
A non-monotone Fraenkel-Lévy labelling for the asym-

metric combinatorial game on cyclic graphs

Benedikt Löwe (bloewe@science.uva.nl) ∗

Institute for Logic, Language and Computation, Universiteit van Amsterdam,

Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands

April 29, 2004

Abstract. Extending results of Fraenkel, we give an algorithm that determines the
value of asymmetric combinatorial games on (possibly cyclic) graphs.

2000 Mathematical Subject Classification: Primary. 91A46 91A43. Sec-

ondary. 91A05 05C38

1. Introduction

If G is a graph, the (symmetric) combinatorial game on G is played by
two players pushing a token on the graph. Whoever moves the token
into a terminal node, wins. An example of a game of this type is the
game of Nim (removing matches from a number of rows of matches until
the game board is empty). If G was cyclic, then it is not guaranteed
that one of the players will push the token into a terminal node; an
infinite walk through G is considered a draw.1

Combinatorial games are perfect information games with simple
payoff sets, and thus by the Gale-Stewart Theorem determined (Gale
& Stewart, 1953). You can establish the winner of the game by un-
folding the game into a game tree TG, then labelling the tree via the
Gale-Stewart labelling and read off the winner from the label of the
root.

However, analyzing combinatorial games via their game trees might
not be optimal for several reasons:

Firstly, if G was cyclic, the game tree will be infinite and the la-
belling of the game tree will be an infinitary, possibly transfinite pro-
cedure.

Secondly, the Gale-Stewart procedure is not metamathematically
parsimonious. There are computable trees with no computable winning
strategy, and the Gale-Stewart theorem on determinacy of open games

∗ The author would like to thank Nick Bezhanishvili (Amsterdam) for fruitful
discussions of topics connected to different aspects of this paper.

1 More details can be found in the four-volume second edition of Winning Ways

by Berlekamp, Conway and Guy.

2

is equivalent to a nontrivial metamathematical statement of second-
order arithmetic by a theorem of Steel’s.2

Thus, it is a desideratum to devise a labelling procedure directly
on the graph that doesn’t need unfolding into the game tree. This has
been addressed by Fraenkel (Fraenkel, 1997): Following a suggestion
of Azriel Lévy, Fraenkel describes a labelling on graphs that we shall
call the Fraenkel-Lévy labelling, and gives an algorithm to compute
this labelling with running time linear in the number of edges for finite
connected graphs.

In this paper, we consider a variant of the combinatorial games where
one player has to play into terminal nodes and the other has to keep the
game alive for an infinite number of steps, and call it the asymmetric
combinatorial game. Again, this game is a perfect information game
with simple payoff, and thus could be analyzed via the Gale-Stewart
technique with similar drawbacks.

It is the goal of this paper to give a finitary algorithm for asymmetric
combinatorial games without the detour via the unravelled game tree.
The algorithm we give is strongly influenced by the non-monotonic
Gale-Stewart technique developed in (Löwe, 2003) to deal with many-
player perfect information games with open and closed payoffs.

In Section 2, we define some basic graph-theoretical notions used in
Section 3 where we define our games and discuss labellings and their
connections to games abstractly, understanding labellings on graphs as
quotients of the labellings on their associated game trees. Finally, in
Section 4 we develop an algorithm for the asymmetric combinatorial
games (cf. Figure 3) and discuss its running time.

2. Graphs

2.1. Graphs & Bisimulations

Our graphs G = 〈VG, EG〉 are directed graphs (digraphs), i.e., VG is a
set of vertices and E ⊆ VG×VG is an arbitrary binary relation. If ≡ is
an equivalence relation on VG, we can define a graph structure on the
set of ≡-equivalence classes VG/≡ := {[v]≡ ; v ∈ VG} as follows:

〈[v]≡, [w]≡〉 ∈ EG/≡ :⇐⇒ 〈v, w〉 ∈ EG.

2 The statement is ATR0, a set-theoretic existence statement for sets defined by
transfinite recursion along an arithmetically defined wellorder. Cf. (Steel, 1976) and
(Tanaka, 1990); for a detailed overview in the context of Reverse Mathematics, cf.

(Simpson, 1999, §V.8).

3

We write G/≡ := 〈VG/≡, EG/≡〉 for the quotient graph.
If s ∈ VG, we call the pair 〈G, s〉 a pointed graph. As usual, the

natural numbers are identified with the sets of their predecessors, i.e.,
0 = ∅ and n + 1 = {0, . . . , n}. If N ∈ N ∪ {N}, we call a function
W : N → V a walk through 〈G, s〉 of length N if

1. for each n+ 1 ∈ N , we have 〈W (n),W (n+ 1)〉 ∈ EG, and

2. W (0) = s.

A walk is called finite if N ∈ N. It is called maximal if it is either
infinite or finite of length n + 1 where W (n) is a terminal node of
G. We define the connected component of v in G (in symbols:
ConCom(G, v)) to be the set of vertices w such that there is a walk W
of length n+1 through 〈G, v〉 with W (n) = w. A pointed graph 〈G, v〉
is called connected if VG = ConCom(G, v).

