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1. Introduction

It has been suggested that circular definitions are the “next step beyond
inductive definitions”. On a somewhat superficial level, this seems to be
corroborated by the fact that the inductively definable sets are exactly
the Π1

1 sets while the circularly definable sets are exactly the Π1
2 sets.

In this note, we shall discuss the underlying methodology of induc-
tive definitions and circular definitions, and see that they are quite
different: while inductive definability is a lightface (parameter-free)
concept, circular definitions as presented in (Gupta & Belnap, 1993)
are essentially boldface (using arbitrary parameters in the process).

Therefore, comparing inductive definitions and circular definitions
is comparing apples and oranges.

To make these notions comparable, we shall define both a light-
face version of circular definability (Section 2) and a boldface version
of inductive definability (Section 5), and comment on their relation-
ship. A lightface version of circular definitions has been investigated in
(Burgess, 1986) under the name of arithmetic quasi-inductive def-
initions, and it gives an interesting counterpoint to Welch’s solution
of the limit rule problem of revision theory: for boldface circular defini-
tions, the limit rules don’t matter for the complexity of the definition
concept, whereas for lightface circular definitions, the limit rules play
an important rôle (Section 4). Then, in Section 5, we show that we can
define a Π1

2-complete set with our boldface inductive definitions.
These results highlight the point that complexity issues involving

non-monotonicity are much more subtle than the superficial Π1
1 vs Π1
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dichotomy mentioned above. Still, there could be some way in which
inductive and circular definitions form different levels of a hierarchy.
We discuss this in terms of game representations in Section 6.

Prerequisites. This paper presupposes some knowledge of mathe-
matical logic, in particular basic notions of model theory and the set
theory of the constructible hierarchy. The books (Moschovakis, 1974),
(Barwise, 1975), (Moschovakis, 1980) and (Devlin, 1984) can serve as
references. In particular, Lα denotes the αth level of the constructible
hierarchy. We use the symbols Even and Odd to denote the sets of even
and odd natural numbers, respectively.

We assume familiarity with the motivations and the background
of revision theory of truth, but introduce all necessary definitions in
Section 2.
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2. Circular Definitions

In the Revision Theory of Truth we have a base language L which
we shall fix for reasons of simplicity as the language of first-order
arithmetic for this paper. As usual, the goal is to define the extension
of an additional predicate ẋ by semantic rules. For reasons of simplicity
of the exposition, we shall restrict ourselves to work over the ground
model N (the standard model of arithmetic). We shall call a set h ⊆ N
a real or real number (because of the well-known embedding of the
powerset of the natural numbers into the real numbers). Sometimes,
we shall also call it a hypothesis (on the denotation level, the terms
“real” and “hypothesis” will be synonymous in this paper). For the
following definitions, let us fix a set S ⊆ ℘(N) of hypotheses and a
hyperarithmetic operator δ on reals, called the revision operator.

In the following we shall consider sequences of reals ~s = 〈sα ; α ∈ η〉
where η is either a limit ordinal or the class of all ordinals.

DEFINITION 2.1. Let ~s be a sequence of reals of length η (η might be
the class of all ordinals), and let d be a natural number. We shall say
that “d ∈ ẋ” is ~s-stably true if there is a β such that for all α ≥ β
we have d ∈ sα. The set of all d such that “d ∈ ẋ” is ~s-stably true will
be denoted by stab+(~s).

Likewise, we shall say that “d ∈ ẋ” is ~s–stably false if there is a β
such that for all α ≥ β we have d /∈ sα, and denote this set by stab−(~s).

DEFINITION 2.2. Let ~s be a sequence of reals. Then a real h is said to
be ~s–coherent (in symbols: Coh(h,~s)) if stab+(~s) ⊆ h and stab−(~s) ⊆
N \ h.

Note that, since stab+(~s) and stab−(~s) are disjoint, stab+(~s) is
always ~s-coherent. It is the minimal ~s-coherent real.

DEFINITION 2.3. We shall call a function γ assigning to a sequence
of reals ~s of limit length λ a real γ(~s) that is ~s–coherent a bootstrap-
ping policy.1 Classes of bootstrapping policies Γ will be called limit
rules.

Let h be a fixed real. Then γh defined by

γh(~s) := stab+(~s) ∪ (h \ stab−(~s))

is an example of a bootstrapping policy. An interesting special case is
when h = ∅, for which γ∅ is the liminf function. We let

γGupta(~s) := γs0(~s).

1 This is Belnap’s terminology.
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DEFINITION 2.4. If Γ is a limit rule, then we shall say that ~s is an
(ordinary) 〈δ, Γ,S〉–revision sequence if

(i) s0 ∈ S,

(ii) for all ordinals α, we have sα+1 = δ(sα), and

(iii) there is a γ ∈ Γ such that for each limit ordinal λ we have sλ =
γ(~s¹λ).

