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Abstract. We give upper and lower bounds for the length of the
Full Hierarchy of Norms.

1. Introduction

The Hierarchy of Norms goes back to Moschovakis’ proof of the First
Periodicity Theorem and has been investigated by van Engelen, Miller
and Steel in [vEMiSt87], and more recently, by Chalons [Ch00] and
Duparc [Du03] under the name “Steel hierarchy”.

Duparc [Du03, Theorem 7] calculated the length of the hierarchy of
Borel norms of length ω · δ < ω1 to be Vω1

(1 + δ). This should be
compared to the height of the Borel Wadge hierarchy which is Vω1

(2)
by a theorem of William Wadge’s [Wa83].1

In the context of the Axiom of Determinacy, both the Wadge hi-
erarchy and the Hierarchy of Norms are wellfounded (almost) linear
quasi-orderings. It is well known that the length of the Wadge hierar-
chy is exactly Θ = sup{α ; there is a surjection from R onto α}.

In this short paper, we comment on the length of the full Hierarchy
of Norms which we shall call Σ. We can prove that Θ2 ≤ Σ < Θ+.

2. Definitions & Basics

As usual in set theory, we identify the real numbers R with Baire
space NN and use standard notation for Baire space. In particular, we
write x ∗ y for the real defined by

x ∗ y(n) :=

{

x(k) if n = 2k,
y(k) if n = 2k + 1,
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and use the symbol sax for the concatenation of the finite sequence
s with the infinite sequence x. We also fix a listing of all continuous
functions {gx : x ∈ R}.

2.1. Set Theory without the Axiom of Choice. Since the main
results of this paper will be in the context of the Axiom of Determinacy
which contradicts the Axiom of Choice, let us briefly comment on some
features of choiceless set theory. (We will be giving the exact axiomatic
system for all results in order to avoid confusion.)
It is the Axiom of Choice that guarantees the existence of lots of

functions between ordinals and other sets, most notably, the real num-
bers R, the powerset of the real numbers ℘(R), and related sets. In ZF

(without using the Axiom of Choice), the following are equivalent for
a set X:

(1) X is wellorderable (i.e., X is in bijection with some ordinal),
(2) there is an ordinal α and a surjection f : α→ X, and
(3) there is an ordinal β and an injection g : X → β.

The question of existence of injections from ordinals into arbitrary sets
and surjections from arbitrary sets into ordinals is much more subtle.
Without the Axiom of Choice, the ordinals

Ω := sup{α ; there is an injection f : α→ R} and
Θ := sup{α ; there is a surjection f : R → α}

can very well differ.
If the set of real numbers is not wellorderable, then Ω > ω1 implies

that there is an uncountable set of reals without the perfect set prop-
erty;2 in particular, ZF+ AD implies that Ω = ω1. On the other hand,
Θ can be rather large. In the literature on the Axiom of Determinacy,
Θ plays an important rôle, and the following is known about it:3

Proposition 2.1. (ZF) There is no surjection from R onto Θ. If AD

holds, then Θ is a fixed point of the ℵ-function, i.e., Θ = ℵΘ. If in
addition V = L(R), then Θ is regular.

It is not decided by ZF + AD alone whether Θ is regular. It is
consistent with both AD and the stronger ADR that Θ is singular (cf.
[So78]).
Without the Axiom of Choice, successor cardinals are not necessarily

regular. The following is a well-known weak analogue of the pigeon hole

2If f : ω1 → R is an injection, then X := {f(α) ; α < ω1} is uncountable,
but a perfect subset P ⊆ X would give an injection from R into ω1 making it
wellorderable.
3Cf. [Ka94, p. 396 sqq.].
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principle for successor cardinals in ZF. We give its simple proof for the
benefit of the reader who is less familiar with the ¬AC-context.

Lemma 2.2 (Pigeon Hole Principle for Successor Cardinals). (ZF)
If κ is an infinite cardinal, then κ+ → (κ)1κ, i.e., for every function
f : κ+ → κ there is a set S of cardinality κ such that f [S] = {α} for
some α.

