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Abstract. The most widely used attractive logical account of knowledge uses
standard epistemic models, i.e., graphs whose edges are indistinguishability
relations for agents. In this paper, we discuss more general topological models
for a multi-agent epistemic language, whose main uses so far have been in
reasoning about space. We show that this more geometrical perspective affords
greater powers of distinction in the study of common knowledge, defining new
collective agents, and merging information for groups of agents.

1. Epistemic logic in its standard guise

1.1. Basic epistemic logic. Epistemic logic is in wide use today as a description
of knowledge and ignorance for agents in philosophy [14], computer science [13],
[22], game theory [12], and other areas. In this paper, we assume familiarity with
the basic language of propositional epistemic logic, interpreted over multi-agent
S4 models whose accessibility relations are reflexive and transitive. Alternative
model classes occur, too, such as equivalence relations for each agent in multi-agent
S5–but our discussion is largely independent from such choices. The key semantic
clause about an agent’s knowledge of a proposition says that Kiφ holds at a world
x if and only if φ is true in all worlds y accessible for i from x. That is, the epis-
temic knowledge modality is really a modal box ¤iφ. For technical convenience,
we will use the latter notation for knowledge in the rest of this paper. The main
modern interest in epistemic logic has to do with analyzing iterated knowledge of
agents about themselves and what others know, for purposes of communication and
interaction. Cf. [4], [9] on systems that combine epistemic logic and dynamic logic
to describe information update in groups of agents. A simple example of how the
basic logic works is the model in Figure 1.

The universally valid principles in our models are those of multi-agent S4. In an
epistemic setting, the usual modal axioms get a special flavor. E.g., the itera-
tion axiom ¤1φ → ¤1¤1φ now expresses ‘positive introspection’: agents who know
something know that they know it. More precisely, we have S4-axioms for each sep-
arate agent, but no valid further ‘mixing axioms’ for iterated knowledge of agents,
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Figure 1. In the black central world, 1 does not know if p, while
2 does know that p. In the world to the left, 1 does know that p,
so in the central world, 2 does not know if 1 knows that p.
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such as ¤1¤2φ → ¤2¤1φ. Indeed, the latter implication fails in the above example.
For instance, in the world on the left, 1 has no uncertainties, and so 1 knows that
2 knows that p. But 2 does not know there that 1 knows that p, because the latter
assertion is false in the central world. Another way of describing the set of valid
principles is as a fusion S4⊕S4 of separate logics S4 for each agent, a perspective
of ‘merging logics’ to which we will return below. In what follows, we shall mostly
work with two-agent groups, G = {1, 2}, since most phenomena of interest can be
studied there. Generalizations to finite k-agent cases are straightforward.

1.2. Group knowledge. Perhaps the most interesting topic in an interactive epis-
temic setting has been the discovery of various notions of what may be called group
knowledge. Two well-known examples are as follows:

(1) EGφ: every agent in group G knows that φ,
(2) CGφ: φ is common knowledge in the group G.

The latter notion of group knowledge is much stronger than the former. It has been
proposed in the philosophical, economic and linguistic literature as a necessary pre-
condition for coordinated behavior between agents, cf. [16]. The usual semantic
definition of common knowledge runs as follows:

M,x |= C1,2φ iff for all y with x (R1 ∪R2)∗y, M, y |= φ

where x(R1∪R2)∗y if there is a finite sequence of successive steps from either of the
two accessibility relations connecting x to y. This relation is the reflexive transitive
closure of the union of the relations for both agents. The key valid principles for
common knowledge are the following additional axiom and rule:

Equilibrium Axiom: C1,2φ ↔ (φ ∧ (¤1C1,2φ ∧¤2C1,2φ))
Induction Rule: `p→(¤1(q∧p)∧¤2(q∧p))

`p→C1,2q

This logic is known as S4C
2 . It has been shown to be complete and decidable in

[13] via a simple variation on similar proofs for propositional dynamic logic.

But there are still further interesting notions of knowledge for a group of agents. A
prominent one is so-called implicit knowledge, DGφ, which describes what a group
would know if its members decided to merge their information:

M,x |= D1,2φ iff for all y with xR1 ∩R2y, M, y |= φ

where R1∩R2 is the intersection of the accessibility relations for the separate agents.
This new notion is technically somewhat different from the earlier two in that, unlike
universal and common knowledge, it is not invariant under modal bisimulations of
epistemic models. It also involves a new phenomenon of independent epistemic
interest: viz. merging the information possessed by different agents. The latter
topic will return throughout this paper.
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1.3. Agents as epistemic accessibility relations. We can also think of new
notions of group knowledge as introducing new agents. E.g., CG defines a new kind
of S4-agent, since R(1∪2)∗ was again a pre-order. Note that R1 ∪R2 by itself is not
a pre-order, so the new ‘agent’ corresponding to the fact that ‘everybody knows’
would have different epistemic properties. In particular, it would lack positive in-
trospection as to what it knows. In contrast, the relation R1 ∩R2 for DG is again
an S4-agent as it stands, since Horn conditions like transitivity and reflexivity are
preserved under intersections of relations. So, given a group of individual agents,
our logical models suggest new agents. In particular, with two S4-agents 1, 2, two
additional ones supervene on these, one weaker, one stronger:

R1 ∩R2

↗ ↖

R1 R2

↖ ↗
(R1 ∪R2)∗

All this seems quite rich as an account for epistemic agents. And yet, there are
indications that this framework is not yet flexible enough for its tasks.

1.4. Alternative views of common knowledge. Despite the success of the stan-
dard epistemic logic framework, there are still doubts about its expressive power
and sensitivity. Some recurrent complaints seem endemic to logical approaches as
such, like the vexing problem of logical omniscience: agents automatically know all
laws of the system. But a more serious concern is the lack of epistemic distinctions
in the standard modal setting. Notably, in his well-known critical paper [6], Bar-
wise claimed that a proper analysis of common knowledge must distinguish three
different approaches, that we may label

(1) countably infinite iteration of individual knowledge modalities,
(2) the fixed-point view of common knowledge as ‘equilibrium’,
(3) agents’ having a shared epistemic situation.

