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Abstract

Judgment Aggregation studies how agents take a collective decision on a certain number
of issues based on their individual opinions. In recent years, a line of research in Judgment
Aggregation investigates how to model this framework within a logical calculus — usually
designed ad hoc for this purpose. By contrast, in this thesis we show how it is possible
to translate any aggregation problem formulated in Binary Aggregation with Integrity
Constraints (a model for Judgment Aggregation) into Dynamic Logic of Propositional
Assignments (an instance of Propositional Dynamic Logic). In the first part of our
work, we show how to appropriately express many well-known aggregation procedures as
programs. Then, we translate some desirable properties of aggregation rules, i.e. axioms,
as formulas of the logic. Finally, we connect the work carried out in the previous parts to
model results about a problem known as the safety of the agenda. The positive outcome
of our approach thus suggests this to be a promising path for future investigation, both
as a means to formally express other areas of Judgment Aggregation, and as opening the
way towards the use of automated reasoning techniques in this field.
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Introduction

Opening and Related Work

Groups of agents often need to take a collective decision over some issues, based on their
individual opinions. This phenomenon can be encountered in real life at many levels:
from a group of friends deciding on how to spend a weekend together, to the citizens of a
country asked to vote in a referendum.

There are multiple ways according to which agents might aggregate their opinions.
For instance, they may want to collectively accept an issue if and only if a majority of
agents wants it. They might as well choose a leader among them and then take the
collective decision on the issues according to what she wants. As can be easily seen,
different procedures possess different properties. Some of them give to each issue the
same importance, others treat the opinion of each agent equally, and so on.

Social Choice Theory studies both aggregation procedures and their properties, using
different frameworks depending on how the agents express their opinions [Brandt et al.,
2013; Endriss, 2011]. In case the agents are asked to provide a preference order over some
alternatives, the usual model is the one of Preference Aggregation (PA). On the other
hand, when agents merely have to either accept or reject issues, the formal model is the
one of Judgment Aggregation (JA). In the rest of this work we will focus our attention
on the latter scenario.

More precisely, we will work in the formulation of JA known in the literature as
Binary Aggregation with Integrity Constraints (BA) [Grandi and Endriss, 2011; Grandi,
2012]. Here, the opinions of the agents are modeled as vectors, with a zero for the issues
that an agent rejects and a one for the issues that the agent accepts. The integrity
constraint is a propositional formula modelling the relationship existing among the issues,
or the absence thereof. An alternative formulation, known as formula-based JA [List and
Pettit, 2002], makes use of individual sets of propositional formulas instead of vectors.
Agents then have to consistently include in their sets either a formula or its negation,
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or the non-negated subformula if the main connective was a negation (for surveys see
[Endriss, 2016; List, 2012]).

Despite these differences, it is possible to move between the two formulations via a
suitable translation [Grandi and Endriss, 2011]. Depending on how aggregation problems
are modeled (or translated), choosing BA over formula-based JA might bring some
advantages. For instance, if complementary formulas are modeled as a single issue the
aggregation procedure never leaves an issue undecided.

An important observation is that both BA and formula-based JA use logic just as a
tool to model logical connections among issues. That is, while they both borrow some
concepts and techniques from logic, neither of them expresses JA within a proper logical
calculus. In recent years, some studies have been carried out to fill this gap — which can
be done by following two approaches. The first is by designing a new logic tailored to
JA, while the second is by translating the framework inside an already existing logic.

The main representative of the first approach is the modal logic Judgment Aggregation
Logic (JAL), whose language is parametrised by a set of agents and a set of issues [Ågotnes
et al., 2011]. In JAL there are three types of atomic propositions: one referring to the
agents, one referring to the formulas on which the decision is taken and the last referring
to the outcome of an aggregation rule. In addition to conjunction ∧ and negation ¬, there
are two modal operators � and � to build complex formulas. In particular, �ϕ is true
whenever ϕ holds in every profile (i.e., the collection of the individual decisions of all the
agents on the issues) and �ϕ is true whenever ϕ holds for every issue. Axiomatisations
in both Hilbert-style [Ågotnes et al., 2011] and Natural Deduction [Perkov, 2016] have
been provided.

Similarly, the logic for Social Choice Functions has been devised for dealing with the
PA framework [Troquard et al., 2011]. The modal language here is parametrised by a
set of agents and possible outcomes, and by considering both the agent’s truthful and
reported preferences it is possible to model strategic reasoning. A fragment of this logic
has been used to derive a syntactic proof of Arrow’s Theorem [Ciná and Endriss, 2015],
a central result in Social Choice Theory.

In the present thesis, we will follow the second approach: namely, we will translate
JA procedures and properties into Dynamic Logic of Propositional Assignments (DL-PA)
[van Eijck, 2000; Balbiani et al., 2013], an instance of Propositional Dynamic Logic (PDL)
[Pratt, 1976; Fischer and Ladner, 1979] where atomic programs consist of assignments of
truth values to propositional variables. We list below some of the advantages of choosing
this approach.
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In the first place, DL-PA has been proven to be a fruiful framework to express both
belief change operations [Herzig, 2014] and abstract argumentation problems [Doutre
et al., 2014]. Being able to express a framework in an already established logic means
that general results about that logic are already in place, and when many framworks can
be expressed in the same logic it is possible to compare them and notice some similarities.

Moreover, it is quite natural to see vectors of zeroes and ones as assignments of
truth values to propositional variables, and aggregation procedures taking the individual
opinions of the agents to return a collective decision as the inputs and outputs of programs.
This makes the choice of DL-PA a promising path to pursue for our investigation.

Finally, and perhaps more interestingly, formulas of DL-PA can be reduced to propo-
sitional logic. This means that there is a procedure to translate every modal expression
of the logic as a propositional formula [van Eijck, 2000; Balbiani et al., 2013]. Given
this translation, showing that the JA framework is expressible in DL-PA implies the
possibility in the future of using SAT-solvers to guide research in JA.

Thesis Overview

The following is an overview of the structure of the thesis with a brief synopsis of the
content of its chapters.

Chapter 1: Preliminaries. We introduce the basic tools and definitions for our
study. We begin by presenting the formal framework of Binary Aggregation with Integrity
Constraints as well as the syntax and semantics of Dynamic Logic of Propositional
Assignments. At the end of the chapter we show how to appropriately translate any
instance of a BA problem into DL-PA.

Chapter 2: Aggregation Rules in DL-PA. We cover here the topic of aggregation
procedures. We analyse many different types of rules that have been studied in the JA
literature, and we show how to translate them as DL-PA programs. We give a proof of
the correctness of our translation for a relevant selection of these rules and we comment
on the properties of our translations.

Chapter 3: Axioms in DL-PA. We focus on axioms of JA — i.e., desirable
properties of aggregation rules. We distinguish between two types of axioms: the ones
satisfied whenever a certain relationship exists between some given input and the outcome
of a rule for that input, and the ones satisfied whenever two outcomes of a rule for
different inputs relate in a certain way. We translate these axioms as DL-PA formulas
and we again provide a proof of the correctness of our translation.
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Chapter 4: Agenda Safety in DL-PA. We deal with the problem of the safety of
the agenda: namely, we investigate how an integrity constraint relates to the axioms.
More precisely, we check in which cases the outcome of a rule is guaranteed to be
consistent with a given constraint depending on the structure of the constraint itself.

Conclusion. We summarise and review the results of our work. Moreover, we
provide some interesting directions for future research.



Chapter 1

Preliminaries

In this chapter we formally introduce the definitions and concepts of both Binary
Aggregation with Integrity Constraints and Dynamic Logic of Propositional Assignments.
Notice, however, that Binary Aggregation is not the only framework in which it is
possible to model Judgment Aggregation. For instance, aggregation problems can also be
expressed in the so-called formula-based JA [List, 2012] and in various other frameworks
combining the presence of propositional formulas and of constraints [Lang and Slavkovik,
2014; Endriss et al., 2016].

Though the same problems can be expressed in one framework or another, Binary
Aggregation with Integrity Constraints seems to be the most suitable for our study. In
fact, we can model the issues as propositional variables and the logical structure among
them can be all placed on the integrity constraint, which we express as a propositional
formula. This in turn makes it easier to check whether the outcome of a rule is rational
or not (i.e., whether the constraint is satisfied).

Therefore, problems in BA will be translated into Dynamic Logic of Propositional
Assignments [van Eijck, 2000; Balbiani et al., 2013]. This logic has already been used
to model many multi-agent scenarios. In fact, in addition to embedding belief change
operations [Herzig, 2014] and abstract argumentation frameworks [Doutre et al., 2014],
DL-PA has been used to model interactions of agents in normative systems [Herzig et al.,
2011] as well as social simulations [Gaudou et al., 2011].

The remainder of this chapter is organised as follows. We explain the formal framework
of Binary Aggregation with Integrity Constraints in Section 1.1. Then, in Section 1.2 we
present the logic of propositional assignments DL-PA. Section 1.3 bridges the first two
parts by providing a way to translate BA problems into DL-PA. We conclude in Section
1.4 with a summary of the Chapter.
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1.1 Binary Aggregation with Integrity Constraints

Binary Aggregation is a general model for groups of agents wanting to reach a collective
decision based on their individual opinions [Grandi and Endriss, 2011]. The agents usually
are not allowed to abstain, and they have to either accept or reject the issues as they are.
We first introduce the standard notation of BA, defining the concepts involved in the
analysis of our problem: from agents and issues, to the idea of aggregating the views of
the first on the second. Then, in order to measure the agreement (or disagreement) of
the agents on the issues at different levels, we adapt to the setting of BA the well-known
Hamming distance metric.

Basic Notation

Let I = {1, . . . ,m} be a finite non-empty set of issues, on which the agents in the finite
non-empty set N = {1, . . . , n} express an opinion. We assume the number of agents
|N | = n to be always odd. Though this might appear as a strong restriction, we will see
that it is just a technical assumption to simplify the discussion on some rules.

For each issue j ∈ I we define Dj = {0, 1} as the set of possible opinions an agent
can have on j, where “1” denotes acceptance and “0” denotes rejection. Hence, we
have that D = D1 × · · · × Dm = {0, 1}m is a boolean domain for the issues. Given a
set of propositional symbols PS = {p1, . . . , pm}, one for each issue, we let LP S be the
corresponding propositional language.

The integrity constraint is a formula IC ∈ LP S expressing the existence of a certain
logical relation among the issues. In the special case where the issues are all independent
from one another, we let IC = ⊤. Given an integrity constraint IC, only some choices of
zeroes and ones for the propositional variables in PS make the constraint true. We refer
to the set of all such assignments as the set Mod(IC) of models satisfying IC.

We call any assignment B = (b1, . . . , bm) ∈ D, regardless of whether it satisfies
the integrity constraint or not, a ballot. In particular, for i ∈ N we denote by Bi the
individual ballot of agent i. We assume our agents to be rational: this means that, given
an IC, we require that Bi ∈ Mod(IC) for all i ∈ N . We then collect all the individual
ballots of the agents in the profile B = (B1, . . . , Bn), where bij indicates the j-th element
of ballot Bi in B.

For any profile and any issue j there are thus two disjoint subsets of N : one for
the agents who accept j and one for the agents who reject j. More formally, we have
NB

j:v = {i ∈ N | bij = v} for v ∈ {0, 1}, where if v = 1 we speak of the coalition of
supporters of issue j in B.
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Example 1. Consider the set of issues I = {1, 2} for agents N = {1, 2, 3}. Suppose
that issue 1 is “Going to the cinema at 8 p.m.” and issue 2 is “Spend the evening at
home”. The domain of aggregation is D = {0, 1}2 and the propositional symbols we can
use are PS = {p1, p2}. Given our issues, a suitable constraint could be IC = ¬(p1 ∧ p2).
Suppose now that the first agent wants to go to the cinema, the second agent wants to
spend the evening outside but not at the cinema, and the third agent prefers to stay at
home. The following is a profile B representing the described situation:

p1 p2

Agent 1 1 0
Agent 2 0 0
Agent 3 0 1

The set of models of the constraint is Mod(IC) = {(1, 0), (0, 1), (0, 0)} and the individual
ballots of the agents are B1 = (1, 0), B2 = (0, 0) and B3 = (0, 1). Therefore, all the
agents are rational because their individual ballots are models of the constraint. The
ballot B = (1, 1) is not a model of IC and thus no agent can have it as her individual
ballot. The coalition of supporters of issue 1 and issue 2 are NB

1:1 = {1} and NB
2:1 = {3}

respectively.

Now we shall turn to the problem of aggregating the opinions of the individuals into a
collective decision. We define an aggregation procedure, or aggregation rule, or aggregator,
as a function F mapping a rational profile to a non-empty set of ballots. Namely, we
have that F : Mod(IC)n → P(D) \ {∅}, where P(D) is the powerset of D (i.e., the set of
all subsets of D). An aggregation rule is called resolute if for every profile B the outcome
is a singleton, while we call it irresolute if for some profiles it returns tied outcomes. The
outcome of a resolute aggregation rule for issue j ∈ I is denoted by F (B)j.

Example 1 (Continued). Let the profile B be as the one explained before, and consider
the case where the agents collectively accept an issue if and only if a majority of them
wants it. By denoting this majoritarian rule as F = Maj we get the following result:

p1 p2

Agent 1 1 0
Agent 2 0 0
Agent 3 0 1

Maj(B) 0 0
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The (unique) outcome of the rule on this profile is thus Maj(B) = {(0, 0)}. In particular,
the outcome for the two issues is Maj(B)1 = 0 and Maj(B)2 = 0 respectively. In this
case the outcome is also rational because it satisfies the integrity constraint.

Notice that in our definition of F we require the input to be rational, while the output
can be any set of ballots B. This is, of course, just one possible choice of definition: we
might want as well to define an aggregation procedure by imposing rationality conditions
on the input, on the output, or on neither.

Measuring (Dis)Agreement

We now introduce a useful tool to measure the agreement (or disagreement) on the issues
among the agents, or among the agents and a possible outcome, or among two profiles.
The Hamming distance is a metric that counts on how many positions two (binary)
strings differ. For instance, the Hamming distance between s1 = 10101 and s2 = 00110 is
3, since s1 and s2 differ on the first, the fourth and the fifth position.

First of all, we define the Hamming distance between two ballots B and B∗ as the
number of issues on which they report different opinions. More precisely, we have that:

H(B,B∗) := |{j ∈ I | bj ̸= b∗
j}|.

In the same way, we measure how distant a single ballot B is from a profile B by
adding up the Hamming distances between B and all the ballots in B. Namely, we write:

H(B,B) :=
∑
i∈N

H(B,Bi).

Lastly, to inspect the distance between two profiles B and B∗ we count the sum of
the Hamming distances between all the individual ballots in B and the corresponding
individual ballots in B∗. Therefore, we have:

H(B,B∗) :=
∑
i∈N

H(Bi, B
∗
i )

Example 1 (Continued). Consider the individual ballots of agent 1 and agent 2 of our
example. We can see that H(B1, B2) = 1 because the two ballots differ only on issue 1.
Moreover, we have that H(B1,B) = 0 + 1 + 2 = 3 because the Hamming distance between
any ballot and itself is always 0, and B1 differs from B2 and B3 on issue 1 and both
issues, respectively. Lastly, compare B with the following profile B∗:
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B p1 p2

Agent 1 1 0
Agent 2 0 0
Agent 3 0 1

B∗ p1 p2

Agent 1 0 0
Agent 2 1 0
Agent 3 0 0

The Hamming distance between B and B∗ is H(B,B∗) = 1 + 1 + 1 = 3 because the
individual ballot of each agent in B differs from that of the corresponding agent in B∗

on exactly one issue.

1.2 Dynamic Logic of Propositional Assignments

Propositional Dynamic Logic, abbreviated as PDL, is a modal logic designed to reason
about the behaviour of programs in computer science [Pratt, 1976; Fischer and Ladner,
1979; Troquard and Balbiani, 2015]. These programs can be atomic or complex, and each
one of them has its own modal operator (diamond or box). Thanks to these modalities,
concepts such as “after some execution of program π, a state where formula ϕ holds
is reached” or “after every execution of program π′, a state where formula ψ holds is
reached” can be expressed in the logic.

Since in PDL the atomic programs are left abstract, by specifying their actual
behaviour we can obtain different logics. In particular, in Dynamic Logic of Propositional
Assignments (DL-PA) atomic programs assign truth value true or false to propositional
variables. We now introduce the syntax and semantics of the logic, as well as some useful
abbreviations.

Syntax and Semantics

Given a countable set of propositional variables P = {p, q, . . . }, the language of DL-PA is
defined by the following grammar in Backus–Naur form [Balbiani et al., 2013]:

ϕ ::= p | ⊤ | ⊥ | ¬ϕ | ϕ ∨ ϕ | ⟨π⟩ϕ
π ::= +p | −p | π ; π | π ∪ π | π∗ | ϕ?

where p ranges over P.
In DL-PA we have thus two types of expressions: formulas and programs. Atomic

formulas consist of propositional variables, while complex formulas are built from atomic
ones using negation ¬, disjunction ∨, and a diamond modality for each program ⟨π⟩.
The other Boolean connectives, such as conjunction ∧, implication →, biconditional ↔,
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and exclusive disjunction ⊕ are defined in the usual way. Additionally, the dual operator
[π]ϕ abbreviates ¬⟨π⟩¬ϕ.

