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CHAPTER 1

INTRODUCTION

1 GENERAL CLAIM

This report describes a Natural Logic i. e. a system of reasoning whose vehicles of inference ("logical
forms’) are in close accord with natural language. The claim of this report is that an adequate
local proof system for natural language is possible. We aim to’show that there is no opposition
between a semantical and a proof-theoretical approach to natural reasoning: the proof system
begins where the semantics leaves off. This assertion has not only a systematical value but also
a heuristic one. Fundamental examples of the way in which the semantics of natural language
can be exploited in setting up a natural logic are the Generalized Quantifier approach to natural
language quantification ([Barwise and Cooper 1981]), the treatment of indefinite descriptions in the
framework of Discourse Representation theory ([Kamp 1981]), and the uniform account of natural
language coordination due to Partee and Rooth ([Partee and Rooth 1983]).

1.1 GENERALIZED QUANTIFIERS

The main idea of the Generalized Quantifiers approach to natural language quantification is this.
Determiners D (every, no, not every, some) denote a relation between set of objects, namely the
denotation of those X, Y for which DXY holds. These denotations of determiners have certain
interesting monotone properties:

If every XY holds and Y is smaller than Z, then every XZ holds as well. (upward
monotonicity)

This property is shared by the denotation of some in both arguments and by not every in its
first argument.

If every XY holds and Z is smaller than X, then every ZY holds as well. (downward
monotonicity).

This property is shared by the denotation of no in both its arguments and by not every in its
second argument.

The monotone properties of determiners can be and is used to support global principles of inference.
In its general form, monotonicity asserts that

expressions occurring in (downward) upward monotone positions may be replaced by
expressions with a (smaller) larger denotation.

Monotonicity is pivotal for Natural Logic because it is present across all categories. There are
monotone verbs, adverbs, prepositions, connectives. Moreover, there are inclusions between ad-
verbs, adjectives, noun phrases. Not surprisingly, inference rules based on the general form of
monotonicity are the core of the Natural Logic to be presented in this report.

1.2 DISCOURSE REPRESENTATION

Inferences are in fact pieces of discourse. It is a sensible heuristic move to take advantage of insights
about discourse processing in the construction of a logic which tries to explain a particular kind of
discourse. The model of discourse representation described in [Kamp 1981] is relevant for Natural
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Logic because of the way in which indefinite descriptions are represented in this framework. An
expression of the form « CN VP is processed by introducing a discourse referent « and the
sentences CN(u) and wu VP. We shall show that this treatment of indefinite descriptions can be .
incorporated fruitfully into a natural logic which treats noun phrases as generalized quantifiers. To
combine the generalized quantifier perspective and Kamp’s proposal we shall exploit a compelling
analogy between Kamp’s representation strategy and a well-known proof-system: Beth’s tableaus
method ([Van Benthem and Van Eijck 1982)).

We shall show that the introduction of Kamp’s treatment of indefinite descriptions to the mono-
tonicity calculus described in [Sdnchez 1991] constitutes.a simple extension which deals satisfac-
torily with scope problems. Of course Kamp’s proposal focuses on anaphorical phenomena. Our
Natural Logic will presuppose information about anaphoric linking as given in extensions of Kamp’s
framework, for instance in [Van Eijck 1985].

Bern’s TABLEAUS The method of semantic tableaus was introduced by E. W. Beth in [Beth
1955]. The idea behind this method consists in the systematical search for a counter-ezample to
a given sequent K/P. Here K and P are classes of formulas. A counter-example to K/P
is a’ model (valuation) in which all members of K are true and all members of P false. The
search for the counter-example is guided by the so-called reduction rules i. e. rules that reduce
the valuation of a complex formula to the valuation of simpler ones. Every constant is provided
with two reduction rules which can be applied when the constant is the last one introduced in
the formula under consideration. For instance, the reduction rules for the set {—,A,3} are the
following:

e if = A should be true, then A should be false.
if =A should be false, then A should be true.

o if (AA B) should be true, then A and B should be true.
if (AA B) should be false, then A should be false or B should be false.

e if JzA(z) should be true, then A(d;) should be true for a new object d;.
if JzA(z) should be false, then A(d;) should be false for all objects d; already introduced
in the construction of the tableau.

Notice that making (A A B) false leads to the introduction of sub-tableaus.

When a sub-tableau contains an obviously conflicting demand, i. e. to make a formula both true
and false, it represents a failed attempt to construct a counter-example. We therefore abandon
this sub-tableau and call it closed . When all the sub-tableaus are closed we say that the tableau
itself is closed, and the sequent is called valid. If some sub-tableau is not closed and no further -
reduction rule is applicable then we have a counter-example: this sub-table describes a situation
in which all formulas in K are true and all formulas in P are false. As we pointed out, this
method of semantic tableaus will be adapted in this report to a fragment of English based on a
Categorial Grammar. It is the use of Categorial Grammar which allows us to define reduction
rules for natural language sentences: the syntactical analyses of an expression X provided by the
grammar contains information about the last expression introduced in the construction of X. In
our CNL the above reduction rules will take the following form:

e if Neg(A) should be true, then A should be false.
if Neg(A) should be false, then A should be true.

¢ if (A and B) should be true, then A and B should be true.
if (A and B) should be false, then A should be false or B should be false.

e if a CN VP should be true, then d; is a CN and d; VP, should both be true for a new
d;.
if @ CN VP should be false, then d; VP, should be false for all d; such that d; isa CN
is true.
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We are convinced that Beth’s method is an adequate model for the representation of natural
language inference, witness the connexion between Beth’s first reduction rule for the existential
quantifier and Kamp’s treatment of indefinite descriptions. This use of discourse referents in
inference has even a traditional antecedent in Aristotles’ non-syllogistic proof of the so-called
conversion rule:

First, then, let us take a negative universal premiss having the terms A and B. Then
if A applies to no B, neither will B apply to any A; for if it applies to some, e. g.
¢, it will not be true that A applies to no B, because c is B. (See [Aristotle I)

Furthermore, there is an intimate connection between Beth’s tableaus and the dialogical logic in
which the logical constants are defined by rules for their use in critical debates
(cf. [Barth and Krabbe 1982]).

1.3 GENERALIZED COORDINATION

Several writers have noticed that all major syntactical categories can be conjoined with the Boolean
particles and and or. We have Noun Phrase coordination (abelard and every logician), Verb
Phrase coordination (dances or sings), Adverbial coordination (clumsily or unimaginatively), Ad-
jectival coordination (male and wise). In modern semantics it has been possible to give a uniform
meaning to the Booleans across all the relevant categories. Coordination in the interpretation
domain of expressions of category (a,b) is defined in terms of coordination in the domain of
the expressions of category b. This allows the recursive definition of coordination, starting with
sentential coordination and assuming the obvious interpretation of sentential and and of ([Partee
and Rooth 1983)).

This treatment suggests that a uniform explanation of Booleans as they occur in inference is
possible. For instance, the denotation of X and Y is smaller that the denotation of X in the
sense that whateveris X and Y is also X. Thus by using monotonicity we shall be able to pass
from F(X andY) to F(X). But monotonicity does not exhaust the logic of and. We also need
an inference rule which regulate the introduction of this particle. This can be done by generalizing
the second reduction rule for sentential and:

o if F(X and Y) should be false, then F(X) should be false or F(Y) should be false,
where (X andY) occursin F in upward monotone position.

