Institute for Language, Logic and Information

ELEMENTARY INDUCTIVE DEFINITIONS IN HA: FROM STRICTLY POSITIVE TOWARDS MONOTONE

Dirk Roorda

ITLI Prepublication Series for Mathematical Logic and Foundations ML-89-07

University of Amsterdam

Faculteit der Wiskunde en Informatica (Department of Mathematics and Computer Science) Plantage Muidergracht 24 1018TV Amsterdam Faculteit der Wijsbegeerte (Department of Philosophy) Nieuwe Doelenstraat 15 1012CP Amsterdam

ELEMENTARY INDUCTIVE DEFINITIONS IN HA:

FROM STRICTLY POSITIVE TOWARDS MONOTONE

Dirk Roorda
Department of Mathematics and Computer Science
University of Amsterdam

Elementary Inductive Definitions in **HA**: from Strictly Positive towards Monotone

Dirk Roorda

August 8, 1989

Abstract

A study of elementary inductive definitions (e.i.d.) in **HA**. Strictly positive e.i.d. have closure ordinals $\leq \omega$, and define predicates that are already definable in **HA**. We enlarge this class by adding so-called J-operators, for example $\neg \neg$. E.i.d. in this larger class have closure ordinals up to $\omega + \omega$, but they are conservative over **HA** w.r.t. definability.

1 Introduction

We shall consider as inductive definitions formulae in the language of **HA** expanded with a single one place predicate variable P, containing at most one numerical variable free. The meaning of such an inductive definition A(P,x) is the least fixed-point of A(P,x), i.e. a predicate P^A satisfying

(i):
$$\forall x (A(P^A, x) \leftrightarrow P^A x)$$

(ii):
$$\forall x (A(Q,x) \rightarrow Qx) \rightarrow \forall x (P^{A}x \rightarrow Qx)$$
.

So the inductive definition specifies the closure conditions of the predicate it defines. The question is: for which A(P,x) can we justify the existence of such a P^A ? If A(P,x) is monotone, i.e.

$$\forall x(Qx \to Rx) \to \forall x(A(Q,x) \to A(R,x)),$$

then we can approximate P^A from below; define

$$P_0^A x : \iff A(\lambda x. \perp, x)$$
 $P_{\beta+1}^A x : \iff A(P_{\beta}^A, x)$
 $P_{\lambda}^A x : \iff \exists \mu < \lambda P_{\mu}^A x \text{, lim } \lambda$
 $P_{\infty}^A x : \iff \exists \mu P_{\mu}^A x$

Note that for monotone A(P,x) (i) \leftarrow is redundant: we have $A(P^A,x) \rightarrow P^A x$ by (i) \rightarrow , then by monotonicity we get $A(A(P^A,.),x) \rightarrow A(P^A,x)$, and finally by (ii) $P^A x \rightarrow A(P^A,x)$.

Classically P^A exists and is equal to the least fixed-point of A(P,x). An elementary inductive definition (e.i.d.) is an inductive definition without an unbounded universal quantifier occurring in front of a positive subformula containing P, and without an unbounded existential quantifier in front of a negative subformula containing P; the inductive definition must be monotone. Classically we know that for e.i.d. the approximation closes up at or before stage ω , so $P^A_\infty = P^A_\omega$. Intuitionistically, this is only true (in general) for strictly positive inductive definitions, i.e. formulae A(P,x) built up from atomic formulae Pt, from **HA**-formulae φ (these do not contain P), by means of $\exists, \forall y < s, \land, \lor$. Now we want to solve the following problems

- (i): give neat ordinal bounds for arbitrary e.i.d., not only for the strictly positive ones
- (ii): prove or refute: e.i.d. enhance the expressive power of HA.

I have no complete answer to these questions. I will describe special extensions of the class of strictly positive e.i.d., which do not enhance the expressive power of $\mathbf{H}\mathbf{A}$, while those e.i.d. may have a closure ordinal up to $\omega + \omega$. Those extensions are made by closing the strictly positive formulae under new operations, like $\neg \neg$. When we allow arbitrary monotone formulae, these problems look rather intractable. In particular, implication (with negative antecedent and positive consequent) seems rather tough.