The two atomic programs, +p and −p, assign truth value true or false to the
propositional variable p respectively. For the complex programs, sequential composition
π ; π′ executes first π and then π′. Nondeterministic union of two programs π ∪ π′

nondeterministically chooses to execute either π or π′. Unbounded iteration π∗, also
called the Kleene star, executes the program π some nondeterministically chosen k ∈ N0

number of times. Lastly, the test ϕ? checks whether formula ϕ holds and it fails if this is
not the case.

A valuation v is a subset of P that specifies the truth value of every propositional
variable in P. Therefore the set of all valuations is V = P(P) = {v1, v2, . . . }. When
some propositional variable p belongs to valuation v, we say that p is true in v (and we
say that p is false in v when p ̸∈ v). DL-PA programs are interpreted through a unique
relation between valuations, as illustrated in Table 1.1.

Notice that it is possible to construct a Kripke model MDL-PA = (W,R, V ) for PDL
[Balbiani et al., 2013]. We let the nonempty set of states W to be equal to P(P),
the set of atomic programs Π0 contains {+p | p ∈ P} ∪ {−p | p ∈ P}, the relation
R : Π0 → P(W ×W ) associates every atomic program π0 of the form +p or −p with
(v1, v2) if and only if (v1, v2) ∈∥π0 ∥, and the valuation V : W → P(P) is the identity
function.

∥p∥ = {v ∈ V | p ∈ v}
∥⊤∥ = P(P)
∥⊥∥ = ∅
∥¬ϕ∥ = P(P)\ ∥ϕ∥

∥ϕ ∨ ψ∥ = ∥ϕ∥ ∪ ∥ψ∥
∥⟨π⟩ϕ∥ = {v ∈ V | there is v1 s.t. (v, v1) ∈∥π∥ and v1 ∈∥ϕ∥}
∥+p∥ = {(v1, v2) | v2 = v1 ∪ {p}}
∥−p∥ = {(v1, v2) | v2 = v1 \ {p}}
∥π ; π′ ∥ = ∥π′ ∥ ◦ ∥π∥
∥π ∪ π′ ∥ = ∥π∥ ∪ ∥π′ ∥
∥π∗ ∥ = ⋃

k∈N0(∥π∥)k

∥ϕ?∥ = {(v, v) | v ∈∥ϕ∥}

Table 1.1 Interpretation of DL-PA connectives and programs
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Abbreviations

Some abbreviations and expressions have been introduced in the literature [Balbiani
et al., 2013; Blackburn et al., 2001; Herzig, 2014] to refer to complex programs which
are often used as “building blocks” for other programs. Their use makes programs in
general easier to understand to the reader familiar with programming languages. As a
notational convention, we will use (initial) capital letters for formulas, and lowercase
letters for programs and counters: namely, we will have Formulas, programs and counters
(introduced below).

The program skip expresses ⊤?, with the meaning that nothing happens (since ⊤
is always true). The expression if ϕ then π1 else π2 abbreviates the program (ϕ? ; π1) ∪
(¬ϕ? ; π2). Namely, if the formula ϕ holds, we execute the program π1, and if it does not
hold we execute the program π2. The loop while ϕ do π stands for (ϕ? ; π)∗ ;¬ϕ?, where
the last test for ¬ϕ exits the loop, in the sense that π has been exectued exactly up until
ϕ was true.

We can recursively define two complex programs, to express that π is exectued exactly
n times (n-th iteration of π) and that π is executed at most n times (iteration up to n of
π), in the following way:

πn :=

 skip if n = 0
π ; πn−1 if n > 0

π≤n :=

 skip if n = 0
(skip ∪ π) ;π≤n−1 if n > 0

Whenever we want to assign to some propositional variable p the truth value of some
(other) propositional variable q, we can use the abbreviation p← q for if q then +p else −p.
Notice that this program can be used also to flip the truth value of some propositional
variable p, by writing p← ¬p.

We now introduce a program that executes π in case ϕ holds, but it does nothing
in case ϕ does not hold. This is a slight modification of the test program, to avoid the
failure of a complex program which makes use of a test in case the ϕ tested does not
hold:

if ϕ do π := if ϕ then π else skip.

We can write any number s ∈ N0 in DL-PA via its binary expression thanks to a
conjunction of t = ⌊log s⌋+ 1 propositional variables [Balbiani et al., 2013]. If x is the
binary expression of some number s, we thus use a conjunction of qi and ¬qi propositional
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variables, with i ∈ {0, . . . , ⌊log s⌋}, such that a non-negated variable means that the
corresponding binary digit in x is a 1, while a negated variable indicates a 0.

Example 2. Suppose we want to express the number s = 11 in DL-PA. We have that
⌊log 11⌋ + 1 = 3 + 1 = 4, which means that we need 4 bits to express the number 11
in binary form. This is indeed the case, as the binary expression of 11 is x = 1011.
Therefore, we need exactly 4 propositional variables to express this number in DL-PA and
the corresponding formula is thus 11 := q3 ∧ ¬q2 ∧ q1 ∧ q0.

It is possible to define a DL-PA program that increments the value of some given
counter each time it is executed [Balbiani et al., 2013]. Here, we make it explicit in the
abbreviation which one is the counter whose value has to be incremented, since we may
want to handle (finitely) many counters at the same time. Let xt := {qx

i | 0 ≤ i < t} be
a set of n propositional variables on which the program incr(xt) operates as follows:

incr(xt) := ¬
( ∧

0≤i≤t−1
qx

i

)
? ;

⋃
0≤k≤t−1

(
(¬qx

k ∧
∧

0≤i≤k−1
qx

i )? ; +qx
k ; ;

0≤i≤k−1
−qx

i

)
.

The program first checks whether some propositional variable in xt is false — which
means that the corresponding binary digit is a 0. Then, it finds the rightmost 0 and it
turns it into a 1. Afterwards, it turns all the 1s following it into 0s. In case the first test
fails, causing the whole program to fail, it means that all the t propositional variables in
xt are true, and therefore we already reached the maximal value s = 2t− 1 of the counter.

Analogously, we can define a DL-PA program which decrements a given counter in
the following way:

decr(xt) := (
∨

0≤i≤t−1
qx

i )? ;
⋃

0≤k≤t−1

(
(qx

k ∧
∧

0≤i≤k−1
¬qx

i )? ;−qx
k ; ;

0≤i≤k−1
+qx

i

)
.

The program works symmetrically to incr(xt). Namely, it first checks whether some
digit is a 1; then it finds the rightmost 1, turns that 1 into a 0 and all the following 0s
into 1s. In case the first test fails, it means that we have a string of zeroes, and thus it is
not possible to decrement the counter anymore.

Finally, the following DL-PA program assigns value 0 to some given counter:

zero(xt) := ;
0≤i<t

−qx
i .

The program assigns truth value false to all the propositional variables qx
i in xt. Hence,

all the digits in the corresponding binary number are turned into zeroes.
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1.3 Translation from BA to DL-PA
In this section we analyse how to translate aggregation problems into DL-PA. Recall that
an aggregation procedure F is a function mapping a rational profile B, consisting of the
individual ballots of n agents expressing an opinion on m issues, to a set of ballots of the
form B ∈ {0, 1}m. There might be multiple tied ballots as the outcome of an aggregation
rule in case it is irresolute.

As a first step, we introduce the set B := {pij | i, j ∈ N} as the subset of P whose
propositional variables encode the opinion of any agent i on any issue j. Analogously, we
let the set O := {pj | j ∈ N} be the subset of P whose propositional variables refer to
the possible output for any issue j. From these two infinite sets, we can then define two
finite subsets for a specific set of n agents N and a set of m issues I.

Namely, let the finite subset Bn,m := {pij | i ∈ N and j ∈ I} of B be the set of
propositional variables referring to the decision of the agents in N on the issues in I.
Likewise, let the finite subset Om := {pj | j ∈ I} of O be the set of propositional
variables referring to the collective decision on the issues in I. Now that we have a
way to refer both to the possible input and to the possible output, we can provide a
translation for profiles and aggregation rules.

A given profile B = (B1, . . . , Bn) on issues I = {1, . . . ,m} corresponds to a (finite)
valuation vB, such that the following holds:

(i) vB ⊆ Bn,m,

(ii) pij ∈ vB ⇐⇒ bij = 1.

The first condition tells us that only propositional variables corresponding to the decision
of the agents on the issues could possibly be true in vB. The truth value of the
propositional variables in P \ Bn,m is thus set to false. The second condition tells us that
a certain propositional variable in vB is true if and only if the corresponding entry in
profile B has value 1.

Example 3. Let I = {1, 2} and N = {1, 2, 3}. The opinions of the agents are ex-
pressed in profile B = ((0, 1), (0, 0), (1, 1)). The set of propositional variables B3,2 =
{p11, p12, p21, p22, p31, p32} corresponds to the entries in the profile B and the set of propo-
sitional variables O2 = {p1, p2} is used to deal with the outcome of aggregation rules.
Valuation vB = {p12, p31, p32} ⊆ B3,2 thus encodes profile B in DL-PA.

We define another subset of P to handle counters, whose values can be incremented or
decremented thanks to incr and decr programs respectively. Let the set U := {qi | i ∈ N}
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be the subset of P whose propositional variables are used to express (a finite number of)
counters for our programs. Notice that for how we defined vB, both the propositional
variables in Om and the propositional variables in U will be false by default, which means
that all counters are set to zero.

An aggregation function F corresponds to a program f in DL-PA. We write f(Bn,m)
to indicate that program f inspects the propositional variables of some profile, but it
(possibly) modifies the truth value of the propositional variables in Om and U. We now
distinguish two cases for resolute and irresolute aggregation rules F .

If F is a resolute aggregation rule, we let v′ be the valuation reached after the
execution of program f on a given valuation vB. For any profile B, in case program
f on valuation vB is indeed computing the aggregation rule F on B, where vB is the
translation of profile B in DL-PA, we will have that:

pj ∈ v′ ⇐⇒ F (B)j = 1

for pj ∈ Om.

If F is an irresolute aggregation rule, we define the set of valuations V f
vB

= {v′ |
(vB, v

′) ∈∥ f(Bn,m) ∥}. For any profile B, in case program f on valuation vB is indeed
computing the aggregation rule F on B, where vB is the translation of profile B in DL-PA,
there must be a bijection g : F (B)→ V f

vB
such that if g(B) = v′, where B ∈ F (B) and

v′ ∈ V f
vB

, then:
pj ∈ v′ ⇐⇒ bj = 1

for pj ∈ Om.

Another part to be taken care of is how to express an integrity constraint IC. We
let it be a propositional formula IC whose variables are a subset of Om. The constraint
is expressed with the propositional variables for the outcome to make it easier to check
whether the execution of a program f yields a result consistent with IC.

In order to inspect whether our profile is rational, we need to check whether the
individual ballot of every agent in the profile satisfies IC. Namely, whether by copying
into the propositional variables for the outcome the truth values of the propositional
variables for the ballot of each agent, IC is true. The following formula is true if and
only if the profile is rational: by prefixing its test to any program f corresponding to the
translation of some aggregation rule F , we can inspect the rationality of a given profile.

RationalIC(Bn,m) :=
∧

i∈N
[ ;
j∈I

pj ← pij]IC.
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Finally, consider the case where we start from some valuation vB obtained as described
above and after the execution of program f for aggregation rule F we get to valuation v′.
As we will see, we might wonder whether some property holds after executing f again on
a different (encoding of a) profile. Thus, we would need to create the “initial conditions”
for a valuation that possibly corresponds to some profile B in order to safely execute f
again.

The first program below sets to false all the propositional variables for the outcome
in Om. The second program combines a check for rationality with the initialisation of
the propositional variables for the outcome at zero.

init(Om) := ;
j∈I
−pj.

profIC(Bn,m,Om) := init(Om) ; RationalIC(Bn,m)?.

When we introduced the conditions for checking whether some valuation vB corresponds
to profile B, we required vB to be a subset of Bn,m. After the execution of program
profIC(Bn,m,Om), on the other hand, we just know that all the propositional variables
used for expressing the outcome are set to false. While the two conditions differ, we will
see that all programs encoding aggregation rules will inspect the propositional variables in
Bn,m and will (possibly) change only the propositonal variables in Om. The counters used
in programs will always be initialised at zero as the first step. Therefore, the valuation v
reached after the execution of profIC(Bn,m,Om) will be considered as encoding a rational
profile B for IC as well.

We now stress an important remark to conclude the section. Since aggregation rules
in BA are defined on a specific number of issues, a specific number of agents and a certain
constraint IC, the programs that we will provide as their DL-PA translation are to be
intended as general “schemas” for programs. Namely, in order to spell out completely the
programs, a set of issues I, a set of agents N and a constraint IC need to be provided.

1.4 Summary

In this chapter we introduced the preliminary definitions for both Binary Aggregation
with Integrity Constraints and Dynamic Logic of Propositional Assignments. The chapter
consisted of three parts.

In the first place, we laid out the framework of Binary Aggregation with Integrity
Constraints, which is used to model groups of agents having to take a collective decision
over some issues. We explained the basic concepts with the aid of some examples and
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we described how to use the Hamming Distance metric to measure disagreement among
agents.

In the second part, we presented the syntax and semantics of Dynamic Logic of
Propositional Assignments. We listed and explained some common abbreviations and
useful programs for this modal logic. We will be using them to define more complex
expressions in the coming chapters.

Finally, we provided our first contribution by connecting these two frameworks
through a translation of all the concepts of Binary Aggregation into DL-PA. In particular,
we discussed how aggregation rules can be expressed in DL-PA. We will continue this
discussion in the next chapter, by providing actual translations of specific aggregation
rules as DL-PA programs.



Chapter 2

Aggregation Rules in DL-PA

We present here some known aggregation rules and we translate them as DL-PA programs.
For every aggregation procedure there are multiple ways in which we could express it,
and in some cases we will give more than one alternative translation of the same rule. In
general, as it is always possible to devise different computer programs performing the
same task, it is also possible to express each aggregation rule in more than one way.

After having introduced and translated as a DL-PA program each rule, we will state a
proposition ensuring that our translation is correct. We will prove only a selection of
these propositions, namely one for a resolute and one for an irresolute aggregator, since
their proofs are straightforward once the underlying idea is understood. The interest
thus does not lie in each one of these propositions taken individually, but on a more
general level in the fact that we show it possible to express JA procedures in DL-PA.

Once a translation is in place, we can also model the winner determination problem
for aggregation rules [Endriss et al., 2012; Lang and Slavkovik, 2014]: namely, computing
the outcome of a rule for a given profile. This problem differs in case we are considering
resolute or irresolute aggregators (and for irresolute aggregators there are multiple
formulations as well). For a resolute rule F we are usually interested in asking whether a
certain issue j is accepted in the outcome for profile B: namely, whether vB |= [f(Bn,m)]pj

is the case. For an irresolute rule F , on the other hand, we could ask whether there is a
possible outcome where j is accepted for profile B: that is, whether vB |= ⟨f(Bn,m)⟩pj.

We introduce in Section 2.1 some basic DL-PA expressions, while the second part of
the chapter is devoted to a discussion and translation of different types of aggregators. We
start with some simple rules in Section 2.2. Then, we present rules based on maximisation
and minimisation in Section 2.3, rules inspired from Preference Aggregation in Section
2.4, and rules that select the most representative voter in a profile in Section 2.5. We
conclude with a summary and a discussion in Section 2.6.
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2.1 Basic DL-PA Expressions

When introducing the DL-PA framework, we presented some abbreviations for formulas
and programs that recall the ones used in programming languages. In this section we add
other basic programs and formulas more specific to the task we have to perform. The
aim will be also in this case to express complex programs more concisely and with better
readability. We first present some formulas about properties and relations of numbers.
Then, we discuss how to flip the truth value of some propositional variables in a given
set and we end by providing two formulas expressing minimisation properties.

Relations of Numbers

The three DL-PA formulas presented here are true if and only if a certain relation exists
between two numbers. The general idea is to compare the digits at the same position in
the two binary expressions of the numbers. A potential problem arises when two numbers
can be expressed with a different number of binary digits: in fact, bigger numbers usually
require more digits than smaller numbers to be expressed in binary form.

Therefore, in all programs we will take the maximal value that a counter could have
as the upper bound for all the counters in that program. For this reason, we drop the
superscript in the notation of our counters and we write x instead of xt. Hence, if t is
the maximal number of propositional variables needed to express the maximal value a
counter can take in a program, and some other number is expressible in binary form
using only k variables (where k < t), it will nonetheless be expressed with t variables by
imposing ¬qi for all k < i ≤ t.

Example 4. Suppose that in our program π we need to compare the number of agents
accepting some issue j with the number of issues accepted by an even number of agents.
Let accept(j) be the counter for the first parameter and support(even) be the counter for
the second. Suppose we have that |N | = 9 and |I| = 7. Then, the maximal value that
accept(j) can take is 9 (if all agents accept j), while the maximal value that support(even)
can take is 7 (if every issue is accepted by an even number of agents).

