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Abstract. This paper is an introduction to the entire volume: the notions of re-
duction functions and their derived complexity classes are introduced abstractly
and connected to the areas covered by this volume.

1 Introduction

Logic is famous for what Hofstadter calls limitative theorems: Gödel’s
incompleteness theorems, Tarski’s result on the undefinability of truth,
and Turing’s proof of the non-computability of the halting problem. For
each of these limitative results we have three ingredients:

1. an informal notion to be investigated (e.g., provability, expressibility,
computability),

2. a formalization of that notion (e.g., provability as formalized in Peano
arithmetic PA, definability in a formal language, the Turing com-
putable functions),
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3. and finally a theorem that there is some limitation to the formalized
version of the informal notion (e.g., the theorems of Gödel, Tarski
and Turing).

The limitative theorems split the world into cis and trans relative to
a barrier and show that some objects are beyond the barrier (trans). In
our examples, the statement “PA is consistent” Cons(PA) is beyond the
barrier marked by the formal notion of provability in PA, a truth predi-
cate satisfying the convention (T) is beyond the barrier of definability,
and the halting problem is “beyond the Turing limit” (Siegelmann). Even
more importantly, these results relativize: the notion of formal provabil-
ity in the stronger system PA + Cons(PA) gives us another barrier, but
for this barrier Cons(PA) lies cis, and Cons(PA + Cons(PA)) lies trans.
This calls for iteration, and instead of seeing limitative theorems mainly
as obstacles, we can see their barriers positively, as a means of defining
relative complexity hierarchies.1 This is the approach we chose for this
introductory paper.

Let us illustrate the problems and methodology of limitative results
in some examples:

(Example 1) Is there an effective algorithm to determine whether
a number is prime?

The informal notion involved in this question is the notion of “ef-
fective algorithm”. In order to give a positive answer to the question in
(Example 1), you do not necessarily need a metatheoretical apparatus
or even a proper formal definition of what an effective algorithm is. You
have to display an algorithm, and convince people that it is effective.

But this pragmatic approach is not possible if you want to answer
such a question in the negative. Consider the following statement:

(Example 2) There is no effective algorithm that determines
whether a given graph has an independent subset of size k.2

1 In a much more general approach, Wolfram Hogrebe writes in his preface to the proceedings
volume of the XIX. Deutscher Kongreß für Philosophie that was held in Bonn in September
2002 with the general topic Grenzen und Grenzüberschreitungen:

“Die limitativen Aspekte der Condition Humaine ... [sind] nie nur Beschränkungen, son-
dern immer auch Bedingungen der Konturfähigkeit im Ausdrucksraum.” [Hog102]

2 An independent subset of a graph is a set A such that for a, b ∈ A, there is no edge between
a and b.
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The statement of (Example 2) is a universally quantified statement,
so in order to prove it, you have to show for each effective algorithm that
it doesn’t do the job. This requires a formalization of the notion of an
“effective algorithm”, the development of a metatheory of algorithms.

The usual formalization of “effective algorithm” in computer science
is “polynomial time algorithm”.3 Using that formalization, Agrawal, Sax-
ena, and Kayal have answered the question in (Example 1) positively in
their already famous [AgrKaySax∞]: they give an O(log7.5 n)-time al-
gorithm for determining whether a given number is prime. Looking at
(Example 2), the question of whether a given graph has an indepen-
dent subset of size k is NP-complete; cf. [Pap94, Theorem 9.4]. Con-
sequently, the validity of the statement of (Example 2) is equivalent to
P 6= NP. In light of this, a proof of P 6= NP would be another limita-
tive theorem, locating all problems solvable in polynomial time cis and
the NP-complete problems like TSP, SAT and the problem mentioned
in Example 2 trans of the barrier determined by our formalization of
“effective algorithm”.4

Let us move from the examples from computer science to an example
from pure mathematics: In classical geometry, you are interested in con-
structions with ruler and compass: what lengths can be constructed from
a given unit length by drawing auxiliary lines with ruler and compass.
E.g., can we give a geometric construction of

√
2, of 3

√
2, of π?

Again, you can prove existential statements of the form “There is a
ruler-and-compass construction of X” by just displaying the construc-
tion, e.g., for

√
2.