Proof. For each α < κ, define Sα := {ξ ; f(ξ) = α}. If one of the
sets Sα has cardinality κ, we are done. Otherwise, for all α < κ,
o.t.(Sα) < κ. Let πα : Sα → κ be the Mostowski collapse of Sα.
Clearly, κ+ =

⋃

α<κ Sα. We define

F :
κ+ → κ× κ
ξ 7→ 〈f(ξ), πf(ξ)(ξ)〉.

Then F is an injection of κ+ into κ× κ which is a contradiction to the
definition of κ+. q.e.d.

In the following, we will call a surjection ϕ : R → α a norm. We
call lh(ϕ) := α the length of ϕ. By Proposition 2.1,

Θ = {α ; ∃ϕ (ϕ is a norm & α = lh(ϕ) )}.

For each norm ϕ, we can define a prewellordering ≤ϕ on R, defined by

x ≤ϕ y :⇐⇒ ϕ(x) ≤ ϕ(y),

and furthermore identify the norm with the set Xϕ := {x ∗ y ; x ≤ϕ

y} ⊆ R.

2.2. The Wadge Hierarchy. The Wadge ordering on sets of reals,
defined by

A ≤W B :⇐⇒ there is a continuous f such that f−1[B] = A

defines one of the most fundamental complexity hierarchies of descrip-
tive set theory. From ≤W, we derive the Wadge degrees

[A]W := {B ; A ≤W B & B ≤W A}.

If DW denotes the set of the Wadge degrees, we call the ordering
〈DW,≤W〉 the Wadge hierarchy.
The following facts about the Wadge hierarchy are well-known:

Proposition 2.3 (Wadge’s Lemma). (ZF + AD) For sets A,B ⊆ R,
we either have A ≤W B or R\B ≤W A. Thus the Wadge hierarchy is
almost linear (except for antichains of length two).

Theorem 2.4 (Martin-Monk Theorem). (ZF + AD + DC(R)) The
Wadge hierarchy is wellfounded.
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Now, using Theorem 2.4 under the assumption of ZF+AD+DC(R),
we can assign ordinals called the Wadge rank to sets of reals by

|A|W := height(〈{B ; B <W A},≤W〉).

Theorem 2.5 (Wadge). The height of the Wadge hierarchy is Θ.

For each α < Θ, we define

℘α := {A ; |A|W = α}, and

℘≤α := {A ; |A|W ≤ α}.

Proposition 2.6. (ZF + AD + DC(R)) For each α < Θ, there is a
surjection f : R → ℘≤α.

Proof. Fix A ∈ ℘α. Then the function x 7→ g−1x [A] is a surjection from
R onto ℘≤α. q.e.d.

Corollary 2.7. (ZF+AD+DC(R)) Let α < Θ be fixed. Suppose that
〈Aγ ; γ < Θ〉 is a sequence such that Aγ ⊆ ℘≤α for all γ < Θ. Then
there are γ0 6= γ1 such that Aγ0

∩ Aγ1
6= ∅.

Proof. If not, the function

A 7→ min{γ ; A ∈ Aγ}

is a surjection from ℘≤α onto Θ. Together with the surjection from
Proposition 2.6, this yields a surjection from R onto Θ which contra-
dicts Proposition 2.1. q.e.d.

3. The Hierarchy of Norms

For two norms ϕ and ψ, we say that ϕ is FPT-reducible to ψ
(for “First Periodicity Theorem”; in symbols: ϕ ≤FPT ψ) if there is a
continuous function F : R → R such that for all x ∈ R, we have

ϕ(x) ≤ ψ(F (x)).

FPT-reducibility can be expressed in game terms: Look at the two-
player perfect information game where player I plays x, player II plays
y and is allowed to pass provided he plays infinitely often, and player
II wins if and only if ϕ(x) ≤ ψ(y). We call this game G≤(ϕ, ψ); then
ϕ ≤FPT ψ if and only if player II has a winning strategy in G≤(ϕ, ψ).
We write ϕ ≡FPT ψ for ϕ ≤FPT ψ & ψ ≤FPT ϕ, define FPT-degrees

by

[ϕ]FPT := {ψ ; ψ ≡FPT ϕ},

denote the set of FPT-degrees by DFPT, and call the structure

〈DFPT,≤FPT〉
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the Full Hierarchy of Norms.4

Lemma 3.1. (ZF) If ϕ and ψ are norms and lh(ψ) < lh(ϕ), then
ψ <FPT ϕ.