Notice that while 9 is expressible in binary form with four digits (1001), the number
7 only needs three (111). Suppose that in program π there are no other counters: then,
we will take 9 as our upper bound and we will have that |accept(j)| = |support(even)| = 4.
If we let q′

i for i ∈ {0, 1, 2, 3} be the propositional variables of support(even), we will have
that this counter has value 7 whenever ¬q′

3 ∧ q′
2 ∧ q′

1 ∧ q′
0 is true.
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The first DL-PA formula defined below is true if an only if the first number is greater
than the second. Analogously, the second formula is true if the two numbers are equal,
and the third if and only if the first number is greater than or equal to the second.

x > y :=
∨

0≤k<t

(( ∧
k<i<t

(qx
i ↔ qy

i )
)
∧ qx

k ∧ ¬q
y
k

)
.

x = y :=
∧

0≤k<t

qx
k ↔ qy

k .

x ≥ y := x > y ∨ x = y.

Notice that in the first formula we use the convention of letting ∧
k<i<t(qx

i ↔ qy
i ) = ⊤ in

case k = t− 1.
The next DL-PA formula is true if and only if the number we are considering is even:

Even(x) := ¬qx
0 .

As we can see, we do not care about the value of any digit except the rightmost one:
in case the number is even, that digit will be a 0. We could define in the same way
an analogous predicate Odd(x) which would be true if and only if the last digit is a 1.
Another option would be to simply define Odd(x) as ¬Even(x).

Flipping

We introduce here programs that flip the truth value of some propositional variables in a
given set P . As we will see, they will be mostly used in formulas expressing minimisation
properties.

The first program flips the truth value of just one of the propositional variables in P ,
but it is not known which one has been flipped.

flip1(P ) :=

 skip if P = ∅⋃
p∈P (p← ¬p) otherwise

The second program, on the other hand, resets the truth value of all propositional
variables in P to some new value (as a result, either their truth value has been flipped or
it has not).

flip≥0(P ) :=

 skip if P = ∅
;p∈P (+p ∪ −p) otherwise
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Since the choice is nondeterministic, after the execution of flip≥0 it might happen
that the truth value of no, some, or every propositional variable in P has been flipped.

The third program flips the truth value of all the propositional variables in P .

flipall(P ) :=

 skip if P = ∅
;p∈P (p← ¬p) otherwise

Notice that flipall is a deterministic program and it corresponds to the execution of
the program flip≥0 where each propositional variable in P is assigned the opposite truth
value (with respect to its current one).

Minimisation

We present here two DL-PA formulas that are true when different types of minimisations
are achieved. The first formula is true if and only if ¬ϕ holds whenever we do not change
the truth value of some propositional variable in the non-empty set P . This is to say
that P is minimal: by taking any subset of P with exactly one element less, and by using
the program flip≥0 on it (which flips the truth value of none, some or every variable in
P ), we are considering every possible strict subset of P — and none of them is sufficient
to reach a state where ϕ holds.

D(ϕ, P ) := ¬⟨
⋃

p∈P

flip≥0(P \ {p})⟩ϕ.

Notice that this definition of the formula does not imply that it is possible to reach ϕ
by flipping the truth value of all the propositional variables in P , neither do we require
the propositional variables in the set P to have any relationship with the propositional
variables of ϕ (but it is possible to define a predicate with both these conditions [Herzig,
2014]).

The second formula is true if and only if it is impossible to reach a state where ϕ holds
by flipping the truth value of less than s propositional variables in the set P [Doutre et al.,
2014]. This corresponds to finding the minimal Hamming distance between the states of
before and after flipping the propositional variables in P , so that ϕ holds afterwards.

H(ϕ, P,≥s) :=

 ⊤ if s = 0
¬⟨flip1(P )≤s−1⟩ϕ if s > 0

Therefore, it is not possible to execute s − 1 times the program flip1, which flips
exactly one of the propositional variables in the set P , so that afterwards the formula
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ϕ holds. Here as well we do not require the formula ϕ to hold in case we flip the truth
value of (more than) s propositional variables in P .

2.2 Simple Aggregation Rules

In this section we present some simple aggregation rules and their DL-PA translation. We
refer to these rules as simple in the sense that they are either relatively easy to explain
or that they are used in many real-world scenarios and thus quite intuitive to grasp.
Moreover, all the rules presented here are resolute: namely, for all profiles B the outcome
F (B) = {B} is a singleton.

First, we introduce the dictatorship of agent i [Dietrich, 2006; List, 2012]. Next, we
present the family of constant rules [List, 2012] and the parity rule [List and Puppe,
2009]. The nomination rule and the majority rule follow [List, 2012; May, 1952]: these
rules are both instances of uniform quota rules. We conclude by introducing the more
general class of quota rules [Dietrich and List, 2007; Grandi and Endriss, 2011], of which
uniform quota rules are a special case.

Dictatorship of Agent i

In a dictatorship every decision is made by a single individual, disregarding the opinions
of the other agents. Framed more positively, a dictatorial rule can be implemented
whenever groups of agents decide to follow the guide of a leader or of an expert.

Formally, for all profiles B, the outcome of the dictatorship of some fixed agent i ∈ N
is her individual ballot:

Dictatorshipi(B) = Bi,

which means that Dictatorshipi(B)j = 1 ⇐⇒ bij = 1, for all j ∈ I.
This rule can be expressed by a simple DL-PA program that runs issue by issue and

that copies into the propositional variables of the outcome the decision of agent i on that
issue.

dictatorshipi(Bn,m) := ;
j∈I

(pj ← pij).

We now provide a proof that the program dictatorshipi presented here is indeed a
translation of the aggregation rule Dictatorshipi.

Proposition 1. Let B be a rational profile for N = {1, . . . , n} and I = {1, . . . ,m}.
Let vB be the valuation corresponding to B. Let (vB, v

′) ∈∥dictatorshipi(Bn,m)∥. Then,
Dictatorshipi(B)j = 1 ⇐⇒ pj ∈ v′ for all j ∈ I.
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Proof. Let F = Dictatorshipi and f = dictatorshipi, for some i ∈ N . For the left-to-right
direction, consider an arbitrary j ∈ I such that F (B)j = 1: we have to show that pj ∈ v′.
From the definition of F , we have that F (B)j = 1 ⇐⇒ bij = 1 for all j ∈ I, where
agent i is the dictator. By assumption vB is the valuation corresponding to B, and thus
by definition we have that pij ∈ vB and that pj ̸∈ vB.

From definitions and program equivalences, we get that the interpretation of f(Bn,m)
is the following:

∥ f(Bn,m)∥ = ∥(pim? ; +pm) ∪ (¬pim? ;−pm)∥ ◦ · · · ◦ ∥(pi1? ; +p1) ∪ (¬pi1? ;−p1)∥ .

By assumption we have that (vB, v
′) ∈∥ f(Bn,m)∥. This means that there are valuations

v1, . . . , vm+1 such that v1 = vB, vm+1 = v′ and:

(v1, v2) ∈∥(pi1? ; +p1) ∪ (¬pi1? ;−p1)∥,
(v2, v3) ∈∥(pi2? ; +p2) ∪ (¬pi2? ;−p2)∥,

. . . ,

(vm, vm+1) ∈∥(pim? ; +pm) ∪ (¬pim? ;−pm)∥ .

In particular, let a ∈ {1, . . . ,m} and b be two indices such that b = a+ 1, and such that:

(va, vb) ∈∥(pij? ; +pj) ∪ (¬pij? ;−pj)∥

for the arbitrary issue j ∈ I we are considering. Again, from definitions we get that:

(va, vb) ∈ ({(v, v∗) | pij ∈ v and v∗ = v ∪ {pj}} ∪ {(v, v∗) | ¬pij ∈ v and v∗ = v \ {pj}}).

Let us call A = {(v, v∗) | pij ∈ v and v∗ = v∪{pj}} and B = {(v, v∗) | ¬pij ∈ v and v∗ =
v \ {pj}}, so that (va, vb) ∈ A ∪ B. We now have to check whether (va, vb) ∈ A or
(va, vb) ∈ B, since clearly A and B are disjoint sets. In order to do so, we have to inspect
whether pij ∈ va or ¬pij ∈ va.

We now show that pij ∈ va, which will allow us to conclude what we wanted to
show: namely, that pj ∈ v′. In case a = 1, we have that va = vB and thus pij ∈ vB by
assumption. Otherwise, notice that v1, . . . , va only (possibly) differ in the truth value
assigned to p1, . . . , pj−1, respectively. Therefore, since pij ∈ vB = v1 and the truth value
of pij has not been modified in v2, . . . , va−1, we have that pij ∈ va. Hence, (va, vb) ∈ A,
and vb = va ∪ {pj}. Notice also that vb+1, . . . , vm+1 only (possibly) differ in the truth
value assigned to pj+1, . . . , pm. Therefore, we can conclude that pj ∈ vm+1 = v′.
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For the right-to-left direction, we can equivalently show that if F (B)j = 0 then
pj ̸∈ v′. The proof is analogous to the one for the other direction, with the sole exception
that we have to show that (va, vb) ∈ B in order to conclude that pj ̸∈ v′.

Constant Rules

The family of constant rules includes rules always returning some fixed ballot B, regardless
of the profile given as input. Hence, every ballot B characterises a different instance of a
constant rule. Notice that they are degenerate rules, in the sense that while satisfying the
formal definition of a rule, it is difficult to claim that they are indeed aggregation rules.

Formally, for all profiles B, we have:

ConstantB(B) = B.

Let Vm
B := {pbj | j ∈ I} be the subset of P encoding the entries of the constant

ballot B on the issues in I. We assume here that vB also includes propositional variables
of the form pbj, for j ∈ I, so that

pbj ∈ vB ⇐⇒ bj = 1.

The following is the general structure of a DL-PA program to express any instance
of a constant rule, depending on the truth values assigned to the variables in Vm

B . The
program is analogous to the one provided for the Dictatorship of agent i.

constantB(Bn,m) := ;
j∈I

(pj ← pbj).

The program runs through all the issues and it copies into the propositional variables
of the outcome the truth value of the corresponding propositional variables of the constant
ballot B.

Proposition 2. Let B be a rational profile for N = {1, . . . , n} and I = {1, . . . ,m}.
Let vB be the valuation corresponding to B and B ∈ {0, 1}m be the constant ballot. Let
(vB, v

′) ∈∥constantB(Bn,m)∥. Then, ConstantB(B)j = 1 ⇐⇒ pj ∈ v′ for all j ∈ I.

Parity Rule

The parity even (odd) rule accepts an issue in the outcome if and only if the number
of agents accepting it in the profile is even (odd). This rule can be used whenever, for
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instance, the feasibility of a project depends on whether the agents can be organised in
pairs or in two equinumerous groups.

Formally, for any issue j ∈ I, the parity even rule (analogously for odd) is defined as:

Parityeven(B)j = 1 ⇐⇒ |NB
j:1| mod 2 = 0.

We present here two DL-PA programs expressing the parity even rule: the program
for the parity odd rule can be defined similarly. The first one makes use of a counter,
while the second one only needs a single bit to check parity.

Counter. In this version of the program for the parity rule we use a counter named
supp, whose propositional variables are all initialised to false.

parityEven(Bn,m) := ;
j∈I

(
zero(supp) ; ;

i∈N

(
if pij do incr(supp)

)
; if Even(supp) do + pj

)
.

For each issue, the program counts the number of supporters of that issue in the
profile by incrementing the supp counter. The program then checks whether the last digit
of the counter is a zero or a one, and it accepts the issue in the outcome accordingly.
The supp counter is set to zero before repeating the same process for a different issue.

Single bit. This program keeps track step-by-step of the parity of the coalition of
supporters for any issue j by using a single propositional variable.

parity∗
Even(Bn,m) := ;

j∈I

(
+ pj ; ;

i∈N
(if pij do pj ← ¬pj)

)
.

The program first assigns truth value true to the propositional variable pj of the outcome
for the issue j currently inspected. Then, it proceeds agent by agent and it switches the
truth value of pj whenever an agent accepts it in her individual ballot. In this way, if
there is an even number of agents accepting j, the propositional variable pj stays true.

Proposition 3. Let B be a rational profile for N = {1, . . . , n} and I = {1, . . . ,m}.
Let vB be the valuation corresponding to B and let f ∈ {parityEven, parity∗

Even}. Let
(vB, v

′) ∈∥ f(Bn,m)∥. Then, ParityEven(B)j = 1 ⇐⇒ pj ∈ v′ for all j ∈ I.

Nomination Rule

The nomination rule accepts an issue in the outcome if and only if there is at least one
agent in the profile who accepts that issue. As the name suggests, this rule can be useful
at the stage of selecting some alternatives, and in general whenever it is important to
give some weight to the opinion of individuals (or minorities).
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Formally, for every issue j ∈ I we have that:

Nomination(B)j = 1 ⇐⇒ |NB
j:1| ≥ 1.

The rule can be expressed by the following DL-PA program:

nomination(Bn,m) := ;
j∈I

(if
∨

i∈N
pij do + pj).

For every issue, the program checks whether at least one agent accepts that issue
in her individual ballot. If this condition is true, the issue is accepted in the outcome.
Notice that we do not have to explicitly state what happens when the condition is false,
because we have as an assumption that the propositional variables for the outcome in
valuation vB are false.

Proposition 4. Let B be a rational profile for N = {1, . . . , n} and I = {1, . . . ,m}.
Let vB be the valuation corresponding to B. Let (vB, v

′) ∈∥nomination(Bn,m)∥. Then,
Nomination(B)j = 1 ⇐⇒ pj ∈ v′ for all j ∈ I.

Majority Rule

The majority rule is perhaps one of the most widespread ways of aggregating judgments
in real life. An issue is accepted in the outcome if and only if more than half of the
agents accept it in their individual ballots.

Formally, we have that for every issue j ∈ I:

Maj(B)j = 1 ⇐⇒ |NB
j:1| >

n

2 .

Notice that while for an odd number of agents it is quite clear what a “majority”
is, this is not the case for an even number of agents. In fact, we could either decide to
accept an issue if and only if more than half of the agents accept it individually (strict
majority rule) or we could decide to accept an issue if and only if at least half of the
agents accept it (weak majority rule).

On the other hand, this would imply a biased outcome towards 0 or 1. As an example,
suppose we have n = 8 agents, so that exactly 4 agents accept issue j and 4 agents reject
it. According to the weak majority rule, the outcome for j should be 1; while according
to the strict majority rule, the outcome for j should be 0. In both cases, the number of
acceptances and rejections for j is exactly the same while the outcome favours one over
the other. For this reason it is usual to simply assume an odd number of agents.
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We present here two alternative translations of the majority rule in DL-PA. The first
program makes use of two counters, while the second program works under the special
condition that the set of issues includes both an issue and its complement.

Counters. In this program we have a pro counter, which counts the number of agents
accepting some issue, and the con counter, which counts the number of agents rejecting
that issue, and both of them are initialised at zero.

maj(Bn,m) := ;
j∈I

(
zero(pro) ; zero(con) ; ;

i∈N
(if pij then incr(pro) else incr(con)) ;

if pro > con do + pj

)
.

Proceeding issue by issue and agent by agent, whenever an agent accepts an issue,
the pro counter is incremented; otherwise, the con counter is incremented. The program
checks whether it is true that the number of agents who accept the issue is higher than
the one of agents who reject that issue: the outcome for that issue is decided accordingly.
The two counters are set to zero before repeating the process for a different issue.

Complements. To explain this program, we have to make some assumptions about
the issues. In particular, here we assume that in addition to the propositional variables
of the form pij and pj (for referring to the profile and the outcome), we also have for any
issue j ∈ I propositional variables of the form pij such that for every i ∈ N we initially
have pij if and only if ¬pij.

maj∗(Bn,m) := ;
j∈I

(
(while (

∨
i∈N

pij) ∧ (
∨

i∈N
pij) do

⋃
i∈N

pij? ;−pij ;
⋃

k∈N
pkj? ;−pkj) ;

(if ¬
∨

i∈N
pij do + pj)

)
.

Proceeding issue by issue, the program checks whether it is the case that some agent is
accepting this issue and that at the same time someone (else) is accepting the complement
of that issue. If this is the case, we find two agents who respectively accept the positive
and the negative version of this issue and we set to false both their judgments on that
issue. We repeat this procedure until the condition does not hold anymore: namely,
either all the remaining agents accept the positive version or they all accept the negative
version of the issue. Then, we accept an issue in the outcome if there are no more agents
accepting the negative version in their ballots.

Proposition 5. Let B be a rational profile for N = {1, . . . , n} and I = {1, . . . ,m}. Let
vB be the valuation corresponding to B and let f ∈ {maj, maj∗}. Let (vB, v

′) ∈∥ f(Bn,m)∥.
Then, Maj(B)j = 1 ⇐⇒ pj ∈ v′ for all j ∈ I.
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Quota Rules

A quota rule specifies for each issue a certain threshold of acceptance that has to be met
in order for the issue to be accepted in the outcome. Namely, if the quota for issue j is
k, there have to be at least k agents who accept j in their individual ballots for j to be
accepted collectively. The quota k can be any integer such that 0 ≤ k ≤ n+ 1, where n
is the number of agents. Notice that in case k = 0 the issue is always accepted, while for
k = n+ 1 the issue is always rejected: the outcome for these issues is constant. In case
all the issues have the same quota, we speak of uniform quota rules: we have seen two
such examples with the nomination rule and the majority rule.