This simple extension of Beth’s treatment of sentential conjunction allows us to explain inferences
such as

e every man dances, every man sings/every man dances and sings.
¢ a man dances or sings/ a man dances or sings.

e every man and abelard loves heloise/abelard loves heloise.

2 SOURCES OF NATURAL LogGIC

The insight that natural reasoning can be represented by a natural logic has several sources. A
few examples are [Geach 1962], [Suppes 1979], and [Sommers 1982]. Geach notices that several
non-trivial inferences in natural language can be explained directly by using the traditional Dictum
de Omni principle —a principle that corresponds closely to upward monotonicity. Suppes presents
a system of inference for English whose logical forms are the analysis trees provided by a context-
free grammar. In Suppes’ logic for English, linguistic form and grammatical form coincide: there
is no need for the construction of a special apparatus generating logical forms in the account of
inference. Finally, Sommers’ concern is both the construction of a formal language which would
reflect his view on the syntax of natural language and to make inference a matter of monotone
substitutions. To this end, Sommers devised a formalism in which the monotone properties of
traditional quantifiers and connectives are made explicit.
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3 CATEGORIAL NATURAL LogGIC

In this report we shall construct a Categorial Natural Logic (thereafter CNL) which can be de-
scribed as a strengthened monotonicity calculus. CNL reflects the idea expressed in
[Van Benthem 1987] that natural reasoning displays various different mechanisms of inference
using different levels of representation. CNL can be characterized by

e The use of syntactical analyses provided by Categorial Grammar as vehicles of inference (cf.
Suppes).

e The use of monotonicity to warrant the sound application of inference rules (cf. Geach).

e The use of monotonicity marking of linguistic forms to indicate which expressions occur in
monotone sensitive positions (cf. Sommers).

e The use of discourse referents in order to exploit the inferential properties of indefinite de-
scriptions (cf. Kamp).

e The use of scope marking of linguistic forms to indicate which expression may introduce
discourse referents.

e The use of generalized coordination to explain Boolean non-sentential reasoning (cf. Partee
and Rooth). '

In this report we are concerned primarily with showing the empirical adequacy of CNL. On an-
other opportunity we shall address the theoretical questions which CNL poses, for instance its
completeness with regard to an adequate semantics. This report is structured as follows. In the
second chapter we describe the specific version of Categorial Grammar on which CNL is based.
In the third chapter we turn to the description of the machinery involved in the construction of
CNL. We introduce the mechanism of monotonicity and scope marking. Subsequent definitions
introduce the operations of substitution and negation. The fourth chapter contains the description
of CNL. We shall introduce first the monotonicity part of CNL. This logic can explain all the
syllogistic inferences and something more. For instance, we are able to explain natural inferences
in which the relevant noun phrases occur in object position. Afterwards we shall extend the system
to obtain a more realistic model of natural reasoning. To this end we use Kamp’s treatment of
indefinite descriptions. The resulting system is a CNL in Beth’s tableaus format. Finally, we use
the generalized account of coordination to deal with Boolean inference and we sketch a way in
which reasoning based on anaphoric relations can be treated within CNL.



CHAPTER II

CATEGORIAL GRAMMAR

1 CLrAsSIiCAL CATEGORIAL GRAMMAR

Classical Categorial Grammar is a language recognition device first described in [Adjukiewicz 1935]
and [Bar-Hillel 1953]. The basic idea of CG is to define a set of categories built from the two basic
ones e, t and a recursive procedure,

if a and b are categories, then so are (b/a) (a\bd).

Here the complex category (b/a) searches an argument to its right, whereas (a\b) searches an
argument to its left.

In this framework we categorize lexical elements by assigning them to a category, as in the following
cases:

abelard € e

heloise € e

cries € (e\t)

likes € (e\t)/e
bitterly € (e\t)\(e\t)

(In these examples a categorization is represented by z € a, where z is an English expression and
a a category. This practice will be continued). To determine the category of a complex expression
we first write the categories of its elements. Thereafter, we read the string of categories from left
to right. When we find the first substring of the form ’(b/a) a’ or ’a (a\b)’ we apply the so-
called cancellation rules

CANCELLATION RULEs The adjacent expressions (b/a)a cancel to b.

The adjacent expressions a (a\b) cancel to b.

The result of cancellation is a new string of categories. We rescan the new string, applying the
above rules whenever possible. The complex expression belongs to the category c¢ only if the
successive applications of the procedure finally lead to the string c. Examples 1 a. and 1 b. below
illustrate the procedure.



10 Chapter Il. Categorial Grammar

Example 1

a. abelard cries bitterly € t

abelard cries bitterly
e (e\t) (e\)\(e\?)
e (e\?)

b. abelard loves heloise € t

abelard loves heloise
e ((e\t)/e) €
e (e\t)

2 GEACH’S CATEGORIAL GRAMMAR

Expressions of natural language do not need to be categorized once and for all. For instance, not
can occur as noun phrase negation (Not every man) or as predicate negation (does not cry).
Similarly, end can occur as sentence conjunction (Abelard cries and Heloise wanders) or as
predicate conjunction (Abelard cries and wanders). The main observation in [Geach 1972] is that
categorial grammar can be extended in order to capture the essential unity of meaning of the items

not, and across categories.
To represent complex categories, Geach uses a prefix functor. For convenience, in the rest of this
report we shall make use of the infix functor ’, for the representation of complex categories, i. e.

If a and b are categories, then so is (b, a).

A complex category does no longer carry the information on which side it takes its argument. The
cancellation rules take the form:

UNDIRECTED CANCELLATION RULES

The adjacent expressions (b, a) b cancel to a.
The adjacent expressions b (b, a) cancel to a.

Geach captures the ubiquity of the Booelean particles by adding to the calculus the following rules
of type change,

G1 if x belongs to the category (a, b), then also to the category ((c,a), (c, b)).

G2 If x belongs to the category (a, (b, c)), then also to the category
((d, a), ((d, b), (d, c)))-

For instance, starting from the categorization not € (t,t), the categorization of not as predicate
negation i. e. not € ((e,t),(e,t)) becomes available.

In addition to the above rules, Geach also considers a more general recursive procedure for estab-
lishing derived categorizations of expressions,
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G3 Let F(Y)€t, and Y €e. Then F() € (e,t) ;
where Y is a proper sub-expression of F(Y) and F() is the result of deleting Y from
X(Y).
Example 2. below, shows that G3 can establish that if abelard likes heloise € t, then abelard
likes every woman € t; modulo the following basic categorization:

abelard , heloise € e
likes € (e, (e,t))
every woman € ((e,t),t)

Example 2 abelard likes every woman € t

likes Heloise-
abelard (e, (e 1) —<
e (e, t)
t

G3 every woman

(e ) (e, ¥); V)

What kind of procedure is involved here? Notice that the use of the cancellation rule corresponds
to a use of Modus Ponens in a Natural Deduction tree. Similarly, Geach’s recursive procedure hints
at the introduction of the conditionalization rule into categorial grammar —although restricted to
the basic type e. If we drop this restriction, several principles of category change become available.
For instance, as Example 3. shows, Montague’s categorization of proper names can be obtained by
using G3.

Example 3 raleigh € ((e,t),t)

raleigh  +wanders-
e A{fet)
ot

Gs___ ~
((es 1), 1)

Thus [Geach 1972] may be seen as proposing a non-directional Categorial Grammar where the
cancellation rule is supplemented with additional principles of category forming —restricted con-
ditionalization being one of them.

