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Abstract

A study of elementary inductive definitions (e.i.d. ) in HA. Strictly positive e.i.d.
have closure ordinals < w, and define predicates that are already definable in HA.
We enlarge this class by adding so-called J-operators, for example ——. E.i.d. in this
larger class have closure ordinals up to w + w, but they are conservative over HA
w.r.t. definability.

1 Introduction

We shall consider as inductive definitions formulae in the language of HA expanded with
a single one place predicate variable P, containing at most one numerical variable free.
The meaning of such an inductive definition A(P, z) is the least fixed-point of A(P,z), i.e.

a predicate pA satisfying
(i): Vz(A(PA, z) — PAg)
(ii): Vz(A(Q,z) — Qz) — Va:(PAz — Qz).

So the inductive definition specifies the closure conditions of the predicate it defines. The
question is: for which A(P,z) can we justify the existence of such a PA? 1f A(P,z) is
monotone, i.e.

Vz(Qz — Rz) — Vz(A(Q,z) — A(R,z)),
then we can approximate PA from below; define

PAz = A(Az.1,72)

P;}_lz <= A(PA, )

Pflz <= E]u<)\P‘;4x ,im A

ngz <= EI;JP,“A:::

Note that for monotone A(P,z) (i)« is redundant: we have A(P4,z) —» PAz by (i)—,
then by monotonicity we get A(A(PA, D), z) — A(PA, z), and finally by (ii) PAz — A(PA, z).



Classically PA exists and is equal to the least fixed-point of A(P,z). An elementary induc-
tive definition (e.i.d.) is an inductive definition without an unbounded universal quantifier
occurring in front of a positive subformula containing P, and without an unbounded exis-
tential quantifier in front of a negative subformula containing P; the inductive definition
must be monotone. Classically we know that for e.i.d. the approximation closes up at or
before stage w, so Pé = Pf. Intuitionistically, this is only true (in general) for strictly
positive inductive definitions, i.e. formulae A(P,z) built up from atomic formulae Pt ,
from HA-formulae ¢ (these do not contain P ), by means of 3,Vy<s, A, V.

Now we want to solve the following problems

(i): give neat ordinal bounds for arbitrary e.i.d., not only for the strictly positive ones
(ii): prove or refute: e.i.d. enhance the expressive power of HA.

I have no complete answer to these questions. I will describe special extensions of the
class of strictly positive e.i.d. ,which do not enhance the expressive power of HA, while
those e.i.d. may have a closure ordinal up to w+ w. Those extensions are made by closing
the strictly positive formulae under new operations, like ~—. When we allow arbitrary
monotone formulae, these problems look rather intractable. In particular, implication
(with negative antecedent and positive consequent) seems rather tough.
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Convention

Throughout this article the symbols < resp. — and <= resp. =—> stand for provable
equivalence resp. consequence in a formal system. But only < and — are used as con-
nectives in a formal language, while <= and —> denote equivalence resp. consequence
relations between formulae.

2 Examples

2.1 Closure at w+1

An e.i.d. that closes up at stage w + 1 (exactly). Let C be a nonrecursive RE - set, say
z € C & Jz2Texz ; assume Texz — z< z.

Define, assuming that pairing is surjective :
A(P,(z,z)) :<=Im<zTexm VvV P(z,z+1).

Then



Pg‘(x, z) <= Im<zTexm

PA(z,z) <> Im<zTezm v PA(z,z+1) < 3Im< z+ 1Tezm

PA(z,z) <= Im<z+kTezm

P;,'i(x,z) <= IJmTezm <= z€C.
We see quickly that P,f,4 = (ﬁl and PkA # P(f,‘l. The last inequality follows from the fact
that C is infinite and Tezz — < 2. Now we define, following [Kre63, pp. 3.6 and 3.24]:
B(P,z) <= A(P,z)V ——Pz.

