Insfitute for Language, Logic and Information

INTENSIONAL LAMBEK CALCULI THEORY AND APPLICATION

Andrela Pryatel!
ITLI Reppublucaton Scites
for Logic, sematics and Rhiosophy of Languge $1 P 89-06$

University of Amsterdam

田

Faculteit der Wiskunde en Informatica
(Department of Mathematics and Computer Science)
Plantage Muidergracht 24
1018TV Amsterdam

Faculteit der Wijsbegeerte
(Department of Philosophy)
Nieuwe Doelenstraat 15
1012CP Amsterdam

INTENSIONAL LAMBEK CALCULI THEORY AND APPLICATION

Andreja Prijatelj
Electrotechnic Faculty
University of Ljubljana

2

QONTENTE

1. Introduction
2. Intensional Lambek Calculi
2.1. Deductive systems: ILE ce, $I L_{\text {ce }} \mathrm{IL}_{\mathrm{c}}$
3. \% Eliminability of Cut
2.3. Desidability
4. Auxilirry Sequential Calculus AS
5. Lambda-typed Semantios
4.1. General Frame
4.2. AS and IL_{0} Type-driven Translations
4.3. AS Semantics in Ty 2 Perspective
\& Ralatinns between $A S$ and $I L_{0}$
\therefore Applications to Montague Grammar
\because Eurther Directions
\therefore References

The main motivation for the present paper has arisen as a challenge to extend the extensional Lambek calculus developed by van Benthem [2] to an intensional version in a natural way. Actually, three intensional deductive systems are presented below distinguished with respect to the number of structural rules they contain.
To continue with a bief outline of this paper.
Its main copic is:
meta-properties of intensional Lambek caleuli.
The immediate topic of application is:
an analysis of Montague s meaning postulates by a
Lambek-like mechanism in such a way as to show them Superflluous.

One of the most important aims is:
a better insight into phenomena of intensionalization.
Einally, let us state the main technical xesults of this paper:

A cut elimination theorem for ILP ce is proved.
A decision procedure for ILE ce is established, beinc also valid for both weaker systems.

An auxiliary one-sorted system $A S$ is constructed.
Borrowing Gallin's idea [5] an $A S$-typed semanties is "translated" in such a way as to become a proper fragment of Ty_{2}.
A correspondence between $A S$ and $I L_{0}$ is established.
A strategy fox dynamically assigning an adequate interpretation to expressions of any given category is proposed and verified.
2.INTENSTONALLAMBERCALCULI
2.1. Deductive systems:ILPce, $\mathrm{IL}_{\mathrm{ce}} \mathrm{H}_{\mathrm{c}}$

We shall start with a presentation of the deductive system ILP ${ }_{c e}$ of sequents: $a_{1}, a_{2}, \ldots, a_{n} \quad$ where $a_{1}, a_{2}, \ldots, a_{n}, b$ denote arbitrary two-sorted simple types inductively derined as follows:

DEFINITION (2.1.1.):
Let e,t,s, be any distinct objects, none of which is an ordered pair. The set of two-sorted simple types, called Types, is the smallest set T satisfying:
(i) e,t,s, T
(ii) if a, b, T, then (a, b). T

Bemark:
In what follows the types defined by (i) and (ii) will be referred to as basic types and functional types respectively.
Next the forms of axioms and inference rules for the system ILP ce are stated below:
a x i oms:
(1) a a
operational rules:
introduction of a functional type in the succedent of a sequent
(2)

$$
a, T \cdot b
$$

$$
T \cdots(a, b)
$$

$$
\frac{T, a \quad b}{T}(a, b)
$$

introduction of a functional type in the antecedent of a sequent
(3) T $\frac{T \quad U, b, V \cdots d}{U, T,(a, b), V \cdots d}$
(3)


```
stru\mp@code{eturalloru a es:}
permutation of antecedent types:
\[
\begin{equation*}
\frac{U, a, b, V}{U, b, a, V-d} \tag{4}
\end{equation*}
\]
```

oontraction restricted to the basic type s:
(5)
$U, S, R, S, V \quad a$
U,S,R,V a
(5') U, $5, R, 5, V \quad$ a
U, R, S, V a
expansion restrioted to the basie tupe t:
(B)

$$
\frac{U, R, t, V: a}{U, t, R, t, V}
$$

(6^{\prime}) $U, t, R, V \cdots a$
$U, t, R, t, V \quad=a$

Adding finally the cut pule:

$$
\frac{T \cdots a \quad U, a, V: b}{U, T, V \quad b}
$$

In the above rules of inference U, V, T, R denote finite sequences of types, with the restriction that T is non-empty.

Remark:
By a distinct notation for the structural rules in ILP ce their full or restricted use within the system is indicated. Further on, it will be seen that the restriotion of contraction and expansion to the basic types s and t respectively calls for some specific tools when establishing some of the system's meta-properties, filling the gap between the well-known strategies for the weaker and the stronger systems (i.e. L, LP and LPCe, intuitionistic logic respectively).
Next, some comments on the present exposition of the system ILP ${ }_{c}$ will be given. Clearly, the rules (2^{\prime}), (3^{\prime}), (5^{\prime}) and (6') are superfluous. Namely, the corresponding symmetric variant of any specific inference rule above is easily derivable by successive applications of the permutation rule to the appropriate premise sequent or conclusion sequent. Moreover, there are other possible equivalent formulations
of the system ILP ce depending on the degree of permutation that is already built into a specific inference rule itself. Thus, for example, the rules (5) and (6) could simply be replaced by:

$$
\begin{aligned}
& s, s, V=a \\
& s, V+a
\end{aligned} \quad \text { and } \quad t, V \cdots a=1
$$

respectively. However, the reason for adopting and further analyzing the $I L P$ ce version given above is closely related to the section (6). There I_{c}, the present symmetric system without permutation, expansion and cut, is applied to the linguistic model proposed by Montague [12]. Furthermore, the introduction of the rule of restricted expansion into our syster has been motivated by the author's conjecture that the system $I L_{c e}$ i.e. the above symmetric system lacking permutation and cut, can be of use for simplifying the dynamic intensional systems recently developped by Groenendijk and Stokhof [7]. Thus the properties of the system $I_{c e}$ will be inspected simultaneously with those of $I L_{c}$ and ILP ce. Finally, the addition of the cut rule to the system ILP ce will be justified in the next subsection by pointing out that the number of $I L P$ ce theorems is not increased by making use of the cut rule in any ILPce derivation. However, the latter fact does not hold for the two symmetric systems $\mathrm{IL}_{\text {ce }}$ and $I L_{c}$; the lack of the permutation rule will turn out to be essential.

First of all, a standard version of the cut-elimination theorem [6] suitably adopted for the system ILP ce will be proven. For that purpose some additional prerequisites are needed: in particulax, the following notions of functionality degree of types, the grade of a cut and the trace of a specified ocourrence of a type within a given proof tree.

DEFINITION (2.2.1.):

Let f: Types -. . I; be a function, such that:

$$
\begin{aligned}
& f(e)=n, f(t)=, f(s)=\| \\
& f((a, b))=f(a)+f(b)+1, \text { then }
\end{aligned}
$$

the f-image of any given type is precisely the functionality degree of that type.

DEEINITION (2.2.2.):
The grade of the cut:

is $f(a)$, where f is defined by (2.2.1.) and a is the active type of the cut.

Finally, the trace of a specified type occurrence of a given sequent within a particular cut-free proof tree of the same sequent is defined inductively on the size of that proof tree (i.e. the number of sequents occurring in it).

DEFINITION (2.2.3.):

Let $a_{1}, a_{2}, \ldots, a_{p-1} \cdots a_{p}$ be an endsequent of a particular rut-free ILE ce proof tree of size m, denoted by A. For any $i\{1,2, \ldots, p\}$ the trace of $a_{i}, \operatorname{tr}_{j}\left(a_{i}\right)$, within is determined as follows:
(I) $n=1$; $\quad \therefore$: $b \cdots b$, then $t r_{i},\left(a_{i}\right)=n$, for a_{i} denoting either of occurrences of b in the axiom. (II) $n>1 ;$ Here, several cases are to be considered, distinguished with respect to the last derivational step of $\stackrel{\wedge}{ }$
i) rule (2):

$$
\frac{1, c /}{b, z \div c} \text {, then }
$$

$$
\operatorname{tr}_{A}\left(a_{i}\right)= \begin{cases}\quad U, & \text { if } a_{i} \text { is the ind oc of }(b, c) ; \\ \operatorname{tr}_{n}\left(a_{i}\right)+1, & \text { otherwise; }\end{cases}
$$

ii) rule (3): \A/ \'"/

$$
\frac{Z \cdots+b \quad U, c, V \cdots d}{U, Z,(b, c), V \cdots d} \text {, then }
$$

$\operatorname{tr}_{\mathrm{a}}\left(a_{i}\right)=\left\{\begin{aligned} u, & \text { if } a_{i} \text { is the ind. one. of }(b, o) ; \\ \operatorname{tr},\left(a_{i}\right)+1, & \text { if } a_{i} \text { occurs in } Z ; \\ \operatorname{tr}, \ldots\left(a_{i}\right)+1, & \text { otherwise; }\end{aligned}\right.$
iii) permutation rule:

$$
\begin{gathered}
V, V / \\
U, b, C, V+d \\
U, C, b, V+d
\end{gathered}
$$

$\operatorname{tr}\left(a_{i}\right)=\operatorname{tr} .\left(a_{i}\right)+1$, no matter which type occurrence in U, c, b, V id is denoted by a_{i}.
iv) contraction restricted to the basic type s:

$$
\frac{U, S, R, S, V}{U, S, R, V \cdots b} \text {, then }
$$

$\operatorname{tr}_{A}\left(a_{i}\right)=\left\{\begin{aligned} \quad \text { if }, & \text { if } a_{i} \text { the ind. one. of } s ; \\ \operatorname{tr}_{A}\left(a_{i}\right)+1, & \text { otherwise; }\end{aligned}\right.$
v) expansion restricted to the basic type t :

$$
\frac{U, R, t, V}{U, t, R, t, V \cdots b}=\text {, then }
$$

$\operatorname{tr}\left(a_{i}\right)=\left\{\begin{array}{l}\text { in, if } a_{i} \text { is any of ind. occ. of } t ; \\ t r \ldots\left(a_{i}\right)+1, ~ o t h e x w i s e ; ~\end{array}\right.$

Remarks:

Here "ind. oce." is a shoxtened form of "indicated occurrence(s)". Note, moreover, that the trace of basic types s and t car be blocked by contraction and expansion of relevant types respectively.

Let us now present:
$\mathrm{PROPOSITIOM(2.2.4)}:$.
Any given ILP ce proof tree of a sequent can be converted to a cut-free ILP ce proof tree of the same seguent. The only inference rules applied in it are the ones applied in the given proof tree with additional applications of the permutation rule in some cases.

Proor:
By induction on the number of applications of the cut rule in the given proof tree, provided that the following lemma is proved first.
I. $E M M A(2.2 .5):$.

For any given ILP ce cut-free proof trees of two sequents having the form T, a and U, a, V.... b respectively an ILP oe cut-free proof tree of the sequent $U, T, V \ldots$ b can be found. The only inference rules applied in it are the ones applied in the two given proof trees with additional applications of the permutation rule in some cases.

