorem 5.23): The monotonic modal fragment of first-order
logic is precisely the monotonic bisimulation invariant fragment.

This subsection presents the main steps in Pauly’s proof from [55], only slightly adapted
to our setting, and we will leave out most technical details, of which several occur elsewhere
in this thesis.

The reason why we have chosen to devote as much attention to the proof of an existing
result, is partly because we find Pauly’s characterisation theorem an interesting and elegant
analogue of van Benthem’s characterisation theorem, and partly because [55] only exists as
an unpublished, not easily available, manuscript.

In the previous sections, we have seen how to view monotonic L∇-models as L1∇(Φ)-
models, that is first-order models for the language L1∇(Φ). We can also translate the definition
of bisimulation to L1∇(Φ)-models.

Definition 5.17 (FO monotonic bisimulation) Let M = (W,Rν , R3, P, V ) and M′ =
(W ′, R′ν , R

′
3, P

′, V ′) be two L1∇(Φ)-models. A non-empty binary relation Z ⊆ W × W ′ is
a monotonic bisimulation between M and M′ (notation: Z :M ↔1 M′) if

(pred) If wZw′ then M ² Q(x)[w] iff M′ ² Q(x)[w′] for all unary predicates Q.
(P) If wZw′ then w ∈ P iff w′ ∈ P ′.
(forth)1 If wZw′ and wRνu, then there is a u′ ∈ W ′ such that w′R′νu

′ and for
all x′ ∈W ′, u′R′3x

′ implies that there is an x ∈W such that uR3x and
xZx′.

(back)1 If wZw′ and w′R′νu
′, then there is a u ∈W such that wRνu and for all

x ∈ W , uR3x implies that there is an x′ ∈ W ′ such that u′R′3x
′ and

xZx′.

a
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The above definition applies to all L1∇(Φ)-models, but as Pauly points out, monotonic
bisimulation is a weaker notion than that of bimodal Kripke bisimulation, even for L1∇(Φ)-
models which are obtained from monotonic L∇-models by the (·)• operation. However, it
should be clear that the (·)• operation preserves monotonic bisimulations.

Lemma 5.18 Let M1 and M2 be monotonic L∇-models, and let w1, w2 be states in M1 and
M2, respectively. Then

M1, w1 ↔ M2, w2 iff M•1, w1 ↔1 M•2, w2.

A first-order formula α(x) is now called invariant for monotonic bisimulation if for any
L1∇(Φ)-models M and M′,

M1, w1 ↔1 M2, w2 implies M•1 ² α[w1] iff M•2 ² α[w2](18)

The following proposition states one direction of the characterisation theorem, namely,
that the monotonic standard translations of L∇-formulas are invariant for monotonic bisim-
ulation.

Proposition 5.19 Let M1 and M2 be L
1
∇(Φ)-models, and let w1, w2 be states in M1 and M2,

respectively. Then for all L∇-formulas ϕ,

M1, w1 ↔1 M2, w2 implies M•
1 ² stx(ϕ)[w1] iff M•2 ² stx(ϕ)[w2].

Proof. The proof is similar to that of Proposition 4.11, and we leave out the details. qed

In order to establish the converse of the above proposition, we will need the standard
definitions of ω-saturation and elementary extensions from first-order model theory, together
with the result that every first-order model has an ω-saturation elementary extension. We
refer the reader to [13].

We should now recall the definition of m-saturation (Definition 4.32). Just as we have
translated the notion of monotonic bisimulation to L1∇(Φ)-models, we can translate the notion
of m-saturation in the obvious way, by using the definition of Rν and R3 in (17). Furthermore,
when Γ is set of L∇-formulas, then we wil use the notation Γst(x) for the set {stx(ϕ) | ϕ ∈ Γ}
of L1∇(Φ)-formulas.

Definition 5.20 Let M = (W,Rν , R3, P, V ) be an L1∇(Φ)-model. Then M is M-saturated if
the following conditions hold.

(M1) For any Γ ⊆ L∇ and any w, u ∈W such that Rνwu, if Γst(x) is finitely
satisfiable in the set of R3-successors of u, then Γst(x) is satisfiable in
the set of R3-successors of u.

(M2) For any Γ ⊆ L∇ and any w ∈ W , if for every finite Γ0 ⊆ω Γ there is an
Rν-successor of w whose R3-successors all satisfy Γ0st(x), then there is
an Rν-successor of w whose R3-successors all satisfy Γst(x).

a

One can now show the following lemma analogously to the case for m-saturation of Kripke
models. See e.g. Blackburn et alii [6].
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Lemma 5.21 Any ω-saturated L1∇(Φ)-model is M-saturated

The proof of the converse of Proposition 5.19 is now also completely analogous to the
proof for normal modal logic. Again, the reader may consult [6] for the details. All we have
to note is that from Proposition 4.33 it is more or less immediate that classes of M-saturated
models have the Hennessy-Milner property with respect to monotonic bisimulation.

Proposition 5.22 If an L1∇(Φ)-formula α(x) is invariant for monotonic bisimulation, then
α(x) is equivalent to stx(ϕ) for some ϕ ∈ L∇.

Taken together, the Propositions 5.19 and 5.22 establish the characterization theorem.

Theorem 5.23 (Pauly) The monotonic modal fragment of L1∇(Φ) is precisely the mono-
tonic bisimulation invariant fragment.

6 Completeness

In this section, we define the canonical model for monotonic modal logics, and prove the
general completeness result of monotonic modal logics with respect to general monotonic
frames.

First we recall the following definitions. Let Λ be a monotonic L∇-logic and S a class of
monotonic L∇-structures. Then Λ is sound with respect to S if for all S ∈ S, S ° Λ. Λ is
weakly complete with respect to S, if for all ϕ ∈ L∇, S ° ϕ implies `Λ ϕ. For Σ∪{ϕ} ⊆ L∇, we
will use the notation Σ °S ϕ to mean that for all S ∈ S, ϕ is a local semantic consequence of
Σ in S. Then Λ is strongly complete with respect to S, if for all Σ∪{ϕ} ⊆ L∇, Σ °S ϕ implies
Σ `Λ ϕ. In practice, strong completeness is usually established by showing the contrapositive:
Λ is strongly complete with respect to S, if for any Λ-consistent set of L∇-formulas Σ, Σ can
be satisfied at a state in some S ∈ S. When showing strong completeness with respect to a
class of monotonic frames K, this amounts to satisfying Σ at some state in a model based
on a frame in K. Finally, Λ is (frame) complete if Λ = ΛK for some frame class K, and Λ is
strongly (frame) complete, if Λ = ΛK for some frame class K, and Λ is also strongly complete
with respect to K.

6.1 The Canonical Model Construction

The basic idea behind the construction of the canonical model MΛ for a monotonic logic Λ,
is, as usual, to build a model from maximally Λ-consistent sets. Via the standard argument
of Lindenbaum’s Lemma, a Λ-consistent set of formulas can be extended to a maximally Λ-
consistent set (Λ-mcs). If ϕ is an L∇-formula, we denote the set of Λ-mcss which contain ϕ
as

ϕ̂ = {Γ | Γ is Λ-mcs and ϕ ∈ Γ} .

The usual properties hold.

Lemma 6.1 (Properties of Λ-MCSs) Let Λ be a modal L∇-logic and Γ a Λ-mcs, then:
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(i) ⊥ /∈ Γ,
(ii) Γ is closed under modus ponens: if ϕ, ϕ→ ψ ∈ Γ then ψ ∈ Γ,
(iii) For all L∇-formulas ϕ: if Γ `Λ ϕ then ϕ ∈ Γ,
(iv) For all L∇-formulas ϕ: ϕ ∈ Γ or ¬ϕ ∈ Γ,
(v) For all L∇-formulas ϕ, ψ: ϕ ∨ ψ ∈ Γ iff ϕ ∈ Γ or ψ ∈ Γ.

Definition 6.2 (Canonical Model) Let Λ be a monotonic modal L∇-logic. The canonical
model for Λ is the triple MΛ = (WΛ, νΛ, V Λ) where

(1) WΛ = {Γ ⊆ L∇ | Γ is Λ-mcs},

(2) For all Γ ∈WΛ, X ⊆WΛ: X ∈ νΛ(Γ) iff there is {ϕi | i ∈ I} ⊆ L∇ such that⋂
i∈I ϕ̂i ⊆ X and ∀ψ ∈ L∇ :

⋂
i∈I ϕ̂i ⊆ ψ̂ → ∇ψ ∈ Γ.

(3) For all Γ ∈W, p ∈ prop : Γ ∈ V Λ(p) ⇔ p ∈ Γ.

The pair FΛ = (WΛ, νΛ) is called the canonical frame for Λ, and V Λ will be called the
canonical valuation for Λ. a

Whereas the first and third clause of Definition 6.2 will be immediately clear, the second
needs some more explanation. To begin with, the easiest way to understand 6.2(2) is to
think of νΛ as defined in three stages. At the first stage, we say which subsets of the form
ϕ̂ are in νΛ(Γ). Using the monotonicity rule (RM∇), it is easy to show that for ϕ ∈ L∇
Definition 6.2(2) reduces to:

ϕ̂ ∈ νΛ(Γ) iff ∇ϕ ∈ Γ,(19)

Then we consider subsets of the form C =
⋂

i∈I ϕ̂i, which are the closed theories of Λ, and
here we can show that 6.2(2) reduces to:

C ∈ νΛ(Γ) iff ∀ψ ∈ L∇ : C ⊆ ψ̂ → ∇ψ ∈ Γ.(20)

Finally, we add arbitrary supersets of the neighbourhoods from the first two stages, and
this is exactly what Definition 6.2(2) states.

Readers familiar with Chellas [14] will have noticed that the above definition of the canon-
ical model is not the same as Chellas’ definition of the (supplementation of the) smallest
canonical model (Def. 9.3 in [14]) in which the neighbourhood function νΛs is defined by,

X ∈ νΛs (Γ) iff ∃∇ϕ ∈ Γ : ϕ̂ ⊆ X.(21)

The neighbourhoods of νΛs are exactly the neighbourhoods which are needed to make the
Truth Lemma 6.3 hold. However, as Sergot [63] also points out, the Truth Lemma will hold
for any neighbourhood function νΛ

′
if for each Λ-mcs Γ, νΛ

′
is of the form νΛ

′
(Γ) = νΛs (Γ)∪X ,

where X is a collection of non-definable subsets of WΛ, i.e., ∀χ ∈ X ∀ϕ ∈ L∇ : χ 6= ϕ̂.
The difference between νΛ and νΛs lies in the addition of the neighbourhoods in νΛ of

the form C =
⋂

i∈I ϕ̂i, which correspond to closed theories of Λ, or infinite conjunctions of
L∇-formulas, hence the extra neighbourhoods of νΛ are indeed non-definable in the language
L∇. The well-known bijection between ultrafilters and maximal consistent sets tells us that
the closed theories of Λ correspond to the closed subsets of the dual topological space of the
Lindenbaum-Tarski algebra LΛ(Φ). The analogy between the definition of νue in ultrafilter
extensions and νΛ should now be obvious, and both νue and νΛ are, in fact, defined in this
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way based on motivations of algebraic duality, which we would not have obtained, had we
defined νΛ = νΛs . In the sections 7 and 10 algebraic duality plays a key role, and we will see
that this more sophisticated definition of the canonical frame fits better in our framework.

Pauly’s [57, 58] definition of the canonical model for Coalition Logic is also a generalisation
of Chellas’ smallest canonical model, but neither Chellas nor Pauly have investigated algebraic
duality. It should be said, though, that if one is merely interested in proving completeness,
the smallest canonical model will often be more convenient to work with.

The key result needed to prove the Canonical Model Theorem 6.4 is the following lemma
which lifts the “truth=membership” definition for proposition letters to arbitrary L∇-formulas.

Lemma 6.3 (Truth Lemma) Let Λ be a monotonic L∇-logic, and let MΛ = (WΛ, νΛ, V Λ)
be the canonical model for Λ. Then for all L∇-formulas ϕ and Γ ∈ WΛ: MΛ,Γ ° ϕ iff
ϕ ∈ Γ. In other words, V Λ(ϕ) = ϕ̂.

Proof. The proof is by induction on ϕ. The atomic case holds by definition of V Λ, and the
boolean cases follow easily from the properties of Λ-mcss . So we only show the modal case:
MΛ,Γ ° ∇ϕ⇔ V Λ(ϕ) ∈ νΛ(Γ)⇔(IH) ϕ̂ ∈ ν

Λ(Γ)⇔(19) ∇ϕ ∈ Γ. qed

The following theorem is now a direct consequence of the Truth Lemma. The proof is the
same as for normal modal logics and is left to the reader.

Theorem 6.4 (Canonical Model Theorem) Let Λ be a monotonic L∇-logic, and letMΛ =
(WΛ, νΛ, V Λ) be the canonical model for Λ. Then Λ is sound and strongly complete with re-
spect to {MΛ}.

6.2 Applications

In Kripke semantics, strong completeness proofs are often completeness-via-canonicity argu-
ments. That is, one shows for a normal modal logic Λ that Λ is valid on the canonical frame
for Λ. The Canonical Model Theorem 6.4 ensures that the same argument may be applied
to monotonic L∇-logics, however, there is one detail we should take care of. A monotonic
L∇-logic Λ, and hence also FΛ, is assumed to be defined for a fixed and countable set of
proposition letters Φ, thus FΛ ° Λ only means that Λ is valid on the canonical frame for this
particular Φ. The definition of canonicity which we will employ (see Definition 7.11 of the
Algebra section) is equivalent with saying that Λ is canonical if FΛ ° Λ where FΛ is defined
for Φ of arbitrary cardinality. It is an open problem whether the two notions are equivalent.

In order to formulate our notion of canonicity in logic terms, we will henceforth assume
that FΛ is defined for Φ of arbitrary cardinality. When we wish to emphasize that FΛ depends
on (the cardinality of) Φ, we will use the notation FΛ(Φ). Usually, Φ is assumed to be
countable, simply because countably many proposition letters suffice, and the definitions and
results of this section are not compromised by this generalisation.

We can now state our definition of canonicity as follows. An L∇-formula ϕ is canonical
if for every monotonic L∇-logic Λ, ϕ ∈ Λ implies that FΛ(Φ) ° ϕ, for any Φ. A monotonic
L∇-logic Λ is canonical if FΛ(Φ) ° Λ, for any Φ. An L∇-formula ϕ is canonical for a frame
property P if for every monotonic L∇-logic Λ, ϕ ∈ Λ implies that FΛ(Φ) has P, for any Φ,
and for every monotonic L∇-frame F, if F has P then F ° ϕ.
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The definability results of Proposition 5.1 tell us that for each of the mentioned formulas
ϕ, we only need to show that ϕ is canonical in order to prove that ϕ is canonical for the
frame property it defines. Instead of showing this directly, we will use Theorem 10.34 from
section 10, which states that all KW-formulas (5.13) are, in fact, canonical.

Proposition 6.5 If ϕ ∈ {N,C,T,4’,B,D}, then ϕ is canonical for the frame property it de-
fines.

Proof. Let ϕ ∈ {N,C,T,4’,B,D} and let FP be the frame property defined by ϕ. Then ϕ is
a KW-formula, and by Theorem 10.34, ϕ is canonical, hence for every monotonic L∇-logic
Λ, ϕ ∈ Λ implies that FΛ(Φ) ° ϕ, and by Proposition 5.1 it follows that FΛ(Φ) has FP, for
any Φ. When F is a monotonic L∇-frame which has FP, F ° ϕ follows immediately from
Proposition 5.1. qed

Proposition 6.6 If Γ ⊆ {N,C,T,4’,B,D}, then Λ = M.Γ is sound and strongly complete
with respect to the class of monotonic L∇-frames which have all the properties defined by the
formulas in Γ.

Proof. Let Γ and Λ be as stated, and let K be the class of monotonic L∇-frames which have
all the properties defined by the formulas in Γ. Then by Theorem 10.34, Λ is canonical, hence
Λ is valid on FΛ(Φ), for any Φ. From Proposition 5.1, it follows that FΛ(Φ) ∈ K, so by the
Canonical Model Theorem Λ is strongly complete with respect to K. Soundness is likewise a
consequence of Proposition 5.1. qed

The formulas P, 4 and 5 are not KW-formulas, but they are dual KW-formulas, and logics
generated by these formulas are also strongly complete. However, the strong completeness
relies on the notion of π-canonicity. Very briefly explained, when Λ is π-canonical, then Λ is
valid on the π-canonical frame (see page 68), which can be thought of as a dual version of
the canonical frame. The π-canonical frame is also canonical for Λ in the sense that any Λ-
consistent set can be satisfied at some state. In section 10 we will see that dual KW-formulas
are π-canonical (Theorem 10.44). However, if Λ is generated by a set of axioms where some are
KW-formulas and others are dual KW-formulas, then we need not have strong completeness,
since the π-canonical frame may not validate the KW-axioms, and vice versa, the canonical
frame may not validate the dual KW-formulas. We refer to the sections 7 and 10 for more
details.

Proposition 6.7 If Γ ⊆ {P,4,5}, then Λ =M.Γ is sound and strongly complete with respect
to the class of Λ-frames.

Proof. Follows from Theorems 10.43 and 10.44. qed

6.3 General Completeness

As mentioned in subsection 3.3, neighbourhood semantics suffer from the same inadequacy
as Kripke semantics, namely, there are monotonic modal logics which are not complete with
respect to any class of monotonic frames, cf. Gerson [26]. However, similar to the case
for normal modal logic and Kripke semantics, a general completeness result with respect to
general monotonic frames does hold.
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Recall that for a monotonic L∇-logic Λ, and a general monotonic L∇-frame G, G is called a
Λ-frame (or a frame for Λ), if G ° Λ, that is, for all admissible valuations V on G, (G, V ) ° Λ.
And Λ is sound with respect to a class of general monotonic L∇-frames K, if for all G ∈ K,
G ° Λ.

Definition 6.8 (Canonical general frame) Let Λ be a monotonic modal L∇-logic, and
FΛ the canonical frame for Λ. Then we define the canonical general frame for Λ as the pair
GΛ = (FΛ, Φ̂) where Φ̂ = {ϕ̂ | ϕ ∈ L∇}. a

It is easy to show that GΛ is indeed a general monotonic L∇-frame, i.e., that Φ̂ has the
required closure properties. For example, to see that Φ̂ is closed under the operation mν ,
simply recall that for any valuation V , mν(V (ϕ)) = V (∇ϕ), hence as V Λ is admissible on

GΛ, it follows by the Truth Lemma that mν(ϕ̂) = ∇̂ϕ.

Theorem 6.9 (General Completeness) Let Λ be a monotonic L∇-logic. Then Λ is sound
and strongly complete with respect to the class of general monotonic Λ-frames.

Proof. Let F be the class of general monotonic Λ-frames. Soundness is clear by the definition
of F. For strong completeness, we must show that any Λ-consistent Σ ⊆ L∇ is satisfiable in
a model which is based on a general monotonic Λ-frame.

Let GΛ = (WΛ, νΛ, Φ̂) be the general canonical frame for Λ. As V Λ is an admissble
valuation on GΛ, it follows that the Truth Lemma holds for the model (GΛ, V Λ). Hence every
Λ-consistent set of formulas can be satisfied in the model (GΛ, V Λ). It remains to show that
GΛ ° Λ.

We will show that for all ψ ∈ Λ : GΛ ° ψ. So let ψ ∈ Λ and let V be an arbitrary admissible
valuation on GΛ. Then we have for every proposition letter pi, i = 0, . . . , n occurring in ψ that
V (pi) = ψ̂i for some ψ̂i, i = 0, . . . , n. Now, consider the formula ψ′ = ψ[ψ0/p0, . . . , ψn/pn],
that is, the formula ψ with ψi uniformly substituted for pi.

Claim 1 V (ψ) = V Λ(ψ′).

Proof of Claim By induction on the complexity of ψ:
Atomic case: Suppose ψ = p, then for some ψ0, V (p) = ψ̂0 and p′ = ψ0. So by the Truth
Lemma for (GΛ, V Λ) it follows that, V (p) = V Λ(ψ0) = V Λ(p′).
Induction step: The boolean cases are trivial. For the modal case, suppose ψ = ∇δ, then
ψ′ = (∇δ)′ = ∇δ′ and we have for all Γ ∈WΛ: Γ ∈ V (∇δ) ⇔ V (δ) ∈ νΛ(Γ) ⇔(IH) V

Λ(δ′) ∈

νΛ(Γ) ⇔ Γ ∈ V Λ(∇δ′). J

From the claim it follows immediately that

(GΛ, V ) ° ψ iff (GΛ, V Λ) ° ψ′.(22)

Furthermore, since Λ is closed under uniform substitution, ψ ∈ Λ implies that ψ ′ ∈ Λ, hence
by the Truth Lemma for (GΛ, V Λ) and Lemma 6.1(iii) we obtain (GΛ, V Λ) ° ψ′. Using (22)
we may now conclude that (GΛ, V ) ° ψ. Since V was an arbitrary admissible valuation on
GΛ, we have shown that GΛ ° ψ for all ψ ∈ Λ, so GΛ ° Λ. qed
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7 Algebra

In this section we will show that monotonic modal logics and their semantics can be alge-
braised much in the same manner as normal modal logic. In fact, the basic results needed
for an algebraic completeness theorem (Theorem 7.5) are easy analogues of their versions for
normal modal logic, and we will therefore be quite brief in the exposition of subsection 7.2.

Furthermore, we will present the algebraic notion of canonicity which we define in terms
of canonical extensions in subsection 7.3. In subsections 7.4 and 7.5, we will treat duality
between monotonic frames and their algebraic counterparts. By then it should be clear how
the definitions of the canonical frame and ultrafilter extensions came to be, since, just as in
the normal modal logic case, they are natural by-products of algebraic duality. In the final
subsection 7.6, we will look at the relationship between the two dual notions of canonicity
which result from our definitions in subsection 7.3.

7.1 Notation and Basic Notions

We denote a boolean algebra by (A,+,−, 0) where A is the carrier, + is the join operation,
− is complementation and 0 the lower bound.

A boolean algebra expansion (bae) is a boolean algebra expanded with a collection of
functions fi : A → A, i ∈ I. However, we will restrict ourselves to baes for the basic modal
similarity type, thus a bae will be a boolean algebra expanded with one unary function, and
we will use the notation A = (A,+,−, 0, f) or A = (B, f), where B is a boolean algebra. If
A = (A,+,−, 0, f) is a bae, then we denote by BlA the boolean reduct (A,+,−, 0) of A.

If P is a property of boolean algebras, then we will say that a bae A has P if the boolean
reduct of A has P . In particular, we will say that A is atomic, or complete, whenever BlA is.
We also use the following (standard) abbreviations: 1 = −0, a ·b = −(−a+−b), a−b = a ·−b,
a→ b = −a+ b and a↔ b = (a→ b) · (b→ a).

If A = (A,+,−, 0, f) and A′ = (A′,+,−, 0, f ′) are baes, then a map η : A → A′ is a
bae-homomorphism if η is a boolean homomorphism, and for all a ∈ A, η(f(a)) = f ′(η(a)).

For a bae A we define the standard partial ordering ≤ on A by: a ≤ b iff −a + b = 1 iff
a · b = a iff a + b = b. A monotonic boolean algebra expansion (bam) is a bae in which f is
monotone, i.e., a ≤ b implies f(a) ≤ f(b), or equivalently, f(a · b) ≤ f(a) for all a, b ∈ A. A
boolean algebra with operators (bao) is a bae in which f is additive, i.e., f(a+b) = f(a)+f(b)
for all a, b ∈ A.

As is usual, formulas may be viewed as terms. More precisely, for a given set of (propo-
sitional) variables Φ, we denote the terms over Φ by Ter(Φ). Then L∇-formulas are simply
the elements of the term algebra Ter(Φ) = (Ter(Φ),+,−, 0, f) where 0 := ⊥, s + t := s ∨ t,
−s := ¬s and f(s) := ∇s. We denote the set of propositional variables occurring in a formula
ϕ, by fv(ϕ).

Terms are interpreted in a bae via assignments in the usual way. That is, for a given set
of variables Φ and a bae A = (A,+,−, 0, f), an assignment in A is a function θ : Φ → A,
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and we can extend θ uniquely to a meaning function θ̃ : Ter(Φ)→ A satisfying:

θ̃(p) = θ(p), for all p ∈ Φ,

θ̃(⊥) = 0,

θ̃(¬s) = −θ̃(s),

θ̃(s ∨ t) = θ̃(s) + θ̃(t),

θ̃(∇s) = f(θ̃(s)).

An equation is a pair of terms (s, t), usually written as s ≈ t, and s ≈ t is valid in a bam

A (notation: A ² s ≈ t) if for all assignments θ, θ̃(s) = θ̃(t). If K is a class of bams, then
s ≈ t is valid on K (notation: K ² s ≈ t) if s ≈ t is valid in all A ∈ K. Furthermore, we denote
the equational theory of K by EqTh(K) = {s ≈ t | A ² s ≈ t, for all A ∈ K}.

For a set of formulas Γ, we use the notation Γ≈ for the set of equations {ϕ ≈ > | ϕ ∈ Γ}.
If Σ is a set of equations, then we denote the class of bams in which all equations in Σ are
valid, with VΣ. By Birkhoff’s theorem, VΣ is a variety. In particular, when Λ is a monotonic
logic, then VΛ denotes the variety of bams in which Λ≈ is valid.

Furthermore, we will denote the dual Stone space of a bam A by SA = (UfA, τ), where τ
is the topology generated by the clopen basis consisting of the subsets of UfA which are of
the form {u ∈ UfA | a ∈ u} for a ∈ A.

Since we will restrict ourselves to the basic modal similarity type, “frame” should be read
as “L∇-frame” and “formula” as L∇-formula”, etc.

7.2 Algebraisation

Algebraising monotonic semantics

Given a monotonic frame we may obtain a bam in the following way.

Definition 7.1 (Complex algebra) Let F = (W, ν) be a monotonic frame.
We define F+, the (full) complex algebra of F, as F+ = (P(W ),∪,−, ∅,mν), where

(P(W ),∪,−, ∅) is the power set algebra over W , and mν is as defined in (1).
A complex algebra is a subalgebra of a full complex algebra. If K is a frame class, then

CmK denotes the class of full complex algebras of frames in K. a

In a monotonic frame F, the map mν : P(W ) → P(W ) is monotone, so it is clear that
F+ is a bam. Furthermore, since the elements of F+ are subsets of the universe of F, an
assignment in F+ is nothing but a valuation on F. This observation leads to the following
proposition.

Proposition 7.2 Let F = (W, ν) be a monotonic frame, θ an assignment in F+ (or valuation
on F), ϕ a formula and w a state in F. Then

(i) (F, θ), w ° ϕ iff w ∈ θ̃(ϕ),
(ii) F ° ϕ iff F+ ² ϕ ≈ >,
(iii) F+ ² ϕ ≈ ψ iff F ° ϕ↔ ψ.