If 〈G, s〉 and 〈H, t〉 are pointed graphs, then a function Z : VG → VH

is called a bounded epimorphism if the following conditions hold:

1. Z(s) = t;

2. Z is surjective;

3. if v0 ∈ VG and 〈v0, v1〉 ∈ EG, then 〈Z(v0), Z(v1)〉 ∈ EH; and

4. if w0 ∈ VH, 〈w0, w1〉 ∈ EH, and Z(v0) = w0, then there is some
v1 ∈ VG such that Z(v1) = w1 and 〈v0, v1〉 ∈ EG.

If Z is a bounded epimorphism between G and H, we can define an
equivalence relation ≡Z on VG by

v ≡Z w :⇐⇒ Z(v) = Z(w).

PROPOSITION 2.1. Let 〈G, s〉 and 〈H, t〉 be pointed graphs and Z a
bounded epimorphism between them. Let ≡Z be the equivalence relation
on VG defined via Z. Then 〈G/≡Z , [s]≡Z

〉 ∼= 〈H, t〉.

Proof. Define Ẑ : VG/≡Z → VH by

Ẑ([v]≡Z
) := Z(v).

This function is clearly well-defined and a bijection. Using the fact
that Z is a bounded epimorphism, it is easy to see that Ẑ is structure
preserving. q.e.d.

4

2.2. The unravelled tree and the alternating graph

Let 〈G, s〉 be a pointed graph. Define VTs
G

to be the set of finite walks
through 〈G, s〉. For walks W0 of length n and W1 of length n + 1,
we let 〈W0,W1〉 ∈ ETs

G
if and only if W0 = W1¹n. Furthermore, let

rootG,s := {〈0, s〉} be the unique walk of length 1. Then

Ts
G := 〈VTs

G
, ETs

G
〉.

We call 〈Ts
G, rootG,s〉 the unravelled tree of 〈G, s〉.

In the following, we will use the parity function par : N → 2 assigning
to each natural number its parity. Let VAG

:= 2× VG,

〈〈e, v〉, 〈1− e, w〉〉 ∈ EAG
:⇐⇒ 〈v, w〉 ∈ EG,

and call AG := 〈VAG
, EAG

〉 the alternating graph of G. If s ∈ VG,
then we let As

G be the connected component of 〈0, s〉 in AG.

PROPOSITION 2.2. If 〈G, s〉 is a pointed graph, there are bounded
epimorphisms from 〈Ts

G, rootG,s〉 to 〈G, s〉, from 〈As
G, 〈0, s〉〉 to 〈G, s〉

and from 〈Ts
G, rootG,s〉 to 〈A

s
G, 〈0, s〉〉.

Proof. Let e ∈ 2, v ∈ VG, and dom(W) = n+1 with W (n) = v. Then
define

ZT(W) := v,

ZA(〈e, v〉) := v, and

ZT,A(W) := 〈par(n), v〉.

The functions ZT, ZA and ZT,A are bounded epimorphisms. q.e.d.

If 〈G, s〉 is a pointed graph, v ∈ VG and W is a walk through 〈G, s〉
of length n+1 such thatW (n) = v, then the connected component ofW
in Ts

G and the graph Tv
G are isomorphic as graphs. As a consequence,

we get a slightly more general version of Proposition 2.2:

PROPOSITION 2.3. Let 〈G, s〉 be a pointed graph, and W be a walk
through 〈G, s〉 of length n + 1 such that W (n) = v. Then there are
bounded epimorphisms from 〈Ts

G,W 〉 to 〈G, v〉 and from 〈Ts
G,W 〉 to

〈Av
G, 〈0, v〉〉.

Proof.Compose the bounded epimorphisms ZT between Tv
G and G

and ZT,A betweenTv
G andAv

G with the mentioned graph isomorphism.
q.e.d.

5

3. Games

3.1. Games and game equivalences

Given a graph G = 〈VG, EG〉 and s ∈ VG, we define the (symmetric)
combinatorial game on 〈G, s〉 (in symbols: S(G, s)): at the begin-
ning of the game, a token is positioned in the vertex s; players 0 and
1 move in turn with player 0 starting by pushing the token along the
edges ofG; the player making the last move wins the game. If the game
goes on for infinitely many steps, the outcome of the game is a draw.
We define the inverted symmetric combinatorial game S(G, s) to
be the game played like the symmetric combinatorial game, just with
the rôles of the two players interchanged, i.e., player 1 starts.