Letting qj denote the quota for issue j ∈ I, we thus have that:

Quotaq1,...,qm
(B)j = 1 ⇐⇒ |NB

j:1| ≥ qj.

Any instance of a quota rule can be expressed in DL-PA with a similar program:

quotaq1,...,qm
(Bn,m) := ;

1≤i≤m

zero(quotai) ; ;
1≤i≤m

incr(quotai)qi ; ;
j∈I

(
zero(supp) ;

( ;
i∈N

if pij do incr(supp)) ; if supp ≥ quotaj do + pj

)
.

First, the program sets each counter quotai to the corresponding quota qi. Proceeding
issue by issue, the program counts the number of supporters of that particular issue in
the profile. If the number of supporters for that issue is greater than or equal to the
corresponding quota, the issue is accepted in the outcome. The counter supp, which is
initialised at zero and which stores the number of supporters for the inspected issue, is
set to zero at each iteration.

Proposition 6. Let B be a rational profile for N = {1, . . . , n} and I = {1, . . . ,m}.
Let vB be the valuation corresponding to B. Let (vB, v

′) ∈∥quotaq1,...,qm
(Bn,m)∥. Then,

Quotaq1,...,qm(B)j = 1 ⇐⇒ pj ∈ v′ for all j ∈ I.

2.3 Maximisation and Minimisation Rules

In this section, we present two rules based on maximisation or minimisation. The first
one is the maximum subagenda rule [Endriss et al., 2016], which is also known in the
literature as the maximal subagenda rule [Lang and Slavkovik, 2014]. The second one
is the minimal number of atomic changes rule [Lang and Slavkovik, 2014], also known
as Fulld for d being the Hamming distance [Miller and Osherson, 2009]. Both rules aim
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at amending the outcome of the majority rule, in case it does not satisfy the integrity
constraint IC.

Maximum Subagenda Rule

The maximum subagenda rule (MSA) returns as outcome a ballot which satisfies the
integrity constraint and that has maximal agreement with the majority outcome, with
respect to set inclusion and not cardinality. Namely, we have that for profile B:

MSAic(B) = ⊆argmax
B|=ic

{j ∈ I | bj = Maj(B)j}.

Example 5. We adapt here an example to explain how the outcome of the MSA is
computed [Lang and Slavkovik, 2014]. Consider agents N = {1, 2, 3} and issues I =
{1, 2, 3, 4} for constraint IC = (p4 → p3) ∧ ((p3 ∧ (p1 ∨ p2))→ p4).

p1 p2 p3 p4

Agent 1 1 1 1 1
Agent 2 1 1 0 0
Agent 3 0 0 1 0

Maj(B) 1 1 1 0

The majority outcome on B does not satisfy the constraint IC. Now, we check which
maximal subsets of the outcome (or maximal partial assignments to the propositional vari-
ables for the issues) are consistent. These partial assignments are (1, 1, 1,−), (−,−, 1, 0)
and (1, 1,−, 0). We now complete them in such a way that the constraint is satisfied, thus
obtaining: MSA(B) = {(1, 1, 1, 1), (0, 0, 1, 0), (1, 1, 0, 0)}.

We present two DL-PA programs translating the MSA, which are very similar to the
translations provided for the PMA update operator for Belief Change [Herzig, 2014]. The
first one is simpler but has length exponential in the number of issues, while the second
one does not have this feature.

Exponential. The first program is defined as follows:

msaIC(Bn,m) := maj(Bn,m) ; if ¬IC do
⋃

P ∈(P(Om)\∅)

(
D(IC, P )? ; flipall(P )

)
; IC?.

First, the program computes the outcome of the majority rule. Then, in case the
constraint is not satisfied, the program non-deterministically chooses the minimal subset
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P of the outcome of the majority such that the truth value of its propositional variables
has to be flipped to obtain a result satisfying IC. Then, it flips the truth value of all the
propositional variables in P and finally it checks whether the constraint holds. Notice
that the length of this program grows exponentially in the number of issues because we
use the non-deterministic choice operator over all the subsets of Om.

Storing. First of all, we introduce some useful DL-PA programs. The first stores
the truth value of the propositional variables in P in some fresh propositional variables
p′. The second restores the truth value of just one propositional variable p′ in the
corresponding propositional variable in P . The last restores the truth value of none,
some, or all propositional variables p′ in P .

store(P ) :=

 skip if P = ∅
;p∈P p

′ ← p otherwise

restore1(P ) :=

 skip if P = ∅⋃
p∈P (p⊕ p′? ; p← p′) otherwise

restore≥0(P ) :=

 skip if P = ∅
;p∈P (skip ∪ p← p′) otherwise

The second program for expressing the MSA is the following:

msa∗
IC(Bn,m) := maj(Bn,m) ; store(Om) ; flip≥0(Om) ; IC? ;

[restore1(Om) ; restore≥0(Om)]¬IC?.

The program first computes the outcome of the majority rule. Then, it stores the
outcome in some fresh variables and tries to find a valuation such that the constraint
holds (which, in case the majority outcome already satisfies IC, will be reached by flipping
the truth value of no propositional variable in Om). At this point, the program checks
whether by restoring the truth value of at least one propositional variable in Om we get
to a valuation that does not satisfy IC: in this way we can be sure that we considered
a maximal subset of the majority outcome. In case the majority outcome was already
satisfying the contraint, the modal formula will hold vacuously because restore1 will fail.

Proposition 7. Let B be a rational profile for N = {1, . . . , n}, I = {1, . . . ,m} and
some IC. Let vB be the valuation corresponding to B and let f ∈ {msaIC,msa∗

IC}. Let
V f

vB
= {v′ | (vB, v

′) ∈∥ f(Bn,m)∥}. Then, the function g : MSAIC(B)→ V f
vB

such that if
g(B) = v′ then bj = 1⇐⇒ pj ∈ v′ for all j ∈ I is a bijection.
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Proof. We are going to provide a proof just for the case of f = msaIC, in order to give
the general idea of how such a proof looks like. Consider an arbitrary rational profile B

for some set of agents N and for some set of issues I, and let vB be its corresponding
valuation. Given that F = MSAIC is an irresolute rule, in some cases it might return an
outcome F (B) which is not a singleton. Therefore, given any B ∈ F (B) we are going to
show that there is a unique valuation v′ ∈ V f

vB
such that pj ∈ v′ ⇔ bj = 1 for all j ∈ I.

We will then construct a function g such that each B ∈ F (B) is associated with the
described valuation v′ ∈ V f

vB
. Finally, we will show that g is injective and surjective to

conclude that g is a bijection.
As a first step, we thus have to show that v′ ∈ V f

vB
. Namely, that:

(vB, v
′) ∈ (∥ IC?∥ ◦ ∥ if ¬IC do

⋃
P ∈(P(Om)\∅)

(
D(IC, P )?; flipall(P )

)
∥ ◦ ∥maj(Bn,m)∥).

Hence, we have to provide valuations va, vb, vc, vd such that va = vB, vd = v′ and

(va, vb) ∈∥maj(Bn,m)∥ .
(vb, vc) ∈∥ if ¬IC do

⋃
P ∈(P(Om)\∅)

(
D(IC, P )?; flipall(P )

)
∥ .

(vc, vd) ∈∥ IC?∥ .

Recall that the program maj(Bn,m) is deterministic: we thus let vb be the unique valuation
reachable from va after the execution of maj(Bn,m). By Proposition 5 we know that
pj ∈ vb ⇔ Maj(B)j = 1 for all j ∈ I. We now have to consider two cases: either (a)
Maj(B) |= IC, or (b) Maj(B) ̸|= IC.

(a) In this case, we have that B = Maj(B) and vb |= IC. Therefore, by the definition
of the program “if ϕ do π”, valuations vb and vc have to be linked via the program
skip. We thus take vb = vc = vd, so that vd |= IC and therefore vd ∈∥ IC∥. Since
v′ = vd = vc = vb, and pj ∈ vb ⇐⇒ Maj(B)j = 1 for all j ∈ I, and B = Maj(B),
we provided a valuation v′ ∈ V f

vB
such that pj ∈ v′ ⇔ bj = 1 for all j ∈ I.

(b) Notice that since B ∈ F (B), by the definition of MSA we know that B |= IC and
that there is a maximal (with respect to set inclusion) subset Q of Maj(B) such
that bj = Maj(B)j. Let now S = {pi | i ̸∈ Q}: we take vc to be the valuation that
differs from vb only in that the truth values of all the propositional variables in S

have been flipped. We thus want to show that:

(vb, vc) ∈∥D(IC, S)?; flipall(S)∥ .
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We start by showing that (vb, vb) ∈∥D(IC, S)? ∥. Suppose for reductio that this
is not the case: namely, that vb ̸∈ ∥¬⟨

⋃
pi∈S flip≥0(S \ {pi})⟩IC∥. This means that

there is some pq ∈ S such that vb |= ⟨flip≥0(S \ {pq}⟩IC. Therefore, by fixing the
truth value of pq there is still some way to make IC true.

Consider now the set Q: by definition of S we have that q ̸∈ Q. By assumption Q

was maximal, and thus for B to model IC we have to have bq ̸= Maj(B)q. This
however contradicts the fact that by not changing the truth value of pq (i.e., leaving
pq agree with the majority result), there is a way to satisfy IC.

In order to show that (vb, vc) ∈∥flipall(S)∥, it suffices to notice that this deterministic
program by definition leads to a valuation where exactly the propositional variables
in S have their truth values flipped and nothing else.

The last thing left to show is that v′ ∈∥ IC∥ and that pj ∈ v′ ⇔ bj = 1 for all j ∈ I. Let
vc = vd = v′ and consider an arbitrary s ∈ I. Assume without loss of generality that
bs = 1, since the following reasoning can be performed in a similar way for bs = 0. We
distinguish the case where (i) bs = 1 = Maj(B)s, and (ii) bs = 1 ̸= Maj(B)s.

(i) In this case, we have that s ∈ Q and by definition ps ̸∈ S. Therefore, the truth
value of ps has not been changed between vb and vc. Since by Proposition 5 we
have that pj ∈ vb ⇔ Maj(B)j = 1 for all j ∈ I, this means that ps ∈ vb and thus
ps ∈ vc. Since vc = vd = v′, we have that ps ∈ v′.

(ii) Otherwise, we have that s ̸∈ Q and by definition ps ∈ S. Thus, the truth value of
ps has been flipped between vb and vc. Again, since by Proposition 5 we have that
pj ∈ vb ⇔ Maj(B)j = 1 for all j ∈ I, this means that ps ∈ vb and thus ps ̸∈ vc.
Since vc = vd = v′, we have that ps ̸∈ v′.

In any case, we have shown that pj ∈ v′ ⇔ bj = 1 for all j ∈ I. Since B ∈ Mod(IC), we
thus get that v′ |= IC.

Take now g : F (B) → V f
vB

to be the function associating to each B ∈ F (B) the
valuation v′ ∈ V f

vB
as described above. To conclude the proof, we have to show that g is

a bijection: namely, that it is both injective and surjective.
Showing that g is injective means that whenever g(B′) = g(B′′), then B′ = B′′.

Consider two valuation v′ and v′′ in V f
vB

such that v′ = g(B′), v′′ = g(B′′) and v′ = v′′.
Suppose for reductio that B′ ̸= B′′ for B′, B′′ ∈ F (B).

This means that there is some issue k ∈ I such that b′
k ̸= b′′

k. Assume without loss of
generality that b′

k = Maj(B)k and that b′′
k ̸= Maj(B)k, since a very similar reasoning can

be carried out in the other case. We thus have that k ∈ Q′ while k ̸∈ Q′′, which in turn
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means that k ̸∈ S ′ and k ∈ S ′′. Hence, the execution of program msaIC will flip the truth
value of proposition pk in the second case but not in the first. Therefore, we will have
that pk ∈ v′ ⇔ pk ̸∈ v′′. Since this contradicts the fact that v′ = v′′ we have that g is
injective.

For surjectivity, we have to show that for all v′ ∈ V f
vB

there is some B ∈ F (B)
such that g(B) = v′. Consider an arbitrary v′ ∈ V f

vB
, namely a valuation such that

(vB, v
′) ∈∥msaIC(Bn,m)∥. Let B be the ballot such that bj = 1⇔ pj ∈ v′, for all j ∈ I.

By definition of g, we have that g(B) = v′. Since (vB, v
′) ∈∥msaIC(Bn,m)∥, this means

that there are some valuations va, vb, vc, vd such that va = vB, vd = v′, and

(va, vb) ∈∥maj(Bn,m)∥ .
(vb, vc) ∈∥ if ¬IC do

⋃
P ∈(P(Om)\∅)

(
D(IC, P )?; flipall(P )

)
∥ .

(vc, vd) ∈∥ IC?∥ .

We now have to show that B ∈ F (B), i.e. that B ∈ argmax⊆
B|=ic{j ∈ I | bj = Maj(B)j}.

First of all, notice that since v′ = vd |= IC, we have that B |= IC as well. Suppose for
reductio that B ̸∈ F (B): hence, there is some issue k ∈ I such that bk ̸= Maj(B)k, but
in case bk = Maj(B)k there would be a way to complete it such that B |= IC.

Since bk ̸= Maj(B)k we have that pk ∈ S, for S being the set introduced at the
beginning of this proof. Notice that since vb corresponds to the outcome of the majority,
and since both v′ = vd = vc and pk ∈ S, we have that the truth value of pk must have
changed between vb and vc. This is the case if pk ∈ P for P being the set of the program
flipall(P ), and since a similar reasoning can be made for all propositional variables for the
issues on which B differs from Maj(B), we get that P = S.

On the other hand, we have that vb |= ¬⟨
⋃

p∈S flip≥0(S \{p}⟩IC. However, we assumed
that in case bk = Maj(B)k we would still have a way to obtain IC. Therefore, we have
some propositional variable p ∈ S such that ⟨⋃p∈S flip≥0(S \ {p})⟩IC and we thus can
conclude that B ∈ F (B).

Minimal Number of Atomic Changes Rule

The minimal number of atomic changes (MNAC) rule returns in the outcome set a ballot
with the following characteristics: (i) it satisfies the integrity constraint, (ii) there is a
rational profile B∗ for which computing majority yields B as a result, (iii) any other
rational profile B′ is further away (in terms of the Hamming distance) from the initial
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profile than B∗. This rule can be used whenever it would be convenient to convince
some agents to slightly modify their votes for the greater good of a consistent outcome.

Formally, we have that for profile B:

MNACic(B) = {B | Maj(B∗) = B,B |= IC and for all B′ : H(B,B∗) ≤H(B,B′)}.

The MNAC rule can be expressed in DL-PA with the following program:

mnacIC(Bn,m) :=
⋃

0≤d≤m·n

(
H(⟨profIC(Bn,m,Om) ; maj(Bn,m)⟩IC,Bn,m,≥d)? ; flip1(Bn,m)d

)
;

profIC(Bn,m,Om) ; maj(Bn,m) ; IC?.

The program finds the minimal distance d to the profile B such that every agent is
still rational (satisfies IC), and such that after the execution of the majority rule, the
outcome satisfies the integrity constraint. Then, the truth value of the propositional
variables in the profile B is changed, the majority outcome computed, and the program
finishes by checking whether the constraint is satisfied.

Proposition 8. Let B be a rational profile for N = {1, . . . , n}, I = {1, . . . ,m} and
some IC. Let vB be the valuation corresponding to B and let f = mnacIC. Let V f

vB
= {v′ |

(vB, v
′) ∈∥ f(Bn,m)∥}. Then, the function g : MNACIC(B)→ V f

vB
such that if g(B) = v′

then bj = 1⇐⇒ pj ∈ v′ for all j ∈ I is a bijection.

2.4 Preference Aggregation Rules

In this section we present other rules trying to make the outcome consistent with a given
IC, in case the majority outcome is not. They however differ from the ones seen before
in that they all closely recall some rules known in the Preference Aggregation literature
[Brams and Fishburn, 2002].

The first rule to be introduced will be the Kemeny rule [Kemeny, 1959], which is also
sometimes called the Distance Based rule [Endriss and Grandi, 2014] or Prototyped for
the Hamming distance d [Miller and Osherson, 2009]. We then present the Slater rule
[Nehring et al., 2011], also known as the Maxcard Subagenda rule [Lang and Slavkovik,
2014] or Endpointd for Hamming distance d [Miller and Osherson, 2009]. Finally, we
discuss the Ranked Pairs rule, which also comes under the name of the Ranked Agenda
rule [Lang and Slavkovik, 2014].
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Kemeny Rule

The outcome of the Kemeny rule includes ballots that satisfy the IC and that minimise
the sum of the Hamming distance to the individual ballots in the profile. Formally, we
have that for profile B:

KemenyIC(B) = argmin
B|=IC

∑
i∈N

H(B,Bi).

As a first step, we define a program that computes the sum of the Hamming distances
between the outcome and the profile. Namely, whenever the value of the propositional
variables of the outcome and of the corresponding issues in the profile differ, the counter
dis is incremented.

sH(Om,Bn,m) := zero(dis) ; ;
i∈N

( ;
j∈I

if pj ⊕ pij do incr(dis)
)
.