Proof. Let F, θ, ϕ and w be as in the proposition. We prove (i) by induction on ϕ. The
atomic case holds by definition of θ̃, and the boolean cases are straightforward. For the modal
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case we have,

(F, θ), w ° ∇ϕ iff there is an X ∈ ν(w) such that for all x ∈ X: (F, θ), x ° ϕ
(IH) iff there is an X ∈ ν(w) such that for all x ∈ X: x ∈ θ̃(ϕ)

iff θ̃(ϕ) ∈ ν(w)

iff w ∈ mν(θ̃(ϕ)) = θ̃(∇ϕ).

(ii) now follows easily from (i):

F ° ϕ iff ∀θ∀w ∈W : (F, θ), w ° ϕ
iff ∀θ∀w ∈W : w ∈ θ̃(ϕ)

iff ∀θ : θ̃(ϕ) =W = θ̃(>)
iff F+ ² ϕ ≈ >.

We leave the proof of (iii) to the reader. qed

From Proposition 7.2 we immediately obtain the following theorem which states that
classes of complex algebras algebraise monotonic modal semantics.

Theorem 7.3 Let K be a class of monotonic frames, and let ϕ and ψ be formulas. Then

(i) K ° ϕ iff CmK ² ϕ ≈ >,
(ii) CmK ² ϕ ≈ ψ iff K ° ϕ↔ ψ.

Theorem 7.3 thus tells us that the modal logic ΛK of a class of monotonic frames K may
be identified with the equational theory of the class of complex algebras CmK, that is, the
set of equations EqTh(CmK) = {s ≈ t | F+ ² s ≈ t, for all F ∈ K}.

Algebraising monotonic axiomatics

The algebraisation of monotonic modal axiomatics is also completely analogous to the case
of normal modal logic. Given a set of propositional variables Φ and a monotonic modal logic
Λ, we define the binary relation ≡Λ on formulas by

ϕ ≡Λ ψ iff `Λ ϕ↔ ψ.

Then it is easy to show that ≡Λ is an equivalence relation on the term algebra Ter(Φ).
Let [ϕ] denote the equivalence class of ϕ under ≡Λ, and let Ter(Φ)/ ≡Λ denote the set of
all equivalence classes under ≡Λ. To see that ≡Λ is also a congruence relation, we should
check that if [ϕ1] = [ϕ2] and [ψ1] = [ψ2], then [¬ϕ1] = [¬ϕ2], [ϕ1 ∨ ψ1] = [ϕ2 ∨ ψ2] and
[∇ϕ1] = [∇ϕ2]. The first two properties follow from propositional logic, and the property
concerning the modality follows from the fact that a monotonic logic is also classical, i.e.,
closed under the rule

(RE∇)
ϕ↔ ψ

∇ϕ↔ ∇ψ

The Lindenbaum-Tarski algebra of Λ over the set of generators Φ, is defined as the structure

LΛ(Φ) = (Ter(Φ)/≡Λ,+,−, 0, f∇)(23)



7 ALGEBRA 49

where

0 := [⊥],
[ϕ] + [ψ] := [ϕ ∨ ψ],

−[ϕ] := [¬ϕ],
f∇([ϕ]) := [∇ϕ].

The operations +,−, f∇ are well-defined since ≡Λ is a congruence relation. Furthermore,
for any monotonic logic Λ and any Φ, LΛ(Φ) is a bam. It is easy to check that LΛ(Φ) is a
boolean algebra expansion. To see that f∇ is monotone, let [ϕ], [ψ] ∈ Ter(Φ)/≡Λ and assume
that [ϕ] ≤ [ψ] in LΛ(Φ). That means, −[ϕ] + [ψ] = [ϕ→ ψ] = [>], so by definition of ≡Λ,
`Λ (ϕ→ ψ)↔ > which implies `Λ ϕ→ ψ. Applying the monotonicity rule RM∇, we obtain
`Λ ∇ϕ → ∇ψ, from which it follows that `Λ (∇ϕ → ∇ψ) ↔ >, and hence [∇ϕ] ≤ [∇ψ]. It
now follows from the definition of f∇ that f∇([ϕ]) ≤ f∇([ψ]) .

From the perspective of universal algebra, LΛ(Φ) is the VΛ-free algebra over Φ/≡Λ, and
as is well-known, free algebras only depend on the cardinality of the set of generators Φ.
But more importantly in the current context, the Lindenbaum-Tarski algebra of a monotonic
modal logic Λ is a canonical algebraic model in the following sense.

Theorem 7.4 Let Λ be a monotonic logic, let ϕ be a formula and Φ a set of propositional
variables with cardinality at least that of fv(ϕ). Then

`Λ ϕ iff LΛ(Φ) ² ϕ ≈ >.

Proof. This theorem is shown in the same way as Proposition 5.14 of Blackburn et alii [6],
and we leave out the details. qed

It should now be clear that the Lindenbaum-Tarski algebra of a monotonic logic Λ is in the
variety VΛ defined by Λ, and the following theorem is immediate.

Theorem 7.5 (Algebraic completeness) Let Λ be a monotonic logic. Then Λ is sound
and complete with respect to VΛ, that is, for all formulas ϕ, we have

`Λ ϕ iff VΛ ² ϕ ≈ >.

Proof. The soundness direction is clear by the definition of VΛ. Completeness follows from
Theorem 7.4 and the fact that LΛ(Φ) ∈ VΛ. For suppose 0Λ ϕ, then by Theorem 7.4, we
have LΛ(Φ) 2 ϕ ≈ > where Φ is a set of propositional variables of cardinality at least that of
fv(ϕ). Now since LΛ(Φ) belongs to VΛ, it follows that VΛ 2 ϕ ≈ >. qed

Remark 7.6 For a set of axioms Σ, we have VM.Σ = VΣ. The inclusion from left to right is
trivial, and the other inclusion may easily be shown by induction on the length of proofs in
M.Σ. Thus if Λ =M.Σ, then the equivalence in Theorem 7.5 may also be stated as

`M.Σ ϕ iff VΣ ² ϕ ≈ >.

Theorem 7.5 tells us that any monotonic logic is complete with respect to the class of
bams it defines, and this is in sharp contrast with the situation for frame completeness. Now,
we would like to transform this abstract completeness result into a result which will provide
us with an algebraic approach to proving frame completeness. First, completely analogous to
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the case for normal modal logic, a bam-variety V is said to be complete if V is generated by
full complex algebras, that is, V = HSPCmK for some frame class K, and we have

Λ = ΛK iff VΛ = HSPCmK.(24)

In other words, a monotonic logic Λ is complete iff VΛ is complete.
We should point out that the above notion of completeness is with respect to neighbour-

hood semantics. Usually, a bao-variety is said to be complete if it is generated by full complex
algebras of Kripke frames. In our setting we view baos as a special kind of bams, thus even
if V is a bao-variety, we will say that V is complete if it is generated by full complex algebras
of monotonic frames. In particular, if Λ is a normal modal logic, then Λ is complete with
respect to neighbourhood semantics iff VΛ is generated by full complex algebras which satisfy
f(1) = 1 and f(a·b) = f(a)·f(b). But Λ is complete with respect to Kripke semantics iff VΛ is
generated by full complex algebras in which f(1) = 1, and f distributes over arbitrary meets
(which is the case in all complex algebras of Kripke frames). See also Kracht and Wolter [44].
In our terminology, a normal modal logic will be called complete if it is complete with respect
to neighbourhood semantics.

Suppose we want to use (24) to show that Λ is complete with respect to the class K of
Λ-frames. Then Λ ⊆ ΛK holds trivially, so we only need VΛ ⊆ HSPCmK, since then

ϕ ∈ ΛK ⇒ HSPCmK ² ϕ ≈ >
⇒ VΛ ² ϕ ≈ >
⇒ LΛ(Φ) ² ϕ ≈ >
⇒ ϕ ∈ Λ.

But how should we show VΛ ⊆ HSPCmK ? This is where the algebraic notion of canonicity
becomes relevant. The approach taken in Blackburn et alii [6] for normal modal logic is to
use the representation theorem by Jónsson and Tarski [39] which shows that any bao A is a
subalgebra of the full complex algebra of its ultrafilter frame A+. The result then follows by
showing that Λ is valid on A+, or equivalently, that (A+)+ belongs to VΛ. In [6], (A+)+ is
referred to as EmA, the canonical embedding algebra of A, thus the question becomes, which
varieties are closed under taking canonical embedding algebras.

Here we will essentially do the same, but instead of defining EmA in terms of A+, we
will start by defining EmA and derive our definition of A+ from there. The reason for this
somewhat roundabout approach is that it allows us to describe EmA using the theory of
canonical extensions, and in what follows, we will therefore use the term canonical extension
instead of canonical embedding algebra.

7.3 Canonical Extensions

The study of canonical extensions originated with Jónsson and Tarski [39], where, among
other things, it was shown that every bao has a canonical extension which is unique up
to isomorphism, and that the validity of certain types of equations is preserved under tak-
ing canonical extensions. More recently, Gehrke, Jónsson and others [38, 23, 24, 25] have
generalised these results to various types of lattice expansions.

The subject of canonical extensions of bams falls in between the work of [39](baos) and
[24](distributive bounded lattices expanded with monotone functions). This is very conve-
nient, since it means that most of the results we need have already been shown, albeit in a
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slightly different context. The general approach when defining the canonical extension of an
algebra expansion is to first consider the boolean or lattice structure, and then define the
extension of the added functions. We refer to [39, 38, 23, 24] for the following definitions and
results.

Definition 7.7 A canonical extension of a boolean algebra A is a complete and atomic
boolean algebra Aσ which contains A as a subalgebra such that the following conditions
hold.

(density) Every atom of Aσ is a meet of elements of A.
(compactness) Every subset of A whose join in Aσ is 1 has a finite subset

whose join is also 1.

a

One way of obtaining a canonical extension of a boolean algebra is by way of the Stone
representation theorem (as we will see in a moment). Thus canonical extensions exist. Fur-
thermore, the requirements in Definition 7.7 are enough to guarantee the following for any
boolean algebras A and B, and any canonical extensions Aσ and Bσ of A and B.

• If h : A → B is an isomorphism, then there is an isomorphism g : Aσ → Bσ such that
g¹A= h. Thus canonical extensions are unique up to isomorphism.

• Every element of Aσ is a join of meets of elements of A.

• Every element of Aσ is a meet of joins of elements of A.

The first item above tells us that we do not have to worry about the exact details of
the representation, and we will therefore speak of ‘the’ canonical extension. However, in
order to make the present exposition less abstract and more familiar (especially to readers of
Blackburn et alii [6]), we will use the Stone representation explicitly. That is, for a boolean
algebra A = (A,+,−, 0), the canonical extension is Aσ = (P(UfA),∪, \, ∅), where P(UfA) is
the powerset of the set of all ultrafilters of A, and the map ·̂ : A→ Aσ defined by

â = {u ∈ UfA | a ∈ u}(25)

is a boolean embedding of A into Aσ. Strictly speaking, (P(UfA),∪, \, ∅) is the canonical
extension of the image Â of A under the map ·̂, but due to the equivalence modulo isomor-
phism, we may think of (P(UfA),∪, \, ∅) as the canonical extension of A. In the following,
the notation â will always stand for an element of Â.

Recall that the elements of Â form a clopen basis of the dual Stone space SA of A. Thus
using Stone duality, it is natural that we refer to elements of Â, the meet closure K(Aσ) and
the join closure O(Aσ) of Aσ as the clopen, closed, respectively open, elements of Aσ.

We now know how to extend the boolean part of a bam. In order to extend the entire
structure of a bam A = (BlA, f), we may clearly think of f as a monotone function from the
boolean algebra BlA to itself. We can therefore define the extension of f in the slightly more
general setting of extending a function f , where f is a monotone map from a boolean algebra
A to a boolean algebra B, to a function from Aσ to Bσ.

Since Aσ is join generated by K(Aσ) as well as meet generated by O(Aσ), and similarly
for Bσ, this leads to two (dual) ways of extending a function f : A→ B.
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Definition 7.8 (Extending maps) Let A and B be boolean algebras, and f : A → B a
monotone function. Then we define fσ, fπ : P(UfA)→ P(Uf B) by

fσ(X) =
⋃

K(Aσ)3C⊆X

⋂

C⊆â

f̂(a).

fπ(X) =
⋂

X⊆O∈O(Aσ)

⋃

â⊆O

f̂(a).

a

For clopen, closed and open elements of Aσ, Definition 7.8 reduces to the following.

fσ(â) = fπ(â) = f̂(a), for all clopens â ∈ Â.(26)

fσ(C) =
⋂

C⊆â

f̂(a), for all closed C ∈ K(Aσ).(27)

fπ(O) =
⋃

â⊆O

f̂(a), for all open O ∈ O(Aσ).(28)

It can be shown that fσ and fπ are monotone, agree on closed, as well as on open
elements, and both functions map closed elements to closed elements, and open elements to
open elements. In general, fσ and fπ will be different, but if fσ = fπ then f is called smooth.
For a more detailed treatment of fσ and fπ, we refer to [39, 24] and subsection 7.6.

We are now ready to define canonical extensions for bams.

Definition 7.9 (Canonical extensions) Let A be a bam. Then we define the σ-canonical
extension of A by

Aσ = ((BlA)σ, fσ),

and the π-canonical extension of A by

Aπ = ((BlA)σ, fπ). a

The above canonical extensions clearly satisfy the (density) and (compactness) conditions
from Definition 7.7, since these are properties of the underlying boolean algebras. Moreover,
fσ and fπ have been defined in such a way that their restriction to Â in Aσ, respectively Aπ,
is the image of f under the Stone representation map. This is the essence of the following
proposition.

Proposition 7.10 Let A be a bam, and let B be either the σ-canonical extension or the
π-canonical extension of A. Then A is isomorphic to a subalgebra of B.

Proof. The Stone representation map r : a 7→ â is an embedding of BlA into (BlA)σ.
From (26), it is clear that r is also bae-homomorphism, that is, r(f(a)) = f σ(r(a)) and
r(f(a)) = fπ(r(a)). Hence r is an embedding of A into both Aσ and Aπ. qed

Returning to our discussion on completeness, we recall that for a monotonic logic Λ, the
variety VΛ is complete if VΛ is closed undere taking canonical extensions. Since we have two
ways of defining canonical extensions, we also have two kinds of canonicity.
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Definition 7.11 (Canonicity) A formula ϕ is σ-canonical (π-canonical) if the validity of
ϕ ≈ > is preserved under taking σ-canonical extensions (π-canonical extensions). That is, if
A ² ϕ ≈ > then Aσ ² ϕ ≈ > (Aπ ² ϕ ≈ >). A class K of bams is σ-canonical (π-canonical)
if K is closed under taking σ-canonical extensions (π-canonical extensions). That is, if A ∈ K

then Aσ ∈ K (Aπ ∈ K). A monotonic logic Λ is σ-canonical (π-canonical) if the variety VΛ
defined by Λ is σ-canonical (π-canonical). a

It may well be that a variety is σ-canonical, but not π-canonical, or vice versa. As easy
examples of varieties which are both σ-canonical and π-canonical, we list the following.

Theorem 7.12 The following bam-varieties are both σ-canonical and π-canonical:
VM = the variety of all bams,
VN = the variety of bams validating f(1) ≈ 1,
VP = the variety of bams validating f(0) ≈ 0,
VT = the variety of bams validating f(x) ≤ x.

Proof. Throughout the proof, A = (A,+,−, 0, f) is a bam, Aσ = (P(UfA),∪, \, ∅, fσ) is the
σ-canonical extension of A, and Aπ = (P(UfA),∪, \, ∅, fπ) is the π-canonical extension of A.
VM : When A is a bam, then Aσ and Aπ are clearly also bams, since fσ and fπ are monotone.
VN: Assume that A ∈ VN, i.e., f(1) = 1. We must show that fσ(UfA) = UfA and fπ(UfA) =
UfA. For fσ, we have fσ(UfA) = fσ(1̂) = f̂(1) = 1̂ = UfA. The case for fπ is shown in the
same manner.
VP : Assume that A ∈ VP, i.e., f(0) = 0. We must show that fσ(∅) = ∅ and fπ(∅) = ∅.
The proof is just as simple as the previous one, and we only show the case for f π. We have

fπ(∅) = fπ(0̂) = f̂(0) = 0̂ = ∅.
VT : Assume that A ∈ VT, i.e., ∀a ∈ A : f(a) ≤ a. For fσ, we must show that for all
X ⊆ UfA : fσ(X) ⊆ X. We have

u ∈ fσ(X) =
⋃

K(A)3C⊆X

⋂

C⊆â

f̂(a)

⇐⇒ ∃C ∈ K(A) : C ⊆ X and ∀â ⊇ C : f(a) ∈ u
(f(a)≤a, u∈Uf A) =⇒ ∃C ∈ K(A) : C ⊆ X and ∀â ⊇ C : a ∈ u

⇐⇒ u ∈
⋃

K(A)3C⊆X

⋂

C⊆â

â = X.

The case for fπ is shown similarly. qed

Theorem 7.13 The following monotonic modal logics are both σ-canonical and π-canonical:

M,
M.N = M.{∇>},
M.P = M.{¬∇⊥},
M.T = M.{∇p→ p}.

We will take the notion of σ-canonicity to be our default, thus “canonical” will mean
“σ-canonical”. But in subsection 7.6 we will return to the dual relationship between the two
notions of canonicity, and look closer at the connection with the duality between ∇ and ∆.
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7.4 Basic Duality Theory

Duality theory in modal logic is concerned with the relationships between the frame based
semantics and the algebraic or topological semantics. Frame semantics are often preferred
due to their intuitive character, or simply because we have an application driven interest
in describing certain structures. However, the level of abstraction provided by looking at
problems from an algebraic angle may often be beneficial, and in some cases, we are able
to give very short and elegant algebraic proofs of results whose frame theoretic proofs are
rather long-winded. An example hereof, is the so-called Goldblatt-Thomason theorem, see
e.g. Blackburn et alii [6], and we will also give a simple proof of our analogue, Theorem 5.4,
by using the duality results of the present subsection.

In normal modal logic, duality theory is a well-studied field [67, 29, 30, 61, 31, 43]. But
for non-normal modal logic, the only paper known to us so far which treats duality between
neighbourhood semantics and baes is Došen [18]. Although many of Došen’s results easily
adapt to monotonic frames and bams, the duality we are interested in here is slightly more
general. See Remarks 7.24 and 7.40 below for comments on how our duality relates to that
of [18].

Some basic categorical concepts

We will not make extensive use of category theory in our treatment, but since duality is
essentially a category theoretical notion, we will make the basic categorical content of our
results explicit. In the interest of self-containment, we list the relevant definitions below. For
more details, we refer to [47, 43].

A category is a structure C = (Ob,Mor, dom, cod, ◦, id) where Ob is called the class of
objects; Mor the class of morphisms; dom, cod : Mor → Ob assign a domain and codomain to
each morphism; ◦ : Mor×Mor → Mor assigns the composition of a suitable pair of morphisms,
and id : Ob → Mor assigns to each object A its identity morphism idA. We write f : A→ B
to state that f is a morphism with domain A and codomain B. There are a number of natural
requirements which must also be satisfied:

• For f, g ∈ Mor, f ◦ g is defined iff cod(g) = dom(f),

• For A ∈ Ob, dom(idA) = cod(idA) = A,

• If f : A→ B, then f ◦ idA = f and idB ◦ f = f ,

• If f : A→ B, g : B → C and h : C → D, then h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Let C and D be two categories, and F a map from the objects of C to the objects of
D, as well as a map from the morphisms of C to the morphisms of D. Then F is called a
contravariant functor if for all objects A and morphisms f and g of C,

(Contra) F (cod(f)) = dom(F (f)) and F (dom(f)) = cod(F (f)),
(Comp) F (g ◦ f) = F (f) ◦ F (g),
(Id) F (idA) = idF (A).

Two categories C and D are dually equivalent if there exist contravariant functors F : C →
D and G : D → C such that for all objects A of C we have A ∼= G(F (A)), and all objects B
of D we have B ∼= F (G(B)).
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Duality for monotonic frames

Let MF be the category of monotonic frames with bounded morphisms, and let BAM be the
category of bams with bae-homomorphisms. The map (·)+ which sends a monotonic frame
to its full complex algebra, is thus a map from the objects of MF to the objects of BAM. In
the other direction, given a bam A we will define the ultrafilter frame A+ of A as a monotonic
frame such that Aσ = (A+)+. Using the representation of bams via Stone duality, where
Aσ = (P(UfA),∪, \, ∅, fσ), we are lead immediately to the following definition.

Definition 7.14 (Ultrafilter frame) Let A = (A,+,−, 0, f) be a bam. We define the
ultrafilter frame of A by A+ = (UfA, νf ) where UfA is the set of ultrafilters of A, and for all
u ∈ UfA, X ⊆ UfA:

X ∈ νf (u) iff u ∈ fσ(X).(29)

a

From Definition 7.14, it is clear that A+ is a monotonic frame and Aσ = (A+)+. For the
different types of elements of P(UfA), (29) reduces to the following:

â ∈ νf (u)⇔ f(a) ∈ u, for all clopens â ∈ Â.(30)

C ∈ νf (u)⇔ ∀a ∈ A : C ⊆ â→ f(a) ∈ u, for all closed C ∈ K(Aσ).(31)

X ∈ νf (u)⇔ ∃C ∈ K(Aσ) : C ⊆ X & C ∈ νf (u), for arbitrary X ∈ P(UfA).(32)

Remark 7.15 The three stages in the definition of νf should look familiar by now, and if we
recall the definition of νue in the ultrafilter extension of a monotonic frame F (Definition 4.34
on pg. 30), then we see that ueF = (F+)+.

Also recall Definition 6.2 of the canonical frame FΛ = (WΛ, νΛ) and the definition of
the Lindenbaum-Tarski algebra LΛ(Φ) = (Ter(Φ)/ ≡Λ,+,−, 0, f∇) of a monotonic logic Λ
for some countably infinite set of proposition letters Φ. Let L denote Ter(Φ)/ ≡Λ. It is
well-known that the map θ :WΛ → P(L) defined by

θ(Γ) = {[ϕ] | ϕ ∈ Γ}(33)

is a bijection between maximal Λ-consistent sets and ultrafilters of LΛ(Φ), and it is a straight-
forward, but labourious, task to show that FΛ(Φ) ∼= (LΛ(Φ))+. Due to Proposition 7.2, it is
thus clear that if Λ is a canonical monotonic modal logic, then FΛ(Φ) ° Λ. But as we have
mentioned already, the question of whether FΛ(Φ) ° Λ implies that Λ is canonical, in the
sense of Definition 7.11, is still an open problem.

We have now defined the maps (·)+ and (·)+ on the objects of the two categories MF and
BAM, but we still need to define (·)+ and (·)+ on the morphisms.

Definition 7.16 (Lifting morphisms) If F = (W, ν) and F′ = (W ′, ν ′) are monotonic
frames, and ϑ is a map from W to W ′, then we define the lift of ϑ to complex algebras,
ϑ+ : P(W ′)→ P(W ), as

ϑ+(X ′) := ϑ−1[X ′] = {x ∈W | ϑ(x) ∈ X ′}(34)
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If A = (A,+,−, 0, f) and A′ = (A′,+,−, 0, f ′) are bams, and η : A → A′ a map from A to
A′, then we define the lift of η to ultrafilters, η+ : UfA′ → P(A) as

η+(u
′) := η−1[u′] = {a ∈ A | η(a) ∈ u′}(35) a

It can easily be checked that when η : A→ A′ is a boolean homomorphism, then

(η+)
+ = ησ : Aσ → A′σ.(36)

We will now show that (·)+ and (·)+ are indeed maps between the morphisms of MF and
BAM.

Proposition 7.17 Let F and F′ be monotonic frames, and ϑ : F→ F′ a bounded morphism.
Then the following hold:

(i) ϑ+ is a bae-homomorphism from F+ to F′+.
(ii) If ϑ is injective, then ϑ+ is surjective.
(iii) If ϑ is surjective, then ϑ+ is injective.

Proof. Let F = (W, ν) and F′ = (W ′, ν ′) and ϑ be as above. For the proof of (i), we leave
out the details regarding the boolean part, which are standard. It remains to show that ϑ
satisfies: mν(ϑ

+(X ′)) = ϑ+(mν′(X
′)):

x ∈ ϑ+(mν′(X
′)) iff ϑ(x) ∈ mν′(X

′)
iff X ′ ∈ ν ′(ϑ(x))

(Remark 4.4) iff ϑ+(X ′) ∈ ν(x)
iff x ∈ mν(ϑ

+(X ′)).

The proofs of (ii) and (iii) are standard, and basically follow from the fact that ϑ+(ϑ[X]) =
ϑ−1[ϑ[X]] = X when ϑ is injective, and ϑ[ϑ+(X ′)] = ϑ[ϑ−1[X ′]] = X ′ when ϑ is surjective.
We leave out the details. qed

For the next proposition, we will need the following lemma.

Lemma 7.18 Let A = (A,+,−, 0, f) be a bam and D a downwards directed set of closed
sets in SA. Then

fσ(
⋂

d∈D

d) =
⋂

d∈D

fσ(d).

Proof. Let C =
⋂

d∈D d, then C is closed and fσ(C) =
⋂

C⊆â f
σ(â). For the inclusion “⊆”,

assume u ∈ fσ(C). We must show that

∀d ∈ D : u ∈ fσ(d) =
⋂

d⊆b̂

fσ (̂b).

So take an arbitrary d ∈ D and an arbitrary b such that d ⊆ b̂. From C ⊆ d ⊆ b̂, it follows
from the monotonicity of fσ and the assumption, u ∈ fσ(C), that u ∈ fσ (̂b).

We will show the other inclusion “⊇” by contraposition. So assume there is an a0 ∈ A
such that C ⊆ â0 and u /∈ fσ(â0). We must now find a d ∈ D such that u /∈ fσ(d).
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Claim 2 There is a d0 ∈ D such that d0 ⊆ â0.

Proof of Claim From C =
⋂

d∈D d ⊆ â0 it follows that

−
⋂

d∈D

d =
⋃

d∈D

−d ⊇ −̂a0.

So {−d | d ∈ D} is an open covering of −̂a0. In Stone spaces, closed sets are compact,
hence by compactness of −̂a0, there is a D0 ⊆ω D such that

⋃
d∈D0

−d ⊇ −̂a0 and we have⋂
d∈D0

d ⊆ â0. By assumption D is downwards directed, so there is a d0 ∈ D such that
d0 ⊆

⋂
d∈D0

d ⊆ a0 J

From the claim and the monotonicity of fσ, we obtain that fσ(d0) ⊆ fσ(â0), and since
u /∈ fσ(â0) we may conclude that u /∈ fσ(d0). qed

Proposition 7.19 Let A, A′ be bams and η : A → A′ a bae-homomorphism. Then the
following hold:

(i) η+ maps ultrafilters to ultrafilters.
(ii) η+ is a continuous map from SA′ to SA.
(iii) η+ is a bounded morphism from A+ to A′+.
(iv) If η is injective, then η+ is surjective.
(v) If η is surjective, then η+ is injective.