Eroon:
The sequents T " a and U, V, V ".... b with the cut-free ILPce proof trees " for the foxmer and 'f for the later sequent are given by the assumption of the lemma. Then the proof tree of the sequent $U, T, V \quad$ b exists with the single application of the cut:

as the final derivational step.
However, it will be shown that the same sequent also has a cut-free ILP ce proof tree.
The proof will be given by the following nested induction: a course-of-values induction on the grade of cut
(def.2.2.2), such that within each of its steps an induction on the trace of the active type of a cut with respect to a given proof tree is used. In case of a proof tree having an application of a cut as its final dexivational step, and no other cut over it, definition (2.2.3.) can be used for "tracing" the active type within each specific proof tree of the left and right cut-premise respectively. The trace of the active type a of a cut, denoted by Ctr(a), is then expressible by the sum of the coxresponding left and right counterparts.
Hence, for the cut given above ("), the following holds:

$$
\operatorname{ctr}(a)=t x \cdot(a)+t x \cdot{ }_{1}(a) .
$$

Now, it only remains to show how this single application of the cut can be shifted up the given prof tree and finally becomes superfluous.

Actually each of the conversion steps laid out below is either a basis or an induction step of the nested induction, so that a verification is made for the former and a proper induction hypothesis is used for the latter one.
(I) grade of the given cut ie zero: f(a) $=\cdots$, or equivalently a is a basie type.
(1) Ctr(a) = with respect to the given proof tree (.).

Hence, tr $(a)=t r,(a)=\|$. It suffices to see that by def.

(2.2.3.) ' 1 can only be: a a, and thus the application of the cut is superfluous.
(2) Ctr(a) > With respect to the given pruof tree (.

Hence, the following two possibilities, splitting fuxther into specific subcases, are to be handled:
(A) tr (a) > 1,

has to be converted into:

$$
\frac{T^{\prime} \cdot \frac{b_{2}, T^{\prime} \cdot a}{U, b_{2}, T^{\prime}, V, \cdots, V} \frac{b_{1} d}{U, T^{\prime},\left(b_{1}, b_{2}\right), T^{\prime}, V} \frac{d}{(c u t)} \text { (3) }}{\text { (3) }}
$$

(iii) $T^{\prime}, c, d, T^{\cdots} \cdots a$ a (P)

$$
\frac{T^{\prime}, d, c, T^{\prime} \cdot a \cdot U, a, V \cdot b}{U, T^{\prime}, d, c, T \cdot, V \cdot b}(c u t)
$$

has to be converted into:

$$
\frac{T^{\prime}, c, d, T \cdots \cdot a \quad U, a, V, b}{\frac{U, T}{}, c, d, T \cdots, V-b} \quad \text { (D) } \quad \text { (cut) }
$$

iv) T, s, R, s, T " a (contr ${ }_{s}$)

$$
\frac{T^{\prime}, s, R, T^{\prime}: a \quad U, a, V \cdot b}{U, T^{\prime}, s, R, T^{\prime}, V \cdots b} \text { (out) }
$$

is to be converted into:

$$
\begin{aligned}
& T^{\prime}, s, R, s, T^{\prime} \text { a } U, a, V+b \text { (cut) } \\
& U, T^{\prime}, S, R, S, T^{\prime}, V \cdots b \text { (contr }{ }_{s} \text {) } \\
& \text { U,T',S,R,T", V 'b }
\end{aligned}
$$

v) $T \cdots, T \cdots, t, T \quad \because a \quad\left(\exp _{t}\right)$

$$
\frac{T^{\prime}{ }^{\prime}, t, T^{\prime}, t, T^{\prime} \rightarrow a \quad U, a, V \cdots b \text { (cut) }}{U, T^{\prime}, t, T^{\prime}, t, T^{\prime}, V \cdots b}
$$

is to be converted into:

Clearly the order of application of each of the above treated ILP ce inference rules and cut has been reversed, with the endsequent remaining the same while the trace of a has been decreased by one.
Thus, the hypothesis of induction on the trace of a with respect to a given proof tree can be used. (B) $\operatorname{tr}_{a_{r}}(a)>1$,

Here, the cases where the last derivational step of $U, a, V \ldots b$ has been an application of any of the rules (2) to (6), in such a way that the condition stated in (B) is fulfilled, should be treated analogously as those of (A) above. That is, the order of application of the last inference rule in the derivation of $U, a, V \quad b$ and cut with $T \rightarrow a$ is to be reversed.
However, the special case concerning the application of permutation must still be worked out:
$\frac{\text { T a } \quad \frac{U, a, d, V \cdots b}{U, d, a, V, b}}{U, d, T, V \cdots b}$ (P)
is to be converted into:

$$
\frac{\mathrm{T} \cdot \mathrm{a} \cdot \mathrm{U}, \mathrm{~d}, \mathrm{~V} \cdot b}{\frac{U, T, d, V \cdot b}{U, d, T, V \cdots b}\left(H_{k}\right)}
$$

Where u_{k} denotes k successive applications of the rule (P) in case a sequence of k types is represented by T. Again, by each of the proposed conversions the trace of a has been decreased by one. And, thus the hypothesis of induction on the trace of a becomes available.
(II) the grade of the given cut is greater than zero: $f(a)>\|$, or equivalently a is a functional type..
(1) $\operatorname{Ctr}(a)=:$ with respect to the given proof tree (.).

Hence, $\operatorname{tr}(a)=\operatorname{tr}_{\mathrm{r}}(\mathrm{a})=\mathrm{C}$. Clearly the following possibilities occur for the left and right proof tree in question:

```
    I is either an axiom or an application of rule (2) or (2')
is its final derivational step;
\mp@subsup{n}{r}{}}\mathrm{ is either an axiom or a relevant application of rule (3)
or (3') is its final derivational step;
In case one of the derivations is an axiom the application
of the cut is superfluous. Hence, still four possibilities
of combining the last derivational step of l with the one
of \therefore.r remain. However, only two of them will be handled
here. The cases with a symmetric variant of each inference
rule under consideration are to be treated analogously with their symmetric counterpart given below:
```

$$
\begin{equation*}
\left.\frac{\frac{a_{1}, T, a_{2}}{T}+\left\langle a_{1}, a_{2}\right)}{U, T, V \cdots b} \frac{U,\left(a_{1}, a_{2}\right), V}{U}, b, b\right) \text { (cut) } \tag{i}
\end{equation*}
$$

with $a=\left(a_{1}, a_{2}\right)$ and $U=U^{\prime}, U$,
is to be converted into:

(ii) $\quad \underline{a}_{1}, \frac{T}{} \underline{a}_{2-}$
(2)

$$
\begin{equation*}
T \quad\left(a_{1}, a_{2}\right. \tag{2}
\end{equation*}
$$

$U, T, V^{\prime}, V^{\prime} \cdots b$
has to be converted into:

where $\eta_{1, k}$ denotes $1 . k$ successive applications of the rule (P) in case V ' and T represent sequences of k types and 1 types respectively.
By each of the conversions proposed above the grade of the cut has been decreased, since $f\left(a_{1}\right)<f\left(\left(a_{1}, a_{2}\right)\right)$ for

I': $\{1,2\}$. Thus, the hypothesis of induction on the grade of cut can be applied to cut ${ }_{2}$, since each of its premises by assumption satisfies the condition of the lemm, its proof tree is cut-free. Clearly after cut 2 has been eliminated the same holds true for cut ${ }_{1}$ and thus the above induction hypothesis can be used for it as well.
(2) Ctr(a) > with respect to the given proof tree (:).

Further, (A) and (B) dealing with the suboases of
tri (a) $>i$ and tr (a) $>$ are analyzed in the same way as
1 … r
(I.2:A and B) above.

And that completes the proof of the lemma.
Q.E.D.

Remarks:

Note that by def. (2.2.3.) the condition:
$\operatorname{trf}_{\mathrm{A}}(\mathrm{a})=\mathrm{u}$, stated in (I.1.) above, allows the following additional possibilities for ir besides its being an axion: (i) the last derivational step of "" can also be contraction of relevant s types;
(ii) the last derivational step in ${ }_{r}$ can also be expansion of a relevant t type;
However, the verifioation of (I. 1) is not dependent on the form of ' r, as pointed out in the above proof.
Note also, that the cases demanding additional applications of the permutation rule, treated above, indicate that cut elimination in ILP oe may increase the size of an initially given proof. Actually, a rather rough polynomisl estimate is given below.

If $g(\therefore)=n$ for somen, n, then $s(\therefore)<n^{3}$, with $s(1)$ and $s\left(:{ }^{\prime}\right)$ denoting the size of any given ILP ce proof tree : and its cut-free counterpart ." respectively.

Proof:
Suppose $s()=r$. The central property to be used here is introduced first. For that purpose let $a_{1}, a_{2}, \ldots, a_{m}$, b
denote an arbitrary sequent occurring in .. That the inequality: m : n, holds can be proved by a course-of-values induction on the size of \therefore. The estimation stated above is now available as follows. Take any deriyational step of such that it has been furnished by some additional applications of the permatation rule in the course of converting it to ". Using the above stated property, the number of these additional applications within any conversion step is strictly less than n^{2}. Finally, taking the estimation for each derivational step of "the claim of the observation is justified.

Remark:

By the above result, ILP ce again gets the position between the system L and intuitionistic logic. Namely, in the process of cut elimination the size of the proofs within the former system is not incressed [9] while there may be an exponential blow-up in size of the proofs within the latter system [11]. Still, there is an interesting fact to be observed. If only the permutation rule of ILP ce would be replaced by a permutation in its broader sense then the same result as for L would hold for such a system.
In what follows, it will be shown that cut is not a derivable rule in the system $I L_{c e}$ or $I L_{c}$. To put it differently, the rule cut can not be added to $I L_{c e}$ and $I L_{c}$ if the set of previously derivable theorems (that is without cut) is to be preserved. That fact will be justified by the following simple example:

```
        e \(-\quad \mathrm{r}\) e \(\mathrm{t} \boldsymbol{t}\)
\(s \cdots \quad e,(e, t) \ldots t\)
\[
\begin{align*}
& s, s, e),(e, t) \rightarrow t \quad \text { (2) }  \tag{3}\\
& (s, e),(e, t) \cdots(s, t) \\
& (s, e),(e, t), g \cdots t
\end{align*}
\]

Clearly, the last sequent could not be derived without the cut rule in any of the above mentioned systems lacking permatation. That fact will fully be justifiable in the next subsection where the decision procedure for the relevant systems is introduced. However, an interesting question can be raised here concerning the connection of the cut rule with the permutation rule within the system ILP ce. The answer is put forward by the following
abseryation(2.2.7.):
The system \(I L P_{c e}\) is equivalent to the system \(I L_{c e}\) extended by the cut rule.
\(\mathrm{Proof:}\)
(i) ( . )

By lemm (2.2.5.) cut is a derivable rule of ILPce.
(ii) (...)

To prove the converse, it only remains to be shown that the permutation rule;
\[
\begin{align*}
& a_{1}, \ldots, a_{i}, a_{i+1}, \ldots, a_{n} \cdots b  \tag{P}\\
& a_{1}, \ldots, a_{i+1}, a_{i}, \ldots, a_{n}, b
\end{align*}
\]
is deducible from the \(I_{c e}\) inference rules using also cut. Suppose \(a_{1}, \ldots, a_{i}, a_{i+1}, \ldots, a_{n}\), \(b\) is a derivable sequent within the system under consideration. Then so is the sequent \(a_{i}:\left(a_{i+1}, \ldots,\left(a_{n},\left(a_{i-1}, \ldots\left(a_{2},\left(a_{1}, b\right)\right) \ldots\right)\right) .\right.\). Take the latter as the left-hand side premise of the cut by which \(a_{1}, \ldots, a_{i+1}, a_{i}, \ldots, a_{n} \quad b, i, e\). the conclusion sequent of the rule ( \(P\) ) above, can be inferred. Then the right-hand side premise of cut may only be the sequent below:
\(a_{1}, \ldots, a_{i-1}, a_{i+1},\left(a_{i+1}, \ldots,\left(a_{n},\left(a_{i-1}, \ldots,\left(a_{1}, b\right) \ldots\right)\right), a_{i+2}\right.\), \(\ldots, a_{n} \quad b\), which clearly is derivable within the given system. And that completes the present proof.

\subsection*{2.3. Decidability}

After the cut-elimimability question for ILP ce has been answered affirmatively, it becomes plausible to search for a decison procedure for that sequential calculus However, neither of the already existing decision procedures for stronger Gentzen's systems as compared to ILP ce can be obviously adopted here. Following too faithfully a decision procedure for the intuitionistic logic discovered by Gentzen himself [7], would not be very useful, because it depends essentially on the presence of all structural rules. The Same holds for the implicational fragment of relevance logio introduced by Kripke [1:], where the presence of full contraction calls for such a strong tool as the well-known Kripke's lemma [4]. Therefore, we propose a simpler method designed especially for this case.
In the following discussion concerning the decidability of ILPce an important lemma will be introduced playing the central role in a decision procedure itself. Namely, any path of a complete propf search tree of a given sequent is to be stopped if the sequent obtained by one of the operational mules or s-type contraction, looked at in the reverse ordex, does not satisfy the condition stated by the lemma. Moreover, the same lemma guarantees that within each path of a complete proof search tree only a finite number of applications of s-type contraction, again looked at in the severse order, can be performed.
Further, since the cut rule was proved to be superfluous in the system ILP ce one can confine oneself to cut free derivations without loss of generality. Thus the system ILP ce without cut will be used through-out the subsequent discussion concerning the decision procedure.
Let us now present the lemma by which a necessary condition for a sequent to occur in an ILPce proof tree of some specified sequent is expressed.
For that purpose the following notation will be introduced. Notation:

Suppose i' is any Eiven sequent. Let then \(n_{b}(M)\) and \(n_{p}\left({ }^{\prime \prime}\right)\)
denote the number of ocourrences of the basio type \(s\) in : and the number of occurrences of sin all functional types of respectively.

LEMMA(2.3.1.):
For every sequent " that occurs in an arbitrary ILP ce proof tree of some specified sequent the following holds: either \(n_{b}\left({ }^{\prime}\right): n_{f}\left({ }^{\prime \prime}\right)\), or \({ }^{\prime}\) is the axiom \(s\). \(s\).

Proof:
By course-of-values induction on the size of a proof tree of a given sequent.
1) The basis step is a verification whether the above stated property holds for a single axiom proof tree:
either \(n_{b}(a \quad: a)\) ( \(\quad\) om has the form \(s \cdots\)...
2) The induction step reduces to checking whether the same property is preserved by each inference rule supposedly being the last derivational step of a given proof tree:
(a) introduction of a functional type in the succedent of a sequent:
\[
\frac{a, z \cdots b}{z \quad *(a, b)}
\]

Clearly \(n_{b}\left(\prime^{\prime}:\right) \quad n_{b}\left(a^{\prime},\right)\) and \(n_{f}\left({ }^{\prime}\right) \quad \therefore n_{f}(\prime)\).
Thus, using the induction hypothesis for the premises the following inequality holds:

(b) introduction of a functional type in the antecedent of a sequent: \(\quad \frac{Z, a, ~ U, b, V}{U, Z,(a, b), V}\)

Here four possibilities are to be checked, distinguished with respect to the fact that both, one or none of the premises of the given inference rule are instantiations of the axiom \(s\). As an example, one of the possible cases is displayed below:
\[
\frac{s \cdots s \quad U, b, V \cdots \cdot d}{u, s,(s, b), V} \quad \mathrm{~d}
\]
either:
(i) b is s and thus:
\[
n_{b}\left({ }^{\prime}\right)=n_{b}(1) \quad n_{f}(i)<n_{f}(1)+2=n_{f}(1)
\]
or:
(ii) \(n_{b}\left(, \quad=n_{b}(\because)+1\right.\), but \(a \operatorname{lso} n_{f}(i)=n_{f}(\cdot)+1\), eto. Clearly the induction hypothesis : \(n_{b}(1 ;) \cdot n_{f}(1)\) was used in (i) as well as in (ii).
c) permutation of antecedent types:

clearly \(n_{b}\left(\prime_{1}^{\prime}\right)=n_{b}\left(\prime_{o}^{\prime}\right) \therefore n_{f}\left(!_{o}^{\prime}\right)=n_{f}\left(\prime_{1}\right)\).
d) contraction restricted to the basic type s:
\begin{tabular}{l:r}
\(U, S, R_{2} S, V\) & \(\cdots\) \\
\(U, S, R, V\) & \(a\) \\
& 1
\end{tabular}
the induction hypothesis implies:
\[
n_{b}\left(i_{1}\right)=n_{b}(0)-1 \quad n_{b}\left("_{0}\right) \quad n_{f}\left({ }_{0}\right) \quad n_{E}(\therefore)
\]
e) expansion restricted to the basic type t:
\[
\frac{U, R, t, V}{U, t, R, t, V}
\]

With the same justification as in (c) above.
Q.E.D.

\section*{Rematk:}

Obviously the lemma is also valid for the cut-free systems ILee and \(I L_{c}\).
In what follows a complete ILP ce proof search tree of any given sequent will play a central role. In order to show that a special construction of such a tree is finite and thus that ILP ce is decidable a definition introducing the functionality degree of a seguent is presented below:

DETINITION(2.3.2.):
Let ' be any given sequent of the form: \(a_{1}, a_{2}, \ldots, a_{n}\) : \(b\), then \(F(f)=f\left(a_{1}\right)+f\left(a_{2}\right)+\ldots+f\left(a_{n}\right)+f(b)\), with \(f\) defined by (2.2.1.), is the functionality degree of '.

We shall continue with:
\(\frac{P R O P O S I T I O N(2,3.3 .):}{\text { The system ILP ce is decidable. }}\)

\section*{Proof:}

Suppose that " is an arbitrary sequent. A procedure for constructing a complete proof search tree of ', such that its finiteness can easily be seen, is determined below:
(i) all distinct permutations (") of the antecedent types of " with the exception of identity are performed first;
(ii) all possible applications of both operational rules ant s-type contraction supposedly being the last
derivational step of :' are done next. However, each of the resulting successor nodes "' must still be checked out in the following way:
in case \(n_{b}\left(l^{\prime \prime}\right)>n_{f}(T)\), while , is not \(s{ }^{+1}\). the path containing '" must be stoped. Clearly. by lemma (2.3.1) that path has only been a failed attempt to find a proof tree of.
(iii) finally, all possible applications of t-type expansion looked at in the reverse order are performed.
However, a permutation (") will in the present proof freely be taken in its broader sense, thus collecting several successive applications of the previously given ILE ce permutation rule into a single derivational step.
The important thing in further construction of any path within a complete proof search tree is that successive applications of the permutation (N) are prohibited.
Consider the contrary case, where clearly several successive steps of permutation result in another specific permutation by which either one of the direct successors of \(\mathrm{i}^{\prime}\) or itself is produced again.
Hence, two sorts of nodes must be distinguished within such a tree as regards to their being obtained by permutation in the last derivational step or by some other ILP ce inference rule looked at in the reverse order. As to the former nodes one simply ignores part (i) of the strategy above, as to the
latter ones (i) as well as (ii) and (iji) must be performed, clearly both with respect to some specified node of a tree. To conclude that the system ILP is decidable it only remains to be seen that an \(I L P\) complete proof search tree of any fiven seguent constructed as prescribed above is Einite. Thus by the well-known K"nig"s lemma it suffices to verify that the following two properties are satisfied by the proof tree urder consideration:
(a) finite fork property

Holds srivially.
(b) finite branch (path) property

Suppose \({ }^{\text {is }}\) an arbitrary node of a complete prouf search tree of '" and let ', b' be any direct suceessor of ''a. By a straightforward verification the following essential feature of such a tree becomes available:
(*) \(F\left({ }^{\prime}{ }_{a}^{\prime}\right) \quad F\left({ }_{q}\right)\), with \(F\) being defined by (2.3.2.). Moreover, the strict inequality holds only in the case when the conection of 'a with '" is performed by one of the operationsl rules. And \(F\left({ }^{\prime \prime}\right)=F\left({ }_{a}^{\prime}\right)\) othermise.
(i) Making use of (*) an upper bound for the number of applications of operational mules within an entipe proof tree of !'is \(E\left(Y^{\prime}\right)\). To put it differently, there may be at most \(F(!')\) functional type elimanations from the antecedent or from the succedent of sequents that ocour in any proof tree of and hence a fortiori in each path of a complete proof search tree of ".
(ii) Obviously, only finitely many applications of t-type expansion looked at in the reverse order can be performed in in each path of a complete proof search tree of \(\overline{3}\).
(iii) By the above construction of a complete proof searoh tree of \({ }^{\prime \prime}\) successive applications of permutation within any of its paths are prohibited.
Finally, by the prescribed construction of the tree and (i), (ii) and (iji) above it follows that there are particular nodes of the tree below which no application of either opexational rules or t-type expansion ocours within a
relevant path. But then, due to the chosen tree corstruction only the following two possibilities remain for such a path:
either all of its nodes are connected by swype contraction or by permutation and s-type contraction in succession. However, by the condition of the lemma (2.3.1.) which has been built into the procedure itself any such path will be stopped after finitely many steps. More precisely, leting ' a be such a node \(n_{f}\left(!_{a}^{\prime \prime}\right)-n_{b}\left('_{a}^{\prime}\right)\) is the number of applications of s-type contraction, looked at in the reverse order, for the former as well as for the latter path.

Hence, every path ends up aiter a finite number of steps, either by an axion, or because none of the rules can ox may further be applied. And that completes the present proof. Thus a decision procedure for the ILP ce system has been established.
\[
Q . E . D .
\]

\section*{Remark:}

Obviously, the decidability of the systems ILce and \(I_{c}\) is shown by the above proof as well.

\section*{3. AUXILIARYSEGUENTIAL \\ CALCULUS AS}

In this section we shall introduce an auxiliary deductive system AS of sequents: \(a_{1}, \ldots, a_{n} \cdots b\) where \(a_{1}, \ldots a_{n}, b\) denote arbitrary elements of Types defined by (2.1.1.). Actually, the basic type s itself never occurs in an AS derivable sequent due to the restriction for the AS axiom scheme given below. And just by the latter fact a kind of one-sorted construction of a given auxiliary systern is indicated, providing for a natural transition to Montague intensional systems [12], discussed in section (6).
In what follows a presentation of the deductive system \(A S\) will be given:
```