Then, for all n<w, P,,B z < P,{l.'c, and P,‘;‘1 is recursive.
PROOF:

POB z <= P64x Vol <= P64x and clearly P54 is recursive.
PBz < APB,z)v--PBz <= indhyp

A(P,‘,'l,x) \% ﬂ—-P,‘:lz <=> def, ind hyp
P’_*Ha: \% P,‘,41: = P,f},_lx, and P,{_{H is recursive.

n

O

Consider now PwB , P,E_l and Plz_zz

w

PwBa: <> HnPan <= EInP,‘:lx <= P,f,'iz.
Pﬂlx < B(PB z) «— A(PA,z)v —~PAz

<= P;}z \% —|—-\P“’,42: > --—uPufixqt‘.» P;,'i:c for Pj‘ is nonrecur-
sive.

PB,z <= A(PB, z)v --PBz < A(-PA1) & -—PAs
<> —.—-Pfx because A(—r—qu,x) — -.—,A(pé‘i’x) — _ﬁpfx_

It is possible to construe e.i.d. C(P,z) that close up at stage w + w, by exploiting this
trick.

O (first example)



2.2 Closure at w+ w

We give an e.i.d. with closure ordinal w + w. Let {...) be a coding of sequences of natural
numbers. Let A(P,z) be an e.i.d. that defines a nonrecursive PA = Pf,while the P,;A

are recursive (cf. the first example); in addition, let PAC {{(z) | = € IN}, and let A(P,z)
be insensitive to numbers outside this set, i.e.

A(P,z) < A(Xy.Py A 3z ((2) = y),7)
Define
B(P,z) = (A(P,z) Alhz=1) Vv Jy3z(Py A ~—A(P,z) Alhz=1 A z=yx*2)

Then PB = P‘gw, by the following lemmas, whose proofs are not particularly interesting
and not too difficult. Sometimes I use set- theoretic notation like z € P,;f1 for P“‘fix.

Lemma 2.1 PwB = {(z1,...,zx) | k € IN,(z;) eP;,“,i: 1,...,k}
Lemma 2.2

PB = {(z1,...,z5) | k>0A (z1) e PA
AVie{l,...,k=n} (z;) € PA
AVie{k=(n+1),...,k} (z;) € ~—~PA}

Lemma 2.3 m€P+n+1¢7$a:e w+n
Lemma 2.4

pB = U B = {(z1,...,2) | k>0 A (z1)EPA A (z3), ..., (zs) e--~PA}

It is clear from this construction, that the closure ordinal of B cannot be proved to be less
than w + w.

3 J-operators

The following definition is meant as a generalization of the ~—-operator (cf. [FS73, pp.324—
334)):

Definition 3.1 A J-operator is an operator J(-), on HA-formulae , that is HA-definable,
and that satisfies:

(i): Q@ — J(Q) (increasing)
(#): J(Q A R) & J(Q) A J(R) (A -distributive)
(#i): J(J(Q)) — J(Q) (idempotent)
Note that from (i1)(— ) follows:
(iv): (@ — R) — (J(Q) — J(R)) (monotone).

We do not allow J to have free variables.



Definition 3.2 : P[P/ is the class of strictly positive formulae, i.e.:
- Pt,t a term, s a formula of P[P]
- a formula © of the language of HA 1is a formula of P[P
— P[P] is closed under 3,V<, A, V.

P(J)[P], J a J-operator, is defined analogously, ezcept that P(J)[P] is also closed under
J.

Fact 3.1 For A(P,z) € P|P,z|,PA = PA is HA-definable. See [TvD88, Vol I,pp.145-
152].
Theorem 3.2 For A(P,z) € P(J)[P,z], PA = PA  is HA-definable.

Before giving the proof, I will supply some technical lemmas and hint at the idea behind
the proof.

Lemma 3.3 (Shifting J to the outside)
() J(P) v I(@) — J(P v Q)

(#): J(P) A J(Q) = J(P A Q)

(#4): IzJ(A(z)) — J(FzA(z))

(iv): Vz<tJ(A(z)) — J(Vz<tA(z))

PROOF:
., P—=PVQ monotopicity J(P) —-J(PVQ
(1): Q—»PVQ} = J(Q)——»JEPVQ;} = J(P)Vv J(Q)— J(PV
Q)

(ii): by A -distributivity(«) '
(ii): A(z) — 3zA(z) = J(A(z)) — J(3zA(z)) = FzJ(A(z)) — J(3zA(z))
(iv): let J-SHIFT(y) denote the following schema:
Va(z<y — J(A(2)) — J(Va(z<y — A2)),y & FV(A).
We prove Yy J-SHIFT(y) by induction:
Vz(z <0 — A(z)), so by increase:J (Vz(z <0 - A(z))).