Proof. Let x be such that ϕ(x) ≥ lh(ψ). The strategy “play x regard-
less of what your opponent does” is winning for player I in G≤(ϕ, ψ)
and for player II in G≤(ψ, ϕ). q.e.d.

Lemma 3.2. (ZF) If ϕ and ψ are norms and lh(ϕ) = lh(ψ) = α + 1,
then ϕ ≡FPT ψ.

Proof. There are x and y such that ϕ(x) = ψ(y) = α. Then “play x” is
a winning strategy for player II in G≤(ψ, ϕ) and “play y” is a winning
strategy for player II in G≤(ϕ, ψ). q.e.d.

The following theorem is implicitly contained in Moschovakis’ proof
of the First Periodicity Theorem (cf. [Mo80, 6B]):

Theorem 3.3 (Moschovakis). (ZF+ AD+DC(R)) The relation ≤FPT
is a prewellordering. Thus, 〈DFPT,≤FPT〉 is a wellordering.

We write

|ϕ|FPT := o.t.(〈{ψ ; ψ <FPT ϕ},≤FPT〉), and

Σ := o.t.(〈DFPT,≤FPT〉).

It is the goal of this paper to give upper and lower bounds for Σ. In
analogy to the classes ℘α and ℘≤α, we define for ξ < Σ:

Φξ := {ϕ ; |ϕ|FPT = ξ}, and

Φ≤ξ := {ϕ ; |ϕ|FPT ≤ ξ}.

The two hierarchies are related and yet notably different. First, let us
note that the classes Φξ are much larger than the classes ℘α:

Proposition 3.4. (ZF + AD + DC(R)) If 0 < ξ < Σ, then there is a
surjection from Φξ onto ℘(R).

Proof. Let ϕ ∈ Φξ. For x ∈ R, let x+(n) := x(n + 1). For each
A ∈ ℘(R), we define a norm

ϕA(x) :=







ϕ(x+) if x(0) = 0,
1 if x(0) 6= 0 and x+ ∈ A, and
0 if x(0) 6= 0 and x+ /∈ A.

We note that “play 0 and after that copy” is a winning strategy for
player II in G≤(ϕ, ϕA), and “if the first move is 0, copy; if the first
move is not 0, then play an arbitrary real x such that ϕ(x) ≥ 1” is a

4“Full” in order to distinguish it from Duparc’s variants with bounded length
and/or bounded complexity.
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winning strategy for player II in G≤(ϕA, ϕ), so we have that ϕA ∈ Φξ.
The function

ϕ 7→

{

A if ϕ = ϕA,
∅ otherwise

is a surjection from Φξ onto ℘(R). q.e.d.

Corollary 3.5. (ZF + AD + DC(R)) If 0 < ξΣ and α < Θ arbitrary,
then Φξ 6⊆ ℘≤α.

Proof. Suppose Φξ ⊆ ℘≤α, then there is a surjection from ℘≤α onto
Φξ, hence onto ℘(R) by Proposition 3.4. Now Proposition 2.6 gives us
a surjection from R onto ℘(R), which of course contradicts Cantor’s
Theorem. q.e.d.

4. Lower and upper bounds for Σ

Lemma 4.1 (Diagonal Lemma). (ZF) If λ < Θ is a limit ordinal and
ϕ is a norm of length λ, then there is a norm ϕ+ of length λ such that
ϕ <FPT ϕ

+.

Proof. For a function ϕ define ϕ+ by

ϕ+(x) :=

{

ϕ(gx+(x)) + 1 if x(0) 6= 0, and
ϕ(x+) otherwise.

Note that ϕ+ is a norm with lh(ϕ+) = lh(ϕ) = λ. Towards a contra-
diction, let F witness ϕ ≥FPT ϕ

+. Let z be a code for F , i.e., F = gz.
Then

ϕ(F (〈1〉az)) ≥ ϕ+(〈1〉az)

= ϕ(gz(〈1〉
az)) + 1

= ϕ(F (〈1〉az)) + 1

> ϕ(F (〈1〉az)).

