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1 Modal Logic and Classical Logic

Modal Logic is traditionally concerned with the intensional operators "possibly" and
"necessary", whose intuitive correspondence with the standard quantifiers "there
exists" and "for all" comes out clearly in the usual Kripke semantics. This observation
underlies the well-known translation from propositional modal logic with operators  ◊
and  � , possibly indexed, into the first-order language over possible worlds models
(van Benthem 1976, 1984). In this way, modal formalisms correspond to fragments
of a full first-order (or sometimes higher-order) language over these models, which
are both expressively perspicuous and deductively tractable. In this paper, by the
'modal fragment' of predicate logic we understand the set of all first-order formulas
obtainable as translations of basic (poly-)modal formulas. As the modal fragment is
merely a notational variant of the basic modal language, we will often refer to the two
interchangeably. Basic modal logic shares several nice properties with full predicate
logic, namely, finite axiomatizability, Craig Interpolation and Beth Definability, as
well as model-theoretic preservation results such as the Los-Tarski Theorem
characterizing those formulas that are preserved under taking submodels. In addition,
basic modal logic has some nice properties not shared with predicate logic as a whole:
e.g., its axiomatization does not need side conditions on free or bound variables – and
most evidently: basic modal logic is decidable. We shall concentrate on this list in
what follows, in the hope that it forms a representative sample. Our aim is to find
natural fragments of predicate logic extending the modal one which inherit the above-
mentioned nice properties. This quest has two virtues. It forces us to understand why
basic modal logic has these nice properties. And it points the way to new insights
concerning predicate logic itself. Note that this study takes place over the universe of
all models, without special restrictions on accessibility relations. This is the domain
of the 'minimal modal logic', which still serves as the 'pure paradigm' in a rapidly
expanding field of more expressive modal formalisms (Venema 1991, De Rijke
1993). Of course, one can also study the effects of special frame restrictions – but we
must leave this issue for further investigation, except for some passing remarks.

What precisely are fragments of classical first-order logic showing 'modal' behaviour?
Perhaps the most influential answer is that of Gabbay 1981, which identifies them
with so-called 'finite-variable fragments', using only some fixed finite number of
variables (free or bound). This view-point has been endorsed by many authors (cf.
van Benthem 1991). We will investigate these fragments, and find that, illuminating
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and interesting though they are, they lack the required nice behaviour in our sense.
(Several new negative results support this claim.) As a counterproposal, then, we
define a large fragment of predicate logic characterized by its use of only bounded
quantification. This so-called guarded fragment enjoys the above nice properties,
including decidability, through an effectively bounded finite model property. (These
are new results, obtained by generalizing notions and techniques from modal logic.)
Moreover, its own internal finite variable hierarchy turns out to work well. Finally,
we shall make another move. The above analogy works both ways. Modal operators
are like quantifiers, but quantifiers are also like modal operators. This observation
inspires a generalized semantics for first-order predicate logic with accessibility
constraints on available assignments (cf. Németi 1986, 1992) which moves the earlier
quantifier restrictions into the semantics. This provides a fresh look at the landscape
of possible predicate logics, including candidates sharing various desirable features
with basic modal logic – in particular, its decidability.

The organization of this paper is as follows. In section 2 we recall the results and
methods of basic modal logic which we intend to generalize to 'nice' fragments later.
We allow modalities of higher ranks too (binary, ternary, etcetera), and define the
modal fragment of predicate logic accordingly. Most results in this section are known,
whence it has a sketchy character. In section 3 we study finite variable fragments in
the spirit outlined above. In section 4 we define bounded quantifier fragments and
single out the one most central to our purposes. We investigate this 'guarded fragment'
and prove that it has all the desirable properties. To put this in perspective, in section
5 we briefly discuss the 'semantic' version of our approach, replacing syntactic bounds
by restrictions on ranges of assignments in models. The account includes connections
with cylindric algebra. Finally, section 6 presents some further directions. This paper
is the first public version of a longer projected document – whose current working
version is Andréka, van Benthem & Németi 1994A. Further off-spring of this
Amsterdam–Budapest collaboration in the field of modal logic and universal algebra
are Andréka, van Benthem & Németi 1993, Andréka, van Benthem & Németi 1994B.

2 Basic Modal Logic

2.1 First-Order Translation
Consider the basic propositional modal logic, in the language with Booleans  ¬  & ∨
and modalities  �  ◊ . The following computable translation takes modal formulas  φ
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to first-order formulas  φ  with one free variable (standing for the 'current world' of
evaluation) recording their truth conditions on possible worlds models:

p Px ¬ φ ¬ φ
φ ∨ ψ φ ∨ ψ φ & ψ φ & ψ

◊φ ∃y (Rxy & φ(y)) �φ ∀y (Rxy → φ(y))
where  y  is some fresh individual variable in the last two clauses.

Here, that  y  is a fresh variable means that  y  does not occur in  φ , while  φ(y)  is
obtained from  φ   by replacing all free occurrences of  x  by  y . This translation
preserves truth, and so it gives various facts about modal logic for free, namely those
properties of first-order logic which are inherited by all its fragments, such as the
Löwenheim-Skolem Theorem and Compactness – or by all its decidable fragments,
such as recursive enumerability of valid formulas. The embedding gives no specific
axiomatization: more detailed analysis is needed for that (see below). Also, we do not
get complex meta-properties that make existential claims. E.g., consider Interpolation.
If a modal formula  φ  implies another modal formula  ψ , then, by the translation,
some interpolant exists in the first-order language – but there is no guarantee that this
interpolant is equivalent to a modal formula: we must work for this (see again below).

We call the above language 'basic modal logic' because it contains only the usual
unary modalities. Later, in section 2.9, we consider more than one unary modality
<i>, [i] , referring to binary relations  Ri , and several polyadic modalities, say binary
◊φψ  referring to ternary accessibility relations. We will also call this basic modal
logic, as the first-order translation is completely obvious from the above schema.
Throughout, we shall not impose any constraint on accessibility relations – as is the
case in the semantics of predicate logic – so in modal terminology, our sets of modal
validities are the 'minimal' ones, lying at the bottom of the lattice of modal logics.

2.2 Invariance for Bisimulation
The expressive power of the basic modal language with respect to classical logic is
measured precisely by the following Invariance Theorem (van Benthem 1976, 1985):

Theorem  2.2.1   A first-order formula  φ  with one free variable  x  is equivalent
  to the translation of a modal formula   iff   it is invariant for bisimulation.
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Here, a bisimulation is a binary relation between the domains of two first-order
models linking points with the same unary predicates  P , corresponding to modal
proposition letters  p , and satisfying two 'back-and-forth' or 'zigzag clauses' with
respect to relational  R-successors.  (More precisely, if  x  bisimulates  y , and  Rxz ,
then  z  bisimulates some  u  with  Ryu , and vice versa. This is a kind of unbounded
Ehrenfeucht Game with restricted choices of objects in each move – which has a
natural generalization to the case with whole families of  n-ary accessibility relations.)
In the above theorem, the first-order formula may contain any other relation symbols,
or equality, too. A formula  φ  with one free variable is invariant for bisimulations if,
for any bisimulation,  φ  has the same truth value at linked objects in the two models.
That modal formulas are invariant in this sense subsumes the usual textbook facts
about preservation under generated submodels, disjoint unions and p-morphic images.

Proof of the Theorem   For later use, we sketch a proof of the Invariance Theorem.
We say that a first-order formula  ψ  is modal if it is a tranlation of a modal formula.
Thus,  ψ  has one free variable  x . If  M  is a first-order model and  a  is an element of
this model, then  M, a |= ψ  says that  ψ  is true in  M  when  x  is evaluated to  a . We
then say that  M, a  is a model for  ψ , or that  ψ  is true in  M, a . Similarly for a set
of modal formulas  Σ  instead of  ψ. Last, we have the usual notion of consequence.
Σ |=ψ  says that for any pair  M, a,  M, a |= Σ  implies  M, a |= ψ .  (This local version
of modal consequence is used throughout this paper.) Modal formulas are invariant,
by a simple induction on their construction. The existential modality is taken care of,
precisely, by the two zigzag clauses. Conversely, suppose that  φ  is an invariant first-
order formula with one free variable. Let  m o d(φ )  be the set of all modal
consequences of  φ , i.e.,  { ψ |  ψ is modal and  φ |= ψ } . We prove the following:

Claim mod(φ) |= φ .

From this, by Compactness,  φ  is easily shown equivalent to some finite conjunction
of its modal consequences. The proof of the Claim is as follows. Let  M, a  be any
model for mod(φ). Now consider the complete modal theory of  a  in  M  together
with  {φ} . This set of formulas is finitely satisfiable, by a simple argument (using the
fact that  mod(φ)  holds at  M, a ) . By Compactness, it therefore has some model
N, b . Now , take any two ω-saturated elementary extensions  M+, a  and  N+, b  of
M , a and  N, b , respectively. (These exist by a slight adaptation of a result from
Chang & Keisler 1973.) We call elements  u, v  of   M+, N+ , respectively, 'modally
equivalent' if the same modal formulas are true in  M+, u  and  N+, v .
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Claim  The relation of modal equivalence is a bisimulation between
the two models  M+  and  N+  , which connects  a  with  b .

Here, of course, the key observation lies in the zigzag clauses. If some world  u   in
M+  is modally equivalent with  v  in  N+ , and  Rus  holds, then the following set of
formulas is finitely satisfiable in  N+ , v :  {Rvx} plus the full modal theory of  s  in
M+ . But then, by  ω-saturation, some world  t  must exist satisfying all of this in  N+,
v : which is the required match for  s . The converse argument is symmetric. Having
thus proved the second claim, we return to the first, and clinch the argument by
'diagram chasing'. For a start,    N, b |= φ , and hence  N+, b |= φ  (by elementary
extension), whence  M+, a |= φ  (by bisimulation invariance), and so  M , a |= φ
(passing to an elementary submodel).             �

This style of argument can be extended in many directions, by modulating the key
connection between zigzag clauses and restricted quantifier patterns. More elaborate
discussion of this result and its generalizations to richer modal languages is found in
van Benthem and Bergstra 1995, De Rijke 1993. (These also provide connections
with the work by Hennessy & Milner 1985 on modal process equivalences.)

2.3 Decidability via Semantic Tableaus
A pleasant feature of the modal formalism is a simple tableau method checking
universal validity. Its has the usual decomposition rules for Boolean operators.
(Modal sequents are of the form  Σ ⇒ Δ  with Σ , Δ  finite sets of modal formulas. We
take validity of sequents in the usual sense, as universal validity of the implication
from the conjunction  &Σ  to the disjunction  ∨Δ .) Here are some samples.

Σ, ¬ A ⇒ Δ   iff  Σ  ⇒ A, Δ
Σ  ⇒  A&B, Δ  iff  Σ  ⇒  A, Δ  and  Σ  ⇒  B, Δ

In modal tableaus, the key rule is that for existential modalities – which are best
treated in a bunch, when no further propositional reductions are possible:

true:   ◊φ1, ..., ◊φn •w ◊ψ1, ..., ◊ψm   :false  

create new worlds   v1, ..., vn   with  Rwvi  (1≤i≤n)
and start these with sequents   φi  •vi  ψ1, ..., ψm .
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Applying this method, we start out with any sequent, and in a finite number of steps,
arrive at a tableau which is either 'closed' or 'open' in the usual sense. (We omit details
of formulation.) This method is adequate for validity in the minimal modal logic.

Theorem  2.3.1    A modal sequent is valid  iff  it has a closed semantic tableau.

Corollary 2.3.2    Modal universal validity is decidable, and basic modal logic has
the finite model property. (I.e., a modal formula fails in some model iff
it fails in some finite model).

That tableaus are sound and complete for validity hinges on the above ◊-Rule. This is
justified by a strong semantic equivalence, which may be proved independently. Let
P, Q  be disjoint sequences of proposition letters. Then we have:

P,  ◊φ1, ..., ◊φn   |=  Q, ◊ψ1, ..., ◊ψm    iff
for some  i (1≤i≤n),  φi   |=  ψ1, ..., ψm

This assertion is immediate from right to left. The opposite part of its proof  is as
follows. Suppose that no assertion  φi   |=  ψ1, ..., ψm  holds. Then, there exist models
Mi , vi  |= φi & ¬ ψ1 & ... &  ¬ ψm (1≤i≤n) . Now apply a well-known modal semantic
construction of 'joint rooting' to produce a counter-example for the left-hand sequent:

any family of models  Mi , vi  |= φi & ¬ ψ1 & ... &  ¬ ψm (1≤i≤n)
can be 'glued disjointly' under one new common root:

• w
• v1 ...... • vn

M1 Mn

The Mi  lie embedded as generated submodels (the identity relation is a bisimulation),
whence no truth values change for modal formulas in their roots (our reduction
depends on bisimulation invariance) – so that the new top node  w  will verify  ◊φ1 &

... & ◊φn & ¬ ◊ψ1 & ... & ¬ ◊ψm , thereby refuting the top sequent. Compare this
decomposition with the situation in full predicate logic, where no similar reduction
via single instantiation of existential quantifiers suffices. We can even say a bit more.

Johan van Benthem
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The corollary follows since all tableau rules decrease formula complexity of sequents
(even though they may temporarily increase the number of parallel tasks). Also, open
tableaus give rise to finite countermodels. (Incidentally, the finite model property may
also be shown directly via these reduction arguments, without invoking tableaus.) In
particular, the above rooting takes finite models to finite models. We shall return to
this quantifier decomposition in Section 4, extending these ideas to larger 'loose'
decidable fragments of predicate logic.

2.4 Proof Theory via Sequent Calculus
Another way of describing modal validity is proof-theoretic. Read bottom-up, tableau
rules become introduction rules in the 'Minimal Modal Logic' consisting of a
Gentzen-style calculus of sequents (cf. Fitting 1993), with axioms

Σ  ⇒ Δ with  Σ∩Δ  non-empty

The following logical introduction rules are involved:

Σ,  A  ⇒  Δ Σ  ⇒ A,  Δ
Σ  ⇒ ¬ A, Δ Σ,  ¬ A ⇒ Δ

Σ, A, B ⇒ Δ Σ ⇒ A, Δ                          Σ ⇒ B, Δ
Σ, A & B ⇒ Δ Σ ⇒ A & B, Δ

A  ⇒ B1, ..., Bm
◊A ⇒ ◊B1, ..., ◊Bm (the part  "B1, ..., Bm"  may be empty),

the rules for  ∨  and  �  are analogous, and are omitted here.