Proof. Let A = (A,+,−, 1, f) and A′ = (A′,+,−, 1, f ′) and η be as in the assumption of the
proposition.

To prove (i) and (ii), we only need η to be a boolean homomorphism. The proof of (i)
is standard, and we leave out the details. Thus η+ : UfA′ → UfA. In order to prove (ii), it
suffices to prove that η−1+ [C] is closed in SA′ if C is closed in SA, but this follows from the
observation that η−1+ [C] = (η+)

+(C) = ησ(C) (36), and the fact that ησ maps closed sets to
closed sets. In particular, we have for an arbitrary closed C ⊆ UfA:

η−1+ [C] =
⋂

C⊆â

η̂(a),(37)

For (iii), we will start by proving that η+ satisfies the (BM1) condition of Definition 4.3. So
assume that u′ ∈ UfA′ and UfA′ ⊇ X ′ ∈ νf ′(u

′). In order to show that η+[X
′] ∈ νf (η+(u

′)),
we need a closed C ⊆ η+[X

′] such that C ∈ νf (η+(u
′)). By definition of νf ′ there is a closed

C ′ ⊆ X ′ such that C ′ ∈ νf ′(u
′). Take C = η+[C

′], then clearly C ⊆ η+[X
′] since C ′ ⊆ X ′.

Claim 1 η+[C
′] is closed in SA whenever C ′ is closed in SA′ .

Proof of Claim Suppose that C ′ is closed in SA′ . Since Stone spaces are compact and
Hausdorff, we only need to prove that η+[C

′] is compact. Suppose {âi | i ∈ I} is a covering
of η+[C

′].

η+[C
′] ⊆

⋃
i∈I âi iff ∀u ∈ C ′ ∃i ∈ I : η+(u) ∈ âi iff

∀u ∈ C ′ ∃i ∈ I : u ∈ η̂(ai) iff C ′ ⊆
⋃

i∈I η̂(ai)

C ′ is compact, since SA′ is compact and C ′ closed. Hence there is a finite I0 ⊆ω I such that

C ′ ⊆
⋃

i∈I0
η̂(ai), and it follows that η+[C

′] ⊆
⋃

i∈I0
âi, i.e., η+[C

′] is compact. J



7 ALGEBRA 58

By the above claim, C = η+[C
′] is closed in SA. It remains to prove that C ∈ νf (η+(u

′)),
that is, ∀a ∈ A : η+[C

′] ⊆ â→ f(a) ∈ η+(u
′). We have

η+[C
′] ⊆ â iff ∀v′ ∈ C ′ : a ∈ η+(v

′) iff ∀v′ ∈ C ′ : η(a) ∈ v′ iff C ′ ⊆ η̂(a),

which together with C ′ ∈ νf ′(u
′) implies that if η+[C

′] ⊆ â, then η̂(a) ∈ νf ′(u
′). By the defini-

tion of νf ′ this means that f ′(η(a)) ∈ u′, and since we assumed that η is a bae-homomorphism,
we get η(f(a)) ∈ u′ and hence f(a) ∈ η+(u

′).
For the (BM2) condition, assume X ∈ νf (η+(u

′)), i.e., there is a closed C ⊆ X such that
C ∈ νf (η+(u

′)). It suffices to find a closed C ′ ⊆ UfA′ such that η+[C
′] ⊆ C and C ′ ∈ νf ′(u

′).
Take C ′ = {u′ ∈ UfA′ | η+(u′) ∈ C}, then clearly η+[C

′] ⊆ C, and since η+ is continuous by
(ii), we have that C ′ is closed. C ′ ∈ νf ′(u

′) follows from C ∈ νf (η+(u
′)) and the following

equivalences:

C ∈ νf (η+(u
′)) iff ∀a ∈ A : C ⊆ â→ f(a) ∈ η+(u

′)
iff ∀a ∈ A : C ⊆ â→ η(f(a)) ∈ u′

(η is a bae-hom.) iff ∀a ∈ A : C ⊆ â→ f ′(η(a)) ∈ u′

iff u′ ∈
⋂

C⊆â
̂f ′(η(a)) =

⋂
C⊆â f

′σ(η̂(a))

(Lemma 7.18) iff u′ ∈ f ′σ(
⋂

C⊆â η̂(a))

(37) iff u′ ∈ f ′σ(C ′)
iff C ′ ∈ νf ′(u

′).

The proof of (iv) and (v) is identical to that of the normal bao case in Proposition 5.52
in Blackburn et alii [6]. qed

Proposition 7.20 (·)+ is a contravariant functor from MF to BAM, and (·)+ is a contravari-
ant functor from BAM to MF.

Proof. Contravariance is in both cases clear. To see that (·)+ is a functor from MF to BAM,
it only remains to show that (·)+ satisfies (Comp) and (Id). In order to prove (Comp), let
F1,F2 and F3 be monotonic frames, ϑ1 : F1 → F2, ϑ2 : F2 → F3 bounded morphisms and
assume that X is a subset of the universe of F3. Then,

x ∈ (ϑ2 ◦ ϑ1)
+(X) ⇐⇒ ϑ2 ◦ ϑ1(x) ∈ X ⇐⇒ ϑ1(x) ∈ ϑ

+(X) ⇐⇒ x ∈ ϑ+1 ◦ ϑ
+
2 (X).

Hence (ϑ2 ◦ ϑ1)
+ = ϑ+1 ◦ ϑ

+
2 .

To prove (Id), let F = (W, ν) be a monotonic frame, then idF : F→ F, and for X ⊆W ,

(idF)
+(X) = {x ∈W | idF(x) ∈ X} = X,

hence (idF)
+ = idF+ .

The proof for (·)+ is similar. qed

We can now summarise the results of Propositions 7.17 and 7.19 in terms of duality
between frame constructions and algebraic notions. First, we recall (or define) the following
notation for relations between structures.

Let F1 and F2 be two monotonic frames, and let A1 and A2 be two bams. Then we write

• F1½ F2 for F1 is isomorphic to a generated subframe of F2,
• F1 ³ F2 for F2 is a bounded morphic image of F1,
• A1½ A2 for A1 is isomorphic to a subalgebra of A2,
• A1 ³ A2 for A2 is a homomorphic image of A1.
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Theorem 7.21 (Basic duality for monotonic frames) Let F1 and F2 be two monotonic
frames, and let A1 and A2 be two bams. Then we have

(i) If F1½ F2, then F+2 ³ F+1 ,
(ii) If F1 ³ F2, then F+2 ½ F+1 ,
(iii) If A1½ A2, then A2+ ³ A1+,
(iv) If A1 ³ A2, then A2+½ A1+.

Proof. Follows from Propositions 7.17 and 7.19 above. qed

The following proposition states that the algebraic notion of direct product is the dual
notion of disjoint unions of frames.

Proposition 7.22 Let Fi = (Wi, νi), i ∈ I, be a collection of disjoint frames. Then

(⊎

i∈I

Fi

)+
∼=
∏

i∈I

F+i .

Proof. Let F = (
⊎

i∈I Wi, ν) =
⊎

i∈I Fi, then

F+ = (P(
⊎

i∈I

Wi),+,−, 0, f).

Let

F+i = (P(Wi),+,−, 0, fi)

and
∏

i∈I

F+i = (
∏

i∈I

P(Wi),+,−, 0, f
′).

Note that for X = (Xi)i∈I ∈
∏

i∈I P(Wi):

f ′(X) = (fi(Xi))i∈I .

Define the map

η : P(
⊎

i∈I Wi) →
∏

i∈I P(Wi)
X 7→ (X ∩Wi)i∈I

We claim that η is the desired isomorphism.
Injectivity: LetX,Y ⊆

⊎
i∈I Wi and suppose η(X) = η(Y ). Then ∀i ∈ I : X∩Wi = Y ∩Wi.

Since X =
⊎

i∈I X ∩Wi and Y =
⊎

i∈I Y ∩Wi, it follows that X = Y .
Surjectivity: Let (Yi)i∈I ∈

∏
i∈I P(Wi), we then need an X ⊆

⊎
i∈I Wi such that ∀i ∈ I :

X ∩Wi = Yi. But X is easily obtained by taking X =
⊎

i∈I Yi.
Homomorphism: We need to show for X ⊆

⊎
i∈I Wi that η(f(X)) = f ′(η(X)). We have,

f(X) = mν(X) = {x ∈
⊎

i∈I

Wi | X ∈ ν(x)}.
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By Definition 4.1 we have for xi ∈Wi,

X ∈ ν(xi) iff X ∩Wi ∈ νi(xi).

Products are defined coordinatewise, so it suffices to show that for all i ∈ I,

f(X) ∩Wi = η(f(X))(i) = f ′(η(X))(i) = fi(X ∩Wi).

We have,

x ∈ f(X) ∩Wi iff x ∈Wi & X ∩Wi ∈ νi(x)
iff x ∈ fi(X ∩Wi).

qed

The results on preservation of frame validity in Proposition 5.3 can now be proved as
simple consequences of the above duality results, and the fact that equational validity is
preserved under the formation of subalgebras, homomorphic images and direct products of
algebras. We leave it to the reader to work out the details, and instead we move on to the
proof of Theorem 5.4, which we restate here.

Theorem 7.23 (Monotonic frame definability) Let K be a class of monotonic frames
which is closed under taking ultrafilter extensions. Then K is modally definable iff K is closed
under disjoint unions, generated subframes and bounded morphic images, and reflects ultra-
filter extensions.

Proof. The direction from left to right follows from the previous results on preservation of
validity in Proposition 5.3. For the other direction, we will show that if K has the mentioned
closure properties, then Th(K) defines K. So assume F ° Th(K), we must then show that
F ∈ K. From F ° Th(K) it follows that F+ ² EqTh(CmK), and by Birkhoff’s theorem,
F+ ∈ HSPCmK. Hence there is a collection Bi, i ∈ I, of frames in K and a bam A such that:

F+ ´ A½
∏

i∈I

B+i ∼=

(⊎

i∈I

Bi

)+
,

using Proposition 7.22. Let B =
⊎

i∈I Bi, then by the assumption that K is closed under
disjoint unions, B ∈ K. Now apply the duality results from Propositions 7.17 and 7.19:

ueF = (F+)+½ A+ ´ (B+)+ = ueB

Since we assumed K is closed under taking ultrafilter extensions, ueB ∈ K. Closure of K under
bounded morphic images yields A+ ∈ K, and closure under generated subframes implies that
ueF ∈ K. Finally, since K reflects ultrafilter extensions, we may conclude that F ∈ K. qed

Remark 7.24 It should perhaps be pointed out that we have not shown that the categories
MF and BAM are dually equivalent via the functors (·)+ and (·)+, since A À (A+)+ = Aσ and
F À (F+)+ = ueF, for F with infinitely many states. In [18], Došen shows that the category
of complete, atomic baes with complete bae-homomorphisms is dually equivalent with the
category of neighbourhood frames with bounded morphisms by taking atom structure when
going from algebras to frames. This result easily adapts to the monotonic case, but fits less
nicely into our context where we wish to be able to obtain a frame from a bam even if the
bam is not atomic. This is necessary when describing the canonical extension of an arbitrary
bam A as (A+)+. Our way of obtaining A+ is, actually, the same as taking the atom structure
of Aσ.
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7.5 Full Duality for General Monotonic Frames

As we already know, general frames are structures which bring together frames and alge-
bras, and we will now extend our constructions of the previous subsection to general frames.
In the duality theory of normal modal logic, Goldblatt [29, 31] introduced the notion of
descriptive general Kripke frames to obtain full duality for the category of baos and bao-
homomorphisms. Below we will define a notion of descriptiveness for general monotonic
frames for the same purpose. That is, we will show that BAM is dually equivalent with the
category of descriptive general monotonic frames (Theorem 7.36).

We start by defining maps which take general frames to bams or monotonic frames and
back.

Definition 7.25 Let G = (W, ν,A) be a general monotonic frame, then we define the under-
lying bam of G as

G∗ = (A,∪, \, ∅,mν).

For a bam A = (A,+,−, 0, f), the general ultrafilter frame of A is defined as

A∗ = (A+, Â).

where Â = {â | a ∈ A} is the image of A under the map a 7→ â = {u ∈ UfA | a ∈ u}.
Furthermore, the underlying monotonic frame of G is defined as

G] = (W, ν),

and finally, for a monotonic frame F = (W, ν), we define the full general monotonic frame of
F as

F] = (W, ν,P(W )).

a

There are some obvious relationships between the maps (·)+, (·)
+ of the previous subsec-

tion, and the above. We list a few,

(A∗)] = A+,
((G])

])∗ = (G])
+,

(((F])∗)∗)] = F+.

We have the following analogue of Proposition 7.2.

Proposition 7.26 Let G be a general monotonic frame, and let A be a bam. Then for every
formula ϕ:

(i) G ° ϕ iff G∗ ² ϕ ≈ >,
(ii) A ² ϕ ≈ > iff A∗ ° ϕ.

Proof. Left to the reader. qed

A bounded morphism between general monotonic frames must not only preserve the un-
derlying frame structure, but also the structure of the underlying bam.
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Definition 7.27 Let G1 = (W1, ν1, A1) and G2 = (W2, ν2, A2) be two general monotonic
frames, and θ : W1 → W2 a map. Then θ is a bounded morphism between the general frames
G1 and G2 (notation: θ : G1 → G2) if θ is a bounded morphism between the monotonic
frames F1 = (W1, ν1) and F2 = (W2, ν2), and θ also satisfies the following condition,

θ−1[a2] ∈ A1 for all a2 ∈ A2.(38)

If θ is an injective bounded morphism between G1 and G2, and θ satisfies

for all a1 ∈ A1 there is an a2 ∈ A2 such that θ[a1] = θ[W1] ∩ a2,(39)

then θ is an embedding of G1 in G2 (notation: θ : G1½ G2).
G2 is called a bounded morphic image of G1 if there is a surjective bounded morphism

from G1 to G2 (notation: G1 ³ G2). Finally, G1 and G2 are isomorphic is there exists a
surjective embedding from G1 to G2. a

Lifting maps between general monotonic frames and bams is done in the same way as for
monotonic frames. More precisly, if G = (W, ν,A) and G′ = (W ′, ν ′, A′) are general monotonic
frames, and θ is a map from W to W ′, then we define θ∗ : A′ → P(W ), as

θ∗(a′) := θ−1[a′] = {x ∈W | θ(x) ∈ a′}(40)

If A = (A,+,−, 0, f) and A′ = (A′,+,−, 0, f ′) are bams, and η : A → A′ a map from A to
A′, then we define η∗ : UfA′ → P(A) as

η∗(u
′) := η−1[u′] = {a ∈ A | η(a) ∈ u′}(41)

The following propositions are now easy extensions of Propositions 7.17 and 7.19.

Proposition 7.28 Let G1 = (W1, ν1, A1) and G2 = (W2, ν2, A2) be two general monotonic
frames, and ϑ : G1 → G2 a bounded morphism. Then

(i) ϑ∗ is a bae-homomorphism from G∗2 to G∗1.
(ii) If ϑ : G1½ G2, then ϑ∗ : G∗2 ³ G∗1.
(iii) If ϑ : G1 ³ G2, then ϑ∗ : G∗2½ G∗1.

Proof. (i) and (iii) may be shown as in the proof of Proposition 7.17. For (i), note that since
ϑ is a bounded morphism between G1 and G2, then (38) ensures that ϑ∗(a2) ∈ A1,

To prove (ii), assume that ϑ is an embedding of G1 into G2. From (i) we know that ϑ∗

is a bae-homomorphism, hence we only need to show surjectivity. So let a1 ∈ A1. As ϑ is
an embedding, there is an a2 ∈ A2 such that ϑ[a1] = ϑ[W1] ∩ a2. It is now easy to show that
ϑ∗(a2) = a1:

x ∈ a1 ⇔ ϑ(x) ∈ ϑ[a1] ⇔ ϑ(x) ∈ ϑ[W1] ∩ a2 ⇔ x ∈ ϑ∗(a2).

The first equivalence follows from the injectivity of ϑ. qed

Proposition 7.29 Let A1 and A2 be two bams, and η : A1 → A2 a bae-homomorphism.
Then

(i) η∗ is a bounded morphism from A2∗ to A1∗.
(ii) If η : A1½ A2, then η∗ : A2∗ ³ A1∗.
(iii) If η : A1 ³ A2, then η∗ : A2∗½ A1∗.



7 ALGEBRA 63

Proof. Let A1 = (A1,+,−, 0, f1), A2 = (A2,+,−, 0, f2) and A1∗ = (UfA1, ν1, Â1), A2∗ =

(UfA2, ν2, Â2).
For the proof of (i), we already know from Proposition 7.19 that η∗ is a bounded morphism

between the underlying monotonic frames of A2∗ and A1∗. Hence it only remains to show

that (38) holds. But this is immediate, since for â1 ∈ Â1, η∗
−1[â1] = ησ(â1) = η̂(a1) ∈ Â2.

(ii) may be shown as in the proof of Proposition 7.19. For the proof of (iii), we only need
to show that (39) holds, since η∗ is a bounded morphism by (i), and injectivity follows as in

Proposition 7.19. So let â2 ∈ Â2. Then by the surjectivity of η there is an a1 ∈ A1 such that

η(a1) = a2, and hence η̂(a1) = â2. We will show that η∗[â2] = η∗[UfA2] ∩ â1:

u1 ∈ η∗[â2]
iff ∃u2 ∈ UfA2 : u2 ∈ â2 & η∗(u2) = u1

iff ∃u2 ∈ UfA2 : u2 ∈ η̂(a1) & η∗(u2) = u1
iff ∃u2 ∈ UfA2 : η(a1) ∈ u2 & η∗(u2) = u1
iff ∃u2 ∈ UfA2 : a1 ∈ η∗(u2) & η∗(u2) = u1
iff u1 ∈ η∗[UfA2] ∩ â1.

qed

(Comp) and (Id) are shown for (·)∗ and (·)∗ in the same easy way as for (·)+ and (·)+,
thus it is clear that (·)∗ and (·)∗ are contravariant functors between the category of general
monotonic frames with bounded morphisms and the category BAM. Before we define what
it means for a general monotonic frame to be descriptive, recall that in a general monotonic
frame G = (W, ν,A), the admissible sets A may be taken as the basis for the open sets of a
topology τA on W . We will refer to W = (W, τA) as the topological space of G, the collections
of closed and open subsets in W will be denoted by K(W) and O(W), respectively.

Definition 7.30 (Properties of general monotonic frames) LetG = (W, ν,A) be a gen-
eral monotonic frame. Then G is called

differentiated if for all w, v ∈W :

w = v iff ∀a ∈ A(w ∈ a ⇔ v ∈ a),

tight if for all w ∈W , all C ∈ K(W) and all X ⊆W ,

C ∈ ν(w) iff ∀a ∈ A(C ⊆ a→ a ∈ ν(w)),
X ∈ ν(w) iff ∃C ∈ K(W)(C ⊆ X & C ∈ ν(w)).

compact if for all A′ ⊆ A,
⋂
A′ 6= ∅ if A′ has the finite intersection property,

descriptive if G is differentiated, tight and compact,

full if A = P(W ).

a
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For brevity, we will refer to descriptive general monotonic frames simply as descriptive mono-
tonic frames. Note that only the condition of tightness differs from the corresponding prop-
erties of general Kripke frames, hence applying our knowledge about general Kripke frames,
if G is differentiated and compact, then W is a Stone space where A forms a clopen basis,
and the map p :W → UfA, where A = G∗, defined by

p : w 7→ Uw = {a ∈ A | w ∈ A}

is a bijection (see for example [29]). The tightness condition for a general Kripke frame
(W,R,A) ensures that the accessibility relation R is point-closed. That is, the set R[w] of
R-successors of w is closed in W, see for example Blackburn et alii [6]. The following lemma
may be seen as the monotonic frame analogue hereof.

Lemma 7.31 Let G = (W, ν,A) be a tight monotonic frame, and W = (W, τA) the topo-
logical space of G. Then we have for all w ∈ W , νc(w) ⊆ K(W). In other words, all core
neighbourhoods are closed in W.

Proof. Assume that X ∈ νc(w), that is, for all Y ( X, Y /∈ ν(w). By the tightness of G,
there is a C ∈ K(W) such that C ⊆ X and C ∈ ν(w). Hence X = C ∈ K(W). qed

Let DMF be the category of descriptive monotonic frames with bounded morphisms. It
is clear that for any object G in DMF, G∗ is a bam. But it is perhaps less obvious that A∗ is
descriptive, when A is a bam.

Proposition 7.32 Let A be a bam. Then A∗ is a descriptive monotonic frame.

Proof. Let A = (A,+,−, 0, f) and A∗ = (UfA, νf , Â). It is easy to see that A∗ is indeed a

general monotonic frame: Closure of Â under union and complement is immediate from the
closure of A, and closure of Â under mνf follows from

u ∈ mνf (â) ⇐⇒ â ∈ νf (u) ⇐⇒ u ∈ fσ(â) = f̂(a).

To see that A∗ is differentiated, let v, u ∈ UfA, and suppose v 6= u. Then we may assume
that there is an a ∈ v \ u, and it follows that v ∈ â and u /∈ â. For compactness, let B̂ ⊆ Â,
i.e, B ⊆ A, and assume that B̂ has the finite intersection property. Then it easily follows
that B has the finite meet property and hence B can be extended to an ultrafilter u ∈ UfA.
Thus we have for all b ∈ B, u ∈ b̂, i.e., u ∈

⋂
B̂, so

⋂
B̂ 6= ∅.

From the definition of νf and (30), (31), (32) it is immediate that A∗ is tight. qed

Proposition 7.33 (·)∗ is a contravariant functor from DMF to BAM, and (·)∗ is a con-
travariant functor from BAM to DMF.

Proof. Follows from Propositions 7.28, 7.29 and 7.32. qed

From Propositions 7.26 and 7.32, we also immediately obtain the following.

Corollary 7.34 Let G be a general monotonic frame. Then (G∗)∗ is a descriptive monotonic
frame equivalent to G. That is for every formula ϕ,

G ° ϕ iff (G∗)∗ ° ϕ.
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The crucial property of the functors (·)∗ and (·)∗, which is needed to show that BAM and
DMF are dually equivalent, is stated in the following theorem.

Theorem 7.35 Let A be a bam and let G be a descriptive monotonic frame. Then

(i) A ∼= (A∗)∗,
(ii) G ∼= (G∗)∗.

Proof. The proof of (i) is standard, and we leave it to the reader to verify that the map
r : A→ (A∗)∗ given by r(a) = â = {u ∈ UfA | a ∈ u} is a bae-isomorphism.

For (ii), letG = (W, ν,A) be a descriptive monotonic frame, and let A = G∗ = (A,∪, \, ∅,mν)
and (G∗)∗ = (UfA, νmν , Â). We will show that the map

p : G → (G∗)∗
x 7→ Ux = {a ∈ A | x ∈ a}

is the desired isomorphism. As already mentioned, differentiation and compactness of G
ensure that p is a bijection. Thus it only remains to prove that p is a bounded morphism
which satisfies (39). In order for p to be a bounded morphism of the underlying frames, it
suffices to show for all X ⊆ UfA (cf. Remark 4.4),

p−1[X] ∈ ν(w) iff X ∈ νmν (Uw).(42)

We first note that for a ∈ A, p[a] = â, since

Ux ∈ p[a] ⇐⇒ x ∈ a ⇐⇒ a ∈ Ux ⇐⇒ Ux ∈ â,

and hence also p−1[â] = a, since p is a bijection. It is now easy to show (42) for clopen X = â:

p−1[â] = a ∈ ν(w) ⇐⇒ w ∈ mν(a) ⇐⇒ mν(a) ∈ Uw ⇐⇒ â ∈ νmν (Uw).

It is also easy to verify that

p[C] =
⋂

C⊆a â, for all C ∈ K(W),

p−1[D] =
⋂

D⊆â a, for all D ∈ K(Aσ).

And it follows that

p[C] ∈ K(Aσ) iff C ∈ K(W).(43)

To show (42) for arbitrary X ⊆ UfA, we now have

p−1[X] ∈ ν(w)
(G tight) iff ∃C ∈ K(W)(C ⊆ p−1[X] & ∀a ∈ A(C ⊆ a→ a ∈ ν(w)))

(clopen case) iff ∃C ∈ K(W)(C ⊆ p−1[X] & ∀a ∈ A(C ⊆ a→ â ∈ νmν (Uw)))
(p bijective) iff ∃C ∈ K(W)(p[C] ⊆ X & ∀a ∈ A(p[C] ⊆ â→ â ∈ νmν (Uw)))

(43) iff ∃D ∈ K(Aσ)(D ⊆ X & ∀a ∈ A(D ⊆ â→ â ∈ νmν (Uw)))
iff X ∈ νmν (Uw).

Furthermore, from p−1[â] = a, it follows that for all â ∈ Â, p−1[â] ∈ A, so p satisfies (38),
and is hence a bounded morphism from G to (G∗)∗. Finally, from p[a] = â it is clear that p
satisfies (39):

p[a] = â = UfA ∩ â = p[W ] ∩ â.

Thus we may conclude that p is an embedding. qed
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We can now state the announced dual equivalence result.

Theorem 7.36 The categories DMF and BAM are dually equivalent via the functors (·)∗ :
DMF → BAM and (·)∗ : BAM→ DMF.

Proof. Follows from Propositions 7.28, 7.29 and Theorem 7.35. qed

Combining Propositions 7.28, 7.29 and Theorem 7.35, the duality for descriptive frames
and bams is now summarised in the following.

Proposition 7.37 (Duality for descriptive frames) Let G1 and G2 be two descriptive
monotonic frames, and A1 and A2 be two bams. Then

(i) G1½ G2 iff G∗2 ³ G∗1.
(ii) G1 ³ G2 iff G∗2½ G∗1.
(iii) A1½ A2 iff A2∗ ³ A1∗.
(iv) A1 ³ A2 iff A2∗½ A1∗.

Remark 7.38 In Remark 7.15, we mentioned that for a monotonic modal logic Λ, and a
countably infinite set of proposition letters Φ, we have FΛ(Φ) ∼= (LΛ(Φ))+. In the same way,
it is easy to see that the general canonical frame of Λ, GΛ(Φ), is isomorphic to (LΛ(Φ))∗. From
Proposition 7.32, we know that (LΛ(Φ))∗ is descriptive, hence together with Theorem 6.9, the
following theorem is immediate.

Theorem 7.39 Let Λ be a monotonic modal logic. Then Λ is sound and strongly complete
with respect to the class of descriptive monotonic Λ-frames.