The most interesting cases of limit rules are the Belnap rule Γ∞

of all bootstrapping policies, the Gupta rule ΓGupta = {γGupta}, and
the fixed Gupta rules Γh := {γh}. An important special case is the
Herzberger rule, Γ∅.

DEFINITION 2.5. A real h is called 〈δ, Γ,S〉–recurring if h occurs
cofinally often in some 〈δ, Γ,S〉–revision sequence ~s of length Ord. The
set of 〈δ, Γ,S〉–recurring reals will be denoted by Recδ,Γ,S .

PROPOSITION 2.6. Let ~s = 〈sα ; α ∈ Ord〉 be a 〈δ, Γ,S〉-revision
sequence, then there is an α ∈ Ord such that for all β ≥ α, sβ is
〈δ, Γ,S〉-recurring.

Proof: Each non-recurring real h has some largest ordinal at which
it occurs, say αh. Since there is only a set of reals, α := sup{αh ; h is a
real} is an ordinal and obviously has the property claimed. q.e.d.

Though almost obvious, Proposition 2.6 gives the crucial motivation
for the definition of the semantic relation of the Gupta-Belnap systems:
If we revise long enough, there will be only recurring reals left, and so
the recurring reals are exactly the ones that survive revision.

With this motivation in mind, we can now define the semantic
relation for the Gupta–Belnap systems S∗:

N |=S∗

δ,Γ,S ϕ(ẋ) ⇐⇒

A

h ∈ Recδ,Γ,S(〈N, h〉 |= ϕ(ẋ)).

DEFINITION 2.7. We shall say that a real z is 〈Γ,S〉-revision the-

oretically definable (in symbols: z ∈ RTDΓ,S) if there is a hyper-
arithmetic operator δ such that for all natural numbers n the following
holds:

n ∈ z ⇐⇒ N |=S∗

δ,Γ,S “n ∈ ẋ”.
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Note that the parameter S in this definition is a new feature in
this paper. The original Gupta-Belnap approach of (Gupta & Belnap,
1993) uses the special case S = ℘(N) and Γ = Γ∞.2 At the other end of
the spectrum are Burgess’ arithmetical quasi-inductive definitions
(Burgess, 1986, § 13) where S = {∅}.3 Our parametrized definition
allows to explore the area between these two extremes. We call the
definability concept connected to RTDΓ,℘(N) boldface circular defi-
nitions and the definability concept connected to RTDΓ,∆1

1
lightface

circular definitions. Before discussing complexity issues further, let
us briefly discuss a possible philosophical methodology for the lightface
notion in the next section.

3. A brief argument for lightface circular definitions

In (Gupta & Belnap, 1993), Gupta and Belnap argue for the philo-
sophical soundness of their circular definitions, corresponding to our
RTDΓ,℘(N). They argue that a good notion of circular definition

“must satisfy two competing desiderata. On the one hand, it should
attribute to the defienda a rich content. On the other, the content
attributed should not be so rich as to violate the conservativeness
of definitions. (Gupta & Belnap, 1993, p. 146)”

In traditional revision theory of truth, the intersection over all recur-
ring reals corresponds to a restriction of arbitrariness: the truth-teller
stabilizes on true on the starting hypothesis true, and on false on the
starting hypothesis false, but neither of these stabilizing patterns alone
is enough to evaluate the truth-teller properly. Only the view at all (in
this case, two) possible revision sequences gives the proper analysis.

In order to ascertain that the restricted concepts RTDΓ,S are still
reasonable candidates for truth definitions, we have to ensure that by
restricting the set of starting hypotheses, we do not lose the power to
weed out arbitrariness. We shall not give a full philosophical argument
for that, but we want to point out some methodological problems with
RTDΓ,℘(N) and a point of view that is more favourable of the restricted
notions of circular definability. (For reasons of simplicity, let’s fix Γ =
Γ∅ for this section.)

Impredicativity of the boldface concept of circular defini-
tions. One of the troubles of RTDΓ,℘(N) is that the underlying concept

2 We write RTDΓ := RTDΓ,℘(N).
3 Properly speaking, this would be “hyperarithmetical quasi-inductive defini-

tions”. Burgess allows only arithmetical operators δ where we allow hyperarith-
metical operators, yet there is no relevant effect on complexity issues.
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of definability is impredicative or self-referential in an informal
sense4: If x ∈ RTDΓ,℘(N), and you want to know whether n ∈ x, then
you have to check all revision sequences, including the one starting with
x. In other words, the starting hypotheses should come from some set of
things defined by a definability notion strictly simpler than the circular
definitions we are trying to implement here. One option (the one we
chose) is to restrict ourselves to hyperarithmetic starting hypotheses,
so we stay within the realm of inductively definable sets.