We now define a DL-PA formula which is true if and only if whenever some (other)
outcome is closer to the profile than the current one, with respect to the Hamming
distance, then IC is not satisfied. The formula makes use of two counters, dis and dis’, the
second of which stores the result of initially computing the Hamming distance between
the outcome and the rest of the profile.

MinD(Om,Bn,m, IC) := [sH(Om,Bn,m) ; store(dis) ; flip≥0(Om) ; sH(Om,Bn,m)]
(dis’ > dis→ ¬IC).

In case the majority outcome satisfies IC, there will be no other outcome which is strictly
closer to the profile, and therefore the conditional will always hold vacuously. Otherwise,
suppose we are considering an assignment to the propositional variables of the outcome
that corresponds to a Kemeny outcome (different from the majority): the majority
outcome will have a smaller value for dis, but IC will not be satisfied and thus the
conditional will hold again.

A program for the Kemeny rule is then defined in the following way:

kemenyIC(Bn,m) :=
⋃

0≤d≤m

(
⟨flip1(Om)d⟩(MinD(Om,Bn,m, IC) ∧ IC)? ; flip1(Om)d

)
;

MinD(Om,Bn,m, IC) ∧ IC?.

Recall that the propositional variables in Om are always set to false by default. The
program first guesses some d such that after flipping the truth value of d propositional
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variables in the outcome, this outcome achieves minimal Hamming distance from the
rest of the profile and IC is satisfied. Then, the program flips the truth value of d
propositional variables in the outcome. The final test ensures that just in case the truth
value of the correct d propositional variables has been flipped, such that the outcome
satisfies IC and it has minimal distance to the profile, the program does not fail.

Proposition 9. Let B be a rational profile for N = {1, . . . , n}, I = {1, . . . ,m} and
some IC. Let vB be the valuation corresponding to B and let f = kemenyIC. Let V f

vB
=

{v′ | (vB, v
′) ∈∥ f(Bn,m) ∥}. Then, the function g : KemenyIC(B) → V f

vB
such that if

g(B) = v′ then bj = 1⇐⇒ pj ∈ v′ for all j ∈ I is a bijection.

Slater Rule

The outcome of the Slater rule contains those ballots satisfying the given IC and
minimising the Hamming distance from the outcome of the majority rule for that profile.
That is, given a profile B we have:

SlaterIC(B) = argmin
B|=IC

H(B,Maj(B)).

Example 6. Though Kemeny and Slater might seem very similar rules, their outcomes
need not necessarily coincide. Consider the following example for N = {1, . . . , 13} and
I = {1, 2, 3, 4}. Let the integrity constraint be IC = (p3 ↔ p1 ↓ p2) ∧ (p4 ↔ p1 ⊕ p2),
where ϕ ↓ ψ := ¬(ϕ ∨ ψ).

p1 p2 p3 p4

3 voters 1 1 0 0
3 voters 1 0 0 1
3 voters 0 1 0 1
4 voters 0 0 1 0

Maj(B) 0 0 0 0

The outcome of the majority does not satisfy the constraint. The outcome of the Slater
rule is (0, 0, 1, 0), because the Hamming distance d from the majority outcome is only
1. The outcome of the Kemeny rule, on the other hand, is one of the ballots in the
set {(1, 1, 0, 0), (0, 1, 0, 1), (1, 0, 0, 1)}. In fact, in order to maximise agreement with the
profile we have to reject issue p3, since nine agents rejected it in their individual ballots.
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The Slater rule is expressible in DL-PA by the following program:

slaterIC(Bn,m) := maj(Bn,m) ;
⋃

0≤d≤m

(
H(IC,Om,≥d)? ; flip1(Om)d

)
; IC?.

The program first computes the majority outcome for that profile; then, it finds the
minimal Hamming distance between the current outcome and one where IC is satisfied.
In case the majority outcome already satisfies the constraint, we have that d = 0.

Proposition 10. Let B be a rational profile for N = {1, . . . , n}, I = {1, . . . ,m}
and some IC. Let vB be the valuation corresponding to B and let f = slaterIC. Let
V f

vB
= {v′ | (vB, v

′) ∈∥ f(Bn,m)∥}. Then, the function g : SlaterIC(B)→ V f
vB

such that if
g(B) = v′ then bj = 1⇐⇒ pj ∈ v′ for all j ∈ I is a bijection.

Ranked Pairs Rule

We need some additional notation to define the ranked pairs rule (RPR) [Endriss and
Grandi, 2014]. The majority strength of issue j in profile B is defined as MSB(j) =
max{|NB

j:0|, |NB
j:1|}. Hence, if a majority of agents accepts j in the profile the majority

strength of j is the total number of these agents; and similarly if a majority of agents
rejects j.

Therefore, we can order the issues according to their majority strength with ≻B
τ ,

where τ : I → I is a permutation that breaks the ties, in case two issues have the same
majority strength. We let ℓ ⊆ B mean that ℓ(j) = x implies bj = x, for partial function
ℓ : I → {0, 1} and ballot B.

Example 7. Consider the following profile B for set of issues I = {1, 2, 3}, set of agents
N = {1, . . . , 5} and constraint IC = p2 → (¬p1 ∨ ¬p3).

p1 p2 p3

Agent 1 1 1 0
Agent 2 1 1 0
Agent 3 1 1 0
Agent 4 0 1 1
Agent 5 0 1 1

Notice that MSB(1) = 3, MSB(2) = 5 and MSB(3) = 3. Suppose that τ breaks the ties
in lexicographic order: we have that 2 ≻B

τ 1 ≻B
τ 3. Consider now the partial function ℓ

defined only for the first two issues, so that ℓ(1) = 0 and ℓ(2) = 1. We can see that for
ballots B′ = (0, 1, 0) and B′′ = (0, 1, 1) we have ℓ ⊆ B′ and ℓ ⊆ B′′.
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Given profile B, integrity constraint IC and permutation τ : I → I, we define the
total function ℓB

τ,IC as follows:

for j ∈ I, following order ≻B
τ do

ℓB
τ,IC(j) :=

 Maj(B)j if ∃B |= IC such that ℓB
τ,IC ⊆ B

1−Maj(B)j otherwise

The RPR thus returns a ballot given by the above procedure, when some tie-breaking
rule and an integrity constraint are provided. Namely,

RPIC(B) = {ℓB
τ,IC | τ is a permutation on I}.

We present here a DL-PA program computing the RPR for the special case of no ties
in the majority strengths of the issues in the profile. For any tie-breaking rule τ we could
devise an additional program whose role would be to modify the count of the majority
strengths for the issues in such a way that they are strictly ordered according to τ .

We first define a program computing the majority strength of the issues in profile B,
assuming the result of the majority rule has already been computed.

majSt(Bn,m) := ;
j∈I

(
zero(MSj) ; if pj then

( ;
i∈N

(if pij do incr(MSj))
)

else
( ;

i∈N
(if ¬pij do incr(MSj))

))
.

Proceeding issue by issue, the program checks whether the propositional variable in
the outcome for that issue j is true or false, and then counts in the profile how many
agents agreed with the outcome — storing the result in the MSj counter.

We now define the sets Qi, for i ∈ I, in order to add step-by-step the issues according
to their majority strength (starting from the strongest and ending with the weakest).
Since we assumed that there are no ties, at each step we are going to add a singleton.

Q1 := {pj | |MSB
j | ≥ |MSB

j′ | for all j′ ∈ I}
Qk := Qk−1 ∪ {pj | pj ̸∈ Qk−1 and for all j′ ∈ I such that pj′ ̸∈ Qk−1, |MSB

j | ≥ |MSB
j′ |}

The DL-PA program computing the RPR is thus defined as follows:

rpτ
IC(Bn,m) := maj(Bn,m) ; if ¬IC do

(
majSt(Bn,m) ; ;

1≤i≤m

( ⋃
j∈I

(
∧
l∈I

MSj ≥ MSl?;

if ¬⟨flip≥0(Om \Qi)⟩IC do pj ← ¬pj ; zero(MSj))
))
.
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The program first computes the majority outcome. In case IC is not satisfied yet,
the program calculates the majority strenght of all the issues. Then, for m times, the
program executes the following procedure.

First, the issue j with the highest majority strength at that stage is selected. The
program checks whether it is possible to modify the outcome in some way (without
changing the truth value of j and of all the issues already inspected at some previous
step) to make IC satisfied. In case this is not possible, the truth value of the propositional
variable of the outcome for j is flipped — and the value of its majority strenght is set
to zero. In the following step, thus, the nondeterministic choice operator will select the
next issue in the ranking; this is possible because this issue is now the one with highest
majority strength, since the one of j has been set to zero.

Proposition 11. Let B be a rational profile for N = {1, . . . , n}, I = {1, . . . ,m} and
some IC. Let vB be the valuation corresponding to B and let f = rpτ

IC. Let V f
vB

= {v′ |
(vB, v

′) ∈∥ f(Bn,m) ∥}. Then, the function g : RPτ
IC(B) → V f

vB
such that if g(B) = v′

then bj = 1⇐⇒ pj ∈ v′ for all j ∈ I is a bijection.

2.5 Representative Voter Rules

We present in this section rules that select the most representative voter in a profile,
according to different principles. They are all based on the PA rules presented in Section
2.4: this is the reason why here we will often refer to notions and programs introduced
before, rather than redefining them. We start by defining the Average-Voter rule [Endriss
and Grandi, 2014], also known in the literature as the Distance-Based Generalised
Dictatorship [Grandi and Endriss, 2011]. Then, we present the Majority-Voter rule
[Endriss and Grandi, 2014], and we conclude with the Ranked-Voter rule. These rules
correspond, respectively, to the Kemeny rule, the Slater rule, and the Ranked-Pairs rule.

Average-Voter Rule

The Average-Voter rule (AVR) returns as outcome the individual ballot of the agents in
the profile such that the sum of the Hamming distance between their ballots and the
ones of the other agents is minimal. Namely, for profile B, we have:

AVR(B) = argmin
{Bi|i∈N }

∑
k∈N

H(Bi, Bk).

We here provide two alternative programs to compute the AVR in DL-PA.
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Initial sum. In this version, we define a program that computes the sum of the
Hamming distance between a given individual ballot Bi and the rest of the profile B.
We define Vm

i := {pij | j ∈ I} as the set of propositional variables encoding the decision
of agent i on the issues. For each agent i, a counter disi, which can take at most value
m · n, is used. Notice that we could as well have included agent i’s ballot in the iteration,
since her Hamming distance to her own ballot is 0: we leave it out to make the program
shorter.

sH∗(Vm
i ,Bn,m) := ;

k∈N \{i}

(
zero(disi) ; ;

j∈I
if pij ⊕ pkj do incr(disi)

)
.

A program expressing AVR in DL-PA is the following:

avr∗(Bn,m) := ;
k∈N

sH∗(Vm
k ,Bn,m) ;

⋃
i∈N

(
(

∧
k∈N

disk ≥ disi)? ; ;
j∈I

pj ← pij

)
.

First, the program computes the sum of the Hamming distances to the profile for each
individual ballot Bk. Then, it nondeterministically chooses the agent i whose Hamming
distance to the profile is lower than or equal to the ones of the other agents. Finally, it
copies her individual ballot into the outcome.

Kemeny adaptation. As the name suggests, this program to express the AVR in
DL-PA is quite similar to the one provided for the Kemeny rule. Since we have as an
assumption that the agents satisfy IC in their individual ballots, we will only check that
the outcome is equal to the individual ballot of some agent, which implies that it is
consistent.

The following formula is true if and only if there is some agent who is a representative
for the other agents, in the sense that her individual ballot is equal to the outcome.

Repr :=
∨

i∈N

( ∧
j∈I

pij ↔ pj

)
.

We refer to Section 2.4 for an explanation of how the following program works, based
on the program used to express the Kemeny rule. Notice that the only difference between
the two programs lies in the use of the Repr formula instead of IC.

avr(Bn,m) :=
⋃

0≤d≤m

(
⟨flip1(Om)d⟩(MinD(Om,Bn,m,Repr) ∧ Repr)? ; flip1(Om)d

)
;

MinD(Om,Bn,m,Repr) ∧ Repr?.
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Proposition 12. Let B be a rational profile for N = {1, . . . , n} and I = {1, . . . ,m}.
Let vB be the valuation corresponding to B and let f ∈ {avr, avr∗}. Let V f

vB
= {v′ |

(vB, v
′) ∈∥ f(Bn,m)∥}. Then, the function g : AVR(B)→ V f

vB
such that if g(B) = v′ then

bj = 1⇐⇒ pj ∈ v′ for all j ∈ I is a bijection.

Majority-Voter Rule

The Majority-Voter rule (MVR) returns as the outcome the individual ballot of some
agent in the profile such that the Hamming distance between her ballot and the outcome
of the majority rule for that profile is minimal. Namely, for profile B, we have that:

MVR(B) = argmin
{Bi|i∈N }

H(Bi,Maj(B)).

Here as well two alternative programs for computing the MVR in DL-PA are possible.
The first one is an adaptation of the avr∗ program: we first compute the outcome of
the majority rule and then use the program sH∗ to compute the distance between each
individual ballot and the outcome of the majority (instead of the rest of the profile).

The second version, on the other hand, is an adaptation of the program provided for
the Slater rule in Section 2.4. Namely, we have:

mvr(Bn,m) := maj(Bn,m) ;
⋃

0≤d≤m

(
H(Repr,Om,≥d)? ; flip1(Om)d

)
; Repr?.

The program first computes the outcome of the majority rule. Then, it finds the
minimal number d of propositional variables of the outcome whose truth value has to be
flipped in order to obtain an outcome equal to the individual ballot of some agent in the
profile.

Proposition 13. Let B be a rational profile for N = {1, . . . , n} and I = {1, . . . ,m}.
Let vB be the valuation corresponding to B and let f = mvr. Let V f

vB
= {v′ | (vB, v

′) ∈
∥ f(Bn,m) ∥}. Then, the function g : MVR(B) → V f

vB
such that if g(B) = v′ then

bj = 1⇐⇒ pj ∈ v′ for all j ∈ I is a bijection.

Ranked-Voter Rule

The outcome of the Ranked-Voter rule (RVR) is obtained with a procedure analogous
to the one provided for the RPR in Section 2.4. We proceed in an identical fashion up
to the construction of the total function ℓB

τ . Here, instead of checking the existence of
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a ballot satisfying the given integrity constraint, we check whether there is some agent
i ∈ N such that ℓB

τ ⊆ Bi.
Hence, the RVR for profile B returns the ballot selected by the described procedure

given some tie-breaking rule.

RVR(B) = {ℓB
τ | τ is a permutation on I}.

As for the RPR, here as well we assume that there are no ties in the majority strength of
the issues: we refer to Section 2.4 for a discussion of this point.

rvrτ (Bn,m) := maj(Bn,m) ; if ¬Repr do
(
majSt(Bn,m) ; ;

1≤i≤m

( ⋃
j∈I

(
∧
l∈I

MSj ≥ MSl? ;

if ¬⟨flip≥0(Om \Qi)⟩Repr do pj ← ¬pj ; zero(MSj))
))
.

The program works in an analogous way to the one provided for the RPR, with the
sole exception that instead of the integrity constraint, we check whether the outcome
corresponds to the individual ballot of some agent in the profile.

Proposition 14. Let B be a rational profile for N = {1, . . . , n} and I = {1, . . . ,m}.
Let vB be the valuation corresponding to B and let f = rvrτ . Let V f

vB
= {v′ | (vB, v

′) ∈
∥ f(Bn,m) ∥}. Then, the function g : RVRτ (B) → V f

vB
such that if g(B) = v′ then

bj = 1⇐⇒ pj ∈ v′ for all j ∈ I is a bijection.

2.6 Summary

In this chapter we provided several DL-PA programs expressing different aggregation rules.
We distinguished between simple rules, rules based on maximisation and minimisation,
rules inspired by Preference Aggregation and rules selecting a representative voter in the
profile. After having introduced each of these rules, their translation into DL-PA has
been linked to the BA definition via some propositions ensuring the correctness of our
work and we provided a proof of some of them.

When relevant, we presented multiple possible translations for the same rule. Except
for the program maj∗, computing the majority rule, all the programs presented here do
not modify the truth value of the propositional variables in Bn,m and they never make
use of the Kleene star operator.

Moreover, most programs do not need counters. The programs that do make use of
them are: parityEven, maj, quotaq1,...,qn , kemenyIC, rpτ

IC, avr, avr∗ and rvrτ . In fact, the first
needs to inspect the parity of the coalition of supporters of the issues, the second and the



38 Aggregation Rules in DL-PA

third need to check whether the coalition of supporters is above a certain threshold, and
in the last cases either the majority strength of the issues or some Hamming distance
has to be computed to output the result.

It is also interesting to consider how the length of a program behaves as the number
of agents or the number of issues increases. For the programs constantB and dictatorshipi,
computing the constant rules and the dictatorship of agent i respectively, an increase in
the number of agents does not affect their length. This is to be expected because the
programs only consider the constant and the dictatorial ballots while ignoring the rest of
the profile.

On the other hand, the length of the program msaIC computing the maximum
subagenda rule grows exponentially as the number of issues increases. In fact, inside the
program there is a non-deterministic choice operator over all the possible subsets of the
set Om for the propositional variables of the outcome. Notice however that we provided
another translation for the same rule, and no other program has this problem.