He then showed how to distinguish all three in a special situation-theoretic frame-
work. As we will see below, however, Barwise’s distinctions make sense in main-
stream logic too–provided that we move to a broader topological semantics for the
epistemic language involving products of models for individual agents. But before
we do that, let us first analyze the reason why standard epistemic logic fails to
distinguish the first two options. The third notion of ‘shared understanding’ is
somewhat more mysterious, and harder to grasp in a standard relational modal
setting. We will have a stab at it in the richer topological models of Section 2.

1.5. Computing epistemic fixed-points. The above Equilibrium Axiom for the
common knowledge operator CGφ shows how it may be viewed as defining a fixed-
point of an epistemic operator λX.φ∧¤1X ∧¤2X. In conjunction with the Induc-
tion Rule, it may even be seen to be a greatest fixed-point definable in the standard
modal µ-calculus as:
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CGφ := νp.φ ∧¤1p ∧¤2p.

With a perhaps more familiar modal µ-operator, its existential variant would be
defined as a smallest fixed-point

♦C
Gφ := µp.φ ∨ ♦1p ∨ ♦2p.

As usual, a greatest fixed-point is defined as the fixed-point of a descending ap-
proximation sequence defined over the set of ordinals. We write [|φ|] for the truth
set of φ in the relevant model where evaluation takes place:

C0
1,2φ := [|φ|],

Cκ+1
1,2 φ := [|φ ∧¤1(Cκ

1,2φ) ∧¤2(Cκ
1,2φ)|],

Cλ
1,2φ := [|∧κ<λ Cκ

1,2φ|], for λ a limit ordinal.

Finally, we let C1,2φ := Cκ
1,2φ where κ is the least ordinal for which the approxi-

mation procedure halts: i.e., Cκ+1
1,2 φ = Cκ

1,2φ. This approximation procedure must
stop at some ordinal because the operator F applied is monotonic, a fact which is
guaranteed by the positive occurrence of the propositional variable p in the body
of F ’s definition. As a result, the approximation sequence for a greatest fixed-point
operator always descends to subsets, and hence it must stop eventually. In general
µ-calculus, reaching this stopping point may take any number of ordinal stages. A
standard example is the least-fixed-point formula µp.¤p which computes the so-
called ‘well-founded part’ of the binary accessibility relation for the modality. But
in certain cases, stabilization is guaranteed to occur by the first infinite stage.

Fact 1.1. In every relational epistemic model, the approximation procedure for the
common knowledge modality stabilizes at κ ≤ ω.

This simple behavior is most easily understood by observing that knowledge modal-
ities ¤i distribute over any infinite conjunction. Thus, ¤i(

∧
n<ω Cn

1,2φ) is simply∧
n<ω ¤iC

n
1,2φ which is equivalent to

∧
n<ω Cn

1,2φ. More generally, stabilization for
a formula νp.φ(p) is guaranteed by stage ω in any model just in case the syntax
defining the monotone approximation operator is constrained as follows [10]. The
formula φ(p) must be a disjunction whose members are constructed using only

(1) arbitrary literals (¬)q,
(2) any epistemic formulas that do not contain q at all,
(3) conjunctions and universal modalities.

The preceding Fact says that the fixed-point approach to common knowledge and
that with countably infinite conjunctions of repeated knowledge modalities are
equivalent in the standard setting, as νp.φ ∧¤1p ∧¤2p is equivalent to

K1,2p := φ ∧¤1φ ∧¤2φ ∧¤1¤2φ...
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This equivalence is often considered a technical convenience. But it may also indi-
cate that our standard models are too weak to make a relevant distinction, and that
more general models are needed. As we shall see, these two definitions of common
knowledge are different in a topological modelling for epistemic logic— and even
stronger ones can then be modelled, resembling Barwise’s use of ‘shared situations’.

1.6. Merging Information. Many further interesting issues are raised by a multi-
agent epistemic setting. In particular, multi-agent models will often arise by merg-
ing models for separate agents, or groups of agents, so that common knowledge for
the whole group becomes possible at all. One natural way of combining models for
two or more agents emphasized in the recent literature on combining modal logics
employs products of their underlying frames. More precisely,

Definition 1.2. The product of two frames F1 = (W1, R1) and F2 = (W2, R2) is
the frame F1 ×F2 = (W1 ×W2, R1, R2) with R1 defined as

(x, y)R1(z, w) iff xR1z & y = w

and the relation R2 defined likewise.

Sometimes one also adds the direct product relation R1,2 which requires successor
steps in both components. But in the present setting, this is definable as the rela-
tional composition of R1 and R2 in any order.

This way of combining modal logics is explored in detail in [15]. The separate logics
of the component frames are preserved in the product, as is easy to see. But the
really interesting question is what happens in the joint language containing both
modalities ¤1 and ¤2, which can express interaction between epistemic agents. As
it turns out, by a simple argument, product frames automatically validate the fol-
lowing two axioms:

(com) ¤1¤2p ≡ ¤2¤1p
(chr) ♦1¤2p → ¤2♦1p

[15] contains much more information on these principles, including general results
on when they suffice for axiomatizing the complete logic of frame products over the
merge of the component logics. But note that these two principles were not valid
in the general fusion logic S4 ⊕ S4 of epistemic agents, as we saw earlier. Figure
1 provided a formal counterexample to com. To put such a scenario in words: a
student may know that the teacher knows the answer to questions on the test, while
the teacher does not know if the student knows the answer. Moreover, if com does
become valid, common knowledge trivializes, since any finite sequence of knowledge
modalities will be equivalent to one of ¤1,¤2 or ¤1¤2.

Now there are other notions of merge for epistemic models, and the preceding col-
lapse of common knowledge need not occur with other operations. Often, merging
information for single agents or groups of agents is more naturally viewed as an op-
eration on models, rather than frames. And in that case, the necessity of obtaining
a consistent atomic valuation on pairs of worlds may complicate the above product
construction, and thereby block com and chr. We discuss this issue briefly in Sec-
tion 2.7. But for our purposes later on with analyzing common knowledge, frame
products are important, provided we generalize them, again, to a wider topological
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setting. In that case, the two undesirable epistemic interaction laws no longer hold,
and the above trivialization of common knowledge goes away.