Vz(z< Sy — J(A(z)) = “HA”

Vz(z<y — J(A(z))) A J(A(y)) => ind hyp
J(Vz(z<y — A(z))) A J(A(y)) => A -distributivity
J(Vz(z<y — A(z)) A J(A(y))) => “HA under J”

J(Vz(z < Sy — A(=z))).
We conclude: for any term ¢:

Vz(z<t — J(A(z))) — J(Vz(z <t — A(z))).



0 (lemma 3.3)

The comment “HA” means: by reasoning in HA; “HA under J ” means: by reasoning
in HA in the scope of J ; this is justified by the fact that J is increasing and monotone.

Definition 3.3 Let A(P) be a P(J)[P/-formula. Occurrences of subformulae, used in the
construction of A(P), according to the definition of P(J)[P], are called components.

Remark that a P(J)[P]-formula is monotone in its components, because 3,V<, A, Vv, J are
all monotone connectives.

Lemma 3.4 Let A(P) be a P(J)[P]-formula. Let C be a component of A(P) of the form
J(B(P)), with at least one occurrence of P. Let A'(P) be obtained from A by replacing
that component J(B(P)) by B(P). Then A(P) — J(A'(P)). ILe.

AP) = ..J(B(P)...
JA(P) = J(... B(P) ..)

PROOF: Easy, by induction on the structure of A(P). In fact, this is nothing else than
repeatedly shifting J outwards, using the fact that a component occurs only in scopes of
A, V,3,V<,J, and applying lemma 3.3.

O

4 Decomposition of the approximation process

Definition 4.1 Let A(P,z) be a P(J)[P/-formula.

A := A where every J with P in its scope has been deleted;
A* = A where every occurrence of P in the scope of J has been replaced
by Pf; 80:
A(P) = ...Ps;...J(... Pt; ..)
A(P) = ...Ps;... ... Ptj ...
A*(P) = ..Ps..J(..PA..)
Remark

A € P|P,z], so P’i = Pufi is HA-definable by the fact above; it follows that A* is a
] *
P[P, z]-formula, so pA" = P‘f1 is HA-definable too.

The idea of the proof is emerging: instead of iterating A(P,z) indefinitely, we split the
process in iterations that continue at most till stage w. In the first iteration we neglect
the J-operator completely, then we administer its effect one time; the second iteration also
goes on without J-operator. The reason that this suffices, is mainly the idempotency of
the J-operator.



Lemma 4.1 Let A(P,z) € P(J)[P,z]. Then

(i): P,fix — PA;

(i): J(PAz) - J(PAz).
PROOF: (i) follows from A — A, (ii) from J(A) — J(A), both by induction on a.
Ad (i): A is obtained from A by replacing components B by J(B). Use increase (B —
J(B)) and monotonicity in components. Ad (ii): this is seen as follows: by repeatedly

applying lemma 3.4 we have A — J(A); then, by monotonicity J(4) — J(J(A)) and by
idempotency J(A) — J(A). Let us now carry out the induction for (ii):

a=0 . J(PA2) "= J(A(he.L, 7)) —> for J(A) — J(A)gsee
above
J(AQz.L,z)) "= (P4, 2).
a=p+1 : J(PAZ) "= J(A(PA,2)) = for J(A) — J(A)see
above
J(A(PA, z)) =—> A monotone, J increasing
J(A(J(PR),z)) = ind hyp
J(A(J(PA),z)) —» lemma 3.4
J(J (A(P‘q, z)) —> idempotency
J(PA ).
lim o : J (Ptfla:) v let 5 (F<a P'§4x) => J increasing
J(AB<aJ (PE‘::)) i = ind hyp, monotonicity of J
J(3ﬂ<aJ(PB’iz)) = lemma 3.4
J(J(3AB<a P‘g‘iz)) =—> idempotency

J(PAz).
O
Lemma 4.2 Let A(P,z) € P(J)[P,z]. Then
(i): PAz o P;,A*a:
(%): Pf*x > Pﬁ_wz

PROOF: .
(i)(—):by induction on a we prove PAz — PA" ;.