Moreover, this calculus has two structural rules of

Permutation inside the premises and the conclusions
Monotonicity from Σ  ⇒ Δ     to Σ ', Σ  ⇒ Δ, Δ'

These are needed to get the exact correspondence with closed semantic tableaus right.
Note that the classical structural rule of Contraction is redundant for the completeness
proof. (It deduces  Σ , A ⇒ Δ  from  Σ , A, A ⇒ Δ .) In classical tableaus or sequent
proofs for predicate logic, this rule ensures that false existential (and true universal)
formulas can produce as many substitution instances as are required for the argument.
With modal formulas, however, no such unbounded iteration is needed: we did all
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that is needed in one fell swoop. Thus, our calculus involves no shortening rules, and
the proof search space is finite. (In a sense, then, at least as far as quantification is
concerned, 'linear logic' is already complete for modal fragments of predicate logic.)
This observation suggests yet another modal perspective on decidable fragments of
predicate logic. For which of these is the standard first-order sequent calculus without
Contraction (or with only effectively bounded calls to Contraction) semantically
complete? We shall not pursue this proof-theoretic line in our paper, but it would be
of interest to understand its systematic relation to our semantic analysis.

2.5 Interpolation
Except for its decidability and finite model property, which deviate from classical
predicate logic, basic modal logic shares most central meta-properties with the latter.
One important example is Interpolation:

Theorem  2.5.1    Let  φ |= ψ , with  φ,  ψ  modal formulas. Then there exists
a modal formula  α  whose proposition letters occur in both
φ  and  ψ  such that  φ |= α |= ψ  .

Proof  We outline two proofs here, illustrating the two perspectives at work.

Proof-theoretic Argument  ('Tracing a Sequent Derivation')
Induction on derivations in the Gentzen calculus of section 2.4. It is convenient to
work only with formulas rewritten to the special format  (¬ ) atom,  &,  ∨, ◊, �,  ⊥,   T
(Cf. Schütte 1962, Roorda 1991 for this technique.) The single axiom case is clear,
and one constructs interpolants inductively via the successive rules in a derivation.  �

Model-theoretic Argument  ('Amalgamation via a Bisimulation')
Let  Lφψ  be the joint language of  φ  and  ψ . Consider the set  consφψ (φ) of all
modal consequences of  φ  in this language. We prove the following:

Claim consφψ (φ)  |=  ψ .

By Compactness, then, some finite conjunction of formulas in  consφψ (φ)  implies  ψ
(and is implied by  φ ). To prove the Claim, let  M, a  be any Lψ–model verifying
consφψ (φ) . We must show that  M, a |= ψ . First, by a routine argument, the modal
Lφψ–theory of  M, a  is finitely satisfiable together with  {φ} . By Compactness again,
there is an  Lφ–model  N, b |= φ  with the same modal  Lφψ–theory as  M, a . Next, as
in the proof of the Invariance Theorem, we can pass to ω-saturated models, without
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loss of generality. By that earlier argument, there is an  Lφψ –bisimulation  ≡  between
the two models which connects  a  to  b . (The language subscript reminds us that  ≡
only needs to respect proposition letters shared by  φ  and  ψ .) Now, we construct a
new product model  MN  out of these two bisimulating ones, which will be a kind of
joint unraveling under bisimulation. Its worlds are finite sequences of pairs  <(a1, b1),
..., (ak, bk)> , where always  ai ≡ bi ,  and each world  ai+1  must be an  R–successor of
ai  – and likewise for the sequence of worlds  bi – for 1≤i<k . Now, consider the two
natural projections from the final pairs of such sequences, one going to  M  and the
other to N . Along these, we can lift the valuation for all proposition letters in Lψ–Lφψ
from  M ,  and that for   Lφ–Lφψ   from  N . The result is the desired model  MN  for
the joint language  Lφ ∪ Lψ , whose two projections to  M and  N  have now become
Lψ–  (Lφ– ) bisimulations.  But then, we can argue 'clockwise'. First,  N , b |=  φ ,
whence  MN , <(a, b)> |=  φ  (by bisimulation). Since  φ |= ψ , we also have  MN ,
<(a, b)> |=  ψ . But then finally,  M , a |= ψ (again by bisimulation).    �

Remark    This model-theoretic interpolation argument was stated in correspondence
between the authors in 1992. In the meantime, more elaborate versions have appeared
independently in Visser et al. 1995, Marx 1995, Németi 1994, Madarasz 1995,
clarifying its general algebraic and model-theoretic background. The general version
of this interpolation theorem for minimal modal logics with an arbitrary number of
(polyadic) modalities follows at once from the results in Németi 1985 on the Strong
Amalgamation Property for Boolean algebras with sets of operators of arbitrary ranks.

Remark Modal Unraveling and Concrete Representation
Behind the preceding proof, as well as others to come, lies the well-known fact that
each possible worlds model  M , a  bisimulates with a so-called 'unraveled' or
'unwound' model consisting of finite sequences of objects (namely, finite sequences
of worlds that all  R-succeed one another), in which the accessibility relation is end
extension by one additional object. This may be regarded as a semantic 'normal form'
in which abstract accessibility has been replaced by one concrete uniform set-
theoretic relation. (Marx 1995 has more elegant concrete representations of this kind
for general modal logics, following the program of Henkin-Monk-Tarski 1985.)

2.6 Model Theory and Preservation
Much of classical Model Theory holds for the modal fragment. One good example is
the Los–Tarski Theorem, stated in its upward version. Let M be a possible worlds
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model (i.e.,  M  has universe  M , a binary accessibility relation  R  on  M, and unary
predicates  P⊆M  for proposition letters  p ). We say that  N  extends  M   if  M  is a
submodel of  N  in the usual sense. We say that the modal formula  φ  is preserved
under model extensions if for all models  M, N  where  N  extends  M, if  M, a |= φ
then  N, a |= φ , for all  a∈M.

Theorem  2.6.1    A modal formula is preserved under model extensions   iff
it can be defined using only propositional atoms and their negations,  &, ∨, ◊ .

Proof 1 Original Model-Theoretic Version
(This proof occurs in correspondence with Albert Visser in 1985. It was published in
van Benthem 1995.) Call a modal formula existential if it has the form stated in the
theorem. By a simple induction, existential formulas are preserved under model
extensions. Conversely, let  φ  be so preserved. We prove the following consequence:

exist (φ) |= φ , where   exist (φ)   =def  { ψ  existential  |  φ |= ψ }.

Then the required existential modal form for   φ  will exist by Compactness, being of
the form  &Δ  for some finite set  Δ  of formulas from exist (φ) . Now. let  M, a |=
exist (φ) . Without loss of generality, again, we can take the model  M, a to be  ω–
saturated. Next, in the usual manner,  we find a second model  N , b such that

N , b  |= φ
N , b  |= α  implies that  M, a |= α   for all existential modal formulas  α

Next, take the above 'modal unraveling' of   N , b  via finite sequences of worlds, say,
Nunrav, <b> , which bisimulates  N , b  via the map sending sequences to their end
points. This will yield the following diagram:

N , b ⇒ exist-fragment M , a

       bisimulation F

Nunrav, <b>

Now, by induction on the length of sequences in   Nunrav ,  a map  F  may be defined
from  Nunrav  to  M  sending  <b>  to  a  which is a homomorphism with respect to  R,
and which respects atomic facts in worlds. (ω–Saturation of  M, a  is used here to find
suitable R-successors for points already mapped.) Finally, we perform a useful trick.

Johan van Benthem
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Add a disjoint copy of   M, a  to  Nunrav, <b>  to obtain a model  Nunrav  +  M . Then,
extend the relation  R  between elements of  Nunrav  and elements of  M  as follows:

for all sequences  Y  in  Nunrav  and for all  z  in  M :    Y R z   if   F(Y) R z.

Claim F  united with the identity on  M, a   is a bisimulation between
the two models   Nunrav, <b>  +  M, a  and  M, a .

Proof This follows by a simple inspection of cases. The point of using the
unraveling  Nunrav  instead of  N  here is to get unambiguous relationships – while
that of adding a copy of  M , a  to the left is to enforce the backward clause of
bisimulation (on top of the already established 'forward' homomorphism).    �

To clinch the total argument, we again chase  φ  around the diagram:

N , b |= φ  (by construction)  
Nunrav , <b> |= φ  (bisimulation)
Nunrav , <b>  +  M, a |= φ  (model extension!)
M, a |= φ  (bisimulation).

�

Proof 2 Stream-Lined Modern Version 
In the meantime, simpler proofs of the above result have appeared. One version is
essentially due to Dick de Jongh (cf. Visser et al. 1995). Here is a sketch of the idea,
for the equivalent preservation theorem involving submodels and universal modal
forms. Start again from some model M , a |= univ (φ). Unravel this model to a
bisimulation equivalent  M* , <a>  in the form of an intransitive acyclic tree.

Claim The atomic diagram of  M* , <a>  can be satisfied together with  φ  .

After this, the usual argument works. From the resulting model  N , b , our  φ can be
transferred to its submodel (modulo isomorphism)  M , a . To prove the claim,
consider  φ  together with any finite set of (negated) atoms that are true in  M* , <a> .
The worlds mentioned in the latter can be described as a finite subtree, via branches
going down all the way to the root  <a> . Now, the resulting structure can be
described completely via some (inductively constructed) existential modal formula.
Also,  φ  cannot imply the (universal) negation of the latter, given the assumption that
M* , <a> |= univ (φ) . So  φ  can be satisfied together with this existential description
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in some model  N . By unraveling  N  once more, this model can be taken to be an
intransitive acyclic tree itself. But then, all atomic (negated) facts that were true in the
above finite submodel of  M* , <a>  must also be true here. (No  R-steps will be
available except those explicitly demanded, which takes care of all negations.)      �

This second proof is close to the standard model-theoretic one (cf. Chang & Keisler
1973), specialized to the modal fragment of the first-order language, more or less 'as
is' . We return to this observation below in a more general setting. Further evidence
for this analogy may be found with other model-theoretic preservation theorems,
using similar methods. One example is the Lyndon homomorphism theorem for
positive formulas (cf. van Benthem 1976). Here is a sketch for another classical case.

Example Preservation Under Unions of Chains
The first-order formulas preserved under unions of chains of models are precisely
those definable by a universal-existential (Π2) prenex form. In modal logic, the
corresponding format must be extended (in the absence of prenex forms), as above.
We only allow formulas constructed from atoms and their negations, using  &, ∨  as
well as  ◊ , � , provided the former never scope over the latter. (In intuitionistic logic,
this is the natural class of formulas with 'implication rank'  2.) The classical argument
again starts from a model  M  in which the univ exist consequences of  φ  hold. Then,
two models  N , K  are found such that  (1)  M  is a submodel of  N  and  N  of  K ,
(2)  M  is an elementary submodel of  K  ,  (3)  φ  holds in  N . Iterating this move
yields a model chain in whose union  φ  holds, which then transfers to the elementary
submodel  M . Inspecting the details of this standard argument, and using the above
methods, similar triples of models may be constructed for the modal language.         �

2.7 Analyzing the General Situation: Transfer Results
The similarities between modal logic and standard first-order logic that have come to
light so far call for more general explanation. There must be some general feature in
the above arguments that can be isolated, and used to explore the full extent of the
analogy.  One obvious general point is the pervasive use of bisimulations, which are
close to the fundamental notion of 'partial isomorphism'  ≅p  between first-order
models ('cut off' at length 2). This observation may be found in van Benthem 1991,
and it has inspired a systematic investigation of model theory for basic poly-modal
logic in De Rijke 1993, whose results revolve around the 'heuristic equation'

Modal Logic : Bisimulation  =  Predicate Logic : Partial Isomorphism.
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Another approach scrutinizes the above arguments, identifying some key lemmas of
'transfer' between modal and classical reasoning. One such result is easily extracted
from the earlier proof of the Invariance Theorem. Two models  M, a  and  N, b  have
the same modal theory iff they possess elementary extensions which bisimulate. (De
Rijke 1993 observes that one can choose the latter to be countable ultrapowers.) Here
is another result of this kind, which may be of independent interest. It shows how one
can 'upgrade' modal equivalence to full elementary equivalence, up to bisimulation:

Lemma  2.7.1    Two models  M , a  and  N , b  have the same modal theory   iff
they possess bisimulations with two models  M+ , a  and  N+ , b  (respectively)
which are elementarily equivalent.

Proof Upwards, the assertion is immediate. Consider the downward direction. The
required models are constructed using the above Unraveling by finite sequences of
the form  (u =) u1, u2, ..., uk , where each  ui+1  is an  R-successor of  ui  (1≤i<k),
having 'immediate succession' for their accessibility relation, and bisimulating with
the original model via their last elements. This unravels to intransitive acyclic trees.
In addition, we perform Multiplication, making sure that each node except the root  a
gets copied infinitely many times. This can be done as follows, while maintaining a
bisimulation at each stage. First, copy each successor of  a  at level 1 countably many
times, and attach these (disjoint) copies to  a . There is an obvious bisimulation here,
identifying copies with originals. Next, consider successors at level 2 on all branches
of the previous stage, and perform the same copying process at all level–1 worlds.
Again, there is an obvious bisimulation with the original model. Iterating this process
through all finite levels yields our intended models  M+ , a  and  N+ , b .

Claim M+ , a  and  N+ , b  are elementarily equivalent.

Proof We use Ehrenfeucht Games. It suffices to show, for any finite  n , how the
Similarity Player can win in a game over  n  rounds between these structures. What
we know at the outset is that the two roots  a, b  satisfy the same modal formulas. In
fact, as we shall prove separately, they even satisfy the same tense-logical formulas.
This observation will be used to describe the proper invariant for the game. Assume
that in round  i  of the game, a match  ≡  has been established already between certain
finite groups of worlds in the two models which satisfies three conditions:
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• if  u ≡ v ,  then   M+ , u  is equivalent with  N+ , v
for all tense-logical formulas up to operator depth  2n-i

•  if  u ≡ v  and  u' ≡ v' ,   and the distance between  u  and  u'  is at most  2n–i , 
 then the distance between  v  and  v'  is the same on the other side, and it runs
via an isomorphic path, all of whose points have been matched at this stage.

Here, distance is measured as follows:  "go from node  u  to node  s  descending the
minimal distance needed to climb up to  v  again". (The possible backward movement
forces us to use two-sided tense-logical formulas in the description of the invariant.)