Plausibility arguments for the lightface concept. Now let us
give two scenarios that show how one could argue for the restricted
versions of circular definitions of truth.
Scenario I. Imagine (in an approximation of Hintikka-style game the-
oretic semantics) the circular definition as an interaction of two players,
the revisionist and the spoiler. The players are given a real x and
should decide whether it is circularly definable. Between them is a
machine that can perform the revision process: given a starting hypoth-
esis h and a revision rule δ, it displays the entire revision sequence to
both players.5 The revisionist claims that x is circularly definable and
provides a revision rule δ. The spoiler now has to present a starting
hypothesis h, the players feed h and δ in the machine, stare at the
display where the machine calculates ~s with s0 = h, and the revisionist
wins if there is some α such that n ∈ sβ for all β > α.

If you take the two players as entities with bounded resources (hu-
man beings, or computers), then the sentence

“the spoiler now has to present a starting hypothesis h”

implies that h must be given in some definable way, for otherwise, the
spoiler could not present it.

Scenario II. Going back to the original application of circular defini-
tions, the theory of truth, what is the standard philosophical technique
to test a theory of truth? We normally test it against our intuitions.
When given a set of sentences that is not too complicated, we have
intuitions about what the proper truth values should be, and we can
compare them to the outcome of the technical theory of truth that is
being tested. A large part of the monograph (Gupta & Belnap, 1993)
deals with this technique: different approaches are tested against stan-
dard examples. If taken seriously, this yields a natural sciences method-
ology to philosophical concept analysis that takes empirical inductive

4 Of course, in the formal sense of proof theory, even inductive definitions are
impredicative. For a discussion of the borders of predicativity, cf. (Simpson, 2002).

5 Note that by Burgess’ converse of Theorem 4.3, the machine is essentially
performing a task which is Σ2 over L%0

, so it is not a machine whose action can be
defined inductively.
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corroboration as measure of quality of a concept analysis.6 Here, the
empirical data are our intuitions of truth formed by experience.

Whether we have any deep intuitions about very complicated sets
can be arguably denied. Therefore, if a circular concept of truth is
to be tested and rejected, the counterexample (i.e., the example of
sentences such that the intuition gives a different analysis than the
formal circular definition) must be simple enough to be in the realm of
our intuitions. Of course, it depends on your foundational convictions
what you consider to be accessible by intuitions.7

As mentioned, Scenario I and Scenario II serve as arguments
against RTDΓ,℘(N) and for some RTDΓ,S where S consists only of
definable reals of the right kind. They cannot provide more detailed
insight into what could be the most fitting class of circular definitions.
This would require more detailed work in both analyzing the con-
cepts of iterating definability notions and the mathematical structure
of revision.

4. The complexity of circular definitions

4.1. Arbitrary starting hypotheses.

The Limit Rule Problem of Revision Theory asked whether the
parameter Γ is relevant for the notion of revision theoretic definability.8

It was solved in the negative in the case S = ℘(N):

THEOREM 4.1 (Welch 1999). Let Γ be any limit rule. Then every Π1
2

subset of Even is in RTDΓ = RTDΓ,℘(N). In particular this is true

for Π1
2-complete subsets of Even, so there are examples of extremely

complicated sets in RTDΓ.

Let us give a brief sketch of the relevant part of the argument and
explain why the assumption S = ℘(N) is necessary here:

We say that a level Lα of the constructible hierarchy has the Σ1

hull property if each element x ∈ Lα is definable by a Σ1-Skolem

6 Surely, not all readers will agree with this reduction of philosophical logic to
something called mathematical modelling in the applied mathematics commu-
nity.

7 Note that this is also the methodology underlying the definition of realistically
varied revision sequences to deal with the Π1

3 complexity of the fully varied revision
sequences in (Welch, 2001, p. 355).

8 For a more detailed discussion, cf. (Welch, 2001, Theorem 2.1) and (Löwe &
Welch, 2001, § 4); for a full proof of Theorem 4.1, cf. (Welch, 2003, Theorem 2.1).
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term inside Lα. We say that a real h ⊆ N is a good code if h∩Even is
a code for the Π1 theory of a level of the constructible hierarchy with
the Σ1 hull property. It is easy to see9 that a set p ⊆ Even is Π1

2 if and
only if there is a total recursive function fp : Even → Even such that

x ∈ p ⇐⇒ fp(x) is an element of every good code.

For each Π1
2 set p ⊆ Even, we can now construct a hyperarith-

metic revision operator δp such that the following two conditions hold
(regardless of the choice of Γ):

(i) If you start a 〈δp, Γ〉-revision sequence ~s with a hypothesis s0 = h
such that

(h ∩ Odd) ∪ {fp(x) ; x ∈ h ∩ Even}

is not a good code, then there is some β such that for all η > β,
sη = N.