Acknowledgement

This article is a partial answer to a question, posed by Kreisel in [Kre63, p.3.25]. I am indebted to prof. A.S. Troelstra for remembering it, and pointing it out to me.

Convention

Throughout this article the symbols \leftrightarrow resp. \rightarrow and \Longleftrightarrow resp. \Longrightarrow stand for *provable* equivalence resp. consequence in a formal system. But only \leftrightarrow and \rightarrow are used as connectives in a formal language, while \Longleftrightarrow and \Longrightarrow denote equivalence resp. consequence relations between formulae.

2 Examples

2.1 Closure at $\omega + 1$

An e.i.d. that closes up at stage $\omega + 1$ (exactly). Let C be a nonrecursive RE - set, say

$$x \in C \leftrightarrow \exists z Texz$$
; assume $Texz \rightarrow x \leq z$.

Define, assuming that pairing is surjective:

$$A(P,\langle x,z\rangle):\iff \exists m\leq z\ Texm\ \lor\ P\langle x,z+1\rangle.$$

Then

$$P_0^A\langle x,z
angle\iff \exists m\leq z\, Texm$$

$$P_1^A\langle x,z
angle\iff \exists m\leq z\, Texm\,\vee\, P_0^A\langle x,z+1
angle\iff \exists m\leq z+1 Texm$$

$$\vdots$$

$$P_k^A\langle x,z
angle\iff \exists m\leq z+k\, Texm$$

$$.$$

 $P_{\alpha}^{A}\langle x,z\rangle \iff \exists mTexm \iff x \in C$

We see quickly that $P_{\omega}^{A} = P_{\omega+1}^{A}$ and $P_{k}^{A} \neq P_{\omega}^{A}$. The last inequality follows from the fact that C is infinite and $Texz \to x \le z$. Now we define, following [Kre63, pp. 3.6 and 3.24]:

$$B(P,x) : \iff A(P,x) \vee \neg \neg Px.$$

Then, for all $n < \omega$, $P_n^B x \leftrightarrow P_n^A x$, and P_n^A is recursive. PROOF:

$$P_0^B x \iff P_0^A x \vee \neg \neg \bot \iff P_0^A x \text{ and clearly } P_0^A \text{ is recursive.}$$
 $P_{n+1}^B x \iff A(P_n^B, x) \vee \neg \neg P_n^B x \iff \text{ind hyp}$
$$A(P_n^A, x) \vee \neg \neg P_n^A x \iff \text{def, ind hyp}$$

$$P_{n+1}^A x \vee P_n^A x \iff P_{n+1}^A x, \text{ and } P_{n+1}^A \text{ is recursive.}$$

Consider now P_{ω}^{B} , $P_{\omega+1}^{B}$ and $P_{\omega+2}^{B}$:

$$\begin{array}{lll} P_{\omega}^{B}x & \iff \exists nP_{n}^{B}x \iff \exists nP_{n}^{A}x \iff P_{\omega}^{A}x. \\ \\ P_{\omega+1}^{B}x & \iff B(P_{\omega}^{B},x) \iff A(P_{\omega}^{A},x) \vee \neg \neg P_{\omega}^{A}x \\ & \iff P_{\omega}^{A}x \vee \neg \neg P_{\omega}^{A}x \iff \neg \neg P_{\omega}^{A}x \iff P_{\omega}^{A}x \text{ ,for } P_{\omega}^{A} \text{ is nonrecursive.} \\ \\ P_{\omega+2}^{B}x & \iff A(P_{\omega+1}^{B},x) \vee \neg \neg P_{\omega+1}^{B}x \iff A(\neg \neg P_{\omega}^{A},x) \iff \neg \neg \neg \neg P_{\omega}^{A}x \end{array}$$

 $\iff \neg \neg P_{\omega}^{A}x \;\; ext{because} \; A(\neg \neg P_{\omega}^{A}, x) \; \Longrightarrow \; \neg \neg A(P_{\omega}^{A}, x) \; \Longrightarrow \; \neg \neg P_{\omega}^{A}x.$

It is possible to construe e.i.d. C(P,x) that close up at stage $\omega + \omega$, by exploiting this

□ (first example)

trick.

