
Diversity of Logical Agents in Games

Johan van Benthem, Amsterdam & Stanford

Fenrong Liu, Amsterdam & Beijing

May 28, 2004

1 Varieties of imperfection

Logical agents are usually taken to be epistemically perfect. But in real-
ity, imperfections are inevitable. Even the most logical reasoners may have
limited powers of observation of relevant events, generating uncertainty as
time proceeds. In addition, agents can have processing bounds on their
knowledge states, say, because of finite memory capacities. This note is a
brief exploration of how different types of agents can be described in logical
terms, and even co-exist inside the same logical system. Our motivating in-
terest in undertaking this study concerns games with imperfect information,
but our only technical results so far concern the introduction of imperfect
agents into current logics for information update and belief revision. For a
more complete discussion of the issues and more extensive proofs, refer to
van Benthem 2001 and Liu 2004.

2 Imperfect information games and dynamic-

epistemic logic

Dynamic-epistemic language Games in extensive form are trees (S,
{Ra}a∈A), consisting of nodes for successive states of play, with players’
moves represented as binary transition relations between nodes. Imperfect
information is encoded by equivalence relations ∼i between nodes that
model uncertainties for player i. Nodes in these structures are naturally
described in a combined modal-epistemic language. An action modality
[a]φ is true at a node x when φ holds after every successful execution of
move a at x, and a knowledge modality Kiφ is true at x when φ holds at
every node y ∼i x. As usual, we write 〈a〉, 〈i〉 for the existential duals of
these modalities. Such a language can describe many common scenarios.
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Example Not knowing one’s winning move
In the following two-step game tree, player E does not know the initial move
that was played by A:

E E

c                 d                        c               d
WinA      WinE                   WinE      WinA

A
                          ba

                                                   E

The modal formula [a]〈d〉WinE ∧ [b]〈c〉WinE expresses the fact that E has
a winning strategy in this game, and at the root, she knows both conjuncts.
After A plays move b from the root, however, in the black intermediate
node, E knows merely ‘de dicto’ that playing either c or d is a winning
move, as is expressed by the joint modal-epistemic formula KE(〈c〉WinE
∨ 〈d〉WinE). But she does not know ‘de re’ of any specific move that it
guarantees a win: ¬KE〈c〉WinE ∧ ¬KE〈d〉WinE also holds. In contrast,
given the absence of dotted lines for A, whatever is true at any stage of
this game is known to A. In particular, at the black intermediate node, A
does know that c is a winning move for E. ¥

Remark Temporal Language
For some purposes, it is also useful to have converse relations a∪ for moves
a, looking back up into the tree. In particular, these help describe play so
far by mentioning the moves that have been played, while they also allow us
to look back and say what could have happened if play had gone differently.
Both are very natural things to say about the course of a game. This is a
simple temporal logic variant of the basic modal-epistemic language.

Strategies, plans, and programs Amodal-epistemic language describes
players’ moves and what they know about their step-by-step effects. Explicit
information about agents’ global behaviour can be formulated in a dynamic-
epistemic language, which adds complex program expressions. A strategy for
player i is a function from i ’s turns x in the game to possible moves at x,
while we might think of a plan as any relation constraining these choices,
though not always to a unique one. Such binary relations and functions can
be described using (i) single moves a, (ii) tests (φ)? on the truth of some
formula φ, combined using operations of (iii) union ∪, relational composition
;, and iteration *. In particular, these operations define the usual program
constructs IF THEN ELSE and WHILE DO. As for test conditions, in
this setting, it only makes sense to use φ which an agent knows to be true
or false. Without loss of generality, we can assume that such conditions
have the epistemic form Kiφ. The resulting programs are called ‘knowledge
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programs’ in Fagin, Halpern, Moses & Vardi 1995. Van Benthem 2001 proves
that in finite imperfect information games, the following two notions from
logic and game theory coincide:

(a) strategies that are defined by knowledge programs,

(b) uniform strategies, where players choose the same move at every two
nodes which they cannot distinguish.

Valid laws of reasoning about agents and plans Universally valid
principles of our language include the minimal modal or dynamic logic, plus
the epistemic logic matching the uncertainty relations – in our case, multi-
S5. Logics like this were used in Moore 1985 to study planning agents in
AI. Of course, here we are most interested in players’ changing knowledge
as a game proceeds. The language allows us to make these issues precise.
For instance, if a player is certain now that after some move ϕ is the case,
then after that move, is she certain that ϕ is the case? In other words, does
the following formula hold under all circumstances?

Ki[a]p → [a]Kip

The answer is negative for most of us. I know that I am boring after
drinking – but it does not follow (unfortunately) that after drinking, I
know that I am boring. The interchange axiom is only plausible for actions
without ‘epistemic side-effects’. And the converse implication can be
refuted similarly. In general, dynamic-epistemic logic has no significant
interaction axioms at all for knowledge and action. If such axioms hold,
this must be due to special features of the situation.

Example Games versus general dynamic-epistemic models
Imperfect information games themselves do satisfy a special axiom. The
tree structure is common knowledge, and players cannot be uncertain about
it. This is expressed by the following axiom – where M is the union of all
available moves m in the game, and m∪ is the converse relation of m:

〈i〉p → 〈(M ∪ M∪)*〉p #

The effect of # can be stated as a modal frame correspondence. Epistemi-
cally accessible worlds are reachable from the root via sequences of moves:

Fact # is true on a frame iff, for all s, t, if s ∼i t, then s(M ∪ M∪)* t.

Using this condition, every general model for a modal-epistemic language
can be unraveled to a tree of finite action sequences in the usual modal
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fashion, with uncertainties ∼i between X, Y just in case last(X) ∼i last(Y).
The map from sequences X to worlds last(X) is then a bisimulation for the
whole combined language. ¥

Without this constraint, we get ‘misty games’ (cf. Hötte 2003), where
players need not know what their moves are or what sort of opponent
they are dealing with. This broader setting is quite realistic for planning
problems. We return to it at the end of this paper.