 a x i om s:
 (1) a a, if a is not s;

```
rules of inference:
introduction of a functional type in the succedent
of a soquent
(2)
\[
\frac{a, T+b}{T-(a, b)} \quad\left\langle 2^{\prime}\right\rangle \frac{T, a \cdots \cdot b}{T-1(a, b)}
\]
introduction of a functional type in the antecedent of a sequent:
(3)

intensionalimation of a type in the succedent of a sequent:
(4)
\[
\frac{T \div a}{T \div(s, a)}
\]
constrained intensionalization of a type in the antecedent of a sequent:
\[
\begin{equation*}
\frac{U, a, 7: b}{u,(s, a), 7-b} \tag{5}
\end{equation*}
\]
provided that the occurrence of a type ( \(s, a\) ) produced by an application of (5) is transmitted to the succedent of a sequent by an application of either (2) or (2) within a proof tree of a given sequent.
In the above inference rules \(U, V, T\) are any finite sequences of types with the restriction that \(T\) is non-empty.

\section*{Remark:}

Note that (1), (2) and (3) above actually have the same form as their respective \(I_{c}\) counterparts. However, the restriction in \(A S\) (1) is inherited also by the next two AS inference rules. Thus no operation with a basio type s can be performed within the auxiliary system. Still iatensional liftings of arbitrary types can be made by rule (4) above. An analogy with the role of cap operator in Montague's one-sorted approach can thus easily be seen. Finally, by AS xule (5) a restricted effect of Montague's oup operator is achieved. That will become clear, further on, when the corresponding translation rule will be stated. However, note for example, that (s,e) 'e is not an AS derivable sequent due to the constraint in (5) above.
observation(3.1):

The deductive system \(A S\) is decidable.

Proof:
For each AS inference rule the following holds:
\(F\left(1_{p}\right)<E\left(1_{c}\right)\), in case of one-premise inference rule and \(F\left(y_{p_{1}}\right)+E\left(p_{p_{2}}\right)\left\langle F\left(\gamma_{c}^{\prime}\right)\right.\), in oase of two-premise inference rule, with \(E\) as in definition (2.3.2) and " \(\mathrm{p}^{\prime \prime}{ }^{\prime \prime} p_{1}{ }^{\prime}{ }^{\prime} p_{2}\) and ic denoting premise sequents and conclusion sequent respectively.
Clearly, by each of the above inference rules, if looked at in the reverse order, a special kind of functional type
elimination is defined. But the number of all possible functional type eliminations in any AS proof tree of some specified sequent \({ }^{\prime}\) is limited by \(F(1)\). And hence, using some of the arguments given in the proof of the proposition (2.3.3.) that are relevant for the system AS, it is easy to see that a complete prouf search tree of is finite. And that completes the present proof.
```

4. LAMBDA-TYPED SEMANTICS
4.1.General Frame
```

In what follows a semantic apparatus based on "-typed terms assigning the meaning to any given \(A S\) or \(I_{c}\) derivation of a sequent will be introduced. Note that a change of terminology is present above: " derivation " will from now on usually stand for " proof tree", the latter term being somewhat characteristic for purely syntactic contexts. In this subsection a general frame of the lambda-typed semantios comon to both systems will be given.

To start with the set of :-typed terms : inductively defined as follows:

DEFTNTTION (4.1,1.):
(1) Firstly the primitive symbols are determined:
(i) For each a, element of Types, there is a denumerable
list of variables: va, va...
(ii) For each a, element of Types, there is a denumerable list of constants: \(c_{a}, c_{a},\).
(iii) The improper symbols are: the abstractor and parentheses (,).
(2) A recursive characteriation of the set a of -typed terms of an arbitrary a, element of Types, will be given next:
(i) \(x_{a}\) a
(ii) \(c_{a} \cdot a\)
(iii) If \(t_{(a, b)}{ }^{\prime}(a, b)\) and \(t_{a}\) ' \(a\), then \(t_{(a, b)}{ }^{\left(t_{a}\right){ }^{\prime}}{ }_{b}\)
(iv) If \(t_{b}\) ' \({ }^{\prime} b\), then \(x_{a} t_{b}(a, b)\)
(v) a is the smallest set satisfyine clauses (i) to (iv);
(3) The set of all - typed terms is U\{a; a Types\}.

\section*{Remark:}

Thronghout (1), (2) and (3) above the set Types is given by definition (2.1.1.) with the following intended interpretation:

Let \(D\) and I be any non-empty sets. The denotational domains Da are defined ty induction on a Types as follows:
\(D_{e}=D, D_{t}=\{n, 1\}, D_{s}=I\) and \(D_{(a, b)}=D_{b}^{D}\) a, the latter representing all set theoretic functions from \(D_{a}\) to \(D_{b}\) To continue with:
Notation:
(i) \(x_{a}, y_{a}, z_{a} \ldots\) denote arbitrary variables of type \(a\).
(ii) \(c_{a}, d_{a}, e_{a}\)...denote arbitrary constants of type \(a\).
(iii) ta, \(t^{\prime}\) a, \(t^{\prime}\) a,... denote arbitrary terms of type \(a\).
(iv) denotes syntactic equality between - -typed terms.
(v) \(t_{a}\left[x_{b}:=t_{b}\right]\) and \(t_{a}\left[c_{b}:=t_{b}\right]\) denote the substitution of a --typed term \(t_{b}\) for \(x_{b}\) and \(c_{b}\) respectively in a given -typed term \(t_{a}\), where \(a\) and \(b\) are any elements of Types.

Moreover, the following convention will respected in subseguent sections: -typed terms are considered to be syntactically equal if they are convertible into each other by means of \(=-\) conversion, as defined in Barendregt [1]:

Convention (4.1.2.):
Let \(t_{a}{ }^{\prime \prime}{ }_{a}\). Then \(t_{a}: t^{\prime}{ }_{a}\), provided that \(t_{a}{ }_{a}\) results from \(t_{a}\) by a series of changes of bound variables in \(t\) a resulting from the replacement of a part \(x_{b} t_{c}\) of \(t_{a}\) by \(y_{b}\left(t_{c}\left[x_{b}:=y_{b}\right]\right)\), where \(y_{b}\) does not occur in \(t_{c}\).

So far, the main prerequisites for an exposition of the lambda-typed semantics have been worked out.
4.2.Type Dxiyen Transiations
with
xespect
t O AS
and ILe

In this subsection a method for assigning a type-driven translation to a partioular AS or ILCo derivation of some specified sequent will be presented. The construction of a final "-typed term of any type-driven translation is obtained by applying a relevant translation rule to each inference rule of a given derivation in its turn.
Now, the translation rules are introduced inductively as follows:
I. With respect to an AS deruration:
axioms
(1) a \(\cdots\), if a is not \(s\);
are to be translated into:
\({ }^{\circ}\);
rules of inference
introduction of a functional type in the succeuent of a sequent:
(2)
\[
\frac{a, T \quad b}{T} \cdot(a, b)
\]
(2') \(\frac{T, 2}{T}(a, b)\)
both are to be translated into:
\(x_{a} t_{b}\left[0_{a}:=x_{a}\right]\); Where \(x_{a}\) does not cocur in the term \(t_{b}\) that corresponds to both: \(a, T\) " \(b\) and \(T, a \cdots \cdots\).
introduction of a functional type in the antecedent of a sequent:
(3)

both are to be translated into:
\(\left.t_{d}\left[c_{b}:=c_{(a, b)}{ }^{(t,}\right)\right]\); where \(c_{(a, b)}\) does not acour in the terns \(t_{\text {a }}\) and \(t_{d}\) which corvespond to \(T\), and \(u, b, V\), d respectively.
intensionalization of a type in the succedent of a sequent:
(4)
\[
\frac{T: a}{T-(s, a)}
\]
is to be translated into:
\[
x_{s} t_{a} \text {, where } t_{a} \text { corresponds to } T \cdots a .
\]
constraint intensionalization of a type in the antecedent of a sequent:
(5)
\[
\frac{U, a, V \cdots b}{U,(s, a), V}, b
\]
is to be translated into:
\(t_{b}\left[c_{a}:=0(s, a)\left(x_{s}\right)\right]\); where \(o_{(s, a)}\) does not ocour in the term \(t_{b}\) that corresponds to \(U, a, V \quad b\).
Taking into account also the constraint on the AS rule (5)
the full impact of the translation rule becomes the following: in the course of a given type-driven translation the constant o is substituted by \(x_{(s, a)}\left(x_{s}\right)\); the ocourrence of \(x_{( }(5, a)\) being bound in the corresponding -typed term.

\section*{Comments:}
(i) The precise form of the translation rule (3) would be as
 slight modification of rule (2) above would also be caused. Clearly, then constants within a final -typed term of a type-driven translation that corresponds to a given AS derivation would occur in precisely the same order as antecedent types of the endsequent under consideration. However, we are not primarily interested in this special feature but rather in a comparison of the systems \(A S\) and \(I L_{c}\) via their semanties. And in order to make it equivalent but simeier the normal form of the above term must be taken for the translation rule (3).
(ii) By the translation rule (4) empty abstractions over \(x_{s}\) can be performed.
(iii) The total of translation rule (5) provides for an auxiliary occurrence of \(x_{5}\) within a bound variable of an intensionally lifted type. In Montague's terminology an
extensional operator restricted to the domain of bound variables becomes available by (5).

Next, to better formulate the Ty 2 translation rule which is obligatorily applied as the last step of any As type-driven translation if its final - -typed term is to be represented in the \(T y_{2}\) form the following fact must be proved:

Fect (4.2.1.):
The final -typed term of a type-driven translation that corresponds to an AS dexivation with an endsequent ", having the form: \(a_{1}, a_{2}, \ldots, a_{n} \cdot b\), is always of the type prescribed by the succedent of ' and, moreover it is definable by means of distinct constants of each of the types occurring in the antecedent of "".
Hence, it can be denoted by: \(t_{b}\left(c_{a_{1}}, c_{a_{2}}, \ldots, c_{a_{n}}\right)\).

\section*{Proof:}

By induction on the size of an AS derivation and the construction of AS translation rules.

Actually an expanded version of the above fact could easily be justified comprising also a kind of an inverse statement to the one just given:
Suppose \(t_{b}\left(c_{a_{1}}, c_{a_{2}}, \ldots, c_{a_{n}}\right)\) is a final -typed term of a given type-driven translation that corresponds to an AS derivation then the endsequent of the latter is up to perautation of antecedent types uniquely determined to be: \(a_{1}, a_{2}, \ldots, a_{n}+b\).

\section*{Remark:}

Clearly, uniqueness for the above cases respecting also the order of antecedent types and constants in \(a_{1}, a_{2}, \ldots, a_{n}, b\) and \(t_{b}\left(c_{a_{1}}, c_{a_{2}}, \ldots, o_{a_{n}}\right)\) respectively would result from the preoise form for the translation rule (3) as given in comment (i).

To continue with:

Ty trianslation rule:
For each \(\left.i \cdot\{1,2, \ldots, n\}, t_{b}\left[c_{a_{i}}:=c_{\left(s, a_{i}\right.}\right)\left(x_{s}\right)\right]\), where \(t_{b}\left(c_{a_{1}}, c_{a_{2}}, \ldots, c_{a_{n}}\right)\) is the final ..typed term of an AS type-driven translation.

Remark:
Clearly, hy the above rule, also referred to as Gallination, an intensional setting for any \(A S\) typed-term is achieved. To put it differently, an implicit reference to indices, characteristic for a one-sorted approach, has thus become explicit, imposed by the relevant terms chemselves.
Moreover, an additional postulate must be stated still:

\section*{Postulate:}

The rules (4), (5) as well as Ty 2 translation rule must refer to the same distinguished variable \(x_{s}\) in the course of a particular type-driven translation.

Remarks:
Clearly, in \(\left.t_{b} c_{\left(s, a_{1}\right)}{ }^{\left(x_{s}\right)}, \ldots, c_{\left(s, a_{n}\right)}\left(x_{s}\right)\right)\) the distinguished variable \(x_{s}\) may occur free or bound, depending on a given AS derivation to which a type-driven translation is effectively assigned. Furthermore, a vacuous binding over \(x_{s}\) may still occux within a given A-typed tern after the \(T_{2}\) translation rule has been applied to it. An example illustrating the latter claim will be given in section (5).

Finally, we present the translation rules
II. with respect to an \(I L_{c}\) derivation;
however only the new cases, i.e. those involved with a variable \(x_{s}\), are treated below, with the corresponding \(I_{c}\) axioms and inference rules being left out as well:
(1) When a is \(\mathrm{B}: \mathrm{x}_{5}\)
(2) and (2') when a is s:
\(x_{s} t_{b}\left(x_{g}\right)\); \(t_{b}\) being the corresponding, -typed term of the sequents \(s, T \cdots b\) and \(T, S \cdots \cdot b\).
(3) and (3') when b is s;
\(t_{d}\left[x_{s}:=o_{(a, s)}\left(t_{a}\right)\right]\) : where \(o_{(a, s)}\) does not oocur in the terms \(t_{a}\) and \(t_{d}\) which correspond to \(T\) a and U,b,V , d respectively.
(5) identification of the relevant ocurrences of s-type vamiables.

\section*{Comments:}

No Wacuous binding can be produced by the \(I_{0}\) translation rules. In short, the \(\mathrm{IL}_{\mathrm{c}}\) fragment can be viewed as the ordinary L-fragment aith one liberalization being a consequence of s-type contraction, namely: by - abstraction also more than one occurrence of \(x_{5}\) can be bound simultaneously.

Finally, since the stronger system \(\operatorname{ILP}\) ce will not be used in applications. later on the intended translation rules for pemmataion and t-type expansion will briefly be hinted at. for the sake of generality. By the former one a term, assigned to the premise sequent of the permutation rule, should simply be preserved. By the latter one, however, a free Boolean conjuotion of spacific t-type torms is introduced into the tern that corresponds to the premise sequent of t-type expansion. More precisely:
\[
\begin{aligned}
& \frac{U_{1} Q_{1} t, V}{u, t, R, t, V}-\frac{a}{a} \\
& \text { is to betranslated into: } \\
& t_{i}\left[c_{t}:=\left(t_{t}, e_{t}\right)\right],
\end{aligned}
\]
where \(d_{t}\) and \(e_{t}\) do not occur in the term \(t_{a}\) whoh comerponds to U,R,t,V a.
4.3.AS Semantios

As was shown above, to any AS derivation a type-driven translation can be assigned. A final -typed term of the latter is due to the construction of AS translation rules a well defined \(T_{2} y_{2}\) term, provided that the Ty 2 translation rule has been performed. In order to determine which fragment of Ty, the AS -typed terms after Gallination live in, Gallin's idea of translating one-sorted IL terms into two-sorted ones is borrowed [5]. Therefore, his Translation Scheme will be presented fixst:
for each IL term \(t_{b}\) the translate of \(t_{b}\), denoted by \(\left[t_{b}\right]\), is defined as follows:
(i)
\[
\begin{gather*}
{\left[x_{a}^{n}\right]=x_{a}^{n} ;} \\
{\left[c_{a}^{n}\right]=c^{n}(s, a)^{\left(x_{s}\right)} ;}  \tag{ii}\\
{\left[t_{(a, b)}^{\left.\left.\left.\left(t_{a}\right)\right)\right]^{\prime}=\left[t_{(a, b)^{\prime}}\right]^{\prime}\left[t_{a}\right]^{\prime \prime}\right)}\right.} \tag{iii}
\end{gather*}
\]
(iv)
\[
\left[x_{a} t_{b}\right]=x_{a}\left[t_{b}\right] ;
\]
(v)
\[
\left[t_{a}\right]^{\prime}=x_{s}\left[t_{a}\right]
\]
(vi)
\[
\left[t_{(s, a)}\right]=\left[t_{(s, a)}\right]^{\prime \prime}\left(x_{s}\right) ;
\]

Remark:
The constants of \(\left[t_{a}\right]^{*}\) are the constants \(c_{(s, b)}^{n}\left(x_{s}\right)\) such that \(c_{b}^{n}\) occurs in \(t_{a}\). Clearly, the main distinction between the one-sorted and the two-sorted representation of IL terms arises from the fact that a variable of the basic type \(s\) becomes available in the latter case. Thus any application of an intensional and an extensional operator is simply reduced to a \(\alpha\)-abstraction and a functional application over \(x_{s}\) respectively. The essential translation step is actually the substitution of any IL constant by its proper \(T y_{2}\) form given inductively on the construction of IL terms as in (ii) to (vi) above.

And that is precisely what the translation rule \(T y_{2}\) does within a final -typed term of a given type-driven translation.

Further analogies between Gallin's translation scheme and AS - -typed terms in their intensional setting are pointed out below.
Since \(A S\) rule (4) has the role of an intensional operator, the form of its translation rule has been suggested by ( \(v\) ) above. However, note that \(x_{s} x_{a}\) can not be a final -typed term of any AS derivation.
Further, AS rule (5) has the role of a restricted extensional operator. The form of its translation rule is thus determined by analogy with (vi) above, suitably restricted to the domain of bound variables.
```