Remark 7.40 Došen’s [18] definition of ‘descriptive’ equals ‘differentiated+compact’ in our
terminology, that is, it does not include tightness. Thus Došen shows dual equivalence between
baes and the category of differentiated and compact general neighbourhood frames. However,
his construction does not immediately adapt to the monotonic case, because he only adds
clopen neighbourhoods in his definition of general ultrafilter frame, which, consequently, is
not monotonic by our definition, since there may be non-clopen sets of ultrafilters which
should be neighbourhods according to the upwards closure of the neighbourhood function.
Note that in Došen’s definition of general frames, all neighbourhoods must be admissible, and
the definition of a general monotonic frame in Kracht and Wolter [44] is simply obtained by
only requiring upwards closure over clopen/admissible sets. Thus adapting Došen’s results to
the general monotonic frames of Kracht and Wolter leads immediately to dual equivalence.
The restriction to clopens is also the reason why Došen’s notion of descriptiveness does not
include tightness, since the bijection between states of the original general frame G and
ultrafilters suffices to show G ∼= (G∗)∗ when all neighbourhoods of (G∗)∗ are clopens.

An easy way of turning Došen’s general ultrafilter frame into a general monotonic frame
according to our definition, would be to just add all supersets of clopen neighbourhoods to
the neighbourhood relation. But with this simple approach, we were unable to show the
desired duality for the morphisms, and this might also be expected considering the fact that
the canonical extension tells us that we must add arbitrary intersections of clopen neighbour-
hoods before taking the upwards closure. Our tightness condition for general montone frames
captures exactly this structure of the neighbourhood function.
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Persistence

Theorem 7.36 states that descriptive monotonic frames and bams may be thought of as having
the same mathematical properties. Thus we may ask, what the dual notion of canonicity is
in the category of descriptive monotonic frames. The answer is d-persistence.

Definition 7.41 (Persistence) A formula ϕ is d-persistent if for any descriptive monotonic
frame G, if G ° ϕ then G] ° ϕ. a

Proposition 7.42 For any formula ϕ, ϕ is canonical if and only if ϕ is d-persistent.

Proof. For the direction from left to right, assume that ϕ is canonical, and let G be a
descriptive monotonic frame such that G ° ϕ. By Proposition 7.26(i), we then have G∗ ² ϕ ≈
>, and from the canonicity of ϕ, it now follows that (G∗)σ ² ϕ ≈ >. Since (G∗)σ ∼= ((G∗)+)+,
Proposition 7.2(i) now tells us that (G∗)+ ° ϕ. Recalling the definitions of (·)∗, (·)+ and
(·)], we see that (G∗)+ = ((G∗)∗)] and since G was assumed descriptive, we obtain from
Theorem 7.35 that (G∗)+ ∼= G], thus we may conclude that G] ° ϕ.

For the direction from right to left, assume that ϕ is d-persistent, and let A be a bam such
that A ² ϕ ≈ >. We will show that Aσ ² ϕ ≈ >. From A ² ϕ ≈ > and Proposition 7.26(ii)
it follows that A∗ ° ϕ. Now we use the assumption that ϕ d-persistent, and the fact that
A∗ is descriptive and (A∗)] = A+ to deduce A+ ° ϕ, whence by Proposition 7.2(i) we have,
Aσ ∼= (A+)+ ² ϕ ≈ >. qed

Note that the above proposition refers to our default notion of σ-canonicity. The reader
will have noticed that our ultrafilter frame is defined in terms of σ-canonical extensions,
and, consequently, the definitions of tightness and persistence are tailored to the notion of
σ-canonicity. In the following subsection, we will show that the duality between σ and π is
closely related to the duality between the modalities ∇ and ∆, and using this observation we
can transform the above results on σ-canonicity into results on π-canonicity.

7.6 σ versus π

There is no particular reason why we have chosen σ-canonicity as our default, other than the
desire to keep things simple and not work with both canonicity notions side by side. The
same could be said about our choice of ∇ as our primitive modality; we could easily have
taken both ∇ and ∆ as primitives of our language, and simply defined the interpretation
of the two in such a way that they become dual to each other. In Remark 3.2 we pointed
out that in a monotonic L∇-logic, ∆ is also a monotonic modality. Furthermore, it is easy
to derive from the truth definitions in a monotonic model M = (W, ν, V ), that M, w ° ∆ϕ
iff W \ V (ϕ) /∈ ν(w). The idea behind ‘dualising’ monotonic frames is to interchange the
interpretation of ∇ and ∆.

Definition 7.43 (Duals of monotonic frames) Let F = (W, ν) be a monotonic frame.
The dual frame of F is the monotonic frame Fd = (W, νd) where for all X ⊆W ,

X ∈ νd(w) iff W \X /∈ ν(w).

When G = (F, A) is a general monotonic frame, then we define the dual general frame of G
as Gd = (Fd, A). a
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Clearly, we have the following identities, which will be used without warning:

(Fd)d = F, for all monotonic frames F.
(Gd)d = G, for all general monotonic frames G.
(Gd)] = (G])

d, for all general monotonic frames G.

Proposition 7.44 Let G = (F, A) be a general monotonic frame, and Gd its dual frame.
Then G is a general monotonic frame.

Proof. To see that A is closed under the modal operation mνd , all one has to observe is that
mνd(X) =W \mν(W \X). Closure of A under complement and mν yields the result. qed

On the algebraic side, it should be clear why bams are dualised as follows.

Definition 7.45 (Duals of BAMs) Let A = (A,+,−, 0, f) be a bam. Then we define the
dual of A as Ad = (A,+,−, 0, fd) where for all a ∈ A, fd(a) := −f(−a). a

It is easy to show that when A is a bam, then Ad is also a bam, and (Ad)d = A.
We now return to the definition of the ultrafilter frame of a bam A. As mentioned already,

A+ is defined such that (A+)+ = Aσ. But we could just as well have defined A+ such that
(A+)+ = Aπ. In the rest of this subsection, we will use the notation Aσ = (UfA, νfσ) for the
ultrafilter frame as defined in Definition 7.14, that is, (Aσ)

+ = Aσ. Similarly, we will say that
a general monotonic frame is σ-tight or σ-descriptive if G is tight or descriptive according to
Definition 7.30, and a formula ϕ is dσ persistent, if ϕ is persistent with respect to σ-descriptive
monotonic frames. The category of σ-descriptive monotonic frames with bounded morphisms
will be denoted DMFσ.

We now define Aπ as the monotonic frame Aπ = (UfA, νfπ) where

X ∈ νfπ(u) iff u ∈ fπ(X).(44)

Then it is clear that (Aπ)
+ = Aπ. The π-canonical model FΛπ of a monotonic L∇-logic Λ is

the structure (WΛ, νΛπ , V
Λ) where WΛ and V Λ are as in Definition 6.2 and νΛπ is defined by

ϕ̂ ∈ νΛπ (Γ) iff ∇ϕ ∈ Γ,⋃
i∈I ϕ̂i = O ∈ νΛπ (w) iff ∃ψ ∈ L∇(ψ̂ ⊆ O & ∇ψ ∈ Γ),

X ∈ νΛπ (w) iff ∀O ⊆WΛ(X ⊆ O → O ∈ νΛπ (w)).

It can be shown that FΛπ (Φ) ∼= (LΛ(Φ))π. The general π-ultrafilter frame of a bam A is now
defined as A? = (Aπ, Â), and the corresponding π-notions of tightness, descriptiveness and
persistence are then defined as follows. A general monotonic frame G = (W, ν,A) is π-tight if
for all w ∈W , all O ∈ O(W) and all X ⊆ UfA,

O ∈ ν(w) iff ∃a ∈ A(a ⊆ O & a ∈ ν(w)),
X ∈ ν(w) iff ∀O ∈ O(W)(X ⊆ O → O ∈ ν(w)).

G is π-descriptive if G is differentiated, π-tight and compact. A formula ϕ is dπ-persistent if
for any π-descriptive monotonic frame G, G ° ϕ implies G] ° ϕ. We denote the category of
π-descriptive monotonic frames with bounded morphisms by DMFπ. In the following we will
work towards showing that BAM is also dually equivalent with DMFπ.

First, we list some of the relationships between dual frames, dual algebras and σ/π-
constructions.
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Proposition 7.46 Let F be a monotonic frame, G a general monotonic frame, and let A be
a bam. Then

(Fd)+ = (F+)d, (G∗)d = (Gd)∗,
(Ad)σ = (Aπ)d, (Aσ)d = (Ad)π,
(Ad)σ = (Aπ)

d, (Aσ)
d = (Ad)π,

(Ad)∗ = (A?)
d, (A∗)d = (Ad)?.

Proof. The first two items should be clear. To show that (Ad)σ = (Aπ)d, we must prove that
for all X ⊆ UfA, we have

(fd)σ(X) = (fπ)d(X).(45)

For clopens, (45) follows from:

(fd)σ(â) = f̂d(a) = −̂f(−a) = −fπ(−â) = (fπ)d(â).

For closed subsets C of UfA, we have

(fd)σ(C) =
⋂

C⊆â

(fd)σ(â) =
⋂

C⊆â

−f̂(−a) = −
⋃

C⊆â

f̂(−a)

= −
⋃

−â⊆−C

f(−â) = −
⋃

b̂⊆−C

f (̂b) = −fπ(−C)

= (fπ)d(C).

Finally, for arbitrary X ⊆ UfA,

u ∈ (fd)σ(X) iff ∃C ∈ K((Ad)σ) : C ⊆ X & u ∈ (fd)σ(C)
iff ∃C ∈ K(Aσ) : C ⊆ X & u ∈ −fπ(−C)
iff ∃O ∈ O(Aσ) : −X ⊆ O & u /∈ fπ(O)
iff u /∈ fπ(−X)
iff u ∈ (fπ)d(X).

We leave the proof of the other items to the reader. qed

Proposition 7.47 Let G = (W, ν,A) be a general monotonic L∇-frame. Then G is σ-
descriptive iff Gd is π-descriptive.

Proof. Let G be as above, and let K(W) and O(W) denote the closed, respectively open,
subsets of W in the topological space W of G. We only need to show that G is σ-tight iff
Gd is π-tight. Assume first that G is σ-tight. We will first show that for all w ∈ W and all
D ∈ O(W),

D ∈ νd(w) ⇒ ∃a ∈ A(a ⊆ D & a ∈ νd(w)).

So suppose D ∈ νd(w), then it follows by the definition of νd that W \ D /∈ ν(w). Since
W \D ∈ K(W) and G is σ-tight, there is a b ∈ A such that W \D ⊆ b and b /∈ ν(w). Hence
by taking a =W \ b, we have a ⊆ D and a ∈ νd(w).

To see that for arbitrary X ⊆W ,

X ∈ νd(w) ⇒ ∀O ∈ O(W)(X ⊆ O → O ∈ νd(w))
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assume X ∈ νd(w). Then W \ X /∈ ν(w), and by the σ-tightness of G, we have for all
C ∈ K(W), if C ⊆ X then C /∈ ν(w), whence for all O ∈ O(W), if X ⊆ O then W \O /∈ ν(w),
i.e., O ∈ νd(w).

The direction from right to left is shown is a similar way, and we leave out the details.
qed

In order to derive duality results for the map (·)π, we only need to show that the morphisms
between monotonic frames, general monotonic frames and bams behave well with respect to
dualisations.

Proposition 7.48 Let Fi, Gi and Ai, i ∈ {1, 2} be a pair of monotonic frames, general
monotonic frames and bams, respectively. Then

(i) If ϑ : F1 → F2 is a bounded morphism,
then ϑ is also a bounded morphism from Fd

1 to Fd2.
(ii) If ϑ : G1 → G2 is a bounded morphism,

then ϑ is also a bounded morphism from Gd
1 to Gd

2.
(iii) If η : A1 → A2 is a bae-homomorphism,

then η is also a bae-homomorphism from Ad
1 to Ad

2.

Proof. Let Fi = (W1, νi), Gi = (Wi, νi, Ai) and Ai = (Ai,+,−, 0, fi), i ∈ {1, 2}. To prove (i),
assume that ϑ : F1 → F2 is a bounded morphism. For the (BM1) condition for ϑ : Fd

1 → Fd2,
let X1 ∈ ν

d
1 (w), and suppose for the sake of contradiction that ϑ[X1] /∈ ν

d
2 (ϑ(w)). That means

W2 \ ϑ[X1] ∈ ν2(ϑ(w)). Applying the (BM2) condition for ϑ : F1 → F2, we obtain a Y1 ⊆W1

such that Y1 ∈ ν1(w) and Y1 ⊆W2 \ ϑ[X1]. It now follows that

Y1 ⊆ ϑ−1[ϑ[Y1]] ⊆ ϑ−1[W2 \ ϑ[X1]] ⊆W1 \X1,

and hence by monotonicity, W1 \ X1 ∈ ν1(w) which is a contradiction with the assumption
that X1 ∈ ν

d(w).
For the (BM2) condition for ϑ : Fd1 → Fd2, assume X2 ∈ ν

d
2 (ϑ(w)), i.e., W2\X2 /∈ ν2(ϑ(w)).

We need an X1 ⊆ W1 such that X1 ∈ νd1 (w) and ϑ[X1] ⊆ X2. Take X1 := ϑ−1][X2], then
ϑ[X1] ⊆ X2. Suppose now again for contradiction that X1 = ϑ−1[X2] /∈ νd1 (w), that is,
W1 \ ϑ

−1[X2] ∈ ν1(w). Then by the (BM1) condition for ϑ : F1 → F2, it follows that
ϑ[W1 \ ϑ

−1[X2]] ∈ ν2(ϑ(w)), and since ϑ[W1 \ ϑ
−1[X2]] ⊆ W2 \X2, we have by monotonicity

that W2 \X2 ∈ ν2(ϑ(w)), which is a contradiction with the assumption that X2 ∈ ν
d
2 (ϑ(w)).

The proof of (ii) follows immediately from (i) and the definition of the dual general frame.
For (iii) we must show that η(f d

1 (a)) = fd
2 (η(a)) for all a ∈ A1. But this follows easily from

the assumption that η is a bae-homomorphism:

η(fd
1 (a)) = η(−f1(−a)) = −η(f1(−a)) = −f2(η(−a)) = −f2(−η(a)) = fd

2 (η(a)).

qed

Proposition 7.49 Let A1 and A2 be two bams, and η : A1 → A2 a bae-homomorphism.
Then

(i) η+ is a bounded morphism from A2π to A1π,
(ii) η∗ is a bounded morphism from A2? to A1?.
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Proof. Both items are easy consequences of Propositions 7.19, 7.29, 7.48 and 7.46, and we
only show (i):

η : A1 → A2 is a bae-homomorphism
Prop. 7.48(iii) ⇒ η : Ad

1 → Ad
2 is a bae-homomorphism

Prop. 7.19 ⇒ η+ : (Ad
2)σ → (Ad

1)σ is a bounded morphism
Prop. 7.46 ⇒ η+ : (A2π)d → (A1π)d is a bounded morphism
Prop. 7.48(i) ⇒ η+ : A2π → A1π is a bounded morphism.

qed

Proposition 7.50 The map (·)? defined by A 7→ A? for all bams A, and η 7→ η? = η∗ for
all bae-homomorphisms η, is a contravariant functor from the category BAM to the category
DMFπ.

Proof. Proposition 7.49 above shows that (·)? maps bae-homomorphisms contravariantly to
bounded morphisms. So it only remains to show that A? is π-descriptive whenever A is a
bam. So let A be a bam, then by Proposition 7.46, A? = ((Ad)∗)

d. Since Ad is a bam, (Ad)∗
is σ-descriptive by Proposition 7.32, and hence by Proposition 7.47 ((Ad)∗)

d is π-descriptive.
qed

Theorem 7.51 The categories BAM and DMFπ are dually equivalent via the functors (·)∗ :
DMFπ → BAM and (·)? : BAM → DMFπ.

Proof. We must show the π-analogue of Theorem 7.35. So let A be a bam, then we need
A?
∗ ∼= A. From Proposition 7.46 we have (A?)

∗ ∼= (((Ad)∗)
d)∗, and also (((Ad)∗)

d)∗ ∼=
(((Ad)∗)

∗)d, hence (A?)
∗ ∼= (((Ad)∗)

∗)d. From Theorem 7.35(i), it follows that (((Ad)∗)
∗)d ∼=

(Ad)d, and we have (A?)
∗ ∼= (Ad)d ∼= A.

Now let G be a π-descriptive monotonic frame. Then Gd is σ-descriptive, and by Theo-
rem 7.35(ii), it follows that ((Gd)∗)∗ ∼= Gd. From Proposition 7.46, we also have

((Gd)∗)∗ ∼= ((G∗)d)∗ ∼= ((G∗)?)d.

Hence Gd ∼= ((G∗)?)d, and thus we may conclude that G ∼= (G∗)?. qed

The following expected analogue of Proposition 7.42 should be clear from the above results
and we leave the proof to the reader.

Proposition 7.52 For all formulas ϕ, ϕ is π-canonical if and only if ϕ is dπ-persistent.

We now have a good understanding of how the σ- and π-constructions relate to each
other. But we have not yet brought strong completeness into the picture, which is where
part of our interest in σ-canonicity stems from. We postpone the investigation of this matter
to subsection 10.6, since we require a number of technical results on simulations, but in
subsection 10.6 it will be shown that π-canonicity does, after all, imply strong completeness
(Theorem 10.43).
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8 Coalgebra

As an alternative way of placing monotonic modal logic in a mathematical context, we will
now see that monotonic structures can be viewed as coalgebras. Briefly stated, a T -coalgebra
for a functor T on the category of sets is given by a pair (X, γ) where X is a set and γ is
a map from X to T (X). The link between coalgebras and modal logic has been studied in
the field of non-well-founded set theory [3, 17], and in computer science coalgebras are used
to model infinite data types, such as streams, as well as dynamic systems, like automata and
labelled transition systems. When considering coalgebras of this kind, it makes sense to think
of the carrier set X as a state space and γ as a transition structure.

Compared with algebraic duality theory, the coalgebraic perspective on modal logic is a
quite recent development, and will generally not be included in a first course in modal logic.
Therefore, we present our material without assuming any knowledge of coalgebras and very
little of category theory. However, this section is by no means an introduction to the general
theory of coalgebras, and only the relevant definitions will be given. For more background
knowledge, the reader is referred to [59], and for coalgebra and modal logic to [46, 54, 45].

The main purpose of this section is to show how coalgebras can be employed as a semantics
for monotonic modal logic. In particular, we will see that the category of UpP-coalgebras
and UpP-coalgebra morphisms (defined below) is isomorphic with the category of monotonic
frames and bounded morphisms via the identity functor. Furthermore, we investigate how the
coalgebraic notions of system equivalence relate to bisimulations between monotonic frames.

8.1 Basic Definitions and Notation

We will work in the category Set, which has sets as objects and set-theoretic functions as its
morphisms.

Definition 8.1 A (Set-)endofunctor T : Set → Set maps Set-objects to Set-objects and Set-
morphisms f : X → Y to Set-morphisms Tf : TX → TY such that

T (g ◦ f) = Tg ◦ Tf and T idX = idTX . a

There are two endofunctors which the reader should be familiar with. The covariant
powerset functor is denoted by P, and maps a set X to its powerset P(X) and Pf maps a
subset C of X to the image of C under f :

P : Set → Set

X 7→ P(X)
f : X → Y 7→ Pf = f [·] : P(X) → P(Y )

C 7→ f [C]

The contravariant powerset functor is denoted by 2(·), and also maps a set to its powerset,
but functions map to the inverse image operation:

2(·) : Set → Set

X 7→ 2X = P(X)
f : X → Y 7→ 2f = f−1[·] : 2Y → 2X

D 7→ f−1[D]
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Definition 8.2 (Coalgebras) Let T be an endofunctor. A T -coalgebra (over the base cat-
egory Set) is a pair (X, γ) where X is a set and γ : X → T (X) is a function. a

We will mainly be thinking about T -coalgebras as systems, and we will therefore occa-
sionally refer to them as T -systems, or simply systems if T is clear from the context. Thus,
as stated in the introduction, given a T -coalgebra (X, γ), X will be called the state space and
γ its transition structure. The notions of (homo)morphism and bisimulations amount to the
following.

Definition 8.3 (Coalgebra morphisms) Let T be an endofunctor, (X, γ) and (Y, δ) two
T -coalgebras. Then a function f : X → Y is a T -coalgebra morphism if: Tf ◦ γ = δ ◦ f . That
is, the following diagram commutes.

X
f //

γ

²²

Y

δ
²²

T (X)
Tf // T (Y )

a

It can be checked that the composition of two T -coalgebra morphisms is again a T -
coalgebra morphism, and the identity map on a set X is also a T -coalgebra morphism. Hence
T -coalgebras and T -coalgebra morphisms form a category SetT .

Definition 8.4 (Coalgebra bisimulations) Let T be an endofunctor and let (X, γ) and
(Y, δ) be two T -coalgebras. Then a non-empty relation Z ⊆ X ×Y is a T -coalgebra bisimula-
tion between (X, γ) and (Y, δ) if there is a function µ : Z → T (Z) such that: γ ◦π1 = Tπ1 ◦µ
and δ ◦ π2 = Tπ2 ◦ µ, where π1 : Z → X and π2 : Z → Y are the projection maps. That is,
π1 and π2 are T -coalgebra morphisms, and the following diagram commutes.

X

γ

²²

Z
π1oo π2 //

µ

²²

Y

δ
²²

T (X) T (Z)
Tπ1oo Tπ2 // T (Y )

Two states x ∈ X and y ∈ Y are called T -coalgebra bisimilar if there is a T -coalgebra
bisimulation Z between (X, γ) and (Y, δ) such that (x, y) ∈ Z. Finally, (X, γ) and (Y, δ) are
called T -coalgebra bisimilar if there is a T -coalgebra bisimulation between (X, γ) and (Y, δ).

a

The intuitive idea behind bisimulation is that bisimilar states should be seen to display
the same behaviour. This may not be all that clear from Definition 8.4, and as we shall
see in subsection 8.3, the coalgebraic notion of bisimulation is, in fact, stronger than the
frame theoretic one. However, bisimilar states turn out to be exactly the states which are
behaviourally equivalent.

Definition 8.5 (Behavioural equivalence) Let T be an endofunctor and let (X, γ) and
(Y, δ) be T -coalgebras. Then x ∈ X and y ∈ Y are behaviourally equivalent states if there
is a T -coalgebra (Z, µ) and T -coalgebra morphisms f : X → Z and g : Y → Z such that
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f(x) = g(y); and (X, γ) and (Y, δ) are behaviourally equivalent systems if there is a T -coalgebra
(Z, µ) and surjective T -coalgebra morphisms f : X → Z and g : Y → Z. a

The concept of behavioural equivalence is derived from the notion of final systems. A T -
coalgebra (P, ζ) is final if for any T -coalgebra (X, δ) there is a unique T -coalgebra morphism
f : (X, δ) → (P, ζ). Final systems are viewed as the “system of observable behaviours”,
see [59, 46], and this means that behaviourally equivalent states are identified in the final
system, if it exists. Definition 8.5 does not assume the existence of a final system such that
behavioural equivalence may be applied to all coalgebras. We will not treat final systems any
further.

Definition 8.6 (Natural transformation) Let T and S be endofunctors. Then a natural
transformation τ between T and S (notation: τ : T ⇒ S) is a map which takes a set X as
argument and returns a function τX : T (X) → S(X) which satisfies the following condition.
For all sets X,Y and functions f : X → Y , we have: Sf ◦τX = τY ◦Tf . That is, the following
diagram commutes.

T (X)

τX

²²

Tf // T (Y )

τY

²²
S(X)

Sf // S(Y )

a

Given a natural transformation τ : T ⇒ S, any T -coalgebra (X, γ) can be seen as an
S-coalgebra (X, δ) where δ = τX ◦ γ : X → S(X). Furthermore, natural transformations
preserve coalgebra morphisms and bisimulations, since for τ : T ⇒ S, the following diagrams
commute.

X
f //

γ

²²

Y

δ
²²

X

γ

²²

Z
π1oo

µ

²²

π2 // Y

δ
²²

T (X)
Tf //

τX

²²

T (Y )

τY

²²

T (X)

τX

²²

T (Z)
Tπ1oo

τZ

²²

Tπ2 // T (Y )

τY

²²
S(X)

Sf // S(Y ) S(X) S(Z)
Sπ1oo Sπ2 // S(Y )

8.2 Coalgebraic Semantics for Monotonic Modal Logic

Coalgebra and monotonic frames

It is well-known that Kripke frames may be seen as P-coalgebras (see e.g. Pattinson [54]), and
we will now show that monotonic frames have a fairly simple interpretation as coalgebras for
a functor which is essentially the same as 2(·) ◦ 2(·), but restricted to upwards closed families
of subsets. The functor 2(·) ◦ 2(·) is mentioned in Rutten [59] as giving rise to so-called hyper
systems.
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Definition 8.7 The map UpP : Set → Set is defined as follows. For a set X

UpP(X) = {Z ∈ P(P(X)) | Z is upwards closed}

and for a function f : X → Y ,

UpPf : UpP(X) → UpP(Y )

U 7→ UpPf(U) = (f−1)
−1

[U ] = 22
f
(U)

= {D ∈ P(Y ) | f−1[D] ∈ U} a

It may be easier to think of (f−1)−1[U ] as the set

↑f∗[U ] := {D ∈ P(Y ) | ∃C ∈ U : f [C] ⊆ D},(46)

The notation ↑f∗[U ] is meant to indicate that this is the upwards closure of the set consisting
of all images f [C] for C ∈ U . To see that (f−1)−1[U ] = ↑f∗[U ], suppose f−1[D] ∈ U , then
taking C = f−1[D], we have f [C] = f [f−1[D]] ⊆ D. On the other hand, if C ∈ U and
f [C] ⊆ D, then C ⊆ f−1[f [C]] ⊆ f−1[D], and f−1[D] ∈ U follows from U being upwards
closed.

Lemma 8.8 UpP is an endofunctor.

Proof. Let g : X → Y and f : Y → Z. To see that UpP(f ◦ g) = UpPf ◦ UpPg, let
U ∈ UpP(X), then

D ∈ (UpPf ◦UpPg)(U)
iff D ∈ ↑f∗[↑g∗[U ]]
iff ∃E ∈ ↑g∗[U ] : f [E] ⊆ D
iff ∃E ∈ P(Y ) : (∃C ∈ U : g[C] ⊆ E) & f [E] ⊆ D
iff ∃C ∈ U : f [g[C]] ⊆ D
iff D ∈ UpP(f ◦ g)(U).

In the next to last step, the direction from left to right holds because g[C] ⊆ E ⇒ f [g[C]] ⊆
f [E] ⊆ D, and the direction from right to left follows by taking E = g[C].

To see that UpP idX = idUpPX , let U ∈ UpP(X), then

D ∈ UpP idX(U)
iff ∃C ∈ U : C ⊆ D
iff D ∈ U
iff D ∈ idUpPX(U).

Here the next to last step follows from the fact that U is upwards closed. qed

An UpP-coalgebra is thus a pair (W, ν : W → UpP(W )) where W is a set and ν is a
function which maps elements ofW to collections of upwards closed subcollections of P(W ). It
should now be clear that an UpP-coalgebra can simply be seen as a monotonic L∇-frame, and
vice versa. Due to this observation, we may simply formulate our results for UpP-coalgebras.
It will be clear from the context whether a pair (X, ν) should be seen as a monotonic L∇-frame
or as an UpP-coalgebra.