•  if  the distance between  u  and  u'  is greater than  2n–i , then on the other side,
v  and  v'  have distance greater than   2n–i , too.

The upshot of all this is a number of 'matched islands' on both sides, all lying a
distance of more than  2n–i  steps apart. Now, we have to show that this invariant can
be maintained in the next step by the Similarity Player, whatever world the Difference
Player chooses. Let the next choice be some point  P  in either tree.

Case 1 P has distance   ≤ 2N–i–1  to some point  Q  that was
already matched at the previous stage, say to some point  Q' .

Consider the unique path of length  k  (say) between  P  and  Q , and attach complete
tense-logical descriptions  δ  to its nodes up to operator depth  2N–i–1 . This path may
then be described, from the perspective of  Q , by a tense-logical formula of the form

PAST (δ1 & PAST ( ...   & PAST (δi & FUT ( δi+1 & ... &  FUT (δk)   ) ,
where  δk  is the full    2N–i–1–description in tense logic of the point  P .

The total operator depth of this formula is at most  2N–i–1  (being the length of the
path) + 2N–i–1   (the quality of the descriptions at its nodes),  which is at most  2N–i .
Now, at the previous stage  i ,  Q  and  Q'  agreed on tense-logical formulas up to the
latter depth. Hence this path description is also true at  Q' , and we can find
corresponding worlds on the other side, making the two paths isomorphic as required
by our invariant, while also achieving the right degree of tense-logical equivalence.

Case 2  P  lies at distance > 2N–i–1  from all previously matched points.
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Take the unique path from the root to  P . Describe it completely as before, with node
descriptions up to level  2N–i–1 . The resulting tense-logical formula may be of high
complexity (there is no bound on the path length), but since the two roots agree on all
tense-logical formulas, there must be a similar path on the other side, whose end-point
is an appropriate match for  P. This path can be chosen so as to remain at a suitable
distance from all nodes in already matched regions, by the Multiplication of nodes
(we use this feature only here). Thus, again, the above invariant is maintained.

Finally, after  n  rounds, this invariant produces a partial isomorphism, which is a win
for the Similarity Player. (For a concrete feel for the strategy, compare two modally
equivalent trees where one has an infinite branch and the other does not. This also
shows that we cannot improve our Lemma to the existence of a bisimulation between
the unraveled multiplied models.) To wrap things up, we prove the announced

Sublemma If the roots of two unraveled modal models have the same modal 
theory, then they also have the same tense-logical theory (in the basic
modal language extended with a backward modal operator for "past").

Proof It suffices to observe a number of tense-logical validities on our trees. First:

FUT (PAST α & β)  ↔  α & FUT β     FUT (¬ PAST α  & β)  ↔  ¬ α & FUT β

As a result, using some standard modal manipulations, every formula is equivalent to
one without future operators scoping over past ones. This just leaves compounds of
'pure future' (i.e., modal) formulas combined using  ¬  , & and PAST . The latter can
still be simplified using two more valid equivalences:

PAST ( α & β )  ↔  PAST α & PAST β      PAST ¬  α  ↔  ¬ PAST α & PAST true

As a result, every formula is equivalent to a Boolean combination of formulas  PASTi

φ (with  i  repetitions) where  φ  is purely modal. But then, the roots must agree on all
tense-logical formulas. They already agreed on all modal formulas, and they will both
reject any  PAST formula (lacking predecessors).    �

The preceding Lemma (together with its proof) has the following consequence.

Corollary 2.7.2   Two models  M, a  and  N, b  admit of a bisimulation between  a, b 
iff  their unraveled multiplied versions are partially isomorphic.
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2.8 Analyzing the General Situation: Predictions
Finally, as to the full extent of the analogies between modal logic and classical logic,
let us risk a bold generalization. The set of all predicate-logical formulas may be
viewed as the domain of a ('meta-')model which carries some natural structure. For
instance, meta-theorems like Interpolation are themselves (Π2) first-order statements
about this model, in the following similarity type: one binary relation of "semantic
consequence", and another one of "vocabulary inclusion". (A closely related meta-
model has been investigated in Mason 1985. The complete first-order meta-theory of
propositional logic turned out to be effectively equivalent to True Arithmetic –
thereby saving the logical profession from rapid extinction.) Similar observations can
be made concerning other preservation theorems. E.g., the Los-Tarski Theorem states
an equivalence between  (1)  φ |= (φ)A  (i.e.,  φ  implies its own relativization to some
new unary predicate  A ) and  (2)  the existence of some universal formula equivalent
to  φ . Both assertions involve some slight expansion of the above meta-model to
include further predicates encoding 'elementary syntax' into the similarity type. Thus,
the Los-Tarski theorem becomes a  Π2–sentence, too. Now, the modal fragment is a
submodel of at least the first of these predicate-logical meta-models, in an obvious
way. (With the second one, we have to be more careful, as the result needs to be
restated due to the lack of modal prenex forms – though not of modal relativizations.)
In this perspective, here is a guess which would explain why one always seems able
to 'witness' existential quantifiers over formulas inside the modal fragment:

Conjecture The modal fragment is an elementary submodel of full predicate logic
in the first similarity type given above.

With results like this, one could decide transfer of meta-theorems between first-order
logic and  modal logic by merely inspecting their syntactic form.

2.9 Poly-Modal Generalizations
One test for the naturalness of the above results for the basic modal language is how
they survive generalization. At least, things work very smoothly for the practically
important case of poly-modal languages with families of unary modalities  ◊i  (i∈I) ,
each with their corresponding accessibility relation  Ri . One can virtually literally
transcribe the above theory, putting in appropriate indices. Nevertheless, subtleties do
arise occasionally. For instance, in the Interpolation Theorem, one can now also talk
about the shared modalities of the two original formulas, and an interpolant should
contain only these. But then, the above proof is incorrect as it stands. For, the
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amalgamation defined in Section 2.5 only yields bisimulating projections for
(relations corresponding to) the shared modalities. In order to make the amalgamation
bisimulate with the two separate models in their full language (as is required by the
final argument),  one has to add copies to the amalgam  MN  of those parts of  M  and
N  that branch off via non-shared successor relations, and extend the projection via
the identity map on the new parts (cf. van Benthem 1994B). This is not a serious
departure from the basic modal case, but it is not totally trivial either. (For earlier
proofs of these results, we refer to Németi 1985, Kracht & Wolther 1991. Cf. also
Sain 1989, Marx 1995, and the strong generalizations given in Madarasz 1995.)

Next, we consider a more serious generalization, namely to polyadic modalities. Here,
one needs (k+1)–ary accessibility relations for each  k–ary existential modality:

◊ φ1 ... φk    translates into ∃y1 ... yk ( Rk+1x, y1 ... yk & &1≤i≤k φi (yi))

We give a quick run-down of basic results, showing what remains the same, and
where cosmetic changes are needed. Under translation, modal formalisms of this kind
end up in what we call provisionally the restricted  fragment  of first-order logic:

•  start with all unary atomic formulas  Px , and allow
•  closure under Boolean operations for compounds with the same variable 
•  closure under existential quantifiers of the form
    ∃y1 ... yn ( Rn+1 x, y1 ...yn  &  φ1 (y1) & ... &  φn (yn) ) .

Any set of restricting predicates  R  is allowed in the first-order language. The
restricted fragment inherits all attractive properties of the original modal one in the
obvious way (cf. van Benthem 1991A, chapter 17, de Rijke 1993, chapter 6).

1 The 'restricted formulas' are precisely those first-order formulas  φ (x)  which 
are invariant for bisimulation with respect to the new extended set of relations.
(One now has to find back-and-forth matches for triples  R3 x, y1y2 , etcetera.)
The earlier model-theoretic proof goes through with mere notational changes.

2 There is an adequate semantic tableau method which establishes decidability.

3 There is a complete sequent calculus axiomatization for universal validity, 
whose principles may be read off from closed tableaus.
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Practical complexity may increase in this system. E.g., the introduction rule for a
binary existential modality that emerges from the tableau calculus reads as follows:

& {1, ..., k } ⊇  X  ( α  |- { γi | i∈X }  or   β |- { δ1, ..., δk } – { δi | i∈X } )
---------------------------------------------------------------------------------------

◊αβ |- ◊γ1 δ1 , ... , ◊γkδk

4 Craig Interpolation holds, either constructively via sequent proofs, or model-
theoretically. (Cf. earlier references on this topic, in particular, the algebraic 
superamalgamation methods of Németi 1985 and Madarasz 1995.) There is 
also a strong version where interpolants have only shared modalities between 
antecedent and consequent (cf. Marx 1995, van Benthem 1994B.)

5 The Los-Tarski theorem holds by essentially the earlier argument with 
bisimulation invariance and copying. This requires a notion of 'unraveling' 
via suitable finite sequences for many relations at the same time.

The latter case again requires some care in the formulation of results. For instance, in
unraveling a triple Ra,bc , one has to keep track of the whole ternary configuration,
indicating that the step from  a  to  b  went via the triple  (abc) , in order to distinguish
this from a possible other situation  Ra,bd . There are several notational solutions to
problems like this, which we do not elaborate here. Our results in section 4 are further
generalizations of this line of thinking to still larger first-order fragments.

3 Finite Variable Fragments
3.1 The Finite Variable Hierarchy
Finite-variable fragments of first-order logic may be traced back to the 19th century
logicians Peirce and Schroeder. They were used by Tarski in the 1950's (cf. also
Henkin-Tarski 1961). Probably their first systematical study is in Henkin 1967, as a
tool in trying to see what new insights cylindric algebra can provide for 'pure' logic.
These fragments consist of all formulas using only some fixed finite set of variables
(free or bound): say {x}, {x, y}, {x, y, z}, etcetera – but otherwise allowing arbitrary
combinations of quantifiers and connectives. An important connection with modal
logic was pointed out in Gabbay 1981. Finite operator sets generate modal languages
whose translations into first-order logic involve only some fixed finite number of
variables (free and bound). For instance, the basic modal language can make do with
two  world variables only (as may be seen by further analysis of the earlier translation,
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judiciously 'recycling' just  x, y ). This may be seen by changing the translation
function in section 2.1 above to produce two variants  φx  and  φy ,  having free
variables  x, y , respectively. The key clause for the existential modality now reads:

◊φ x ∃y (Rxy & φy)
◊φ y ∃x (Ryx & φx)

Similarly, e.g., the well-known temporal language with 'Since' and 'Until' uses
essentially three  variables, being the minimal syntactic apparatus for translating these
two operators. Thus, there is a natural division into a Finite Variable Hierarchy:

3

2

1

inside whose levels one finds modal logics of ascending expressive strength. Unless
otherwise stated, by the  k–variable fragment we mean that fragment of predicate
logic which uses only the variables  x1, ..., xk  (an initial segment of some fixed
enumeration), with equality and without constant or function symbols. Like the basic
modal language itself, these successive levels can be characterized via a semantic
invariance property (van Benthem 1991, p. 260; Barwise 1975). To state the result,
recall the usual convention that  φ (x1, ..., xk)  denotes a formula whose free variables
are all among  {x1, ..., xk}. Moreover, by  k-variable formulas  we shall mean first-
order formulas all of whose variables (whether free or bound) are among  {x1, ..., xk}.

Theorem  3.1.1   A first-order formula  φ (x1, ..., xk)  is equivalent to a
k-variable formula  iff  it is invariant for  k-partial isomorphism.

Here,  k-partial isomorphism is a cut-off version of the well-known notion of 'partial
isomorphism' from Abstract Model Theory. These are non-empty families  I   of
partial isomorphisms between models  M  and  N , closed under taking restrictions to
smaller domains, and satisfying the usual Back-and-Forth properties for extension
with objects on either side – restricted to apply only to partial isomorphisms of size at
most  k . 'Invariance for  k–partial isomorphism' means having the same truth value at
tuples of objects in any two models that are connected by a partial isomorphism in
such a set. The precise sense of this is spelt out in the following proof.
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Proof (Outline.) k-variable formulas are preserved under partial isomorphism, by a
simple induction. More precisely, one proves, for any assignment  A and any partial
isomorphism  I∈I  which is defined on the  A-values for all variables  x1, ..., xk , that

M, A |= φ  iff  N , IoA |=  φ .

The crucial step in the induction is the quantifier case. Quantified variables are
irrelevant to the assignment, so that the relevant partial isomorphism can be restricted
to size at most  k–1, whence a matching choice for the witness can be made on the
opposite side. This proves "only if". Next, "if" is analogous to that for the earlier
Invariance Theorem (cf. the proof of theorem 2.2.1). One shows that any invariant
formula  φ (x1, ..., xk)  (in the above sense) is implied by the set of all its  k-variable
consequences. The key step in this argument goes as before. We find two models
which are elementarily equivalent for all k-variable formulas. These then possess ω–
saturated elementary extensions – for which the relation of  k-elementary equivalence
between tuples of objects itself defines a family of partial isomorphisms up to length
k , which satisfies all the above requirements for  k-partial isomorphism.    �

3.2 Positive and Negative Properties
Below we summarize some of the known properties of the finite variable hierarchy.
This will help us to see the strengths and weaknesses of this classification, while also
pointing the way to our eventual 'nice' fragments.

Positive properties
(1)  Theorem 3.1.1 above provides a natural semantic characterization.
(2)  Gabbay's Functional Completeness Theorem (Gabbay 1981) also shows how, 

conversely, for each finite-variable level, a finite set of modal operators can be 
constructed effectively whose modal language yields precisely that fragment.

(3) Variables are 'semantic registers' providing a natural fine-structure of expressive 
complexity – and hence complexity hierarchies for checking first-order assertions
(Immerman 1981, 1982, Hodkinson 1994, Andréka, Düntsch & Németi 1995).

(4) The controlled use of more variables, free and bound, in these fragments suggests
natural 'many-dimensional completions' of general modal languages, as well as 
links with algebraic logic (their expressive power and effective axiomatization 
are investigated extensively in Venema 1991, Venema 1995A, 1995B).
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(5) Finite-variable fragments emerge naturally in other areas of mathematical logic, 
such as Relational, Polyadic and Cylindric Algebra (Németi 1991), and they are 
crucially involved in the formalization of set theory of Tarski and Givant 1987.

(6) Finite-variable fragments provide natural query languages supporting fixed-point
operators in Finite Model Theory (cf. Kolaitis and Väänänen 1992).