2.2 Closure at $\omega + \omega$

We give an e.i.d. with closure ordinal $\omega + \omega$. Let $\langle \ldots \rangle$ be a coding of sequences of natural numbers. Let A(P,x) be an e.i.d. that defines a nonrecursive $P^A = P^A_\omega$, while the P^A_k are recursive (cf. the first example); in addition, let $P^A \subseteq \{\langle x \rangle \mid x \in \mathbb{N}\}$, and let A(P,x) be insensitive to numbers outside this set, i.e.

$$A(P,x) \leftrightarrow A(\lambda y.Py \wedge \exists z (\langle z \rangle = y), x)$$

Define

$$B(P,x) := (A(P,x) \wedge \ln x = 1) \vee \exists y \exists z (Py \wedge \neg \neg A(P,z) \wedge \ln z = 1 \wedge x = y \star z)$$

Then $P^B = P^B_{\omega + \omega}$, by the following lemmas, whose proofs are not particularly interesting and not too difficult. Sometimes I use set-theoretic notation like $x \in P^A_{\omega}$ for $P^A_{\omega} x$.

Lemma 2.1
$$P_{\omega}^{B} = \{\langle x_1, \dots, x_k \rangle \mid k \in \mathbb{N}, \langle x_i \rangle \in P_{\omega}^{A}, i = 1, \dots, k\}$$

Lemma 2.2

$$egin{aligned} P^B_{\omega+n} &= \{ \langle x_1, \dots, x_k
angle \mid & k > 0 \, \wedge \, \langle x_1
angle \in P^A_\omega \ & \wedge \, orall i \in \{1, \dots, k - n\} \, \langle x_i
angle \in P^A_\omega \ & \wedge \, orall i \in \{k - (n+1), \dots, k\} \, \langle x_i
angle \in
eggh{\lnot} P^A_\omega \} \end{aligned}$$

Lemma 2.3 $x \in P_{\omega+n+1}^B \iff x \in P_{\omega+n}^B$

Lemma 2.4

$$P^{B}_{\omega+\omega} = \bigcup_{\boldsymbol{n}\in\omega} P^{B}_{\omega+\boldsymbol{n}} = \{\langle x_1,\ldots,x_k\rangle \mid k>0 \, \wedge \, \langle x_1\rangle \in P^{A}_{\omega} \, \wedge \, \langle x_2\rangle,\ldots,\langle x_k\rangle \in \neg\neg P^{A}_{\omega}\}$$

It is clear from this construction, that the closure ordinal of B cannot be proved to be less than $\omega + \omega$.

3 J-operators

The following definition is meant as a generalization of the ¬¬-operator (cf. [FS73, pp.324–334]):

Definition 3.1 A J-operator is an operator $J(\cdot)$, on **HA**-formulae, that is **HA**-definable, and that satisfies:

(i):
$$Q \rightarrow J(Q)$$
 (increasing)

(ii):
$$J(Q \wedge R) \leftrightarrow J(Q) \wedge J(R)$$
 $(\wedge \text{-distributive})$

(iii):
$$J(J(Q)) \rightarrow J(Q)$$
 (idempotent)

Note that from $(ii)(\rightarrow)$ follows:

(iv):
$$(Q \to R) \to (J(Q) \to J(R))$$
 (monotone).

We do not allow J to have free variables.

Definition 3.2: P[P] is the class of strictly positive formulae, i.e.:

- Pt, t a term, is a formula of P[P]
- a formula φ of the language of $\mathbf{H}\mathbf{A}$ is a formula of P[P]
- P[P] is closed under $\exists, \forall^{<}, \land, \lor$.

P(J)[P], J a J-operator, is defined analogously, except that P(J)[P] is also closed under J.

Fact 3.1 For $A(P,x) \in \mathcal{P}[P,x], P^{A} = P_{\omega}^{A}$ is HA-definable. See [TvD88, Vol I,pp.145-152].