We have now accumulated enough motivation for looking into broader alternative
semantics for a multi-agent language, which should be fine-grained enough to dis-
tinguish different notions of common knowledge, while being sufficiently robust to
still provide a plausible version of epistemic logic. We find this in the following
mathematical generalization of relational models.

2. Epistemic Models in Topological Semantics

2.1. From graphs to topological spaces. One of the major alternatives to re-
lational semantics for modal logics, and historically even the earlier approach, em-
ploys topological models. Before going into our main epistemic concerns, we present
this semantics here with its usual interpretation. Topology is an abstract math-
ematical theory of space, emphasizing qualitative notions of open environment,
closure, boundary, or connectedness.

Definition 2.1. A topological space X is a pair (X, τ) where X is a set of ‘points’,
and the set of ‘opens’ τ ⊆ ℘(X) contains X, ∅, and is closed under finite intersec-
tions and arbitrary unions.

Example 2.2. A typical example is the structure of the rationals with Q for the set
X and the standard metric topology generated by closing the set of bounded open
intervals {p | q < p < q′} for p, q, q′ ∈ Q under arbitrary unions. The standard
topology on the reals R is obtained in the same fashion.

The language L of propositional modal logic is just as before, with a countable set
of propositional variables At, and the formulae defined recursively:

φ := p | ¬φ |φ ∧ ψ |♦p |¤p

On the topological interpretation, Booleans are interpreted as the corresponding
set operations, ¤p as the topological interior of the set of points assigned to p,
and ♦p as the closure of the set assigned to p. More precisely, a topological model
M = 〈X, τ, V 〉 consists of a topological space 〈X, τ〉 with a valuation function
V : At → ℘(X). The key clauses of the truth definition then read:

M, x |= ¤φ iff (∃U ∈ τ)(x ∈ U and (∀y ∈ U)(M, y |= φ)),
M, x |= ♦φ iff (∀U ∈ τ)(x ∈ U ⇒ (∃y ∈ U)(M, y |= φ)).

All topological modalities in this paper satisfy the axioms of the modal logic S4,
which reflect key properties of the topological interior operation. The interesting
epistemic details then lie in the interaction among such modalities. For the moment,
we cite two well-known results from [17]:

Theorem 2.3. S4 is a complete axiomatization of modal ¤ interpreted over arbi-
trary topological spaces.

More striking, and much deeper, is the following result.
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Theorem 2.4. S4 is a complete axiomatization of modal ¤ on any metric space
that is dense-in-itself.

This theorem shows that S4 is the complete logic of Q, R, Q2, and many other
interesting topologies close to our ordinary understanding of space.

Topological semantics generalizes standard modal model theory. A basic example
is bisimulation for relational models (cf. [2]). Its pervasive invariance properties
generalize to topological models.

Definition 2.5. (Topological Bisimulation) A topo-bisimulation between two topo-
logical models 〈X , τ, V 〉 and 〈X ′, τ ′, V ′〉 is a nonempty relation E ⊆ X × X ′ such
that, whenever xEx′, then:

(1) x ∈ V (p) iff x′ ∈ V ′(p), for every proposition letter p,
(2) (forth condition) x ∈ U ∈ τ implies that there is a U ′ ∈ τ ′, x′ ∈ U ′ and for

every y′ ∈ U ′ there is a y ∈ U with yEy′.
(3) (back condition) x′ ∈ U ′ ∈ τ ′ implies that there is a U ∈ τ , x ∈ U and for

every y ∈ U there is a y′ ∈ U ′ with yEy′.

Proposition 2.6. ( Invariance for Bisimulation) Let M = 〈X , τ, V 〉 and M′ =
〈X ′, τ ′, V ′〉 be models with points x and x′ related by some topo-bisimulation. Then,
M, x |= φ iff M′, x′ |= φ for all modal formulas φ.

The following special case of this result is the topological counterpart of the ‘gener-
ated submodels’ in relational semantics. Truth values only depend on what happens
in arbitrarily small open neighbourhoods.

Proposition 2.7. (Topological Locality) Let X = 〈X, τ〉 be a topological space,
with x ∈ U ∈ τ and ν some valuation on X. Then, for any formula φ, (X , ν), x |=
φ iff (X|U, ν|U), x |= φ, where X|U is the topology obtained by taking U as the
universe, letting the opens be all sets U ∩ U ′ ∈ τ , while ν|U = ν(p) ∩ U for all p.

Topo-bisimulations are closely related to a more standard topological notion.

Definition 2.8. Let X = (X, τ1),Y = (Y, τ2) be two topological spaces. A map
f : X → Y is said to be

(1) open, if the f -image of any open set in τ1, is open in τ2,
(2) continuous, if the f -inverse image of any open set in τ2 is open in τ1.

It is easy to show that open continuous maps preserve modal theories of topological
spaces, just as ‘modal p-morphisms’ preserve theories of relational frames.

This is a good point for stating the general connection between the two classes of
models for modal or epistemic languages. Standard relational models can be viewed
as a special kind of topological spaces through the following notion.

Definition 2.9. A topological space X is Alexandroff if every intersection of open
sets of X is again open.

Any Alexandroff topology X = 〈X, τ〉 induces a standard relational frame 〈X, R〉
with a reflexive transitive relation Rxy iff y ∈ ⋂{U ∈ τ |x ∈ U}. Conversely,
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any reflexive transitive relational frame 〈X, R〉 induces an Alexandroff topology by
taking the sets Ux = {y |Rxy} for each x ∈ X as a basis for τ . It is easily shown
that topological interpretation of modal formulas in a relational model yields the
same results as in their associated Alexandroff spaces, and vice versa. In this way,
modal logics of relational models describe special sets of topological models. But in
general, topological models include settings without a clear relational counterpart.
E.g., the standard topologies on Q and R are clearly not Alexandroff: any singleton
set (a non-open) is the intersection of the open intervals containing it.

There is a recent revival of interest in modal S4 interpreted over topological spaces,
because of its applications to spatial reasoning. [1] and [2] survey the expressive
power of S4 and its extensions for this purpose. We will use a few results from this
spatial line later on. But before we cite them, let us make a connection with our
major concern of what agents know.

