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Abstract. A characteristic feature of infinitary combinatorics under the
Axiom of Determinacy is the existence of sequences of partition cardi-
nals, called Kleinberg sequence. It is well known that there are lots of
Kleinberg sequences below ℵε0 , but the exact values of their elements is
still unknown. In this note, we give a simple inductive argument that al-
lows to compute the Kleinberg sequences corresponding to the ω1-cofinal
measures on the odd projective ordinals without doing any detailed ul-
trapower analyses.

In this note, we shall be working in the system ZF+DC+AD where
AD is the Axiom of Determinacy stating that all perfect information
games with two players and ω many rounds are determined. We refer
to the standard textbook [Ka94, §§ 27–32] for information about the
basic developments of set theory in this particular axiomatic setting.

One remarkable consequence of AD is the existence of an inter-
esting combinatorial structure on uncountable cardinals. By a 1973
result of Martin, AD implies the existence of so-called strong par-

tition cardinals [Ka94, Theorem 28.12]: under AD, ℵ1 is a strong
partition cardinal and the club filter C on ℵ1 is a normal measure.
Moreover, Kleinberg (1977) has proved that strong partition cardi-
nals κ together with a normal measure µ on κ generate a sequence
〈κµ

n ; n ≥ 1〉 of partition cardinals (called a Kleinberg sequences ; cf.

Theorem 1), and has computed the sequence derived from Martin’s
mentioned result: κC

n = ℵn.
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Nowadays, we know much more about infinitary combinatorics
under AD than in 1977, and it was mainly the work of Steve Jackson
[Ja88,Ja99b] that gave us many more strong partition cardinals and
normal measures below ℵε0 . By Kleinberg’s result, each pair of these
gives rise to a Kleinberg sequence. (Cf. [Lö02a, § 2] or [Lö02b, § 3.1]
for brief surveys of definitions and results in this area.)

At the moment, we lack a uniform way of computing these Klein-
berg sequences. Partial results, heavily resting on the Jackson-Khafi-
zov analysis from [JaKh∞] have been obtained by the second author
in [Lö02a], but since a general Jackson-Khafizov analysis for all car-
dinals below ℵε0 is still a desideratum, these results can not be gen-
eralized, and in general, computations of Kleinberg sequences need
a detailed analysis of all ultrapowers involved, including ultrapowers
that do not even occur in the Kleinberg sequence, but fill the gaps
between the cardinals in the Kleinberg sequence.

In this note, we give a very simple inductive argument to compute
the Kleinberg sequence of the ω1-cofinal measure on the odd projec-
tive ordinals based on the Ultrapower Shifting Lemma of [Lö02a] (cf.
Theorem 2; [Lö02a, Lemma 2.7]).

1 An abstract combinatorial computation

In this section, we shall give an abstract computation based on the
Ultrapower Shifting Lemma. We shall not be using AD in this section,
so all results are ZF+DC-theorems. We define the iterated successor
operation on cardinals κ as follows by transfinite recursion:

– κ(0) = κ,

– κ(α+1) = (κ(α))+ for all ordinals α, and

– κ(λ) =
⋃

{κ(α) ; α ∈ λ} for limit ordinals λ.

A cardinal κ is called a strong partition cardinal (in Erdős
arrow notation: κ → (κ)κ) if for every partition F : [κ]κ → 2 of the
increasing functions from κ to κ exists a homogeneous set H ⊆ κ
of cardinality κ, i.e. Card(F”[H]κ) = 1. Note that the existence of
a strong partition cardinal violates the Axiom of Choice (cf. [Ka94,
Proposition 7.1]).



If µ is a measure on κ and α is an ordinal, then we write ακ/µ
for the (Mostowski-collapse of the) ultrapower of α with respect to
µ. Since we assume DC, ακ/µ is an ordinal.

Theorem 1 (Kleinberg). Let κ be a strong partition cardinal
cardinal, let µ be a normal measure on κ and let κµ

1 := κ and
κµ
n+1 := (κn)

κ/µ. Then

1. κµ
1 and κµ

2 are measurable,
2. for all n ≥ 2, cf(κµ

n) = κµ
2 ,

3. all κµ
n are Jónsson cardinals, and

4. sup{κµ
n ; n ≥ 1} is a Rowbottom cardinal.

5. Moreover, if κκ/µ = κ+, then κµ
n+1 = (κµ

n)
+ for all n ∈ ω.

We call the sequence 〈κµ
n ; n ≥ 1〉 theKleinberg sequence derived

from µ.

Proof. Cf. [Kl77]. q.e.d.