(7) Finite-variable fragments admit a preservation theorem (via so-called 'partial 
embeddings') characterizing the universal formulas (cf. section 3.5 below).

But there is also mounting evidence as to

Negative properties     (Throughout the following list  k>2, unless stated otherwise.)
(1) Finite-variable fragments have a poor proof theory. No finitely axiomatized 

Hilbert-style system exists (Monk 1969), and the complexity of the necessary 
axiom schemes is inevitably high (Andréka 1991). Moreover, adding new logical
connectives to fragments  Lk  does not seem to help (Andréka & Németi 1994 
discuss 'hereditary non-axiomatizability' of finite variable fragments).

(2) Finite-variable fragments are undecidable (Henkin, Monk & Tarski 1985).
(3) Even for  k>1, Craig Interpolation and Beth Definability fail (Sain 1989, Sain &

Simon 1993, Andréka, van Benthem & Németi 1993). Cf. section 3.5 below.
(4) Finally, here is a new type of problem. The Los-Tarski submodel preservation 

theorem fails, as is demonstrated in section 3.3.

Our contribution is both critical and constructive. Some negative items in the above
list are proved in the present section (with the rest supported by references). But later
on, in section 4, we show that the negative properties all go away if we replace full
predicate logic by its 'guarded fragment'. Alternatively, in section 5, finite-variable
fragments regain their positive properties when interpreted, not on standard models
but on suitably generalized models having restrictions on available assignments.

3.3 Failure of the Submodel Preservation Theorem
The Los–Tarski Theorem trivially fails for finite-variable fragments. The  1-variable
formula ∀xAx∨∀xBx  is preserved under submodels, but lacks a prenex form with
one variable (two are needed). The more natural conjecture is this: a  k-variable
formula is preserved under submodels  iff  it is equivalent to a  k-universal formula.
Here we define  k-universal formulas as all those constructible in the  k-variable
fragment using atoms and their negations,  &,  ∨  and  ∀ . (The above formula is  1-
universal as it stands.) But this result, too, fails in finite-variable fragments.
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Theorem  3.3.1      For each k≥3, the  k-variable fragment contains formulas that
 are preserved under submodels, while lacking any  k-universal equivalent.

Proof We do the case k=3 for an illustration. The general case is completely
analogous. Let  R  be some  3-place relation. Define  δ(x) :=  ∃yz Rxyz ( ' x is in the
head of  R ' ) . Consider the following first-order formula, where  |δ|≤2  is a formula
expressing that "there are at most two objects satisfying  δ " and similarly for  |δ|≤1 :

|δ|≤2 &   ( |δ|≤1  ∨ ∀xx'yz ((Rxyz & Rx'yz) → x=x')) )     φ

This formula can be written as a purely universal prenex form (even as a  4-universal
formula, by proper variable management.) So,  φ  is preserved under submodels.
Now, consider the following variant  Φ  of  φ  (involving existential quantifiers):

|δ|≤2  & ( |δ|≤1  ∨ ∀xyz (Rxyz → ∃x ( δ(x) & ¬ Rxyz)) )     Φ

Claim 1 φ  and  Φ  are logically equivalent.

Proof  This is a simple computation. In both directions, it suffices to consider the case
where there are exactly two objects satisfying  δ . ' From  φ   to  Φ ' . Assume that
Rxyz. Then there must be some  x' ≠x in  δ  (by  |δ| =2 ), which cannot have Rx'yz, by
φ . This is the required witness for the existential quantifier.  ' From  Φ   to  φ  ' .
Assume that Rxyz, Rx'yz. Since  δ(x) , there must be some x''  in  δ with  ¬ Rx''yz.
But then,  x, x'' are different, and hence,  x'  must be equal to one of them. The only
option here is  x'=x , since Rx'yz, ¬ Rx''yz  rules out  x'=x''.    �

Claim 2 Φ  is in the  3-variable fragment.

Proof We only have to show that  |δ | =2  and  |δ| =1  can be expressed with 3
variables. This is a simple syntactic calculation.             �

We introduce two special models  M = (D, Z),  N = (D, U)  for this language, where

D = {0, 1, 2, 3, 4, 5}
U = {0, 1} x {2, 3} x {4, 5}
Z = { (i, j, k) ∈ U  |  i+j+k  is even}.

Claim 3 M |= Φ ,   but not  N |= Φ .
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Proof By direct inspection. In both cases, there are precisely two objects in  δ . In
particular, note how the parity in the definition of  Z  ensures that there will be
another object in  δ  which does not have the same 'tail'.         �

Now, the counter-example is complete once we prove our final

Claim 4 Every  3-universal formula which holds in  M  also holds in  N .

Proof One proof uses one-sided Ehrenfeucht games with three pebbles (Immermann
& Kozen 1987). Here we take another road, that is suggestive for later developments.
Consider the set  3PI  of all partial isomorphisms  f  with size at most 3 between  N
and  M , satisfying the additional restriction that, whenever  f(a) = b , then  a  and  b
lie in the same component  {0, 1}, {2, 3}  or  {4, 5} . We show that this family has
the "Forth" property, from  N  to  M . More precisely, let  f(a) = b and let  c  be any
object in  D . We find an object  d  such that the map  (f – {(a, b)}) ∪ {(c, d)} is again
in  3PI . It suffices to consider the case where  c≠a . We distinguish cases for the
remaining  f-arguments (after removal of the object a ). Case 1  "c  equals some
existing f-argument different from  a" . Then its mate  d  is the corresponding  f-value.
(This must yield a partial isomorphism of the right kind.) Case 2   "c differs from all
existing  f-arguments".  Case 2. 1  Suppose that  c  is in the same component as some
existing  f-argument. Then let  d  be the remaining possibility in this component.  (In
this case, no  Z–  or  U–relation can hold on either side of the partial isomorphism.)
Case 2.2   Suppose  c  is in a different component from the existing  f-arguments.
This case, too, will yield a partial isomorphism.  Case 2.2.1   The other  f-arguments
lie in the same component, and hence no  Z–  or  U–relations can hold: then let  c  be
its own image. Case 2.2.2  These arguments lie in different components. Then, the
choice of an image for  c  in its component may be made according to the parity of the
sum of the values assigned to the other arguments. (One of the two available options
will always do.) Finally, an easy induction on  3-formulas shows that

If  f ∈ 3PI , A  is some assignment whose values are in the domain of  f , and
α  is some  3-existential statement such that  N , A |= α , then  M , Aof |= α .

This shows that all true  3-existential statements in  N   are also true in  M , from
which the required assertion about  3-universal statements follows by duality.    �
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For further information, as well as details missing from section 3.4 below, we refer to
Andréka, van Benthem & Németi 1994B, which presents a more elaborate version of
the above argument, that extends to first-order languages without equality. Moreover,
related ideas are used in Andréka, van Benthem & Németi 1993 to construct uniform
failures of Interpolation in finite-variable fragments. For completeness, we note that
an open problem concerning uniform failures of the Los-Tarski theorem formulated in
earlier versions of this paper was subsequently solved in Rosen & Weinstein 1995.

Some Remaining Questions

(1) Does the Los Theorem hold for the  2-variable fragment?
(2) k-variable formulas that are preserved under submodels must have universal 

equivalents somewhere in the finite-variable hierarchy, by the ordinary
Los-Tarski Theorem. Is there a recursive function  f  of  k  such that every
k-variable formula preserved under submodels has an  f(k)-variable
universal equivalent? In particular, does the choice  f(k) = k+1  work?
And what about a similar function defined over formulas?

3.4 Modified Preservation Theorems
The above negative argument suggests a positive result. (For convenience, we shift to
a dual existential formulation.) There exists a Los-Tarski Theorem for  k-variable
fragments characterizing an appropriate syntactic notion of  'k–existential definability'
(by atoms and their negations, &, ∨  and ∃ ) via preservation under 'k-partial
embeddings', being restriction-closed non-empty families of  k-partial isomorphisms
which satisfy the Forth-condition only (cf. van Benthem 1991). Partial embeddings
generalize submodels as partial isomorphisms generalize isomorphisms. Here is a
model-theoretic characterization for existential formulas in the  k–variable fragment:

Theorem  3.4.1 A  k-variable formula is quivalent to a k–existentially
definable formula  iff  it is preserved under  k–partial embeddings.

Proof  That existential formulas are preserved follows by a straightforward induction.
Next, let  φ  be preserved under  k–partial embeddings. Then earlier arguments apply
(see Theorems 2.6.1, 3.1.1) . It suffices to show that  φ  is a consequence of the set
k–exist (φ)  of all  k–existential logical consequences of  φ . Let  M,  A |= k–exist (φ) .
By familiar reasoning, we find a model  N, B  for  φ ,  each of whose  k–existential
formulas is true in  M, A . Without loss of generality, we may take M, A  to be  ω–
saturated. But then, the following defines a  k–partial embedding from  N  into  M :
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all partial isomorphisms  f  from  N  to  M  of size at most  k , such that,
for all  k–existential formulas  α , if  N ,  A |= α  , then  M ,  Aof  |=  α .

In proving the "Forth" clause here, one has finite approximations of the new element
by means of  k–existential formulas, and then finds a simultaneous witness via
Saturation.  In particular,  our embedding sends the sequence of  B–values on our  k
variables to the corresponding  A-values, whence  φ  must hold  in  M , A , too.    �

Similar finite-variable modifications exist for other classical model-theoretic results.

3.5 Failure of the Interpolation Theorem
Other classical key properties may fail, too. Here is a simple result to this effect. It
improves a theorem in Pigozzi 1971 to interpolation failure with monadic predicates.

Theorem  3.5.1 Craig Interpolation fails in all  k–variable fragments  (k≥2),
even if the language has only unary predicate symbols.

Proof   Consider any  k–variable fragment  Lk . Take k  unary predicates  A1, ..., Ak .
Let the first-order formula  φk  say that (i) each  Ai  holds for exactly one object (this
needs two variables), (ii) all  Ai  are disjoint (one variable) and (iii) every object
satisfies at least one  Ai  (again, one variable).  φk  holds only in domains of size  k .
In a similar way, construct a formula  ψk+1 , with new unary predicates  B1, ..., Bk+1 ,
which is true only in domains of size  k+1 . Clearly  φk |= ¬ ψk+1 , with both formulas
from  Lk . By Interpolation, there must be a  k–variable formula  α  in only identity
with  φk |= α |= ¬ ψk+1 . This is a contradiction. For, pure identity formulas using only
k  variables cannot distinguish between domains with  k  and with  k+1  objects.       �

The counter-example generalizes to first-order  k-variable languages without identity,
replacing  =  with a suitable equivalence relation. Also, Interpolation still fails with
one binary and two unary relation symbols (Andréka, van Benthem & Németi 1993).
With only two non-logical symbols, the question is open. (Madarasz 1995 shows that
logics without interpolation may have a weaker two-predicate 'relevance property'.)

3.6 Conclusion
The preceding analysis shows that finite-variable fragments, though attractive, do not
explain all there is to modal logic. Hence, as they stand, they cannot serve as the nice
fragments of first-order logic, in the technical sense of our Introduction, that we were
searching for. Nevertheless, we can turn this observation into a further requirement.
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Nice fragments of first-order logic should support a finite-variable hierarchy which
does have the desired meta-poperties. Keeping this additional desideratum in mind,
we now turn to an alternative analysis, whose focus is restriction of quantifiers.

4 Bounded Quantifier Fragments

4.1 The Basic Restriction Schema
The basic modal fragment is only a subset of the full two-variable fragment, since its
syntax satisfies additional constraints. In particular, all quantifiers in translations of
modal formulas occur 'restricted' or 'bounded', in the forms

∃y (Rxy  &  φ (y)) , ∀y (Rxy → φ (y)) .

Semantically, the latter form correlates with the earlier definition of bisimulation,
explaining its particular zigzag clauses. This observation suggests another
classification. What we are dealing with are quantifier restrictions, which may be
varied along various dimensions. The general schema here is as follows:

∃y ( Rxy  &  φ (x, y, z) ) where  x, y, z  are finite sequences of variables.

And the question is how much can be allowed as to variable occurrences without
losing the attractive features of the basic modal logic, in particular, its decidability.
We shall take this perspective as our point of departure in a hierarchy of 'bounded'
fragments of predicate logic. Its initial stages already occurred in Section 2.9 above.
For instance, polymodal logic shows that families of different restricting predicates
Ri are admissible. And polyadic modal logics showed that one can allow restrictions
of the special form  ∃y (Rx,y & &i φ i (yi) ) without major changes in theory and
practice. We shall be concerned mainly with the following schemata in what follows:

Fragment 1 ∃y ( Ryx  &  φ (y) ) 
Fragment 2 ∃y ( Ryx  &  φ (x, y) ) 
Fragment 3 ∃y ( Ryx  &  φ (x, y, z) ) .

Restricted formulas play a crucial role in absoluteness in Set Theory ('Δ0–formulas').
Let us be more precise. These fragments of a standard first-order language start with
arbitrary atomic formulas, and allow further constructions with Boolean operators and
the above bounded quantifiers, where R can be any relation symbol (this atomic
formula is called the 'guard' of the formula), whose variables may appear in any order.



28

Identity atoms  u=v  are allowed, but not as guards. There are other plausible bounded
fragments – but the present ones will do. In particular, Fragment 2, dubbed the
Guarded Fragment of predicate logic, displays nice modal behaviour in the sense of
the earlier Sections. To understand these, it is helpful to consider a restricted version
of Fragment 2, closer to the basic modal language, which involves special relations  R
not occurring anywhere except as a guard, with a fixed argument order  x, y . Crucial
for these fragments is the atomic nature of guards: Boolean combinations of atomic
formulas are not permitted. E.g., symmetry of a relation is in Fragment 2, but
transitivity is not. These fragments may be understood in various ways. Model-
theoretically, one can extend the earlier modal bisimulations to describe them
(Section 4.2 below), which shows that we have a genuine upward hierarchy of
expressive strength. We use a corresponding model unraveling method to prove a
Los–Tarski theorem. Next, we take a more combinatorial approach, focusing on their
'looseness' and decidability (cf. Section 2.3 above). Fragment 1 is decidable, being
close to modal logic. By contrast, Fragment 3 is easily shown undecidable. Our main
result is that the powerful intermediate Guarded Fragment is decidable. (Indeed, as we
shall show elsewhere, it has a uniform finite model property.) This decidability
theorem generalizes several existing results from modal and algebraic logic.