7



a=0 : Pz < AQz.l,7) = PA" z(since 1. — P;:ia:) — PA's,

lim o ;. PAz < 3p<aPfz " 3p<aP s = PA's

For the successor case we note first that PAtJ — PAtJ ; this is seen as follows: for # < w it

follows by the fact that « < § = (PAa: — PAz) (routine induction, using monotonicity
of A); for B > w we recollect the fact that at stage w the iteration of A has reached its
fixed-point.

a=8+1 : PAla: = A(PA,a:) =
. Plsi L J(.. Pt L) — ind hyp
L PAs (... P54tj o) => increase
..Pf*s;... J(. ..J(Pédtj)...) = lemma 4.1(ii)
P T IR ) —> lemma 3.4
. P;,4* si...J(J(... P;itj ..2) =—> idempotency
o Pf*s.- U f (. Pﬁatj ..l = since Pé‘it_,- — P,fitj
cee Pf*s.- RV § (O Pu‘,itj .. <= by definition

A*(Pf*,z) <~ P’_luz <= PA for A* € P[P, z].

(i)(«): by induction on n we prove: PA z— P‘%_n_,_lw

n=0 : PA T <> A*(Az.l,z) <=
c.(z.L)s;... J(...PAt; ) —> lemma 4.1(i)
. (AzL)si. .. J(...PAL; .. ) =
PAs; ...J(...PAt;..) <=> by definition

A(PA,z) < PA .z
n+1 : PAlz = A*(PA ,T) >
... PA%, _J(.. PAy ..) =>indhyp

..P;ﬁ,,,_,_lsg....](... P,f,atj el =—> lemma 4.1(i)

. P‘ﬁ_n_,_ls; LT Pu‘,'ltj oel) => monotonicity
...PA L isi...J(..PA_.ti..) < by definition



A(PA ..7) < PA .=

Then P,f,‘*:z: < BnP,‘:l*z = HnPﬁon < PA z — ngz.

w+w

(ii): see the preceeding line.
0 (lemma 4.2)
Now theorem 3.2 follows:

— closure at w + w:

A(PA, . z) < PA_ . .z = PAz—> lemma 4.2(j)

pPA'; lemma 426) pA o
— definability:
Po‘ga: <> P;ﬁ,wx < Pf*z and Pu‘,'l* is HA-definable.
O (theorem 3.2)

5 Extensions

One of the limitations of our theorem is, that there figures at most one J-operator in an
e.i.d. . When we try to admit more, and proceed by repeatedly treating the J-operators
in the same way as we did our single J-operators, we encounter the following difficulty:
one J-operator need to be shifted outward over another, while it is not generally true that

Jl(Jg(Q)) g Jz(Jl(Q)) Define
Ja < Jp = N1(2(Q)) — J2(J1(Q)) read J; preceeds Jy.

Theorem 5.1 For A(P,z) containing two J-operators J, and Jz, where J; < Jz or J3 <
J1, the following holds:

PA=pA .. is HA-definable.

PROOF:
Define A := A where every J; with P in its scope has been deleted;
A* = A where every occurrence of P in the scope of J; has been replaced
by PA
y wtw*

Then proceed in the same way as before.
O

I conclude with some examples of J-operators and a few easy relationships between them.
The following are all J-operators:



I = AQQ

N = 2Q—Q

Dr -~ AQVR

Hgp = AM.R—-Q

Ng = XQ.(@—R)—R

N = AQ.Nr(/1(Q))

M7 = 2Q.(41(Q) = R) — J5(Q) where J3(Q) — J1(Q) for all Q.

It is not hard to establish that

N <J, 1< J, Hg, < Hg,, DR, < Dp,.

Fact 5.2

Ji1 < Js <= J1 0 J2 18 a J-operator.

PROOF:
(only if) straightforward; the condition J; < J; is used to get idempotency for J o J.

(if) J21Q —> increase, monotonicity
J2J1(J2Q) =—> increase
J1(J2J1(12Q)) = (J10J2)(J10J2)Q@ => (J10J3)Q by the idempotency of
(J10 J2).
O
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