3 LAMBEK CcUM PERMUTATION

In fact, [Lambek 1958] already describes a categorial calculus in which conditionalization supple-
ments the cancellation rule, although this calculus is of the directed variety. CNL, on the other
hand, is based on the undirected categorial calculus first introduced in [Van Benthem 1986], the
so-called Lambek cum Permutation Calculus (thereafter LP). LP may be seen as an intuitionistic
implicational logic, with additional restrictions on the book-keeping of assumptions used in deriva-
tions. This calculus gives an explanation of G1 by producing a derivation of ((c, a), (c, b)) from
(a, b):
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b
(¢, b)
((c, a), (¢, b))

As a matter of fact, LP does not give an explanation of G2. The reason is that in LP each use of
conditionalization withdraws exactly one occurrence of a formula. The following tree shows that
the transition from (a, (b, c¢)) to ((d, a), ((d, b), (d, ¢))) is not available in LP:

@ e
‘(d'a”b} & (a., (b’ c)) a
b (b, ©)

(d; €)
((4, b), (4, ¢))
((4, a),.((4, b), (4, ¢)))

Hence, the transition from sentential and to predicate conjunction is not LP derivable. (There
are several ways of coping with the ubiquity of Boolean particles. See, for instance, [Moortgat
1989] and [Partee and Rooth 1983]).

3.1 MEANING OF DERIVATIONS

There is a systematic connection between derivations in intuitionistic implicational logic and ex-
pressions of the typed lambda calculus. These expressions are constructed from an infinite supply
of variables X,,Ys,..., for each type a, via the following formation rules:

e if N isof type (a,b), and M is of type a, then N(M) is a term of type b (application)

e if N is of type b and X is a variable of type a, then A X.N is a term of type (a, b)
(abstraction)

[Van Benthem 1986] shows a systematic connection between derivations in LP and a class of
terms —here suggestively called Lambek terms— with restrictions on occurrences of free and bound

variables:

N is a Lambek term iff N has at least one free variable and each lambda in N binds
exactly one variable.

Van Benthem gives an effective procedure which applied to a derivation in LP yields a Lambek term.
Conversely, there is an effective procedure which applied to a Lambek term yields a derivation in
LP. The basic idea consists in linking assumptions with variables, Modus Ponens with application
and conditionalization with lambda abstraction. For instance, the above proof of G1 corresponds
to the Lambek term:
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AX (c,0) AYe-Z(a,b) (X(c,00Ye)

Such terms are called the meaning of the corresponding derivation. Sometimesit is more convenient
to represent the categorial analysis of an expression by a Lambek term which encodes linearly the
same information as a LP derivation. In the construction of CNL we shall use derivation trees for
the representation of categorial analyses, but the reader should keep in mind that a more compact
representation is available.

For further details about LP we refer the reader to [Van Benthem 1991].

3.2 MONOTONICITY IN THE TYPED CALCULUS

The typed lambda calculus has an interpretation in the Fregean universe, constructed from D,
(domain of individuals), D; (truth-values) and the stipulation that D, is the set of set-
theoretical functions from D, into Dy. The sets D, are partially ordered by a relation <, as
follows:

e Ifc,deD,thenc<.,diff c=d.
o Ifc,de Dithenc<idiffc=0o0rd=1.
o Ifc, d€ Digy) then c <(ap) diff for each a € Dg, c(a) <p d(a).

By using this ordering relation, we can define the notions of monotone functions and of monotone
occurrences in this setting.

monotone functions

o f € D(q, 1) is upward monotone if f for all ¢, y € D, holds that
z <oy entailsf(z) <p f(y)-

o f € D(q,+) ts downward monotone if f for all z, y € Dy holds that
z <, y entailsf(y) <p f(z).

monotone occurrences

Assume that N is like N, except for containing an occurrence of M; where N, contains
a specified occurrence of M;. We shall refer to this specified occurrence of M in N by
M. We have the following definitions:

o N, is upward monotone in My iff for all models M and
assignments f ,I}“(M) < I}M(M’) entails I}V(N) < I}M(N’) .

o N, is downward monotone in My if f for all models M and
assignments f , I} (M') < IM(M) entails I}/ (N') < I}*(N).

In standard logic one uses a syntactical criterion for monotonicity: expressions which occur in
syntactical positive position may be replaced by (semantically) stronger expressions; expressions
which occur in syntactical negative positions may be replaced by (semantically) weaker expressions.
For Natural Logic it is important that in the lambda calculus too, monotonicity is tied up with
properly defined positive and negative positions. One may prove
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syntactic monotonicity
o If Ny is positive (negative) in My, then Ny is upward
(downward) monotone in M,.

o If X is positive (negative) in N, then AX.N is upward
(downward) monotone in M,.

o NM isupward monotonein N .

See [Sdnchez 1991] for a proof of this assertion. The above mentioned correlation between LP
derivations and Lambek terms allows us to transfer the syntactical criterion to the derivations
themselves. One can show that a suitable marked position in a derivation corresponds with a
monotone position in the associated term. This warrants the soundness of monotone substitution
at the level of grammatical form.

4 LAMBEK GRAMMAR

In this part we shall describe a variant of LP which we shall call Lambek Grammar, hereafter LG. !
The LG derivations are the linguistic support for the model of natural reasoning developed in
this report. LG generates natural deduction trees whose assumptions may be indexed by English
expressions or by numerals. We speak then of numerical or lezical assumptions. LG is characterized
by the following properties of its derivations:

e In an application of Modus Ponens the numerical indices of the mayor premiss and the minor
premiss should be disjoint.

e In an application of conditionalization exactly one numerical assumption is withdrawn. -

5 A FRAGMENT OF ENGLISH

In this section we introduce a fragment of English for which we shall define a CNL. The expres-
sions of the fragment are the derivations which LG generates by using the initial statements as
assumptions. The choice of this first-order fragment is motivated by the following consideration.
We want to show that one may give an explanation of simple items of natural reasoning by using
grammatical form as vehicle of inference. It seems to us that this aim can be achieved most con-
vincingly by explaining reasonings for which we have a well understood theory, namely first-order
logic.

VOCABULARY AND INITIAL ASSIGNMENTS

Determiners every, not every, some, a, no € ((e,t),((e,t),t))
Proper Names abelard, heloise, john, mary, etc €e
Discourse Referents uy,...,%p,... €€

Pronouns she, he, herself, he, him, himself, it € e
Intransitive Verbs dance, wander, etc € (e,t)

Transitive Verbs love, like, is, etc € ((e, (e, 1))

Common Nouns womaﬁ, man, philosopher, etc € (e, t)

Extensional Adverbs loudly, passionately, beautifully, etc € ((e,t),(e,t)

1A formal definition of LG is possible and already given in [Sdnchez 1991]. In this report we skip the formal
details.
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Absolute Adjectives male, female, human, etc € ((e,t), (e, t))
Booleans
o if €(t, (1))
e and, or € (a,(a,a)), where a is any category ending in ¢
o not € (t,1)
o doesn't € ((e,t),(e,t))

EXPRESSIONS OF THE FRAGMENT In the following definition we assume the notions of derivation
and open assumptions used in natural deduction calculi.

a. The vocabulary is part of the expressions of the fragment..

b. If each of X; € a,...,X, € a is an expression of the fragment, and there is a LG derivation
D endingin b containing these assignments amongits open assumptions, then X;,...,X, €
b is also in the fragment. This derivation is called the analysis of the string Xi,...,X, .