In conclusion, this chapter has focused on specific aggregation rules and how to make
sure that the DL-PA programs correctly compute their outcomes. In the next chapter
we will take a step back from the details of each program: we will look at more general
properties that we would want aggregation rules to satisfy and how to express them in
DL-PA.



Chapter 3

Axioms in DL-PA

In Chapter 2 we have seen how to tranlsate aggregation procedures as DL-PA programs.
The presented techniques could be applied to any other aggregation rule we may want
to encode, and then we could analyse the properties of the program we came up with.
Alternatively, we might be interested in studying aggregation procedures at a higher
level: namely, according to some general properties they satisfy. A research direction
in JA tries to find a characterisation of aggregation rules based on these properties, in
the sense that a rule belongs to a certain family if and only if it satisfies a specific set of
properties [Dietrich and List, 2007; May, 1952].

In the literature, these properties are usually referred to as axioms [Endriss et al.,
2012; Grandi and Endriss, 2011; List, 2012]. We here distinguish between single-profile
and multi-profile axioms. The former type expresses a relationship existing between the
structure of a profile and the outcome of a rule on that profile. The latter, on the other
hand, relates the structure of two profiles to the outcomes of some rule applied on them.
A similar distinction is found in Preference Aggregation as well, sometimes under the
names of intra-profile and inter-profiles conditions [Rubinstein, 1984]. As we will see, in
our case this is not only a useful conceptual separation, but the two types of axioms will
require a different formal treatment.

The Chapter thus focuses on expressing JA axioms in a formal language, a task
that has been also tackled in Judgment Aggregation Logic for the axioms of (positive)
Unanimity, Independence and Non-Dictatorship [Ågotnes et al., 2011]. We start in
Section 3.1 by discussing in a general way how to inspect whether a given aggregation
rule satisfies an axiom or not. Then, in Section 3.2 we introduce the single-profile axioms
of Unanimity, Issue-Neutrality, Domain-Neutrality and N-Monotonicity. In Section 3.3
we present the multi-profile axioms of Independence, I-Monotonicity and Anonimity. For
each axiom we state a proposition ensuring the correctness of our translation, and we
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provide a proof for one single-profile and one multi-profile axiom, since they all share a
similar structure. We conclude in Section 3.4 with a summary of the Chapter.

3.1 Axioms and Rules

We defined aggregation procedures with respect to a set of agents N = {1, . . . , n} and a
set of issues I = {1, . . . ,m}. This implies that when we say that a certain rule satisfies
an axiom, we mean that for every possible profile B on m issues, that property must
hold. Therefore, all the axioms we are going to study begin with the expression “for any
profile B”. We discuss here how this can be formulated in DL-PA.

Given a set of agents N , a set of issues I, and an integrity constraint IC, we let
f(Bn,m) be the program translating aggregation rule F in DL-PA. In case rule F satisfies
axioms A1, . . . , Ak we will have that the following holds:

|= [profIC(Bn,m,Om) ; f(Bn,m)]
∧

1≤i≤k

Ai

where A1, . . . ,Ak are the translations of the axioms in DL-PA. Namely, the problem of
checking whether a rule satisfies some axioms boils down to inspecting whether the above
formula is valid, i.e. true for every valuation v.

In fact, either the arbitrary valuation v under consideration corresponds to a rational
profile or it does not. In the first case, every individual ballot satisfies IC and the
propositional variables for the outcome are set to false with the execution of program
profIC(Bn,m,Om). Then, the program corresponding to rule F is run and we get to a
valuation v′ which has to make true all the formulas translating the axioms satisfied by
F . In the second case, the program profIC(Bn,m,Om) inside the modality fails and the
formula thus holds vacuously.

At a first glance, it might seem odd that even though single-profile and multi-profile
axioms have an inherently different nature we use the same general formula to check
whether a rule satisfies them. More precisely, we might be wondering how can we be
referring to two different outcomes if the program translating a rule appears only once
inside the modality of the formula presented above. The answer, as we will see, is that
the program executing the rule is called again inside the formulas expressing multi-profile
axioms — a simple device allowed by the language of DL-PA that lets us compare two
different outcomes at the same time. Notice that analogous approaches have been used
for expressing inter-profile conditions in PA [Ciná and Endriss, 2015].
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A couple of brief remarks before proceeding. First, in what follows we assume that the
programs translating aggregation rules do not modify the truth value of the propositional
variables in Bn,m. Hence, we exclude all programs like maj∗, expressing the majority
rule, presented in Chapter 2. However, we could recover them by using some additional
propositonal variables to store the initial profile and then execute the program for rule F .

Secondly, notice that we could have defined an aggregation rule F as a function
taking any profile, and not just the rational ones, as input. In this case, we would not
have to check that the agents satisfy IC in their individual ballots and we could replace
program profIC(Bn,m,Om) with init(Om) from the translation of all the axioms and from
the formula introduced above, thus obtaining |= [init(Om) ; f(Bn,m)] ∧

1≤i≤k Ai.

3.2 Single-profile Axioms

In this section we present axioms that make reference to just one profile at a time. This
means that to check whether an aggregation rule F satisfies a single-profile axiom it is
sufficient to inspect the outcome of the rule on some profile and the profile itself.

Since in our framework profiles correspond to valuations, and since for single-profile
axioms we do not have to make reference to different valuations (corresponding to different
profiles), it is possible to express them as simple propositional formulas. Therefore, in
order to express Unanimity, Issue-Neutrality, Domain-Neutrality and N-Monotonicity we
will not need to use the modal part of our language.

Unanimity

A rule F is unanimous if in case all agents agree on some issue j, the outcome of F for
issue j agrees with them. Namely, issue j should be collectively accepted if all the agents
accept it, and it should be rejected if they all reject it in their individual ballots. This
axiom can also be separated into two different versions, depending on whether all agents
accept or reject j: we speak of positive or negative unanimity, respectively.

Formally, the Unanimity axiom states that for rule F :

U : For any B, for all j ∈ I and for x ∈ {0, 1},
if bij = x for all i ∈ N then F (B)j = x.

We can express Unanimity as a propositional formula in the following way:

U :=
∧
j∈I

(
((

∧
i∈N

pij)→ pj) ∧ ((
∧

i∈N
¬pij)→ ¬pj)

)
.
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The first big conjunction ensures that what follows is going to hold for any issue.
Inside the parentheses, the two conjuncts deal with the positive and the negative version
of unanimity. Now we can show that our translation of the axiom is correct with the
proof of the proposition below.

Proposition 15. Let N = {1, . . . , n} and I = {1, . . . ,m} be the sets of agents and
issues, respectively. Let Bn,m be the set of propositional variables encoding the opinions
of agents in N on issues in I. Let f be a DL-PA program translating some rule F . Then,

U holds ⇐⇒ |= [profIC(Bn,m,Om) ; f(Bn,m)]U.

Proof. For the left-to-right direction, consider an arbitrary valuation v and an arbitrary
valuation v′ such that (v, v′) ∈∥ profIC(Bn,m,Om) ; f(Bn,m) ∥. We want to show that
v′ ∈∥U∥, or more precisely that:

v′ ∈∥
∧
j∈I

(
((

∧
i∈N

pij)→ pj) ∧ ((
∧

i∈N
¬pij)→ ¬pj)

)
∥ .

Suppose, for reductio, that v′ ̸∈ ∥U ∥. Given the definition of the interpretation, this
means that there is some j ∈ I such that v′ ̸∈ ∥((∧

i∈N pij)→ pj)∧ ((∧
i∈N ¬pij)→ ¬pj)∥.

Assume, without loss of generality, that v′ ̸∈ ∥ (∧
i∈N pij) → pj)∥ is the case (a similar

reasoning can be done in the other case). Hence, we have that v′ ∈∥ ∧
i∈N pij ∥ and

v′ ̸∈ ∥pj ∥.
Since (v, v′) ∈∥ profIC(Bn,m,Om) ; f(Bn,m) ∥, we have that v corresponds to some

rational profile B and v′ corresponds to F (B). By assumption, we have that F satisfies
(U): in particular, this means that for all j ∈ I, if for all i ∈ N we have bij = 1, then
F (B)j = 1.

Recall that we assumed that v and v′ do not differ on the propositional variables in
Bn,m. Hence, the fact that v′ ∈∥∧

i∈N pij ∥ implies that v ∈∥∧
i∈N pij ∥. Therefore in

profile B we have that bij = 1 for all i ∈ N , which implies that F (B)j = 1. On the other
hand, this contradicts the fact that v′ corresponds to F (B) and that v′ ̸∈ ∥pj ∥. Hence,
v′ ∈∥U∥.

For the right-to-left direction, take an arbitrary rational profile B. We want to show
that for any j ∈ I, if bij = 1 for all i ∈ N , then F (B)j = 1 (and analogously for bij = 0,
so we can focus on this case without loss of generality). Suppose, for reductio, that this
is not the case. Hence, for some j ∈ I in profile B, we have bij = 1 for all i ∈ N and
F (B)j = 0.



3.2 Single-profile Axioms 43

Consider now valuations v and v′ corresponding to B and F (B) respectively. This
means that (v, v′) ∈∥profIC(Bn,m,Om) ; f(Bn,m)∥ and that v′ ∈∥U∥. Since v and v′ do
not differ on the propositional variables in Bn,m, by spelling out the definition of the
interpretation we get that v′ ∈∥pj ∥. This contradicts the fact that v′ corresponds to
F (B) and that F (B)j = 0. Therefore, we have that F (B) = 1.

Issue-Neutrality

A rule F is neutral with respect to the issues if, whenever two issues are treated in the
same way in the input, they are treated in the same way in the output. That is, if the
agents express the very same pattern of acceptance or rejection for the issues, the issues
should either be both collectively accepted or rejected.

Formally, we have that for rule F :

NI : For any two issues j, k ∈ I and any profile B,
if for all i ∈ N bij = bik then F (B)j = F (B)k.

A translation of Issue-Neutrality as a propositional formula is then the following:

NI :=
∧
j∈I

∧
k∈I

(
(

∧
i∈N

(pij ↔ pik))→ (pj ↔ pk)
)
.

With the first two big conjunctions we can quantify over all possible choices of two
issues. The conditional inside the parentheses makes sure that if the agents make the
same decisions on the two issues, the output for them will be the same.

Proposition 16. Let N = {1, . . . , n} and I = {1, . . . ,m} be the sets of agents and
issues, respectively. Let Bn,m be the set of propositional variables encoding the opinions
of agents in N on issues in I. Let f be a DL-PA program translating some rule F . Then,

NI holds ⇐⇒ |= [profIC(Bn,m,Om) ; f(Bn,m)]NI .

Domain-Neutrality

An aggregation rule is neutral with respect to the domain if, whenever two issues are
treated in an opposite way in the input, their output should be opposite. Namely, in
case there is an opposite pattern of acceptance or rejection from the agents, one of the
issues should be accepted in the outcome and the other rejected.

More formally, we have that for rule F the following holds:
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ND : For any two issues j, k ∈ I and any profile B,
if for all i ∈ N bij = 1− bik then F (B)j = 1− F (B)k.

A propositional formula expressing Domain-Neutrality is the following:

ND :=
∧
j∈I

∧
k∈I

(
(

∧
i∈N

(pij ↔ ¬pik))→ (pj ↔ ¬pk)
)
.

In an analogous way to how we expressed Issue-Neutrality, we first quantify over all
the possible choices of two issues. Then, the implication inside the parentheses makes
sure that if the issues are treated in an opposite way in the profile, the outcome for them
should be opposite.

Proposition 17. Let N = {1, . . . , n} and I = {1, . . . ,m} be the sets of agents and
issues, respectively. Let Bn,m be the set of propositional variables encoding the opinions
of agents in N on issues in I. Let f be a DL-PA program translating some rule F . Then,

ND holds ⇐⇒ |= [profIC(Bn,m,Om) ; f(Bn,m)]ND.

N-Monotonicity

An aggregation rule is neutral-monotonic if, whenever two issues j and k are such that
if an agent in the profile accepts j then she also accepts k, and if there is some agent
s that rejects j and accepts k, if j is accepted in the outcome then also k must be
accepted in the outcome. The intuitive idea of monotonicity captured here is thus one
which compares the pattern of acceptance between two issues within the same profile:
we will see later a different axiom of monotonicity that instead compares the pattern
of acceptance of the same issue between two profiles. More formally, we have that the
following has to hold for rule F :

MN := For any two j, k ∈ I and any B, if bij = 1 implies bik = 1 for all i ∈ N
and there is s ∈ N such that bsj = 0 and bsk = 1, then F (B)j = 1 implies F (B)k = 1.

A propositional formula expressing N-Monotonicity is as follows:

MN :=
∧
j∈I

∧
k∈I

(
(

∧
i∈N

(pij → pik) ∧
∨

s∈N
(¬psj ∧ psk))→ (pj → pk)

)
.

First, we quantify over all the possible choices of two issues j and k. The antecedent
inside the parentheses is going to be true if and only if all the agents who accept j also
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accept k and if there is some agent who rejects j but accepts k. Then, the consequent is
true if in case j is accepted in the outcome, also k is accepted in the outcome.

Proposition 18. Let N = {1, . . . , n} and I = {1, . . . ,m} be the sets of agents and
issues, respectively. Let Bn,m be the set of propositional variables encoding the opinions
of agents in N on issues in I. Let f be a DL-PA program translating some rule F . Then,

MN holds ⇐⇒ |= [profIC(Bn,m,Om) ; f(Bn,m)]MN.

3.3 Multi-profile Axioms

In this section we present axioms that refer to more than one profile at the same time.
Namely, to check whether an aggregation rule F satisfies one of them, we have to inspect
and compare the outcomes of the rule on different profiles. Dealing with more than
one profile means referring to more than one valuation, and in particular applying the
program expressing rule F multiple times to compare (possibly) different results. For this
reason, propositional logic alone is not sufficient anymore to express multi-profile axioms
and we will make use of DL-PA formulas for translating Independence, I-Monotonicity
and Anonimity.

Independence

A rule F is independent if, whenever an issue j is treated in the same way in two profiles,
the outcome of the rule for j should be identical in the two profiles. That is, we look at
the pattern of acceptance or rejection for just that issue in the two profiles and the two
outcomes should correspond.

More formally, we have that an independent rule F is such that:

I : For any issue j ∈ I and profiles B and B′

if bij = b′
ij for all i ∈ N , then F (B)j = F (B′)j.

By letting Bn
j := {pij | i ∈ N} be the set of propositional variables encoding the

opinion of the agents on j and by letting f be a program expressing the voting rule F in
DL-PA, we have that Independence can be expressed in the following way:

I :=
∧
j∈I

(
(pj → [flip≥0(Bn,m \ Bn

j ) ; profIC(Bn,m,Om) ; f(Bn,m)]pj)∧

(¬pj → [flip≥0(Bn,m \ Bn
j ) ; profIC(Bn,m,Om) ; f(Bn,m)]¬pj)

)
.
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We quantify over all possible issues j with the first big conjunction. The two conjuncts
inside the parentheses take into account the case where j is currently accepted or currently
rejected in the outcome. Then, we have that in any way we modify the acceptances and
rejections of the agents in the profile (without changing those for j) such that we still
have a rational profile, the new outcome for j is the same as the one for the original
profile.

Proposition 19. Let N = {1, . . . , n} and I = {1, . . . ,m} be the sets of agents and
issues, respectively. Let Bn,m be the set of propositional variables encoding the opinions
of agents in N on issues in I. Let f be a DL-PA program translating some rule F . Then,

I holds ⇐⇒ |= [profileIC(Bn,m,Om) ; f(Bn,m)]I.

I-Monotonicity

A rule F is independent-monotonic if, whenever we consider two profiles such that the
second one differs from the first in that some agent i first rejected some issue j and then
she accepts it, if j was accepted in the first outcome then it should still be accepted in
the second. Namely, additional support for an issue should not make it first accepted
and then rejected.

More formally, if we let (B−i, B
′
i) = (B1, . . . , B

′
i, . . . , Bn) for some profile B, we have

that for rule F the following holds:

MI : For any issue j ∈ I, agent i ∈ N , profiles B = (B1, . . . , Bn) and B′ = (B−i, Bi),
if bij = 0 and b′

ij = 1 then F (B)j = 1 implies F (B′)j = 1.

We can now express I-Monotonicity in DL-PA as follows:

MI :=
∧
j∈I

(
pj →

∧
i∈N

[+pij ; profIC(Bn,m,Om) ; f(Bn,m)]pj

)
.

The first conjunction quantifies over all possible choices of issues. If it is the case
that issue j is currently accepted in the outcome, then if any agent now accepts j in
her individual ballot (so that the profile is still rational) the outcome of the program
encoding F should still accept j.

Proposition 20. Let N = {1, . . . , n} and I = {1, . . . ,m} be the sets of agents and
issues, respectively. Let Bn,m be the set of propositional variables encoding the opinions
of agents in N on issues in I. Let f be a DL-PA program translating some rule F . Then,

MI holds ⇐⇒ |= [profIC(Bn,m,Om) ; f(Bn,m)]MI.
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Proof. For the left-to-right direction, consider an arbitrary v1 and v2 such that (v1, v2) ∈
∥profIC(Bn,m,Om) ; f(Bn,m)∥. We want to show that v2 ∈∥MI ∥, that is:

v2 ∈∥
∧
j∈I

(
pj →

∧
i∈N

[+pij ; profIC(Bn,m,Om) ; f(Bn,m)]pj

)
∥ .