Theorem 3.2 For $A(P,x) \in \mathcal{P}(J)[P,x], P^{A} = P^{A}_{\omega+\omega}$ is HA-definable.

Before giving the proof, I will supply some technical lemmas and hint at the idea behind the proof.

Lemma 3.3 (Shifting J to the outside)

(i):
$$J(P) \vee J(Q) \rightarrow J(P \vee Q)$$

(ii):
$$J(P) \wedge J(Q) \rightarrow J(P \wedge Q)$$

$$(iii): \exists x J(A(x)) \to J(\exists x A(x))$$

(iv):
$$\forall x < t J(A(x)) \rightarrow J(\forall x < tA(x))$$

PROOF:

(i):
$$P \to P \lor Q \\ Q \to P \lor Q$$
 \Longrightarrow $J(P) \to J(P \lor Q) \\ J(Q) \to J(P \lor Q)$ \Longrightarrow $J(P) \lor J(Q) \to J(P \lor Q)$

(ii): by \wedge -distributivity(\leftarrow)

(iii):
$$A(x) \to \exists x A(x) \implies J(A(x)) \to J(\exists x A(x)) \implies \exists x J(A(x)) \to J(\exists x A(x))$$

(iv): let J-SHIFT(y) denote the following schema:

$$\forall x(x < y \rightarrow J(A(x))) \rightarrow J(\forall x(x < y \rightarrow A(x))), y \notin FV(A).$$

We prove $\forall y \text{ J-SHIFT}(y)$ by induction:

$$\forall x(x<0 \rightarrow A(x))$$
, so by increase: $J(\forall x(x<0 \rightarrow A(x)))$.

$$\forall x (x < Sy \rightarrow J(A(x))) \Longrightarrow \text{``HA''}$$

$$\forall x(x < y \rightarrow J(A(x))) \land J(A(y)) \implies \text{ind hyp}$$

$$J(\forall x(x < y \rightarrow A(x))) \land J(A(y)) \implies \land \text{-distributivity}$$

$$J(\forall x(x < y \rightarrow A(x)) \land J(A(y)))$$
 \Longrightarrow "HA under J"

$$J(\forall x(x < Sy \rightarrow A(x))).$$

We conclude: for any term t:

$$\forall x(x < t \rightarrow J(A(x))) \rightarrow J(\forall x(x < t \rightarrow A(x))).$$

 \square (lemma 3.3)

The comment "HA" means: by reasoning in HA; "HA under J" means: by reasoning in HA in the scope of J; this is justified by the fact that J is increasing and monotone.

Definition 3.3 Let A(P) be a P(J)[P]-formula. Occurrences of subformulae, used in the construction of A(P), according to the definition of P(J)[P], are called components.

Remark that a P(J)[P]-formula is monotone in its components, because $\exists, \forall^{<}, \land, \lor, J$ are all monotone connectives.

Lemma 3.4 Let A(P) be a P(J)[P]-formula. Let C be a component of A(P) of the form J(B(P)), with at least one occurrence of P. Let A'(P) be obtained from A by replacing that component J(B(P)) by B(P). Then $A(P) \rightarrow J(A'(P))$. I.e.

$$A(P) \equiv \dots J(B(P)) \dots$$

 $J(A'(P)) \equiv J(\dots B(P) \dots)$

PROOF: Easy, by induction on the structure of A(P). In fact, this is nothing else than repeatedly shifting J outwards, using the fact that a component occurs only in scopes of \land , \lor , \exists , \forall <, J, and applying lemma 3.3.

4 Decomposition of the approximation process

Definition 4.1 Let A(P, x) be a P(J)/P-formula.