Example 4

a. every man dances € t

every man
((evt)’ ((evt)’t)) (evt) dances
((e,t),t) (e,t)

b. every man loves heloise € t

loves heloise

every man (&, (e,t)) €
((e,2),t) ((e,), )
t
c. every man loves a woman € t
loves

every man (e, (e, t)) el

((e;2),2) (e:2)

_t
(6’ t) ((e, t), t)

In Example 4 c. loves is not combined with a lexical hypothesis, but with the numerical as-
sumption e!. The withdrawal of this assumption is followed immediately by the application of
the lexical hypothesis a woman. We will define the numerical assumptions related with lexical
assumptions in the described way as:

shadow assumptions The numerical assumption e' is a shadow assumption of the lexical
assumption z iff the withdrawal of e* is followed by the use of z as the major of a Modus
Ponens application.
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In Example 5. below we show an analysis in which we use a self-explanatory notation for the
shadow assumptions:

Example 5 every man loves a woman € t

loves
(ev (eyt)) €a woman

€every man (ea t)

R — a woman
(a woman)

() ((e,2),2)

every man _t
((e,2),2) ()

t

(every man)

The expression every man loves ¢ woman corresponds to two non-equivalent Lambek terms,
namely:

L4 Za 'woman/\Xe- V;very man(lO’ZIBSX) .
® Vevery manAYe. Za womanAXe. (lovesXY) .

We then see that the Lambek Grammar can represent the different readings of the above string at
the level of the syntax: the two readings indeed have two different derivations.
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MONOTONICITY AND SCOPE MARKING,
SUBSTITUTION AND NEGATION

1 MOoONOTONICITY MARKING IN LG

We have noticed that in the lambda calculus positive occurrences are monotone sensitive positions.
In this section we describe a mechanism that transfers the monotonicity information to LG ob-
jects. Let us give the motivation behind the mechanism to be described presently. Through the
correspondence with the Lambek terms, we know that the major of a Modus Ponens application
corresponds to the head of a Lambek terms. This head is upward monotone. The argument of
an upward monotone function occurs in an upward monotone sensitive position. Similarly, the
argument of a downward monotone function occurs in a downward monotone sensitive position.
The introduction of abstraction does not alter the monotonicity of the terms occurring in the body
of the abstraction.

1.1 INTERNAL MONOTONICITY MARKING

Before presenting the mechanism of monotonicity marking, we introduce a notation which allows
us to use the assignments of expressions to categories to produce the intended interpretations of
natural language expressions:

e If a and b are categories, then (a*,b), (a~,b) and (a,b) are categories.

o If A€ (at,b) then the interpretation of the meaning of A is an upward monotone function
in D(a,b)-

e If A€ (a”,b) then the interpretation of the meaning of A is a downward monotone
function in  D(,3).

e If A€ (a,b) then the interpretation of the meaning of A is an arbitrary function in
Diap)-

LEXICAL MONOTONCITY As we observed in section 1.1 we know that the denotations of de-
terminers may have monotone properties. We shall make this information available at the level
of the Lambek derivations. Since, for instance, every is downward monotone in its first argu-
ment and upward monotone in its second argument, we shall not always say that its category is
((e,t),((e,t),t)). Instead, we shall sometimes use a category with internal monotonicity marking:
((e, )7, ((e,t)*,t)). This example will be extended to cover expressions which play an important
role in the construction of CNL:

Determiners
o every € ((e,t)7, ((e, )T, 1)) .
e a, some € ((e,t)*,((e,0)F, 1)) .
o 1o € ((e,t) 7, ((e,t), 1)) .
o not every € ((e,t)*, ((e,t) 7, 1)) .
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Verbs
e X € (et,t) where X is an intransitive verb.
e X € (et,(e*,t)) where X is an extensional transitive verb.
Example 6
a.
every woman
((e,8)7, ((e&,0)F,8))  (est)
+ —_
((e,t)*,)
b.
a woman
(&), ((e;0)58))  (e)2)
+ +
((e;t)*,8)
c.
no woman
((e,t)75((es8)752)) (&)
+ —_—
((e,2)7,1)
d.
not every woman
((e;)%, ((e,1)752))  (ey2)
+ +
((e,2)7, 1)
e.
loves — peloise
every man (e, (e,t e
((e,t)",1) +
+ ((e,)*",2)
t
I
loves
(e,(e,t)) €
every man +
((e,0)*,1) (e, t)
+ +
t
+ . a woman
(e,) ((e;)*,1)
+ +
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g.
loves
(e, (e,t)) €a woman
+
€every man (e, t)
+
t
+ (o women) @ woman
(e,t) ((e,t)"',t)
+ +
t
every man o
((e,t)*,1) ~ e
+ +

1.2 POLARITY OF ASSUMPTIONS AND INDICES

In the previous subsection we have developed a mechanism that allows us to transmit monotonicity
information through the Lambek derivations. As a result lexical items and constituents may occur
with monotonicity marking according to the conventions to be introduced presently. Let D be a
derivation with conclusion @ . Then,

* o A node b has polarity iff all nodes in the path from b to a are marked.

e A node b is positive iff b has polarity, and the number of nodes marked by — is even.

A node b is negative iff b has polarity, and the number of nodes marked by — is odd.

o A lexical index X is positive(negative) iff the node of which it is an index is positive
(negative).

e A subderivation D; with conclusion c is positive (negative) if ¢ itselfis positive (negative).

e A string F of lexical indices is positive (negative) iff the subderivation which depends
exactly on the members of F is positive (negative).

The definition of polarity of subderivations is intended to warrant the following proposition proven
in [Sdnchez 1991]:

Let D be a derivation with conclusion a andlet N, beits its meaning. Furthermore,
let D; be a subderivation of D with conclusion b and with M}, as its meaning.
Then,

o If D; is positive (negative) in D, then N, is upward (downward) monotone
in Mb.

The monotonicity marking of English expressions made available by the above conventions, can be
visualized in the following way:
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ILLUSTRATION

a.

+
every man loves heloise

/\

+ +
every man loves heloise

N /N

+ _ +
every man loves heloise

+
€eVery man loves a woman

/\

+
every man loves a woman

/N /N

+ - ‘ + +
every man loves a woman

/N

+
a woman

+

every man loves a woman

+
every man loves a woman

SN N

+ + + +
every man loves a woman

+ —
every man
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Sometimes we are interested only in partial monotonicity information. For instance, given the
string every man loves a woman and the marking represented by Example 6 f. we may be
interested in representing the fact that woman is positive. This will be done by means of the
following predictable notation:

every man loves a womant.

2 ScOPE MARKING

As the Examples 6 f. and g. show, monotonicity marking does not distinguish between the two
prominent readings of the ambiguous sentence every man loves a woman. However, the Lambek
derivations we have associated with this sentence are plainly different. In Example 6 f. the assump-
tion corresponding to every man has been processed before the assumption corresponding to a
woman. In the other derivation the order has been reversed. The importance of this difference in
processing order has not only semantical importance. In the construction of CNL we shall make
use of this difference in formulating inference rules which apply only to the expression which has
been last introduced. To this end we introduce the notion of

wide scope

Let D be a Lambek derivation of a string F containing the substring Y. We shall say
that Y has wide scopein F' if the last rule applied in D is Modus Ponens and the mayor
of this application of Modus Ponens depends exactly on the members of Y .

Notation: F(Y#).