On the other hand, there is no way to prove a statement of the form
“X cannot be constructed with ruler and compass” without a means of
proving things about arbitrary ruler-and-compass constructions, i.e., of
talking about ruler-and-compass constructions as mathematical entities.
In fact, you can do this, and prove non-constructibility (as is taught in al-
gebra courses) by interpreting ruler-and-compass constructions as a cer-
tain class of field extensions. This is (a small fragment of) what is called
Galois theory, and it would deserve the name metageometry.

3 Cf. the introduction of Engebretsen’s paper in this volume: “It has been widely accepted that
a running time that can be bounded by a function that is a polynomial in the input length is a
robust definition of ‘reasonable running time’ (Engebretsen, p. 78)”.

4 Here, TSP is the Traveling Salesman Problem [Pap94, § 1.3] and SAT is the Satisfiability
Problem [Pap94, § 4.2]; cf. also Section 6.
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For classical construction problems like squaring the circle, doubling
the cube (the Delic problem), triangulation of arbitrary angles, and con-
struction methods for the regular p-gon, humankind had been seeking un-
successfully for positive answers (i.e., proofs of the existential formula)
for centuries. Mathematicians embedded ruler-and-compass construction
into the richer theory of field extensions by associating to a given real r a
field extension and proving that r being ruler-and-compass constructible
is equivalent to a property of the associated field extension.5

Thus, the universally quantified negative forms of the classical prob-
lems mentioned above are transformed into simple statements about alge-
braic objects: the cube cannot be doubled by ruler and compass because
3
√

2 has degree 3 over Q; the angle of 60◦ cannot be triangulated, since the
polynomial X3− 3

4
X− 1

8
is the minimal polynomial of cos(20◦) over Q;

the regular 7-gon can not be constructed since the 7th cyclotomic poly-
nomial has degree 6 over Q and is the minimal polynomial of a 7th root
of unity.

In the cases discussed, the limitative results relativize: similar to the
relativization of Gödel’s incompleteness theorem for Peano Arithmetic
PA, we get notions of relative computability and relative ruler-and-com-
pass constructibility. These give rise to problems that are not even com-
putable if we have the halting problem as an oracle, or numbers that are
not ruler-and-compass constructible even if the ruler has 3

√
2 marked on

it. As soon as a limitative theorem has told us that there are things on
the other side of the barrier, we are not content anymore with the simple
dichotomy of cis and trans. We want to compare those that are beyond
the barrier according to their complexity. This leads to questions of the
following type:

(Example 3) Is it harder to determine whether a Π2 expression is
satisfiable than to determine whether a quantifier free expression
is satisfiable?

The first problem is known as Schönfinkel-Bernays SAT, the latter
is SAT itself. Both are NP-hard by Cook’s Theorem [Pap94, Theorem

5 Cf., e.g., [Lan93, Chapter VI].
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8.2]. Are they equally hard, or is the first one harder than the second
one?6

In order to talk about questions like this, we need a relation “is harder
than” or “is at least as hard as” and a corresponding complexity hierar-
chy. In this paper, we shall restrict our attention to a special class of
complexity hierarchies, viz. those induced by reduction functions. This
choice is motivated by the fact that the hierarchies investigated in com-
puter science are of this type, and some of the most famous hierarchies
in mathematical logic (e.g., the Wadge hierarchy, one-reducibility and
many-one-reducibility) are as well. We shall introduce a notion of com-
plexity hierarchy in an abstract way in Section 2 and then specialize in
the sections to follow.

Before starting with our abstract account, we should add a disclaimer:
this paper is not a survey of notions of complexity and definitely not a
history of complexity. Its purpose is to describe a general feature of sev-
eral complexity notions that occur in mathematics and computer science
and use that to tie together the papers in this volume. We shall give some
pointers to the literature for the interested reader but there is no intention
to be comprehensive.

2 Abstract notions

LetK be some basic set of objects. This can be the set of graph structures
on a given set, of natural numbers, of real numbers etc. Suppose that we
fixed some set F of functions from K to K that is closed under com-
positions (i.e., if f and g are from F , then f ◦ g is from F as well) and
contains the identity function. We will call these functions reductions.
Depending on the context, we can choose different sets F .

We can now use F to define a partial preorder (i.e., a reflexive and
transitive relation) on the power set of K, ℘(K):

A ≤F B :⇐⇒ ∃f ∈ F (A = f−1[B]).