In the asymmetric version, the rôles of player 1 and the draw are
interchanged: Given a graph G = 〈VG, EG〉 and s ∈ VG, we define the
asymmetric combinatorial game on 〈G, s〉 (in symbols: A(G, s)):
at the beginning of the game, a token is positioned in the vertex s;
players 0 and 1 move in turn with player 0 starting by pushing the
token along the edges of G; if player 0 pushes the token into a terminal
node, he wins; if player 1 pushes the token into a terminal node, the
game is a draw. If the game goes on for infinitely many steps, player
1 wins. Again, we define the inverted asymmetric game A(G, s) to
be the game with the players interchanged.

Strategies in these combinatorial games are simply functions that
tell the players which edge 〈v0, v1〉 to use if they are presented with the
token in vertex v0. A strategy is winning if the player following the
strategy wins the game regardless of how the other player plays, and
a strategy is called nonlosing if the game in which one player follows
the strategy results in either a win for that player or a draw.

By the determinacy theorem of Gale and Stewart (for details, cf.
Section 3.2) each of the games G defined above will have one of the
following three values, denoted by val(G):

W. Player 0 has a winning strategy,

D. both players have a nonlosing strategy,

L. Player 1 has a winning strategy.

On the set L = {L,D,W} of these values, we define a lattice structure
by L ≤ D ≤ W and an inversion function inv : L→ L defined by

W 7→ L

D 7→ D

L 7→ W.

6

We say that two games G and H are equivalent if they have the same
value. We say that they are anti-equivalent if val(G) = inv(val(H)).

If G and H are either S, S, A or A, we can define the notion of a
G-H-(anti)-equivalence: Let G and H be graphs and let f : VG → VH

be a function. Then f is called a G-H-(anti)-equivalence if for all
v ∈ VG, we have that G(G, v) and H(H, f(v)) are (anti)-equivalent.

There are some obvious facts about equivalence of combinatorial
games:

PROPOSITION 3.1. For every pointed graph 〈G, v〉, the games S(G, v)
and S(G, v) are anti-equivalent. In other words, id : VG → VG is an
S-S-anti-equivalence.

Proof. Obvious. q.e.d.

PROPOSITION 3.2. Let G and H be graphs, let G be either S, S, A or
A, and let F : VG → VH be a function. If F is a bounded epimorphism,
then it is a G-G-equivalence.

Proof. Obvious. q.e.d.

An immediate consequence of Propositions 2.2, 2.3 and 3.2 is that in
order to analyze arbitrary combinatorial games, it is enough to analyze
games on trees:

COROLLARY 3.3. Let G be either S, S, A or A and let 〈G, s〉 be a
pointed graph. Then the games G(G, s) and G(Ts

G, rootG,s) are equiv-
alent. Also, for any walk W through 〈G, s〉 with length n + 1 and
W (n) = v, the games G(G, v) and G(Ts

G,W) are equivalent.

3.2. A translation into the usual Gale-Stewart theory of

infinite games

Corollary 3.3 is the underlying methodology of Gale-Stewart theory
(Gale & Stewart, 1953). Instead of looking at the (possibly cyclic)
graph, we look at the unravelled tree and analyze the game on the
tree via backwards induction with a (possibly transfinite) labelling
construction.

We shall translate our tree games into the usual topological notation
of Gale-Stewart theory: Look at the space VG

N of functions from N into
VG, endowed with the product topology of the discrete topology on VG.

We define three infinite games G0(G, v), G1(G, v), and H1(G, v).
In all of the games, players 0 and 1 play elements of VG in turn and
produce an element of VG

N, let’s call it X. We assume that X(0) = v
and that player 0 plays the odd digits and player 1 plays the even digits.
The payoff sets of the games are defined as follows:

7

− In G0(G, v), player 0 wins if the least n + 1 such that X¹n + 1 is
not a walk through 〈G, v〉 exists and is odd. Otherwise, player 1
wins.

− In G1(G, v), player 0 wins if either X is an infinite walk through
〈G, v〉, or the least n+1 such that X¹n+1 is not a walk through
〈G, v〉 is odd. Otherwise, player 1 wins.

− In H1(G, v), player 0 wins if there is a least n+1 such that X¹n+1
is not a walk through 〈G, v〉 and either n+ 1 is odd or X(n) is a
terminal node of G. Otherwise, player 1 wins.

The payoff sets for player 0 in the defined three games are either
open (G0 and H1) or closed (G1) in the topology defined on VG

N, and
by the usual Gale-Stewart theorem for open and closed games without
draw, one of the two players has a winning strategy, i.e., the values are
either W or L.