In order to extend the identity map to a categorical isomorphism, we must also show
that UpP-coalgebra morphisms and bounded morphisms really are the same mathematical
objects. We first rephrase Definition 8.3 for UpP-coalgebras.
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Definition 8.9 (UpP-coalgebra morphisms) Let (X, γ) and (Y, δ) be two UpP-coalge-
bras. Then a function f : X → Y is an UpP-coalgebra morphism if: UpPf ◦ γ = δ ◦ f .

X
f //

γ

²²

Y

δ
²²

UpP(X)
UpPf // UpP(Y )

a

Proposition 8.10 Let (X, γ) and (Y, δ) be two UpP-coalgebras. Then a function f : X → Y
is an UpP-coalgebra morphism if and only if f is a bounded morphism.

Proof. Recall from Remark 4.4 that f is a bounded morphism from (X, γ) to (Y, δ) iff for
all x ∈ X and all D ∈ P(Y )

f−1[D] ∈ γ(x) iff D ∈ δ(f(x)).(47)

We also have for all x ∈ X and all D ∈ P(Y )

D ∈ UpPf(γ(x)) iff D ∈ (f−1)−1[γ(x)] iff f−1[D] ∈ γ(x).(48)

The result is now immediate from (47) and (48). qed

Theorem 8.11 The category SetUpP consisting of UpP-coalgebras and UpP-coalgebra mor-
phisms is isomorphic with the category MF consisting of monotonic L∇-frames and bounded
morphisms via the Set-identity map.

Coalgebra and monotonic models

In order to get a coalgebraic notion of a monotonic model, we must add the equivalent of a
valuation to the UpP-functor. Given a monotonic frame (W, ν), we usually define a valuation
V as a map from the set of atomic propositions Φ to the powerset of W , specifying at which
states V (p) ⊆W an atomic proposition p is true. However, we could equally well have defined
V as a map from W to the powerset of Φ, specifying which atomic propositions V [w] ⊆ Φ
are true at a state w in W . Clearly, these two views on valuations are equivalent: Given
V : W → P(Φ), define V (p) = {w ∈ W | p ∈ V [w]}, and given V : Φ → P(W ), define
V [w] = {p ∈ Φ | p ∈ V (p)}.

Definition 8.12 (UpPΦ) Let Φ be a set of atomic propositions. Then the map UpPΦ :
Set → Set is defined as follows. For a set X

UpPΦ(X) = UpP(X)× P(Φ),

and for a function f : X → Y ,

UpPΦf : UpPΦ(X) → UpPΦ(Y )
(U,A) 7→ (UpPf(U), A).

a
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Checking thatUpPΦ is an endofunctor can be done in almost the same way as in Lemma 8.8,
and we leave out the details. For notational convenience, when γ : X → UpPΦ(X) and x ∈ X,
we will write γi(x) for the i’th projection of γ(x), i ∈ {1, 2}.

An UpPΦ-coalgebra (X, γ) then defines a monotonic L∇-model via the following map.
Define Mod(X, γ) = (X, νγ , Vγ) where for x ∈ X,

νγ(x) = γ1(x),
Vγ [x] = γ2(x).

In the other direction, given a monotonic L∇-model (W, ν, V ), define an UpPΦ-coalgebra
Coa(W, ν, V ) = (W,γ) by taking

γ : W → UpP(W )× P(Φ)
w 7→ (ν(w), V [w])

It is easy to see that for all UpPΦ-coalgebras (X, γ),

Coa(Mod(X, γ)) = (X, γ),

and for all monotonic L∇-models (W, ν, V ),

Mod(Coa(W, ν, V )) = (W, ν, V ).

When f : X → Y is a function between the sets X and Y , we simply define Modf = f and
Coaf = f . To establish categorical isomorphism, we only need to show the following easy
extensions of Proposition 8.10.

Proposition 8.13 Let Φ be a set of atomic propositions, and M = (W, ν, V ) and M′ =
(W ′, ν ′, V ′) two monotonic L∇-models. Then a function f :W →W ′ is a bounded morphism
from M to M′ if and only if f is an UpPΦ-coalgebra morphism from Coa(M) to Coa(M′)

Proof. Let Coa(M) = (W,γ), and Coa(M′) = (W ′, δ). Then

γ(x) = (ν(x), V [x]), for all x ∈W,
δ(y) = (ν ′(y), V ′[y]), for all y ∈W ′.

We must show that f is a bounded morphism between M and M′ if and only if for all x ∈W ,
UpPΦf(γ(x)) = δ(f(x)). We have,

UpPΦf(γ(x)) = (UpPf(ν(x)), V [x]),
δ(f(x)) = (ν ′(f(x)), V ′[f(x)]).

Since for all proposition letters p ∈ Φ

M, x ° p iff p ∈ V [x],
M′, y ° p iff p ∈ V ′[y],

it is clear that x and f(x) satisfy the same proposition letters if and only if V [x] = V ′[f(x)].
And just as in the proof of Proposition 8.10, we obtain that UpPf(ν(x)) = ν ′(f(x)) if and
only if f is a bounded morphism of the underlying frames (W, ν) and (W ′, ν ′) of M and M′,
respectively. qed
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Proposition 8.14 Let Φ be a set of atomic propositions, and (X, γ) and (Y, δ) two UpPΦ-
coalgebras. Then a function f : X → Y is an UpPΦ-coalgebra morphism from (X, γ) to (Y, δ)
if and only if f is a bounded morphism from Mod(X, γ) to Mod(Y, δ)

Proof. Let Mod(X, γ) = (X, νγ , Vγ), and Mod(Y, δ) = (Y, νδ, Vδ). Then

νγ(x) = γ1(x), Vγ [x] = γ2(x) for all x ∈ X,
νδ(y) = δ1(y), Vδ[y] = δ2(y) for all y ∈ Y.

We only sketch the proof, since it is similar to that of the previous proposition. From the
definition of Vγ and Vδ, we see that x and f(x) satisfy the same proposition letters if and only
if γ2(x) = δ2(f(x)). Furthermore, we easily obtain that UpPf(γ1(x)) = δ1(f(x)) if and only
if f is a bounded morphism of the underlying frames (Wγ , νγ) and (Wδ, νδ) of Mod(X, γ) and
Mod(Y, δ), respectively. Thus UpPΦf(γ(x)) = (UpPf(γ1(x)), γ2(x)) = (δ1(f(x)), δ2(f(x))) =
δ(f(x)) if and only if f is bounded morphism from Mod(X, γ) to Mod(Y, δ). qed

Theorem 8.15 Let Φ be a set of atomic propositions. The category SetUpPΦ consisting of
UpPΦ-coalgebras and UpPΦ-coalgebra morphisms is isomorphic with the category MM consist-
ing of monotonic L∇-models and bounded morphisms via the functors Mod : SetUpPΦ → MM

and Coa : MM→ SetUpPΦ.

The next step is to define truth of L∇-formulas in an UpPΦ-coalgebra. Fix an UpPΦ-
coalgebra (W,γ). For the atomic propositions p ∈ Φ, γ tells us what the extension [[p]] of p
should be, namely, [[p]] = V (p), and for the boolean connectives truth may then inductively
be defined in the obvious way.

For modal L∇-formulas of the form ∇ϕ, we wish to specify for which elements w ofW that
[[ϕ]] ∈ ν(w) = γ1(w). This may be considered the same as specifying which neighbourhood
collections ν(w) contain [[ϕ]]. Thus we are lifting [[ϕ]], which is a predicate over W , to a
predicate over UpP(W ). In general, for a T -coalgebra (X, γ), a predicate lifting may be
thought of as a map which lifts a predicate overX to a predicate over the ‘type of observations’
T (X) in a natural way.

Definition 8.16 (Predicate lifting) Let T be an endofunctor. A predicate lifting λ for T
is an order preserving natural transformation λ : 2(·) ⇒ 2T , where 2T = 2(·) ◦ T . That is, for
all sets X,Y and functions f : X → Y , we have:

• λX : 2X → 2T (X), λY : 2Y → 2T (Y );

• If C ⊆ D, then λX(C) ⊆ λX(D), idem λY ;

• 2Tf ◦ λY = λX ◦ 2
f . a

Predicate liftings give rise to modalities due to the naturality condition, which ensures
invariance under bisimulation. See Kurz [46] for a more detailed treatment.

We now define a predicate lifting for UpP which will tell us how to interpret modal
formulas of the form ∇ϕ.

Definition 8.17 Define a family of maps λ(·) : 2
(·) → 2UpP(·) as follows. LetW be a set, then

λW : 2W → 2UpP(W )

C 7→ {U ∈ UpP(W ) | C ∈ U} a
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Lemma 8.18 λ : 2⇒ 2UpP , that is, λ is a predicate lifting for UpP.

Proof. Let W be a set and C,D ⊆ W . To see that λW (C) ⊆ λW (D) whenever C ⊆ D,
suppose that U ∈ λW (C), i.e., C ∈ U , then by the upwards closure of U and C ⊆ D, we get
D ∈ U , hence U ∈ λW (D).

To see that λ also satisfies the naturality condition, we first observe that for f : X → Y
and D ∈ P(Y ):

2UpPf ◦ λY (D) = (UpPf)−1[λY (D)]
= {U ∈ UpP(X) | UpPf(U) ∈ λY (D)}.

Now for U ∈ UpP(X), we have

U ∈ 2UpPf ◦ λY (D)
iff UpPf(U) ∈ λY (D)
iff D ∈ UpPf(U)
iff f−1[D] = 2f (D) ∈ U
iff U ∈ λX(2f (D)). qed

Given an UpP-coalgebra (W, ν), it is worth noticing the similarity between λW : P(W )→
UpP(W ) and the map mν : P(W ) → P(W ). The only difference is that for an X ⊆ W ,
λW (X) tells us which neighbourhood collections ν(w) contain X, whereas mν(X) gives us
the states w for which ν(w) contains X. Put differently, λW (X) is the set of ‘observations
of X’ and mν(X) is the set elements that ‘observe X’. Recall that in a monotonic model,
V (∇ϕ) = mν(V (ϕ)). Thus in an UpPΦ-coalgebra (W,γ), we obtain the extension [[∇ϕ]] of
∇ϕ as the set of states w for which γ1(w) = νγ(w) ∈ λw([[ϕ]]):

[[∇ϕ]] = γ−11 [λW ([[ϕ]])] = {w ∈W | γ1(w) ∈ λW ([[ϕ]])}.

And we have

w ∈ [[∇ϕ]] iff γ1(w) = νγ(w) ∈ λW ([[ϕ]]) iff [[ϕ]] ∈ ν(w).

We sum up the above in the following definition.

Definition 8.19 (Truth conditions) Let (W,γ) be an UpPΦ-coalgebra for some set Φ of
atomic propositions. Then we define the extension of L∇-formulas inductively by:

[[⊥]] = ∅,
[[p]] = {w ∈W | p ∈ γ2(w)},

[[¬ϕ]] = W \ [[ϕ]],
[[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]],

[[∇ϕ]] = γ−11 [λW ([[ϕ]])]. a

From Definition 8.19 it should be clear that: Mod(X, γ), x ° ϕ iff x ∈ [[ϕ]]. Thus the truth
definition in 8.19 may be seen as equivalent with the usual one in monotonic L∇-models.

8.3 Bisimulations and Behavioural Equivalence

To keep notation and proofs simple, we will only consider bisimulations and behavioural
equivalence between monotonic frames and UpP-coalgebras. From the above treatment of
bounded morphisms, it should be easy to see how to adapt the below results to monotonic
models and UpPΦ-coalgebras.
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Bisimulations

Definition 8.20 (UpP-coalgebra bisimulations) Let (X, γ) and (Y, δ) be two UpP-coal-
gebras. Then a non-empty relation Z ⊆ X × Y is an UpP-coalgebra bisimulation between
(X, γ) and (Y, δ) if there is a function µ : Z → UpP(Z) such that: γ ◦ π1 = UpPπ1 ◦ µ and
δ ◦ π2 = UpPπ2 ◦ µ.

X

γ

²²

Z
π1oo π2 //

µ

²²

Y

δ
²²

UpP(X) UpP(Z)
UpPπ1oo UpPπ2// UpP(Y )

a

The requirement that the projections are coalgebra morphisms turns out to be quite
a strong, and we shall see that we need to strengthen the notion of bisimulation between
monotonic frames in order to obtain an equivalent notion.

Definition 8.21 (Strong bisimulation) Let F1 = (W1, ν1) and F2 = (W2, ν2) be mono-
tonic L∇-frames. A non-empty relation Z ⊆ W1 ×W2 is a strong bisimulation between F1
and F2 if the following conditions are met:

(forth)s If (w1, w2) ∈ Z and Y1 ∈ ν1(w1), then there is a Y2 ⊆W2 such that

• Y2 ∈ ν2(w2),

• for all y2 ∈ Y2 there is a y1 ∈ Y1 such that (y1, y2) ∈ Z, and

• Z−1[Y2] ∩ Y1 ∈ ν1(w1).

(back)s If (w1, w2) ∈ Z and Y2 ∈ ν2(w2), then there is a Y1 ⊆W1 such that

• Y1 ∈ ν1(w1),

• for all y1 ∈ Y1 there is a y2 ∈ Y2 such that (y1, y2) ∈ Z, and

• Z[Y1] ∩ Y2 ∈ ν2(w2). a

It is obvious from the above definition that strong bisimulations are also bisimulations.
The following example shows that strong bisimilarity really is a stronger concept.

Example 8.22 Consider the frames F1 = ({s1, t1, u1, v1}, ν1) where ν
c
1(s1) = {{t1}, {u1, v1}},

νc1(u1) = {{u1}} and ν1(t1) = ν1(v1) = ∅; and F2 = ({s2, t2}, ν2) where νc2(s2) = {{t2}} and
ν2(t2) = ∅. It is straightforward to check that Z = {(s1, s2), (t1, t2), (v1, t2)} is a bisimulation.
In fact, Z is the maximal bisimulation on F1 and F2. But Z is not strong, since {u1, v1} ∈
ν1(s1), and the only neighbourhood in ν2(s2) which can satisfy the (forth) clause is {t2}, but
Z−1[{t2}]∩{u1, v1} = {v1} /∈ ν1(s1). It is not too hard to see that this problem will occur for
any bisimulation, thus s1 and s2 are bisimilar, but not strongly bisimilar. Similarly, F1 and
F2 are bisimilar systems, but also not strongly bisimilar.

We will now show that the extra condition in Definition 8.21 is exactly what is needed in
order to be able to obtain an UpP-coalgebra bisimulation.
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Proposition 8.23 Let (W1, ν1) and (W2, ν2) be two UpP-coalgebras, and ∅ 6= Z ⊆W1 ×W2

a relation. Then Z is an UpP-coalgebra bisimulation if and only if Z is a strong bisimulation.

Proof. By Definition 8.4, Z is a UpP-coalgebra bisimulation if and only if there is a µ : Z →
UpP(Z) such that for all (x1, x2) ∈ Z: ν1(x1) = ↑π∗1[µ(x1, x2)] and ν2(x2) = ↑π∗2[µ(x1, x2)].
That is for all (x1, x2) ∈ Z,

∀Y1 ⊆W1 (Y1 ∈ ν1(x1) ⇐⇒ ∃C ∈ µ(x1, x2)(π1[C] ⊆ Y1)),(49)

and

∀Y2 ⊆W2 (Y2 ∈ ν2(x2) ⇐⇒ ∃C ∈ µ(x1, x2)(π2[C] ⊆ Y2)).(50)

Observe that (49) and (50) entail that

∀C ∈ µ(x1, x2)(π1[C] ∈ ν1(x1) & π2[C] ∈ ν2(x2)).(51)

“=⇒”: Assume that Z is an UpP-coalgebra bisimulation with µ : Z → UpP(Z) satisfying (49)
and (50). To show the (forth)s condition for Z, suppose that (w1, w2) ∈ Z and Y1 ∈ ν1(w1).
Then by (49) there is a C ∈ µ(w1, w2) such that π1[C] ⊆ Y1. Define Y2 := π2[C], then it
follows from (50) that Y2 ∈ ν2(w2).

To show the second part of the (forth)s clause, let v2 ∈ Y2 = π2[C]. Then there is a
v1 ∈ W1 such that (v1, v2) ∈ C. Since π1[C] ⊆ Y1 and C ⊆ Z, we have v1 ∈ Y1 and
(v1, v2) ∈ Z. To see that Z−1[Y2] ∩ Y1 ∈ ν1(w1), we first note that since C ⊆ Z, we have

π1[C] ⊆ Z−1[π2[C]] = Z−1[Y2].

Hence since π1[C] ⊆ Y1, we obtain π1[C] ⊆ Z−1[Y2] ∩ Y1. From C ∈ µ(w1, w2) and (51) it
follows that π1[C] ∈ ν1(w1), so by upwards closure of ν1(w1), we may conclude that Z−1[Y2]∩
Y1 ∈ ν1(w1).

The (back)s condition is shown analogously; we leave it to the reader to work out the
details.
“⇐=”: Assume that Z is a strong bisimulation between the monotonic L∇-frames F1 =
(W1, ν1) and F2 = (W2, ν2). We must now define a map µ : Z → UpP(Z) such that (49) and
(50) hold. For C ⊆ Z and (x1, x2) ∈ Z, we define,

C ∈ µl(x1, x2) iff π1[C] ∈ ν1(x1) & π2[C] ∈ ν2(x2).(52)

Then µl is clearly upwards closed. To see that (49) holds, first note that from (52) and the
upwards closure of ν1(x1), it is clear that the inclusion from right to left holds. For the
inclusion from left to right, suppose (x1, x2) ∈ Z and Y1 ∈ ν1(w1). We need a C ⊆ Z such
that for i ∈ {1, 2}, πi[C] ∈ νi(x1), and π1[C] ⊆ Y1. From the (forth)s clause, we obtain a
Y2 ∈ ν2(x2) such that

Z−1[Y2] ∩ Y1 ∈ ν1(x1),(53)

and

∀y2 ∈ Y2 ∃y1 ∈ Y1 : (y1, y2) ∈ Z.(54)

We have π1[(Y1 × Y2) ∩ Z] = Z−1[Y2] ∩ Y1, so by (53), π1[(Y1 × Y2) ∩ Z] ∈ ν1(x1). From (54)
it follows that π2[(Y1 × Y2) ∩ Z] = Y2 ∈ ν2(x2). Hence if we take C = (Y1 × Y2) ∩ Z, we have
just shown that C ∈ µl(x1, x2), and it is also clear that π1[C] ⊆ Y1.

(50) is shown analogously. qed
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Remark 8.24 Rutten [59] shows that a T -coalgebra morphism is also a T -coalgebra bisimu-
lation for arbitrary T . Thus by Propositions 8.10 and 8.23 we may conclude that a bounded
morphism between monotonic frames is a functional strong bisimulation. We can also show
this directly. Assume that f : W1 → W2 is a bounded morphism between the monotonic
L∇-frames F1 = (W1, ν1) and F2 = (W2, ν2). For the (forth)s condition, suppose x ∈W1 and
Y1 ∈ ν1(x). Then by the (BM1) condition for f , we have Y2 := f [Y1] ∈ ν2(f(x)), and for
all y2 ∈ Y2 = f [Y1] there is a y1 ∈ Y1 such that f(y1) = y2, i.e., (y1, y2) ∈ f . To see that
f−1[Y2] ∩ Y1 ∈ ν1(x), note that Y1 ⊆ f−1[f [Y1]] = f−1[Y2], hence f

−1[Y2] ∩ Y1 = Y1 ∈ ν1(x).
For the (back)s condition, suppose that x ∈ W1 and Y2 ∈ ν2(f(x)). Then by the (BM2)

condition for f there is a Y1 ∈ ν1(x) such that f [Y1] ⊆ Y2. Again, it is clear that for all y1 ∈ Y1
there is a y2 ∈ Y2 (namely y2 = f(y1)) such that (y1, y2) ∈ f . Now, we still need to show that
f [Y1]∩ Y2 ∈ ν2(f(x)). Since f [Y1] ⊆ Y2, we have f [Y1]∩ Y2 = f [Y1]. From Y1 ∈ ν1(x) and the
(BM1) condition for f , we also obtain f [Y1] ∈ ν2(f(x)), hence f [Y1] ∩ Y2 ∈ ν2(f(x)).

The extra condition that is required to make a bisimulation Z strong, will fail if, for
example, Y1 ∈ ν

c
1(x1) and Y1 contains a state which is not in dom(Z) in which case Z−1[Y2]∩

Y1 ( Y1 for any Y2, and since Y1 is a core neighbourhood, Z−1[Y2] ∩ Y1 /∈ ν1(x1).
This failure can be eliminated if we consider full bisimulations, that is bisimulations Z ⊆

W1 ×W2 where dom(Z) = W1 and ran(Z) = W2. As a consequence we can show that full
bisimulations are also UpP-coalgebra bisimulations.

Proposition 8.25 Let (W1, ν1) and (W2, ν2) be two UpP-coalgebras, and ∅ 6= Z ⊆W1×W2.
Then the following holds: If Z is a full bisimulation between (W1, ν1) and (W2, ν2), then Z is
an UpP-bisimulation between (W1, ν1) and (W2, ν2) .

Proof. Assume that Z is a full bisimulation between F1 = (W1, ν1) and F2 = (W2, ν2)
viewed as monotonic L∇-frames. We must then define a map µ : Z → UpP(Z) such that
for all (x1, x2) ∈ Z: ν1(x1) = (π−11 )−1[µ(x1, x2)] and ν2(x2) = (π−12 )−1[µ(x1, x2)]. These two
identities are equivalent with the following conditions:

∀Y1 ⊆W1 (Y1 ∈ ν1(x1) ⇐⇒ π−11 [Y1] ∈ µ(x1, x2)),(55)

and

∀Y2 ⊆W2 (Y2 ∈ ν2(x2) ⇐⇒ π−12 [Y2] ∈ µ(x1, x2)).(56)

Define µs as follows: For all C ⊆ Z, (x1, x2) ∈ Z,

C ∈ µs(x1, x2) iff ∃C1 ∈ ν1(x1) : π
−1
1 [C1] ⊆ C or ∃C2 ∈ ν2(x2) : π

−1
2 [C1] ⊆ C.(57)

Clearly, µs is upwards closed. To see that (55) holds, note that the ⇒-direction is trivially
fulfilled by the definition of µs. For the ⇐-direction, let Y1 ⊆ W1 and assume π−11 [Y1] ∈
µs(x1, x2). Then by (57), there is either a C1 ∈ ν1(x1) such that π−11 [C1] ⊆ π−11 [Y1] or there
is a C2 ∈ ν2(x2) such that π−12 [C2] ⊆ π−11 [Y1].

We first treat the C1-case: π
−1
1 [C1] ⊆ π−11 [Y1] implies π1[π

−1
1 [C1]] ⊆ π1[π

−1
1 [Y1]], and since

dom(Z) = W1, this is equivalent with C1 ⊆ Y1. As C1 ∈ ν1(x1), we obtain Y1 ∈ ν1(x1) by
upwards closure.
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Now, for the C2-case: By the (back) condition for Z, there is a C1 ∈ ν1(x1) such that
∀c1 ∈ C1∃c2 ∈ C2 : (c1, c2) ∈ Z, i.e., C1 ⊆ π1[π

−1
2 [C2]]. Together with π

−1
2 [C1] ⊆ π−11 [Y1], this

implies

C1 ⊆ π1[π
−1
2 [C2]] ⊆ π1[π

−1
1 [Y1] ⊆ Y1.

Hence, as C1 ∈ ν1(x1), also Y1 ∈ ν1(x1).
(56) is shown in a similar manner. qed

Remark 8.26 As an alternative to the above proof, we could have shown directly that full
bisimulations are strong bisimulations. We only sketch the proof: When (x1, x2) ∈ Z and
Y1 ∈ ν1(x1) then by the (forth) clause there is a Y ′2 ∈ ν2(x2) such that Y ′2 ⊆ Z[Y1]. Taking
Y2 := Z[Y1], then Y1 ⊆ Z−1[Y2] since Y1 ⊆ W1 = dom(Z), hence Z−1[Y2] ∩ Y1 = Y1 ∈ ν1(x1).
Similarly for the (back)s condition.

The following easy example shows that strong bisimulations need not be full bisimulations.

Example 8.27 Let F1 = ({s1, t1, u1}, ν1) and F2 = ({s2, t2}) where ν
c
i (si) = {{ti}}, νi(ti) =

∅, for i ∈ {1, 2}, and νc1(u1) = {{u1}}. Then Z = {(s1, s2), (t1, t2)} is a (maximal) strong
bisimulation, but clearly not a full bisimulation.

Remark 8.28 The reason why we gave the proof of Proposition 8.25, was to demonstrate
that the function µ : Z → UpP(Z) can be defined in a number of ways. Since ↑π∗i [µ(x1, x2)] =
(π−1i )−1[µ(x1, x2)], the conditions (49) and (50) are, of course, equivalent with (55) and (56),
and the latter clearly express that the projections are bounded morphisms, as Definition 8.4
demands.

Observe that µl is the map we obtain by taking the (BM1) condition as our definition,
and µs is obtained by taking (BM2) as the definition. There is an obvious analogy here with
the smallest and largest filtrations (cf. section 4.2), and we have indeed chosen our notation
to reflect this.

Lemma 8.29 Let (W1, ν1) and (W2, ν2) be UpP-coalgebras, Z ⊆ W1 × W2 a non-empty
relation, and let µ : Z → UpP(Z) be a map satisfying (55) and (56). Then for all (x1, x2) ∈ Z,

µs(x1, x2) ⊆ µ(x1, x2) ⊆ µl(x1, x2).

Proof. Let (x1, x2) ∈ Z and C ⊆ Z. For the first inclusion, assume C ∈ µs(x1, x2). Then
for some i ∈ {1, 2} there is a Ci ∈ νi(xi) such that π−1i [Ci] ⊆ C. Depending on i, it follows
from (55) or (56) together with Ci ∈ νi(xi) that π

−1
i [Ci] ∈ µ(x1, x2), and since π−1i [Ci] ⊆ C,

by upwards closure we have C ∈ µ(x1, x2).
The second inclusion is easily seen to hold, since C ∈ µ(x1, x2), (55) and (56) imply that

πi[C] ∈ νi(xi) for all i ∈ {1, 2}. qed

The following example shows that µs and µl are not always the same.

Example 8.30 Consider the frames Fi = (Wi = {si, ti}, νi) where νi(si) = νi(ti) = {Wi}
for i ∈ {1, 2}. Then Z = W1 ×W2 is a full bisimulation, and µc

l (w1, w2) = {D,E} where
D = {(s1, s2), (t1, t2)} and E = {(s1, t2), (t1, s2)}, for all (w1, w2) ∈ Z, since πi[D] = πi[E] =
Wi ∈ νi(wi) for i ∈ {1, 2}. However, µs(w1, w2) = {Z}, for all (w1, w2) ∈ Z, since π

−1
i [Wi] = Z

for i ∈ {1, 2}.
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The proof of Proposition 8.23 shows that when Z is a strong bisimulation, then we can
always take µl to show that Z is an UpP-coalgebra bisimulation. On the other hand, the
proof of Proposition 8.25 shows that when Z is a full bisimulation, then we can endow Z with
the structure µs to show that Z is an UpP-coalgebra bisimulation. Since we also know that
full bisimulations form a strict subset of the strong bisimulations, we may ask whether µs will
also work for strong, but not full bisimulations. We will have to leave this questions open.