The notion of a reduction and the derived partial preorder occur in
many areas of mathematics and computer science: the “efficient reduc-

6 Schönfinkel-Bernays SAT is NEXP-complete [Pap94, Theorem 20.3] and SAT is in NP.
Hence, the answer to the question in (Example 3) is ‘Yes’.
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tions” of theoretical computer science7, the continuous and Borel reduc-
tions of descriptive set theory8, the computable reductions from recur-
sion theory9, and also the Rudin-Keisler ordering of the theory of ultra-
filters.10 In this paper, we will only talk about comparing sets of objects
of the same type. If you want to compare problems from different areas,
the corresponding asymmetric version of the reductions mentioned here
are the Galois-Tukey reductions or Galois correspondences.

Given our reducibility relation ≤F defined from F , we can now de-
fine the corresponding equivalence relation

A ≡F B :⇐⇒ A ≤F B ∧ A ≤F B,

and then look at the set of equivalence classes CF := ℘(K)/≡F . The
reducibility relation ≤F transfers directly to a relation ≤F on the equiv-
alence classes where it is a partial order. We denote the equivalence
class of a set A by [A]≡F

. The elements of CF can now be called the
F -complexity classes or F -degrees.

In the following, we shall give examples of K and F and the derived
notions of complexity classes.

3 Sets of Reals

In descriptive set theory, the set of objects K is the set of real numbers
R. This set is naturally endowed with the canonical topology.

Traditionally, the topological space R is endowed with several com-
plexity hierarchies of sets of real numbers that –at least prima facie– are
not derived from complexity functions: the Borel hierarchy and the pro-
jective hierarchy.

For the Borel hierarchy, we set Σ0
1 to be the set of all open sets. For

any ordinal α, we set Π0
α to be the collection of complements of sets in

Σ0
α (so Π0

1 is the set of closed sets) and Σ0
α is the collection of all sets that

are countable unions
⋃
i∈N Ai, where each Ai is in some Π0

αi
for αi < α.

7 Cf. [Pap94, Definition 8.1] and Section 6.
8 Cf. Sections 3 and 4.
9 Cf. Section 5.

10 Note that the Rudin-Keisler ordering is of slightly different type because ultrafilters are sets
of sets of numbers: for ultrafilters U and V on N, we say that U is Rudin-Keisler reducible
to V (U ≤RK V ) if there is a function f : N → N such that U := {f−1[X] ; X ∈ V }.
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The index α indicates how often you have to iterate the operations
“complementation” and “countable union” to get a set which is in Σ0

α.
Thus, in a preconceived notion of complexity, we could call

cBorel(A) := min{α ; A ∈ Σ0
α ∪Π0

α}

a complexity measure for Borel sets and can derive a complexity relation

A ≤Borel B :⇐⇒ cBorel(A) ≤ cBorel(B)

from it.

Similarly, we can look at the projective hierarchy (defined on finite
Cartesian products of R). We let Σ1

0 be the set of Borel sets, and for each
n, we let Π1

n be the collection of complements of sets in Σ1
n. Then Σ1

n+1

is defined to be the set of projections of sets in Π1
n, where A ⊆ Rn is a

projection of B ⊆ Rn+1 if

~x ∈ A ⇐⇒ ∃y(〈y, ~x〉 ∈ B).

Again, if we set cProj(A) to be the least n such that A ∈ Σ1
n ∪Π1

n,
we can call the following relation a complexity relation:

A ≤Proj B :⇐⇒ cProj(A) ≤ cProj(B).

These two hierarchies are proper hierarchies, i.e., for α < ω1 and
1 ≤ n < ω, the following inclusions are all proper:11

∆0
α $ Σ0

α ∪Π0
α $ ∆0

α+1 $ ∆1
n $ Σ1

n ∪Π1
n $ ∆1

n+1.

By the technique used to prove this chain of strict inclusions, it is con-
nected to the limitative theorems of logic: As in the limitative theorems,
the non-equality of the complexity classes (often called a hierarchy the-
orem) is proved using the method of diagonalization via universal sets.

Even more connections to logic emerge: if you look at the well-
known Lévy hierarchy of formulas where you count alternations of
quantifiers12, then sets definable with a real number parameter and first-
order quantifiers over the standard model of (second-order) arithmetic

11 Here, ∆0
α := Σ

0
α ∩ Π

0
α and ∆

1
n := Σ

1
n ∩ Π

1
n.

12 A formula with n alternations of quantifiers starting with ∃ is called a Σn+1 formula, a formula
with n alternations starting with ∀ is called Πn+1. The Lévy hierarchy was introduced in
[Lév65].
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with a Σn (Πn) formula are exactly the Σ0
n (Π0

n) sets, and those definable
with a real number parameter and both first- and second-order quantifiers
over the standard model of (second-order) arithmetic with a Σn (Πn) for-
mula are exactly the Σ1

n (Π1
n) sets.