Axioms for perfect agents In the same correspondence style, the
above knowledge-axiom interchange law really describes a special type of
agent. To see this, we first observe that

Fact Ki[a]p → [a]Kip corresponds to the relational frame condition
that for all s, t, u, if sRat & t ∼i u, then there is a v with s ∼i v & vRau.

This condition says that new uncertainties for an agent are always grounded
in earlier ones. The equivalence can be proved, e.g., by appealing to the
Sahlqvist form of this axiom. Incidentally, this and further observations
about the import of axioms may be easier to understand using the equiva-
lent existential versions, here: 〈a〉〈i〉p → 〈i〉〈a〉p.

Precisely this relational condition was identified in van Benthem 2001 as a
natural version of players having Perfect Recall in the game-theoretic sense:
They know their own moves and also remember their past uncertainties
as they were at each stage. The actual analysis is slightly more complex
in the case of games. First, consider nodes where it is the player’s turn:
then Ki[a]p implies [a]Kip for the same action a. Perfect Recall does not
exclude, however, that moves by one player may be indistinguishable for
others, and hence at another player’s turn, Ki[a]p implies merely that
[b]Kip for some indistinguishable action b. But there are more versions of
perfect recall in game theory. Some allow players uncertainty about the
number of moves played by their opponents. Bonanno 2004 has an account
of such variants in essentially our correspondence style, now including a
temporal operator into the language.

Remark A similar analysis works for the converse dynamic-epistemic
axiom [a]Kip → Ki[a]p, whose frame truth demands a converse frame
condition of ‘No Learning’, stating essentially that current uncertainty links
remain under identical actions (cf. Fagin, Halpern, Moses & Vardi 1995).
We will encounter this principle in a modified form in Section 3.
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Agents with Perfect Recall also show special behaviour with respect to
their knowledge about complex plans, including their own strategies.

Fact Agents with Perfect Recall validate all dynamic-epistemic formulas
of the form Ki[σ]p → [σ]Kip, where σ is a knowledge program.

The proof is a straightforward induction on programs. For knowledge tests
(Kiφ)?, we have Ki[(Kiφ)?]p ↔ Ki(Kiφ → p) in dynamic logic, and then
Ki(Kiφ → p) ↔ (Kiφ → Kip) in epistemic S5, and (Kiφ → Kip) ↔
[(Kiφ)?]Kip in dynamic logic. For the program operations of choice and
composition, the inductive steps are obvious, and program iteration may
be dealt with as repeated composition. ¥

This simple observation implies that an agent with Perfect Recall who
knows what a plan will achieve will also know about these effects halfway
through, when some part of his strategy has been played and only some
remains. Again, this is not true for all types of agent. This is only one of
many delicate issues that can be raised about players’ knowledge of their
strategies. Indeed, a knowledge statement about objects, like ‘knowing one’s
strategy’, has aspects that cannot be expressed in our formalism at all. We
leave this for further elaboration elsewhere.

Axioms for imperfect agents But there are other types of agents! At
the opposite of Perfect Recall, there are agents with bounded memory, who
can only remember a fixed number of previous events. Such players with
‘bounded rationality’ are modelled in game theory by restricting them to
strategies that can be implemented by some finite automaton (cf. Osborne
& Rubinstein 1994). Van Benthem 2001 considers the most drastic form
of memory restriction, to just the last event observed. These memory-
free agents will be our guiding example of epistemic limitations in this paper.

In modal-epistemic terms, memory-free agents satisfy a Memory Axiom:

〈a〉p →U[a]〈i〉p MF

This involves extending our language with a universal modality Uφ stating
that φ holds in all worlds. The technical meaning of MF is as follows.

Claim The axiom MF corresponds to the structural frame condition
that, if sRat & uRav, then v ∼i t.
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Thus, nodes where the same action has been performed are indistinguishable.
Reformulated in terms of knowledge, the axiom becomes 〈a〉Kip →U[a]p.
This says that the agent can only know things after an action which are
true wherever the action has been performed. Therefore, memory-free agents
know very little indeed! We will study their behaviour further in Section 4.
For now, we return to perfection.

3 Update for perfect agents

Imperfect information trees merely provide a static record of what uncer-
tainties players are supposed to have at various stages of a game. And then
we have to think of some plausible scenario which might have produced
these uncertainties. One general mechanism of this kind is provided by
update logics for actions with epistemic import. We briefly recall the basics
(cf. Baltag, Moss & Solecki 1998).

Product update A general update step has two components:

(a) an epistemic model M of all relevant possible worlds with agents’
uncertainty relations indicated,

(b) an action model A of all relevant actions, again with agents’ uncer-
tainty relations between them.

Action models can have any pattern of uncertainty relations, just as in
epistemic models. This reflects agents’ limited powers of observation. E.g.,
in a card game, M might be the initial situation after the cards have been
dealt, while A contains all legal moves that players have. Some actions
are public and transparent to everyone, like throwing a card on the table.
Others, like drawing a new card from the stock, are only transparent to
the player who draws, while others cannot distinguish actions of drawing
different cards. But there is still one more element. Not every action needs
to be possible at each world. E.g., I can only draw the Ace of Hearts if it is
still in the stock on the table. Such restrictions are encoded by

(c) preconditions PREa for actions a,

which are supposed to be common knowledge among agents. In the simplest
case, these are formulated in the pure epistemic language describing facts
and agents’ (mutual) information about them. Now, the next epistemic
model M×A is computed as follows:
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The domain is {(s, a) | s a world inM, a an action in A, (M, s) |= PREa}.
The new uncertainties satisfy (s, a) ∼i (t, b) iff both s ∼i t and a ∼i b.
A world (s, a) satisfies a propositional atom p iff s already did in M .