Contradiction. q.e.d.

We say that ϕ is embedded in ψ if there is some x such that we
have ψ(x ∗ y) = ϕ(y) for all y.

Lemma 4.2. (ZF) If ϕ is embedded in ψ, then ϕ ≤FPT ψ.

Proof. Let x witness that ϕ is embedded in ψ. Then “Play x on your
even moves and copy the moves of player I on your odd moves” is a
winning strategy for player II in G≤(ϕ, ψ): If player I plays y, player
II answers x ∗ y and wins since ϕ(y) = ψ(x ∗ y). q.e.d.
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Lemma 4.3. (ZF) If λ < Θ is a limit ordinal and α < Θ, then there
is a <FPT-increasing sequence 〈ϕν ; ν < α〉 of norms such that for all
ν < α, we have lh(ϕν) = λ.

Proof. Let α < Θ, and fix a surjection f : R → α and a norm ϕ : R →
λ. We define norms ϕν by induction, beginning with ϕ0 := ϕ.
Assume that ϕξ is defined for ξ < ν and let

ϕ∗ν(x ∗ y) :=

{

ϕf(x)(y) if f(x) < ν,
ϕ(y) otherwise.

Note that for ξ < ν, ϕξ is embedded in ϕ∗ν . Thus, by Lemma 4.2,
ϕξ ≤FPT ϕ

∗
ν .

Let ϕν := (ϕ∗ν)
+. Then for all ξ < ν, we have ϕξ <FPT ϕν by the

Diagonal Lemma 4.1. q.e.d.

In the following, let 〈λα ; α < Θ〉 be the strictly increasing enumer-
ation of all limit ordinals in Θ (the inverse of the Mostowski collapse).

Theorem 4.4. (ZF+AD+DC(R)) Let α < Θ and let ϕ be a norm of
length λα + 1. Then |ϕ|FPT ≥ Θ · α.

Proof. We prove the claim by induction on α. For α = 0, the claim is
trivial. Let α be the least counterexample as witnessed by ϕ (of length
λα + 1).

Case 1. Let α = γ + 1, and let ψ be a norm of length λγ + 1.
By minimality of α, |ψ|FPT ≥ Θ · γ. Since α was a counterexample,
|ϕ|FPT = Θ · γ + ζ for some ζ < Θ. We apply Lemma 4.3 to get
a <FPT-increasing sequence 〈ψη ; η < ζ + 2〉 such that all ψη have
length λα. Lemma 3.1 yields that ψ <FPT ψη <FPT ϕ (for all η), but
|ψζ+1|FPT ≥ Θ · γ + ζ + 1 > Θ · γ + ζ = |ϕ|FPT. Contradiction.

Case 2. If α is a limit ordinal, then Θ ·α =
⋃

γ<αΘ ·γ. By induction

hypothesis, we have |ϕ|FPT ≥ Θ · γ for all γ < α, so |ϕ|FPT ≥ Θ · α, so
α was no counterexample. q.e.d.

Corollary 4.5. (ZF + AD + DC(R)) Θ2 ≤ Σ.

Theorem 4.6. (ZF + AD + DC(R)) Σ < Θ+.

Proof. Towards a contradiction, suppose that Φξ 6= ∅ for all ξ < Θ+.
Define w : Θ+ → Θ by

w(ξ) := min{α ; ∃ϕ ∈ Φξ (|Xϕ|W = α)}.

By the Pigeon Hole Principle 2.2, we find α ∈ Θ, S ⊆ Θ+ and b : Θ→ S
such that b is a bijection and for all ξ ∈ S, we have w(ξ) = α.
For ξ ∈ S, we define

Hξ := {Xϕ ; ϕ ∈ Φξ & |Xϕ|W = α} ⊆ ℘α.
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Then 〈Hb(γ) ; γ ∈ Θ〉 is a sequence of subsets of ℘α as in Corollary
2.7, and so there are γ0 6= γ1 such that Hb(γ0) ∩ Hb(γ1) 6= ∅. But if
Xϕ ∈ Hb(γ0) ∩ Hb(γ1), then |ϕ|FPT = b(γ0) 6= b(γ1) = |ϕ|FPT which is
absurd. q.e.d.
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