5. RELATIONS BETWEEN AS and ILO
```

The main aim of this section is to clarify a relationship between the systems \(A S\) and \(I L_{c}\) making use of their syntactic as well as semantic features.

First of all note, that neither of them is a subsystem of the other.

Clearly the \(I_{c}\) axiom \(s \cdots s\) is not derivable in \(A S\), while the simple \(A S\) theorem \(e{ }^{-}(s, e)\) can not be deduced from \(L_{c}\) rules. Ant that is a trivial consequence of the one-sorted and the tro-sorted construction of \(A S\) and \(I L_{c}\) respectively. However, a useful correspondence between the two systems can be stated with respect to their semantic overlap. The latter being available after the final lallination, i.e. the \(\mathrm{Ty}_{2}\) translation rule, has been pexformed for each AS a typed term, obtained by the above translation procedure. It is easy to see that neither the AS fragment is contained in the \(I_{0}\) fragment nor vice ver ab. That fact is justified by the following two counter examples:
```

(1) AS: Ty rule: $x_{a}^{c}(s,((s, a), b))^{\left(x_{s}\right)\left({ }^{c} x_{s} x_{a}\right)}$
$((s, a), b) \cdots(a, b) \quad \therefore x_{a}^{c}((s, a), b)\left(x_{s} x_{a}\right)$
$a,((s, a), b) \cdots b \quad{ }^{c}((s, a), b)^{\left(i x_{s} c_{a}\right)}$
$a:(s, a) \quad b \cdots b$
a. … a

```
\("_{s} c_{a} \quad c_{b}\) \({ }^{c}\) a
since there is an irreducible vacuous binding over \(x_{5}\) within the above - typed term the latter can not belong to the IL \(C\) fragment.
(2) \(I L_{0}\)
```

 \(s:((s, a), a) \quad: x_{(s, a)^{x}(s, a)^{\left(x_{s}\right)}}^{(s, a), s}\)
 (\(5, a), 5\) … a
 s \quad. \quad a $\because a$
${ }_{x_{s}}^{c}(s, a)^{\left(x_{s}\right)}{ }_{a}^{c}$

```
obviously, a constant-free -typed term can not belong to the AS fragment, since such a term could only be assigned to an endsequent with an empty antecedent, which is not AS derivable.

Note also, that by the \(I L_{c}\) apparatus a restricted extensional operator can, in fact, be represented explicitly by the above derived \(x\)-typed term: \({ }^{x}(s, a)^{x}(s, a)^{\left(x_{s}\right)}\).

In what follows a more sophisticated comparison of both systems will be achieved based on the intersection of the \(A S\) fragment after Gallination and the IL fragment. Briefiy, a correspondence between those AS and \(I_{c}\) dexivations that can semantically be represented by the same -typed term will be stated. Formally speaking, a partial transformation from equivalence classes of AS derivations to equivalence classes of \(I L_{c}\) derivations will be introduced; the relevant equivalence relations \(R_{A S}\) and \(R_{I L}\) defined on \(A S\) and \(I L_{0}\) derivations of sequents respectively being induced by the equality of final -typed terms assigned to any given \(A S\) and ILe derivations respectively.
The definitions of some of the above discussed notions will be introduced below. To begin with the following Notation:
Any \(A S\) or \(I L_{c}\) derivation d being given (d) denotes a final
-typed term in Ty form of the type-driven translation corresponding to \(d\).

DEFTNITION (5.1):
\(d_{1} B_{A S} d_{2}\) if \(:\left(d_{1}\right)=\left(d_{2}\right)\), where for each \(i\{1,2\} d_{i}\) is a given \(A S\) derivation \(d_{i}\).

DEFINITION (5.2):
\(d_{1} R_{I L} d_{2}\) if \(\left(d_{1}\right)=\left(d_{2}\right\}\), where for each it \(\{1,2\} d_{i}\) is a Eiven \(1 L_{c}\) dexivation.

Notation:
\([d]_{A S}\) and \([d]_{\text {IL }}\) denote equivalence classes corresponding to \(\mathbb{R}_{A S}(d e f .5 .1)\) and \(\mathbb{R}_{\text {IL }}(d e f .5 .2)\) respectively.

\section*{DEFTMTTION (5.3);}

T is a paxtial transformation with
domain: \{AS derivations of sequents \(\} / R_{A S}\) and
codomain: \(\left\{I L_{c}\right.\) dexivations of sequents\}/R \(R_{\text {I }}\)
Suppose d is an AS derivation of some specified sequent.
Then \(T\left([d]_{A S}\right)=\left[d^{\prime}\right]_{I L}\). provided that:
1. \(\left(d^{\prime}\right)=\) ( \((d)\);
if there is no such \(L_{e}\) derivation, then \(T\) is undefined in \([d]_{A S}\).

\section*{Comments:}

Clearly \(T\) is well-defined. Note also that by the
first counter-example above the partiality of \(T\) is justified while by the second one its non-surjectivity is pointed out. Let us proceed with the following important proposition adding a constructive part to the definition of \(T\) :
\(F R O P O S I T I O N(5.4):\)
Let \(d\) be an \(A S\) derivation with the endsequent \(a_{1}, \ldots, a_{n}\) " \(b\). Then \(T\) is defined in [d] AS if and only if precisely one of the following sequents up to permutation of antecedent types:
```