Behavioural equivalence

As it turns out, the concept of behavioural equivalence ties in better with the frame theoretic
notion of bisimulation.

Recall from Definition 8.5 that for two UpP-coalgebras (X1, ν1) and (X2, ν2), two states
s1 ∈ X1 and s2 ∈ X2 are behaviourally equivalent if they can be identified via two UpP-
coalgebra morphisms fi : Xi → Y in some UpP-coalgebra (Y, δ).

(X2, ν2)

f2ÄÄÄÄ
ÄÄ
Ä

(X1, ν1)

f1 ÂÂ?
??

??

(Y, δ)

Suppose that in the above diagram, we consider the relation

INSEP(f1, f2) = {(x1, x2) ∈ X1 ×X2 | f1(x1) = f2(x2)}.

Then the fact that f1 and f2 are UpP-coalgebra morphisms implies that INSEP(f1, f2) is a
bisimulation between the monotonic L∇-frames (X1, ν1) and (X2, ν2).

Proposition 8.31 Let (X1, ν1), (X2, ν2) and (Y, δ) be UpP-coalgebras, and assume that fi :
Xi → Y , i ∈ {1, 2}, are UpP-coalgebra morphisms and INSEP(f1, f2) = {(x1, x2) ∈ X1×X2 |
f1(x1) = f2(x2)} is non-empty. Then INSEP(f1, f2) is a bisimulation between (X1, ν1) and
(X2, ν2).

Proof. For notational convenience, let INSEP := INSEP(f1, f2). To show the bisimulation
(forth) condition for INSEP, assume (s1, s2) ∈ INSEP and X1 ∈ ν1(s1). From the (BM1)
condition for f1, we have f1[X1] ∈ ν0(f1(s1)), and since (s1, s2) ∈ INSEP, f1(s1) = f2(s2),
hence f1[X1] ∈ ν0(f2(s2)). Now we apply the (BM2) condition for f2, to obtain an X2 ⊆W2

such that f2[X2] ⊆ f1[X1] and X2 ∈ ν2(s2). From f2[X2] ⊆ f1[X1] it follows that ∀x2 ∈
X2 ∃x1 ∈ X1 : f1(x1) = f2(x2). The bisimulation (back) condition for INSEP is shown in a
similar way. qed

When the exact definition of a diagram (X1, ν1)
f1 //(Y, δ) (X2, ν2)

f2oo is assumed or ir-

relevant, we will refer to INSEP(f1, f2) simply as an INSEP-relation. The question that
comes to mind now, is whether INSEP-relations are also strong bisimulations. The frames of
Example 8.22 show that the answer is no.
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Example 8.32 Recall the frames from Example 8.22:

F1 = (W1, ν1) where F2 = (W2, ν2) where
W1 = {s1, t1, u1, v1}, W2 = {s2, t2},

νc1(s1) = {{t1}, {u1, v1}}, νc2(s2) = {{t2}},
νc1(u1) = {{u1}}, ν2(t2) = ∅.

ν1(t1) = ν1(v1) = ∅.

Also consider the following isomorphic copy of F2:

G = (Y, µ) where
Y = {x, y},

µc(x) = {{y}},
µ(y) = ∅.

Then the bisimulation Z = {(s1, s2), (t1, t2), (v1, t2)} is the INSEP(f1, f2)-relation of fi :
Wi → Y , i ∈ {1, 2}, where f1(s1) = f2(s2) = x and f1(u1) = f1(v1) = f2(t2) = y. But as we
already know, Z is not a strong bisimulation, and there is no strong bisimulation linking s1
and s2.

Thus, like bisimilarity, behavioural equivalence of states is a weaker notion than UpP-
coalgebra bisimilarity of states, and we will show that the two notions are equivalent. However,
first we will show that we can take quotients over maximal bisimulations. This is needed in
the proof of Proposition 8.34, but is also interesting in its own right. Before we proceed we
should remark that bisimulations are closed under unions (this is easy to show, and we leave
out the proof), hence for bisimilar frames there is always a maximal bisimulation. Also, any
monotonic frame is obviously bisimilar to itself.

Lemma 8.33 (Bisimulation Quotients) Let F = (W, ν) be a monotonic L∇-frame, and
Z ⊆ W ×W the maximal bisimulation on F. Then Z defines an equivalence relation ≡Z on
W , and there is a map µ : |W | → P(P(|W |)) where |W | denotes W/≡Z such that the natural
map ε :W →W/≡Z is a bounded morphism.

Proof. In order to prove that Z is an equivalence relation, one can show that the reflexive,
symmetric and transitive closure of Z is again a bisimulation, hence contained in Z. We leave
out the details.

Now we define a neighbourhood function µ on W/≡Z by,

X ∈ µ(ε(w)) iff ε−1[X] ∈ ν(w).

Then µ is upwards closed, and once we have have shown that µ is well-defined, the lemma is
immediate. To do so, we must show that for all x, y ∈ W and all X ⊆ |W |, if ε(x) = ε(y)
then

ε−1[X] ∈ ν(x) iff ε−1[X] ∈ ν(y).(58)

So assume ε(x) = ε(y). Then in particular, (x, y) ∈ Z. We only show the direction from
left to right in (58). Suppose ε−1[X] ∈ ν(x). Then by the (forth) condition for Z, there is a
C ∈ ν(y) such that for all c ∈ C there is a d ∈ ε−1[X] such that (d, c) ∈ Z. When d ∈ ε−1[X],
we have ε(d) ∈ X, and (d, c) ∈ Z implies that ε(c) = ε(d) ∈ X. Thus the (forth) condition
says that we have a C ∈ ν(y) such that ε[C] ⊆ X, and hence C ⊆ ε−1[X], so by upwards
closure of ν(y), we may conclude that ε−1[X] ∈ ν(y). qed
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Proposition 8.34 Let (X1, ν1) and (X2, ν2) be two UpP-coalgebras, and assume that Z ⊆
X1×X2 is a bisimulation such that (s1, s2) ∈ Z. Then s1 and s2 are behaviourally equivalent.

Proof. We must find an UpP-coalgebra (Y, µ) and UpP-coalgebra morphisms fi : Xi → Y
such that f1(s1) = f2(s2).

Since (X1, ν1) and (X2, ν2) may simply be seen as monotonic L∇-frames, we can form their
disjoint union (X1 ]X2, ν) (see Definition 4.1). Then the inclusion maps ki : Xi → X1 ]X2,
i ∈ {1, 2}, are bounded morphisms, or equivalently, UpP-coalgebra morphisms, and Z is a
bisimulation on (X1 ]X2, ν). Let ZM denote the maximal bisimulation on (X1 ]X2, ν), then
Z ⊆ ZM , and by Lemma 8.33 we can take the quotient (Y, µ) of (X1 ]X2, ν) with ZM . That
is, Y = (X1 ] X2)/ ≡ZM and µ : Y → UpP(Y ) is defined such that the natural map ε :
(X1]X2)→ Y is an UpP-coalgebra morphism. Thus if we take fi := ε◦ki : Xi → Y , then fi
is an UpP-coalgebra morphism from (Xi, νi) to (Y, µ), i ∈ {1, 2}, and since (s1, s2) ∈ Z ⊆ ZM

it follows that f1(s1) = ε(s1) = ε(s2) = f2(s2).

(X1, ν1)##

k1 ##G
GG

GG
GG

GG

f1

##

(X2, ν2){{

k2{{www
ww
ww
ww

f2

{{

(X1 ]X2, ν)

ε

²²
(Y, µ)

qed

From Propositions 8.31 and 8.34 we may conclude the following.

Theorem 8.35 (State equivalence) Let (X1, ν1) and (X2, ν2) be two UpP-coalgebras. Then
two states s1 ∈ X1 and s2 ∈ X2 are behaviourally equivalent if and only if s1 and s2 are bisim-
ilar.

Remark 8.36 If Z is the INSEP(f1, f2)-relation of two UpP-coalgebra morphisms f1 and
f2, then (Z, π1, π2) is the pullback in Set of f1 and f2. Rutten [59] shows that when a
functor T preserves weak pullbacks, then INSEP-relations are also T -coalgebra bisimulations;
in other words, INSEP-relations are weak pullbacks in the category SetT of T -coalgebras and
T -coalgebra morphisms. Since we know from Example 8.32 that INSEP-relations are not
necessarily UpP-coalgebra bisimulations, we can conclude that UpP does not preserve weak
pullbacks. This may not be so surprising since 2(·) ◦2(·) does not preserve weak pullbacks (see
also [59]), and UpP and 2(·) ◦ 2(·) work in the same way on functions.

We end this section with a theorem which sums up the relationships between the various
system equivalence notions.

Theorem 8.37 (System equivalence) Let (X1, ν1) and (X2, ν2) be two UpP-coalgebras.
Then the following are equivalent.

(i) (X1, ν1) and (X2, ν2) are behaviourally equivalent systems,
(ii) there exists a full bisimulation between (X1, ν1) and (X2, ν2),
(iii) there exists a full UpP-coalgebra bisimulation between (X1, ν1) and (X2, ν).



9 INTERPOLATION 87

Proof. (i)⇒ (ii): Assume that (X1, ν1) and (X2, ν2) are behaviourally equivalent. Then there
is an UpP-coalgebra (Y, δ) and UpP-coalgebra morphisms f1 and f2 such that fi : (X1, ν1)³
(Y, δ), i ∈ {1, 2}. From Proposition 8.31 we know that INSEP(f1, f2) is a bisimulation.,
and due to the surjectivity of f1 and f2, it is easy to see that INSEP(f1, f2) is also a full
bisimulation.
(ii)⇒ (i): This can be proved in the same way as Proposition 8.34. All we need to do is observe
that when Z is a full bisimulation between (X1, ν1) and (X2, ν2), then every equivalence class
in |X1 ] X2| will contain elements from both X1 and X2, and this clearly implies that the
fi = ε ◦ ki, defined as in the proof of Proposition 8.34 are surjective, i ∈ {1, 2}.
(ii) ⇔ (iii): Clear by Propositions 8.25 and 8.23. qed

The diagram below illustrates the relationships between the various model theoretic and
coalgebraic notions of bisimulations. An arrow from one property P1 to another P2 indicates
that if a relation is P1, then it is also P2. The diagram is of course transitive.

full bisimulation

uulll
lll

lll
lll

ll

**UUU
UUUU

UUUU
UUUU

UU

²²
bisimulation strong bisimulationoo oo // UpP-coalgebra bisimulation

bounded morphism

hhRRRRRRRRRRRRRR

OO

UpP-coalgebra morphism//oo

OO

9 Interpolation

In this section, we will investigate the relationship between interpolation in a modal logic
Λ and superamalgamation of the corresponding variety VΛ. Since we are working with the
local consequence relation, we will be concerned with the Craig Interpolation Property (CIP).
Superamalgamation (SUPAP) of varieties has provided algebraic characterizations of CIP for
a large class of modal logics, where it is possible to show that: Λ has CIP iff VΛ has SUPAP.
However, we have found only little in the literature regarding interpolation in monotonic
modal logics or superamalgamation in bam-varieties, although Madarász [48, 49] generalises
results for bao-varieties to bae-varieties in which the added operation f is non-normal, i.e.
f(0) 6= 0, but still additive, and she also provides some results on the limitations of the
CIP-SUPAP relationship.

9.1 General Definitions and Results

Definition 9.1 (Interpolation) A modal logic Λ over a language L has the Craig Interpo-
lation Property (CIP) if for any formulas ϕ,ψ ∈ L such that `Λ ϕ → ψ, there is a formula
θ ∈ L such that fv(θ) ⊆ fv(ϕ) ∩ fv(ψ) and `Λ ϕ→ θ, `Λ θ → ψ. θ is called an interpolant.

a

Definition 9.2 (Superamalgamation) Let K be a class of algebras such that each A ∈ K

has a partial ordering. K has the superamalgamation property (SUPAP) if, for any A0,A1,A2 ∈
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K and embeddings e1, e2 such that A1
e1
¾ A0

e2
½ A2, there exists an A ∈ K and embeddings

g1, g2 such that

1. A1
g1
½ A

g2
¾ A2.

2. g1 ◦ e1 = g2 ◦ e2.
3. ∀x1 ∈ A1, ∀x2 ∈ A2,

g1(x1) ≤ g2(x2) ⇒ ∃x0 ∈ A0 : x1 ≤ e1(x0) and e2(x0) ≤ x2
g2(x2) ≤ g1(x1) ⇒ ∃x0 ∈ A0 : x2 ≤ e2(x0) and e1(x0) ≤ x1.

A

A2
__

g2
__??????

A1
??

g1
??ÄÄÄÄÄÄ

A0
__e1

__????? ?? e2

??ÄÄÄÄÄ

a

Showing that Λ has CIP under the assumption that VΛ has SUPAP can be done under
very general circumstances. In most of the encountered literature [11, 43, 50] this implication
is proved by showing that 0Λ ϕ→ ψ whenever VΛ has SUPAP and ϕ,ψ have no interpolant.
However, this proof method is rather involved. Below we show the desired result directly, and
it relies on the simple observation that when Λ has CIP then the free algebras of VΛ can be
superamalgamated.

Theorem 9.3 (SUPAP ⇒ CIP) Let Λ be a modal L∇-logic, and VΛ the variety of baes
defined by Λ. Then Λ has CIP if VΛ has SUPAP.

Proof. Assume that VΛ has SUPAP, and suppose `Λ ϕ1 → ϕ2 for ϕ1, ϕ2 ∈ L∇. Let
Φi = fv(ϕi), i = 1, 2, Φ0 = Φ1 ∩ Φ2, Φ12 = Φ1 ∪ Φ2, and let L1,L2,L0 and L12 denote the
corresponding languages.

Let Fι be the VΛ-free algebra generated by [Φι], ι ∈ {0, 1, 2, 12}. For ϕ ∈ Lι, [ϕ]ι denotes
the equivalence class of ϕ in Fι, and [Φι] = {[p]ι | p ∈ Φι}, ι ∈ {0, 1, 2, 12}. Then Fι ∈ VΛ,
and Fι has a partial ordering ≤ι defined by: [ϕ]ι ≤ι [ψ]ι iff `Λ ϕ → ψ, ι ∈ {0, 1, 2, 12}.
Furthermore, we have embeddings e1, e2, e

′
1, e

′
2 defined by ei([ϕ]0) = [ϕ]i, e

′
i([ϕ]i) = [ϕ]12,

i = 1, 2 such that F1
e1
¾ F0

e2
½ F2 and F1

e′1
½ F12

e′2
¾ F2. Hence by the assumption that

VΛ has SUPAP there are A ∈ VΛ and embeddings g1, g2 such that the three conditions of
Definition 9.2 hold.

Claim 1 g1([ϕ1]1) ≤12 g2([ϕ2]2).

Proof of Claim Define a map h : [Φ12] → A by

h([p]12) =

{
g1([p]1) if p ∈ Φ1
g2([p]2) if p ∈ Φ2

In case p ∈ Φ0 = Φ1 ∩ Φ2, we must check that h is well-defined, but this is clear from
Definition 9.2,2.
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By the universal mapping property for free algebras, there is a unique extension ĥ of h
such that ĥ : F12 → A is a homomorphism. Since in F12, [ϕ1]12 ≤12 [ϕ2]12, it follows from
monotonicity of homomorphisms that ĥ([ϕ1]12) ≤A ĥ([ϕ2]12) (∗).

Note also that ĥ ◦ e′i¹[Φi] = gi¹[Φi] is a map from [Φi] to A, i = 1, 2. Hence, again by the
universal mapping property, gi¹[Φi] can be uniquely extended to a homomorphism from Fi to

A, and since ĥ◦e′i and gi are both homomorphisms extending gi¹[Φi] it follows that ĥ◦e
′
i = gi.

Together with (∗) this implies g1([ϕ1]1) = ĥ(e′1([ϕ1]1)) ≤12 ĥ(e
′
2([ϕ2]2)) = g2([ϕ2]2). J

From the claim and SUPAP for VΛ we obtain a θ ∈ L0 such that

[ϕ1]1 ≤1 e1([θ]0) = [θ]1 and [θ]2 = e2([θ]0) ≤2 [ϕ2]2,

hence fv(θ) ⊆ fv(ϕ1) ∩ fv(ϕ2) = Φ0, and

`Λ ϕ1 → θ and `Λ θ → ϕ2

We have shown that Λ has CIP.

A

F12

ĥ
``BBBBBBBB

F2
e′2oo

g2
oo

F1

e′1

OOg1

PP

F0e1
oo

e2

OO

qed

9.2 Bisimulation Products

Marx [51] provides sufficient conditions for SUPAP formulated in terms of Kripke frames, and
here we will prove a version for monotonic frames in Lemma 9.8. The construction involves
duality and bisimulation products which are a generalisation of the UpP-coalgebras, or equiv-
alently, the monotonic L∇-frames, (Z, µs) we constructed in the proof of Proposition 8.25,
where we showed that when Z is a full bisimulation then Z is an UpP-coalgebra bisimulation.
The results will enable us to prove that a number of monotonic modal logics, including M,
have CIP in Theorem 9.10.

Definition 9.4 (Direct product) Let Fi = (Wi, νi), i ∈ I, be a collection of monotonic
L∇-frames. The direct product of (Fi)i∈I is defined as Πi∈IFi = (W, ν) where

W = Πi∈IWi and

∀s = (si)i∈I ∈W, ∀X ⊆W : X ∈ ν(s) iff ∃i ∈ I∃Ci ∈ νi(si) : π
−1
i [Ci] ⊆ X.

Here πj : Πi∈IFi → Fj denotes the projection map from W to Wj . When |I| = 2, we will use
the infix notation: F1 × F2 instead of Πi∈{1,2}Fi. a

From the above definition, it is clear that the direct product of monotonic L∇-frames is also
monotonic.
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Definition 9.5 (Bisimulation product) Let (Fi)i∈I be a collection of monotonic L∇-frames.
A monotonic frame G = (W, ν) is a bisimulation product of (Fi)i∈I if G is a subframe of Πi∈IFi
and the projections πi : G→ Fi, i ∈ I, are surjective bounded morphisms. a

We will use the same notation for subframes as for submodels (recall Definition 4.14). Thus
if F = (W, ν) is a frame and and X ⊆W then F¹X denotes the subframe (X, ν∩ (X×P(X))).

From Theorem 8.37, the following results are immediate.

Proposition 9.6 Let Fi = (Wi, νi), i ∈ {1, 2}, be monotonic L∇-frames, and Z ⊆W1 ×W2.
Then Z is a full bisimulation between F1 and F2 if and only if (F1 × F2)¹Z is a bisimulation
product of F1 and F2.

Proposition 9.7 If Fi = (Wi, νi), i ∈ {0, 1, 2} are monotonic L∇-frames, and fi :Wi ³W0,
are surjective bounded morphisms, i ∈ {1, 2}, then

• INSEP = {(x, y) ∈W1 ×W2 | f1(x) = f2(y)} is a full bisimulation between F1 and F2.

• (F1 × F2)¹INSEP is a bisimulation product of F1 and F2.

• f1 ◦ π1 = f2 ◦ π2, where πi : INSEP→Wi, i ∈ {1, 2}, are the projection maps.

(F1 × F2)¹INSEP
π2 // //

π1
²²²²

F2
f2

²²²²
F1

f1

// // F0

Bisimulation products of the form (F1×F2)¹INSEP will be called INSEP-products. Before
we state the main technical result, recall that Aσ denotes the usual (σ-)ultrafilter frame of a
bam A (see Definition 7.14), and Aπ denotes the π-ultrafilter frame defined in subsection 7.6.

Lemma 9.8 (Bisimulation product lemma) Let K be a class of bams and F a class of
monotonic L∇-frames. Then K has SUPAP if the following three conditions are satisfied:

(i) F is closed under taking finite bisimulation products.
(ii) For all F in F: F+ ∈ K.
(iii) One of the following holds:

(σ) For all A in K: Aσ ∈ F, or
(π) For all A ∈ K: Aπ ∈ F.

Note that if K is a σ-canonical or π-canonical variety and F = {F | F+ ∈ K}, then
conditions (ii) and (iii) in the bisimulation product lemma always hold. Suppose, for example,
that K is π-canonical. Then A ∈ K implies that Aπ = (Aπ)

+ ∈ K, and hence Aπ ∈ F.

Proof of Lemma 9.8. The proof of this lemma is virtually identical to that of Lemma
5.2.6 in Marx [51], which relies only on the Kripke version of Proposition 9.7 and the duality
between Kripke frames and baos. We have shown the analogues for monotonic L∇-frames
and bams in Propositions 7.17, 7.19 and 7.49. qed
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Proposition 9.9 The following frame classes are closed under taking finite bisimulation
products:

(M) The class M of all monotonic L∇-frames.
(N) The class N of monotonic L∇-frames satisfying

(n) ∀w ∈W :W ∈ ν(w).
(P) The class P of monotonic L∇-frames satisfying

(p) ∀w ∈W : ∅ /∈ ν(w).
(4’) The class 4′ of monotonic L∇-frames satisfying

(iv’) ∀w ∈W ∀X ⊆W : X ∈ ν(w)→ mν(X) ∈ ν(w).
(T) The class T of monotonic L∇-frames satisfying

(t) ∀w ∈W ∀X ⊆W : X ∈ ν(w)→ w ∈ X.
(D) The class D of monotonic L∇-frames satisfying

(d) ∀w ∈W : X ∈ ν(w)→W \X /∈ ν(w).

Proof. Throughout the proof we assume that Fi = (Wi, νi), i ∈ I, are monotonic L∇-frames,
and G = (W, ν) is a bisimulation product of {Fi | i ∈ I}. Recall from Definition 9.5 that for
s = (si)i∈I ∈W,X ⊆W :

X ∈ ν(s) ⇐⇒ X ⊆W and ∃i ∈ I∃Ci ∈ νi(si) : π
−1
i [Ci] ⊆ X.(59)

Proof of (M): Clear by the definition of direct product and subframes.
Proof of (N): Assume that Fi ∈ N, ∀i ∈ I. We must show that W ∈ ν(s) for all s ∈ W .

But this is clear, simply take any i ∈ I, then Wi ∈ νi(si) and π
−1
i [Wi] ⊆W .

Proof of (P): Assume that Fi ∈ P, ∀i ∈ I. We must show that ∅ /∈ ν(s) for all s ∈ W .
Suppose for contradiction that there is a s ∈ W , such that ∅ ∈ ν(s). Then there is an i ∈ I
and a Ci ∈ νi(si) such that π−1i [Ci] = ∅. Hence by the surjectivity of πi, Ci = ∅, which is a
contradiction with Ci ∈ νi(si) and Fi ∈ P.

Proof of (4’): Assume that Fi ∈ 4′, ∀i ∈ I, and X ∈ ν(s), we then wish to show that
mν(X) ∈ ν(s). From X ∈ ν(s), we obtain an i ∈ I and a Ci ∈ νi(si) such that π−1i [Ci] ⊆ X
(∗). Since Fi ∈ 4′, we have mνi(Ci) ∈ νi(si). If we can show that π−1i [mνi(Ci)] ⊆ mν(X),
then mν(X) ∈ ν(s) follows. So take t ∈ π−1i [mνi(Ci)], then ti ∈ mνi(Ci), hence Ci ∈ νi(ti)
and by (59) and (∗), it now follows that X ∈ ν(t), so t ∈ mν(X).

Proof of (T): Assume that Fi ∈ T, ∀i ∈ I, andX ∈ ν(s). We then wish to show that s ∈ X.
From X ∈ ν(s), it follows that there is an i ∈ I and a Ci ∈ νi(si) such that π−1i [Ci] ⊆ X.
Then by our assumption that Fi ∈ T, it must be the case that si ∈ Ci, which implies that
s ∈ π−1i [Ci] ⊆ X.

Proof of (D): Assume that Fi ∈ D, ∀i ∈ I, and X ∈ ν(s). We wish to show that
W \ X /∈ ν(s). Suppose for contradiction that W \ X ∈ ν(s), i.e., there is an i ∈ I and
a Ci ∈ νi(si) such that π−1i [Ci] ⊆ W \ X. Let i and Ci be fixed, then X ⊆ W \ π−1i [Ci],
hence by upwards closure, W \ π−1i [Ci] ∈ ν(s), whence πi[W \ π−1i [Ci]] ∈ νi(si). From
Ci ∈ νi(si) and our assumption that Fi ∈ D, we obtain Wi \Ci /∈ ν(si). Hence if we can show

πi[W \ π−1i [Ci]] ⊆ Wi \ Ci (∗∗), we have a contradiction with the upwards closure of νi(si).
To see that (∗∗) is the case, take ti ∈ πi[W \ π−1i [Ci]], then there is a u ∈ W \ π−1i [Ci] such
that ui = ti, i.e., there is a u /∈ π−1i [Ci] such that ui = ti. It then follows that ti /∈ Ci (since
otherwise u ∈ π−1i [Ci]). qed
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Theorem 9.10 If Γ ⊆ {N,P,T,4’,D} then Λ =M.Γ has CIP.

Proof. By Theorem 9.3 it suffices to show that the conditions (i) - (iii) of the bisimulation
product lemma hold. As remarked, conditions (ii) and (iii) of the bisimulation product lemma
always hold for σ-canonical or π-canonical varieties K with F = {F | F+ ∈ K}.

When Γ ⊆ {N,P,T,4’,D}, then Λ = M.Γ is σ-canonical by Theorem 7.13 and Corol-
lary 10.35, and hence VΛ is σ-canonical. Furthermore, each of the formulas in {N,P,T,4’,D}
defines the corresponding frame property. Let FΓ be the class of monotonic L∇-frames defined
by Γ. Then F ∈ FΓ if and only if F+ ∈ VΛ. Combining this with the results in Proposition
9.9, we find that FΓ is closed under finite bisimulation products. Thus VΛ and FΓ satisfy the
conditions of the bisimulation product lemma and we may conclude that Λ has CIP. qed

Remark 9.11 As we have mentioned, the bisimulation products defined in Definition 9.5 are
generalisations of the ‘smallest’ neighbourhood function µs with which we showed that full
bisimulations are UpP-coalgebras bisimulations, cf. Remark 8.28. Alternatively, we could
have chosen the ‘largest’ neighbourhood function µl, and obtained the same general results,
including Lemma 9.8. Let us refer to the two kinds of bisimulation products as the ‘smallest’
and the ‘largest’ depending on whether we choose µs or µl for our definition of direct product.