In particular, the actual world of the new model is the pair consisting
of the actual world in M and the actual action in A. The product rule
says that uncertainty among new states can only come from existing
uncertainty via indistinguishable actions. This simple mechanism covers
surprisingly many forms of epistemic update. Baltag, Moss & Solecki 1998,
van Benthem 2003, and many other recent publications provide introduc-
tions to update logics and the many open questions one can ask about them.

The same perspective may now be applied to imperfect information games,
where successive levels correspond to successive repetitions of the sequence

M , M×A, (M×A)×A, ...

The result is an obvious tree-like model Tree(M , A), which may be infinite.

Example Propagating uncertainty along a game
The following illustration is from van Benthem 2001. Suppose we are given a
game tree with admissible moves (preconditions will be clear immediately).
Let the moves come with epistemic uncertainties encoded in an action model:

2

                    1                                                                 

                                        2                        2

             1           1           1            1                        1      

  

Game Tree

a
b

c

d            e            e            f                         f
a b c

d e f

Action Model

2

1

Then the imperfect information game can be computed with levels as follows:

2

1                    2

stage 1

stage 2

stage 3 ¥

Now enrich the modal-epistemic language with a dynamic operator
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M, s|= 〈A, a〉φ iff (M, s) × (A, a) |= φ

Then valid principles express how knowledge is related before and after an
action. In particular, we have this key reduction axiom:

〈A, a〉〈i〉φ↔ (PREa ∧
∨

{〈i〉〈A, b〉φ: a ∼i b for some b in A})

Such laws simplify reasoning about action and planning: We can reduce
epistemic properties of later stages to epistemic information about the
current stage. From left to right, this axiom is the earlier Perfect Recall,
but now with a twist compared with earlier formulations. If an agent
cannot distinguish certain actions from the actual one, then those may
show up in his epistemic alternatives. The opposite direction from right to
left is the No Learning principle. But it does not say that agents can never
learn, only that no learning is possible for them among indistinguishable
situations by using actions that they cannot distinguish.

The preceding logical observations show that product update is geared to-
ward special agents, viz. those with Perfect Recall. The fact that the re-
duction axiom is valid shows that perfect memory must have been built into
the very definition. And it is easy to see how. The two clauses in defining
the new relation (s, a) ∼i (t, b) give equal weight to

(a) s ∼i t : past states representing the ‘memory component’,

(b) a ∼i b: options for the newly observed event.

Changes in this mechanism will produce other ‘product agents’ by assigning
different weights to these two factors (see Section 5). But first, we determine
the essence of product update from the general perspective of Section 2.
The following result improves a theorem in van Benthem 2001.

Abstract characterization of product update Consider a tree-like
structure E with possible events (or actions) and uncertainty relations
among its nodes, which can also verify atomic propositions p, q, ... The
only contrast with a real tree is that we allow a bottom level with multiple
roots. Nodes X, Y, ... are at the same time finite sequences of events,
and the symbol ∩ expresses concatenation of events. Intuitively, we think
of such a tree structure E as the possible evolutions of some process –
for instance, a game. A particular case is the above model Tree(M , A)
starting from an initial epistemic model M and an action model A, and
repeating product updates forever. Now, the preceding discussion shows
that the following two principles are valid in Tree(M, A), which can be
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stated as general properties of a tree E . They represent Perfect Recall and
‘Uniform No Learning’, respectively:

PR If X∩(a) ∼iY, then ∃b ∃Z: Y = Z∩(b) & X ∼i Z.

UNL If X∩(a) ∼i Y
∩(b), then ∀U, V: if U ∼iV, then U∩(a) ∼i V

∩(b),
provided that U∩(a), V ∩(b) both occur in the tree E .

Moreover, the special nature of the preconditions in product update, as
definable conditions inside the current epistemic model, validates one more
abstract constraint on the tree E :

BIS-INV The set {X | X∩(a) ∈ E} of nodes where action a can be per-
formed is closed under purely epistemic bisimulations of nodes.

Now we have all we need to prove a converse representation result.

Theorem For any tree E , the following are equivalent:

(a) E ∼= Tree(M , A) for some M, A

(b) E satisfies PR, UNL, BIS-INV

Proof From (a) to (b) is the above observation. Now, from (b) to (a).
Define an epistemic model M as the set of initial points in E and copy
the relations ∼i from E . The action model A contains all possible actions
occurring in the tree, where we set

a ∼i b iff ∃X ∃Y: X∩(a) ∼i Y
∩(b)

We also need to know that the preconditions PREa for actions a are as
required. For this, we use the well-known fact that in any epistemic model,
any set of worlds that is closed under epistemic bisimulations must have
a definition in the epistemic language – though admittedly, one allowing
infinite conjunctions and disjunctions. The abstract setting of our result
allows no further finitization of this definability.

Now, the obvious identity map F sends nodes X of E to corresponding states
in the model Tree (M ,A). First, we observe the following fact about E itself:

Lemma If X∼iY, then length(X) = length(Y).

Proof If X, Y are initial points in E , both their lengths are 0. Otherwise,
let X have length n+1. By PR, X ’s initial segment of length n stands in
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the relation ∼i to a proper initial segment of Y whose length is that of
Y minus 1. Repeating this observation peels off both sequences to initial
points after the same number of steps.

Claim X ∼i Y holds in E iff F(X) ∼i F(Y) holds in Tree(M , A).

The proof is by induction on the common length of the two sequences X,
Y. The case of initial points is clear by the definition of M. As for the
inductive steps, consider first the direction ⇒. If U∩(a) ∼iV, then by PR,
∃b ∃Z: V = Z∩(b) & U ∼i Z. By the inductive hypothesis, we have F(U)
∼i F(Z). We also have a ∼i b by the definition of A. Moreover, given that
the sequences U∩(a), Z∩(b) both belong to E , their preconditions as listed
in A are satisfied. Therefore, in Tree(M , A), by the definition of product
update, (F(U), a) ∼i (F(Z), b), i.e. F(U

∩(a)) ∼i F(Z
∩(b)).