Thus, Borel and projective complexity fit well into the concept of
formula (Lévy) complexity.

These complexity relations are related to reduction functions in the
following way: Let FW be the set of continuous functions from R to R.
Then the relation ≤FW

defined on ℘(R) is called Wadge reducibility
≤W. If you take a set A ∈ Σ0

α\Π0
α, then (using Wadge’s Lemma and

Borel Determinacy)

{B ; B ≤W A} = Σ0
α.

Similarly, (under additional assumptions) we get a description of the pro-
jective classes as initial segments of the Wadge hierarchy:≤W is a refine-
ment of both ≤Borel and ≤Proj.

The Wadge hierarchy is one of the most fundamental hierarchies in
the foundations of mathematics. Under the assumption of determinacy
of games, the Wadge hierarchy is an almost linear and well-founded
backbone of the class of sets of real numbers.13 Since the theory of real
numbers and sets of reals is intricately connected to questions about the
axiomatic framework of mathematics as a whole, the Wadge hierarchy
serves as a stratification of an important part of the logical strength of
set-theoretic axiom systems for mathematics.

For a basic introduction into the theory of Wadge degrees, we refer
the reader to Van Wesep’s basic paper [Van78].

4 Equivalence Classes

Closely connected to the Wadge hierarchy is the area called Descriptive
Set Theory of Borel Equivalence Relations. Riccardo Camerlo’s paper
“Classification Problems in Algebra and Topology” in this volume gives
an overview of this area of research.

Take two equivalence relationsE and F on the set of real numbers R.
As relations, they are subsets of R×R. A Borel function f : R→ R gives

13 By results of Wadge, Martin, Monk, Steel and van Wesep.
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rise to a Borel function f̂ : R×R→ R×R by f̂(x, y) := 〈f(x), f(y)〉.
Look at the class FBorel of functions like this and call ≤FBorel

Borel re-
ducibility ≤B. Note that this means that E ≤B F if and only if there is a
Borel function f : R→ R such that

xE y ⇐⇒ f(x)F f(y).

This hierarchy (as opposed to the Borel fragment of the Wadge hier-
archy) is not at all linear: Camerlo mentions the Adams-Kechris theorem
on p. 73 of his paper in this volume; you can embed the Borel sets (par-
tially ordered by inclusion) into this hierarchy.

Equivalence relations on the real numbers (or on other Polish spaces)
play a rôle in classification projects. We will give an example how com-
plexity enters the discussion here (the example is from Simon Thomas’
survey article [Tho001]):

In 1937, Reinhold Baer had given a (simple) complete invariant for
additive subgroups of Q, thus classifying these groups up to isomor-
phism.14 Kurosh and Mal’cev gave complete invariants for additive sub-
groups of Qn, but “the associated equivalence relation is so complicated
that the problem of deciding whether two [invariants are the same] ...
is as difficult as that of deciding whether the corresponding groups are
isomorphic. It is natural to ask whether the classification problem for
[additive subgroups of Qn] ... is genuinely more difficult when n ≥ 2.
[Tho001, p. 330]”.

This problem has been solved by Hjorth [Hjo99] by showing that the
isomorphism equivalence relation for subgroups of Q2 has strictly higher
complexity than the isomorphism equivalence relation for subgroups of
Q and in fact, that it is strictly more complicated than E0, the first non-
smooth Borel equivalence relation (cf. Camerlo’s Theorem 2.2).15

This complexity result can be seen as a metatheoretical explanation
for the fact that Kurosh and Mal’cev couldn’t come up with better invari-
ants for these classes of groups.

14 Subgroups of Q can be seen as subsets of N via a bijection between Q and N. Via characteristic
functions, subsets of N can be interpreted as infinite 0-1-sequences, and those can be seen as
a real number (e.g., via the binary expansion). Thus, the isomorphism relation on subgroups
of Q can be investigated as an “equivalence relation on the real numbers”.

15 Hjorth comments on the connection between this theorem and certain pretheoretical notions
of classifiability in his [Hjo00, p. 55, fn. 2].
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5 Recursion Theory

From sets of reals, we move to sets of integers now. In Recursion Theory,
K is the set of natural numbers N. We shall look at two different kinds
of reduction functions: the set Ft of total recursive functions, and the set
F1 of total injective recursive functions.