(ii) If you start a 〈δp, Γ〉-revision sequence ~s with a hypothesis s0 = h
such that

(h ∩ Odd) ∪ {fp(x) ; x ∈ h ∩ Even}

is a good code, then h ∩ Even is recurring in ~s and all recurring
reals in ~s are of the form X ∪ (h ∩ Even) where X ⊆ Odd.

COROLLARY 4.2. The intersection p∗ of all 〈δp, Γ, ℘(N)〉-recurring
reals is p.

Proof. Let h ⊆ Even be a good code. By (ii), h is recurring in the
revision sequence starting with h, so in particular, p∗ is a subset of
Even.

If c ⊆ Even is a good code, we can let revision sequences start with
f−1

p [c] and get this set as a recurring real. Thus, by (i) and (ii), we have

p∗ =
⋂

{h ⊆ Even ; {fp(x) ; x ∈ h} is a good code}

and so p∗ = p. q.e.d.

For the simpler rules Γ (e.g., Γ∅, Γ∞, and Γh for h ∈ ∆1
2), a simple

computation10 shows that reals in RTDΓ,℘(N) are Π1
2, so Theorem 4.1

gives an exact characterization of the definable reals.

9 Cf. (Löwe & Welch, 2001, p. 37).
10 Cf. (Löwe & Welch, 2001, Proposition 4.1).
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4.2. Hyperarithmetic starting hypotheses and the

Herzberger limit rule.

Clearly, this proof uses the fact that we include also revision sequences
with very complicated starting hypotheses in our intersection. Burgess
has shown in his (Burgess, 1986) that this cannot be avoided for Herz-
berger sequences. An ordinal % is called Σ2-end extendible if there is
some σ > % such that L% ≺Σ2 Lσ. Let %0 be the least Σ2-end extendible.
It is well-known that sets definable over L%0 are ∆1

2.

THEOREM 4.3 (Burgess). Every set of natural numbers in RTDΓ∅,{∅}

is Σ2 over L%0.

Actually, the two concepts mentioned in Theorem 4.3 are even equiv-
alent. For a proof, cf. (Burgess, 1986, Theorem 14.1). Using the fact
that %0 is an admissible limit of admissibles, Burgess’ theorem is readily
extended to yield:

COROLLARY 4.4. Every set of natural numbers in RTDΓ∅,∆1
1

is Σ2

over L%0.

Proof. Let 〈xn ; n ∈ N〉 be an enumeration of the hyperarithmetic
hypotheses. This enumeration can be found in L%0 . Recursively parti-
tion the natural numbers into infinitely many infinite sets 〈Nn ; n ∈ N〉
with bijections bn : Nn → N. Let h∗ :=

⋃

n∈N b−1
n+1[xn]. Clearly, h∗ is

an element of L%0 , so by (the proof of) Theorem 4.3, for each hyper-
arithmetic revision operator the intersection of all reals recurring in the
revision sequence starting with h∗ is Σ2 over L%0 .

Let δ be a hyperarithmetic operator, and let z ∈ RTDΓ∅,∆1
1

be

defined by δ. Define

δ∗(h) :=
⋃

n∈N

b−1
n+1 [δ (bn+1 [h ∩ Nn+1])] ∪ b−1

0





⋂

n∈N

δ (bn+1 [h ∩ Nn+1])



 .

In other words, for each hyperarithmetic real xn, we run the δ-revision
sequence on Nn and have on N0 the intersection of the reals on the Nn

(for n ≥ 1).
Call the resulting sequence ~s. Let R be the set of reals recurring in

~s, and x :=
⋂

R. It is easy to see that x ∩ N0 = z. But since x is Σ2

over L%0 , z is also Σ2 over L%0 . q.e.d.

COROLLARY 4.5. Every set of natural numbers in RTDΓ∅,∆1
1

is ∆1
2.

In particular, no Π1
2-complete set is in RTDΓ∅,∆1

1
.
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4.3. Hyperarithmetic starting hypotheses and the Belnap

limit rule.

From the Herzberger rules, we now move to the Belnap rules. We use
the fact that Belnap rules can generate arbitrary complexity out of an
infinite set of unstable points at a limit to show that Belnap rules can
define complicated sets from simple starting hypotheses:

THEOREM 4.6. Every Π1
2 subset of Even is in RTDΓ∞,∆1

1
.

Proof. We fix a Π1
2 set p ⊆ Even and intend to define a revision

operator δ∗p such that the intersection of all 〈δ∗p, Γ∞, ∆1
1〉-recurring reals

is p. In this construction, we shall use the operator δp (cf. Section 4.1).
We split up the natural numbers in three parts: Even, Odd1 =

{n ; n ≡ 1 (mod 4)}, and Odd3 = {n ; n ≡ 3 (mod 4)}. We shall
define a hyperarithmetic operator δ∗p that simulates the operator δp

from Section 4.1 on Even ∪ Odd1 and uses Odd3 as counting space.
The rough idea is that δ∗p will work in three steps: It will count to

ω on Odd3 and at each step toggle all entries on Even ∪ Odd1; after
ω steps, the Belnap rule has complete freedom to choose the entries
of Even ∪ Odd1 (so some such revision sequences will pick preimages
of good codes); from that point on, we continue with δp restricted to
Even ∪ Odd1, and will end up with either p or N in the end as in the
argument for Corollary 4.2.