(1) $\left(s, a_{1}\right), \ldots,\left(s, a_{n}\right) \quad . b$,
(2) $s,\left(s, a_{1}\right), \ldots,\left(s, a_{n}\right) \quad \because b$,
is the endsequent of an IL ${ }_{c}$ derivation d, such that:

$$
\left(d^{\prime}\right)=(d)
$$

```
with (1) applying in case no occurrence of \(x_{s}\) in (d) is free and (2) otherwise.

Proof:
( )
Suppose \(T\) is detined in [d] AS. Then by definition (5.3.) there is an \(I L_{c}\) derivation \(d^{\prime}\) such that \(r\left(d^{\prime}\right)=U(d)\).
Now, only the endsequent of d" remains to be checked, making use of the fact (4.2.1.) together with the final Gallination step ' (d), and hence \(Y(d\) '), can be rewritten as:
\(t_{b}\left(c_{\left(s, a_{1}\right)}{ }^{\left.\left.\left(x_{s}\right), \ldots, c_{\left(s, a_{n}\right.}\right)^{\left(x_{s}\right)}\right) \text {. By the latter term, using }}\right.\)
induction on the size of an \(L_{0}\) derivation and the construction of the ILe translation rules the succedent of the endseguent is uniquely determined to be b, while its antecedent is determined uniquely up to permutation of the types \(\left(s, a_{1}\right), \ldots,\left(s, a_{n}\right)\) and at most one basic type \(s\). Clearly, the latter being transmitted to a succedent when all s-type variables occur hound in the final -typed inrm: \(t_{b}\left(o_{\left(s, a_{1}\right.}\right)^{\left.\left(x_{s}\right), \ldots, c_{\left(s, a_{n}\right.}\right)^{\left(x_{s}\right)} \text {. On the other hand, any free }}\) ocourrence of sttype vaxiable corxesponds to an ocourrence of the basic type s in the antecedent of a relevant sequent In our case, however, contraction is obligatory as a direct consequence of the Postulate imposed on some As translation rules. Thus, more than one basie s type in the antecedent of an endsequent would be in contradiction with the fact that there is a single distinguished variable \(x_{s}\) in rb(d). Hence, depending on the behaviour of \(x_{s}\) in \(b(d)\) precisely one of the sequents stated in (1) and (2) up to permutation of antecedent types is the endsequent of \(d\). And that was to be groved.
( )
Holds true by definition (5.3.).
Q.E.D.

And finally, using the last proposition some more examples establishing a corresponding IL \({ }_{c}\) derivation, if it exists, to a given AS derivation are displayed below:
(1) an AS single axion derivation a a corresponds to the followine \(T L_{c}\) derivation:
\(\qquad\)
\(\mathrm{s} \quad \mathrm{a}\) a a
obviously having the same final -typed term in Ty \({ }_{2}\) form:
\[
o_{\left.(s, a)^{\left(x_{s}\right)}\right)}
\]
(2) the AS derivation: a \(\cdot a\)
\[
a \quad(5, b)
\]
corresponds to the \(L_{\mathrm{C}}\) derivation given below;

agair with the same final -typed term in Ty form:
\[
\because x_{s}^{c}(s, a)\left(x_{s}\right) .
\]
(3) however, the AS derivation:
\[
\frac{\frac{a \cdot a}{a \cdot(s, a)}}{a \cdot(s,(s, a))}
\]
with its final -typed term: \({ }^{-x_{s}}{ }^{\prime} x_{s}{ }^{c}(s, a)\left(x_{s}\right)\), does not have a corresponding \(I L_{c}\) derivation at all. The reason being the vacuous binding over \(x_{g}\) in the final
-typed term above which can not be produced by \(I_{c}\) translation rules.
Let us conclude this part by a remark that a suitable restriction of the transformation \(T\) (def. 5.3.) as well as a restricted version of the last proposition will be used in an application discussed next.

> B.APELICATIONS OFIMC TOMONTAGURGGRAMMAR

It is well-known that in PTQ Montague defined a recursive correspondence between categories of English and IL-types. Thus, all expressions of a given category are assigned the same semantic type which uniquely determines the corxesponding denotational domain. However, the proper semantic description of elements of a given category is essentially dependent on the degree of intensionality that a certain expression might convey. Taking as an example the category of transitive verbs one can easily distinguish among basically extensional elements and non-basically extensional ones such as "find" and "seek". While the latter can be interpreted "de re" or "de dicto", only the first interpretation is adeguate for the former verb. Thus a fine structure concerning the intended dose of intensionality of specific expressions is imposed on every category and has to be taken into account in oxder to obtain an adequate interpretation. Montague soxved the problem by the introduction of meaning postulates into his semantic frame. Since their use is somewhat round-about, an alternative dynamic approsch will be proposed here based on type derivations and meanings assigned to them. Before going into details the general strategy to be pursued in this section is given.
First of all. Montague's Meaning Postulates as well as some other relevant aspects of PTQ [12] will be presented with their proposed analysis in the system AS and its semantics. One of the main reasons for the auxiliary system to have been constructed in a one-soxted perspective is just to provide a natural transition to Montague's intensional system.
Further on, it will be shom how the system \(1 L_{0}\) with its semantios can be applied to Montague Gramar achieving the same results as the auxiliary system AS before. The last staterent wiJl Rormally be proved by making use of a
suilahle restriction of the partial transformation \(T\)
(det.5.3.) as Well as a restrioted version of the proposition (5.4.). Finslly, some relevant examples analyzed by the ILc apparatus will be displayed.
Starting from PTG let any linguistic uategory be assigned the tyoe produced by the well-known reoursive vorresporidenew:

UTEINITION (6.1)

> h: Cat Types, Euch that
\(h(e)=e, h(t)=t, h(B / A)=h, B / / A)=((s, h(A)), h(B))\)

We continue with an exposition of Montague s

\section*{Meaning postulates}

MP 1:
\[
u:[u=\cdots]
\]

Where : translates any entity expression;
MP 2:
\(H[(x) \quad-\quad \operatorname{lu}[x=u]]\),
where t translates any basically extensional membex of \(\mathrm{B}_{\mathrm{CN}}\).
MP 3: \(\quad \operatorname{Max}[(x) \therefore M\{x\}]\),
where \(\therefore\) translates any basically extensional member of \(B_{I V}\)
\(\operatorname{MP} 4: \quad S \pi x: \because(x, P) \cdots P\{: y S\{x, y\}\}]\),
where translates any basically extensional member of \(B_{T V}\).
MP 5: \(\quad \operatorname{MN} x[\therefore(x, P) \cdots M\{x\}]\),
where ; translates any non basically extensional membex of
\(\mathrm{B}_{\mathrm{TV}}\).
MP 6:

Where ' translates any member of \(B_{I V / t}\).
MP \(7:\)
\(\operatorname{RIM} \operatorname{IX}[\therefore(x, R) \cdots M\{x\}]\),
Where \(n\) translates any member of \(\mathrm{B}_{\mathrm{IV} / / \mathrm{IV}}\)
MP 8- \(\because G P G A X[\because(P)(Q)(x) \quad P\{A y[[[G](\because y)(Q)(x)]\}]\), where \(\rightarrow\) translates any basically extensional member OE \(\mathrm{B}_{\mathrm{IAV} / \mathrm{T}}\).

Throughout the above exposition of the meaning postulates the following convention is used:

Variables that ocour in the MP's are or the types:
\[
\begin{aligned}
& \text { u } \\
& x: y \\
& \text { a }
\end{aligned}
\]
G

The beace convention "\{,..\}" indicates an introduction of "'" immediately in front of the predicate to whioh the brace convention has been applied.

Remaxk:
Montague uses his meaning postulates to restriet the universe of all models to just the admissible ones, so that the lexical items of certain categories can be interpreted in an adequate way.

Clearly a discrepancy betwen an intanded semantic domain of a lexical item and the one that is recursively assigned to It arises from the definition (6.1), where a xecursive comesponsence between Iinguistic categories and types is defined so as to treat adequately the most intensional expressions of each vategory. As has almeady been mentionet the approach suggested hexe will be a dyramic one. Oux proposal is the following:

For an ambituary basie pxpression \(x\) of any bategory listed in the abovementionmy postulates there is an As derivation of the sequent: ptix) h(i). in such a way that the extension of the courespunding final -typed term 15 Whention with the Froper extenstion of \(x\). That - typed term is to be taken as the gatring of the proper extension of a lexionl item \(x\) appeaming in the MP under ansidenation. Hepe "ptix)" denotes the proper type (determined by the relsvant MP except for lexical items of IAV T) that
```

indicates the adequate denotational domain of a given expression x and h is defined by (B.1).

```

\section*{Remark:}

To be precise, the above mentioned --typed term is a final term of a type-driven translation that corresponds to a given AS derivation. But for the sake of brevity, the shortened form, as presented above, will be used from now on. Moreover, note that the given proposal is equally vild for obtaining an adequate interpretation of any other expression: not only the ones involved in the above MP's.
Let us add a further comment. Clearly the final a-typed term corresponding to an AS derivation, in this case to an intensional lifting pt(x) \(\rightarrow \mathrm{h}(\mathrm{C})\), is by fact (4.2.1.) of the comon categorial type \(h(C)\) but is essentially definable in terms of the basic constant of the type pt(x), called the initial carrier of \(x\). Thus, the above mentioned -typed term becomes the carrier of an adequate interpretation of \(x\). Hence, on the old base of a recursive correspondence between aategories and types the flexibility of interpretation within each category is achieved by making use of the system AS and its semantic apparatus.
Before implementing the above proposal, note that a particular intensional lifting \(p t(x)\).... h(C) may have more semantically distinct derivations. However, the number of such possible distinct readings still remains to be determined.

Now, two main kinds of extensionality of expressions will be treated below, namely those two that the meaning postulates are involved with :
1.extensionality with respect to argument position in genexal.
2.extensional first-order definability (full or partial).

The necessity to define the former originates from the uniform correspondence between categories and types constructed in an intensional perspective. Thus an element
of category \(B / A\) is translated into the corresponding IL term of type ( \((s, h(A)), h(B)\) ) which is fit to operate on the dual of some term of type \(h(A)\). But this should only be the case when the initial expression of category \(B / A\) creates an opaque conext or else its extension has already an intensional conceptual structure. Thus the remainder of the elements of category B/A must actually be treated as beıng of type (h(A), h(B)). Montague solved this semantic discrepancy by means of meaning postulates (3), (5), (6) and (7) presented above.

In this case a final -typed term assigned to a specific AS derivation of the sequent:
\[
(h(A), h(B)) \quad((s, h(A)), h(B))
\]
will be taken as the carrier of the proper extension of any expression which should essentiolly have a semantic type (h(A), h(B)). In working out the above case a more familiar notation for types is used, whth a and b standing for \(h(A)\) and \(h(B)\) respectively.
Staring with an \(A S\) derivation of the sequent:
\[
\begin{aligned}
& (a, b) \quad((s, a), b) \\
& (a, b),(s, a) \cdot b
\end{aligned}
\]
(s,a) a b b (3)
a a

The corresponding typo-driven translation becomes:
\[
\begin{aligned}
& \left.{ }^{x_{(s, a}}{ }^{c}(s,(a, b))^{\left(x_{s}\right)}{ }^{\left(x_{(s, a}\right.}(s, a)_{s}{ }^{\prime}\right) \\
& \cdot^{\left.x_{(s, a)}^{c}(a, b)^{(x}(s, a)^{\left.\left(x_{s}\right)\right)}\right)} \\
& { }^{0}(a, b)^{(1)}(s, a)^{\left.\left(x_{s}\right)\right)} \\
& c_{(5, a)}{ }^{\left(x_{s}\right)} \quad v_{b} \\
& \mathrm{c}_{\mathrm{a}}
\end{aligned}
\]

\section*{Comment:}

The above final -typed term is clearly of common categorial type ( \((s, a), b\rangle\) but is essentially definable in terms of the basic constant of type \((a, b)\). being already represented in its Ty \({ }_{2}\) form. Thus extensionality of argument position is preserved:
\[
\begin{aligned}
& \therefore c_{\left.(s,(a, b))^{\left(x_{s}\right)\left(c_{(s, a}\right)}{ }_{\left(x_{s}\right)}\right) \text {. } . ~ . ~ . ~}^{(s, a)}
\end{aligned}
\]

What this shows is that the modally closed term of type \((s, a)\), umely \(y_{s} c_{(s, a)}{ }^{\left(y_{s}\right)}\), is clearly extensionalized after the second i-conversion has been carried out. Using montagovian terminology: "down-up cancellation" of the argument is performed, Clearly, an analogous reasoning can be used fur any intensional constant of type (s,a) occurring as the argument in the last example.
 just a special case of the above final -typed term, namely the oarrier of proper extensions of basically extensional elements of the category IV. Postulates (5), (6) and (7) require the so-called subject extensionality refexring to non-basically extensional elements of TV as well as to arbitrary expressions of IV/t and IV//IV. Now, the genexal case which makes it possible to avoid the three postulates mentioned above will be derived at length.

To begin with an AS derivation of the sequent:
\[
\begin{align*}
& (A,(e, t)) \cdots(A,((s, e), t)) \\
& (A,(e, t)), A \quad \because((s, e), t) \quad\left(2^{\prime}\right) \\
& \text { A .... A } \\
& (e, t) \cdots((s, e), t)) \\
& (s, e),(e, t) \text { it (2) } \\
& e,(e, t) \cdots+t \tag{5}
\end{align*}
\]
e . e
t .. . t

The corresponding type-driven translation is presented below:
\[
\begin{aligned}
& \left.{ }^{*} x_{A} x_{(s, e}\right)^{c}(A,(e, t))^{\left(x_{A}\right)\left(x_{(s, e}\right.}{ }^{\left.\left(x_{S}\right)\right)} \\
& x_{(s, e)^{c}(A,(e, t))^{\left(c_{A}\right)\left(x_{(s, e}\right.}{ }^{\left.\left(x_{s}\right)\right)}, ~}^{(s, e)} \\
& c_{A} \\
& { }^{*} x_{\left.(s, e)^{c}(e, t)^{(x}(s, e)^{\left(x_{s}\right)}\right)}^{(e)} \\
& { }^{c}(e, t)^{(0}(s, e)^{\left.\left(X_{s}\right)\right)} \\
& c_{(e, t)}\left(e_{e}\right) \\
& c_{e}
\end{aligned}
\]

Obviously the subject position in question is extensionalized: which was to be achieved.
Thus taking (s, ( \(s,((s, e), t)), t)),(s, t)\) and \((s,((s, e), t))\) for A successively in the above final - -typed term the corresponding carriers for proper extensions of basio expressions listed in the three postulates are obtained.

The second kind of extensionality axises from so-called extensional first-order reducibility. It involves expressions of an intensional higher-order semantic type recursively assigned to a given category but with an intended interpretation that is fully or partially extensional first order. In particular this holds for extensional elements of the categories TV and IAV/T respectively. Thus the translation of such an expression is definable in cerms of:
(i) a fully extensional first-order -typed term
(ii) a partially extensionalized "-texm of a reduced order,
the former and the latter being the initial oarrier of an adequate interpretation of an extensional TV and IAV/T expression respectively.
Thus a fully extensional interpretation will be indnced to basically extensional ty elements by using our dynamio strategy as follows:
An An derjvation of the sequent determined by MP (4) is given below:
```