It is easy to see that these infinite Gale-Stewart games correspond
to the combinatorial games as follows:

PROPOSITION 3.4. For every pointed graph 〈G, v〉, the following
equivalences hold:

val(G0(G, v)) = W ⇐⇒ val(S(Tv
G, rootG,v)) = W

⇐⇒ val(A(Tv
G, rootG,v)) = W

val(G0(G, v)) = L ⇐⇒ player 1 has a nonlosing strategy for
S(Tv

G, rootG,v)
⇐⇒ player 1 has a nonlosing strategy for

A(Tv
G, rootG,v)

val(G1(G, v)) = W ⇐⇒ player 0 has a nonlosing strategy for
S(Tv

G, rootG,v)
val(G1(G, v)) = L ⇐⇒ val(S(Tv

G, rootG,v)) = L
val(H1(G, v)) = W ⇐⇒ player 0 has a nonlosing strategy for

A(Tv
G, rootG,v)

val(H1(G, v)) = L ⇐⇒ val(A(Tv
G, rootG,v)) = L

As a consequence, we get a proof of the claim (see above) that the
values W, L and D are the only possible values for our games.

3.3. Sound labellings

Let L := {L,D,W}, G be a graph and G be one of S, S, A and A. An
L-labelling ` : VG → L is called G-sound if it is a total function and if
for each vertex v ∈ VG, we have

`(v) = val(G(G, v)).

8

Because of Proposition 3.1, the notions of S-soundness and S-sound-
ness are closely connected:

COROLLARY 3.5. Let G be a graph and ` : VG → L be S-sound.
Then ` defined by `(v) := inv(`(v)) is S-sound.

The Gale-Stewart analysis for games on trees gives a (possibly trans-
finite) recursive procedure to actually compute an S-sound labelling:

THEOREM 3.6 (Gale & Stewart; 1953). If T is a tree, then there is
recursive procedure that computes (in less than Card(VT)

+ steps)3 the
S-sound labelling `.

PROPOSITION 3.7. Let 〈G, s〉 be a connected pointed graph and let `
be the S-sound labelling on Ts

G. For v ∈ VG and W such that ZT(W) =
v, we define

`/≡ZT
(v) := `(W).

This quotient labelling is well-defined and is the S-sound labelling for
G.

Proof. Let us show that ≡ZT
respects `T:

Suppose W ≡ZT
W ′, i.e., ZT(W) = ZT(W

′) = v for some v. Corol-
lary 3.3 tells us that S(Ts

G,W) and S(Ts
G,W

′) are both equivalent to
S(G, v), so in particular, `(W) = `(W ′), and the quotient labelling is
S-sound. q.e.d.

For asymmetric combinatorial games, we don’t have the symmetry
of Corollary 3.5:

PROPOSITION 3.8. If val(A(G, v)) = W, then val(A(G, v)) 6= L. All
other combinations are possible.

Proof. For player 0, a winning strategy is a strategy that forces the
token into a terminal node in an odd number of moves. Such a strategy
is a nonlosing strategy for player 1 in the inverted game.

In Figure 1, examples for all eight combinatorially possible situations
are given. q.e.d.

Because of the asymmetry indicated by Proposition 3.8, we define
the following notion: A (partial) function ` : VG → L2 is called a
(partial) L-bilabelling on G. We write `(v) = 〈`0(v), `1(v)〉. An L-
bilabelling ` : VG → L2 is called A-sound if it’s total and for each
vertex v ∈ V , we have

`0(v) = val(A(G, v)) and `1(v) = val(A(G, v)).
3 Note that there is a possibly confusing typo in (Fraenkel, 1997, Definition 1):

the transfinite recursion is bounded by Card(V)+, not Card(V); run on a countable
graph, it will be bounded by a countable ordinal (i.e., α < ω1).

9

W/W W/D W/L

'&%$Ã!"#•
ÄÄ~~

~~
ÂÂ@

@@
@º¹¸·³´µ¶ º¹¸·³´µ¶\\

'&%$Ã!"#•
²²º¹¸·³´µ¶ impossible

by Proposition 3.8

D/W D/D D/L

'&%$Ã!"#•
ÄÄ~~

~~
ÂÂ@

@@
@º¹¸·³´µ¶

²²
º¹¸·³´µ¶\\º¹¸·³´µ¶

'&%$Ã!"#•
ÄÄ~~

~~
ÂÂ@

@@
@º¹¸·³´µ¶

²²
º¹¸·³´µ¶

º¹¸·³´µ¶
'&%$Ã!"#•
²²º¹¸·³´µ¶
²²º¹¸·³´µ¶

L/W L/D L/L

'&%$Ã!"#• ZZ
'&%$Ã!"#• //º¹¸·³´µ¶

PP
//º¹¸·³´µ¶
²²º¹¸·³´µ¶

'&%$Ã!"#• //º¹¸·³´µ¶
PP

//º¹¸·³´µ¶

Figure 1. Examples for the eight possible value combinations in the asymmetric and
the inverted asymmetric combinatorial game.