As for the direction ⇐, suppose that in Tree(M , A) we have (F(U), a) ∼i
(F(Z), b). Then by the definition of product update, F(U) ∼i F(Z) and a
∼i b. By the inductive hypothesis, from F(U) ∼i F(Z) we get U ∼i Z in
E(*). Also, by the given definition of a ∼i b in the action model A, we have
∃X ∃Y: X∩(a) ∼i Y

∩(b)(**). Taking (*) and (**) together, by UNL we
get U∩(a) ∼i Z

∩(b), provided that U∩(a), V ∩(b) ∈ E . But this is so since
the preconditions PREa, PREb of the actions a, b were satisfied at F(U),
F(Z). This means these epistemic formulas must also have been true at U,
V – so, given what PREa, PREb defined, U

∩(a), V ∩(b) exist in the tree E .¥

This result is only one of a kind, and its assumptions may be overly re-
strictive. In many game scenarios, preconditions for actions are not purely
epistemic, but rather depend on what happens over time. E.g., a game may
have initial factual announcements – like the Father’s saying that at least
one child is dirty in the puzzle of the Muddy Children. These are not re-
peated, even though their preconditions still hold at later stages. Describing
this requires preconditions PREa for actions a that refer to the temporal
structure of the tree E , and then the above invariance for purely epistemic
bisimulations would fail. Another strong assumption is our use of a sin-
gle action model A that gets repeated all the time in levels M, (M×A),
(M×A)×A, ... to produce the structure Tree(M, A). A more local per-
spective would allow different action models A1,A2, ... in stepping from
one tree level to another. And an even more finely-grained view arises if
single moves in a game themselves can be complex action models. In the
rest of this paper, for convenience, we stick to the single-model view.
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4 Update logic for bounded agents

Limitations on information processing The information-processing
capacity of agents may be bounded in various ways. One of these is
‘external’: Agents may have restricted powers of observation. This kind of
restriction is built into the definition of action models, with uncertainties
for agents – and the product update mechanism of Section 3 reflects this.
Another type of restriction is ‘internal’: Agents may have bounded memory.
Agents with Perfect Recall had limited powers of observation but perfect
memory. At the opposite extreme we find memory-free agents which can
only observe the last event, without maintaining any record of what went
on before. In this section, we explore this extreme case.

Characterizing types of agent In the preceding, agents with Perfect
Recall have been described in various ways. Our general setting was the
tree E of event sequences, where different types of agents i correspond to
different types of uncertainty relation ∼i. One approach was via struc-
tural conditions on such relations, such as PR, UNL, and BIS-INV in the
above characterization theorem. Essentially, these three constraints say that

X ∼i Y iff length(X) = length(Y) and X(s) ∼i Y(s) for all positions s

Next, these conditions also validated corresponding axioms in the dynamic-
epistemic language that govern typical reasoning about the relevant type
of agent. But thirdly, we also think of agents as a sort of processing
mechanism. Intuitively, an agent with Perfect Recall is a push-down store
automaton maintaining a stack of all past events and continually adding
new observations. Such a processing mechanism was provided by our
representation theorem, viz. epistemic product update.

Bounded memory Another broad class of agents arises by assuming
bounded memory up to some fixed finite number k of positions. In general
trees E , this makes two event sequences X, Y ∼i-equivalent for such agents
i iff their last k positions are ∼i-equivalent. In this section we only consider
the most extreme case of this, viz. memory-free agents i :

X ∼i Y iff last(X) ∼i last(Y) or X = Y = the empty sequence $

Agents of this sort only respond to the last-observed event. In particular,
their uncertainty relations can now cross between different levels of a game
tree: They need not know how many moves have been played. Perhaps
contrary to appearances, such limited agents can be quite useful. Examples
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are Tit-for-Tat players in the iterated Prisoner’s Dilemma which merely
repeat their opponents’ last move (Axelrod 1984), or Copy-Cat players
in game semantics for linear logic which can win ‘parallel disjunctions’
of games G ∨ Gd (Abramsky 1996). Incidentally, these are players with
a hard-wired strategy : a point that we will discuss below. It is easy to
characterize such agents in terms similar to what we did with Perfect Recall.

Fact An equivalence relation ∼i on E is memory-free in the sense of $ if
and only if the following two conditions are satisfied:

PR− If X∩(a) ∼i Y, then ∃b ∼i a ∃Z: Y = Z∩(b).

UNL+ If X∩(a) ∼i Y
∩(b), then ∀U, V: U∩(a) ∼i V

∩(b), provided
that U∩(a), V ∩(b) both occur in the tree E .

Proof If an agent i is memory-free, its relation ∼i evidently satisfies PR−

and UNL+. Conversely, suppose that these conditions hold. If X ∼i Y,
then either X, Y are both the empty sequence, and we are done, or, say,
X = Z(a). Then by PR−, Y = U(b) for some b ∼i a, and so last(X) ∼i
last(Y). Conversely, the reflexivity of ∼i plus UNL+ imply that, if the
right-hand side of the equivalence $ holds, then X ∼i Y. ¥

It is also easy to give a characteristic modal-epistemic axiom for this case.
First, set

a ∼i b iff ∃X ∃Y : X∩(a) ∼i Y
∩(b)

Fact The following equivalence is valid for memory-free agents:

〈a〉〈i〉φ ↔ (PREa & E
∨

b∼ia
〈b〉φ)

Here Eφ is an additional existential modality saying that φ holds in at
least one node. This axiom looks at first glance like the Perfect Recall
axiom of Section 3, but note that there is no epistemic modality 〈i〉
on the right-hand side of the equivalence. Also, this new axiom implies
axiom MF from Section 2, assuming that basic actions are partial functions.