Each of these sets of reductions gives rise to recursion-theoretic re-
ducibility relations: ≤Ft is known as many-one reducibility ≤m, and
≤F1 is known as 1-reducibility ≤1.16

One of the mentioned three classical limitative theorems stems from
Recursion Theory: Let us assume that we’re looking at computer pro-
grams in binary code. We can ask whether a program, given its own code
as an input, will eventually halt or run into an infinite loop. Call the for-
mer programs halting and the latter looping. Now, is there a program
that, given any binary code b, can determine whether the program with
code b is halting or looping? Diagonalization easily shows that there can’t
be such a program. The set

H := {b ; the machine with code b is halting}

is called Turing’s halting problem: in terms of complexity the diago-
nalization argument shows that H 6≤m A for any computable set A (and
so also H 6≤1 A).

Hence the derived sets of degrees 〈CFt ,≤m〉, and 〈CF1 ,≤1〉 are non-
trivial, and, in fact, as the degrees of Borel equivalence relations, they
are very far from being linear orders. A huge part of the literature on
recursion-theoretic degrees investigates the structure of the complexity
hierarchies of recursion theory. Even more prominently than ≤1 and ≤m

features Turing reducibility ≤T defined by the notion of computation
in an oracle. The literature on complexity hierarchies in recursion theory
also includes Sacks’ seminal [Sac71] in which he introduced Sacks forc-
ing. The properties of Sacks forcing used in recursion theory are similar
to the minimality property proved in Lemma 2.8 of the survey paper on
set-theoretic properties of Sacks forcing by Geschke and Quickert in this
volume.

Of course, the above definitions are not restricted to the classical no-
tion of computation. When you change the model of computation and

16 Cf. [Hin78] and [Soa87].
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replace “recursive”/“computable” in the above definitions by some pred-
icate connected to a generalized model of computation, you get new com-
plexity hierarchies with a lot of structure to investigate. One instance of
this is the notion of the Infinite Time Turing Machine introduced by
Hamkins and Kidder. These machines have the same architecture as nor-
mal Turing machines but can go on through the ordinals in their compu-
tations. Being computable by an Infinite Time Turing Machine is a much
more liberal property of functions, so the hierarchies we get are much
coarser.

In this volume, there are two papers dealing with Infinite Time Tur-
ing Machines: a gentle introduction by Joel Hamkins entitled “Supertask
Computation” and a paper by Philip Welch that discusses supertasks on
sets of reals, thus connecting Infinite Time recursion theory to descriptive
set theory (cf. Section 3).

Having seen the rich structure theory of recursion theoretic hierar-
chies for the classical notion of computability, one can ask with Hamkins
(Question 2 of his contribution to this volume):

What is the structure of infinite time Turing degrees? To what
extent do its properties mirror or differ from the classical struc-
ture?17

6 Complexity Theory in Computer Science

Computable functions, the reductions used in recursion theory, are not
good enough in theoretical computer science: a computable function in
general has no bound on computing time or storage space that is used
while it’s being computed. The fine hierarchies of computer science that
want to distinguish between problems that are solvable in a realistic time-
frame and those that require too much time cannot be content with reduc-
tions of that sort.

The class of reductions in theoretical computer science is the class
of functions computable with logarithmic space usage (logspace reduc-
tions). I.e., there is an algorithm that computes f(x) from x and satisfies

17 In his [Wel099], Philip Welch discusses an aspect of Hamkins’ Question 2: minimality in
the Infinite Time Turing degrees. Again, this is connected to minimality of Sacks reals as
discussed in the survey of Geschke and Quickert, and Welch uses a variant of Sacks’ argument
from [Sac71].
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the following condition: if the input has n bits, the program will never
use more than c · log(n) bits of storage space during the computation
(where c is a constant).18

If F` is the class of logspace reductions, then 〈CF`
,≤F`

〉 is the usual
world of complexity classes: first of all the deterministic ones, the class
of polynomial time decidable sets P, those decidable with polynomial
scratch space usage PSPACE, those decidable in exponential time
EXP, and also their nondeterministic counterparts NP, coNP,
NPSPACE, NEXP, and others. The usual inclusion diagram of com-
plexity classes (cf. [Pap94, §§ 7.2 & 7.3]) can be verified easily:

P ⊆ NP ∩ coNP ⊆ PSPACE ⊆ EXP ⊆ NEXP.