In analogy to Theorem 3.6, the Gale-Stewart analysis gives us the
existence of A-sound labellings for trees T. Among several ways to pro-
duce such a labelling, there is one procedure that was the motivation for
the algorithm described in Section 4: in (Löwe, 2003), the present au-
thor gives a non-monotone variant of the Gale-Stewart procedure that
is able to deal with a much more general situation (many-player games
with reasonably simple payoffs); this non-monotonic Gale-Stewart pro-
cedure can be used to construct the A-sound labelling for trees.

PROPOSITION 3.9. Let 〈G, s〉 be a connected pointed graph and let
` be the A-sound labelling on Ts

G. Then for v ∈ VG, e ∈ 2 and W such
that ZT,A(W) = 〈e, v〉, we define

`/≡ZT,A
(〈e, v〉) := `(W).

Then this quotient labelling is well-defined and is the A-sound labelling
for As

G.

We would like to extend this to an A-sound bilabelling, but not all
nodes in G are necessarily reachable by both players. The following
simple construction helps:

10

If 〈G, s〉 is a connected pointed graph, let G∗
s be defined by

VG∗
s
:= VG ∪ {x},

EG∗
s
:= EG ∪ {〈x, s〉}

(where x /∈ VG). The connectedness of 〈G, s〉 implies that

ConCom(AG, 〈0, s〉) ∪ ConCom(AG∗
s
, 〈0, x〉) = 2× VG;

moreover, if W is a walk through 〈G, s〉 and W ′ is a walk through
〈G∗, x〉, and ZT,A(W) = ZT,A(W ′), then they represent exactly the
same position in the game on G∗ (albeit with different game histories),
so if ` is A-sound onTs

G and `∗ is A-sound onTx
G∗

s
, then `(W) = `∗(W ′).

As a consequence, we get:

PROPOSITION 3.10. If 〈G, s〉 is a connected pointed graph, ` is an
A-sound labelling on Ts

G and `∗ is an A-sound labelling on Tx
G∗

s
, then

the bilabelling `† defined by

`†e(v) :=

{
`/≡ZT,A

(〈e, v〉) if 〈e, v〉 ∈ ConCom(AG, 〈0, s〉), or
`∗/≡ZT,A

(〈e, v〉) otherwise

is welldefined, total and an A-sound bilabelling on G.

In the following section, we shall give an algorithm to compute `†

directly without going through the tree unravelling.

4. The algorithm

We fix a graph G. For the purpose of this section, we assume that VG

is finite. Using the lattice structure on L, we can define an ordering
≤∗ on L2 as the product ordering of 〈L,≤〉 with 〈L,≤〉 as depicted in
Figure 2.4

As mentioned, Fraenkel (following a suggestion of Azriel Lévy; cf.
(Fraenkel, 1997, p. 15)) has published a labelling procedure that works
directly on the graph instead of the unravelled tree. We call it the
Fraenkel-Lévy procedure:

We let FL0(v) := L for all terminal nodes v. After that, for all v
such that v /∈ dom(FLn), we define

FLn+1(v) :=

{
W if there is 〈v, w〉 ∈ E and FLn(w) = L, or
L if for all 〈v, w〉 ∈ E, we have FLn(w) = W.

4 Here ≤ denotes the inverse ordering of ≤. By Proposition 3.8, no A-sound
bilabelling can take the value W/L (cf.Figure 1).

11

L/W
xxrr %%KK

D/W
yyrr &&LLL

L/D
yyss ##GG

W/W
%%LL

D/D
xxrrr %%KK

L/L
{{ww

W/D
&&LL

D/L
yyss

[W/L]

Figure 2. The ordering ≤∗ on L2.

For some N ≤ |VG|, we have FLN = FLN+1; and we let

FL(v) :=

{
FLN (v) if v ∈ dom(FLN), or

D otherwise.

This algorithm produces the S-sound labelling in O(|VG| + |EG|)
steps, and its methodology is essentially that of the quotient labelling
of the Gale-Stewart labelling onTG: we label a vertex v ∈ VG as soon as
some W with ZT(W) = v is labelled in the Gale-Stewart construction.
As the Gale-Stewart procedure, this labelling is monotonic in the sense
that whenever a vertex is labelled, it will retain that label for ever.

Following this idea and injecting non-monotonicity in the spirit of
(Löwe, 2003, § 5) into the procedure, we shall now give an algorithm
NMFL (for “non-monotonic Fraenkel-Lévy”) that produces the A-sound
bilabelling.