 \bar{A} := A where every J with P in its scope has been deleted;

 A^* : \equiv A where every occurrence of P in the scope of J has been replaced by $P^{ar{A}}_{\omega}$; so:

$$A(P) \equiv \dots Ps_i \dots J(\dots Pt_i \dots)$$

$$\bar{A}(P) \equiv \dots Ps_i \dots Pt_j \dots$$

$$A^*(P) \equiv \dots Ps_i \dots J(\dots P_{\omega}^{\bar{A}}t_j \dots)$$

Remark

 $ar{A}\in\mathcal{P}[P,x]$, so $P^{ar{A}}=P^{ar{A}}_{\omega}$ is **HA**-definable by the fact above; it follows that A^* is a $\mathcal{P}[P,x]$ -formula, so $P^{A^*}=P^{A^*}_{\omega}$ is **HA**-definable too.

The idea of the proof is emerging: instead of iterating A(P,x) indefinitely, we split the process in iterations that continue at most till stage ω . In the first iteration we neglect the J-operator completely, then we administer its effect one time; the second iteration also goes on without J-operator. The reason that this suffices, is mainly the idempotency of the J-operator.

Lemma 4.1 Let $A(P,x) \in \mathcal{P}(J)[P,x]$. Then

(i):
$$P_{\alpha}^{\bar{A}}x \rightarrow P_{\alpha}^{A}x$$

(ii):
$$J(P_{\alpha}^{A}x) \rightarrow J(P_{\alpha}^{\bar{A}}x)$$

PROOF: (i) follows from $\bar{A} \to A$, (ii) from $J(A) \to J(\bar{A})$, both by induction on α . Ad (i): A is obtained from \bar{A} by replacing components B by J(B). Use increase $(B \to J(B))$ and monotonicity in components. Ad (ii): this is seen as follows: by repeatedly applying lemma 3.4 we have $A \to J(\bar{A})$; then, by monotonicity $J(A) \to J(J(\bar{A}))$ and by idempotency $J(A) \to J(\bar{A})$. Let us now carry out the induction for (ii):

Lemma 4.2 Let $A(P,x) \in \mathcal{P}(J)[P,x]$. Then

(i):
$$P_{\infty}^{A}x \leftrightarrow P_{\omega}^{A^{*}}x$$

(ii):
$$P_{\omega}^{A^*}x \leftrightarrow P_{\omega+\omega}^Ax$$

PROOF:

(i)(\rightarrow):by induction on α we prove $P_{\alpha}^{A}x \rightarrow P_{\omega}^{A^{*}}x$.

$$lpha = 0$$
 : $P_0^{m{A}}x \iff A(\lambda x. \perp, x) \implies P_0^{m{A}^*}x (\text{since } \perp \to P_\omega^{ar{A}}x) \implies P_\omega^{m{A}^*}x$

$$\lim \alpha : P_{\alpha}^{A}x \iff \exists \beta < \alpha P_{\beta}^{A}x \stackrel{\text{indhyp}}{\Longrightarrow} \exists \beta < \alpha P_{\omega}^{A^{*}}x \implies P_{\omega}^{A^{*}}x.$$

For the successor case we note first that $P^{\bar{A}}_{\beta}t_j \to P^{\bar{A}}_{\omega}t_j$; this is seen as follows: for $\beta < \omega$ it follows by the fact that $\alpha < \beta \implies (P^{\bar{A}}_{\alpha}x \to P^{\bar{A}}_{\beta}x)$ (routine induction, using monotonicity of \bar{A}); for $\beta > \omega$ we recollect the fact that at stage ω the iteration of \bar{A} has reached its fixed-point.