4.2 Bounded Fragments and Bisimulation
Bounded fragments may be analyzed semantically in terms of modal bisimulations.
For this purpose, one can fix the earlier modal Invariance Theorem as a target, and
use its proof as a heuristic for generating appropriate notions of semantic simulation.
This style of analysis uses the following notions. By a partial isomorphism, we mean
a finite one-to-one partial map between models which preserves relations both ways.
In any model  M , we call a set  X  of objects guarded if there exists a relation symbol
R, say  k–ary, and objects  a1, ..., ak ∈M  (possibly with repetitions) such that  RM(a1,
..., ak)  and  X = {a1, ..., ak} . Here, we merely formulate appropriate bisimulations for
the Guarded Fragment 2, the other fragments involve simple and obvious variations.

Definition  Guarded Bisimulations
A guarded bisimulation is a non-empty set  F  of finite partial isomorphisms between
two models  M   and  N   which satisfies the following back-and-forth conditions.
Given any  f:X→Y in  F ,
(i) for any guarded  Z⊆M there is a  g∈F  with domain  Z  such that  g  and  f  

agree on the intersection  X∩Z



29

(ii) for any guarded W⊆N  there is a  g∈F  with range  W  such that the
inverses  g–1  and  f–1  agree on  Y∩W .

A guarded  k-bisimulation is a set  F  as above, except that the partial isomorphism
and the mentioned guarded subsets are all required to be of size at most  k .

The point of this definition shows in semantic invariance for guarded bisimulation,
proved by straightforward induction on the construction of  F2–formulas (members of
Fragment 2). The zigzag conditions take care of the bounded existential quantifiers.

Proposition 4.2.1 Let  F  be a guarded bisimulation between models  M  and  N  
with  f∈F . For all guarded formulas  φ  and all variable assignments  α  into 
the domain of  f , we have   M, α |=  φ   iff   Ν, f o α |= φ .

Moreover, a straightforward analogue of the proof of Theorem 2.2.1 yields a full
model-theoretic preservation theorem here. Also as before, we can 'cut off' guarded
bisimulations at any finite length – and the proof of Theorem 3.1.1 then carries over,
too – producing a semantic characterization of guarded finite variable fragments.

Theorem  4.2.2 Let  φ  be any first-order formula.
φ  is invariant for guarded bisimulations iff  φ  is equivalent to an  F2 formula.
φ  is invariant for guarded  k–bisimulations  iff  φ  is equivalent to a formula
in the  k–variable subfragment of  F2 .

We can adapt these notions to Fragments 1 and 3 in a straightforward manner. The
modified back-and-forth clauses will now match the relevant quantifier restrictions.
We do not spell them out here. Here is an application of this semantic analysis.

Theorem  4.2.3  The three fragments form a properly ascending hierarchy.

Proof We sketch the gist of the counter-examples. (1)  The formula  ∃y (Rxy & Sxy)
is in Fragment 2, but it is not equivalent to any formula in Fragment 1. For, the
following two models have different truth values for ∃y (Rxy & Sxy) – even though a
Fragment–1 bisimulation runs between them, consisting of the following matches
between single objects:  (x, x),  (y, y1),  (y, y2) .

y y1 y2
R, S R S

x x

Johan van Benthem


Johan van Benthem




30

(2)  The formula  ∃y (Ay & ¬ Rxy)  is in Fragment 3, but without being equivalent to
one in Fragment 2 . For, it can distinguish between the following two models (both
without any  R–links), even though they admit a Fragment–2 bisimulation, consisting
of only the match  (x, x) :

y A
x x

(3) Finally, Fragment 3 is still somewhat poorer than predicate logic as a whole. For
instance, the formula  ∀xAx  is beyond it. This may be shown by the Fragment–3
bisimulation  (x, x)  between the following two models:

y
x A x A

�

4.3 Unraveling Models
As another useful application of guarded bisimulations, we generalize the unraveling
construction of Section 2. In the next Section, we will apply this technique to obtain
the Los-Tarski Theorem – while it will also serve as an inspiration for later
decidability arguments. For a start, let  M  be any ordinary model for predicate logic.

Definition The unraveling  Mu  of  M  has for its objects all pairs  (π, d)  – where
the 'path'  π  is a finite sequence of guarded sets, and the  M–object  d  is 'new' in  π :
i.e., it occurs in the final set of  π  but not in the one before that. The interpretation of
predicate symbols  Q  is as follows.  I(Q)  holds for a finite sequence of objects
<(πi, di)>1≤i≤k   iff   IM(Q) <di>1≤i≤k   and there is some maximal path  π*  among
those listed of which all other  πi  are initial segments in such a way that their new
objects  di  remain present in each set until the end of  π* . Finally, we let  Fu  be the
family of all restrictions of the finite maps sending  (πi, di)  to  di  for all guarded
finite domains in  Mu .

Proposition 4.3.1 Fu  is a guarded bisimulation from  Mu  to  M .

Proof  (i) All maps in  Fu  are partial isomorphisms. Preservation of atomic relations
is obvious in going from  Mu  to  M . Vice versa, the fact that relations are preserved

Johan van Benthem
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backwards, as well as the required injectivity, depends heavily on the assumption that
the domain is guarded. Let  f ∈ Fu . Then  S = Dom(f)  is guarded, which implies that
there is a path  π*  such that, if  (π, d) ∈ S , then  π  is an initial segment of  π*  such
that  d  remains in the members of  π*  all the way up. This immediately ensures that
relations are preserved backwards, too. To prove injectivity, it suffices to show that,
if  (π, d), (π', d) ∈ S  , then  π = π' . Indeed, since both  π  and  π'  are initial segments
of  π* , one of them must be larger than the other. If  π  were larger than  (say)  π' ,
the object  d  would persist from  π  upwards – and hence it would not be new in  π' .
(ii) Next, we check the two back-and-forth properties. From  Mu  to  M , this is easy,
using the fact that our finite maps are submaps of a single relation-preserving map.
Going in the opposite direction, consider  f: X→Y  with some guarded set  Z  in  M .
Since  X  is guarded, there is some maximal path  π*  among its objects. Therefore,
there is also a maximal path   π+  among the objects which are mapped by  f  onto the
intersection  Y∩Z . We either use this path, or extend it by the guarded set  Z (in case
Z  contains objects that are not in the last set of  π+ ). Now, the latter path gives us an
obvious sequence of objects satisfying the guard of  Z  (some of them new at the end,
others suitably introduced in initial sequences). The induced partial isomorphism is
the one we are looking for.          �

The above construction can be slightly generalized. Given any finite set  Y  of objects
in  M  (guarded or not), we can define a parametrized unraveling  Mu(Y) whose paths
all start from  Y  (continuing with guarded sets only), and whose objects  (π, d)  are
defined just as above. By a straightforward adaptation of the above argument, the
obvious restriction map  Fu(Y)  is a guarded bisimulation from  Mu(Y)  to  M .

Also, we can put finite fine-structure into the construction, which will serve to
specialize later results to  k–variable fragments. In particular, the  k–unraveling   Muk
is that submodel of the above Mu  whose paths contain only sets of size at most  k .
The above proof then easily shows that the restriction map  Fu  is  even a  guarded  k–
bisimulation (Section 4.2). Finite thresholds may be combined with parametrization,
to define models  Mu(Y)k  with the obvious properties. Finally, one can also restrict
the length, rather than the 'width', of paths in unraveled models. This would connect
up with languages of restricted quantifier or modal operator depth in ways familiar
from the first-order and modal literature. The latter direction will not be pursued here.
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Finally, we state another useful auxiliary result for the Los-Tarski Theorem to follow.
(This generalizes the modal construction in the proof of Theorem 2.6.1.) Let  M, N
be two models and let  f: Y → Z  be a finite map between them such that guarded
existential formulas are preserved along  f . I.e.,   M, α |= ψ  implies  N, f o α |= ψ
for all guarded existential formulas  ψ  and all evaluations  α  of the free variables of
ψ  into  Y . We say that  f  preserves  guarded existential formulas from  M  to  N .

Proposition 4.3.2 Let the finite map  f: Y→ X  preserve guarded existential 
formulas from  M  to  N , and let  N  be  ω–saturated. Then there is an 
extension  F  of  f  which maps  Mu(Y)  into  N  such that  F  is an 
isomorphism on all guarded subsets of  Mu(Y) .

We note that though, strictly speaking,  Y  is not a subset of  Mu(Y) , it can be
identified with  { ( <Y>, d) | d∈Y} ⊆ Mu(Y) .

Proof   For notation's sake, we set  M' =def Mu(Y) . If  S  is a subset of  M'  and if
F: S → N , then we say that  F  locally preserves guarded existential formulas if the
restriction maps  F|G  preserve guarded existential formulas from  M'  to  N ,  for all
guarded subsets  G  of  M'  and for  G = Y . For all natural numbers  k≥1 we define

Dk  =  { (π, d) ∈M' |  |π|≤k }

Then  D1  =  { (<Y>, d) | d∈Y } , so  D1  is the set we already identified with  Y .
Now define a map  F1 : D1 → N  by  

F1 ((<Y>, d)) = def   f(d)  for all d∈Y

By assumption,  F1  locally preserves guarded existential formulas. Now, assume that
Fk : Dk → N  has been defined, subject to our preservation condition. We define an
extension to  Dk+1  with the same property. For all paths  π  of length  k+1 , we set

Zπ  =def  { (π, d) |  (π, d)∈M'}

By the construction of  M'  then, we have the following

(1) There is a greatest guarded subset  Gπ  of  Dk+1  containing  Zπ
(2) Gπ – Zπ  is contained in a guarded subset  G'  of  Dk  if  k>1
(3) Each guarded subset of  Dk+1  is contained in some  Gπ  or is contained in  Dk
(4) Dk+1 – Dk  is the disjoint union of the  Zπ 's
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Indeed,  Gπ  can be constructed from the last element of  π , and  G'  from the last but
one element of  π . (4) is trivial, (3) comes from the definition of relations in  M' .
We now define  F  separately on all  Zπ  's. Let  π  be fixed. For simplicity, we will
consider the elements of  Gπ  also as variables. Then the identity map  Id  evaluates
these variables in  M' , and  Fk  is an evaluation of the variables  Gπ – Zπ  in N . Set

Σ  =def  {  ψ | ψ  is a guarded existential formula with free variables in  Gπ 

such that  M', Id |=  ψ }

Clearly,  M', Id |= Σ . We want to show that

N, Fk |=  ∃Zπ  &Σ

By  Gπ 's being guarded, there is a relation symbol  R  and an enumeration  g  of  Gπ

such that  R(g)  holds in  M' . Let  Cπ  =def  Gπ – Zπ , and let  Δ⊆Σ  be finite. Then

M', Id | Cπ  |=  ∃Zπ  (R(g) & &Δ )

so by (2) and the inductive hypothesis, we have

N, Fk |= ∃Zπ  (R(g) & &Δ )

By  ω–saturation of  N  then:

N, Fk  |= ∃Zπ  &Σ

Let  Zπ ' =  { d' |  d∈Zπ }  be such elements in  N  and define

Fk+1 (d)  =def   d'  for all  d∈Zπ

Doing this for all  π , by (4) we defined

Fk+1 : Dk+1 → N

Now  Fk+1|G  preserves guarded existential formulas for all  G = Gπ  – by our
construction – so by (3),  Fk+1  locally preserves guarded existential formulas. Define

F  = def  ∪ { Fk | k≥1 }

Clearly  F: M' → N ,  F  is an extension of  f , and  F  locally preserves guarded
existential formulas. It remains to show   F  is an isomorphism on all guarded subsets.
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Thus, let  G  be a guarded subset of  M' . Since  F  locally preserves guarded
existential formulas  ψ , for all these we have

M', Id|G  |= ψ implies  N, F  |= ψ

if the free variables of  ψ  are among  G . Taking  ψ   to be a suitable conjunction of
atomic formulas  { ¬ u=v , R(g), ¬ R(g) } – with  u, v∈G, u≠v, sequences  g  of
variables from  G  and relation symbols  R – we get that  F  is one-one on  G  and  F|G
preserves forward and backward relations: i.e.,  F  is an isomorphism on  G .    �

Again, this result may be specialized in various ways. Most importantly, if we only
have preservation of guarded existential  k–formulas, the extension homomorphism  F
can be defined on the  k–unraveling  Mu(Y)k  , provided that  |Y| ≤k .

4.4 Preservation Under Submodels
One of our recurring semantic tests for being a 'nice fragment' of predicate logic was
validity of the Los-Tarski Theorem characterizing those formulas which are preserved
under submodels. And indeed, we have the following result here.

Theorem  4.4.1   A formula  φ  in the Guarded Fragment is preserved under 
submodels  iff  it is equivalent to an F2-formula constructed from atomic 
formulas and negated atomic formulas by the use of  ∨,  & and  ∀ .

Proof    From universal definition to submodel preservation, the assertion is obvious.
The converse can be proved along the lines of the first proof for Theorem 2.6.1 above.
We merely outline the main steps of the construction. The reader is invited to check
back with the original argument for motivation. The final aim is again to show that
univ(φ) |= φ , where  univ(φ)  consists of all universal consequences of  φ  (with the
same set  x  of free variables). Consider any model and assignment  M, α |= univ(φ) .
Without loss of generality, we may suppose that this model is unraveled. (By the
results of Section 4.2, valid consequence for guarded formulas is witnessed entirely
by unraveled models.) Moreover, this model may be taken to start from a one-step
path formed by the finite set  Y  of objects in  M  assigned to the free variables of  φ .
This is the parametrized unraveling  Mu(Y) . Next, entirely by previous reasoning,
there exists some  ω–saturated model  N, β   for  φ  such that all existential formulas
(constructed as in the Theorem – but now using  ∃  instead of  ∀ ) that are true in  M,
α  are also true in  N, β . Thus, the finite partial isomorphism sending the objects
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α(x)  to the  β(x)  preserves all guarded existential formulas going from  M  to  N .
By Proposition 4.3.2, then, there exists a mapping  F  wich is a guarded analogue of
the earlier 'partial embeddings' (cf. Section 3.4) – whence, at this stage, we have a
complete proof for Los-Tarski with respect to preservation under the latter notion.
But we can improve matters as in the basic modal case. We extend the model  M  as
follows to a new model  M+ . To each of the guarded subsets  X  in  M , which was
mapped by its representative in  F  onto a corresponding guarded subset  Y  of  N ,
we attach a unique copy of  N , which identifies  X  with  Y . Now, it is easy to see
that the identity maps on guarded subsets in all these added parts, united with the
partial embedding  F  already constructed is a guarded bisimulation between  N  and
M+ . By invariance for guarded bisimulations, the original formula   φ  is true in  M+

at assignment  α – whence it holds at  M, α  by its preservation under submodels.    �

Finally, we note that, exercising some care in syntactic details of the above argument,
our Los-Tarski Theorem may be specialized to completely characterize submodel
preservation for all finite-variable fragments of the Guarded Fragment.