We give the algorithm in pseudocode in Figure 3. Let us explain the
two special datatypes label and graph used in the pseudocode:

Variables of type label can take the values W, D, and L representing
W, D, and L. We have a binary relation < defined for variables of type
label, and X < Y is TRUE if and only if X < Y. In addition, there is
a unary function INV defined on label corresponding to the inversion
function inv.

The datatype graph encodes the bilabelled graph structure. Let
〈G, `〉 be a bilabelled graph with VG = {vi ; 0 ≤ i ≤ N}. If G is a
variable of type graph representing 〈G, `〉, then the following objects
are defined:

− Nvert[G], the number of vertices of the graph, i.e., N + 1;

− for each i ≤ N , the objects Outbound[G, i] and Inbound[G, i] rep-
resenting the sets {j ; 〈vi, vj〉 ∈ EG} and {j ; 〈vj , vi〉 ∈ EG}, re-
spectively;

12

− for each i ≤ N and e ∈ 2, an object Ell[G, i, e] of type label,
representing `e(vi).

We run the algorithm NMFL on (a representation of) G. For any t ∈
N, we let `te(vi) be the value of Ell[G, i, e] at time t of the algorithm,5

and
`t(vi) := 〈`

t
0(vi), `

t
1(vi)〉.

PROPOSITION 4.1. For each i ≤ N , the sequence 〈`t(vi) ; t ∈ N〉 is
≤∗-decreasing in L2. In other words, the sequence 〈`t0(vi) ; t ∈ N〉 is
≤-decreasing and the sequence 〈`t1(vi) ; t ∈ N〉 is ≤-decreasing.

Proof. Let t+ 1 be the least number such that

`t+1(vi) <
∗ `t(vi) (?)

for some i. Clearly, the value of the bilabeling can only be changed by
code lines 110, 140 or 255 of the algorithm.

Since the procedure MAIN can only change the values at terminal
nodes from L/W to D/W and then to D/L, the lines 110 and 140 cannot
create a decrease in ≤∗. Note that if at time t+1 we are executing code
line 255, this implies that vi is not a terminal node since Label(G, i, e)
is only called if there is an edge from vi to somewhere.

Since the bilabelling is initialized with L/W (which is the top element
of 〈L2,≤∗〉), the first call of Label(G, i, e) cannot result in situation
(?), Consequently, there are some s0 < s1 < t such that at both s0 and
s1, the procedure Label(G, i, e) is called. Let s0 be largest with that
property. By (?), we have that `t+1(vi) <

∗ `t(vi) = `s1(vi). By code
lines 205 to 225, we have

`t+1
e (vi) := sup

≤
{inv(`s1

1−e(w)) ; 〈vi, w〉 ∈ EG}, and

`s1
e (vi) := sup

≤
{inv(`s0

1−e(w)) ; 〈vi, w〉 ∈ EG}.

But this means that there is some w such that `s0(w) <∗ `s1(w),
contradicting the choice of t+ 1 as minimal. q.e.d.

PROPOSITION 4.2. The procedure Label is called at most 4 · |EG|
times.

5 Code lines 050 and 060 make sure that the values `e(t)(vi) are defined early
on in the algorithm (in step e · N + i), so from step 2 · N onwards, `t is a total
function. In the following description, we shall mostly ignore these first 2 ·N steps
of the algorithm.

13

000 ALGORITHM NMFL(G:graph)

010 PROCEDURE MAIN(G:graph)

020 BEGIN

030 FOR i:=1 TO Nvert[G] DO

040 BEGIN

050 Ell[G,i,0]:=L;

060 Ell[G,i,1]:=W;

070 END;

080 FOR i:=1 TO Nvert[G] DO

090 IF Outbound[G,i] = EMPTY THEN

100 BEGIN

110 Ell[G,i,0]:=D;

120 FOR j IN Inbound[G,i] DO

130 Label(G,j,1);

140 Ell[G,i,1]:=L;

150 FOR j IN Inbound[G,i] DO

160 Label(G,j,0);

170 END;

180 END.

185 PROCEDURE Label(G:graph;i:integer;e:binary)

195 BEGIN

205 aux:=L;

215 FOR j IN Outbound[G,i] DO

225 aux := aux + INV[Ell[G,j,1-e]];

235 IF Ell[G,i,e] != aux THEN

245 BEGIN

255 Ell[G,i,e]:=aux;

265 FOR j IN Inbound[G,i] DO

275 Label(G,j,1-e);

285 END;

295 END.

Figure 3. The algorithm for the non-monotonic Fraenkel-Lévy labelling in pseu-
docode.