 (e, (e,t)) , ((s, ((s, ((s,e),t)),t)),((s,e),t))
 \((s,((s,((s, e), t)), t)),(e,(e, t)) \quad((s, e), t)(2)\)
 \(((s,((s, e), t)), t),(\theta,(e, t)),((s, e), t)(5)\)
 \(((s,((s, e), t)), t),(e,(e, t)),(s, e), t \quad\) (2')
 \((e,(e, t)),(s, e) \quad(s,((s, e), t)) \quad t \quad t \quad\left(3^{\prime}\right)\)
 (e, (e,t)),(s,e) . ((s,e),t) (4)
 \((s, e),(e,(\theta, t)),(s, e) \cdot t \quad(2)\)
 \(\theta,(e,(e, t)),(s, e)\) (\(t\) (5)
 \(e,(e,(e, t)), e\), \(t\))
 e e (e,t),e : t (3)
e e e . t (3)

```

The final "-typed term corresponding to the above AS derivation is the following:
\[
\begin{aligned}
& \left.{ }^{y}(s, e)^{\left.\left(x_{s}\right)\right)}\right),
\end{aligned}
\]

Where the type \((s,((s,((s, e), t)), t)\) is abbreviated with a

\section*{Comment:}

As expected, the above -texm is of the prescribed higher-order type common to the entire category TV. But on the other hand it is constructed in terms of a fully extensional first-order constant of the proper type (e, (e,t)), again being represented in its Ty form. Moreover, observe that the --typed term of our proposal is analogous to the Montagovian \(I L\) term: "P \(x P\{y S(* x, y y)\}\) derived in accordance with postulate (4) by double -abstravtion.

To sum up: a translation of any basically extensional lexical item of category TV is always definable in terms of
 lexical item as the initial carrier of its fully extensional intended interpretation.

To better grasp the above olaim an exposition of the determination of a partioular Ty formula, the carrier of the intenced "de re" (refexential) reading of the sentence "John eeeks a unicom"; will be given next. Wote thet in our approach the quantification rule (T14) can simply be replaced by the proper functional application rule. Here the translation procedure is displayed:
\(a \quad \therefore \quad Q P\left(x\left[Q\left(x_{S}\right)(x) P\left(x_{s}\right)(x)\right]\right.\)
unicorn \(\left.\quad y_{(s,},(e, t)\right)^{\left(x_{S}\right)\left(y\left(x_{S}\right)\right)}\)
a unicomn \(\cdots \cdot \therefore P\) ix[ \(\left.c_{(s,}(e, t)\right)^{\left.\left(x_{S}\right)\left(x\left(x_{S}\right)\right) A P\left(x_{S}\right)(x)\right]}\)
seek \(\left.\because \cdot \operatorname{R} \cdot y R\left(x_{S}\right)\left(\therefore x_{s} \cdot z c_{s},(e,(e, t))\right)\left(x_{S}\right)\left(z\left(x_{S}\right)\right)\left(y\left(x_{S}\right)\right)\right)\)
seek a unicorn

```

 \({ }^{c}(s,(e,(e, t)))^{\left.\left(x_{S}\right)\left(x\left(x_{5}\right)\right)\left(y\left(x_{S}\right)\right)\right]}\)
    ```
John \(\cdot \cdot: \quad \operatorname{QQ}\left(x_{5}\right)\left(x_{5}^{c}(s, e)^{\left(x_{5}\right)}\right)\)

John seeks a unicorn \(\ldots . . \mid x\left[c_{(s,(e, t)}\left(x_{s}\right)\left(x\left(x_{5}\right)\right)\right.\),
\[
{ }^{c}\left(s,(e,(e, t))\left\{x_{S}\right)\left(x\left(x_{5}\right)\right)\left(c_{(5, e)}\left(x_{5}\right)\right)\right]
\]

Remark:
P, Q, R, X, y, z are variables of the types ( \(s,((s, e), t)\), \((s,(\langle s, e), t)),(s,(\langle s,((s, e), t)), t\rangle)\), ( \(s, e\) ), ( \(s, e\) ) and ( \(s, e\) ) respectively while \(c_{(s,(e, t))}\left(x_{s}\right)\), \({ }^{c}(s,(e,(e, t)))^{\left(x_{S}\right)}\) are the initial carriers of "unicorn" and and the "de re" version of "seek" respectively.
Note that the above Eormala is logically equivalent to the Montagovian reduced translation of the same sentence. namely: tu [unicorn'(ue) seek'(us)(j)]
Finally, the translation of "John" deserves some special attention. It is well-known that Montague treated proper names semantically in the same way as quantified expressions [12]. Moreover, his first meaning postulate demands the initial carrier of a specifio proper name to have a constant intension. Together with ME2, where an analogous condition for basioally extensional items of \(\mathrm{B}_{\mathrm{CN}}\) is expressed, that seems to be the only claim which have to remain postulated in the present approach as well. However, see section (7) for further directions as regards eventually dismissing the first two postulates. Thus, \({ }^{c}(s, e)^{\left(x_{s}\right)}\) must have an index-invariant extension in the - -typed term:
\[
a d\left(x_{3}\right)\left(x_{s}^{c}(s, e)^{\left.\left(x_{s}\right)\right),}\right.
\]
which is the final -typed term that can be assigned to the following AS derivation of the sequent:
\[
\begin{aligned}
& \text { e }((s,((s, e), t)), t) \\
& (s,((s, e), t)), e \quad t \quad(2) \\
& \langle(s, e\rangle, t\rangle, e \text { t. (5) } \\
& \text { e (s,e) t…t (3) } \\
& \Leftrightarrow \text { e (4) }
\end{aligned}
\]

\section*{Remark:}

Note that the above derived sequent is an instance of the intensional version of the well-known "Montague rule". To continue with the second kind of extensionality in the category IAV/T. The proposal in the present paper is slightly different from the montagovian one. Instead of the type \((e,(\langle s,(\langle s, e), t)),((s, e), t)))\) prescribed by postulate (B) here its less intensional rival,
(e, ((s, ((s,e),t)),(e,t))), is chosen to indicate the adequate denotational domain of oxtensional prepositions. Clearly the only difference results from the additional demand for subject position of the lattex to be extensional. And that sounds quite reasonable since the same demand has been proposed for other categories by Montague himself.
To begin with a specific \(A S\) derivation of the sequent:
\[
\begin{array}{cc}
(e,(A,(e, t))) & (B,(A,((s, e), t))) \\
B,(e,(A,(e, t))) & (A,((s, e), t))
\end{array}
\]
\[
B,(e,(A,(e, t))), A \cdots((s, e), t) \quad\left(2^{\prime}\right)
\]
\[
B,(e,(A,(e, t))), A,(s, e) \cdots t \quad\left(2^{\prime}\right)
\]
\[
\begin{equation*}
((s,((s, e), t)), t),(e,(A,(e, t))), A,(s, e) \cdots t \tag{5}
\end{equation*}
\]
\[
(e,(A,(e, t))), A,(s, e) \cdots(s,((s, e), t)) \quad t \cdots t
\]
\(\left.(e,(A,(e, t))), A,(s, e) \cdots(s,((s, e), t)) \quad t \cdots{ }^{\prime}\right) \quad\left(3^{\prime}\right)\)
\((e,(A,(e, t))), A,(s, e) \quad((s, e), t) \quad(4)\)
(s,e), (e, (A, (e,t)) ), \(A,(s, e) \cdots, t\)
\(e,(e,(A,(e, t))), A,(s, e) \cdots t\)
\(e,(e,(A,(e, t))), A, e \cdots t \quad\) (5)
- \(\quad\) e (A, (e,t)), A,e t (3)
\(A\) ( \(A, t), e \quad t\) (3)
e e e t t (3')
where \(A\) and \(B\) denote \((s,((s, e), t))\) and \(\langle s,((s,(\langle s, e), t)), t))\) respectively.

The final "-typed term corresponding to \(A S\) derivation above is the following:
\[
\begin{aligned}
&\left.x_{B} x_{A} x_{(s, e}\right)^{x_{B}\left(x_{s}\right)\left(\cdots x_{s}\right.} y^{y}(s, e)^{c}\left(s,(e,(A,(e, t)))^{\left(x_{s}\right)}\right. \\
&\left.{ }_{(s, e)}\left(x_{s}\right)\right)\left(x_{A}\right)\left(x_{(s, e)}\left(x_{s}\right) .\right.
\end{aligned}
\]

Actually the latter is analogous to the one derived by triple -abstraction of the formula :
\[
P\{* y[[G](* y)(Q)(* x)]\}
\]
which is up to extensionality of the subject position identical to the one prescribed by the postulate (8). Thus, by making use of our Lambek-like dynamic mechanism, all but the first two meaning postulates are actually superflous.

In what follows it will be pointed out that the same results concerning Montague MP's can also be achieved by making use of the correspondine \(I L_{c}\) derivations. In order to see that, the transformation \(T\) def. (5.3.) restricted to the domain: \(\{A S\) derivations of sequents of the form \(a \cdot b\} / R_{A S}\), i.e. With a single antecedent type modulo equality of final \(\therefore\)-typed terms assigned to them, will be used. Next, it will be shown that, in this case, each equivalence class in the domain consists of derivations of precisely one such sequent.