Suppose, for reductio, that this is not the case. Then, there is some issue k ∈ I
for which (a) v2 ∈∥ pk ∥, and (b) v2 ̸∈ ∥

∧
i∈N [+pik ; profIC(Bn,m,Om) ; f(Bn,m)]pk ∥.

The latter implies that there is some agent s ∈ N such that (c) there is v3 where
(v2, v3) ∈∥ +psk ; profIC(Bn,m,Om) ; f(Bn,m) ∥, and (d) v3 ̸∈∥ pk ∥. Since (v2, v3) ∈∥
+psk ; profIC(Bn,m,Om); f(Bn,m)∥, it means that there is valuation va such that (v2, va) ∈
∥+psk ∥ and (va, v3) ∈∥profIC(Bn,m,Om) ; f(Bn,m)∥. Hence, va corresponds to a rational
profile Ba and v3 corresponds to F (Ba).

Consider now valuations v1, v2 and va. While v1 and v2 by assumption do not differ
on the propositional variables in Bn,m, v2 and va possibly differ on psk. We now focus on
the interesting case: namely, the one where they do differ.

If they differ, we have that psk ̸∈ v1 and psk ̸∈ v2 but psk ∈ va. Notice that since
(v1, v2) ∈∥profIC(Bn,m,Om) ; f(Bn,m)∥, this means that v1 corresponds to a rational profile
B1 and v2 corresponds to F (B1). Since b1

sk = 0 and by (b) we have F (B1)j = 1, and
since I-Monotonicity holds by assumption, and since Ba differs from B1 only on bsk,
because ba

sk = 1, we must have that F (Ba)k = 1. But this contradicts the fact that by
(d) we have pk ̸∈ v3.

For the right-to-left direction, consider an arbitrary rational profile B. We want to
show that for any issue j ∈ I, agent i ∈ N and profile B′ = (B−i, Bi), if bij = 0 and
b′

ij = 1 then F (B)j = 1 implies F (B′)j = 1. Suppose, for reductio, that this is not the
case: hence, there is some issue j ∈ I, some agent i ∈ N and profile B′, such that we
have bij = 0, b′

ij = 1, F (B)j = 0 and F (B′)j = 0.
Consider now valuation v1 corresponding to profile B and valuation v2 corresponding

to F (B). Moreover, consider valuation va corresponding to profile B′ and valuation
vb corresponding to F (B′). Since by assumption MI holds, and pj ∈ v2, and va only
differs from v1 in that pij ∈ va, we see that from the axiom we should get pj ∈ vb. This
contradicts the fact that vb is a translation of F (B′) and that F (B′)j = 0.

Anonymity

An anonymous rule F treats each agent in the same way. That is, when we permute the
order of the individual ballots in the input, the output for all the issues does not change.

For rule F this formally translates as follows:
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A : For any profile B and any permutation σ : N → N , we have that
F (B1, . . . , Bn) = F (Bσ(1), . . . , Bσ(n)).

A first attempt to translate Anonymity is the following DL-PA formula:

A :=
∧

(k1,...,kn)
ki∈N

[store(Om) ; ;
i∈N

( ;
j∈I

(p′
ij ← pkij)) ; init(Om) ; f(Bn,m)]

∧
j∈I

(pj ↔ p′
j).

We start by taking into account any possible permutation of the agents. Then, whenever
we store the result of the rule, shuffle the acceptances and rejections of the agents on the
issues according to the permutation we are considering, and compare the new outcome of
the rule with the stored one, the two should coincide. Notice that here we do not check
whether the new profile is rational because we are not modifying the individual ballots
but just their order.

Notice, however, that it is possible to generate all the n! permutations of n agents by
repeatedly swapping the positions of just two agents [Wells, 1961] with at most n− 1
swaps. Therefore, we can reformulate the previous axiom in the following way:

A∗ := [store(Om) ;
( ⋃

i,k∈N
;

j∈I
(if pij ⊕ pkj do flipall({pij, pkj}))

)n−1
;

init(Om) ; f(Bn,m)]
∧
j∈I

(pj ↔ p′
j).

We first store the result in some fresh variables. Then, we consider for n− 1 times
some (possibly different) pair of agents and we swap their individual ballots issue by
issue. Afterwards, we apply the program for the rule on the new input and the new
result should be equal to the previous one on every issue.

Proposition 21. Let N = {1, . . . , n} and I = {1, . . . ,m} be the sets of agents and
issues, respectively. Let Bn,m be the set of propositional variables encoding the opinions
of agents in N on issues in I. Let f be a DL-PA program translating some rule F . Then,

A holds ⇐⇒ |= [profileIC(Bn,m,Om) ; f(Bn,m)]A(∗).

3.4 Summary

In this chapter we delved into the study of axioms, i.e. arguably desirable properties that
we would want aggregation rules to satisfy. Checking whether a rule satisfies an axiom
corresponds to checking the validity of a general DL-PA formula provided at the beginning
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of the Chapter. We distinguished between single-profile and multi-profile axioms and we
translated them as DL-PA formulas.

For single-profile axioms, we observed that a translation in propositional logic was
sufficient. In fact, since we have propositional variables to encode a profile and proposi-
tional variables to encode the outcome of a rule on a profile, it is possible to compare the
status of the propositional variables of the profile and that of the propositional variables
of the outcome within a unique valuation.

On the other hand, the multi-profile axioms have a more complex nature that it is
not possible to easily capture within propositional logic. In fact, since they refer to any
choice of two profiles we have to find a way to consider two valuations at the same time.
The language of DL-PA made this possible, and the axioms were thus translated as modal
formulas.

For both types of axioms we provided proofs of correctness of our translation. Each
section thus ended with a proposition linking the fact that aggregation rules satisfy an
axiom in BA with the fact that a certain formula is valid in DL-PA. By checking that
these formulas are valid for specific instances of aggregation rules (i.e., when the number
of agents and issues are given) and certain axioms, we could gain some insight towards
characterisation results such as May’s Theorem [May, 1952].

The theorem, reformulated in BA, states that for an odd number of agents and one
issue, an aggregation rule satisfies ND, MI and A if and only if it is the majority rule.
The right-to-left direction of the theorem amounts to saying that for any odd n the
formulas [profileIC(Bn,1,O1) ; maj(Bn,1)]A(∗) ∧MI ∧ ND are valid. On the other hand, the
left-to-right direction cannot be expressed in the logic, because we would have to consider
a generic program for an aggregation rule to write inside the axioms, which would then
turn to be equivalent to the one for majority.

With our encoding we can verify whether many aggregators introduced in Chap-
ter 2 satsify the axioms presented here or not. For instance, we have that while
[profileIC(Bn,m,Om) ; dictatorshipi(Bn,m)]U∧NI ∧ND is valid for any number of agents and
issues, formulas such as [profileIC(Bn,m,Om) ; parityeven(Bn,m)]U ∧MI are not. Notice also
that while the properties we explained are clearly understood for resolute aggregation
rules, there are different ways to capture them for irresolute aggregators [Lang et al.,
2011] — which then require an easy DL-PA adaptation.

After having inspected properties of aggregation rules both closely and from afar, we
will now focus on integrity constraints. In the next chapter we will study how properties
of integrity constraints are linked to classes of rules satisfying certain axioms in such a
way that a consistent outcome is always guaranteed.





Chapter 4

Agenda Safety in DL-PA

Integrity constraints make explicit the relationship existing among the issues, if any. A
research direction in JA investigates whether depending on how the issues relate to one
another, we can ensure that the outcome of certain classes of aggregation rules always
satisfies a given IC. This problem is known in formula-based JA as the safety of the
agenda problem [Endriss et al., 2012; Grandi, 2012], and in order to adapt it to our
discussion we first have to explain the problem in its original framework.

The Chapter is thus organised as follows. In Section 4.1 we introduce the problem
of the safety of the agenda in formula-based JA. In Section 4.2 we adapt some known
agenda properties of formula-based JA to DL-PA. Then, Section 4.3 shows how to model
in DL-PA theorems linking the aforementioned properties to classes of aggregation rules.
We conclude in Section 4.4 with a summary of the Chapter.

4.1 Agenda Safety in JA

In formula-based JA we have a set Φ = {ϕ1,¬ϕ1, . . . , ϕm,¬ϕm} named agenda, which
consists of m non-negated formulas plus their negations, and we also have a set N =
{1, . . . , n} of agents. Any agent i ∈ N expresses her opinion on the agenda by including
in her individual judgment set Ji either ϕj or ¬ϕj for all j ∈ {1, . . . ,m} so that Ji is
consistent. Thus, individual judgment sets have to be both complete, i.e. no formula is
left undecided, and complement-free, i.e. they cannot include both a formula and its
negation. Analogously to BA, where the input for an aggregation procedure F is defined
over a specific integrity constraint, in formula-based JA the input for an aggregation rule
F is defined over an agenda Φ.
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Example 8. Let the agents be N = {1, 2, 3} and consider the agenda Φ = {a, b, a →
b,¬a,¬b,¬(a→ b)}. Now, look at the following three individual judgment sets:

J1 = {a,¬b,¬(a→ b)}
J2 = {a,¬a, b, a→ b}
J3 = {b, a→ b}

The first set J1 is the only admissible one. In fact, notice that J2 fails complement-freeness
by including both a and ¬a, while J3 fails completeness by not including either a or ¬a.

We can now state the problem of the safety of the agenda. Let a class of aggregation
procedures FΦ[AX] be the set of rules defined over the agenda Φ satisfying all the axioms
listed in the set AX. Given some agenda Φ, we want to know for which class of JA
procedures it is the case that every rule in the class returns a consistent outcome when
applied to judgment sets over Φ. If this is the case, we say that agenda Φ is safe for that
class of rules.

We anticipated before that it is possible to translate any instance of a problem
formulated in formula-based JA into an instance of a BA problem [Grandi and Endriss,
2011]. This is usually done by modelling each formula in the agenda Φ as a different
issue, so that |Φ| = |I|. The integrity constraint consists then of two parts: the first part
is a conjunction of pα ∨ p¬α for every α in Φ (the completeness requirement). For the
second part, we need the concept of minimally inconsistent set (mi-set): an inconsistent
set whose every strict subset is consistent. Thus, we have a conjunction of ¬(∧

α∈S pα)
for every mi-set S ⊆ Φ (the consistency requirement).

Example 9. For agenda Φ = {a, b, a∧b,¬a,¬b,¬(a∧b)}, the corresponding set of issues
I = {a, b, a ∧ b,¬a,¬b,¬(a ∧ b)} generates the following set of propositional variables
PS = {pa, pb, pa∧b, p¬a, p¬b, p¬(a∧b)}. The integrity constraint is the following:

IC = (pa ∨ p¬a) ∧ (pb ∨ p¬b) ∧ (pa∧b ∨ p¬(a∧b))∧
¬(pa ∧ p¬a) ∧ ¬(pb ∧ p¬b) ∧ ¬(pa∧b ∧ p¬(a∧b))∧
¬(pa ∧ pb ∧ p¬(a∧b)) ∧ ¬(p¬a ∧ pa∧b) ∧ ¬(p¬b ∧ pa∧b).

Notice that the first line encodes completeness, the second encodes complement-freeness
and the third encodes all the other consistency requirements given by the mi-sets.

The safety of the agenda problem has been studied in BA when the translation is
carried out as explained above, so that the integrity constraint ends up having this form.
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We can thus have a syntactic characterisation of constraints with respect to agenda
properties such that the outcomes of certain classes of aggregation rules are consistent
with IC [Grandi, 2012].

Alternatively, we could consider aggregation problems already expressed in the BA
framework, or translate a formula-based JA problem so that each pair of complementary
formulas corresponds to a single issue (and if a mi-set contains a negated formula ¬α, the
corresponding literal in IC will be ¬pα). The completeness requirement would then be
given by default, since agents express either a 0 or a 1 for each issue in their individual
ballots. Moreover, the inconsistency generated by agents accepting both the positive and
the negative version of some formula would be ruled out, since they cannot express both
a 0 and a 1 for the same issue in their ballots.

Example 9 (Continued). Consider again agenda Φ = {a, b, a ∧ b,¬a,¬b,¬(a ∧ b)}, but
now take as a set of corresponding issues I = {a, b, a ∧ b}, with PS = {pa, pb, pa∧b}. The
integrity constraint is now the following:

IC = ¬(pa ∧ pb ∧ ¬p(a∧b)) ∧ ¬(¬pa ∧ pa∧b) ∧ ¬(¬pb ∧ pa∧b)
= pa∧b ↔ pa ∧ pb.

Notice that we called the issues “a”, “b” and “a∧ b” just to make clear the correspondence
with agenda Φ: it makes no difference to consider instead a set of issues {1, 2, 3} and an
IC = p3 ↔ p1 ∧ p2.

In the remainder of the Chapter, we will always consider this second way of translating
(or expressing) integrity constraints.

4.2 Properties of IC

In this section we provide some definitions [Marchi et al., 2010] that will be used to
express constraints with a different perspective. Let a literal be either a variable p or its
negation ¬p. A term D is a conjunction of distinct literals. Let D−D′ be the subtraction
operation over terms, resulting in all the literals of D that are not present in D′. A term
D is an implicant of formula ϕ if and only if D |= ϕ. In particular, D is a prime implicant
of ϕ if and only if

(i) D is an implicant of ϕ;

(ii) for all literals L in D, (D − {L}) ̸|= ϕ.
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The concept of minimally inconsistent set of an agenda Φ directly relates to that of
a prime implicant of ¬IC, where IC is the constraint obtained from Φ via the second
method of translation provided. Then, IC can equivalently be seen as a conjunction of
negations of prime implicants of ¬IC [Marquis, 2000].

Now we can introduce a DL-PA formula which is true if and only if the valuation
we are considering makes exactly one of the prime implicants of ¬IC true. Given an
integrity constraint IC, we let PIC to be the set of propositional variables used in IC:

MIIC :=
∨

D∈P(PIC)

(
[flip1(D)]⟨flip≥0(PIC \D)⟩IC ∧ [flip≥0(PIC \D)]¬IC∧

∧
D′∈(P(PIC)\D)

(⟨flip1(D′)⟩[flip≥0(PIC \D′)]¬IC ∨ ⟨flip≥0(PIC \D′)⟩IC)
)
.

The formula states that there is some subset D of the propositional variables in IC such
that: by flipping the truth value of just one of them we can then possibly reach a state
where IC holds, there is no way of flipping the truth value of the propositional variables
not in D such that IC is true and no other subset has these characteristics. Notice that
if the formula holds, there is some D such that [flip≥0(PIC \D)]¬IC, which includes the
case where the truth value of no propositional variable gets flipped: hence, ¬IC has to
hold as well.

Proposition 22. Let IC be an integrity constraint. Then, MIIC is true in a valuation v

if and only if there is a unique prime implicant D of ¬IC true in v.

Proof. We prove the right-to-left direction directly. Assume that v is valuation such that
exactly one prime implicant D of ¬IC is true. In particular, this means that all the
literals L in D are true in v. If L is of the form pi we have that pi ∈ v, while if L is of
the form ¬pk we have that pk ̸∈ v.

Consider now the formula MIIC and let D1 be the set of propositional variables in the
literals of the prime implicant D. First, we show that [flip1(D1)]⟨flip≥0(PIC \D1)⟩IC is
true in v: namely, that for all valuations v′ such that (v, v′) ∈∥flip1(D1)∥ there is some
valuation v′′ such that (v′, v′′) ∈∥flip≥0(PIC \D1)∥ where v′′ |= IC.

Recall that program flip1(D1) flips the truth value of one propositional variable in the
set D1. Thus, in any valuation v′ exactly one propositional variable pi ∈ D1 has opposite
truth value with respect to v. Hence, the corresponding literal Li in D does not hold
anymore. Therefore, by condition (ii) of D being a prime implicant of ¬IC, we have that
it is possible to get to a valuation where IC holds: which corresponds to the fact that
⟨flip≥0(PIC \D1)⟩IC is the case.
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We also have to show that [flip≥0(PIC \D1)]¬IC holds: namely, that for all v′ such
that (v, v′) ∈∥ flip≥0(PIC \ D1) ∥ we have that ¬IC is true. Notice that this follows
immediately from the condition (i) of D being a prime implicant of ¬IC. As far as∧

D′∈(P(PIC)\D1)(⟨flip1(D′)⟩[flip≥0(PIC \ D′)]¬IC ∨ ⟨flip≥0(PIC \ D′)⟩IC is concerned, it is
easily seen that its truth follows from the uniqueness condition of the prime implicant D.
Therefore, we can conclude that MIIC is true in v.

We prove the left-to-right direction by contraposition. First we discuss the case for
a valuation v which makes true more than one prime implicant of ¬IC, and then the
case where no prime implicant of ¬IC is true in v. Assume that there is some other
prime implicant D′ of ¬IC true in v: we want to show that MIIC is false in v. Since by
assumption v makes true both D and D′ and they are prime implicants of ¬IC, this
means that ¬IC is true in v. In order to show that MIIC is false in v, we have to show
that for all S ∈ P(PIC), either

(a) ¬[flip1(S)]⟨flip≥0(PIC \ S)⟩IC, or

(b) ⟨flip≥0(PIC \ S)⟩IC, or

(c) ∨
Q∈(P(PIC)\S)([flip1(Q)]⟨flip≥0(PIC \D)⟩IC ∧ [flip≥0(PIC \Q)]¬IC).