14

Proof. By code lines 120, 150, and 265, each call of Label(G, i, e) is
associated with an edge 〈vi, w〉, and by code lines 110, 140, and 235,
preceded by a change of `(w). By Proposition 4.1, this means that each
such an edge can be used for calls of the procedure Label at most four
times. q.e.d.

THEOREM 4.3. The running time of NMFL is O(|VG| + |EG|
2). If G

is connected, this is O(|EG|
2).

Proof. The procedure NMFL itself (without the recursive calls of Label)
takes at most 4 · |VG|+ 2 · |EG| steps. Each call of Label has running
time O(|EG|), so by Proposition 4.2, the entire running time is O(|VG|+
|EG|

2). q.e.d.

The critical lines in the algorithm that push the running time from
linear to quadratic are 215 and 225: every time we run Label for vi,
we have to check the current values of all its successors. Let Gn be the
graph with a root v0 and n immediate successors of the root which are
terminal nodes, i.e., |EGn | = n. Then Label(G, 1, e) is called n times
(once for each terminal node) and each time, its running time is at
least n because it has to check each of the terminal nodes, so the total
running time is at least |EGn |

2.
If you allow a set operation CAP (intersection) as basic step of com-

putation, then you can make the algorithm into a linear time algorithm
by doing some bookkeeping of the current labelling values of vertices
with set objects Wverts[G, e], Dverts[G, e], and Lverts[G, e] collecting
all vertices currently e-labelled W, D or L, respectively. Then, the FOR

loop in code lines 215 and 225 can be reduced to

211 IF Lverts[G,1-e] CAP Outbound[G,i] != EMPTY THEN

216 aux:=W;

221 ELSE

226 IF Dverts[G,1-e] CAP Outbound[G,i] != EMPTY THEN

231 aux:= D;

which is just a fixed finite amount of steps if you consider CAP to be a
single operation.

THEOREM 4.4. If run on the graph G, the algorithm NMFL computes
the A-sound bilabelling on G.

Proof. Again, let `te(vi) be the value of Ell[G, i, e] at time t. By The-
orem 4.3, these values stabilize at some finite time N . Let `e(vi) :=
`Ne (vi) be the eventual value.

15

This proof follows essentially the idea of the Gale-Stewart proof
(a.k.a. “backwards induction”). The main ingredient of that idea is
that players have strategies that force the following to be true: if W
is a run of the game according to the strategy, then the sequence of
time indices of the label assignments of W (n) during the algorithm is
a decreasing sequence of integers. By wellfoundedness of N, it can be
deduced that we hit one of the basic cases eventually. Unfortunately, in
our case, the nonmonotonicity of the algorithm causes some problems:
it is possible that vertex v is labelled at time t, but some successors
receive their label later. In order to deal with this, we have to go through
the different cases in detail.

For any v ∈ VG, let

inde(v) := min{t ; `te(v) = `e(v)}

be the e-index of vi. (Note that by Proposition 4.1, for all inde(v) ≤
t ≤ N , we have that `te(v) = `e(t).)

We shall discuss the properties of the six possible cases:

Case 1. If `0(vi) = W, then there is some w with 〈vi, w〉 ∈ EG, `1(w) =
L, and ind1(w) < ind0(vi).

[The vertex vi has been labelled by code line 255, and this means that in the

preceding call of code line 225 some successor was 1-labelled L. By Proposition 4.1,

a 1-label L can never be changed anymore.]

Case 2. If `0(vi) = D, then there is no w with 〈vi, w〉 ∈ EG and `1(w) =
L. Also, either vi is terminal or there is some w with 〈vi, w〉 ∈ EG and
`1(w) = D, and for all such w, ind1(w) < ind0(vi).

[If vi is terminal, the claim is trivial, so let vi be nonterminal. Let t := ind0(vi)
which is the time of a call of code line 255. Therefore, at time t, we have

∀w (〈vi, w〉 ∈ EG → `t1(w) 6= L) & ∃w (〈vi, w〉 ∈ EG & `t1(w) = D). (?t)

By Proposition 4.1, none of the vertices that are 1-labelled L can change their

labelling anymore and the vertices 1-labelled D can only change their label to L.

Suppose that there is some t < s ≤ N such that (?s) is not true anymore. Then at

the least such time s, we have a call of code line 255 and all successors of vi are

1-labelled L. In the subsequent call of Label[G, i, 0], the label of vi will be changed

to W in contradiction to the assumption.]

Case 3. If `0(vi) = L, then for all w with 〈vi, w〉 ∈ EG, we have
`1(w) = W. Moreover, both vi and all of its successors have received
that label at the beginning of the algorithm (code lines 050 and 060).

[Obvious from Proposition 4.1 and code lines 225 and 255.]