Let us call c ⊆ Odd3 a countdown if there is some n ∈ N such
that 4k + 3 ∈ c if and only if k ≥ n. If c = {4k + 3 ; k ≥ n} is a
countdown, we define step(c) := {4k + 3 ; k ≥ n + 1}. In addition to
the step function, we define a flip function for the rest of N:

n ∈ flip(h) ⇐⇒ n ∈ (N\h) ∩ (Even ∪ Odd1).

For h ⊆ N let h0 := h ∩ Even, h1 := h ∩ Odd1 and h2 := h ∩ Odd3. If
h ⊆ N, we define squeeze(h) := {4k + 1 ; 2k + 1 ∈ h} ∪ (h ∩ Even), and
if h ⊆ Odd1, we let stretch(h) := {2k +1 ; 4k +1 ∈ h}. We define δ∗p(h)
as follows:

Case 1. If h2 is a countdown, then we let

δ∗p(h) := flip(h0 ∪ h1) ∪ step(h2).

Case 2. If h2 is not a countdown, then

δ∗p(h) := squeeze(δp(h0 ∪ stretch(h1))).

Let us look at an arbitrary hypothesis h ⊆ N and the possible
Belnap revision sequences that start with h. Let ~s be a 〈δ∗p, Γ∞〉-revision
sequence with s0 = h.



11

Case A. If h2 is not a countdown, the operator δ∗p deletes Odd3 and
essentially behaves as δp while ignoring the elements of Odd3.

Subcase A.1. If fp[h0] is not a good code, the sequence defaults to
Even ∪ Odd1 at some point, so these are the only recurring reals.

Subcase A.2. If fp[h0] is a good code, the recurring reals are X∪Y
where X is a code of the Π1 theory of an Lα with the Σ1 hull property
and Y is a subset of Odd1.

Case B. If h2 is a countdown, the operator δ∗p starts counting on
Odd3 to ω while flipping the rest of the integers. After ω steps following
this pattern, all of the elements of Odd3 are stably out, and all other
elements are unstable. Thus sω can be an arbitrary subset of Even ∪
Odd1. In particular, (sω)2 is not a countdown, so we’re in Case A.

In order to prove the theorem, we need to show for all good codes
g ⊆ Even, the sets f−1

p [g] occur as recurring sequences: Start to present
a revision sequence ~s with s0 = h = Odd3. Clearly, h2 is a countdown,
the sequence starts with Case B, and with the Belnap limit rule, we
can freely choose a subset of Even ∪ Odd1 as sω.11 Just choose f−1

p [g].

By Subcase A.2, f−1
p [g] is recurring in ~s. q.e.d.

As promised, Corollary 4.5 and Theorem 4.6 yield a counterpoint to
Theorem 4.1: if we restrict the starting hypotheses to hyperarithmetic
sets, then the choice of the limit rule does matter for the complexity of
the definability notion.

This answers the question

Where does the complexity of revision come from? :

It is not the process of revision alone that makes circular definitions
Π1

2 as can be seen in Corollary 4.5, it is either the intersection over all
starting hypotheses (“external universal quantifier”) or the choice of a
powerful (nondeterministic) limit rule.

4.4. A remark on pointer semantics

We would like to mention that there is a remarkable discrepancy be-
tween the complexity of revision theory and the examples of applica-
tions of revision theory in philosophy. In most cases, we are interested in
either finite or very simple infinite sets of sentences, mostly expressible
in some propositional language. This is something that could be easily
expressed in a very basic logic (propositional logic with pointers), and
doesn’t need the coding apparatus of arithmetic. This is the approach

11 Note that this is the only application of the limit rule Γ∞ needed. Consequently,
the proof works for the limit rule Γexc consisting of all bootstrapping policies that
follow the Herzberger policy γ∅ with at most one exception.
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of Gaifman’s Pointer Semantics.12 While very different from the
discussions in this paper, it is an interesting endeavour to look at the
complexity of these propositional logics involving pointers without the
power of arithmetic.13

5. Inductive Definitions with parameters

In this section we present a boldface version of the theory of inductive
definitions following the pattern from revision theory.

We call a revision operator δ : ℘(N) → ℘(N) monotone if for all
h, h∗ ∈ ℘(N) with h ⊆ h∗, we have δ(h) ⊆ δ(h∗). We call it increasing
if h ⊆ δ(h).