$$\alpha = \beta + 1 \qquad : \qquad P_{\beta+1}^{A}x \implies A(P_{\beta}^{A}, x) \equiv \\ \dots P_{\beta}^{A}s_{i} \dots J(\dots P_{\beta}^{A}t_{j} \dots) \qquad \implies \text{ind hyp} \\ \dots P_{\omega}^{A^{*}}s_{i} \dots J(\dots P_{\beta}^{A}t_{j} \dots) \qquad \implies \text{increase} \\ \dots P_{\omega}^{A^{*}}s_{i} \dots J(\dots J(P_{\beta}^{A}t_{j}) \dots) \qquad \implies \text{lemma 4.1(ii)} \\ \dots P_{\omega}^{A^{*}}s_{i} \dots J(\dots J(P_{\beta}^{\bar{A}}t_{j}) \dots) \qquad \implies \text{lemma 3.4} \\ \dots P_{\omega}^{A^{*}}s_{i} \dots J(J(\dots P_{\beta}^{\bar{A}}t_{j} \dots)) \qquad \implies \text{idempotency} \\ \dots P_{\omega}^{A^{*}}s_{i} \dots J(\dots P_{\beta}^{\bar{A}}t_{j} \dots) \qquad \implies \text{since } P_{\beta}^{\bar{A}}t_{j} \rightarrow P_{\omega}^{\bar{A}}t_{j} \\ \dots P_{\omega}^{A^{*}}s_{i} \dots J(\dots P_{\omega}^{\bar{A}}t_{j} \dots) \qquad \iff \text{by definition} \\ A^{*}(P_{\omega}^{A^{*}}, x) \iff P_{\omega+1}^{A^{*}}x \iff P_{\omega}^{A^{*}}x \quad \text{for } A^{*} \in \mathcal{P}[P, x].$$

(i)(\leftarrow): by induction on n we prove: $P_n^{A^*}x \to P_{\omega+n+1}^Ax$.

$$A(P_{\omega+n+1}^A,x) \iff P_{\omega+n+2}^Ax.$$

Then $P_{\omega}^{A^*}x \iff \exists nP_n^{A^*}x \implies \exists nP_{\omega+n+1}^Ax \iff P_{\omega+\omega}^Ax \implies P_{\infty}^Ax$.

(ii): see the preceeding line.

 \square (lemma 4.2)

Now theorem 3.2 follows:

- closure at $\omega + \omega$:

$$A(P_{\omega+\omega}^{A},x) \iff P_{\omega+\omega+1}^{A}x \implies P_{\infty}^{A}x \Longrightarrow \text{lemma 4.2(i)}$$

$$P_{\omega}^{A^{*}}x \Longrightarrow^{\text{lemma 4.2(ii)}} P_{\omega+\omega}^{A}x.$$

- definability:

$$P_{\infty}^{A}x \iff P_{\omega+\omega}^{A}x \iff P_{\omega}^{A^{*}}x \text{ and } P_{\omega}^{A^{*}} \text{ is } \mathbf{HA}\text{-definable.}$$

 \Box (theorem 3.2)

5 Extensions

One of the limitations of our theorem is, that there figures at most one J-operator in an e.i.d. . When we try to admit more, and proceed by repeatedly treating the J-operators in the same way as we did our single J-operators, we encounter the following difficulty: one J-operator need to be shifted outward over another, while it is not generally true that $J_1(J_2(Q)) \to J_2(J_1(Q))$. Define

$$J_2 \leq J_1$$
 : $\iff J_1(J_2(Q)) \rightarrow J_2(J_1(Q))$ read J_2 preceds J_1 .

Theorem 5.1 For A(P,x) containing two J-operators J_1 and J_2 , where $J_1 \leq J_2$ or $J_2 \leq J_1$, the following holds:

$$P^{\pmb{A}}=P^{\pmb{A}}_{\pmb{\omega}+\pmb{\omega}+\pmb{\omega}+\pmb{\omega}}$$
 is ${f HA}$ -definable.

PROOF:

Define $\bar{A} :\equiv A$ where every J_2 with P in its scope has been deleted;

 A^* := A where every occurrence of P in the scope of J_2 has been replaced by $P^{ar{A}}_{\omega+\omega}$.

Then proceed in the same way as before.

I conclude with some examples of J-operators and a few easy relationships between them. The following are all J-operators:

It is not hard to establish that

$$N \leq J, I \leq J, H_{R_1} \leq H_{R_2}, D_{R_1} \leq D_{R_2}.$$

Fact 5.2

$$J_1 \leq J_2 \iff J_1 \circ J_2 \text{ is a } J\text{-operator}.$$

PROOF:

(only if) straightforward; the condition $J_1 \leq J_2$ is used to get idempotency for $J_1 \circ J_2$.