Theorem 2 (Ultrapower Shifting Lemma). Let β and γ be or-
dinals and let µ be a κ-complete ultrafilter on κ with κκ/µ = κ(γ).
If for all cardinals κ < ν ≤ κ(β)

– either ν is a successor and cf(ν) > κ,
– or ν is a limit and cf(ν) < κ,

then (κ(β))κ/µ ≤ κ(γ+β).

Proof. Cf. [Lö02a, Lemma 2.7]. q.e.d.

Lemma 3. Let κ < λ be cardinals, µ a measure on κ and cf(λ) > κ.
Then cf(λκ/µ) = cf(λ).

Proof. “≤”: For α < λ let cα : κ → λ be the constant function
cα(ξ) = α. We shall show that {[cα]µ ; α ∈ λ} is cofinal in λκ/µ:

Let f ∈ λκ be arbitrary. Since cf(λ) > κ, the range of the function
f is bounded in λ, i.e., there is an α∗ ∈ λ such that {f(ξ) ; ξ ∈ κ} ⊆
α∗. Then [f ]µ < [cα∗ ]µ.

“≥”: Now let X ⊆ λκ/µ be a cofinal subset. If ξ ∈ X, there is
some α ∈ λ such that ξ ≤ [cα]µ by the above argument. Let αξ be
the least such ordinal. We claim that A := {αξ ; ξ ∈ X} is a cofinal



subset of λ: Let γ ∈ λ be arbitrary. Since X was cofinal, pick some
ξγ ∈ X such that ξγ > [cγ ]µ. But then, αξγ ∈ A with αξγ > γ. So, A
is cofinal in λ. But Card(A) ≤ Card(X), so cf(λ) ≤ cf(λκ/µ). q.e.d.

Theorem 4. Let κ be a strong partition cardinal and µ0 and µ1 be
normal ultrafilters on κ with κκ/µ0 = κ+ and κκ/µ1 = κ(ω+1). For
all β < ω2, assume that (κ(β))κ/µ1 is a cardinal.

Then for all ξ < ω2, the following equalities hold:

– (κ(ξ))κ/µ1 = κ(ω+1+ξ), and

– cf(κ(ξ+1)) =

{

κ+ if ξ is a successor or zero, or
κ(ω+1) if ξ > 0 is a limit.

Proof. By Kleinberg’s Theorem 1 (1.), (2.) and (5.), we have

cf(κ(n+1)) = κ+

for n ∈ ω. Also, for all limit ordinals λ < ω2, the cofinality of κ(λ) is
ω. We denote these facts by (IH∗).

We proceed by induction on ξ, using the following induction hy-
pothesis:[1]

(IHξ)

















For all α ≤ ξ, the following two conditions hold:
1. (κ(α))κ/µ1 = κ(ω+1+α),

2. cf(κ(ω+1+α)) :=















ω if α > 0 is a limit,
κ+ if α is 1 or a double successor, or

κ(ω+1) if α 6= 1 is zero or a single
successor.

Obviously, if (IH∗) and all (IHξ) (for ξ < ω2) hold, the theorem
is proved.

By assumption, (κ(0))κ/µ1 = κκ/µ1 = κ(ω+1) and from Theorem
1 (1.), we know that this is a regular cardinal, so (IH0) holds.

For the successor step ξ 7→ ξ + 1 assume that (IHξ) holds. Let
us look at the Ultrapower Shifting Lemma 2 with γ = ω + 1 and

[1] An ordinal γ is a double successor is there is some δ such that γ = δ+2. An ordinal
is a single successor if it’s a successor but not a double successor; equivalently, if it
is the successor of a limit ordinal.



β = ξ + 1. Since ξ < ω2, we have ξ + 1 < ω + 1 + ξ, so (IHξ) and
(IH∗) allows us to apply Lemma 2 and get:

κ(ω+1+(ξ+1)) ≥ (κ(ξ+1))κ/µ1 (Lemma 2)
> (κ(ξ))κ/µ1

= κ(ω+1+ξ). (IHξ)

Since (κ(ξ+1))κ/µ1 is a cardinal (by assumption) lying in the in-
terval between κ(ω+1+ξ) and its successor, we get

(κ(ξ+1))κ/µ1 = κ(ω+1+(ξ+1)).

We shall now compute the cofinality of κ(ω+1+(ξ+1)) in order to
check that (IHξ+1) holds:

Case 1: ξ < ω. In this case, cf(κ(ξ+1)) = κ+ > κ by (IH∗). So, we
can apply Lemma 3 to λ := κ(ξ+1). Thus

cf(κ(ω+1+(ξ+1))) = cf((κ(ξ+1))κ/µ1)
= cf(κ(ξ+1)) (Lemma 3)
= κ+. (IH∗)

Case 2: ω ≤ ξ < ω2. In this case, there is an ordinal α < ξ such
that ξ + 1 = ω + 1 + α, and the following equivalences hold:

(∗)

[

α is 1 or a double successor ⇐⇒ ξ is a successor,
α 6= 1 is zero or a single successor ⇐⇒ ξ is a limit.