Theorem 4.4.2 An  F2–formula  ψ  is preserved under  submodels  iff
it is equivalent to an  F2-existential formula with the same variables.

4.5 Decidability Via Decomposition of Universal Validity
To complete our analysis of bounded fragments, we now turn to their decidability.
One way of understanding this typical phenomenon extends the earlier semantic
tableaus. Their crucial point was to find some decomposition rule for validity of a
sequent with only existential quantifers (plus atoms) on both sides. This is not the
eventual outcome achieved here (cf. Section 4.5 – we do not know if the Guarded
Fragment has a simple reduction like this). But as a warm-up, it is useful to see how
far one can push direct modal arguments. First, here is a simple earlier observation:

Fact  4.5.1 ∃y1 (Rxy1 & φ1 (y1)),  ...,  ∃yk (Rxyk & φk(yk))  |=
∃y1 (Rxy1 & ψ1 (y1)),  ...,  ∃ym (Rxym & ψm (ym))

iff for some  i (1≤i≤k)   φi  |= ψ1 ,  ...,  ψm

This fact depended on bisimulation invariance for this language – or rather,
invariance of these formulas for the generated submodels in the rooting construction.
There is another convenient reduction for modal formulas involving different 'current
worlds' (cf. Kracht 1993 for this generalization inside modal logic itself):
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Fact  4.5.2 φ1 (x1),  ...,  φk (xk)   |=  ψ1 (x1),  ...,  ψk (xk)
iff for some  i (1≤i≤k)  φi (xi)  |=  ψi (xi)

This may be proved like Fact 4.4.1, by mere disjoint union of counter-examples to the
lower sequents. Thus, Fact 4.4.2 holds for all first-order formulas that are invariant
for disjoint unions (van Benthem 1985 characterizes these). Next, we take this further.

Theorem  4.5.3 Validity of formulas in Fragment 1 is decidable.

Proof  (Outline)  First, we perform all possible propositional reductions in a sequent,
so that only atoms and existential quantifiers remain on both sides. Then we prove a
reduction to matrix formulas like above. Again, we glue together counter-examples
for sequents below where the quantifiers have been stripped off, so as to refute the
original sequent with quantifiers. The longer sequent arguments  x, y  do not make an
essential difference to this modal construction. And neither does the presence of
arbitrary arguments  y  in the matrix formula, provided that the former have the
required invariance property. Indeed, even when starting with 'mixed' initial formulas
like  ∃y (Rx1x2,y & φ1(y)) ,  ∃y (Rx3x1,y & φ2(y))  and  ∃y (Rx2,y & φ3(y))  followed
by similar heterogeneous conclusions, one just matches up premise/conclusion pairs
with identical sequences of  x–parameters, as no semantic dependencies hold between
behaviour of  R–successors for sequences and their subsequences. (In special model
classes with extra 'frame conditions' on  R , this would have to be re-checked.)         �

The preceding type of argument establishes more than was stated. It is easy to see that
all counter-examples constructed for non-valid formulas may be taken to be finite:

Corollary  4.5.4 Fragment 1 has the Finite Model Property.

Things become more difficult for Fragment 2, where the parameters  x  of the guard
can also occur in the matrix formula. For instance, as for direct reductions, we do
have the valid consequence  ∃y ( Rxy & ¬ Rxy) |=  ∃y (Rxy & ⊥), but we do not have
¬ Rxy |= ⊥  or any obvious variant thereof. Nevertheless, we can prove a modal-style
direct reduction to deal with the quantifier restriction schema  ∃y (Rx,y  & φ(x, y)) ,
provided that we forbid occurrences of the relation  R  outside of quantifier guards.
Also, we need to have the variables  x, y  in the guards occurring in the order stated.
(Thus, even basic tense logic falls outside the scope of the following argument.)
Although the following argument is not our final contribution, we present it for its
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independent interest – while it also highlights some difficulties to be resolved. For a
start, we note a useful normal form for the Guarded Fragment.

Fact  4.5.5 Every formula is equivalent to one whose immediate quantifier scope 
jumps, being of the form  [α =]  ∃y (Rx, y & ...  [β =]  ∃z (Ru, z & ... ) ...) ,
always have at least one variable y  from  y  among the parameters  u .

Proof If this normal form fails somewhere, then repair this, working inside out, by
removing inner formulas outside of the scope of the outer ones – using the valid
logical equivalence   α  ↔  (β & [T/β]α) ∨ (¬ β & [⊥/β]α) .    �

The resulting formulas with linked chains of successive guards resemble the 'secure'
formulas of second-order logic (cf. van Benthem 1986). Next, we need a simplified
version of a notion in Section 4.2. The unraveling Munrav   of a first-order model  M
consists of all finite sequences of objects in  M ,  with predicates defined as follows:

R X1 ... Xk Y1 ... Ym   iff ∃d1 ... dm : RM  last (X1) ... last (Xk)  d1 ... dm

&  Yi  =  X1 ^ ...  ^ Xk ^  <di>     (1≤i≤m)
and for all other  Q ,
Q X1 ... Xn    iff QM  last (X1) ...  last (Xn)

Here is the key semantic fact concerning this construction.

Lemma  4.5.6 For all formulas  φ = φ (x1, ..., xn)  in the current fragment,
Munrav |=  φ  [X1 , ..., Xn] iff M |=  φ  [last (X1) , ...,  last (Xn)]

Combining the Unraveling Lemma with the earlier normal forms, we see that, for
normal forms  ∃y (Rx,y  & φ(x, y)), evaluation of the part  φ(x, y)  'moves upward'.
Its truth value depends only on objects reachable through a finite chain of  R–steps,
starting from a tuple containing some  y  in  y . In particular, immediate  R–successors
of  x  are never encountered in the process of evaluation. Now, we are ready to
describe the desired general reduction. Consider any first-order consequence schema
in the current impoverished version of Fragment 2, which is of the form  #

non R–atoms    non R–atoms

& |=      ∨
∃y (Rx,y  & φ(x, y))    ∃u (Rz,u  & ψ(z, u))
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Without loss of generality, we assume that no atom occurs on both sides, and that
each 'parameter group'  x  occurs on both sides. (The latter can always be achieved by
inserting 'inert' formulas with a constant 'true' or 'false' matrix for these parameters).
There can be more than one formula to the left (or right) for each parameter group.

Proposition  4.5.7 A consequence  #  holds  iff  for some totally disjoint 
choice of variables  y , we have a valid schema of the following form  £ : 

non R–atoms non R–atoms

& all x |=   ∨ all x  ∨ all  φ(x, y)

φ(x, y) ψ(x, y)

Example     Let the schema  #  to be reduced have the form displayed below:

∃y1y2 (Rx1x2y1y2  &  φ1 (x1, x2, y1, y2))
&  ∃y3y4 (Rx1x2y3y4  &  φ2 (x1, x2, y3, y4)) 
&  ∃y5y6 (Rx1y5y6  &  φ3 (x1,  y5 , y6)) 
|= ∃y7y8 (Rx1x2y7y8  &  ψ1 (x1, x2, y7, y8))

∨  ∃y9y10 (Rx1y9y10  &  ψ2 (x1,  y9 , y10)) .

Its reducing schema  £  described in the above Proposition looks as follows:

φ1 (x1, x2, y1, y2) ψ1 (x1, x2, y1, y2)
&  φ2 (x1, x2, y3, y4)   |= ∨  ψ1 (x1, x2, y3, y4)
&  φ3 (x1,  y5 , y6)   ∨  ψ2 (x1,  y5 , y6 )

Outline of a Proof for the Proposition     From  £  to  # , a simple inspection suffices.
Next, from  #   to  £ , suppose that the reducing sequent is not valid. Then it has a
counterexample  M  with some assignment verifying its antecedent, while falsifying
every disjunct in its consequent. Unravel  M , and choose sequence-objects for the
various  y  in the parameter groups  y  on the left making them all incomparable. In
particular, then, their hereditary  R–successors (recall the above remark about upward
evaluation) will all be different. This gives us freedom for the following stipulation.
For each of the parameters  x , let its only  R–successors be the vectors of objects for
its associated  y  in the list of formulas to the left of  # . By previous observations, this
does not affect truth values in  M  for matrix formulas  φ . Thus, this slightly modified
model verifies all restricted formulas  ∃y (Rx,y  & φ(x, y))  to the left of schema  # ,
and it falsifies all formulas  ∃u (Rz,u  & ψ(z, u))  on its right.          �
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This analysis also provides constructive information on the complexity of decidability.
The argument given here depends crucially on the syntactic restrictions of the current
version of Fragment 2. We shall follow another route in the following Section. But to
round off our present discussion, we conclude with an easy result about Fragment 3.
The latter turns out to be undecidable. For, the general parametrized quantifier
restriction schema  ∃y ( Rxy  & φ(x, y, z) )  is as powerful as predicate logic itself.

Fact  4.5.8 Predicate-logical satisfiability is effectively reducible to satisfiability 
in the parametrized restriction language  F3 . Hence, universal validity of
F3–formulas is undecidable.

Proof The reduction takes any predicate-logical sentence  φ  to its relativization  ρ(φ)
to some unary predicate  U  not occurring in  φ . ρ(φ)  lies inside the parametrized
restriction language. It is easy to see that  φ  is satisfiable if and only if  ρ(φ)  is.    �

4.6 Decidability of the Guarded Fragment
In this Section, we present a proof of decidability for the Guarded Fragment without
identity. It is inspired by the above unraveling method, but even more by earlier proof
techniques using so-called 'mosaics' developed originally for 'generalized assignment
models' (which validate the logic Crs to be introduced in section 5). Németi 1994,
Andréka & Németi 1994 have a full presentation, plus origins in cylindric algebra.

Theorem  4.6.1 The Guarded Fragment is Decidable.

Proof    Our strategy is as follows. We show that any guarded satisfiable formula  φ
has a finite 'quasi-model' (described below) of size effectively computable from that
of  φ , which can be used conversely to generate a model for  φ . (This is like modal
filtration: Goldblatt 1987, van Benthem 1996 – but we do not present the procedure as
defining a model for  φ .) Thus, the question whether a guarded formula is satisfiable
is equivalent to whether it has a finite quasi-model – and from the effective
description below, it is easily seen that the existence of such a structure is decidable.

From Standard Models to Finite Quasi-Models
Suppose that a formula  φ  is satisfiable in some standard model  M . Let  V  be the set
of variables occurring in  φ  (free or bound). Henceforth, we restrict attention to the
finite set  Subφ  consisting of  φ  and all its subformulas (and closed under alphabetic
variants using only variables in  V , as explained below). Each variable assignment
realizes a 'type'  Δ  consisting of finitely many formulas from this set. Types satisfy
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some closure conditions, which will emerge in due course in the proofs that follow.
Our quasi-model has a universe consisting of the finitely many types realized in  M .
Furthermore note that, for each guarded formula  ∃y (Qxy & ψ(x, y)) ∈Δ  (no special
order for the variables intended), there exists a type  Δ'  with (i)  Qxy , ψ(x, y) ∈Δ'
and (ii)  Δ, Δ'  agree on all 'unaffected' formulas with free variables contained in  x .
We sum this up in the following notion, which may be viewed as an abstract version
of the 'mosaics' of Németi 1992, Andréka & Németi 1994. Assume henceforth that a
guarded F2-formula  φ  is given, where  V  is the set of variables occurring in  φ .

Definition    (i)  Let  F  denote the set of all guarded formulas of length  ≤ |φ|  that use
only variables from  V . Note that  φ∈F  and  F  is closed under taking subformulas
as well as 'alphabetic variants'. Also,  F  is finite.  (ii)  An  F-type is a subset  Δ  of  F
for which (a), (b), (c) below hold:

(a)  ¬ ψ ∈ Δ  iff   not ψ ∈ Δ  whenever  ¬ ψ ∈ F
(b)  ψ&ξ ∈ Δ  iff   ψ ∈ Δ  and  ξ ∈ Δ whenever  ψ&ξ ∈F
(c) [u/y]ψ  implies ∃y ψ ∈ Δ  whenever  ∃y ψ ∈F

Here  [u/y]ψ  is the formula obtained from  ψ  by replacing each free variable in  y
with the corresponding variable in u , simultaneously.  (iii)  Let  y  be a sequence of
variables, and let  Δ,  Δ'  be types. We say that  Δ  and  Δ'  are  y-close, in symbols,
Δ =y Δ',  if  Δ  and  Δ'  have the same formulas with free variables disjoint from  y .
(iv)  A quasimodel is a set of  F–types  S  such that, for each Δ∈S  and each guarded
formula  ∃y (Qxy &ψ) ∈Δ , there is a type  Δ' ∈S  with  Qxy  and ψ(x, y) in  Δ'  and
Δ =y Δ' . We say that  φ  holds in a quasi-model if  φ∈Δ  for some  Δ  in this model.

Clearly, if  φ  is satisfied by some model, then  φ  also holds in some quasi-model.
The converse holds as well:

From Quasi-Models to Standard Models
Given a quasi-model  M  of the above kind, we can again define a standard model  N .
We say that  π  is a path if  π = < Δ1, φ1, ..., Δn, φn, Δn+1 >  where  Δ1,  Δn+1  are
types in  M , each formula  φi  is of the form  ∃y (Qxy &ψ) ∈ Δi  and  Δ i+1  is an
alternative type as described above (i.e.,  Qxy  and ψ(x, y) in  Δi+1  and  Δi+1 =y Δi ) .
We say that the variables in  y  changed their values from  Δi  to  Δi+1 , whereas the
others did not. Finally, a variable  z  is called new in a path  π  if either  |π| = 1  or  z's
value was changed at the last round in  π . Now we are ready to define our model  N .
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Objects in  N  are all pairs  (π, z)  where  π  is a path, and  z  is new in  π . Next, we
interpret predicates over these objects. We say that  I(Q)  holds of the sequence of
objects  <(πj, xj)>j∈J   iff  the paths  πj  fit into one linear sequence under inclusion,
with a maximal path  π*  such that  (i)  the atom  Q<xj>j∈J∈Δ*  (the last type on  π* )
and for no  (πj, xj)  does  xj  change its value on the further path to the end of  π* .
Finally, we also define a canonical assignment   sπ  for each path. We set  sπ (x)  =def
(π', x)  where  π'  is the unique subpath of  π*  at whose end  x  was new, while it
remained unchanged afterwards. Now, we formulate correctness of this construction
via the following assertion – where last(π)  is the last type on the path  π .