Fatot (6.2.) :
Each element of the restricted domain of \(T\) consists of derivations of precisely one AS theorem.

Proof:
Suppose \(d_{1}\) and \(d_{2}\) are some specific \(A S\) derivations of the sequents \(a \quad b\) and \(d\) erespectively and let \(d_{1} R_{A S} d_{2}\). Then by defirition (5.1.) \(\left(d_{1}\right)=\left(d_{2}\right)\) holds. More specifically, by fact (4.2.1.) the above equality nay be rewritten as: \(t_{b}\left(c_{a}\right)=t_{e}\left(b_{d}\right)\).
Both equalities: \(a=d\) and \(b=e f o l l o w i m m e d i a t a l y\). And that was to be proved.

By making ase of the proposition (5.4.) it will be shown that the restriction of \(T\), in fact, is defined in each previously treated AS dexivation, now taken as a representative. Thus the corresponding \(I L_{c}\) derivation, having the same final -typed term, can equally well be embedded into the proviously given dynamic proposal. Let us now start implementing the above strategy on the specific PTQ examples.
An If, derivation of the sequent ( \(a, b\) ) ( \((s, a), b\) ) in the \(T y_{2}\) intensional setting is given below:
with the coxresponding type-driven translation:
\[
{ }^{0}(5, a)^{\left(x_{5}\right)}
\]
\[
x_{s} \quad c_{a}
\]

Thus, the above \(I L_{c}\) derivation has the same final i-typed term as the initially treated AS derivation.
To continue with an \(I L_{c}\) dexivation of the sequent
with the corresponding inal -typed texm:

Next is an \(\mathrm{LC}_{\mathrm{c}}\) dexivation of the sequent
\((e,(e, t)) \cdots((s,(\langle s,((s, e), t)), t)),((s, e), t))\) in the \(T y_{2}\) intensional setting:
\[
\begin{align*}
& (A,(e, t)) \text { ) }(A,((s, e), t)) \text { in the } T y_{2} \text { intensional setting: } \\
& s,(s,(A,(e, t))) \cdot(A,((s, e), t)) \\
& 3,(s,(A,(e, t)), s \quad \cdots(A,((s, e), t))(c o n t r .) \\
& s: s \quad s,(A,(e, t)) \cdots(A,((s, e), t))\left(3^{\prime}\right) \\
& s,(A,(e, t)), A \cdots((s, e), t) \quad\left(2^{\prime}\right) \\
& \text { A.A A } \\
& 5,(e, t) \cdots((s, e), t) \quad\left(3^{\circ}\right) \\
& (s, e), s,(e, t) \cdots \cdots t \tag{2}
\end{align*}
\]
\[
\begin{aligned}
& \left.{ }^{K_{(s, ~}}, a\right)^{c}(s,(a, b))^{\left.\left(x_{s}\right)\left(x_{(s, a)}{ }^{\left(x_{s}\right.}\right)\right)}
\end{aligned}
\]
\[
\begin{aligned}
& x_{\left.(s, a)^{0}(a, b)^{(x}(s, a)^{\left.\left(x_{s}\right)\right)}\right)}^{(a)} \\
& c_{\left.(a, b)^{(c} c_{\left.(s, a)^{\left(x_{s}\right.}\right)}\right)}
\end{aligned}
\]
\[
\begin{align*}
& (s,(a, b)), s, \quad,(s, a), b) \\
& (s,(a, b)), s, s \quad((s, a), b)(\text { contr. }) \\
& 5 \quad 5 \quad(a, b), s \quad(s, a), b) \quad\left(3^{\prime}\right) \\
& (a, b), s,(s, a) \cdot b \quad\left(2^{\prime}\right) \\
& s,(s, a) \text { i a b } b \text { (3) } \\
& \text { s , s a . a } \tag{3}
\end{align*}
\]
```

 s,(s,(e,(e,t))) : ((s,((s,((s,e),t)),t)),((s,e),t))
 (s,((s,((s,e),t)),t)),s,(s,(e,(e,t))), "((s,e),t)
 s . s ((s, ({s,e),t\rangle),t),(s,(e,(e,t))) . ({s,e),t) (3')
((s,((s,e),t)),t),(s,(e,(e,t))),(s,e) , t (2')
(s,(e,(e,t))),(s,e)\cdots(s,((s,e),t)) t t . t (3')
s,(s,(e,(e,t))),(s,e) \cdots ((s,e),t) (2)
G,(s,(e,(e,t))),s,(s,e) \cdots ((s,e),t) (contr.)
S s s. (e,(e,t)),(s,e)\cdots((s,e),t) (3)
(s,e),s,(e,(e,t)),(s,e) t (2)
(s,e),s,(e,(e,t)),s,(s,e) . t (contr.)
s s e,(e,(e,t)),s,(s,e) \cdotst (3')
s ...s e,(e,(e,t)),e t (3)
e - e (e,t),e :t (3)
e te t t (3')

```

The -typed temm corresponding to the above 1 L derivation is as follows:
 \(\left(y(s, e)\left(x_{s}\right)\right)\), where the type \((s,((s,((s, e), t)), t)\) is abbreviated with a.
To continue with an \(T L_{0}\) derivation of the sequent \(e \quad((s,((s, e), t)), t)\) in the Ty \({ }_{2}\) intensional setting:
\[
(s, e) \quad(s, e)
\]
\[
\begin{gathered}
s,(s, e) \quad((s,(\langle, e), t)), t) \\
(s,((s, e), t), s,(s, e) \quad t \\
((s, e), t),(s, e\rangle, t \quad(3) \\
t \quad, t \quad(3)
\end{gathered}
\]
\[
s,(s, e) \quad, \quad(2)
\]
\[
s \text { is e e }\langle 3
\]
with: \(x_{a} x_{a}\left(x_{s}\right)\left(x_{y} x_{(s, e)}\left(x_{s}\right)\right.\) where a denotes the type \((s,((s, e), t))\).
Ar IHo dexivation of the last sequent.
\((\theta,(A,(e, t))\rangle \quad\left(B,(A,(\langle, e), t))\right.\) in the Ty \(y_{2}\) intensional setting is given below:
```

 s,(s,(e,(A,(e,t)))) v(B,(A,((s,e),t)))
 B,s,(s,(e,(A,(e,t)))), (A,((s,e),t))
 B,s,(s,(e,(A,(e,t)))),A,\quad ((s,e),t)
 B,s,(s,(\varepsilon,(A,(e,t)))),A,(s,e)\cdots,t (2`)
 G \cdots\cdotss s((s,((s,e),t)),t),(s,(e,(A,(e,t)))),A,(s,e)
t(3')
(s,(e,(A,(e,t)))),A,(s,e) (s,((s,e),t))) t , t (S')
(s,(e,(A,(e,t)))),A,(s,e),s ((s,e),t) (2')
(s,(e,(A,(e,t)))),s,A,(s,e),s \cdots((s,e),t) (contr)
s.s (e,(A,(e,t))),A,(s,e),s\cdots({s,e),t) (3')
(s,e),(e,(A,(e,t))),A,(s,e),s . t (2)
(s,e),s,(e,(A,(e,t))),A,(s,e),s int (contr.)
B is e,(e,(A,(e,t))),A,(S,e),5 \cdots t (3')
S * e,(e,(A,(e,t))),A,e , t (3')
e , e (A,(e,t)),A,e vt (3)
A \cdotsA A (e,t),e: t (3')
e.e t . t (3')

```

The final i-typed term assigned to the above ILc dexivation is given below:
\[
\begin{aligned}
\left.x_{B} \cdot x_{A} x_{(s, e}\right)^{x_{B}\left(x_{s}\right)\left(i x_{s}\right.} y_{(s, e)^{c}\left(s,(e,(A,(e, t)))^{\left(x_{s}\right)}\right.}^{\left(y(s, e)^{\left(x_{s}\right)}\right)\left(x_{A}\right)\left(x_{(s, e)^{( }}\left(x_{s}\right)\right.} .
\end{aligned}
\]

Thus the application of the system IL co Montague Gramax has been worked out.
7. FURTHERDIRECTIONS

In what follows some further questions and conjectures will be hinted at.
(1) Clearly, \(I L P\) ce is a natural extension of an extensional version of Lambek calculus [2] primarily furnishing the latter by a proper intensional setting. In order to achieve real intensional transitions an axiom scheme a. (s,a) with an intended translation rule of the form : \(\mathrm{x}_{\mathrm{s}} \mathrm{x}_{\mathrm{a}}\), should be added to the above given calculas and its semantics. Thus also intensional lowering of sequents like ( \((s, a), b)\) : ( \(a, b\) ) becones derivable within the system. By making use of a prescribed cranslation procedure the final -typed term would turn up to be the following: \(x_{a} c((s, a), b)\left(x_{s} x_{a}\right)\). Obviously, by each of the nemly available -typed terms the conditions staked in MP1 and MP2 respectively are now expressible with the aid of Lambek apparatus alone.
(2) Given our discussion of MP's, a general definition of extensionality of expressions across categori..s is desirable for possible further linguistic use as well as its intrinsic logical interest.
(3) The point of view in this paper has been that structural rules of a system need not always be defined for all typer but only for coptain subclasses (e.g. basio tyes). This pussible resrriction on structural rules provides Eor Einer distinctions in the usual Categorial Hierarchy, as piesented by Wansing [13].
(4) The system ILP seems similar to the "Intensional Lambek Calculus" of Morxill [11] which explores a connection with modal lugic. It remains to prove or disprove the equivglence of both systems.
(5) As already mentirned in subsection (2.1.), ILP ce seems also applicable to the recent "Dynamic Montague Gramar" proposed in [7].

These questions all point toward a more seneral research program, namely the Proof Theory and Model Theory of:
 (for some further directions see Gallin [5], van Benthem [3]).

\section*{8. RERERENCES}
[1] H. Barendregt, The Lambda Calculus. Its Syntax and Semantios, North-Holland, 1981.
[2] J. van Benthem, The Lambek Calculus, in R. Oehrle et al., eds., 1988.
[3] J. van Benther, What is Extensionality?, to appear in I. Bodnar et al., eds., 1989, Annals of the Lorand E thyis Univ., Budapest.
[4] J. M. Dunn, Relevance Logic and Entailement, in HPL, vol. III. Gabbay \& Guenthner (eds.), Reidel, Dordreeht, 1989.
[5] D. Gallia, Intensional and Higher-Order Modal Logic, North-Holland. Amsterdan, 1975.
[6] S.C. Kleene, Introduction to Metamathematics, D. Van Nostrand, New York, Toronto, 1952.
[7] J. Groenendijk \& M. Stokhof, Dymaic Montague Grammar, ITLI, Prepubiication Sexies, Amsterdam, 1989.
[8] S. Kripke, The Erublem of Entailement, Journal of Symbolic Logio 24, 324.
[9] M. Mooxtgat, Caregurial Investigations, Logical and Iingustic Aspects of the Lambek Calculus, Forjs, Doxdrent, 1988.
[14] G. Morrill, Intensionality, Boundedness, and Modal Logic, Centre for Cognitive Science. Univ. De Edinburgh, 1990.
[11] H. Sohwiohtenberg, Bomo Applications of Sut Blimination, in HML, Jon Barwise (ed), North-Holland, Amsterdam, New Yurk, Oxford, 1977.
[12] R.H.Thomason (ed.), Formal Philosophy, Selected Papers of R. Montague, Yale, Now Haven, London, 1975.
[13] H. Wansing, Relevant Qussi-Deductions, Weak Implicational Logies, and Operational Semantics, erscheint in Schriftenxeihe der Joachim Jungius Gesellsohat, Hamburg, 1989.```