(if)
$$J_2J_1Q$$
 \Longrightarrow increase, monotonicity $J_2J_1(J_2Q)$ \Longrightarrow increase $J_1(J_2J_1(J_2Q)) \equiv (J_1\circ J_2)(J_1\circ J_2)Q \Longrightarrow (J_1\circ J_2)Q$ by the idempotency of $(J_1\circ J_2)$.

References

- [FS73] M.P. Fourman and D.S. Scott. Sheaves and logic. In M.P. Fourman, C.J. Mulvey, and D.S. Scott, editors, Applications of Sheaves, pages 302-401, Springer Verlag, Berlin, 1973.
- [Kre63] Georg Kreisel. Reports of the Seminar on the Foundations of Analysis, part III.
 Technical Report, Stanford University, 1963. Mimeographed.
- [TvD88] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics. North-Holland Publishing Company, Amsterdam, 1988.

The ITLI Prepublication Series

The ITLI Prepublication Series	
1986	
86-01	The Institute of Language, Logic and Information
86-02 Peter van Emde Boas 86-03 Johan van Benthem	A Semantical Model for Integration and Modularization of Rules Categorial Grammar and Lambda Calculus
86-04 Reinhard Muskens	A Relational Formulation of the Theory of Types
86-05 Kenneth A. Bowen, Dick de Jongh	Some Complete Logics for Branched Time, Part I Well-founded Time, Forward looking Operators
86-06 Johan van Benthem	Logical Syntax
1987	
87-01 Jeroen Groenendijk, Martin Stokhof 87-02 Renate Bartsch	Type shifting Rules and the Semantics of Interrogatives Frame Representations and Discourse Representations
87-03 Jan Willem Klop, Roel de Vrijer	Unique Normal Forms for Lambda Calculus with Surjective Pairing
87-04 Johan van Benthem	Polyadic quantifiers
87-05 Víctor Sánchez Valencia 87-06 Eleonore Oversteegen	Traditional Logicians and de Morgan's Example Temporal Adverbials in the Two Track Theory of Time
87-07 Johan van Benthem	Categorial Grammar and Type Theory
87-08 Renate Bartsch 87-09 Herman Hendriks	The Construction of Properties under Perspectives Type Change in Semantics: The Scope of Quantification and
Coordination	Type Change in Schmines. The Scope of Quantification and
1988 Logic, Semantics and Philosophy of Language:	
LP-88-01 Michiel van Lambalgen	Algorithmic Information Theory
LP-88-02 Yde Venema LP-88-03	Expressiveness and Completeness of an Interval Tense Logic Year Report 1987
LP-88-04 Reinhard Muskens	Going partial in Montague Grammar
LP-88-05 Johan van Benthem	Logical Constants across Varying Types
LP-88-06 Johan van Benthem LP-88-07 Renate Bartsch	Semantic Parallels in Natural Language and Computation Tenses, Aspects, and their Scopes in Discourse
LP-88-08 Jeroen Groenendijk, Martin Stokhof	Context and Information in Dynamic Semantics
LP-88-09 Theo M.V. Janssen	A mathematical model for the CAT framework of Eurotra
LP-88-10 Anneke Kleppe Mathematical Logic of	A Blissymbolics Translation Program and Foundations:
ML-88-01 Jaap van Oosten	Lifschitz' Realizabiility
	hmetical Fragment of Martin Löf's Type Theories with weak Σ-elimination
ML-88-03 Dick de Jongh, Frank Veltman ML-88-04 A.S. Troelstra	Provability Logics for Relative Interpretability On the Early History of Intuitionistic Logic
ML-88-05 A.S. Troelstra	Remarks on Intuitionism and the Philosophy of Mathematics
CT 88 01 Ming Li Boyl M.B. Vitonyi	
CT-88-01 Ming Li, Paul M.B.Vitanyi CT-88-02 Michiel H.M. Smid	Two Decades of Applied Kolmogorov Complexity General Lower Bounds for the Partitioning of Range Trees
CT-88-03 Michiel H.M. Smid, Mark H. Overmars	s Maintaining Multiple Representations of