One can show that the frame classes defined by the formulas N, P and 4 are closed under
largest bisimulation products, but simple counter examples to this can be found for C and T.
For the formulas 4’, D, B and 5, we found no answer to the closure under largest bisimulation
products.

10 Simulation

In subsection 5.2 we introduced the idea of viewing monotonic L∇-frames as Kripke frames
for the language L3, and in this way we obtained various correspondence results between
monotonic modal logic and first-order logic. In the current section we take this idea further
and investigate how to simulate monotonic modal logics with normal ones.

Briefly stated, if Λ1 is a modal L1-logic, Λ2 is a modal L2-logic and (·)f is an interpretation
of L1-formulas in L2 which satisfies certain uniformity requirements, then Λ2 simulates Λ1
with respect to (·)f if for all ϕ ∈ L1: ϕ ∈ Λ1 iff ϕf ∈ Λ2.

Simulations occur as early as the 1930’s with Gödel’s translation of intuitionistic logic
in Grzegorczyk’s logic [27]. In the mid-1970’s, Thomason [66, 69] showed how to simulate
normal polymodal logics with monomodal normal ones, and used this to prove a number of
negative results on monomodal logics. In [68], Thomason extends his results and simulates
monadic second-order logic with polymodal normal ones. More recently, Kracht and Wolter
[42, 44] have refined Thomason’s technique to achieve further results on transfer of properties
between polymodal logics and monomodal ones, and Goranko et alii [34, 20] present transfer
results on a simulation involving the universal modality. As one of the latest contributions,
Goguadze et alii [28] simulate normal modal logics with polyadic operatos by normal monadic
ones, and also prove a great number of transfer results concerning their simulation.

In the line of simulations of monotonic modal logics, Parikh [53] sketches how to simulate
Game Logic in the modal µ-calculus, and Pauly [57] elaborates on this simulation, thereby
obtaining results on the complexity and expressivity of Game Logic. Gasquet and Herzig [22]
simulate (complete) classical modal logics by bimodal normal ones with the motivation to
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apply proof methods for normal modal logics to a number of non-normal logics. Their results
are improved by Kracht and Wolter in [44], where they show how to simulate incomplete
monotonic modal logics by translating general monotonic frames into general Kripke frames.
However, whereas most simulations of monotonic modal logics translate frames and models
in the manner introduced in section 5, the construction in [44] is fairly complicated.

In this section we will show that we can achieve the same and improve on Kracht and
Wolter’s results on simulations of monotonic modal logics by using the more intuitive simula-
tion of section 5. We do so by simulating descriptive monotonic frames. The main technical
results and contributions are found in Propositions 10.19, 10.32 and 10.33.

Parts of this section previously occurred in the author’s mini-thesis [35], however, the
simulation construction has been much improved in order to obtain the abovementioned
results.

10.1 Interpretations and Simulations

Kracht and Wolter [44] formalise the notion of simulations via interpretations. The following
is an adaptation of their definitions to our setting.

Definition 10.1 (Interpretation) Let L1 and L2 be modal languages. An interpretation
(·)f of L1 in L2 is a mapping from L1-formulas to L2-formulas which satisfies the following
uniformity conditions:

qf = pf [q/p]
(¬ϕ)f = (¬p)f [ϕf/p]

(ϕ1 ∨ ϕ2)
f = (p1 ∨ p2)

f [ϕf
i /pi] , i=1,2

(∇ϕ)f = (∇p)f [ϕf/p] .

If Θ is a set of L1-formulas, then we define Θf := {ϕf | ϕ ∈ Θ}. a

The above uniformity conditions ensure that an interpretation is ‘well-behaved’. It can
be checked that for an interpretation (·)f , no new variables can occur in ϕf if they were not
already present in ϕ. If for all p ∈ prop, pf = p, we say that (·)f is atomic.

Definition 10.2 (Simulation) Let Λ and Λ′ be modal logics over the languages L respec-
tively L′ and (·)f an interpretation of L in L′. Then Λ′ simulates Λ with respect to (·)f if for
all Σ ∪ {ϕ} ⊆ L:

Σ `Λ ϕ iff Σf `Λ′ ϕ
f .

Thus Λ′ simulates Λ with respect to an interpretation (·)f if their consequence relations
are equivalent under (·)f . A simulation is a map from L-logics to L′-logics. If Q is a property
of logics, then a simulation (·)s preserves Q if Λs has Q whenever Λ has Q, (·)s reflects Q if
Λ has Q whenever Λs has Q, and (·)s transfers Q if it both preserves and reflects Q. a

10.2 Simulating monotonic L∇-structures

When simulating a modal logic, we must not only translate from one language to another,
but also simulate the semantic structures. The basic ideas of simulating monotonic frames
with Kripke frames have already been introduced in subsection 5.2, and we will now recall
those definitions and results in a more formal setting.
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The basic idea

The aim is to simulate monotonic L∇-logics with normal modal logics over the language L3,
which was introduced in subsection 5.2.

Definition 10.3 (Diamond Language L3) The modal language L3 contains two diamonds,
3ν and 33, and a nullary modality pt. More precisely, for a fixed set of proposition letters
prop, the well-formed formulas of the language L3 are given by:

L3 : ϕ ::= ⊥ | p | ¬ϕ | ϕ ∨ ϕ | 3νϕ | 33ϕ | pt where p ∈ prop.

>,∧,→ and ↔ are defined as the usual abbreviations; 2ν ≡ ¬3ν¬ and 23 ≡ ¬33¬. a

We may think of L3 as a bimodal language since pt behaves like a proposition letter.
The minimal normal modal L3-logic will be denoted by K3. Note that since 3ν and 33

are the primitives of the language L3, the (Dual) axiom for each modality is needed in the
axiomatisation of K3. For a set Γ of L3-formulas, K3.Γ denotes the smallest normal modal
L3-logic which contains Γ.

The diamond translation of subsection 5.2, will be the interpretation from L∇ to L3. We
recall its definition.

Definition 10.4 (Diamond Translation) Define the local diamond translation (·)t : L∇ →
L3 inductively as follows:

⊥t = ⊥
pt = p

(¬ϕ)t = ¬ϕt

(ϕ ∨ ψ)t = ϕt ∨ ψt

(∇ϕ)t = 3ν23ϕ
t .

Define the diamond translation (·)¦ : L∇ → L3 by

ϕ¦ = pt→ ϕt. a

Remark 10.5 It should be clear that (·)t is an atomic interpretation, but (·)¦ is not. In fact,
(·)¦ is not even an interpretation according to Definition 10.1, since it can easily be checked
that (∇q)¦ 6= (∇p)¦[q¦/p]. However, as we will see later, the role of the pt-antecedent is to
ensure truth invariance of translated formulas in the simulation structure at base points of
the original monotonic structure. The pt-antecedent and the structure of translated formulas
ensure that atomic propositions of a translated formula are only evaluated at base points,
thus we may, and will, think of (·)¦ as an atomic interpretation.

As previously mentioned, a neighbourhood function ν in an L∇-frame F = (W, ν) can
be seen as a relation Rν between W and P(W ). Thus viewing a monotonic L∇-frame as a
two-sorted Kripke frame with universe W ∪ P(W ) gives rise to two relations, Rν and R3,
which will interpret the modalities 3ν and 33 respectively. However, we also need to be
able to distinguish between old states (W ) and new states (P(W )), and this we will do by
interpreting the old states with a unary relation (set) P , which in turn interprets the nullary
(constant) modality pt.
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Definition 10.6 (Simulating monotonic L∇-frames) Let F = (W, ν) be a monotonic
L∇-frame. The simulation frame of F is the Kripke L3-frame F• = (W •, Rν , R3, P ) where

W • = W ∪ P(W ),
Rν = {(x, u) ∈W × P(W ) | u ∈ ν(x)},
R3 = {(u, x) ∈ P(W )×W | x ∈ u},
P = W.

a

The following two propositions are simply reformulations of Claim 1 and item(ii) of Propo-
sition 5.11 (frame correspondence).

Proposition 10.7 Let F = (W, ν) be a monotonic L∇-frame, F• its simulation frame, and
V and V ′, valuations on F and F•, respectively, such that V and V ′ agree on W . Then for
all x ∈W and all L∇-formulas ϕ:

(F, V ), x ° ϕ iff (F•, V ′), x ° ϕt .

Proposition 10.8 Let F be a monotonic L∇-frame and F• its simulation frame. Then for
all L∇-formulas ϕ:

F ° ϕ iff F• ° ϕ¦ .

Propositions 10.7 and 10.8 pave the way for simulating complete monotonic logics. But in
order to be able to simulate incomplete logics, we will now extend the simulation to general
monotonic frames.

Simulating general monotonic L∇-frames

Before we define simulations of general monotonic frames, we recall the following. Given a
general monotonic frame G = (W, ν,A), A induces a topology τA on W by taking A as a
subbasis for τA. In the case that G is descriptive, the topological space of G, W = (W, τA), is
a Stone space, where A is a clopen basis for τA. Furthermore, all core neighbourhoods of a
descriptive G are in K(W), the collection of closed subsets in W.

We will see that for general monotonic frames it suffices to add K(W) as new points
instead of the entire P(W ). We now need to define the admissible sets of the simulation
frame, and we may view this problem as defining a topology on W ∪K(W). The admissible
sets of G will take care of the W -part, and for the K(W)-part, we will apply the Vietoris
construction [52, 37, 45] to W.

The following definition and lemma are presented more or less as in [45], which may also
be consulted for proofs.

Definition 10.9 (Vietoris topology) Let X = (X, τ) be a topological space, and let K(X)
denote the collection of closed subsets ofX. Define the operations [3], 〈3〉 : P(X)→ P(K(X))
by

[3]U = {F ∈ K(X) | F ⊆ U},
〈3〉U = {F ∈ K(X) | F ∩ U 6= ∅} .
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Given a subset Q ⊆ P(X), define

VQ := {[3]U | U ∈ Q} ∪ {〈3〉U | U ∈ Q}.

The Vietoris space of X is given by V(X) = (K(X), υX), where υX is the topology on K(X)
generated by the subbasis Vτ . a

The [3], 〈3〉-notation reflects the fact that [3] and 〈3〉 are the box- and diamond maps of
R3 ⊆ K(X)×X. Note that [3] and 〈3〉 are each other’s dual in the sense that,

[3]U = K(X)− 〈3〉 (W − U),
〈3〉U = K(X)− [3] (W − U).

Lemma 10.10 Let X = (X, τ) be a topological space, and let ClpX denote the collection of
clopen subsets of X, and V(X) = (K(X), υX) the Vietoris space of X. Then we have the
following:

1. If X is compact, then V(X) is compact.

2. If X is a Stone space, then V(X) is a Stone space, and the collection

VClpX
= {[3]U | U ∈ ClpX} ∪ {〈3〉U | U ∈ ClpX}

forms a clopen subbasis of υX. Hence the clopen subsets of K(X) form a basis of υX.

We are now ready to define simulations of general monotonic frames.

Definition 10.11 (Simulating general monotonic L∇-frames) Let G = (W, ν,A) be a
general monotonic L∇-frame, and let K(W) denote the collection of closed subsets in the
topological space W = (W, τA) of G.

Let V +A be those subsets b of K(W) for which there are finite subsets I1, . . . , Ik and
J1, . . . , Jk of A such that b = b1 ∪ . . . ∪ bk where for i = 1, . . . , k,

bi =
⋂

a∈Ii

[3]a ∩
⋂

a∈Ji

〈3〉a .

The simulation frame of G is then defined as G• = (W •, Rν , R3, P,A
•), where

W • = W ∪K(W),
Rν = {(x, u) ∈W ×K(W) | u ∈ ν(x)},
R3 = {(u, x) ∈ K(W)×W | x ∈ u},
P = W,
A• = {a ∪ b | a ∈ A, b ∈ V +A }.

a

The essential closure properties of V +A which ensure that G• is a general Kripke frame are
shown in the following lemma.

Lemma 10.12 V +A is closed under finite unions, finite intersections and complementation
with respect to K(W).
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Proof. Clearly, V +A is closed under finite unions. Let b = b1 ∪ . . . ∪ bk and b′ = b′1 ∪ . . . ∪ b
′
l

be elements of V +A defined in terms of I1, . . . , Ik, J1, . . . , Jk, respectively I
′
1, . . . , I

′
l , J

′
1, . . . , J

′
l .

To show closure under finite intersections, we have b ∩ b′ =
⋃

1≤i≤k, 1≤j≤l

bi ∩ b
′
j , and

bi ∩ b
′
j =

⋂

a∈Ii

[3]a ∩
⋂

a∈Ji

〈3〉a ∩
⋂

a∈I′j

[3]a ∩
⋂

a∈J ′j

〈3〉a

=
⋂

a∈Ii∪I′j

[3]a ∩
⋂

a∈Ji∪J ′j

〈3〉a.

Ii, I
′
j , Ji and J

′
j are all finite subsets of A, therefore, Ii ∪ I

′
j and Ji ∪ J

′
j are also finite subsets

of A which proves that bi ∩ b
′
j ∈ V

+
A , and hence b ∩ b′ ∈ V +A , since V +A is closed under finite

unions.
To show that K(W)− b is in V +A , we have

K(W)− b = K(W)−
k⋃

i=1

bi =

k⋂

i=1

(K(W)− bi) .

We have just seen in the above that V +A is closed under finite intersections, so it suffices to
show that K(W)− bi ∈ B for i = 1, . . . , k.

K(W)− bi = K(W)− (
⋂

a∈Ii

[3]a ∩
⋂

a∈Ji

〈3〉a)

=
⋃

a∈Ii

(K(W)− [3]a) ∪
⋃

a∈Ji

(K(W)− 〈3〉a)

=
⋃

a∈Ii

〈3〉(W − a) ∪
⋃

a∈Ji

[3](W − a))

This is a finite union of elements in V +A and hence belongs to V +A . qed

Proposition 10.13 If G = (W, ν,A) is a general monotonic L∇-frame, then its simulation
frame G• = (W •, Rν , R3, P,A

•) is a general Kripke L3-frame.

Proof. (W •, Rν , R3, P ) is clearly a Kripke L3-frame. So it remains to show that A• contains
∅ and is closed under union, complementation with respect to W • and the modal operations
mRν , mR3 and mP .

∅ ∈ A• follows from ∅ ∈ A and ∅ = 〈3〉∅ ∈ V +A . Closure under finite unions and complemen-
tation follow from the closure properties of A and V +A .

mR3 : Let a ∪ b ∈ A•. We have mR3(a ∪ b) = mR3(a) ∪ mR3(b). Recall that b ∈ V +A and
that R3-successors are always elements of W , so mR3(b) = ∅. Hence it suffices to show that
mR3(a) ∈ A

•.

mR3(a) = {w ∈W
• | ∃x ∈ a : wR3x} = {F ∈ K(W) | F ∩ a 6= ∅} = 〈3〉a ∈ V +A .
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mRν : Let a ∪ b ∈ A•. As always, mRν (a ∪ b) = mRν (a) ∪ mRν (b). Points from W
can never be Rν-successors, so mRν (a ∪ b) = mRν (b). Now, assume b =

⋃k
i=1 bi, then

mRν (b) =
⋃k

i=1mRν (bi), and we have,

x ∈ mRν (bi)
iff there is a u ∈ bi : xRνu

(x∈W,def. bi) iff there is a u ∈ ν(x) : (∀a ∈ Ii : u ⊆ a and ∀a ∈ Ji : u ∩ a 6= ∅)
iff there is a u ∈ ν(x) : (u ⊆

⋂
Ii and ∀a ∈ Ji : u ∩ a 6= ∅)

iff
⋂
Ii ∈ ν(x) and ∀a ∈ Ji :

⋂
Ii ∩ a 6= ∅ .

There are two cases to consider: If there is an a ∈ Ji such that
⋂
Ii ∩ a = ∅, then

mRν (bi) = ∅ ∈ A.
Otherwise, mRν (bi) = {x ∈ W |

⋂
Ii ∈ ν(x)} = mν(

⋂
Ii). Note also, that

⋂
Ii ⊆ W , so

mν(
⋂
Ii) is well-defined. Furthermore, Ii is a finite subset of A, therefore

⋂
Ii ∈ A, hence

mν(
⋂
Ii) ∈ A since A is closed under the mν-operation. This shows that for all i = 1, . . . , k,

mRν (bi) ∈ A. So mRν (b) is a finite union of elements in A, hence mRν (b) is itself an element
of A ⊆ A•.

mP : A nullary modality behaves like a propositional letter and we have

mP = {x ∈W ∪K(W) | Px} =W ∈ A ⊆ A• .

qed

Proposition 10.14 Let G = (W, ν,A) be a general monotonic L∇-frame, G• its simulation
frame and V , respectively V ′, admissible valuations on G, respectively G•, such that V and
V ′ agree on W . Then for all x ∈W and all L∇-formulas ϕ:

(G, V ), x ° ϕ iff (G•, V ′), x ° ϕt .

Proof. The proof is by induction on ϕ, and we only show the modal case.

(G, V ), x ° ∇ϕ
iff V (ϕ) ∈ ν(x)

(V (ϕ)∈A⊆K(W)) iff ∃F ∈ K(W) : F ∈ ν(x) & ∀y ∈ F : (G, V ), y ° ϕ
(IH) iff ∃F ∈ K(W) : F ∈ ν(x) & ∀y ∈ F : (G•, V ′), y ° ϕt

(def.G•) iff ∃F ∈W • : RνxF & ∀y ∈W • : R3Fy → (G•, V ′), y ° ϕt

iff (G•, V ′), x ° 3ν23ϕ
t

iff (G•, V ′), x ° (∇ϕ)t .

qed

Proposition 10.15 Let G = (F, A) be a general monotonic L∇-frame and G• its general
simulation frame. Then for all L∇-formulas ϕ,

G ° ϕ iff G• ° ϕ¦ .

Proof. This proof is completely analogous to the proof of item (ii) in Proposition 5.11. By
construction {a ∩W | a ∈ A•} = A, hence, if V ′ is an admissible valuation on G• then taking
V = V ′¹W , i.e, V (p) = V ′(p) ∩W for all p ∈ prop, V is admissible on G. Also analogously,
if V is admissible on G then V is also admissible on G• since A ⊆ A•. Claim 1 in the proof
of Proposition 5.11 yields the result. qed
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Remark 10.16 When G is descriptive, then V +A = ClpV(W), the collection of clopens in the

Vietoris space: V +A ⊆ ClpV(W) follows from VA ⊆ ClpV(W), which is an easy consequence of

the dual relationship [3] and 〈3〉. The inclusion V +A ⊇ ClpV(W) follows since VA is a clopen
subbasis of V(W) when W is a Stone space.

If we had chosen to define simulations for descriptive frames only, we would therefore not
have needed to prove Lemma 10.12, since ClpV(W) clearly has the desired closure properties.
However, Definition 10.11 allows us to consider simulations of monotonic frames as a special
case. First recall the definition of the operations (·)] and (·)] in Definition 7.25: For a
monotonic L∇-frame F = (W, ν), F] = (W, ν,P(W )) is the full general frame of F, and for a
general monotonic frame G = (W, ν,A), G] = (W, ν) is the underlying monotonic frame of G.
The collection of closed subsets K(W) of the topological space of F] is now K(W) = P(W ),
since P(W ) induces the discrete topology.

Note, however, that for a general monotonic frame G = (W, ν,A), in most cases, (G•)]
and (G])

• are distinct:

(G•)] = (W ∪K(W), Rν , R3, P ) 6= (W ∪ P(W ), Rν , R3, P ) = (G])
•.

But we do have the following invariance results for descriptive frames.

Proposition 10.17 Let G = (W, ν,A) be a descriptive general monotonic L∇-frame and
G• = (W •, Rν , R3, P,A

•) its simulation frame. If V and V ′ are valuations on G and G•,
respectively, such that V and V ′ agree on W = P , then for all w ∈ W and all L∇-formulas
ϕ, we have

((G•)], V ), w ° ϕt iff ((G])
•, V ′), w ° ϕt.

Proof. The proof is by induction on ϕ, but as usual, only the modal case deserves attention.

((G•)], V ), w ° 3ν23ϕ
t

iff ∃u ∈ K(W) : wRνu & ∀v ∈W •(uR3v → ((G•)], V ), w ° ϕt)
(IH & R3[u]⊆W ) iff ∃u ∈ K(W) : wRνu & ∀v ∈W •(uR3v → ((G])

•, V ′), w ° ϕt)
(G descriptive) iff ∃u ∈ P(W ) : wRνu & ∀v ∈W •(uR3v → ((G])

•, V ′), w ° ϕt)
iff ((G])

•, V ′), w ° 3ν23ϕ
t.

qed

The following proposition is an easy consequence of Proposition 10.17, and we omit the
proof.

Proposition 10.18 If G = (W, ν,A) is a descriptive general monotonic L∇-frame and G• =
(W •, Rν , R3, P,A

•) its simulation frame, then for all L∇-formulas ϕ, we have

(G•)] ° ϕ¦ iff (G])
• ° ϕ¦.

The main motivation behind changing the simulation construction from the original one
in [35], was to obtain the following results on preservation of properties of general frames.

Proposition 10.19 (Preservation of descriptiveness) If G = (W, ν,A) is a general mono-
tonic L∇-frame and G• = (W •, Rν , R3, P,A

•) its simulation frame, then we have,
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(i) If G is differentiated, then G• is differentiated.

(ii) If G is compact, then G• is compact.

(iii) If G is tight, then G• is tight.

(iv) If G is descriptive, then G• is descriptive.

Proof. Recall that differentiation and compactness of G together imply that the topological
space W of G is a Stone space. Items (i) and (ii) more or less follow from the theory of Stone
spaces, but we spell out the details here in the current context.

(i) Differentiation: We must show that for all w, v ∈W •,

w 6= v ⇒ ∃c ∈ A•(w ∈ c & v /∈ c) (∗).

So let w, v ∈W •, and assume that w 6= v. If w, v ∈W , then (∗) follows from the differentiation
of G. If w ∈W and v ∈ K(W), then we can take c =W ∈ A ⊆ A•. Vice versa, if w ∈ K(W)
and v ∈W , then we can take c = K(W) ∈ V +A ⊆ A•.

If w and v are both in K(W), then w =
⋂

w⊆a∈A a and v =
⋂

v⊆b∈A b, and we may assume
without loss of generality that there is an x ∈ w \ v. As x /∈ v, there must be a b ∈ A such
that v ⊆ b and x /∈ b. Taking b′ = W \ b, it follows that v ∩ b′ = ∅ and x ∈ w ∩ b′, which
in turn tells us that v /∈ 〈3〉a′ and w ∈ 〈3〉a′. Since 〈3〉a′ ∈ V +A ⊆ A•, we have separated w
from v with c = 〈3〉a′.

(ii) Compactness: This item basically follows from the fact that the Vietoris construction
preserves compactness.

We must now show that for all C ⊆ A•,
⋂
C = ∅ ⇒ ∃C0 ⊆ω C :

⋂
C0 = ∅.

Let C = {ai ∪ bi | i ∈ I} ⊆ A•, and assume that
⋂
C = ∅. As the ai and bi are disjoint, this

is equivalent with,
⋂

i∈I

ai = ∅ &
⋂

i∈I

bi = ∅.

When G is compact, then V(W) is compact (cf. Lemma 10.10). So by the compactness of G
and V(W) there are finite subsets I0, J0 ⊆ω I such that

⋂

i∈I0

ai = ∅ &
⋂

j∈J0

bj = ∅.

Taking C0 = {ai ∪ bi | i ∈ I0 ∪ J0}, it follows that C0 is a finite subset of C, and

⋂
C0 = (

⋂

i∈I0

ai ∪
⋂

i∈I0

bi) ∩ (
⋂

j∈J0

aj ∪
⋂

j∈J0

bj) = ∅.

(iii) Tightness: To see that G• is tight with respect to the relation R3, we must prove
that for all w, v ∈W •,

v /∈ R3[w] ⇒ ∃c ∈ A•(v ∈ c & w /∈ mR3(c)).
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There are three cases to consider, (i) w ∈ W , (ii) v ∈ K(W) and (iii) w ∈ K(W), v ∈
W & v /∈ w. If (i) w ∈ W , then we can take c = W • ∈ A•, since mR3(W

•) ⊆ K(W),
hence w /∈ mR3(W

•). If (ii) v ∈ K(W), then we can take c = K(W) ∈ V +A ⊆ A•, since then
w /∈ mR3(K(W)) = ∅. If (iii) w ∈ K(W), v ∈ W & v /∈ w, then w =

⋂
w⊆a∈A a and it follows

that there is an a ∈ A such that w ⊆ a and v /∈ a. Hence by taking c = W \ a ∈ A ⊆ A•,
then v ∈ c and w ∩ c = ∅ from which it follows that w /∈ 〈3〉c = mR3(c).

To see thatG• is tight with respect to the relationRν , we must prove that for all w, v ∈W •,

v /∈ Rν [w] ⇒ ∃c ∈ A•(v ∈ c & w /∈ mRν (c)).

Again, there are three cases to consider, (i) w ∈ K(W), (ii) v ∈ W , and (iii) w ∈ W, v ∈
K(W) & v /∈ ν(w). If (i) w ∈ K(W) then we can take c =W • ∈ A•, since w /∈ mRν (W

•) ⊆W .
If (ii) v ∈W then we can take c =W , since then w /∈ mRν (W ) = ∅.

If (iii) w ∈ W, v ∈ K(W) & v /∈ ν(w), then by the tightness of G there is an a ∈ A such
that v ⊆ a and a /∈ ν(w). From v ⊆ a, it follows that v ∈ [3]a. We will show that if we take
c = [3]a, then w /∈ mRν (c). Suppose for contradiction that w ∈ mRν ([3]a), then there is an
F ∈ K(W) such that F ∈ [3]a and RνwF . This implies that F ⊆ a and F ∈ ν(w), hence by
upwards closure of ν(w), we have a ∈ ν(w), a contradiction, since a /∈ ν(w).

For tightness of G• with respect to the unary relation (set) P , we need to show that for
all w ∈W •, w /∈ P ⇒ w /∈ mP , but this is trivial since mP = P .

(iv) Descriptiveness: Follows from item (i) to (iii). qed

10.3 Unsimulating L3-structures

When proving the Simulation Theorem 10.30, we will see that it is useful to also have an
operation which transforms a Kripke L3-frame into a monotonic L∇-frame.

In other words, we wish to be able to unsimulate L3-frames. However, the unsimulation
operation will not be defined for any L3-frame, but only for the ones whose structure is
similar to that of simulation frames.

Axiomatising simulation frames

The L3-frames which are the simulation frame of some monotonic L∇-frame may be charac-
terised by the following first-order axioms.