While there are some non-equality results, one puzzling and titil-
lating feature of the complexity classes of computer science is that we
don’t know for sure that all of the inclusions are proper. In particular, we
are lacking the limitative theorem P 6= NP. For the reader unfamiliar
with structural complexity theory, Rod Downey’s “Invitation to structural
complexity” [Dow92] will be a nice way to approach the subject.

As in recursion theory, also in complexity theory, a new model of
computation gives rise to new classes of reduction functions, and thus,
a fortiori, to different hierarchies.19 Examples are the Blum-Shub-Smale
theory of computation with real numbers20 or quantum computability as
discussed in Ambainis’ survey in this volume.

7 Other Complexity Hierarchies

We abstractly discussed hierarchies derived in a particular way from re-
duction functions. Of course, there are more complexity hierarchies in
logic than that.

Fundamental are the hierarchies of proof theory that are related to re-
duction functions in a less direct way: Fix a language L and a collection

18 Cf. [Pap94, Chapter 8].
19 Interesting to note is the connection to Infinite Time Turing Machines: Schindler opened the

discussion on analogues of the P = NP question for Infinite Time Turing Machines in his
[Sch2∞]. Cf. also [HamWel003] and [DeoHamSch2∞].

20 Cf. [Blu+98]; in Footnote 4 of his article in this volume, Hamkins mentions that the Blum-
Shub-Smale theory was the key motivation for the development of Infinite Time Turing Ma-
chines.
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Φ of L-sentences. From now on, we mean by an L-theory a primitively
recursive set of L-sentence (understood as an axiom system of the the-
ory). Let Proof(v0, v1, v2) be the predicate “v0 is the Gödel number of a
proof of the sentence with the Gödel number v1 in the theory with the
index v2”. If S and T are L-theories, we call a function f a Φ-reduction
of S to T , if it is primitively recursive and

PRA ` ∀ϕ ∈ Φ∀n ( Proof(n, pϕq, pSq) → Proof(f(n), pϕq, pTq) ) .

We write S ≤Φ T if such a Φ-reduction exists.21

As a famous special case, you can look at Φ∗ = {⊥}. Then the ex-
istence of a Φ∗-reduction says that every proof of an inconsistency in S
can be effectively transformed into a proof of an inconsistency in T . In
other words, if T is consistent, then so is S. This gives rise to the consis-
tency strength hierarchy ≤Cons.22 Gödel’s second incompleteness the-
orem states that PA <Cons PA + Cons(PA), so the consistency strength
hierarchy is nontrivial. Extending Peano arithmetic to second-order arith-
metic or even set theory gives a multitude of interesting new systems that
form an increasing hierarchy in the ordering ≤Cons. It is known [Rat99,
Proposition 2.18] that the consistency strength hierarchy in general is
not linearly ordered. Yet, surprisingly, for a large class of axiom systems
(and, importantly, all of the axiom systems considered to be natural are
among them) the relation has been empirically established to be a lin-
ear order, actually a well-ordering.23 As such, it has served as the mea-
suring rod of logical strength in foundations of mathematics for many
years and is subtly connected to some of the mentioned other complexity
hierarchies as the recursion theoretic hierarchies and the Wadge hierar-
chy. Some subareas of logic have specialized on certain fragments of the
consistency strength hierarchy, among them are systems of second order
arithmetic investigated by reverse mathematics, these and other systems
of proof theory by proof theoretic ordinal analysis, and systems of higher
set theory by large cardinal theory24.

21 Here, PRA is primitive recursive arithmetic, a weak subsystem of second-order arithmetic;
cf. [Sim299].

22 Cf. [Rat99, §§ 2.5 & 2.7].
23 Cf. [Ste082a] for a mathematical discussion of the connections between the theory of inner

models of set theory and this remarkable fact.
24 Cf. [Sim299], [Poh96], [Kah02], and [Kan094]. For an example of a strength analysis by large

cardinals, see Schindler’s paper in this volume where he computes the consistency strength
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The relations between the different aspects and contexts of complex-
ity are large in number, and a short introductory article to this volume
can’t list them all. The fact that we can only provide a very passing glance
at the fascinating subject of complexity stresses the importance, the live-
liness and vigour of the topic of the conference FotFS III. The slightly
different but deeply related notions of complexity in the several areas
discussed in this volume are entrenched within the research communities
of mathematical logic and computer science and will serve as a bridge
between the two subject areas for years to come.

of the theory BPFA+“every projective set of reals is Lebesgue measurable” in terms of large
cardinals.