LEMMA 5.1. Let δ be an increasing revision operator, and Γ and Γ∗

two different limit rules. If h is an arbitrary real, ~s a 〈δ, Γ, {h}〉-revision
sequence, and ~s∗ a 〈δ, Γ∗, {h}〉-revision sequence, then ~s = ~s∗.

Moreover, for every bootstrapping policy γ and every revision se-
quence ~s of limit length λ, we have

γ(~s) =
⋃

{sα ; α < λ}.

Proof. It is enough to show that for any sequence ~t of limit length λ,
and any bootstrapping policy γ, γ(~t) = γ∅(~t).

Suppose n ∈ γ(~t), then by the definition of bootstrapping policy
there must be some α < λ such that n ∈ tα. But because δ is increasing,
the number n can never leave the reals of ~t after α, so n ∈ stab+(~t)
and consequently, n ∈ γ∅(~t). q.e.d.

Thus, if we restrict our attention to increasing revision operators,
we can ignore the differences of the limit rules.

COROLLARY 5.2. Let Γ and Γ∗ be two limit rules, δ an increasing
and monotone operator, S a set of hypotheses, and ~s be a sequence
of reals. Then ~s is a 〈δ, Γ,S〉-revision sequence if and only if it is a
〈δ, Γ∗,S〉-revision sequence.

12 Cf. (Gaifman, 1988; Gaifman, 1992; Cook, ∞).
13 In this context, it is interesting to remark that finite model theorists have been

looking at propositional versions of inductive definitions for a while, and recently,
Kreutzer has (without any previous knowledge of the revision theory literature)
proposed an alternative definition for so-called “partial fixed-point logics” on infinite
structures that turns out to be arithmetic quasi-inductive definitions (Kreutzer,
2002, Definition 3.3).
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An inductive definition can now be seen as a special form of a revi-
sion sequence using monotone and increasing operators. The following
definition is deliberately kept close to the definitions in Section 2:

DEFINITION 5.3. Let δ be a monotone and increasing operator and
S be a set of hypotheses. We call a sequence of reals ~s a (boldface)
〈δ,S〉–inductive definition if it is a 〈δ, Γ,S〉-revision sequence for
some (and hence by Corollary 5.2 all) limit rules Γ.

Further we can set

N |=IND
δ,S ϕ(ẋ) ⇐⇒

A

h ∈ Recδ,S(〈N, h〉 |= ϕ(ẋ)).

Notice that the previous definition as well as the next definition
make sense since it does not matter which limit rules are applied.

DEFINITION 5.4. We shall say that a real z is S-inductively de-

finable (in symbols: INDS) if there is a monotone hyperarithmetic
operator δ and a first order formula Φ(x, n) such that for all natural
numbers n we have

n ∈ z ⇐⇒ N |=IND
δ,S Φ(n, ẋ).

The case S = {∅} gives us some (slightly more liberal) version of the
usual (lightface) inductive definitions: usually (cf., e.g., (Moschovakis,
1974)) we would say that h is inductively definable if there is a real
h∗ that is {∅}-inductively definable with the formula Φ(n, ẋ) l n ∈ ẋ
and there is a recursive subset p ⊆ N such that h = p ∩ h∗. However,
IND{∅} gives us exactly the expressive power of Kreisel’s theory ID1 of

first-order non-iterated positive inductive definitions.14

The next proposition shows that there is a Π1
2-complete real defin-

able with our boldface inductive definitions. The proof can be easily
extended in the spirit of Theorem 4.6 to show that all Π1

2 reals can
be boldface inductively defined. Let SOdd be the set of all starting
hypotheses vanishing on the even bits.

PROPOSITION 5.5. There is a Π1
2-complete set in INDSOdd

.

Proof. We shall give a boldface inductive definition of the set of all
Π1 sentences ϕ that are true in all countable well-founded extensional
structures. We call this set p in this proof. It is well-known that p is
Π1

2-complete.

14 The class IND{∅} is roughly equivalent to the first-order closure of Π1
1 (i.e.,

Σ0
ω(Π1

1).)
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We shall define a monotone operator δ that builds the accessible part
of the binary relation coded by the complement of the odd part of the
starting hypothesis (using the complement ensures that δ is monotone).

We can interpret h as a binary relation via its complement as follows:

nEhm ⇐⇒ 2 · pn, mq + 1 /∈ h.

We try to exhaust the structure 〈N, Eh〉 by an induction and use
Even to list those elements of N that we already reached.

Formally, we define δ as follows:

δ(h) := h ∪ {2m ;

A

n(nEhm → 2n ∈ h)}.

The operator is clearly hyperarithmetic and increasing. Because of
the negation in the definition of Eh, the formula defining δ is positive
in h, and therefore δ is monotone.

It is obvious that the recurring reals of the operator δ are exactly
the reals h such that h∩Even codes the accessible part of the relation
coded in the above sense by h ∩ Odd.