Case 4. If `1(vi) = W, then there is some w with 〈vi, w〉 ∈ EG such
that `0(w) = L and both vi and w have been labelled at the beginning
of the algorithm (code lines 050 and 060).

16

[This is dual to Case 3.]

Case 5. If `1(vi) = D, then there is no w with 〈vi, w〉 ∈ EG and
`0(w) = L. Also, there is some w with 〈vi, w〉 ∈ EG and `0(w) = D,
and for all such w, ind0(w) < ind1(vi).

[This is dual to Case 2., except that terminal nodes cannot be 1-labelled D.]

Case 6. If `1(vi) = L, then for all w with 〈vi, w〉 ∈ EG, we have
`0(w) = W and ind0(w) < ind1(vi).

[This is dual to Case 1. (Note that this includes the possibility that vi is

terminal.)]

With our six cases in mind, we can now define strategies for player
e ∈ 2 as follows:

The strategy σe plays from v into some successor w such that

`1−e(w) = inv(`e(v)),

and –whenever possible– such that

ind1−e(w) < inde(v).

We shall show that σ0 and σ1 are witnesses for value `0(v) in A(G, v)
and value `1(v) in A(G, v), respectively. This will finish the proof of
Theorem 4.4.

Case A: `0(v) = W.

Let W be a maximal walk through 〈G, v〉 where player 0 follows σ0

(i.e., W (2n + 1) = σ0(W (2n))). By Case 1. and Case 6., we have
`0(W (2n)) = W and `1(W (2n + 1)) = L. If W is finite (say, of length
n+ 1), then W (n) is terminal, so `(W (n)) = D/L, hence n is odd and
player 0 has won the game with run W .

If W is infinite, then define

ik := indpar(k)(W (k)). (†)

By definition of σ0 and by Case 1. and Case 6., this is a strictly
decreasing sequence of natural numbers which is absurd.

Together, we get that val(A(G, v)) = W.

Case B: `1(v) = W.

We are now playing the inverted game, i.e., player 1 starts. Let W
be a maximal walk through 〈G, v〉 where player 1 follows σ1 in the
inverted game. By Case 3. and Case 4., we have `0(W (2n+ 1)) = L
and `1(W (2n + 2)) = W. This implies that none of the vertices in W
can be terminal, and thus W is infinite and player 1 wins the game
with run W .

17

Consequently, val(A(G, v)) = W.

Case C: `0(v) = D.

Let W be a maximal walk through 〈G, v〉 where player 0 follows σ0

in the regular (non-inverted) asymmetric game. By Case 2. and Case
5., the following three subcases cover all possibilities:

Subcase B1. There is some n such that `0(W (2n)) = W. By Case A,
player 0 wins.

Subcase B2. For all k, `par(k)(W (k)) = D and W is finite (say, of
length n+1). ThenW (n) is a terminal node, and since `par(n)(W (n)) =
D, we have that n is even, so the game is a draw.

Subcase B3. For all k, `par(k)(W (k)) = D and W is infinite. Now by
Case 2. andCase 5. and the definition of σ0, the sequence ik as defined
in (†) is a strictly descending sequence of natural numbers, yielding a
contradiction.

Similarly (using Case B instead of Case A), we can show that σ1

is a nonlosing strategy for player 1. Together, σ0 and σ1 witness that
val(A(G, v)) = D.

Case D: `0(v) = L.

By Case 3., this means that player 0 is forced into a position w
with `1(w) = W. Now apply Case B.

Case E: `1(v) = D.

This is dual to Case B.

Case F: `1(v) = L.

By Case 6., this means that player 1 is forced into a position w
with `0(w) = W. Now apply Case A.

q.e.d.

References

Aviezri S. Fraenkel, Combinatorial game theory foundations applied to digraph
kernels, Electronic Journal of Combinatorics 4 (1997), Research Paper 10
(17 pages), [The Wilf Festschrift (Philadelphia, PA, 1996)]

DavidGale, Frank M. Stewart, Infinite Games with Perfect Information, in: Harold
W. Kuhn, Albert W. Tucker (eds.), Contributions to the Theory of Games II,
Princeton 1953 [Annals of Mathematical Studies 28], p. 245–266

Benedikt Löwe, Determinacy for infinite games with more than two players with
preferences, submitted (ILLC Publication Series PP-2003-19)

Stephen G. Simpson, Subsystems of Second Order Arithmetic, Berlin 1999
[Perspectives in Mathematical Logic]

John R. Steel, Determinateness and Subsystems of Analysis, Ph.D. Thesis,
University of California at Berkeley, 1976

18

Kazuyuki Tanaka, Weak axioms of determinacy and subsystems of analysis, I:
∆0

2 games, Zeitschrift für Mathematische Logik und Grundlagen der

Mathematik 36 (1990), p. 481–491