Example 7
The sentence every man loves a woman associated with Example 4 c. has as a scope
representation:

every man loves (a woman)# .

The sentence every man loves a woman associated with derivation Example 5. has as a
scope representation:

(every man)* loves a woman .

Notice that according to the definitions, if an expression has wide scope then it occurs positively,
i. e. F(Y#) entails F(Y) .

3 SUBSTITUTION

Substitution of (e, t)-expressions

Let X,Y € (e,t) and assume that F(X) is an expression associated with a derivation D.
Then F(Y) will be the expression associated with a derivation D which results from D
by substituting the left derivation by the right one:
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X] (Y]
D, D,
(e,t) (e,t)
Example 8

Let F(man) be the string every man dances associated with Example 4 a. Then
F(small man) is the string every small man dances with derivation:

small man
every ((e)t),(est)) (&)
((est), (e, 8),2)) (e;2) dances
((e,t),t) (e,t)
t

b.

Let F(dances) be the string every man dances associated with Example 4 a. Then
F(dances beautifully) is the string every small man dances with derivation:

every man dances beautifully
((e,1), ((es2),2)) (est) (est)  ((est) (et))
((es2),8) (e, 1)

Observe that given F(X) and its Lambek derivation, the derivation associated with F(Y)
is unambiguously determined.
Substitution of ((e,t), t)—expressions

Let v €e, X € ((et),t). Assume further that F(X) is an expression associated with
derivation D. Then F(u) will be the expression associated with derivation D’ which
results from D by

o deleting the assumption indexed by X.

e using the assumption indexed by u instead of the shadow of X if it has one or,

e using the assumption indexed by u instead of X itself if it has no shadow.

Example 9

a.
Let F(awoman) be the string every man loves a woman associated with Example 4 c.
Then F(heloise) is the string every man loves heloise associated with Example 4 b.

Let F(every man) be the string every man loves a woman associated with Exam-
ple 4 c. Then F(abelard) is the string abelard loves woman associated with the
derivation below:

loves
(e) (C, t)) €a woman

(e:2)

(a woman)

abelard
e

a woiman

((e,t)*,t)

_t_
(e,t)
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4 NEGATION
In this section we extend the definition of negation used in the so-called square of opposition.

a.
Let F[(every Y)#] be an expression associated with a derivation D.

By Neg(F|(every Y)#]) we denote the expression associated with the derivation D’ which
results from replacing the left derivation in D by the right one:

[every Y] [not every Y]
Ds D,
((e’t))t) » ((e’t):t)

if F[(someY)#] is an expression associated with a derivation D, then
by Neg(F[(someY)#]) we denote the expression associated with the derivation D’ which
results from replacing in the left derivation in D by the right one:

[some Y] [no Y]
Dy D,
((e,1),1) ((e;t),t)

Let wis NP €t be associated with the first derivation below. Then Neg(u is a NP) will
be the string u is not NP. This string will be associated with the second derivation below:

(er(e8)  enp
+

u +
e (e,t)
+
t
Tt NP
(e’t) ((eat)7t)
t
28
(e,(e,t)) emp
Y +
e (e,)
+
t
+ NP
(np)
(e,t) ((e,%),1)
not +
(t——at) t
+ —

Let w VP €t be associated with the first derivation below. Then Neg(u X) will be the
string u doesn’t V P. This string will be associated with the second derivation below:
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VP
H (e,t)
B
t

doesn't vpP
((e, t)",(e,t)) (e,t)
+ .

(e:¢)
+

u
€

Example 10

a.

Given every man loves (a woman)# with the derivation of Example 4 c. Neg(every man
loves (a woman)#) is the expression every man loves (no woman)# associated with
the tree below:

loves
every man (e (e t)) el
((e,1), ) (1)
no woman

o
(e’ t) ((e,t),t)

Given (every man)¥ loves a woman with the derivation of Example 5. Neg((every man)#*
loves a woman) is the expression (not every man)# loves a woman associated with the
tree below:

loves
(e, (ea t)) €a woman

€every man (ea t)
t a woman

———— (a woman)

(e,t) ((e,t),t)

(not every man)

not every man

t
((e,t)*2) 1)




CHAPTER IV

A CATEGORIAL NATURAL LOGIC

1 NATURAL REASONING WITH GENERALIZED QUANTIFIERS

In this section we present the monotonicity part of our CLG. The basic idea consist in providing
a proof of the sequent A;,...,A,/B by using substitution of expressions of type (e,t). The
members of the sequent enter in the proof provided with a Lambek analysis indicating monotonic-
ity and scope marking. We then make use of this information in the use of the inference rules.
After the application of an inference rule, the conclusion will also be associated with a Lambek
derivation providing monotonicity and scope marking information. The proof system for natural
logic developed in this section is similar to Beth’s deductive tableaus. A reasoning will be repre-
sented by the sequent Aj,..., A,/B. This sequent poses the problem of finding a derivation of the
conclusion B from the premises Aj,...,A,. The first step in the construction of the derivation
consists in the construction of a Lambek analysis, D , for the premises and the conclusion. This
analysis is fixed during the derivation. Then we put A;,...,A, e B as the top node of a finite
tree of points such that for each node holds that it is either closed or not closed and it has exactly
one successor according to the following rules:

RULES

Marking

X ¢ AY AX oY
XIA*,Y A*,XIY

where A* is a monotonicity or scope marking of A provided by the fixed Lambek analysis

of A.
Negation
X Neg(A) Y X I Neg(A), Y
X I AY A X Y
Monotonicity
(every 2)# isay, F(zt), X I Y
(every z)* isay, F(y), X Y
Conversion

(some y)# isaz, X I Y

(somez)* isay, X ¢ Y
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We assume that the X, Y in these rules are sets of expressions. The result of the application of a
rule other than the marking rule, is a sentence unambiguously associated with a Lambek derivation
D. This new derivation can be used as new input to the marking rule. A node is closed if the same
formula with identical scope marking occurs to its left and right. Notation: 4, X A, Y .

A closed tableau is a tableau in which all nodes without successor are closed. -

A proof for the sequent Aj,...,An/B is a closed tableau with A;,...,A, e B as top node.

If we have a proof for the sequent Aj,...,A,/B then we say that it is valid modulo the Lambek
analyses provided in the first step of the derivation.

1.1 EXAMPLES OF REASONING WITH GENERALIZED QUANTIFIERS

Inference 1 abelard sees a carp, every carp is a fish / abelard sees a fish .

Analyses 1
a.
sees
(ea (e, t)) €a carp
abelard +
€ (e, )
+ a carp
! (% (&:)%,0) (&)
(a carp) + +
(e,t) P ((e,t) ", 1)
+ =+
t
b.
sees
(e’ (eat)) €a fish
belard
a eea/" (e,t) a ﬁSh
_t_ (s fish) ((e,t),((e,t)’t)) (€,t)
(€ 1) (e, 1),t)
t
c.
€every carp s a ﬁsh
D
every carp (e,t) S
((e’t)7t) (e,t)
t
Proof 1

abelard sees a carp, every carp is a fish
abelard sees a carp, every carp is a fish
abelard sees (a carp"')#, every carp is a fish
abelard sees (a carp™)#, (every carp)¥ is a fish
abelard sees (a fish)#, (évery carp)# is a fish

abelard sees a fish

abelard sees (a fish)#
abelard sees (a fish)#
abelard sees (a fish)#

& abelard sees (a fish)#

marking
marking
marking

monotonicity
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Tableaus like the above can be simplified in several ways. Self-evident abbreviations will be intro-

duced without explicit warning.