Now let us define a formula Φ as follows. We call a real h exten-
sional if Eh is an extensional relation, i.e., if

ext(h) l

A

n, m ((

A

k(kEhn ↔ kEhm)) → n = m)

holds. Note that a relation Eh is extensional and well-founded if and
only if revision by δ eventually fills in all of the elements of Even. Fix
a recursive list {ϕn ; n ∈ N} of all Π1 sentences of the language of set
theory. There is a first order formula sat(n, h) such that

sat(n, h) ⇐⇒ 〈N, Eh〉 |= φn.

Now let

Φ(n, h) l (ext(h) & Even ⊆ h) → sat(n, h).

By the above remarks, δ and Φ provide a boldface inductive definition
of p by

n ∈ p ⇐⇒ N |=IND
δ,SOdd

Φ(n, ẋ).

q.e.d.
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6. Game representations

The key concept to connect definability classes to games is the notion of
a game quantifier. Game quantifiers can be interpreted as generalized
quantifiers or as (finite or infinite) strings of the usual quantifiers

A

and

E

. For example, the quantifier string

AEAE

can be interpreted as
a winning strategy for player II in a two-player game as follows:

Suppose we have a formula ϕ(x0, x1, x2, x3, x4) and want to describe
the set

Q := {x ;

A

x0

E

x1

A

x2

E

x3ϕ(x0, x1, x2, x3, x)}

in terms of games. Consider the set

Px := {〈x0, x1, x2, x3, x〉 ; ¬ϕ(x0, x1, x2, x3, x)}

as the payoff set for a game of two rounds in which player I plays x0

first, then player II plays x1, then player I plays x2, and finally player
II answers with x3. Let’s say that player I wins, if the sequence played
by players I and II together with x lies in Px. Then it’s obvious that
x lies in Q if and only if player II has a winning strategy in the game
with payoff Px.

We shall be looking at game representations through infinite games,
and we shall define a game quantifier for our purpose as follows (this
is the standard game quantifier from set theory):

First of all, we define a standard infinite game for sets T of reals
which we call the game on T .

Player I f(0) f(2) f(4) . . .
Player II f(1) f(3) f(5) . . .

Figure 1. The game on T

In this game, player I controls the even numbers and player II
controls the odd numbers. One by one, the players successively commu-
nicate their decisions about the numbers under their control by playing
f(n) ∈ {in, out}. After infinitely many steps as pictured in Figure 6,
the players have generated a function f which can be interpreted as a
real hf by n ∈ hf : ⇐⇒ f(n) = in. We say that player I wins a run of
this game if hf ∈ T , otherwise we say player II wins.

If R ⊆ N × ℘(N), we write

Rn := {h ; 〈n, h〉 ∈ R}

for every natural number n ∈ N. This is a set of reals, so we can play
games on Rn. Now we can define

G

R ∈ ℘(N) to be the real

G

R := {n ; Player I has a winning strategy in the game on Rn}.
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If Ξ is a complexity class (e.g., Σ0
1, or Σ1

1), we can define

G

Ξ by setting

G

Ξ = {h ;

E

R ∈ ℘(N × ℘(N)) ∩ Ξ (h =

G

R) }.

We call a set D ⊆ ℘(N) of reals a class of definitions if there
is some concept of definition such that the elements of D are exactly
those reals which are definable according to that concept. (Of course,
this is an informal definition building on the undefined notion of “con-
cept of definition”.) We say that a class of definitions D has a game
representation by a complexity class Ξ if D =

G

Ξ. In words, this
means that to each definable real d we can associate a family of games
in Ξ such that n ∈ d if and only if player I wins the nth game.

One of the most famous game examples is the already mentioned
representation of inductive sets by open games due to Moschovakis
(Moschovakis, 1972):

THEOREM 6.1. The class Ind has a complete game representation by
the class Σ0

1 of (lightface) open relations, i.e.,

Ind =

G

Σ0
1.

From Theorem 4.1 we can now derive a game representation for
RTDΓ,℘(N) for simple limit rules Γ as an immediate corollary.15 Since

the class Π1
2 has a complete game representation under reasonable set

theoretic assumptions (viz. that of Σ1
1 determinacy)16, this represen-

tation transfers to the class of revision-theoretically definable reals as
well.

THEOREM 6.2 (ZFC + Det(Σ1
1)). For simple limit rules Γ (see foot-

note 15), we have RTDΓ,℘(N) =

G

Σ1
1.

Proof. By Theorem 4.1, we have to show that Π1
2 =

G

Σ1
1.