Consider an arbitrary S ∈ P(PIC), and let D1 and D2 be the sets containing the
propositional variables of the literals used in D and D′ respectively. Notice that by
condition (ii) of the definition of prime implicant, we get that neither D1 ⊆ D2 nor
D2 ⊆ D1 can be the case. In fact, otherwise in both cases the superset among the two
would fail condition (ii) and it would not be a prime implicant of ¬IC. Therefore, they
must each have some propositional variable which is not included also in the other set.

The arbitrary set S could be equal to D1, to D2 or to neither of them. In all cases,
we are going to show that (c) holds: in the first case we show that Q = D2, in the second
case that Q = D1 and in the last case that either Q = D1 or Q = D2. Since the three
cases are similar, we are going to discuss without loss of generality just if S = D1.

Consider Q = D2, which by assumption is the set of propositional variables of the
literals used in D′. From the fact that D′ is a prime implicant of ¬IC, by condition (i)
we have that if the current assignment makes the literals in D′ true, ¬IC holds regardless
of the truth values assigned to the other propositional variables. Hence, we have that
[flip≥0(PIC \D2)]¬IC is the case.

Moreover, by condition (ii) of being a prime implicant of ¬IC we know that for any
literal L′ of D′ we have (D′ − {L′}) ̸|= ¬IC. This means that in case one of the literals of
D′ turns false, there is some assignment to the other propositional variables that makes
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IC true. Notice that since the propositional variables in D2 correspond to the literals in
D′, this is just as saying that [flip1(D2)]⟨flip≥0(PIC \D2)⟩IC is the case. Therefore, we
can conclude that MIIC is false in v since we showed that (c) holds.

On the other hand, assume that v is a valuation such that no prime implicant of ¬IC
is true in v. Since IC is equivalent to a conjunction of negations of prime implicants of
¬IC [Marquis, 2000], we have that IC is true. In order to falsify MIIC we show that for
all S ∈ P(PIC) point (b) holds. In fact, since IC holds in v, it sufficies to consider the
execution of program flip≥0(PIC \ S) where no propositional variable gets its truth value
flipped. Hence, ⟨flip≥0(PIC \ S)⟩IC holds and we can conclude that MIIC is false in v.

Example 10. Consider the following two assignments v and v′ for issues I = {1, 2, 3, 4}
and constraint IC = p2 → p1 ∧ p4 → p3:

p1 p2 p3 p4

v 0 1 0 1
v′ 1 0 0 1

In both cases ¬IC holds and both D = ¬p3 ∧ p4 and D′ = ¬p1 ∧ p2 are prime implicants
of ¬IC. However, while v makes both D and D′ true, in valuation v′ only the prime
implicant D of ¬IC is true. Therefore, we have that MIIC is true in v′ and is false in v.

Median Property

The Median Property (MP) in formula-based JA is stated as follows: All minimally
inconsistent subsets of the agenda have size 2 [Endriss et al., 2012; Grandi, 2012]. In
our framework, this means that in all valuations falsifying IC the unique true prime
implicant of ¬IC has to have just two literals. We can thus express the MP in DL-PA in
the following way:

MPIC := MIIC →
∨

pi,pk∈PIC

(
[flip1({pi, pk})]⟨flip≥0(PIC \ {pi, pk})⟩IC∧

[flip≥0(PIC \ {pi, pk})]¬IC
)
.

Suppose the current valuation falsifies the integrity constraint and only one prime
implicant of ¬IC is true. Then, it must be possible to find two propositional variables
among the ones in the constraint such that: if we flip the truth value of either of the two
the constraint might hold, and if we flip the truth value of any other set of propositional
variables, the constraint does not hold.
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Proposition 23. Let Φ be an agenda in formula-based JA and let IC be its translation
in BA. Then, Φ satisfies the MP if and only if |= MPIC.

Proof. We start from the left-to-right direction. Consider an agenda Φ that satisfies
MP. The definition of the median property states that every mi-set of Φ has size two.
Recall that the encoding of Φ in a constraint IC results in a big conjunction where each
conjunct is a negation of a term D, whose literals corresponds to an element of some
mi-set. Hence, each conjunct of IC is of the form ¬(L ∧ L′), for some literals L and L′.

Consider now an arbitrary valuation v and assume that MIIC holds. We want to show
that the consequent of MPIC holds as well. By Proposition 22 we know that there is
a unique term D which is true in v, and from what we explained above we know that
D = Li ∧ Lk. Hence, consider the propositional variables pi and pk corresponding to the
literals Li and Lk.

By condition (ii) of being a prime implicant of ¬IC, we have that if we flip the truth
value of either one among {pi, pk} there is a way to make true the constraint IC. Moreover,
since D was an implicant of ¬IC, it cannot happen that by leaving the truth values of pi

and pk unchanged the constraint IC turns out true. Therefore, the conclusion of MPIC

is true, which means that v |= MPIC, and since v was arbitrary we can conclude that
|= MPIC.

We prove the right-to-left direction by contraposition. Assume ̸|= MPIC: thus, there
is some valuation v such that v |= MIIC and the consequent of MPIC is false in v. Since
MIIC is true in v, by Proposition 22 we know that there is a unique prime implicant D of
¬IC true in v.

Suppose that D = Li ∧ Lk where Li and Lk are two literals: namely, suppose that D
has size two. Notice that in this case, we could choose propositional variables pi and pk

in PIC corresponding to Li and Lk. For a similar argument to the one stated above, the
consequent of MPIC would turn out to be true contradicting our assumption. Therefore,
D ̸= Li ∧ Lk.

Since D is by assumption a prime implicant of ¬IC, and since IC encodes agenda
Φ, we have that the literals L1, . . . , Lp in D correspond to the elements of some mi-set
S ⊆ Φ. Moreover, since D ̸= Li ∧ Lk we have that |S| ≠ 2: hence, we found a mi-set of
Φ whose size is not two. Therefore, Φ does not have the MP.

k-Median Property

The k-Median Property (kMP) is usually expressed in formula-based JA in the following
way: All minimally inconsistent subsets of the agenda have size at most k. Notice, in
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particular, that we get precisely the median property for k = 2. In our framework, then,
in all the valuations falsifying IC the unique prime implicant of ¬IC which is true has to
be of size at most k. We can express the kMP in DL-PA as follows:

kMPIC := MIIC →
∨

p1,...,pj∈PIC
2≤j≤k

(
[flip1({p1, . . . , pj})]⟨flip≥0(PIC \ {p1, . . . , pj})⟩IC∧

[flip≥0(PIC \ {p1, . . . , pj})]¬IC
)
.

This formula has the same structure as MPIC, used to describe MP. The main difference
is that here we are considering any set of at most k issues and not just sets of size 2.

Proposition 24. Let Φ be an agenda in formula-based JA and let IC be its translation
in BA. Then, Φ satisfies the kMP if and only if |= kMPIC.

Simplified Median Property

We can express the Simplified Median Property (SMP) in formula-based JA as follows:
All minimally inconsistent subsets of the agenda are of the form {ϕ, ψ} with |= ϕ↔ ¬ψ.
This means, in particular, that every minimally inconsistent set has size 2. Therefore, if
an agenda has the SMP it also has the MP. In our framework, if a valuation falsifies IC,
then not only the unique true prime implicant of ¬IC has to have size two, but the two
issues must behave as if they were each other’s negation. The SMP can be expressed in
DL-PA in the following way:

SMPIC := MIIC →
∨

pi,pk∈PIC

(
[flip1({pi, pk})]⟨flip≥0(PIC \ {pi, pk})⟩IC∧

[flip≥0(PIC \ {pi, pk})]¬IC ∧ pi ↔ ¬pk

)
.

Again, the structure of this formula is similar to the one used to describe the MP. The
only difference is that we added a third conjunct to impose the constraint on the issues
pi and pk that have to be mutually exclusive.

Proposition 25. Let Φ be an agenda in formula-based JA and let IC be its translation
in BA. Then, Φ satisfies the SMP if and only if |= SMPIC.

Syntactic Simplified Median Property

The Syntactic Simplified Median Property (SSMP) in formula-based JA is stated as
follows: All minimally inconsistent subsets of the agenda are of the form {ϕ,¬ϕ}.
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Therefore, the only possible inconsistency is the one resulting from accepting at the
same time the positive and the negative version of some formula. Hence, all the issues
are independent from each other. In DL-PA, thus, we will translate this property of the
constraint as follows:

SSMPIC := IC↔ ⊤

Namely, the constraint is equivalent to ⊤ because there is no relationship whatsoever
among the issues. The agents can then submit any individual ballot without violating
the constraint.

Proposition 26. Let Φ be an agenda in formula-based JA and let IC be its translation
in BA. Then, Φ satisfies the SSMP if and only if |= SSMPIC.

4.3 Safety Results in DL-PA

We are finally ready to model in DL-PA the problem of relating properties of the agenda
Φ with classes of rules FΦ[AX] satisfying certain axioms. This result makes it possible to
know whether every rule in this set always returns an outcome which satisfies IC.

The following results have been proven for formula-based JA and in order to under-
stand their statements, we need to introduce two new axioms. The Weak Rationality
axiom (WR) is satisfied whenever a rule F is always complete and complement-free:
namely, the judgment set for the outcome contains either the non-negated or the negated
version of each formula in the agenda. The Systematicity axiom (S) holds whenever a
rule F satisfies both issue-neutrality and independence.

Proposition 27 ([Dietrich and List, 2007; Grandi, 2012]).

(i) If the number of individuals is odd, then agenda Φ is safe for the majority rule if
and only if Φ has the MP.

(ii) Agenda Φ is safe for FΦ[WR, A, S, U] if and only if Φ has the SMP.

(iii) Agenda Φ is safe for FΦ[WR, A, NI , U] if and only if Φ has the SMP.

(iv) Agenda Φ is safe for FΦ[WR, A, I, U] if and only if Φ has the SSMP.

(v) Agenda Φ is safe for uniform quota rules such that q > n− n
k

if and only if Φ has
the kMP.
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Notice that in case we consider problems formulated in BA, or translations from
formula-based JA where each pair of complementary formulas corresponds to a single
issue, the axiom of Weak Rationality is satisfied by design. Moreover, recall that one of
our initial assumptions was that the number of agents n = |N | is always odd.

Therefore, we can reformulate the five results above in DL-PA as valid formulas that
will hold for any n,m, k and for some program f encoding an aggregation rule F .

1. |= [profIC(Bn,m,Om) ; maj(Bn,m)]IC↔ MPIC.

2. |=
(
([profIC(Bn,m,Om) ; f(Bn,m)](A ∧ NI ∧ I ∧ U))→ IC

)
↔ SMPIC.

3. |=
(
([profIC(Bn,m,Om) ; f(Bn,m)](A ∧ NI ∧ U))→ IC

)
↔ SMPIC.

4. |=
(
([profIC(Bn,m,Om) ; f(Bn,m)](A ∧ I ∧ U))→ IC

)
↔ SSMPIC.

5. |=
(
[profIC(Bn,m,Om) ; quotaq1,...,qm

(Bn,m) ; zero(x) ; incr(x)n− n
k ;∧

1≤i<m quotai=quotai+1? ; ∧
1≤i≤m quotai > x?]IC

)
↔ kMPIC.

We now explain the structure of these formulas, since it is the same for all of them. On
the right handside of the biconditional, we have the property that the constraint must
satisfy. In case the constraint does satisfy that property, and the rule we are considering
satisfies the axioms listed on the left handside of the biconditional, then IC will hold after
the execution of this rule. In fact, recall that IC is formulated using the propositional
variables for the outcome.

The interest for these kind of results comes from the observation that often the
outcome of a rule is not consistent with the constraint IC. As we have seen in Chapter
2, many aggregation procedures try to circumvent this shortcoming by performing
alternative computations in case the majority outcome does not satisfy IC. Here, on the
other hand, a different approach is in place: by checking whether IC satisfies certain
properties and the aggregation rule satisfies certain axioms, we can be sure that the
outcome will always be consistent with IC.

4.4 Summary

In this chapter we studied the problem of the safety of the agenda. This line of research
in Judgment Aggregation studies which classes of aggregation rules (characterized by the
axioms they satisfy) are ensured to always return a consistent outcome depending on the
syntactic properties of the integrity constraint.
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In particular, we have first seen a brief recap of the relevant concepts of formula-based
JA for the safety of the agenda. We have seen the notion of minimally inconsistent
subset, essential to translate a problem in formula-based JA into a problem of Binary
Aggregation with IC. We then approached the structure of an integrity constraint from
the point of view of its prime implicants. Then, we provided a DL-PA formula which is
true if and only if the current valuation is essentially making true all the elements of a
single mi-set of the agenda Φ (or of a single prime implicant of ¬IC).

Lastly, we showed how to express various agenda properties as DL-PA formulas. In
particular, we discussed the median, k-median, simplified median and syntactic simplified
median properties. Then, we linked the work of the previous Chapters (where we learned
how to express aggregation rules and axioms) with the current one (on properties of IC)
by writing known results about the safety of the agenda in DL-PA.





Conclusion

Thesis Review

The starting point of our investigation has been the idea of expressing the framework
of Judgment Aggregation in an existing logical calculus, instead of coming up with a
new logic. More precisely, we wondered to what extent it would have been possible
to translate the model of Binary Aggregation with Integrity Constraints for JA into
Dynamic Logic of Propositional Assignments.

In the first place, we introduced both Binary Aggregation with Integrity Constraints
and Dynamic Logic of Propositional Assignments. We then figured out how to encode any
instance of a BA problem into DL-PA: positions in a profile were turned into propositional
variables, and their values into an assignment of true or false. Aggregation rules were
then naturally encoded as DL-PA programs taking these variables as input.

This led to a further exploration of aggregation rules. We showed how to concretely
express many aggregators as DL-PA programs, and we linked the outcome of the former
with the output of the latter through some propositions ensuring the correctness of the
proposed translation. The propositions were different in case we were considering a
resolute or an irresolute aggregation rule, and we showed the structure of a proof for
both of them.

After having carried out these translations, we wondered whether it was possible to
also express axioms, i.e. properties of aggregation rules, in DL-PA. We showed that the
answer was positive both for axioms referring to a single profile and for axioms referring
to multiple profiles. In particular, the second type required us to really make use of the
language of DL-PA to consider two profiles at the same time. Again, we showed how to
link statements in JA about a rule satisfying an axiom with the formulas we built.

In the final part, we turned to the formula-based JA problem of the safety of the
agenda. This was motivated from the fact that we managed in the previous parts to
translate both aggregation rules and axioms, and from the fact that this area studies
which classes of aggregators (defined according to the axioms they satisfy) are ensured
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to always return an outcome consistent with IC. We adapted to our setting the concept
of minimally inconsistent subset of the agenda, and we proposed a new characterisation
of properties of agendas by making use of the language of DL-PA. We concluded by
expressing known results of this field in DL-PA.

Closing and Future Work

There are many interesting directions for future research to continue the work presented
here. We provide a brief overview of some of them, to conclude the thesis.

First of all, though quite extensive, our work of translating aggregation procedures as
DL-PA programs is not complete. This line of research could be continued, for instance,
by working on the recently studied family of binomial rules [Costantini et al., 2016].
These rules are particularly interesting because they allow to take into account some
hidden dependencies among the issues, so that even though two outcomes may both
satisfy a given IC, one of them could be intuitively a better choice than the other (e.g.
when choosing combinations of foods and drinks).

Secondly, it could be interesting to translate as DL-PA formulas more axioms known
in Binary Aggregation. One of them could be the axiom of reinforcement [Costantini
et al., 2016; Endriss and Grandi, 2014]. Roughly speaking, this axiom is satisfied in case
if the intersection between the outcome(s) of a rule on two different profiles on the same
issues is non-empty, then it should be equal to the outcome of the rule on the profile
resulting from concatenating the two profiles.

Along the same lines, we could consider extending the study of agenda properties.
For instance, this could mean trying to give a characterisation and a DL-PA translation
of agenda properties such as even-number negatable: namely, an agenda containing a
minimally inconsistent subset Y such that (Y \ Z) ∪ {¬p | p ∈ Z} is consistent, for
Z ⊆ Y and Z having even cardinality [Dietrich and List, 2009].

The last suggested direction for further investigation is of a different nature. A
characteristics of DL-PA is that this modal logic is grounded on propositional logic.
Hence, there is a procedure to translate DL-PA formulas as formulas of propositional
logic [van Eijck, 2000; Balbiani et al., 2013]. We can thus conceive the possibility of using
SAT-solvers to enhance research in Judgment Aggregation via a preliminary translation
into DL-PA as the one we provided here, and then into propositional logic.

The approach of using computers to guide research has been proven successful in
Computational Social Choice and PA [Tang and Lin, 2009; Geist and Endriss, 2011].
Moreover, there has also been some study for a translation of DL-PA into the Quantified
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Boolean Formulas language and its subsequent implementation [Cultien, 2011]. Therefore,
it is quite natural to consider the exploration of this path for our work as well, and we
leave it for future analysis.
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