Remark Reduction axioms for an existential modality
Once the static description language gets extended, to restore the harmony
of an update logic, one should also extend the dynamic update reduction
axioms with a clause for the new operator. E.g., returning to Section 3, the
following reduction axiom is valid for standard product update:

〈A, a〉Eφ ↔ (PREa ∧ E
∨

〈A, b〉φ for some b in A)
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The process mechanism: finite automata The processor of memory-
free agents is a very simple finite automaton creating their correct ∼i links:

States of the automaton: all equivalence classes X∼i

Transitions for actions a: X∼i goes to (X∩(a))∼i

There are only finitely many states since we had only finitely many actions
in the tree E . The transitions are well-defined, since by the No Learning
assumption UNL+, if X ∼i Y, then X

∩(a) ∼i Y
∩(a). The automaton starts

in the equivalence class of the empty event sequence. Repeating transitions,
it is then easy to see that

When the automaton is given the successive members of an event
sequence X as input, it ends in state X∼i

In particular, X ∼i Y iff the automaton ends in the same state on both
these event sequences. Moreover, the combination of the conditions UNL+

and PR− on memory-free agents tells us something about the special type
of automaton that suffices:

All transitions a end in the same state (as X∩(a) ∼i Y
∩(a) for

all X, Y ), and by PR−, no transition ends in the initial state.

Let us call such automata rigid. They only have states for the last-observed
event, and such states will even coincide when the events are not epistemi-
cally distinguishable for the agent.

Fact Memory-free agents are exactly those whose uncertainty relation
is generated by a rigid finite-state automaton.

Of course, more complex finite automata can have more differentiated
responses to observed events a, up to some fixed finite number of cases.

Remark Automata theory
Connections with automata theory, in particular the Nerode representation
of finite automata recognizing regular sets of event sequences, are found in
van Benthem & ten Cate 2003. Also, the above framework can be extended
with more general preconditions for game actions referring to time, by
generalizing to the action/test automata used for propositional dynamic
logic in Harel, Kozen & Tiuryn 2000.

Strategies and automata The preceding automata for bounded agents
are reaction devices to incoming observations. But it is also tempting to
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think of automata as generators of behaviour – in particular, as specific
strategies. The latter view is more in line with the usual treatment of our
motivating examples, like Tit-for-Tat or Copy-Cat. A strategy for player i in
a game is a function assigning moves to turns for i, these moves are responses
to other players’ actions. This is easily visualized in game trees E . E.g.,
player E ’s winning strategy in the game of Section 2 looks as follows:

EE E
c

 

a                 b

A

           d           c                d

WinA      WinE      WinE      WinA

                       

But the reflection in finite automata will be a little different then, as
players do not respond to a last action if played by themselves (these are
‘non-events’ for the purpose of a strategy). Thus, the usual automaton for
Tit-for-Tat encodes actions by the agent itself as states, while actions by
the opponent are the true observed events:

  defect

defect

cooperate

cooperate

   cooperate defect

We do not undertake an integration of the two sorts of finite automata here.
Either way, the simplicity of such automata for agents and their strategies
may also be seen by considering the special syntactic form of memory-free
strategies as simple knowledge programs in the dynamic-epistemic language.

This concludes our discussion of memory-free agents per se. To highlight
them even more, we add a few contrasts with agents with Perfect Recall.

Differences in what agents know Memory-free agents i know less
than agents with Perfect Recall. The reason is that their equivalence classes
for ∼i tend to be larger. E.g., Tit-for-Tat only knows she is in two of
the four possible matrix squares (cooperate, cooperate) or (defect, defect).
But amongst many other failures, she does not know the accumulated
score at the current stage. It is also tempting to say that memory-free
agents can only run very simplistic strategies. But this is not quite right,
since any knowledge program makes sense for all agents. The point is just
that certain knowledge conditions will evaluate differently for both. E.g.,
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a Perfect Recall agent may be able to act on conditions like “action a
has occurred twice so far”, which a memory-free agent can never execute,
since she can never know that the condition holds. Thus the difference is
rather in the number of non-equivalent available uniform strategies and the
successful behaviour guaranteed by these.

Example How memory-free agents may suffer
Consider the following game tree for an agent A with perfect information,
and a memory-free agent E who only observes the last move.

A                        E                        A                        E          

b                         d                         b                        d

a                           c                       a                         c

E

 #                                                   *

Suppose that outcome # is a bad thing, and ∗ a good thing for E. Then the
desirable strategy “play d only after you have seen two a’s” is unavailable
to E – while it is available to a player with Perfect Recall. ¥

Another difference between Perfect Recall agents and memory-free agents
has to do with what they know about their strategies. We saw that an agent
with Perfect Recall for atomic actions also satisfies the key implication

Ki[σ]p → [σ]Kip, when σ is any complex knowledge program.

By contrast, the MF Memory Axiom

〈a〉p →U[a]〈i〉p

does not ‘lift’ to arbitrary knowledge programs instead of the single action
a. To see this, it suffices to look at the case of a choice program a∪b. Our
eventual reduction version

〈a〉〈i〉φ ↔ (PREa & E
∨

b∼ia
〈b〉φ)

is a bit harder to generalize at all, because we would first have to analyze
what it means to be indistinguishable from a complex action.

Memory and time A good way of making differences between agents
more explicit is the introduction of a richer language. So far, we have
mostly looked at a purely epistemic language for preconditions and an
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epistemic language with forward action modalities for describing updates
or general moves through a game tree. With such a language, some of the
intuitive distinctions that we want to make between different agents cannot
be expressed. E.g., suppose that there is just one initial world s and one
action, the identity Id, which always succeeds:

s (s, Id) ((s, Id), Id) ...