Lemma 4.6.2  For all paths  π  in  N , and all formulas  ψ ∈ F,
N, sπ  |=  ψ iff ψ ∈ last(π) .

Proof   Induction on relevant formulas  ψ . Boolean cases  are immediate, using the
standard closure conditions for  ¬  and  &  on types. Atoms: here we do an example.
(i) Suppose that  Qxyx ∈ last(π) . The objects  sπ (x) , sπ (y)  were introduced at some
maximal subsequence  π*  of  π . Note that no  x-  or  y-values changed on  π  after
their introduction. Therefore, by the above transfer of 'unaffected' formulas across
successor types in these sequences, Qxyx ∈ last(π*) . Then by the above definition,
I(Q)  holds for the objects  sπ∗ (x) , sπ∗ (y), sπ∗ (x) =  sπ (x) , sπ (y), sπ (x) . This
means that  N,  sπ |= Qxyx . (ii)  Next, suppose that  N, sπ |= Qxyx . This means that
I(Q)  holds for the objects  sπ (x) , sπ (y), sπ (x)  =  sπ∗ (x) , sπ∗ (y), sπ ∗(x) . The
picture is the same as in the previous case. By the definition again, we have that
Qxyx ∈ last(π*) . And once again by transfer of unaffected formulas,  Qxyx ∈last(π) .
[In the presence of identity, an argument like this would have to be complicated –
allowing for the same object marked by different variables on different paths.]

Finally, consider the case of bounded Existential Quantifiers  ∃y (Qxy & ψ(x, y)) .
(i) First, suppose that  ∃y (Qxy & ψ(x, y)) ∈ last(π) . Then there is an extended path
π+  =def  π  concatenated with  < ∃y (Qxy & ψ(x, y)), Δ' > , where  Δ'  is a successor
type for  Δ  chosen as above with  Qxy, ψ(x, y) ∈Δ'  (and satisfying the transfer
condition for unaffected formulas with free variables  x ). All objects  (π+, yi)  with
yi  in  y  are new here. By definition, the atomic guard predicate  I(Q)  holds for the
object tuples  sπ+ (y) , sπ+ (x) ( = sπ (x)) . By the inductive hypothesis, we must have
N,  sπ+ |= ψ(x, y) . Therefore,  N,  sπ+ |= ∃y (Qxy & ψ(x, y)) . From this we see, by
x-invariance in the standard model  N , that indeed  N,  sπ |= ∃y (Qxy & ψ(x, y)) .
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(ii) Conversely, suppose that  N,  sπ |= ∃y (Qxy & ψ(x, y)) . By the truth definition,
there exist objects  di  =  (πi, ui)  such that  N,  sπ yd |= Qxy & ψ(x, y) . (Here,  sπ yd  is
the assignment which is like  sπ  except for setting all  yi  to  di .) In particular,  I(Q)
holds of the objects  sπ (x) ,  di . This leads to a simple picture of forking paths. The
objects  sπ (x)  were all introduced by stage  π*  inside  π ,  and then the objects  di
were (either interpolated among them or) added to form a maximal sequence  π+

where the true atom  Qxy  holds at the end. The fork is such that  x-values do not
change any more from  π*  onward, whether toward  π  or  π+ . (That this is the only
relevant situation is where the atomic guard on our quantifier comes in essentially.)
Now, a minor complication. Note that the variables  ui  do not have to be the  yi . We
can be sure that they are not  xi , though, as the original objects  sπ (x) = sπ∗ (x)  were
involved in the true atom  Qxy . Also,   π+  is such that  sπ+(ui)  =  (πi, ui)  =  di .
Thus, the two assignments  sπ yd  and  sπ+  agree on  x , and for all  yi∈y  we have
sπ yd(yi) =  di  =  sπ+(ui) . Then, by  N, sπ yd |= Qxy  & ψ  and the above observations,
we have  N, sπ+ |= [u/y]Qxy ,  N , sπ+ |= [u/y]ψ . By the inductive hypothesis then,
[u/y] ψ ∈last(π+) . (Here we assume that our set of relevant formulas is closed under
simultaneous substitutions, that do not increase syntactic complexity. For a proof,
see the Remark below.) Also, from the initial description of  π+ , we see at once that
[u/y]Qxy ∈last(π+) (by the interpretation of atomic predicates). By closure conditions
(b), (c) in the definition of a type, one gets  ∃y (Qxy  & ψ(x, y)) ∈last(π+) . Finally,
since no changes in  x-values occurred on the fork from  π* , the transfer condition on
successor types along paths ensures that this same formula is in last(π) .    �

Remark   Finite Variable Fragments are closed under Simultaneous Substitutions
Our proof assumes the finite set of relevant formulas is closed under simultaneous
substitutions – without enlarging the set  V  of relevant variables. To show this,
consider any substitution  [x := f(x)] φ   in a  k-variable fragment with variables  x =
x1, ..., xk . Atomic replacements are straightforward. Also, we can push substitutions
inside over Booleans. The only interesting case is when we encounter an existential
quantifier:  [x := f(x)] ∃xj ψ . Then, the assignment clause  xj := f(xj)  has no effect,
and so it can be omitted. Hence, in the remaining substitution  σ , at least one variable
xk  is not used at all on the right-hand side in any assignment. But then, the following
formula is easily shown to be equivalent to the original one:  ∃xk [xj :=xk , σ] ψ .
This gives a simple recursive algorithm computing substitutions inside our fragment.
(With function symbols, the result fails: witness the case of  [x:= fxy] ∃y Rxy .)    �
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From the Lemma, the Theorem is immediate. Our original formula  φ  is satisfied in a
standard model iff it has a quasi-model, and it is decidable whether  φ  has the latter.
�

This proof may be extended to deal with the Guarded Fragment with equality. We
also have an alternative route to the latter result, using the earlier-mentioned mosaics,
and an excursion into generalized assignment models (cf. Andréka & Németi 1994).
What both proof methods leave open is the Finite Model Property. As a by-product,
we do obtain completeness with respect to finite modal-filtration-like abstract models,
but not for standard models. In the follow-up publication Andréka, van Benthem &
Németi 1996, we shall prove the full Finite Model Property of the Guarded Fragment,
combining modal-style filtration methods with additional combinatorial analysis.

4.7 Meta-Properties of Bounded Fragments
Other earlier modal techniques may be generalized to these fragments just as well.
We merely discuss a short list of results obtainable along the above lines. Detailed
statements and proofs may be found in Andréka, van Benthem & Németi 1994A.

Gentzenizability    Decidability    Finite Model Property    Los-Tarski    Interpolation

Fragment 1 + + + +      +
Fragment 2 + + + + +
Fragment 3 – – – + +

Here, the first negative outcome for Fragment 3 is true in a very strong sense – since
the non-finite-axiomatizability arguments of Andréka 1991 generalize to this case.
The table also suggests further issues of interest. In particular, in Section 3 above, we
formulated a desideratum to the effect that "finite-variable fragmentation works well".
Indeed, we also have proofs for complete finite axiomatizability, Craig Interpolation
and Los-Tarski for all  k–variable levels of Fragments 1 and 2. By contrast, one can
obtain negative counterparts to the above negative outcomes for all finite–variable
levels of Fragment 3 (for all k>1). All this may be proved by suitably 'relativized'
versions of earlier results. These negative findings even carry over to al finite-variable
fragments F3.k  (k >1). We illustrate this relativization method by one example.

Example Failure of Submodel Preservation in F3.3
Consider the counter-example  φ  to the Submodel Preservation Theorem from
Section 3. Its relativization  φU  to some new unary predicate  U  is in Fragment 3 .
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It is easy to see that  φU , too, is preserved under submodels. Now, suppose that it had
a universal equivalent  α  in the three-variable fragment of Fragment 3 . This cannot
happen, because we can now compare the two models constructed in the proof of
Claim 4 in Section 3.4, both having  U  as the universal predicate. There is a  3–
simulation from one to the other, which refutes the adequacy of  α  just as before.
Similar arguments work for most other meta-properties that we have considered.

4.8 A General Picture
More generally, the bounded fragments serve as a point of departure for a new
hierarchy in predicate logic, orthogonal to the finite-variable levels:

••• •••

      •

What is the natural layering here? In addition to the degrees of freedom in the above
restriction schema, one can vary the format of the restricting predicates themselves.
E.g., Temporal Logic typically involves "Betweenness":  ∃z ( Rxz & Rzy  & φ(z) ) .
Or, Dynamic Logic has modal predicate operations:  ∃z ( O (R, ...) xz  & φ (z) ) .
Some operations  O  produce formulas inside our restricted fragments (e.g., sequential
composition and choice), others lead outside of them (e.g., predicate intersection and
complement violate 'bisimulation safety': van Benthem 1993). Such more expressive
fragments, too, can be analyzed via our previous modal techniques. To conclude,
however, we list one particular simple problem where our analysis has failed so far.
The Guarded Fragment used only atomic guards – and to obtain decidability, this
requirement cannot be relaxed in general (a counter-example is to follow in Section
5.2). But the minimal logic of the temporal operators "Since" and "Until" is known to
be decidable – and yet, their natural first-order translations involve composite atomic
guards for betweenness. Thus, our decidability theorem for the Guarded Fragment
does not explain this important modal fact. Thus, we are left with a new question.
Which Boolean combinations of guards are harmless for decidability?
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5 Generalized First-Order Semantics

5.1 A Modal View of Tarski Semantics
In our discussion so far, the main impact of modal techniques on standard logic has
been the identification of first-order fragments that behave well over standard Tarski
models. But one can also turn the tables, and interpret the full language of first-order
predicate logic over generalized first-order models – where assignments (or objects)
may only be 'available' subject to certain constraints (regulated by certain accessibility
relations  R ), retaining the core of Tarski's truth definition. This proposal originates
in algebraic logic (cf. Németi 1981, 1990, 1992 on relativizations of representable
algebras of logics, with applications to the field of logic itself). It has been pursued
since with modal techniques as well (cf. Venema 1995A, Marx 1995, van Benthem
1994B). This second research program is not the subject of this paper, but it is closely
related in motivation and content. Here is a sketch of its main features and outcomes.

Modal first-order models  are triples of the form  M =  ( S, {Rx}x∈VAR,  I )  where  S
is  a set of 'states',  Rx  a binary relation between states for each variable  x , and  I  is
an 'interpretation function' giving a truth value to all atomic formulas  Px,  Rxy,  Ryx,
...  in each state  α . This abstract modal format turns out to be all that is needed to set
up the standard inductive truth definition for first-order logic:

M, α  |=  Px iff I (α, Px)
Boolean connectives as usual
M, α  |=  ∃x φ iff for some  β : Rxαβ  and  M, β |= φ .

Thus, predicate logic becomes a poly-modal logic with  ∃x  as an existential modality.
In this full generality, models may deviate considerably from the standard paradigm.
Notably, the interpretation of intuitively related atoms like  Rxy  and  Ryx  may
become completely independent. And the same holds for such related formulas as  Px
and  ∃yPx . Nevertheless, one can easily enforce such desired behaviour by additional
stipulations  (cf. Andréka, Gergely & Németi 1977, Németi 1986: section on "NA",
Németi 1992: sections 7, 12, or Németi 1994: section 8). In particular, also, one might
insist that the binary relations  Rx  be equivalence relations, as they are in standard
Tarski models. This happens in a natural 'half-way house', in between modal first-
order models and standard Tarski semantics, called generalized assigment models.
Here  S  is some family of ordinary assignments (not necessarily the full function
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space  DVAR ) , and the accessibilities  Rx  are the standard relations   =x  of identity
up to  x-values.  The truth condition for the existential quantifier then runs as follows:

M, S,  α  |=  ∃x φ iff for some  β∈S : α=xβ  and  M, β |= φ .

The possible assignment gaps in generalized assignment models have positive virtues.
They model the natural phenomenon of 'dependencies' between variables: which
occurs when changes in value for one variable  x  may induce, or be correlated with,
changes in value for another variable  y . (Examples in natural deduction and
probabilistic reasoning are in Fine 1985, van Lambalgen 1991). Dependence cannot
be modeled in standard Tarskian semantics, wich modifies values for variables
completely arbitrarily. Finally, to get an even closer approximation to the standard
first-order language, one must introduce substitutions in the models (see below).

There is a growing literature on this generalized semantics. Modal first-order models
validate a 'minimal predicate logic', which is really just the minimal poly-modal logic,
with all the positive properties studied in this paper (including decidability). On top of
that lies a landscape of further calculi, all the way up to full predicate logic: which
now becomes the particular (undecidable) mathematical theory of full function-space
assignment models. The modal logic of the above generalized assignment models is
an interesting intermediate possibility (called 'cylindric-relativized-set algebras' in the
algebraic literature), which is decidable and has positive meta-properties (Los-Tarski,
Craig Interpolation). Natural extensions arise by imposing constraints on admissible
assignments, such as 'local squareness' or the 'patchwork property' (cf. Németi 1992).
Results on completeness, correspondence and interpolation for modal first-order
logics in this sub-classical landscape, as well as representation theorems for its
abstract models, may be found in Németi 1992 and other cited papers (e.g., van
Benthem 1994B, Marx 1995.) One novel feature of this approach is the introduction
of new vocabulary, reflecting distinctions not usually found in first-order logic.
Examples are irreducibly polyadic quantifiers  ∃y  binding tuples of variables  y , or
explicit modal calculi of substitutions (cf. van Lambalgen & Simon 1994, Andréka &
Németi 1994, Németi 1994, Venema 1995A). Issues may be subtle. E.g., whether
Interpolation holds depends on the choice of vocabulary. (Madarasz 1995 shows that
in some generalized model classes, Interpolation demands introduction of a 'universal
modality' ranging over all states, accessible or not. Likewise, Andréka & Németi 1994
show that polyadic quantifiers are essential to obtain finite axiomatizability.)
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Illustration Modal Analysis of Substitutions
For each variable  x ,  modal first-order models had an accessibility relation  Rx ,
corresponding to what is called 'random assignment' in dynamic logic. Next, we can
introduce 'determinate assignment' mirroring the syntactic operation of substitution.
Here is a way of doing this. For each pair of variables  x, y , introduce a new unary
modality  Sxy  saying that, for each formula  φ  of predicate logic,  Sxyφ  is equivalent
to the formula  [y/x]φ  with all free occurrences of  x  replaced by  y  in the usual way.
That is,  Sxyφ  is equivalent with  ∃x (x=y & φ) . Modal first-order models now carry
extra accessibility relations  Ax,y  that can be subjected to constraints 'corresponding
to' substitution axioms in the modal sense (van Benthem 1984). (1)  Ax,y  is a function
(this reflects commutation of  Sxy  with the Booleans). (2)  Ax,y  is contained in  Rx
(axiom  Sxyφ → ∃xφ) .  (3)  As a function,  Ax,y Ax,y  =  Ax,y : this reflects  SxySxyφ

↔ Sxyφ . (4) Likewise,  SxySyxφ ↔ Sxyφ  reflects  Ax,y Ay,x = Ax, y . (5) Finally, the
interpretation function  I  can be restricted to satisfy atomic substitution laws like
SxyRxz ↔ Ryz . This modal logic displays all positive properties of the basic one.
For generalized assignment models, these definitions become more concrete.