(S1) ∀x∀y(Rνxy → ¬P (y))
(S2) ∀x∀y(R3xy → P (y))
(S3) ∀x∀y(Rνxy → P (x))
(S4) ∀x∀y(R3xy → ¬P (x))
(S5) ∃x P (x)
(S6) ∀x∀y∀z(Rνxy ∧ (∀w : R3yw → R3zw) → Rνxz)

The axioms (S1-4) express that in a simulation frame, Rν ⊆ W × K(W) and R3 ⊆
K(W) × W , (S5) expresses that P 6= ∅, and (S6) expresses that Rν is the relation of an
upwards closed ν. Unfortunately, these first-order axioms do not all immediately translate
into the modal language L3. Nevertheless, we can find a modal axiomatisation for the L3-
frames which satisfy (S1-4). We will call this class of L3-frames, the class of Sim−-frames.
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Definition 10.20 Consider the following set of modal axioms:

(A1)2ν¬pt

(A2)23pt

(A3)3ν> → pt

(A4)33> → ¬pt

Define the normal modal L3-logic Sim
− := K3.{A1, A2, A3, A4}. a

Proposition 10.21 The axioms (A1-4) modally characterise the class of Sim−-frames, and
Sim− is canonical, and sound and strongly complete with respect to the class of Sim−-frames.

Proof. Immediate by the syntactic shape of the modal axioms, and the properties of closed
formulas: Each of the axioms (Ai) is a closed formula, i.e., (Ai) does not contain any propo-
sitional variables, and its first-order correspondent is (Si), i = 1, . . . , 4. qed

Clearly, Sim− is valid on any simulation frame, and although, the Sim−-axioms are too
weak to axiomatise the class of simulation frames, they almost suffice to ensure that the
unsimulation operation is well-defined.

Unsimulating L3-frames

The Sim−-axioms clearly capture the type of the relations Rν and R3, but in order to be able
to “undo” the simulation operation, we should ensure that the set of points which will play
the role of base points, that is P , is not empty. We will call a L3-frame F = (W,Rν , R3, P )
P -regular if P 6= ∅.

Definition 10.22 Let F = (W,Rν , R3, P ) be a P -regular Sim−-frame. Then we define a
neighbourhood function µ : P → P(P(P )) as follows: For all w ∈ P and X ⊆ P ,

X ∈ µ(w) iff ∃u ∈W (Rνwu & R3[u] ⊆ X).

Then µ is monotone, and we define the unsimulation frame of F to be the monotonic L∇-frame
F• = (P, µ). a

Note that in a Sim−-frame, Rν [w] ⊆W \P and R3[w] ⊆ P for any w ∈W . We also need
to show that the unsimulation preserves truth and validity with respect to our interpretation.

Proposition 10.23 Let F = (W,Rν , R3, P ) be a P -regular Sim−-frame, and F• = (P, µ) its
unsimulation frame. If V and V ′ are valuations on F, respectively F•, such that V and V ′

agree on P , then we have for all w ∈ P and all L∇-formulas ϕ:

(F, V ), w ° ϕt iff (F•, V ′), w ° ϕ.

Proof. The proof is, of course, by induction on ϕ and again the modal case is the only
nontrivial part of the proof.

(F, V ), w ° 3ν23ϕ
t

iff ∃u(Rνwu & ∀v(R3uv → (F, V ), v ° ϕt))
(IH & R3[u]⊆P ) iff ∃u(Rνwu & ∀v(R3uv → (F•, V ′), v ° ϕ))

iff ∃u(Rνwu & R3[u] ⊆ V ′(ϕ))
(µ monotone) iff (F•, V ′), w ° ∇ϕ.

qed
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Proposition 10.24 Let F = (W,Rν , R3, P ) be a P -regular Sim−-frame, and F• = (P, µ) its
unsimulation frame. Then we have for all L∇-formulas ϕ:

F ° ϕ¦ iff F• ° ϕ.

Proof. For the proof from left to right, suppose F• 1 ϕ. Then there is a valuation V on
F• and a w ∈ P such that (F•, V ), w 1 ϕ. Since V is also a valuation on F, it follows from
Proposition 10.23 that (F, V ), w 1 ϕt, and hence also (F, V ), w 1 pt → ϕt = ϕ¦, and we may
conclude that F 1 ϕ¦.

For the direction from right to left, suppose F 1 ϕ¦. Then there is a valuation V on F
and a w ∈ W such that (F, V ), w 1 ϕ¦. It follows that (F, V ), w ° pt and (F, V ), w 1 ϕt, so
w ∈ P and by Proposition 10.23 (F•, V ¹P ), w 1 ϕ, hence F• 1 ϕ. qed

Unsimulating general L3-frames

We will now extend the unsimulation operation to general L3-frames, and this can be done in
a very simple manner. First some terminology: A P -regular general Sim−-frame is a general
L3-frame based on a P -regular Sim−-frame.

Definition 10.25 Let G = (F, A) be a P -regular general Sim−-frame. Then its unsimulation
frame G• is defined as G• = (F•, A•) where A• = {a ∩ P | a ∈ A}. a

Proposition 10.26 Let G be a P -regular general Sim−-frame, then G• is a general mono-
tonic L∇-frame.

Proof. We need to show that A• contains ∅, is closed under finite unions, complementation
with respect to P and the map mµ. ∅ ∈ A• is clear since ∅ ∈ A. Observe now that P ∈ A,
since G is a general L3-frame, hence A• ⊆ A, so closure of A• under finite unions follows from
the closure properties of A. For closure under complement in P , we have for all a ∩ P ∈ A•,
P \ (a ∩ P ) = P \ a = P ∩ (W \ a) ∈ A•.

For the closure of A• under mµ, we have for all a ∩ P ∈ A•:

w ∈ mµ(a ∩ P )
iff a ∩ P ∈ µ(w)

(def. µ) iff ∃u ∈W (Rνwu & R3[u] ⊆ a ∩ P )
iff w ∈ mRν (lR3(a ∩ P ))

(∀X⊆W (mRν (X)⊆P )) iff w ∈ mRν (lR3(a ∩ P )) ∩ P

By the closure properties of A, mRν (lR3(a ∩ P )) ∈ A, hence mµ(a ∩ P ) ∈ A•. qed

Proposition 10.27 Let G be a P -regular general Sim−-frame, and G• its unsimulation
frame. Then for all L∇-formulas ϕ,

G ° ϕ¦ iff G• ° ϕ.

Proof. This proof is similar to the proof of Propositions 10.15 and 10.24. Just note that
since A• ⊆ A, if V is an admissible valuation on G•, then V is also admissible on G. And if
V is an admissible valuation on G, then V ¹P is admissble on G•. qed
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10.4 Simulation Results

Definition 10.28 (Simulation map) For a set of L∇-formulas Γ and an L∇-logic Λ =
M.Γ, we define

Λsim = (M.Γ)sim := Sim−.Γ¦. a

(·)sim is a map from L∇-logics to L3-logics, and in Theorem 10.30 we will see that (·)sim

is indeed a simulation. First, we prove the following lemma which will simplify the proof of
10.30.

Lemma 10.29 Let Λ be a modal L∇-logic and Λ′ a modal L3-logic, then Λ′ simulates Λ with
respect to (·)¦ iff ϕ ∈ Λ ⇔ ϕ¦ ∈ Λ′ . That is, for all Σ∪{ϕ} ⊆ L∇ the following are equivalent:

(i) Σ `Λ ϕ ⇔ Σ¦ `Λ′ ϕ
¦

(ii) ϕ ∈ Λ ⇔ ϕ¦ ∈ Λ′

Proof. The implication (i)⇒ (ii) is trivial, since we may take Σ = ∅. To show the implication
(ii) ⇒ (i), assume that (ii) holds. We first show the following: Let σ1, . . . , σn, ϕ be L∇-
formulas, then we have

`Λ (σ1 ∧ . . . ∧ σn)→ ϕ
(ii) iff `Λ′ ((σ1 ∧ . . . ∧ σn)→ ϕ)¦

(def. (·)¦) iff `Λ′ pt→ ((σt
1 ∧ . . . ∧ σ

t
n)→ ϕt)

(prop.logic) iff `Λ′ ((pt → σt
1) ∧ . . . ∧ (pt → σt

n))→ (pt → ϕt)
(def. (·)¦) iff `Λ′ (σ1

¦ ∧ . . . ∧ σn
¦)→ ϕ¦

Using the above equivalences, we can now show that (i) holds:
Σ `Λ ϕ

iff there are σ1, . . . , σn ∈ Σ such that `Λ (σ1 ∧ . . . ∧ σn)→ ϕ
iff there are σ1, . . . , σn ∈ Σ such that `Λ′ (σ1

¦ ∧ . . . ∧ σn
¦)→ ϕ¦

iff Σ¦ `Λ′ ϕ
¦.

qed

Theorem 10.30 (Simulation Theorem) Let Λ = M.Γ be a monotonic modal L∇-logic.
Then Λsim = Sim−.Γ¦ simulates Λ with respect to (·)¦.

Proof. By Lemma 10.29 it suffices to show for all L∇-formulas ϕ: ϕ ∈ Λ iff ϕ¦ ∈ Λsim .
For the direction from right to left, assume ϕ /∈ Λ. By completeness of Λ with respect to
general monotonic Λ-frames, there is a general monotonic L∇-frame G such that G ° Λ and
G 1 ϕ. From Γ ⊆ Λ and Proposition 10.15 it follows that G• ° Sim−.Γ¦ and G• 1 ϕ¦, hence
ϕ¦ /∈ Λsim .

For the direction from left to right, assume ϕ¦ /∈ Λsim . Then by the general completeness
theorem of Kripke L3-frames, there is a general L3-frame G such that G ° Λsim and G 1 ϕ¦.
Hence G is a Sim−-frame and there is a w ∈ G and an admissible valuation V on G such that
(G, V ), w ° pt∧¬ϕt. So w ∈ P 6= ∅, and G• is well-defined. By Proposition 10.27, G• °M.Γ
and G• 1 ϕ, so we may conclude that ϕ /∈ Λ =M.Γ. qed
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Now that we know (·)sim is a simulation, we are interested in which properties of logics
(·)sim preserves and/or reflects. With the theory we have available so far, the following three
results are easily shown.

Corollary 10.31 The simulation map (·)sim preserves finite and recursive axiomatisability.

Proof. This result is a direct consequence of the syntactic definition of (·)sim . qed

Proposition 10.32 The simulation map (·)sim reflects strong and weak completeness. More
precisely, let Λ = M.Γ be a monotonic L∇-logic. If Λsim = Sim−.Γ¦ is strongly (weakly)
complete with respect to some class of Kripke L3-frames, then Λ is strongly (weakly) complete
with respect to some class of monotonic L∇-frames.

Proof. We only show that strong completeness is reflected, since the case for weak com-
pleteness may be proved in a similar manner. So let Λ =M.Γ be a monotonic L∇-logic, and
assume that Λsim = Sim−.Γ¦ is strongly complete with respect to a class K of L3-frames.

We will show that Λ is strongly complete with respect to the class of L∇-frames K• :=
{F• | F ∈ K,F is P -regular}.

Suppose now that Σ 0Λ ϕ, then by the Simulation Theorem 10.30, Σ¦ 0Λsim ϕ¦, and from
the strong completeness of Λsim , we obtain an L3-frame F ∈ K, a valuation V on F and a
w in F such that (F, V ), w ° Σ¦ and (F, V ), w 1 ϕ¦ = pt → ϕt. Hence w ∈ P and we have
(F, V ), w ° Σt and (F, V ), w 1 ϕt. Furthermore, F is P -regular, since P 6= ∅ so F• is well-
defined, and by Proposition 10.23, (F•, V ¹P ), w ° Σ and (F•, V ¹P ), w 1 ϕ, which concludes
the proof. qed

Proposition 10.33 The simulation map (·)sim reflects canonicity. More precisely, let Λ =
M.Γ be a monotonic L∇-logic. If Λ

sim = Sim−.Γ¦ is canonical, then Λ is canonical.

Proof. Let G be an arbitrary descriptive monotonic L∇-frame such that G ° Λ. It suffices
to show that for all ϕ ∈ Γ, G] ° ϕ. So let ϕ ∈ Γ. From G ° ϕ and Proposition 10.15, it
follows that G• ° ϕ¦. Since Λsim is canonical and ϕ¦ ∈ Λsim , we have (G•)] ° ϕ¦. From
Proposition 10.18, it now follows that (G])

• ° ϕ¦, and by Proposition 10.8, G] ° ϕ. qed

10.5 Applications

The two reflection results of the last subsection imply that for a syntactically specified L∇-
logic, questions of canonicity and completeness (with respect to monotonic L∇-frames) may
be reduced to the same questions for a normal modal L3-logic (and Kripke L3-frames). When
trying to show completeness of a normal modal logic, a whole array of techniques is available.
For example, one may try to transform the canonical model using filtrations or other model
constructions, or apply the mosaic method or the step-by-step method, see e.g. Blackburn et
alii [6]. Even though we have seen how to generalise some of these techniques to monotonic
structures, the simulation results tell us that in many cases, we do not even have to work that
hard. As the reader may already have anticipated, there is a class of monotonic L∇-logics for
which we obtain canonicity (and hence strong completeness) virtually for free via simulation,
namely those which are generated by KW-formulas (see Definition 5.13).
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Theorem 10.34 (KW-Canonicity) Let Γ be a set of KW-formulas over the language L∇.
Then the monotonic modal L∇-logic generated by Γ, Λ =M.Γ, is canonical.

Proof. For all formulas ϕ → ψ ∈ Γ, (ϕ→ ψ)¦ is equivalent to the Sahlqvist L3-formula
pt∧ϕt → ψt. As Sim− is a normal modal Sahlqvist-logic, so is Λsim = Sim−.Γ¦, hence Λsim

is canonical. From Proposition 10.33 it now follows that Λ is canonical. qed

Corollary 10.35 If Γ ⊆ {N,C,T,4’,B,D}, then Λ =M.Γ is canonical.

The formulas P, 4 and 5 are not KW-formulas. However, we already know from The-
orem 7.13 that P is both σ- and π-canonical. As it turns out, the formulas 4 and 5 are
π-canonical, but in order to see that we must return to the dual frame constructions of
subsection 7.6.

10.6 Dual Simulation

In Remark 3.2, we mentioned that in a monotonic L∇-logic Λ, ∆ is also a monotone modality.
This observation was also made in Kracht and Wolter [44] in the context of simulations, where
they sketch how to simulate Λ by translating ∇ as ∆. We will now work out the details of
this dual simulation. The results in this subsection are easy to show, so we will be rather
brief in most of the proofs.

Definition 10.36 (Dual Translation) Define the dual translation (·)d : L∇ → L∇ induc-
tively as follows:

⊥d = ⊥
pd = p

(¬ϕ)d = ¬ϕd

(ϕ ∨ ψ)d = ϕd ∨ ψd

(∇ϕ)d = ∆ϕd.

When Σ is a set of L∇-formulas, then Σd = {ϕd | ϕ ∈ Σ}. a

The semantic part of the dual translation is simply given by the dual frame constructions
of Definition 7.43, where the interpretation of ∇ and ∆ are interchanged. Thus for a mono-
tonic L∇-frame F, the dual simulation frame of F is simply defined as Fd, and for a general
monotonic L∇-frame, the dual general simulation frame of G is Gd. It is straighforward to
show that truth and validity is preserved by the dual simulation, and we leave the proof to
the reader.

Proposition 10.37 Let F = (W, ν) be a monotonic L∇-frame. Then

(i) For all valuations V : prop→ P(W ), all w ∈W and all ϕ ∈ L∇,

(F, V ), w ° ϕ iff (Fd, V ), w ° ϕd.

(ii) For all ϕ ∈ L∇:

F ° ϕ iff Fd ° ϕd.
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Let G = (W, ν,A) be a general monotonic L∇-frame. Then

(iii) For all admissible valuations V : prop→ A, all w ∈W and all ϕ ∈ L∇,

(G, V ), w ° ϕ iff (Gd, V ), w ° ϕd.

(iv) For all ϕ ∈ L∇:

G ° ϕ iff Gd ° ϕd.

Theorem 10.38 (Dual Simulation) The map (·)dual : Λ 7→ Λd is a simulation with respect
to (·)d

Proof. Let Λ be a monotonic L∇-logic. By Lemma 10.29 we only need to show that for all
L∇-formulas ϕ: ϕ ∈ Λ iff ϕd ∈ Λd. The direction from left to right is trivial. For the other
direction, suppose ϕ /∈ Λ. Then by the general completeness result of monotonic L∇-logics,
there is a general monotonic L∇-frame G such that G ° Λ and G 1 ϕ. It follows from
Proposition 10.37(iv) that Gd ° Λd and Gd 1 ϕd. Hence ϕd /∈ Λd. qed

Proposition 10.39 Let Γ be a set of L∇-formulas. Then (M.Γ)d =M.Γd. As a consequence,
(·)dual transfers finite and recursive axiomatisability.

Proof. It suffices to show that (M.Γ)d ⊆ M.Γd, since then (M.Γd)d ⊆ M.Γ and hence
M.Γd ⊆ (M.Γ)d. The proof is by induction on the length n of proofs in Λ =M.Γ. So assume
that `Λ ϕ. If n = 0 then ϕ is either a propositional tautology or ϕ ∈ Γ. In both cases
it is clear that ϕd ∈ M.Γd. For the induction step, we must show that M.Γd contains the
dual translation of all formulas which can be derived with the rules modus ponens, uniform
substitution and RM∇ in Λ. The cases for modus ponens and uniform substitution follow from
the corresponding rules in M.Γd, thus we only show the case for RM∇. Assume `Λ ϕ → ψ.
Then by the induction hypothesis `M.Γd (ϕ→ ψ)d which implies that `M.Γd ϕ

d → ψd. Since
any monotonic L∇-logic is also closed under the rule RM∆, it follows that `M.Γd ∆ϕd → ∆ψd,
hence `M.Γd (∇ϕ→ ∇ψ)d. qed

Proposition 10.40 Let Λ be a monotonic L∇-logic. If Λ is weakly (strongly) complete with
respect to a class K of monotonic L∇-frames, then Λd is weakly (strongly) complete with respect
to Kd = {Fd | F ∈ K}. As a consequence, (·)dual transfers weak and strong completeness.

Proof. Follows easily from Proposition 10.37. Details are left to the reader. qed

As for canonicity, we recall from subsection 7.6 that the dualisation of (general) frames
and bams corresponds with the duality between the two kinds of canonical extension, σ and
π. The dual translation is, of course, simply the syntactic counterpart of this duality, and we
can now combine the above results on the dual simulation with the results of subsection 7.6
in the following.

Proposition 10.41 Let ϕ be an L∇-formula, and let Λ be a monotonic L∇-logic. Then

(i) ϕ is σ-canonical iff ϕd is π-canonical.
(ii) Λ is σ-canonical iff Λd is π-canonical.
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Proof. For the proof from left to right in (i), assume that ϕ is σ-canonical. Then ϕ is
dσ-persistent. We will show that ϕd is dπ-persistent. So let G be a π-descriptive general
monotonic L∇-frame, and suppose G ° ϕd, then by Proposition 10.37(iv), Gd ° (ϕd)d, and
since ϕ and (ϕd)d are logically equivalent also Gd ° ϕ.

By Proposition 7.47 and (Gd)d = G, Gd is σ-descriptive, hence by the dσ-persistence of
ϕ, (Gd)] ° ϕ, and since (Gd)] = (G])

d, we obtain (G])
d ° ϕ, whence by Proposition 10.37(ii)

and (ϕd)d ↔ ϕ we can conclude that G] ° ϕ
d. The other direction of (i) is shown in a similar

way.
(ii) follows from (i) and the fact that M is both σ- and π-canonical, qed

We will now show that π-canonicity implies strong completeness. Recall from Remark 7.15
that for a monotonic logic Λ, the canonical frame FΛ(Φ), as defined in section 6, is isomorphic
to the ultrafilter frame (LΛ(Φ))+ of the Lindenbaum-Tarski algebra of Λ. However, when Λ
is π-canonical, then have (LΛ(Φ))π ° Λ, where (LΛ(Φ))π is the π-ultrafilter frame of LΛ(Φ),
as defined in subsection 7.6. The question is now, how can we describe (LΛ(Φ))π in terms of
the dual map (·)d. To start with, we have the following.

Proposition 10.42 Let Λ be a monotonic L∇-logic, and let Φ be a set of propositional vari-
ables. Then

LΛd(Φ) ∼= (LΛ(Φ))d.

Proof. Let LΛ(Φ) = (Ter(Φ)/≡Λ,+,−, 0, f∇)) and LΛd(Φ) = (Ter(Φ)/≡Λd ,+,−, 0, g∇)).
In order to avoid confusion, we will denote elements of LΛd(Φ) by [ϕ]Λd , and elements of
LΛ(Φ) by [ϕ]Λ. We will show that the map θ : [ϕ]Λd 7→ [ϕd]Λ is the desired isomorphism.
First of all, we must check that θ is well-defined:

ϕ ≡Λd ψ iff `Λd ϕ↔ ψ iff (Thm.10.38) `Λ ϕ
d ↔ ψd iff ϕd ≡Λ ψ

d.

Surjectivity of θ is clear, and injectivity follows easily from Theorem 10.38. To see that θ is
an isomorphism, we must show that

θ([ϕ ∨ ψ]Λd) = [ϕd ∨ ψd]Λ,
θ([¬ϕ]Λd) = [¬ϕd]Λ,
θ([∇ϕ]Λd) = [¬∇¬ϕd]Λ.

But this is clear from the definition of ϕd. qed

Theorem 10.43 Let Λ be a monotonic L∇-logic. If Λ is π-canonical, then Λ is sound and
strongly complete with respect to the class of Λ-frames.

Proof. As already mentioned, (LΛ(Φ))π ° Λ, and we also have FΛπ (Φ) ∼= (LΛ(Φ))π, where
FΛπ (Φ) is the π-canonical frame (see page 68). Thus it suffices to show that any Λ-consistent
set of L∇-formulas can be satisfied on FΛπ (Φ). So let Σ be a Λ-consistent set of formulas,
then by the Dual Simulation Theorem 10.38, Σd is Λd-consistent, hence there is a maximal
Λd-consistent set Γ such that (FΛd(Φ), V Λd),Γ ° Σd, where FΛd(Φ) and V Λd are the canonical
frame and canonical valuation for Λd, respectively. It then follows from Proposition 10.37(i)

that ((FΛd(Φ))d, V Λd),Γ ° Σ. From Propositions 7.46 and 10.42, we get

FΛπ (Φ) ∼= (LΛ(Φ))π ∼= ((LΛ(Φ)d)σ)d ∼= (LΛd(Φ)σ)d ∼= (FΛ
d

(Φ))d.

Thus, since truth is preserved under isomorphism, Σ can be satisfied in FΛπ (Φ). qed
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We can now finally extend the canonicity result for KW-formulas to dual KW-formulas
(recall Definition 5.13). Note that an L∇-formula ϕ is a dual KW-formula iff ϕd is logically
equivalent with a KW-formula.

Theorem 10.44 Let Γ be a set of dual KW-formulas. Then the monotonic modal L∇-logic
Λ = M.Γ is π-canonical, and sound and strongly complete with respect to the class of Λ-
frames.

Proof. For each ϕ ∈ Γ, ϕd is equivalent with a KW-formula, hence by Proposition 10.39
and Theorem 10.34, Λd = M.Γd is σ-canonical, and by Proposition 10.41, Λ is π-canonical.
Soundness and completeness follow from Theorem 10.43. qed

Corollary 10.45 If Γ ⊆ {P,4,5}, then Λ = M.Γ is π-canonical, and sound and strongly
complete with respect to the class of Λ-frames.

11 Conclusion and Further Research

We hope to have shown that the framework of normal modal logics can be extended to
monotonic modal logics in a natural and useful way in the sense that most of the known con-
structions and techniques can be generalised to monotonic modal logics and their semantics.
We have cashed out on this by obtaining a number of results for monotonic modal logic which
are analogues of known results for normal ones. Below is a list of some issues which we either
left unsolved, or which we believe present interesting research directions.

m-saturation We had to leave open the problem of showing that ultrafilter extensions are
m-saturated.

Definability and Correspondence We did not present any non-first-order definability re-
sults. In normal modal logic we have gradations: first-order, then fixed-point defin-
able (like Löb’s axiom ∇(∇p → p) → ∇p), and still worse, like McKinsey’s axiom
∇∆p→ ∆∇p. Is the situation similar for monotonic modal logics?

The translation of monotonic modal logic into normal bimodal logic tells us that mono-
tonic modal logic can be seen as a guarded fragment of a first-order language. Does this
fragment extend naturally to richer guarded fragments while preserving nice properties,
such as decidability and an analogue of the tree model property?

Can we generalise our results on KW-formulas to broader formula classes?

Completeness and Incompleteness Our treatment of completeness was rather brief, and
our results were all derived from other parts of the theory. A more systematic study
of complete and incomplete monotonic modal logics would be relevant. For instance,
does our definition of the canonical frame lead to different results than the canonical
frame of Chellas [14]? Which (in)completeteness results with respect to neighbourhood
semantics can we obtain for the notorious Löb and McKinsey axioms?

Algebra and Duality Duality for normal modal logic provides many results which we have
not mentioned in the text. For example, there are interesting connections between
subdirect irreducibility on the algebraic side and various notions of rootedness on the



11 CONCLUSION AND FURTHER RESEARCH 110

dual side of Kripke frames and descriptive general frames, see for instance Sambin [60]
and Venema [73]. We would be interested in a further exploration of the duality of
section 7 to see if we can obtain similar results.

Interpolation In section 9, we only used the implication that SUPAP ⇒ CIP. But it is nat-
ural to ask whether the other direction also holds when considering classes of bams and
monotonic modal logics. Our initial attempt to show this along the lines of Madarász’s
[48] proof for additive, but not necessarily normal, modal logic was unsuccessful. The
problem seems to revolve around the notion of a bam-filter, that is, a boolean filter F
for which a→ b ∈ F implies f(a)→ f(b) ∈ F . bam-filters turn out to be less convenient
to work with than bao-filters which are the boolean filters satisfying that a ∈ F implies
f(a) ∈ F . The difficulty with the bam-filters also appears to be related to the seeming
lack of a deduction theorem. The work of Madarász [48, 49], Czelakowski, Blok and
Pigozzi [16, 8] may provide some further insights.

Which (general) results on properties related to Craig interpolation, such as the Beth
definability property, global interpolation and Lyndon interpolation can be shown for
monotonic modal logics?

Bisimulation products The frame classes defined by the axioms 4, 5, B and C could not be
shown to be closed under bisimulation products, and neither have we been able to find
any counterexamples. Also for a number of the other standard axioms, closure could
only be shown under smallest or largest bisimulation products, not both. A complete
description of the (positive) closure properties would be of interest.

Simulation It would be good to have a more comprehensive list of the properties which are
preserved and/or reflected by the simulation described in section 10. Negative results
are also welcome. Our results were mainly on reflection of properties. In order to
establish preservation of e.g. completeness, one would also need an axiomatisation of
the bimodal Kripke frames which are the simulation frame of some monotonic frame.

Fixed-point operations Extended Coalition Logic (Pauly [57]) and the Alternating-Time
Temporal Logic (Alur et alii [2]) are both examples of monotonic modal logics expanded
with fixed-point operations. It would be interesting to study these kind of extensions
in more detail.
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