Thus, each horizontal level contains just one world. In this model, the
uncertainty lines for Perfect Recall agents and memory-free agents are
different. The latter see all worlds ending in Id as indistinguishable, whereas
product update for the former makes all worlds different. Nevertheless,
agents know exactly the same purely epistemic statements in each world.
The technical reason is that all states are epistemically bisimilar, and
composing the uncertainty lines for a player with bisimulation links makes
no difference to what she knows. But intuitively, the Perfect Recall player
should know how many actions have occurred, since her uncertainties did
not cross levels. Now, if we want to let agents know explicit statements
about where they are in the game, we can add the backward-looking con-
verse action modalities mentioned in Section 2. Then an agent knows, e.g.,
that two moves have been played if it knows that two consecutive converse
actions are possible, but not three. Thus, a temporal dynamic-epistemic
language is more true to what we would want to say intuitively about
players and their differences. Moreover, this language can also express more
complex preconditions for actions, resulting in the definability of a much
broader range of strategies (cf. Rodenhauser 2001).

Remark Backward-looking update
A backward-looking temporal language also enriches update logic. Our re-
duction axioms so far were forward-looking analysis of preconditions, reduc-
ing what agents know after an action has taken place to what they knew
before. What about converse reduction axioms of the form, say:

〈a∪〉〈i〉φ ↔ (PREa∪ & E
∨

b∪∼ia
∪ 〈b∪〉φ)?

These are related to postconditions for actions a: The strongest that we
can say when a was performed in a world satisfying φ is that 〈a∪〉φ must
hold. Such postconditions are known to be impossible to define, even
for simple public announcements, in the open-ended total universe of all
epistemic models. But things are more controlled in our trees E which fix
the previous history for any current world. In that case, we can convert at
least earlier full commutativity axioms like the interchange of 〈a〉〈i〉 and
〈i〉〈a〉 to backward-looking versions.
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A final caveat This discussion has been somewhat impressionistic. In
particular, it is easy to over-interpret our formal models in terms of ‘knowl-
edge talk’. At any given state, the bare fact is that an agent i has the set of
all its ∼i alternatives. Depending on how we describe that set, we attribute
various forms of knowledge to the agent. But most of these are just correla-
tions – like when we say that Tit-for-Tat knows that it is in a ‘cooperative’
state. Such a description need not correspond to any representational atti-
tude inside the agent. This mismatch is a limitation of epistemic logic in
general, and over-interpretation occurs just as well for agents with Perfect
Recall. These are triggered by possibly complex ‘horizontal’ knowledge con-
ditions Kφ referring to the current tree level in structures like E or Tree(M,
A). But we, as outside observers, may identify these as equivalent to simple
assertions about the past of the process, such as “action a has occurred
twice”. And even when we use the above richer temporal language, this still
need not imply matching richer representations inside the agent.

5 Spectra of agents: modulating product update

Toward a spectrum of options Perfect Recall agents and memory-free
agents are two extremes with room in the middle. Using the automata of
Section 4, one might define update for progressively better informed k -bit
agents having k memory cells, creating much great diversity. By contrast,
agents with Perfect Recall seemed the natural children of product update.
But even here there is room for alternative stipulations! The following type
of agent is closely related to the memory-free ones discussed before.

Forgetful updaters As we saw in Section 3, product update for new
uncertainties mixed a memory factor (viz. uncertainty between old states)
and an observation factor (viz. uncertainty between actions). Agents might
weigh these differently. A memory-free agent, by necessity, gives weight 0 to
the past. If updating agents only remember their last action, how do they
update their information? Here is a simple new definition. We drop the
memory factor when defining product models M×A, and set:

(x, a) ∼i (y, b) iff a ∼i b !

Thus, new uncertainty comes only from uncertainty about observed actions.
Just as before, this leads to a valid reduction axiom:

Fact The following equivalence is valid with forgetful update:

〈A, a〉〈i〉φ ↔ (PREa ∧ E
∨

〈A, b〉φ: a ∼ib for some b in A)
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As before, to restore the harmony of the complete system, we also need a
reduction axiom for the new modality E, which turns out to be

〈A, a〉Eφ ↔ (PREa ∧ E
∨

〈A, b〉φ for some b in A)

And it is also possible to give an abstract characterization of forgetful
updaters by modifying the main theorem of Section 3.

In the original version of this paper, it was suggested that forgetful updaters
are precisely the memory-free agents of Section 4. But as was pointed out
by Josh Snyder (personal communication), this seems wrong. Consider the
following scenario. A forgetful updater is uncertain between world s with p
and world t with ¬p. There are two possible actions:

a with precondition: p ∧ ¬Kp

b with precondition: Kp ∨ (¬p ∧ ¬K¬p)

Let the actual actions be a, b in that order. Then the successive product
updates for forgetful updaters are

(i) from {s, t} to {(s, a), (t, b)}, without an uncertainty link, so the agent
knows that p in the actual world (s, a), whereas he knows that ¬p in
the unrelated world (t, b)

(ii) from {(s, a), (t, b)} to {((s, a), b)}, since neither a nor b can be
performed in (t, b).

But in that final model, the agent still knows that p, even though a
memory-free agent would not know p because she would be uncertain
between ((s, a), b) and (t, b). Snyder 2004 has a solution for this by
modifying product update so as to keep all worlds around, whether or
not preconditions of actions are satisfied, while redefining uncertainty
relations in some appropriate fashion. Another option might be the addi-
tion of suitable ‘copy actions’ that keep earlier sequences alive at later levels.

The upshot of this discussion is that forgetful updaters are not the same as
our earlier memory-free agents, although they are close. In the remainder
of this section, we mention some other modulations on product update that
create different types of agents.