5.2 Back-and-Forth Between Modal Logic and Predicate Logic
Comparing the main thrust of this paper and the program outlined in Section 5.1, two
main approaches emerge towards 'taming' classical first-order logic: i.e., localizing
what may be called a well-behaved decidable 'core part'. One can either use standard
semantics over non-standard language fragments, or use non-standard generalized
semantics over the full standard first-order language. The former approach is more
'syntactical' in nature, the latter more 'semantical'. (Eventually, as so often in logic,
this distinction is relative. For instance, one can also translate 'semantic' modal
discourse about the above modal first-order models into a restricted syntactic
fragment of a two-sorted first-order logic, with direct reference to both 'individuals'
and 'states'. But also conversely, ... etcetera.) More specifically, evident technical
analogies exist between existing proof methods for generalized semantics in the sense
of Section 5.1 and those of the present paper. We feel that there is a mathematical
duality lurking in the background here, largely unexplored – which we illustrate by
some simple observations. In particular, our earlier analysis of bounded first-order
fragments may be used to derive results about generalized assignment semantics, or
equivalently, about relativized cylindric algebras (i.e., Crs-models). These new
applications of our results provide a uniform perspective on the earlier literature.
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From Bounded Fragments to Cylindric Algebra and Generalized Models
Consider any  k–variable language  L{x1, ..., xk} . Let  R  be a new  k–ary predicate.
Here is a translation  trg  from  k–variable formulas to guarded first-order formulas:

Global Relativization
trg (φ)  arises from  φ  by relativization of all its quantifiers
to the same atom  Rx1...xk

Next, we define a corresponding operation on models. Let  M   be any generalized
assignment model for  L{x1, ..., xk} (as yet without the new predicate symbol  R ).

Restricted Standard Models

The standard model  Mrest  is  M  , viewed as a standard model,
and expanded with the following interpretation for the new predicate:
R(d1, ..., dk)  iff  the assignment  xi := di  (1≤i≤k)  is available in  M .

The purpose of this construction shows in the following fact.

Proposition  5.2.1   For all available assignments  α  in  M ,  and all formulas  φ ,
M, α  |= φ iff  Mrest, α  |=  trg (φ)

Proof  Induction on first-order formulas. The crucial case is the existential quantifier.
In particular, suppose that  Mrest, α  |=  trg (∃xi φ) = ∃xi (Rx1...xk & trg(φ)) . Then,
there exists a satisfying  k–tuple of objects in  R  for  trg(φ) , which corresponds to an
available assignment in  M  which is an  i–variant of  α . I.e.,  M, α  |=  ∃xi φ .    �

As a consequence, one can effectively reduce universal validity over all generalized
assignment models (i.e., in Crs) to standard validity in Fragment 2.

Corollary  5.2.2 |=gen'd  φ   iff   |=standard Rx1...xk → trg (φ)

Proof   'Only if'. If  φ  has a generalized counter-example  M, α, then the above model
Mrest  falsifies  Rx1...xk → trg (φ) . 'If'. Suppose, conversely, that the latter formula has
a standard counter-example  M, α . Now define a corresponding generalized model
Mg  by retaining only those assignments whose values for  x1, ..., xk  stand in the
relation  RM  (in particular,  the falsifying assignment  α  itself remains available).
Then  φ  is  falsified in  Mg  by   α  as above.             �

This result provides a new 'modal' proof for the following theorem (cf. Nemeti 1992).
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Theorem  5.2.3      Validity in Crs is decidable, and Crs has the finite model property.

Proof   This follows from the corresponding results for Fragment 2 .    �

This translation is easily extended to a predicate logic with polyadic quantifiers over
generalized assignment models (referring to assignments changed at some tuple of
arguments simultaneously). One translates a polyadic formula  ∃xi1...xim  φ   to the
guarded formula  ∃xi1...xim (Rx1...xk  & translation(φ)) , where  R  is again our new
predicate symbol. (This reduction highlights the fact that the Guarded Fragment itself
has a polyadic quantification schema, not reducible to single existential steps.) Also,
the translation works for the full first-order language at once, by a slightly modified
model construction. (One assigns a dummy to all but finitely many variables. Cf.
Andréka, van Benthem & Németi 1994.) There is still more to the above analysis.
Special classes of generalized assignment models have arisen by imposing more
specific constraints on admissible assignments. The first-order theory of such classes,
too, will be decidable, provided their additional conditions can be stated in first-order
forms translatable into the Guarded Fragment . This applies, e.g., to the 'Dα'  or 'Gα'
of Németi 1992. In particular, we get a new proof for a result from Németi 1986,
1992 (Marx 1995 has a modal proof) – where locally square models are closed under
permutations and substitutions of values in the range of any available assignment:

Theorem  5.2.4 Universal validity is decidable on the class of generalized 
assignment models which are locally square.

Proof   The reason is that the requirements for being locally square are all expressible
inside Fragment 2. Here is an example of the relevant kind of formula:

∀xy  (Rxy → (Ryx & Rxx & Ryy))    �

By contrast, we know validity is undecidable over generalized assignment models
satisfying the so-called 'Patchwork Property'. Again, this checks out. In first-order
form, the latter constraint involves statements like

∀xyzuv  ((Rxyz & Ruyv)→ (Rxyv & Ruyz))

These are not in Fragment 2: variable inclusion holds from matrix to restriction, but
the latter is not one single atom. (Thus, we cannot allow free Boolean combinations
of guards in decidability results.) This style of analysis is quite powerful, and it can be
used to predict decidability of many other combinations of algebraic axioms on top of
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Crs, as long as their complete frame properties fall inside Fragment 2. We conclude
with a natural converse question. Can one also derive the behaviour of our modal
bounded fragments from algebraic results about generalized assignment models? In
particular, is there a converse reduction  going from standard validity of formulas  ψ
in Fragment  2  to generalized validity of suitable formulas  red(ψ)  over generalized
assignment models? At least, the identical translation does not work. The following
Fragment 2 formula is valid, but it is not in Crs:

∃x (Ax & ∃y (Rxy & Ay))  →  ∃y (Ay & ∃x (Rxy & Ax))

We do have some partial converse results, that work for suitably 'uniformly
relativized' formulas in Fragment 2, and one also finds striking similarities in proofs
for meta-properties of the two calculi – but we shall leave this matter open here.

Digression on Dependency Semantics
The preceding analysis suggests an analogy between generalized assignment models
and the 'dependency models' for generalized quantifiers  Qx• φ  proposed in van
Lambalgen 1991, Alechina & van Benthem 1993. These quantifiers are read there as
stating the existence of some object 'depending' on the range of the assignment so far.
The two semantics are evidently related in spirit, but not isomorphic. Generalized
assignment semantics validates unrestricted Monotonicity for existential quantifiers
(i.e.,  ∃x φ → ∃x (φ∨ψ) ) , whereas dependency semantics does not. (It only has
Monotonicity and Distribution for suitably 'balanced' variables.)   On the other hand,
dependency semantics validates the unrestricted axiom  ∃x φ → φ  (x  not free in  φ ),
which does not hold on all generalized assignment models. We explain the situation.
Dependency semantics arises from first-order logic through a 'local translation'  trl
much like the above 'global translation'  trg , but with a delicate difference. At each
subformula  ∃xi ψ , one only relativizes to an atom  Rx  where  x  enumerates all free
variables of the local context  ψ . This difference explains all the deviant behaviour.
E.g., consider the effect of the two translations on Monotonicity. The global one
makes this principle valid in Fragment 2, whereas the local one does not, witness:

∀y  (∀x (Ax → Bxy)  →  (∃xAx → ∃xBxy))
translation  trg  
Rxy → ∀y (Rxy →  (∀x (Rxy → (Ax → Bxy))  →  (∃x (Rxy & Ax) → ∃x (Rxy & Bxy)) )

translation  trl  
∀y (Ry →  (∀x (Rxy → (Ax → Bxy))  →  (∃x (Rx & Ax) → ∃x (Rxy & Bxy)))
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Here, our general results apply. Trl , like  trg , takes first-order formulas to formulas
inside the Guarded Fragment. Thus, we derive the decidability results of Alechina
1995, and we predict decidability for stronger dependency logics having characteristic
frame conditions inside Fragment 2 (cf. Alechina & van Lambalgen 1995).

Bisimulation and Ehrenfeucht Games
Next, consider basic model equivalences in the two domains. As pointed out in van
Benthem 1991, de Rijke 1993, bisimulation stands to modal logic as Ehrenfeucht
games (or rather, 'partial isomorphism') to standard first-order logic. As before,
comparisons in the present setting are promising, though not yet conclusive. A modal
bisimulation  ≡  between generalized assignment models which relates assignments
α, β  only if they have the same domain, induces an obvious relation  PI  between
(those tuples of objects that form) the ranges of  α  and  β . PI  is a family of partial
isomorphisms. It satisfies the usual back-and-forth extension conditions for 'partial
isomorphism' iff our generalized first-order model satisfies an Update Postulate: 'For
any object, each assignment has an extension assigning that object to some fresh
variable'. Then, the bisimulation clause for the latter variable will do the job.
Conversely, any partial isomorphism  PI  between two models induces a modal
bisimulation  ≡  between partial assignments over them by checking whether their
ranges are a matching pair of object tuples in  PI. But the more interesting comparison
may lie in the differences. Generalized assignment models suggest a change in the
standard model-theoretic notion of partial isomorphism, using a finer-grained match
between partial assignments (rather than flat sequences of objects) in the two models.

We conclude that the mathematical analogies uncovered so far between non-standard
generalized assignment models in Cylindric Algebra and standard possible worlds
semantics for generalized modal logics have already proved of evident benefit.

6 Further Directions

At various places so far, we noted open research questions. These concerned both
technical elaboration within our framework (details of Los-Tarski theorems in Section
3, meta-properties of further first-order fragments: cf. Section 4) and extensions to a
broader environment (e.g., mathematical connections with generalized assignment or
dependency semantics: cf. Section 5). We briefly mention some further directions.
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6.1 Special Frame Constraints
Perhaps the first question that will occur to modal logicians is this. Basic modal logic
is usually enriched with special frame conditions, as with S4, S5 or other calculi,
imposing reflexivity, symmetry, transitivity or other natural frame conditions. From
this viewpoint, we have been concerned merely with 'minimal modal logics' of our
frame classes.  (Of course, we hope to have shown how attractive minimal logics are,
when viewed as bounded fragments  ...) Note, e.g., that the generalized assignment
semantics of section 5 employs S5-like frame conditions. How are our results affected
by imposing special frame constraints? Little is known. The results of Alechina 1995
suggest that permutation of arguments in guards is unproblematic for decidability.
Also, we observed that those frame constraints which can be expressed as guarded
formulas do not endanger decidability. Examples are reflexivity and symmetry. But
already transitivity is not F2–definable, and hence we lack an explanation so far for
its unproblematic behaviour in the frame theory of basic modal logic.

6.2 Infinitary Extensions
'Restriction' works just as well in fragments of higher-order  languages, such as  Lω1ω

or L∞ω  or second-order logic. We can transfer our 'modal hierarchy' up to here:

higher-order

Guarded

Fragment

first-order

Possible analogies to be explored lie in second-order logic (cf. Gallin 1975 on the
good behaviour of restricted 'extensional fragments') or admissible set theory (cf.
Barwise 1975). Possibly significant here is the simple folklore characterization of
bisimulation between models via their elementary equivalence in the L∞ω–version of
modal logic with arbitrary set conjunctions and disjunctions (van Benthem and
Bergstra 1993). (De Rijke 1993 present more sophisticated results, e.g., inside Lω1ω .
Cf. also van Benthem 1993, Barwise & Moss 1995 exploring infinitary modal logic.)
Can we also generalize other results from the above, such as the Los-Tarski Theorem?

Johan van Benthem


Johan van Benthem


Johan van Benthem


Johan van Benthem


Johan van Benthem
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6.3 Extended Modal Logics
We have ignored enriched modal operator formalisms in the style of Gargov, Passy &
Tinchev 1987, de Rijke 1993, which allow both modest additions (e.g., a 'difference
modality') and strong extensions in expressive power (such as the temporal logics of
"Since" and "Until"). It would be of interest to extend our analysis in this direction
(Section 4.7). This would fit in with the move towards richer vocabularies in
generalized assignment semantics, including the polyadic quantifiers and substitutions
of Section 5. Thus, a concern with fragments by no means implies logical poverty.

6.4 Alternative Semantics
Further options in modelling first-order predicate logic may be relevant. E.g., starting
from a computational motivation in 'dynamic semantics', Hollenberg & Vermeulen
1994 propose a stack-based account of first-order logic which makes the latter's two-
variable fragment as powerful as the whole language. (Thus, two variables over finite
sequences are as good as arbitrary finite numbers of variables over single objects.) It
remains to be seen how our considerations fare in such a semantics. Other first-order
translations reflect yet different semantics (cf. the 'path formulas' of Ohlbach 1991).
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