Inference 2 abelard sees no fish, every carp is a

fish / abelard sees no carp.

Analyses 2
a.
sees
(e,(e,t)) €mo fish
abelard s
e (e,t)
+ no fish
-t ((e;8) 7, ((e,8)7,2))  (ey2)
'—+— (no fish) + —
(e,t) ((e,t) 7, 1)
- +
t
b.
sees
abelard (¢:(&,1)) _eno carp
e (e,t) no carp

(e;2)

(no carp)

((est), ((e,1), 1))
((e, 1), 1)

(e,2)

c. Analysis 1 c.

Proof 2
abelard sees no fish, every carp is a fish
abelard sees (no fish)¥#, every carp is a fish

abelard sees (a carp)¥, (every carp)# is a fish

abelard sees no carp
abelard sees (no carp)#
& abelard sees (a fish)#

marking

negation twice

COMMENT Notice that given the derivation of NEG[F(a X)#], the derivation of F(a X)# is
unambiguously determined. In the present case, we obtain the Analyses 1 a. and b. of the previous
inference. Hence we have reduced the initial problem to the problem resolved in the previous
example. That is the reason why we may close the tableau at this stage.

Inference 3 abelard sees a male carp, every carp is a fish/abelard sees a male fish

Analyses 3
male carp
((e,t)"‘,(e,t)) (e,1)
abelard , S€€S SN t +
e (e, (e,t)) ((e,t) »((e,8)7,1)) (e;2)
+ + +
(e,t) ((e;0)%,1)
+ +
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male fish
abelard sees a ((e,2), (e2)) (es2)
€ (es(e,8)  ((es2), ((es8),1)) (e,)
(e, ) ((e,2),1)

t
c. Analysis 1 c.
Proof 3
abelard sees a male carp, every carp is a fish abelard sees a male fish

abelard sees a (male carp™)#, (every carp)¥ is a fish ¢ abelard sees a (male fish)#

abelard sees a (male fish)#

REMARK CNL in its present form can not cope with elementary syllogistic inferences in which
slightly different grammatical forms are involved, for instance

every fish swims, bobo is a fish/ bobo swims

is a valid syllogism which CNL can not recognize yet. There are several alternative solutions to this
problem. The one we advocate here consists of using a new formulation of upward monotonicity:

(every z)* VP, Fl(isaz)t], X ¢ Y
(every z)* VP, F(VP), X I Y

The explanation of the reasoning mentioned now takes the following form:

Inference 4

Analyses 4
a.
18
(e,(e,t)) €a fish
+
bob
' (,?)
+
t
_+_( o a fish
(e,8) ((e;t)*,1)
+ +
t
b.

every fish  swims
((e, t)’ t) (e’ t)

t
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c.
bobo Swims
T (1)
t
Proof 4
every fish swims, bobo is a fish bobo swims

(every fish)¥* swims, bobo (is a fish)*t bobo (swims)#
bobo swims

bobo (swims)# .
TRADITIONAL SYLLOGISTIC The above examples of natural reasoning should have illuminated
the way in which the monotonicity part of CNL works. Next we show that the defined CNL can
explain traditional syllogistic inference. We shall follow Aristotles’ own strategy. We show that all
the syllogisms of the first figure are derivable from monotonicity, negation and conversion. Since
all the other syllogisms are reducible to the syllogisms of the first figure, we have proven that CNL
generates all traditional syllogisms.

Inference 5

Analyses 5
[eevery z is €aq y] a Y
D ((e;t),((e,)*,2)) (e,2)
¢ (= v) + +
(1) ((e;t)%,1)
every T +
((e;t)75 ((e,0),8))  (ey2) t
+ = ey o
(CORD D
+ +
t
b.
[esame z 15 €q y] a Yy
D (&), ((e,0)%,2))  (e)2)
““_—L"_“_‘ (s ¥) + +
(1) ((e,1)*,12)
(e, ((e,08) (e, ; :
+ + + (some x)
(9% o)
+ +
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leno = i’s €a y) . v
T (@900 (@
no z (e,2) ((e,2), 1)
((e’t)’((evt)’t)) (evt) _t P
(1), ) (e,0)
t
d.
[no = 5 €a y)
a Yy
? ((&,6), ((,8),8) (&,8)
not every z (e, 1) (= 7) ((e, t),t)

((e,t), ((e,t),t)) (e,t) ———= (not every x)
((e’t),t) (e’t)

t

Proof 5 every M is a P, every S is a M/ every S is a P (barbara).

every M is a P, every S is a P every S isa P
(every M)# is a P, (every S)* isa M™ [ (every S)# isa P marking
(every M)# is a P, (every S)* is a P s (every S)* isa P monotonicity

Proof 6 every M is a P, some S is ¢ M/ some S is a P (darii).

every M is a P, some S is a P some Sisa P
(every M)# is a P, (some S)# is a M+ [ (some S)* is a P marking
(every M)# is a P, (some S)#* isa P s (some S)# isa P monotonicity

Proof 7 no M is a P, every S is a M/ no S is a P (celarent).

no M is a P, every Sisa M no SisaP

(no M)# is a P, (every S)* isa M (no S)# isa P marking
(every S)* is a M, (some S)* isa P (some M)# isa P " nepation
(every S)* is a M, (some ST)* isa P 3 (some M)¥ isa P marking
(every S)# is a M, (some M)# is a P & (some M)# isa P monotonicity

Proof 8 no M is a P, some S is a M/ not every S is a P (ferio).

no M isa P, some Sisa M not every S is a P

(no M)# is a P, (some S)# isa M ) (not every S)* isa P marking
(some S)* is a M, (every S)*isa P ¢ (some M)* isa P aegation
(some ST)# is a M, (every S)* isa P ¢ (some M)* isa P mesking
(some P)# is a M, (every S)#isa P ¢ (some M)¥ isa P monotonicity

(some M)# is a P, (every S)* isa P & (some M)* is a P conversion
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2 REASONING WITH DISCOURSE REFERENTS

Until now we have been working with a Natural Logic in which proper names do not play a relevant
role in the derivations. This situation will be changed in the present section. We shall show that
CNL can be used to explain inferences between different readings of one and the same string.
We claim that the incorporation of Kamp’s treatment of indefinite descriptions to CNL allows us
to model this kind of inference. Moreover, we shall also show that by accommodating Kamp’s
proposal into CNL we are able to give a natural explanation of several other inferences as well.
As a matter of fact, CNL now takes the form in which one gives intuitive explanations of Beth’s
tableaus. Not surprisingly the generative strength of CNL is enhanced considerably. We assume
the marking and negation rules introduced in Section 1. Next, we add the following monotonicity
and discourse referent rules to the system:

MonNoToNICITY RULES
F(everyz)*, uisaz, X I Y wisaz, X I F(a z)*

F(every z)*, F(u), X Yy X F(a z)*, F(u)

Discourse REFERENT RULES

F(a z)#, X Y X F(every z)#

visazx, Flu), X I Y X,'u,isa.:cI F(u)

COMMENT Remember that if F(NP) is associated with a derivation D, then the tree associated
with F(u) can be determined unambiguously. We shall assume, clumsily, that discourse referent

rules do not apply to expressions of the form u is an X when X is a lexical common noun.
Otherwise we would be captured in an infinite tableau.