Probabilistic modulations Letting agents give different weights to
memory and observation in computing a new information state is an idea
from a well-known tradition preceding modern update logics, viz. inductive
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logic and Bayesian statistics. Different agents or ‘inductive methods’ differ
in the weight they put on experience versus observation. To implement
this perspective in update logics, we need a probabilistic version of product
update, as defined in van Benthem 2003.

Belief revision and plausibility update But staying closer to our qual-
itative setting, we can also give another natural example of diversity with a
numerical flavour. In the theory of belief revision, it has long been recognized
that agents may obey different rules, more conservative or more radical,
when incorporating new information. Such rules are different options for
computing new states on the basis of incoming evidence. Such diversity
will even arise for agents with epistemic Perfect Recall, as we will now show.

In general, information update is a different mechanism from belief revision,
but the two viewpoints can be merged. Aucher 2003 adds a function κ to
epistemic models M and action models A which assigns plausibility values
to states and actions. Here κi(v) > κi(w) means that agent i believes that
world w is more plausible than world v. This allows us to define degrees of
belief in a proposition as truth in all worlds up to a certain plausibility:

M, s |= Bα
i φ iff M, t |= φ for all worlds t ∼i s with κ(t)≤α.

Incidentally, we can also define Bα
i φ as Ki(κ

α
i → φ), provided we add

suitable propositional constants καi to the language (cf. Liu 2004).

Next, plausibilities of actions indicate what an agent believes about what
most likely took place. Computing the plausibility of a new state (w, a) in a
product model M×A requires some intuitive rule. Aucher himself proposes
an ‘addition formula’ for κ-values, subtracting a ‘correction factor’:

κ′j(w, a) = CutM (κj(w) + κ∗j (a)− κwj (PREa))

Here Cut is a technical ‘rescaling’ device, and the correction κwj (PREa) is
the smallest κ-value in M among all worlds v ∼i w satisfying PREa.

A continuum of revision rules In our current perspective, we see this
stipulation not as the unique update rule for plausibility but as a choice
for a particular type of agent. Aucher’s formula makes an agent ‘eager’ in
the following sense: The factor for the last-observed action weighs just as
heavily as that for the previous state, even though the latter might encode
a long history of earlier beliefs. But we can easily create further diversity
by changing the above formula into one with parameters λ and µ:

κ′j(w, a) = CutM (λκj(w) + µκ
∗
j (a)− κwj (PREa))
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By changing values of λ and µ, we can distinguish many different types of
agents. Diversity increases even further when we let agents assign different
plausibility values to preconditions of actions. For details, cf. Liu 2004.

Remark Belief revision by bounded agents
It is also possible to use ideas from Section 3, and consider belief revising
agents with bounded memory. For a more extensive study of belief revi-
sion by agents with bounded resources, cf. the dissertation Wasserman 2000.

Coming to terms with belief revision, in addition to information update, is
natural – also from our motivating viewpoint of games. After all, players of
a game surely do not just update on the basis of observed past moves. They
also revise their expectations about future actions of opponents. Further
examples of this will arise in our final sections.

6 Mixing different types of agents

So far, we have looked at agent types separately. But agents live in
groups, whose members may have different types. Turing machines
might communicate with finite automata, and humans occasionally meet
Turing machines, like their computers, or finite automata, like very stupid
people. What makes groups of agents most interesting is that they interact.
In this setting, a host of new questions arises – of which we discuss just a few.

Uncertainty and exploitation Do different types of agents know each
other’s type? There is an issue of definition first. What does it mean to
know the type of another agent? One could think of this, e.g., as knowing
that the agent satisfies all axioms for its type, as formulated in Sections 2, 3
and 4. But then, in imperfect information games, or the more general trees
E studied above, the types of all agents are common knowledge, because
these axioms hold everywhere in the tree. Introducing ignorance of types
requires more complex structures in the sense of Hötte 2003. Suppose that
agent A does not know if his opponent is a memory-free agent or not. Then
we need disjoint unions of game trees with uncertainty links between them.
Indeed, this extension already arises when we assume that some agent
i does not know the precise uncertainties of its opponent between i ’s actions.

Example Ignorance of the opponent type
The following situation is a simple variant of the example in Section 2.
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E                        EE

WinA      WinE    WinE      WinA

 A                                                    A

a                b                                      a              b

                  E                                 E

 c 

WinA      WinE      WinE      WinA

A

                d           c               d        c                 d         c                d

At the start of the game, agent A does not know whether E has limited
powers of observation or not. In particular, note that the earlier axiom
〈A〉p → 〈(M ∪ M∪)*〉p for imperfect information games fails here. The
’second root’ toward the right is an epistemic alternative for A, but it is
not reachable by any sequence of moves. ¥

Can an agent take advantage of knowing another agent’s type? Of course.
It would be tedious to give overly formal examples of this, since we all know
this phenomenon in practice. Suppose that I know that after returning
a serve of mine, you always step toward the middle of the court. Then
passing you all the time along the outer line is a simple winning strategy. A
more dramatic scenario of this sort occurs in the recent movie “Memento”
about a man who has lost his long-term memory and has fallen into the
hands of unscrupulous cops and women. But must a memory-free agent do
badly against a more sophisticated epistemic agent? That depends on the
setting. E.g., memory-free Tit-for-Tat managed to win against much more
sophisticated computer programs (Axelrod 1984). But even this does not
do justice to the complexity of interaction!