2.2. Topology and information. Dating back to the 1930s, there has also been
a more epistemic use of topological models, viz. for intuitionistic logic, cf. [20].
In that case, open sets are rather interpreted as ‘pieces of evidence’, e.g., about
the location of a point, reflecting the intuitionistic idea of truth-as-provability. We
can generalize this idea to epistemic logic, reading the above truth condition for a
knowledge modality ¤ip as saying that there exists a piece of evidence for agent i
(viz. an open set in i’s topology) which validates the proposition p. Alternatively,
we could also think of the topology as a collection of theories or data bases that
an agent has at its disposal. [21] contains more abstract versions of this idea. As
we will see, one of the side benefits of this information-based interpretation of the
epistemic language is that common knowledge arises in a group of agents precisely
when they share the same piece of information. But first, we explore the new handle
that we get on the issue of merging information structures for different agents.

2.3. Combination of agents in topological products. To deal with epistemic
merges, we need some results from recent work on products of topological spaces
developed originally in the setting of spatial reasoning in [11].

Products of topological spaces X ,Y occur quite often, and they support a variety
of new topologies. We start with a particularly simple way of ‘lifting’ the two
components to one-dimensional topologies on the grid space X × Y , which we
sometimes visualize as ‘horizontal’ and ‘vertical’ directions in a plane.

Definition 2.10. Let X = 〈X, η〉 and Y = 〈Y, θ〉 be two topological spaces. Suppose
A ⊆ X × Y . We say that A is horizontally open (H-open) if for any (x, y) ∈ A
there exists U ∈ η such that x ∈ U and U × {y} ⊆ A. Similarly, we say that A is
vertically open (V-open) if for any (x, y) ∈ A there exists V ∈ θ such that y ∈ V
and {x} × V ⊆ A. If A is both H- and V -open, then we call it HV-open. Dual
closed sets are defined as usual.

We can now interpret the modal operators ¤1 and ¤2 of the combined lan-
guage L¤1¤2 in product models 〈X × Y, τ1, τ2〉 with some arbitrary valuation for
proposition letters. The two key clauses will read as follows:

(x, y) |= ¤1φ iff (∃U ∈ η)(x ∈ U & ∀u ∈ U : (u, y) |= φ)
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Figure 2. In A, the valuation ν(p) = (
⋃

x∈(−1,0){x} × (x,−x)) ∪
({0} × (−1, 1)) ∪ (

⋃
x∈(0,1){x} × (−x, x)) falsifies com at (0, 0). In

B, ν′(p) =
⋃{{ 1

n} × (− 1
n , 1

n ) : n ∈ N} falsifies chr at (0, 0).

(x, y) |= ¤2φ iff (∃V ∈ θ)(y ∈ V & ∀v ∈ V : (x, v) |= φ)

In order to visualize this semantics, it helps to think of ‘grids’ of ordered pairs where
one topology runs along horizontal lines, and the other along vertical ones. Next,
we say that a formula φ of the language L¤1¤2 is valid at (x, y) in a product space
X×Y if for every valuation on that space (x, y) |= φ. The following proposition then
tells us that the structural theories of component topologies (or agents’ knowledge)
‘lift’ to the product space without any additions. Unlike the case of products of
relational frames in Section 1.6, topological product does not automatically enforce
new interaction principles between agents.

Proposition 2.11. A formula φ constructed from atoms, Booleans and the modal
operator ¤1 is valid at a point (x, y) ∈ 〈X × Y, τ1, τ2〉 iff φ is valid at x in X . The
same is true for the language with ¤2 only, by taking the right projection.

This was a result for the separate sublanguages of the agents. Moving to the joint
language Let L¤1¤2 , it can be shown that the earlier product interaction principles
chr and com fail on topological products. Figure 2 shows graphically how these
failures occur for suitable valuations ν, ν′ on the two-dimensional real plane:

(R× R, ν), (0, 0) 6|= ♦V ¤Hp → ¤H♦V p

(R× R, ν′), (0, 0) 6|= ¤H¤V p → ¤V ¤Hp

Next, we turn to matters of complete axiomatization. The following result from [11]
says that topological products perform the most minimal merge of modal logics,
without interactive side-effects for modalities.

Theorem 2.12. The fusion logic S4 ⊕ S4 is complete with respect to products of
arbitrary topological spaces.
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As in the single-agent case, one can prove stronger results for particular structures,
and in fact, we have the following:

Theorem 2.13. S4⊕ S4 is complete with respect to Q×Q.

Proof. A detailed proof of this result can be found in [11]. For later reference, we
give a sketch here.

The first major observation to be made is that S4⊕S4 is complete for the infinite
quaternary tree T2,2, using a standard modal unravelling procedure for countable
relational models. To transfer modal counter-examples from that tree to topological
products, we need to make a second step, showing that T2,2 is the image of an HV -
open subset of the ‘rational plane’ Q×Q under some HV -continuous and HV -open
map. Such a map is constructed in stages via the following procedure, which is
easily visualized. Let Tn

2,2 be the nodes of T2,2 of R-depth n. Now, iteratively label
a sequence of growing subsets of Q×Q with nodes of T2,2 as follows:
Stg 0: Label (0, 0) with the root r of the tree T2,2.
Stg 1: Label (−1, 0) with the immediate left R1-successor, and (1, 0) with the

immediate right R1-successor of r; also label (0,−1) with the immediate
left R2-successor, and (0, 1) with the immediate right R2-successor of r.
Call these four points environmental points at the distance 1

30 .
Stg n: The environmental points labelled at Stage n − 1 are at the distance no

smaller than 1
3n−1 . Now for each of labelled points we create four environ-

mental points at the distance 1
3n –two at the vertical distance 1

3n and two at
the horizontal distance 1

3n –and label them with respective immediate R1-
and R2-successors in the tree.