Now, by (IHξ), we get that cf(κ(ξ+1)) = cf(κ(ω+1+α)) > κ. So,
again applying Lemma 3 to λ := κ(ξ+1), we get

cf(κ(ω+1+(ξ+1))) = cf((κ(ξ+1))κ/µ1)

= cf(κ(ξ+1)) (by Lemma 3)

= cf(κ(ω+1+α)),

thus by (∗)

cf(κ(ω+1+(ξ+1))) =

{

κ+ if ξ is a successor, and
κ(ω+1) if ξ is a limit.



For the limit step, let 0 < λ < ω2 be a limit ordinal. Note that
this implies that for some α < λ, we have that ω + α = λ. We now
assume (IHη) for η < λ, and write (IH<λ) for this assumption. In
particular (since α < λ), we know the cofinalities of all cardinals
between κ and κ(ω+1+α) ≥ κ(ω+α) = κ(λ). This allows us to apply the
Ultrapower Shifting Lemma 2 for γ = ω + 1 and β = λ:

sup{κ(ω+1+η) ; η < λ} = sup{(κ(η))κ/µ1 ; η < λ} (IH<λ)
≤ (κ(λ))κ/µ1

≤ κ(ω+1+λ) (Lemma 2)
= sup{κ(ω+1+η) ; η < λ}.

This establishes (κ(λ))κ/µ1 = κ(ω+1+λ). The claim about the co-
finality of κ(ω+1+λ) is trivial for a limit ordinal λ < ω2. q.e.d.

2 Applications to infinitary combinatorics
under the Axiom of Determinacy

We now move to the applications of the abstract Theorem 4 under
AD. If λ < κ are regular cardinals, the λ-cofinal measure on κ is
defined to be the filter generated by sets of the type

{α ∈ κ ; α ∈ C & cf(α) = λ)}

for some closed unbounded subset C of κ. We write Cλ
κ for this filter.

The projective ordinals are defined as follows:[2]

δ
1
n := sup{α ; there is a ∆

1
n prewellordering of R of length α}.

The following theorem is a summary of work due to Kleinberg,
Kunen, Martin and Jackson:

Theorem 5. Assume ZF+DC+AD. Let e0 := 0 and en+1 := ω(ωen ).

– If λ < δ
1
2n+1 is regular, then Cλ

δ1
2n+1

is a normal measure on δ
1
2n+1,

– for all n, the ordinal δ1
2n+1

δ1
2n+1/Cω

δ1
2n+1

= δ
1
2n+2 = (δ1

2n+1)
+,

– δ
1
2n+1 = ℵen+1, and

[2] For more details, cf. [Ka94, § 30].



– δ
1
2n+1 is a strong partition cardinal.

Proof. For Jackson’s work, we refer the reader to [Ja88,Ja99b]. More
detailed references for the older results underlying this summarizing
theorem can be found in [Lö02a, Fact 2.5]; cf. also [Ke78]. q.e.d.

Theorem 6. Assume ZF + DC + AD. Assume furthermore that

– δ
1
2n+1

δ1
2n+1/Cω1

δ1
2n+1

= ℵen+ω+1, and that

– for all ξ < ω2, the ordinal ℵen+ξ
δ1
2n+1/Cω1

δ1
2n+1

is a cardinal.

Then for each m ∈ ω, the cardinal ℵen+ω·m+1 is Jónsson, and ℵen+ω2

is Rowbottom.

Proof. Let µ0 := Cω
δ1
2n+1

and µ1 := Cω1

δ1
2n+1

and let κm := κµ1
m be the

elements of the Kleinberg sequence derived from µ1, i.e., κm+1 =
(κm)

κ/µ1.
By Theorem 5 and the assumptions, all requirements of Theorem

4 are met, and so we can inductively read off the values of

κ1 = δ
1
2n+1 = ℵen+1,

κm+1 = (κm)
(ω+1) (for m ≥ 1),

and so
κm+1 = ℵen+ω·m+1.

Now the theorem follows directly from Kleinberg’s Theorem 1.
q.e.d.

Note that as a direct corollary of Theorem 6, we get the Jónsson
cardinals ℵω·m+1 that were computed in [Lö02a, Corollary 3.3], how-
ever, –as opposed to the proof in [Lö02a]– the proof given here does
not refer to the full Jackson-Khafizov analysis of ultrapowers.
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