17

“⊇”: Let R ⊆ N×℘(N) be a Σ1
1 relation. We want to show that the

set

G

R = {n ; Player I has a winning strategy in the game on Cn} is
Π1

2. At first glance, the set is Σ1
3, since the definition gives us

n ∈

G

R ⇐⇒

E

σ

A

τ (〈n, σ ∗ τ〉 ∈ R).18

15 Again, as in Section 4.1, Γ = Γ∅, Γ = Γ∞, or Γ = Γh for some h ∈ ∆1
2.

16 We say that Σ1
1 determinacy holds (in symbols: Det(Σ1

1)) if h ⊆ P(N) is Σ1
1,

then the game on h has the property that either player I or player II has a winning
strategy. For details, cf. (Moschovakis, 1980, Section 6A).

17 In the proof, we shall ignore trivial technicalities: Of course, strategies are not
subsets of N but functions from finite sequences of natural numbers to natural
numbers, and they have to be coded in order to be in the scope of a genuine second-
order quantifier. Since this is all standard technical work in definability theory, we
omit the details here.

18 Here, σ ∗ τ denotes the unique set that is the outcome of the game if we let the
strategy σ play against the strategy τ .
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But since Rn is Σ1
1 and we’re assuming determinacy for these games,

the fact that I has a winning strategy is equivalent to II having no
winning strategy, i.e.,

n ∈

G

R ⇐⇒

A

τ

E

σ (〈n, σ ∗ τ〉 ∈ R)

which gives a Π1
2 description of

G

R.

“⊆”: Fix a Π1
2 real p. By definition, there is a Σ1

1 relation R ⊆
N × ℘(N) such that n ∈ p ⇐⇒

A

h (〈n, h〉 ∈ R). Define a new set R∗

by 〈n, h〉 ∈ R∗ : ⇐⇒ 〈n, h ∩ Odd〉 ∈ R. Note that R∗ is still Σ1
1 and

that p =

G

R∗ since the game on R∗
n doesn’t depend on the moves of

player I. q.e.d.

Let us discuss the “reasonable set theoretic assumptions” for a mo-
ment. The theory ZFC + Det(Σ1

1) is stronger than ZFC in several re-
spects: Det(Σ1

1) cannot be proved in ZFC, and even worse, the con-
sistency of Det(Σ1

1) cannot be shown either. Determinacy axioms are
equivalent to the so-called “Large Cardinal Axioms” or “Strong Axioms
of Infinity”, this particular determinacy axiom is equivalent to “0#

exists”.19

Nonetheless, its assumption in this context is natural. As pointed
out by Welch in (Welch, 2001, Remark 4) and discussed further by Löwe
and Welch in (Löwe & Welch, 2001, Section 6), the high descriptive
complexity of revision-theoretic definitions yields certain dependencies
between Revision Theory and aspects of the surrounding set theoretic
universe. The answers to some questions about revision-theoretic ob-
jects depend strongly on set theory, they have different answers, e.g.,
in the axiom systems ZFC + V=L and ZFC + Det(Σ1

1). That means
that in order to make definite claims about Revision Theory, we need
to make a choice what sort of set theory we want to work in. Since we
are interested in game-theoretic characterizations, choosing the game-
theoretically smooth ZFC + Det(Σ1

1) over the theory ZFC + V=L that
produces odd Σ1

1 games seems to be the natural choice here.

The question about the existence of a game representation for light-
face circular definitions (or arithmetical quasi-inductive definitions) is
interesting for more than just technical reasons:

Can you find a complexity class Ξ such that

G

Ξ = RTDΓ∅,∆1
1
?

Furthermore, can you provide a proof that gives informative insight
in the structure of revision?

19 For details on 0# and its connection to determinacy, cf. (Kanamori, 2003,
§ 9& § 31).
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We believe that this question is the correct question for a game
representation of revision theoretic definitions. When we look at the
hierarchy of 〈

G

Σ0
n ; n ∈ N〉, the inductive definitions Ind =

G

Σ0
1 form

one of the most basic game-theoretically defined definability notions.
At the next level, Σ0

2 games are connected to Σ1
1-monotone inductive

definitions via a theorem of Tanaka’s (Tanaka, 1991, Theorems 3.1 &
4.2).

It would be interesting to see where in this hierarchy the revision-
theoretic definitions RTDΓ,∆1

1
come up, and whether they would have

a prominent and interesting place in this hierarchy.
Recent results of Welch indicate that if there is a pointclass con-

nected to circular definitions, it should be a proper subclass of Σ0
3:

Welch proves that the proof-theoretic system ∆1
3-CA0+“every arith-

metic quasi-inductive definition converges” is strictly weaker than the
system ∆1

3-CA0 + Det(Σ0
3) (Welch, ∞). As arithmetic quasi-inductive

definitions are connected to the first Σ2-end extendible ordinal by
Theorem 4.3, the strategies for Σ0

3 games lie between the first Σ2-
end extendible ordinal and the first ordinal initiating a 2-chain of
Σ2-substructures Lα0 ≺Σ2 Lα1 ≺Σ2 Lα2 . It is open whether there is
a natural class Σ0

2 $ Ξ $ Σ0
3 corresponding to circular definitions via

game representations.
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