This procedure labels a subset of Q×Q which can be contracted, modulo isomor-
phism, to an HV -open subset of Q×Q. Moreover, there is an obvious map f taking
labelled points in this set to nodes in the tree T2,2. A straightforward verification
shows that this map is both HV -continuous and HV -open. Obviously, we can copy
any valuation on the tree to one on Q × Q backward along the map f . Thus, if
some modal formula is refuted in the root of the tree under some valuation, we get a
topo-bisimulation with a model whose domain is a HV -open subset of the rational
plane. By the above Locality Lemma 2.7, this counter-example can be lifted to the
whole model Q×Q, which is what we wanted. ¤

Thus the fusion S4 ⊕ S4 is the logic of two epistemic agents combined into one
framework using topological products, without any dramatic interaction enforced
as in the case of products of relational frames. This result gives us the technical
means to analyze different versions of common knowledge in a concrete setting of
merged multi-agent models.

2.4. Common knowledge in product spaces. The earlier definitions of com-
mon knowledge still make sense in topological models. For instance, countably
infinite iteration of all finite sequences of alternating knowledge modalities for the
individual agents 1, 2 is as before:

K1,2p :=
∧ω

n Kn
1,2p,

with Kn
1,2p defined inductively as follows:
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K0
1,2p := p

Kn+1
1,2 p := ¤1(Kn

1,2p) ∧¤2(Kn
1,2p)

And the same is true for the fixed-point definition

C1,2φ := νp.φ ∧¤1p ∧¤2p,

provided we make the appropriate adjustments in computing fixed points. In par-
ticular, the monotone operations generated by formulas positive in p now work a
bit differently from before. In relational models, the operator ¤i applied to a set
X yielded ¤i(X) = {y | ∀x(Riyx → x ∈ X)}, making the modality a bounded
universal quantifier. In topological semantics, however, the relevant operator is

¤i(X) = {y | ∃U ∈ τi & ∀x(x ∈ U → x ∈ X)}

This reads a modality as an existential quantifier over open sets followed by a
universal quantifier over elements of those sets. This two-quantifier combination
complicates matters when approximating greatest or smallest fixed-points. Indeed,
the definitions of common knowledge by fixed-points and by countably infinite it-
eration will now diverge. Here is a first indication why this may happen. The
topological semantics validates the finitary logic S4, but it diverges from the rela-
tional validities in its infinitary behaviour.

Fact 2.14. Topological interior does not distribute over infinite conjunctions:

¤i

∧
n

pn is not always equivalent to
∧
n

¤ipn

Proof. Take the standard topology on Q. Define a valuation ν with, for all n,
ν(pn) = (− 1

n , 1
n ). Note that the intersection of these open sets is the singleton 0.

Then
∧

n ¤ipn is true at 0, whereas ¤i

∧
n pn is not true anywhere. ¤

This result, though suggestive, is not yet a proof that the two definitions of common
knowledge diverge. To do that, we will show that given a set p, the operator K1,2p
does not always define a horizontally and vertically open set. Since the fixed-point
version of C1,2p is always open in both these senses, the two cannot be the same.

We construct the relevant example by choosing a countable sequence of points in
the rational plane Q×Q horizontally converging to the origin (0, 0). The first point
in the sequence makes ¤1p true but not ¤2¤1p, the second ¤1¤2p, ¤2¤1p but not
¤2¤1¤2p, etc. This is possible by Theorem 2.12 for the logic of ¤1,¤2: no finite
iteration level of knowledge implies the next in the fusion logic S4⊕S4, and hence
situations as described must exist in suitable models over Q × Q. In particular,
at each point of the sequence, K1,2 will be false, and hence ¤1K1,2p is false at
the origin (0, 0). It then remains to show that K1,2p itself does hold at (0, 0), but
this will happen because of a well-chosen total valuation ν(p) for p on Q × Q. To
make this work, we make a number of more precise observations– while also slightly
changing the formulas involved:
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(0,0)
xxx

Figure 3

Theorem 2.15. K1,2p → ¤1K1,2p is not valid on topological product spaces.

Let ψn be the formula ¤1(Kn
1,2p) → ¤2(Kn

1,2p).

Fact 2.16. (a) For all n, ψn is not a theorem of the fusion logic S4⊕ S4.
(b) There is a model Mn on Q×Q such that Mn, (0, 0) 6|= ¤2(Kn

1,2p),
and for all q ∈ Q,Mn, (q, 0) |= Kn

1,2p.

Proof. As for (a), one can easily construct finite fusion frames invalidating any
given principle ψn.

(b) Since S4⊕ S4 is complete for Q×Q, by (a) there is a model M ′
n such that

M ′
n, (0, 0) 6|= ψn, that is,

M ′
n, (0, 0) |= ¤1(Kn

1,2p)
as well as

M ′
n, (0, 0) 6|= ¤2(Kn

1,2p).
It follows that there is an open interval ((−q, 0), (q, 0)) and every (q′, 0) in this
interval satisfies Kn

1,2p. By Locality (Proposition 2.7), in (−q, q) × Q with the
valuation from M ′

n restricted to this space it is still true that ¤2(Kn
1,2p) fails at (0, 0)

and that Kn
1,2p holds at each point (q′, 0). But (−q, q)×Q is homeomorphic to Q×Q

itself, and hence the valuation of M ′
n transfers to Q×Q via the homeomorphism.

Fact 2.17. There is a sequence of positive irrational numbers converging to 0 such
that for any two adjacent numbers r, r′ in the sequence, the distance r − r′ is a
rational number.

Take for instance
√

2,
√

2 − 1,
√

2 − 1.4,
√

2 − 1.41, etc. Next, for each rational
interval, we form squares S1, S2, ... of decreasing sizes over these intervals bounded
by the separating irrationals [see Figure 3]. In the above example, the first square
would be (

√
2,
√

2− 1)× (− 1
2 , 1

2 ), the second (
√

2− 1,
√

2− 1.4)× (−0.2, 0.2), etc.
Each of these squares is still homeomorphic to the rational plane Q×Q with some
valuation for the proposition letter p.

Now, we create a new big model M over Q × Q as follows. In the sequence of
squares Sn, we embed the earlier counter-examples Mn into Sn in such a way that
its horizontal axis becomes the horizontal axis of the square Sn. This ensures that
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Kn
1,2p holds everywhere on Sn’s X−axis while ¤2(Kn

1,2p) fails somewhere on it.
Outside of the squares, we put every point of the total rational plane in V (p). Now
we can prove the earlier informal assertion.

Claim 2.18. (a) M, (0, 0) |= K1,2p
(b) M, (0, 0) 6|= ¤1K1,2p.