Leen Torenvliet, Peter van Emde Boa CT-88-04 Dick de Jongh, Lex Hendriks	S Dynamic Data Structures Computations in Fragments of Intuitionistic Propositional Logic
Gerard R. Renardel de Lavalette	
CT-88-05 Peter van Emde Boas CT-88-06 Michiel H.M. Smid A Data Struc	Machine Models and Simulations (revised version) ture for the Union-find Problem having good Single-Operation Complexity
CT-88-07 Johan van Benthem	Time, Logic and Computation
CT-88-08 Michiel H.M. Smid, Mark H. Overmars	s Multiple Representations of Dynamic Data Structures
CT-88-09 Theo M.V. Janssen	Towards a Universal Parsing Algorithm for Functional Grammar
CT-88-10 Edith Spaan, Leen Torenvliet, Peter van	n Emde Boas Nondeterminism, Fairness and a Fundamental Analogy
CT-88-11 Sieger van Denneheuvel, Peter van Emde Boas Towards implementing RL	
Other prepublications	
X-88-01 Marc Jumelet	On Solovay's Completeness Theorem
	nd Philosophy of Language:
LP-89-01 Johan van Benthem LP-89-02 Jeroen Groenendijk, Martin Stokhof	The Fine-Structure of Categorial Semantics Dynamic Predicate Logic, towards a compositional,
-	non-representational semantics of discourse
LP-89-03 Yde Venema Two-dimens LP-89-04 Johan van Benthem	sional Modal Logics for Relation Algebras and Temporal Logic of Intervals
LP-89-05 Johan van Benthem	Language in Action Modal Logic as a Theory of Information
LP-89-06 Andreja Prijatelj	Intensional Lambek Calculi: Theory and Application
LP-89-07 Heinrich Wansing Mathematical Logic of	The Adequacy Problem for Sequential Propositional Logic
ML-89-01 Dick de Jongh, Albert Visser	Explicit Fixed Points for Interpretability Logic
ML-89-02 Roel de Vrijer	Extending the Lambda Calculus with Surjective Pairing is conservative
ML-89-03 Dick de Jongh, Franco Montagna ML-89-04 Dick de Jongh, Marc Jumelet, Franco	Rosser Orderings and Free Variables Montagna On the Proof of Solovay's Theorem
ML-89-05 Rineke Verbrugge	Σ-completeness and Bounded Arithmetic
ML-89-06 Michiel van Lambalgen ML-89-07 Dirk Roorda Eleme	The Axiomatization of Randomness
ML-89-08 Dirk Roorda	entary Inductive Definitions in HA: from Strictly Positive towards Monotone Investigations into Classical Linear Logic
Computation and Co	omplexity Theory:
CT-89-01 Michiel H.M. Smid CT-89-02 Peter van Emde Boas	Dynamic Deferred Data Structures Machine Models and Simpletions
CT-89-03 Ming Li, Herman Neuféglise, Leen Tor	Machine Models and Simulations renvliet, Peter van Emde Boas On Space efficient Simulations
CT-89-04 Harry Buhrman, Leen Torenvliet	A Comparison of Reductions on Nondeterministic Space
CT-89-05 Pieter H. Hartel, Michiel H.M. Smid Leen Torenvliet, Willem G. Vree	A Parallel Functional Implementation of Range Queries
CT-89-06 H.W. Lenstra, Jr.	Finding Isomorphisms between Finite Fields
CT-89-07 Ming Li, Paul M.B. Vitanyi	A Theory of Learning Simple Concepts under Simple Distributions and Average Case Complexity for the Universal Distribution (Prel. Version)
Other prepublications: X-89-01 Marianne Kalsbeek	An Orey Sentence for Predicative Arithmetic
X-89-02 G. Wagemakers	New Foundations: a Survey of Quine's Set Theory
X-89-03 A.S. Troelstra X-89-04 Jeroen Groenendijk, Martin Stokhof	Index of the Heyting Nachlass Dynamic Montague Grammar, a first sketch
X-89-05 Maarten de Rijke	The Modal Theory of Inequality
	•