Learning and revision over time In practice, we need not know the
types of other agents and may have to learn them. Such learning mecha-
nisms are themselves a further source of interesting epistemic diversity, as is
pointed out in Hendricks 2003. In general, there is no guarantee at all that
a learning method will reveal the type of an opponent. Evidently, observing
a finite number of moves can never tell us for certain whether we are playing
against an agent with Perfect Recall or against a finite-state automaton
with a large finite memory beyond the current number of rounds played so
far. But there is a weaker sense of learning that may be more relevant here.
We may enter a game with certain hypotheses about the agents that we are
playing against. And such hypotheses can be updated by observations that
we make as time goes by. E.g., I can refute the hypothesis that you are a
memory-free agent by observing different responses to the same move of
mine at different stages of the game. Or, I can have the justified hypothesis
that you are memory-free, and one observed response to a move of mine
then reveals a part of your fixed strategy.
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Two kinds of update? Intuitively, the game situations just described go
beyond the information and plausibility update of Sections 3, 4, 5. But to
arrive at a more definite verdict, one has to separate concerns. The above
questions involve many general issues about update that arise even without
diversity of agents. For instance, learning about one’s opponent’s type
is akin to the well-known question of learning one’s opponent’s strategy.
Types may be viewed as sets of strategies, so learning the type amounts to
some useful intermediate reduction in the strategic form of the game. We
illustrate a few issues here in a concrete scenario.

Example Finding out about types and strategies
Consider the following game of perfect information. Suppose that A knows
that E is memory-free: What does it take him then to find out which
particular strategy E is running?

A                        E                        A                        E          

a                         d                         a                        d

b                         c                         b                        c

This scenario illustrates the danger in discussing these matters. For, if A
knows that E is memory-free, the latter fact is true, and hence, at her
second turn, E can never play d, since she has already played c in response
to b in order to get there at all. So, we can only sensibly talk about beliefs
here. In the simplest case, these can be modelled as

subsets of all runs of the game from now on

viz. those future runs which the agent takes to be most likely. Thus, A’s
belief would rule out the ‘non-homogeneous run’ for E in this game, even
though further observation might refute the belief, forcing A to revise.
Now, belief revision means that, as the game is played and moves are
observed, this set of most plausible runs gets modified. E.g., suppose that
E in fact plays d at her first turn. Then the hypothesis that she was
memory-free seems vindicated, and we also know part of her strategy. But
this is again too hasty. We have not tested any global assertion about
her strategy, precisely because the game is over, and we have no means of
observing what E would have done at her second turn. ¥

Thus, we must be sensitive to distinctions like ‘predicting what will happen’
versus ‘predicting what would happen’ in some stronger counterfactual
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sense. Hypotheses about one’s opponents’ type are of the latter sort, and
they may be harder to test. The representation of alternative scenarios
and suitable update mechanisms over these need not be the same in both
cases. In particular, we might need two kinds of update. One is the local
computation of players’ uncertainties at nodes of the game concerning
facts and other players’ information, as described by the earlier product
update and plausibility update. The other is the changing of longer-term
expectations about strategies over time by observing the course of the game.

Remark Local versus global update?
Despite the appealing distinction made just now, uncertainty about the
future can sometimes be ‘folded back’ into local update. Consider any
game of perfect information. Uncertainties about the strategy played by
one’s opponent may be represented in a new imperfect information game,
whose initial state consists of all possible strategy profiles with appropriate
uncertainty lines for players between these. Update on such a structure
occurs as consecutive moves are played in the game, which can be seen as a
form of public announcement ruling out certain profiles from the diagram.
Likewise, belief revision becomes plausibility update on strategy profiles.
For details, see van Benthem 2004a, 2004b. ¥

Update can get even more subtle than this with learning global types.
Consider the earlier example where A did not know if E had perfect
information or not. How can A find out? If only moves are observed, we
would have to say that having just a single uncertainty line for A between
the real root and the ‘pseudo-root’ makes no sense. For, after move a is
played, A has learnt nothing that would now enlighten him, so there should
be an uncertainty line at the mid-level as well. But in another sense, A has
learnt something! He now knows that E is uncertain, so he is in the game
on the left. To make sense of this second scenario, we have to assume that
introspection into A’s epistemic state also counts as an update signal.

We leave matters here. What we hope to have shown is that diversity of
agents raises some interesting issues, while sharpening our intuitions about
the required mix of update and revision in games. In particular, instead of
theorizing about abstract revision mechanisms, a hierarchy of agent types
suggests very concrete switching scenarios as our beliefs about a type get
contradicted by events in the course of the game.

Merging update logic and temporal logic To make sense of the issues
in this section, we need to introduce a richer framework than our dynamic-
epistemic logic so far. We now need to maintain global hypotheses about
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behaviour of agents in future courses of the game, which can be updated as
time proceeds. This temporal intuition reflects computational practice, as
well as philosophical studies of agency and planning (cf. Belnap et al. 2001).
It is also much like questions in standard game theory about predicting the
future behaviour of one’s opponents: ‘rational’, or less so. Technically, we
think the best extension for this broader sort of update would be branching
temporal models with a suitable language referring to behaviour over time
(cf. Fagin, Halpern, Moses & Vardi 1995, Parikh & Ramanujam 2003).
The above tree structures E can easily support such a richer language. Van
Benthem 2004a has a few speculations on update in such a temporal setting,
but we leave the matter for future investigation.

7 Conclusion

The point of this paper is quite modest. We think that diversity of agents
is a fact of life, and moreover, that it is interesting from a logical point
of view. Indeed, one could even apply it to other logical core tasks, like
inference by more clever and more stupid agents. Technically, we have
shown that it is easy to describe different kinds of epistemic agents in
update logics. Several interesting questions arise now. One is the further
mathematical study of special patterns in arbitrary imperfect information
games, viewed as trees of actions with epistemic uncertainties. In particular,
our representation results may have more sophisticated versions for other
kinds of behaviour. One could see this as the fine-structure of general
models for dynamic-epistemic logic. Also, we would like a richer temporal
perspective, where belief changes as expectations about the future are
revised. This calls for a merge of temporal logic, update logic, and belief
revision. Finally, we think that interaction of diverse agents is a topic with
many logical repercussions, of which we have merely scratched the surface.

Acknowledgement We thank Josh Snyder for his penetrating comments,
and for raising some exciting follow-up issues about our framework that we
must leave for other occasions.
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