Proof. (a) We will prove that for all n, Kn
1,2p holds at (0, 0). The proof is by in-

duction. First note that any point on the y axis or to the left of it (except (0, 0))
sits in an open circle interior in which p is true everywhere. Inside such a circle,
these points evidently satisfy all formulas Kn

1,2p, and hence by Locality again, they
also satisfy all these formulas in the whole model M .

Now we consider the origin (0, 0). The base step is simple: K0
1,2p is true by

the definition of ν(p). Next consider the inductive step Kn
1,2p ⇒ Kn+1

1,2 p, where
Kn+1

1,2 p is ¤1(Kn
1,2p)∧¤2(Kn

1,2p). We show that the two conjuncts hold separately.
To see that ¤2(Kn

1,2p) holds at (0, 0) we need an open set ((0, y), (0,−y)) with
Kn

1,2p true at each point in this set. Evidently, this formula holds at (0, 0) itself
by the inductive hypothesis. And it holds at any other point on the Y axis by the
preceding observation about open p-circles.

Next we show that ¤1(Kn
1,2p) holds at (0, 0). This time we need an interval

of the form ((−y, 0), (x, 0)) with Kn
1,2p true at every point in the interval. Here,

points in ((y, 0), (0, 0)) are covered by the observation about open p-circles again,
and the origin itself by the inductive hypothesis. Then, looking toward the right,
by the construction of the squares Sn, we know that Kn

1,2p holds everywhere at the
horizontal axis of Sn, and the same obviously remains true for Sm with m > n.
Thus, for the desired right end-point (x, 0) we can take any point on the horizontal
axis of the square Sn. Since every point in ((0, 0), (x, 0)) is in some Sm for m ≥ n,
we have the desired interval, and hence ¤1(Kn

1,2p) is true at the origin. In this
connection, the idea behind our ‘gluing’ the squares at irrationals was that inside
Q×Q, there are then no boundary points to consider.

(b) To see that ¤1K1,2p fails at (0, 0), we observe that in any horizontal open
interval I around (0, 0) there is a point where K1,2p fails. Note that for some n, the
horizontal axis of Sn is a subset of I, by our construction of ever smaller squares
Sn, and hence there is a point inside our interval where ¤2(Kn

1,2p) fails, and hence
also K1,2p, as desired. ¤

Corollary 2.19. K1,2p is not equivalent to C1,2p in topological models.

Corollary 2.20. Stabilization of the fixed-point version of C1,2X may occur later
than ordinal stage ω.

Thus, the topological setting achieves a natural separation between the first two def-
initions of common knowledge that Barwise distinguished. Moreover, our method
raises further issues. First, it is rather ‘logicky’, and one might want a concrete
independently motivated set of points in the rational plane for which the separation
occurs. Also, it would be of interest to determine the exact (countable) ordinals at
which epistemic fixed-point definitions do stabilize in this model.

This still leaves Barwise’s third account of common knowledge in terms of ‘shared
situations’. We shall return to this matter in Section 2.6.
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2.5. Complete logic of common knowledge on topo-products. Now what
is the basic logic of the greatest fixed-point common knowledge modality C1,2 on
topological models? Perhaps surprisingly, the general answer is: ‘the same as that
for relational S4-models’. The reason is that the usual system S4C

2 already has
principles for common knowledge that are satisfied by the fixed-point definition.
Moreover, that system is complete w.r.t. relational models [13], and the latter are
Alexandroff topological models at the same time. More interesting is what happens
in our topological product models. In fact, the logic does not change here either,
but this time, the argument takes a little more thought.

Theorem 2.21. S4C
2 is complete for products of arbitrary topologies. In fact it is

even the complete logic of Q×Q.

The completeness argument runs along the lines of the earlier one for the language
without common knowledge: this is why we sketched the main proof steps for Theo-
rem 2.12 in some detail. By the usual completeness proof with respect to relational
models, any non-theorem of S4C

2 fails on some finite rooted modal model. Next,
such a model can be unravelled via a bisimulation into the double-binary branch-
ing tree T2,2 with an appropriate valuation. Now we do the labelling construction
described in the proof of Theorem 2.12. In the end, this procedure produced a
topo-bisimulation between the given model on T2,2 and some model on the rational
plane Q × Q. Now the only thing we need to observe is that topo-bisimulations
do not just preserve truth values of ordinary modal formulas. They also evidently
preserve truth values of formulas in any modal language allowing infinite conjunc-
tions and disjunctions of formulas. And, the latter observation gives us exactly
what we need to transfer counterexamples to formulas in the epistemic language
with common knowledge viewed as a fixed-point operator.

Fact 2.22. Topological bisimulations preserve arbitrary fixed-point formulas.

Proof. In any given model M , any modal fixed-point formula φ is equivalent to
some modal formula φ(α) which has no fixed-point operators any more, but which
uses infinite conjunctions and disjunctions up to a size determined by the ordinal
α to ‘unwind’ approximation sequences. What this α is depends on the size of the
model M . Moreover, it does not matter if we unwind up to any higher ordinal. Now,
suppose that some fixed-point formula φ is true at M, s, and E is a bisimulation
connecting s to t in a model N, t. Let α∗ be the maximum of the unwinding ordinals
for φ in the two models M , N . Then φ(α∗) is true at s in M , and therefore also
true at t in N . It follows that the original fixed-point formula φ is true in N, t. ¤

Even so, given the difference between C1,2φ and K1,2φ that we have now found,
a new completeness question arises, yet to be solved:

Question: What is the complete logic of K1,2φ?

Given all this emphasis on geometrical models like the rational plane, can we really
claim that they are also epistemically relevant? Our discussion only shows their
use as visualizations of abstract distinctions. Whether there is any deeper infor-
mational meaning to Q×Q still remains to be seen.
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In the remainder of this paper, we discuss some further aspects of the topological
semantics for knowledge, analogous to those raised in Section 1.