2.1 EXAMPLES OF REASONING WITH DISCOURSE REFERENTS

Inference 6 bobo swims, bobo is a fish / a fish swims
Analyses 6

a.

a fish  swims

((e,2),8) (&)

+
t
b. Analyses 4 a. and c.
Proof 9
bobo is a fish, bobo swims a fish swims marking
(a fish)®T swims marking
o bobo swims monotonicity

Inference 7 a man loves a woman/a man loves a woman.

This sequent has a trivial proof: provide the premiss and the conclusion with the same analysis.
But it has also a less trivial proof when we associate premiss and conclusion with different analyses.
The use of the discourse referents allows us to show that CNL can give a proof of the less trivial
case.
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Analyses 7
a.
loves
a man (e’ (e, t)) €awoman
((e,t),2) (e,2)
+
———‘tt (a woman) a woman
(e,t) ((e,1), )
+
t
b.
loves
(6, (6, t)) €a woman
€a man (ea t)
——tt—(, woman) a woman
(et) ((e, ), 1)
+
(every man)
a man (e;) ’

((e;2),t)

We shall associate the premiss with Analysis 7 a. and the conclusion with Analysis 7 b.

Proof 10
a man loves a woman a man loves a woman
a man loves (a woman)# (a man)* loves a woman  merking
u i8 @ woman, a man loves u discourse referent
(@ man)# loves u ' marking
v is a man, v loves u discourse referent
v loves a woman monotonicity
v loves (a woman)* marking
s vlovesu monatonicity

COMMENT The introduction of the first discourse referent yields the string a man loves u. This
string is associated with Analysis 8 a. below. This derivation gives us new scope information which
is used in the subsequent marking. The new application of the discourse referent rule yields the
string v loves u associated with Analysis 8 b. Similarly, the first application of the monotonicity
rule yields the string v loves a woman associated with Analysis 8 c. below. From this last
derivation we extract the new monotonicity marking used in the continuation of the proof. The
result is the string v loves u associated with Analysis 8 b.
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Analyses 8
a.
loves u
a man _____(e,(e,t)) °
((e,2),1) (e,t)
+
t
b.
loves
(e, (e,t)) €
€ (e,)
t
c.
loves
(ea (6, t)) €a woman
e - (e, t)
—t_(, woman) a woman
(e,t) ((e,1),1)

+

t

Inference 8 every man loves a woman/every man loves a woman

Analyses 9
Ezamples 6 f. and g.
Proof 11
every man loves a woman p  every man loves a woman
every man loves (a woman)# b (every man)¥# loves a wOMAn merking
v 18 @ woman, every man loves v ¢ discourse reforent
u 8 a man b u loves a woman discourse reforent
p u loves (a woman)t marking
b u loves v monotonicity
(every man)* loves v b marking
u loves v ® monotonicity

We think that the previous examples should have convinced the reader of the viability of CNL as
a model of natural reasoning. In the next section we shall consider an extension which makes CNL
more flexible.

3 REASONING WITH BOOLEAN CONNECTIVES

A natural extension of CNL consists in the incorporation of Boolean connectives to the fragment.
The strategy we follow is a combination of the generalized conjunction and disjunction approach
and a monotonicity approach to propositional reasoning advanced by Peirce (see [Sanchez 1991])
adapted here to the method of semantic tableaus. We assume the tableau rules introduced so far
and add the following ones:
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PROPOSITIONAL RULES

A and B AorB ifAB
A B A B B A
A and B Y X A orB X if AB
B lv o als

Conjunctions and disjunction of other than sentential categories are regulated by the following
rules. Let A, B € a, and € (a,(a,a), where a is any complex category ending in ¢. Then

GENERALIZED CONJUNCTION RULES

F(Aand B)* o Y F(A and B)*
F(A),F(B) I Y

F(A) F(B)

Similarly, let A, B € a, or € (a,(a,a), where a is any complex category ending in t. Then

GENERALIZED DisjuNcTION RULES
Y ¢ F(Aor B)* F(A or B)Y,
Y I F(A),F(B)
F(A) F(B)

3.1 EXAMPLES OF REASONING WITH GENERALIZED BOOLEAN CONNECTIVES

Inference 9 heloise dances and sings/heloise dances

Analyses 10

and sings
dances (&%), ((e,0) (e,2))) (est)
heloise (&%) ((e,2), (est))
€ (e,1)
+
t
b.
eloise dances’

t
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Proof 12

heloise dances and sings heloise dances

heloise (dances and sings)*t marking

heloise dances generalized conjunction

Inference 10 heloise dances/heloise dances or sings

Analyses 11

a.
or sings
dances ((e’t)’ ((67 t)’(e7t))) (e, t)
t t t
heloise (,t) ((e,2), (1))
e (e, 1)
+
t
b.
heloise dances
e e,
t
Proof 13
heloise dances heloise dances or sings

heloise (dances or sings)™  marking

o heloise dances generalized disjunction

Inference 11 every man dances, every man sings/every man dances and sings

Analyses 12

and sings
dances (&%), ((e,1), (e;1))) (e52)
every man (e,t) ((e,2), (e,2))
((es2),t) (e;2)
+
t
b.

every man dances

((e,8),t) (&)
+

t

35
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c.
every man sings
((e,t),t) (&)
+
t
Proof 14

every man dances, every man $ings every man dances and sings

(every man)™ dances and singsmarking

 is @ man u dances and sings discourse referent

(every man)* dances

marking

u dances

monotonicity

(every man)* sings

marking

U 8ings

monotonicity

u (dances and sings)*t marking

u dances

U sings generalized conjunction

Inference 12 a man dances or sings/a man dances or a man sings

Analyses 13

or sing.s
dances ((e,t),((e,t),(e,t))) (e,t)
a man (e’t) ((eat), (e’t))
((e,2),) (e,t)
+
t
b.

a man Sings
a man  dances or ((e’t)’t) (ev t)
((e,2),8) (est) (4, (% t)) t
t (t,t)
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Proof 15

a man dances or sings a man dances or a man sings

(a man)t dances or sings marking
u is a man,u dances or §ings discourse referent
u (dances or sings)* marking

a man dances, a man $ings propositional logic

(a man)* dances, (a man)t sings merxing

u dances, u sings monotonicity

u dances U Sings

generalized disjunction

4 PROSPECTS: ANAPHORIC REASONING

The system described in the previous pages does not consider natural reasoning in which anaphor-
ical phenomena are prominent. This is a serious drawback because in any kind of discourse,
anaphora seem to play an important role. With regard to such inferences, CNL can only be used
when we presuppose that the derivations produced by the Lambek Grammar are supplemented
with an anaphorical analysis. Let us assume that the sentences analysed by the grammar are
provided with anaphoric information, for instance linking pronoun and antecedens by means of
indices. We then assume the rules introduced so far with the following modification of the marking
rule and the closure condition on nodes:

EXTENDED MARKING

X AY A X Y
X I A% Y A* X I Y

where A* is a monotonicity, scope or anaphoric marking of A provided by the fixed Lambek
analysis and the anaphoric indexing of A . A node will be closed when the same expression with

the same scope and anaphoric marking occurs at both sides. Next, we add a general rule for the
treatment of anaphora:

ProNnouN RULES

X F(Prong), Y F(u), X I Y
X I F(u), Y F(Prong), X ¢ Y
provided that expression u of type e has been introduced in place of the marked antecedent of

Prony, at a previous stage in the construction of the tableau.