2.6. More on epistemic agents as topologies. In relational semantics, agents
were really just accessibility relations. Likewise, in our topological models, agents
are topologies! As was explained in Section 2.2, what the agent knows in a world
of some model is what holds there according to the box modality of its topology.
Let us now draw some comparisons with the situation in Section 1.3., where two
agents 1, 2 generated at least two further ‘introspective collective agents’, one being
their supremum R(1∪2)∗ leading to common knowledge, and the other their infimum
R1 ∩ R2 leading to ‘implicit knowledge’ for the group. The topological semantics
gives us interesting counterparts to these operations.

Remark. Introspection principles If we are less strict in our logic, without requir-
ing positive introspection, then many further options arise, just as with relational
models. If we are more strict, as in relational S5-models with negative introspec-
tion, then we must only use topologies that do satisfy the axiom φ → ¤♦φ. It is
easy to see that, on T0 spaces in which all singletons are closed, imposing this prin-
ciple makes the topology discrete, trivializing the epistemic logic. But then, even
a weak separation axiom like T0 is not plausible epistemically. On general spaces,
φ → ¤♦φ corresponds to the property that every set is a subset of the interior of
its closure. Unpacked further this says that:

∀x, ∃U ∈ τ : x ∈ U & ∀y ∈ U, y ∈ V ∈ τ : x ∈ V

This means the space is a union of open sets whose points have the same open
neighbourhoods – which is a topological counterpart of relational S5 models.

Our favorite setting for studying new collective agents are the product models
that we used so far. We start with a simple but perhaps surprising observation.
Common knowledge as a greatest fixed-point corresponds to taking the following
very natural operation on the given topologies for the individual agents. Consider
the intersection τ1∩2 of the earlier topologies τ1 and τ2 on a product space. It is
easy to see that this is again a topology: all closure conditions are satisfied. Now
we observe the following connection:

Fact 2.23. ∀M∀x,M, x |= C1,2φ iff M, x |= [1 ∩ 2]φ

Proof. We will show that the truth sets [|C1,2φ|] and [|[1 ∩ 2]φ|] are identical in all
models. First, [|C1,2φ|] ∈ τi for i ∈ {1, 2} since the truth set is a fixed-point of νp.φ∧
¤1p∧¤2p. But then [|C1,2φ|] ∈ τ1∩2 by the definition, and so [|C1,2φ|] ⊆ [|[1∩2]φ|].
Next, [|[1∩2]φ|] satisfies [|¤i[1∩2]φ|] = [|[1∩2]φ|] for i ∈ {1, 2}. Hence [|[1∩2]φ|] is
a fixed-point. Since [|C1,2φ|] is the greatest fixed-point, [|[1 ∩ 2]φ|] ⊆ [|C1,2φ|]. ¤

It is worth observing that this argument holds in general, for any two given topolo-
gies on some space, not just the vertical and horizontal ones in products. In fact,
intersection of topologies is the counterpart, under the model-to topology transfor-
mation sketched earlier, of taking the reflexive transitive closure of given accessi-
bility relations.

Thus, we also expect a topological counterpart for the earlier operation of rela-
tional intersection, which modelled implicit group knowledge DG. This should be
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the union of two topologies, and then closing off in the minimal way that produces
a topology again. The result is the sum topology τ1 + τ2 which takes all pairwise
intersections of opens of the two topologies as a basis. The latter topology need
not always be of great interest. E.g., on our recurrent topo-product Q×Q, it will
just be the discrete topology, making every point an open. From an informational
perspective, this means that merging the information that we get about points in
the horizontal and vertical directions fixes their position uniquely.

The result of all this is again an inclusion diagram:

τ1 + τ2

↗ ↖

τ1 τ2

↖ ↗
τ1∩2

Let us now return to the three distinctions made in [6]. So far, we have separated
the countably infinite conjunction view from the greatest fixed-point view of com-
mon knowledge. What about the third view of having a ‘shared situation’? In
some ways, using the intersection topology seems to model this. Its opens are pre-
cisely those information pieces that are accepted by both agents. But if that is the
case, then we have not separated the second and third notions. Fact 2.23 tells us
precisely that the two amount to the same thing. But topological product models
have further resources! In particular, so far, we have not discussed what topologists
would call the real product topology τ on spaces X × Y . This topology is defined
by letting the sets U × V form a basis, where U is open in X and V is open in Y.
An example is the natural metric topology on the plane Q×Q, used briefly in the
argument for Claim 2.18, with open circles around points as neighbourhoods. The
agent corresponding to this new group concept τ only accepts very strong collective
evidence for any proposition. Here are two relevant results from [11]:

Theorem 2.24. The epistemic box modality for the true product topology is not
definable in the language of the separate modalities ¤1, ¤2, even when we add fixed-
point operators.

Theorem 2.25. The complete logic including the true product topology is the small-
est normal modal logic in the language of three modalities ¤,¤1,¤2 that contains
(i) the S4 axioms for ¤1,¤2 and ¤, (ii) ¤p → ¤1p and ¤p → ¤2p.

Thus, we have found an even stronger notion of common knowledge that might be
said to model Barwise’s third stage. Nevertheless, there are some difficulties with
this identification. For instance, unlike the preceding two operations of intersection
and union closure, true product topology has no general definition on arbitrary
models for our language, as it exploits the product structure essentially. This
makes it rather specialized, and this same fact is also reflected in the poverty
of the complete logic given above. Nevertheless, there are also interesting logical
aspects to this situation. In contrast with the sequential quantification embodied in
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the greatest fixed-point reading of common knowledge, the true product modality
reads more like a branching quantifier as defined in [7]. We do not know what to
make epistemically of this tantalizing analogy at this stage.

2.7. Operations that are safe for topo-bisimulation. To illustrate the pre-
ceding notions of knowledge and agency a bit further, we add a brief digression on
simulations between topological models.

In relational semantics for modal languages, most natural operations f(R1, R2)
have the property of being safe for bisimulation, that is,

• any given bisimulation between two models w.r.t. the relations R1, R2 is
also a bisimulation for the relation f(R1, R2).

This says that the new operation stays at the same level of model structure as the
old. The regular operations of composition, union, and iteration on binary relations
are all safe in this sense, while a typical non-safe operation is intersection. Safety is
a natural extension of invariance for static formulas to dynamic transition relations
([10] has a complete characterization of all first-order definable safe operations).
Safety constrains the repertoire of definable transition relations within one given
model. In general process theories, new relations can also be constructed out of
old while forming a new model at the same time, as happens with products for
concurrent processes in Process Algebra. In that setting, safety for operations
generalizes to respect for bisimulation, e.g., if we let ∼= signify bisimulation:

• if M ∼= M ′ and N ∼= N ′, then f(M,N) ∼= f(M ′, N ′).
Most natural product operations show respect for bisimulation. As a check on
our new notions, we can also look at operations on topologies in the same way,
substituting the above topological bisimulations for the usual relational ones.

Of the repertoire of regular operations, only a small part matters in our per-
spective. When working only with reflexive transitive relations, composition and
union by themselves do not qualify as operations, and we need to take ∗-closures.
And for reflexive-transitive R1, R2, (R1 ∪ R2)∗ and (R1; R2)∗ yield even the same
relation. The topological counterpart for the latter operation was intersection of
topologies τ1 ∩ τ2, as noted above. Fact 2.23 expressed the observation that the
modality for this is the same as the common knowledge fixed-point modality for
the modal operators [τ1], [τ2]. The latter is invariant for topological bisimulations
by earlier observations. Indeed we have the following

Fact 2.26. Intersection of topologies is safe for topological bisimulation.

Proof. Let E be a relation between topological models M,N which is a topological
bisimulation for their two separate topologies, as in Figure 4.

For a start, let sEt, and s ∈ U with U in τ1∩ τ2. Since E is a bisimulation w.r.t.
τ1, there is a τ1-open set V in M ′ such that every point v ∈ V is E-related to some
point u in U . Likewise, there is an τ2-open set W in M ′ such that every point
v ∈ W is E-related to some point u in U . Now, it may be tempting to take the
intersection of V and W at t for the required matching neighbourhood of U , but
this need not be open in either topology. Instead, we consider every E-link between
points u in U and points v in the union V ∪W . Using the bisimulation properties
again, there are again both τ1 and τ2-open neighbourhoods for all such points u,
which satisfy the backward zigzag condition toward U . Continuing this procedure
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countably many times, the union of all these successively produced subsets of M ′

is both τ1- and τ2 open, and moreover, it still satisfies the correct backward zigzag
condition w.r.t. the original open neighbourhood U of s in M . The argument in
the opposite direction is similar. ¤

This result may sound strange because intersection of binary relations led to non-
invariance for bisimulation. But the topological counterpart of this operation was
the sum topology τ1 + τ2 defined above, and its behaviour is indeed unsafe.

Fact 2.27. Taking the sum of topologies is not safe for topological bisimulation.

The counterexample is the same as for the relational case. Consider the two three-
point models of Figure 5, with their topologies plus a binary relation E between
their points as indicated.

Note that the sum topology on the left-hand side has the singleton set {s} as an
open, whereas the sum topology on the right has only the whole two-element space
for a non-empty open. Also, the relation E is a bisimulation for both topologies τ1

and τ2. Next, consider the link sEt, with the open subset {s} on the left. The only
matching open set on the right can be {s′, v}, but this fails to satisfy the backward
zigzag condition, as sEv does not hold. ¤

Finally, more general operations may produce new topologies over combined spaces.
Our characteristic example was topological product as in Definition 2.10.
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Fact 2.28. Topological products τ1 × τ2 respect topological bisimulation.

Proof. Let E1 be a bisimulation w.r.t. τ1 between models M,M ′, and likewise E2 a
bisimulation w.r.t. τ2 between models N,N ′. Now define a bisimulation E between
M ×N , M ′ ×N ′ by setting:

(s, t)E(s′, t′) iff sE1s
′ and tE2t

′.

Given Definition 2.10, it is completely straightforward to check that E is a bisim-
ulation w.r.t both topologies on the product. ¤

In contrast to this, taking a product of two topological spaces with the true product
topology τ introduced a little while ago does not respect topological bisimulation.
The reason is the earlier fact that the true product modality ¤ is not invariant for
topological bisimulations w.r.t. the two component topologies.

2.8. Merging information revisited. Finally, we make a few comments on the
issue of merging epistemic situations. We have shown that products of topological
spaces are a natural setting for combining knowledge by different agents, and for
distinguishing various forms of knowledge in the group of all agents. But as in
Section 1, there is a broader question behind this. Our topological products are just
one way of merging information models. The general subject of merging epistemic
models goes far beyond the scope of this paper (cf. [8] for more on this topic). We
only make one general point here which seems relevant to our move from relational
semantics to topological models.

In general, we need to specify what we want to happen with existing knowledge
and ignorance of agents when merging their information. Suppose we are given two
epistemic models M for group G1 and N for G2, where G1, G2 overlap. In that
case, we may want to require that the intersection group does not learn anything
new in the ‘merge model’ M ∗ N , at least w.r.t. formulas in its old language.
This situation is reminiscent of the process of amalgamation of relational models in
semantic proofs of the interpolation theorem for the basic modal language (cf. [3]
for an elementary exposition). Such proofs often start with a G1 ∩G2 bisimulation
between models M, s and N, t, which serves as an initial connection between the
two different settings. The relevant merge M ∗N then turns out to be a submodel
of the full product M × N , viz. just those pairs which stand in that bisimulation.
One then shows that the projections from pairs to the original models M , N are
bisimulations for the separate languages. Hence, formulas in the intersection of
the two languages retain one unambiguous truth value: the one they had before
under the bisimulation. In the case of interpolation theorems for shared modalities,
this amalgamation construction has to be complicated, but the point remains the
same. General merging of models for groups of agents may presuppose some initial
connection, and its effects on modal formulas can be prescribed to some extent. In
particular, we need not accept all pairs in a product as members of a merge model.
Once we do this, the connection between topological models and relational models
becomes more complicated, as we could also try to get the results of this paper
with sub-product constructions on relational models. We refer to [18] for details.
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3. Conclusion

Topological semantics for epistemic logic is a natural extension of the usual rela-
tional modelling. It provides distinctions that can be used to differentiate between
various notions of common knowledge, and define various sorts of collective agents.
Also, using product spaces, topological semantics suggests ‘low-interaction’ merges
for epistemic models for separate groups of agents. Thus, we believe that there are
good reasons for further development of this currently still marginal perspective.
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