ILLUSTRATION

(a man)¥ admires a woman who respects him;
u 1 a man,u admires a woman who respects him; discourss referent

u admires a woman who respects u pronoun rule

Our general pronouns rule allows us to postpone the elimination of the pronoun. For instance the
previous sentence could be processed as follows:
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ILLUSTRATION

(a man)# admires a woman who respects him;

u ts @ man, v admires a woman who respects him; discourse referent
u admires (¢ woman who respects him;)# marking

v 18 a woman who respects him; v admires v diseourse referent
v 18 a woman who respects u pronoun rule

We shall give examples of inferences in which anaphoric marking is important. We would want
these examples to be seen the following way: given the premiss and both their Lambek analyses and
their markings, the system shows that the conclusion follows. But we do not provide a mechanism
for obtaining the anaphoric marking from the Lambek derivations. We only want to show the
empirical strength of CNL when the anaphoric marking is given.

4.1 EXAMPLES OF REASONING WITH ANAPHORA

Inference 13 a man dances or sings/a man dances or he sings
Analyses 14

a. Analysis 13 a.

b.

sings

a man dances or e (&)

((et),t)  (est) (4(%:1)) t
i (t,2)

ANAPHORIC MARKING (a man); dances or he; sings

Proof 16
a man dances or sings » a man dances or he sings
(a man)# dances or sings b (a man)} dances or he; sings marking
u t8 @ man,u dances or sings discourse referent
u (dances or sings)™ ¢ marking

b (a man)} dances, he; sings prop.logic

b u dances monotonicity

U Sings pronoun rule

u daTLCes u sings generalized disjunction



Section 4.  Prospects: Anaphoric Reasoning

Inference 14 every man loves himself/every man loves a man

Analyses 15
a.
loves himself
every man (e, (e, 1)) e
((e,2),¢) (e,t)
+
t
b.

loves

(e (e, 1))

€a man

(e:?)

(a man)

eevery man

_t_
(e,)

(e, 8).8)
+

every man
((e,1), %)
+

= (every man)

(e,)

t

ANAPHORIC MARKING (every man); loves himself;

Proof 17

every man loves himsel f .
(every man)} loves himself; ¢

U 18 a man b

u loves himsel f; b

u loves u .

Inference 15 if a man is a man he doesn’t cry/no man cries

Analyses 16

a.

every man loves a man

(every man)™ loves a Man marking

u loves a man
u loves (a man)*

u loves u

discourse referent

39

marking
monotonicity
monotonicity
pronoun rule
doesn’t cry
he ((e,), (est)) (e,t)
e (e,t)

(t,2)
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no man  Cries
((e,t),t) (&)
+
t

ANAPHORIC MARKING if (a man); is a man he; doesn't cry

Proof 18
if (a man); is a man he; doesn't cry ¢ mno man cries
if a man is a man he doesn't cry (no man)#cries marking

negation

(@ man)#cries

u 1S @ man, u cries

discourse referent

prop.logic he; doesn't cry (a man); is a man  prop.1ogic

pronoun rule u doesnlt cry (a man)j’ 8 @ man marking

u 1S a man monotonicity

negation

(In the following inference we assume that is a X who VP is equivalent to u is a X and u VP).

Inference 16 if a man owns a donkey he beats it/every man who owns a donkey beats it.

Analyses 17

(e.(e8) ¢
el (e,?)
_t a donkey
(e,) ((e,2),t)
a man i, ‘
e, t), "~ (eyt) beats
g P L (e(et)
(t, (t,t)) t € (e;t)
(t,t) (t,t)
t
b.

beats it
every man who owns a donkey _(e;(e_,iLi
((e, 1), 1) (e,t)
+

ANAPHORIC MARKING
if (a man); owns(a donkey); he; beats it;
every man who owns(a donkey)y beats ity
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Proof 19
if a man_owns a donkey ¢ every man who owns a donkey
he beats it beats it
if (a man); owns (a donkey); - ¢ (every man who owns
hei beats Zt] (a donkey)k)# beats itk marking
u is @ man who owns(a donkey)r ¢ u beats ity discourse referent
u is a man, u owns(a donkey)r ¢ assumption
u owns(a donkey)# b marking
U is a donkey, U owns v p discourse referent
U beats v pronoun rule
prop.logic  he; beats it; . ?a man); owns
. a donkey); logi
pronoun rule U beats Zt] _g)" prop.logic
L (a man)] owns
pronoun rule u bea,ts v . a donkey)] marking

L u owns (a donkey); monotonicity

b U owns v pronoun rule

COMMENT Geach’s Donkey sentences were introduced in [Geach 1962] to show the limitations of
a naive monotonicity calculus. [Van Benthem 1987] illustrates the problem with this reasoning:

a (man who owns a garden)™ sprinkles it
every man who owns a garden owns a house
a man who owns a house sprinkles it

This example can be used to show the inadequacy of a monotonicity calculus vis a vis anaphoric
phenomena. Geach’s proposal for the treatment of this counter-example consisted in denying that
the expression X who TV a Y occurs as a logical unity in donkey sentences. This is a radical
solution which we do not need have to accept. As Van Benthem himself observes, the problem here
is one of anaphoric annotation and it affects only a naive monotonicity calculus. In the present
form of CNL the above example is not derivable.

Let us conclude this report with an assessment of the situation. The intended anaphoric reading
of the above sentences is, of course,

e a man who owns (agarden); sprinkles it;

e a man who owns (ahouse); sprinkles it;
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In our CNL Van Benthem’s example takes the form

a man who owns a garden sprinkles it, v a man who owns a house sprinkles it
every man who owns a garden owns a house
a(man who owns (a garden)i)™ a man who owns (a house); sprinkles it;

sprinkles ity

every man who owns a garden
18 man who owns a house

a man who owns a house sprinkles ity 3

But the string a man who owns a house sprinkles it does not show the same pattern of anaphoric
marking in both its occurrences. Consequently, the tableau will not close. Notice that we can still
provide a proof of the following inferences:

e a man who owns a small garden sprinkles it/ a man who owns a garden sprinkles it.
¢ a small man who owns a garden sprinkles it/ a man who owns a garden sprinkles it.
e a man who owns a garden sprinkles it / a man who owns or rents a garden sprinkles it.

The point is that these new cases do not disturb the anaphoric marking of the premiss.



CHAPTER V

CONCLUDING REMARKS

In this report we have been engaged in the construction of a realistic model for natural reasoning.
The empirical strength of CNL has been demonstrated by applying it to several standard examples
of natural reasoning. The architecture of CNL described in this report involves the principles of

e monotonicity
¢ discourse referent introduction
e substitution of anaphora
e generalized Boolean coordination
We have shown that prerequisites for these principles are:
o 3 system of monotonicity marking
e 3 system of wide scope marking
e a system of anaphoric marking
e a general definition of coordination.

In a certain sense, the monotonicity rule of section 1 becomes superfluous as soon as we introduce
the monotonicity rules of section 2. However, a simple extension of the English fragment, containing
non-first order determiners like most or few makes them indispensable. The point is that we still
lack reduction rules based on discourse referents for Noun Phrases built up from such determiners.
This report gives a system of monotonicity and wide scope marking and uses a common definition
of coordination across all Boolean categories. But, it presupposes a theory of anaphoric marking.
Further research on the Lambek Grammar itself should (and can) result in such a theory.
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Chapter V. Concluding remarks
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