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Abstract

In constructive mathematics, equivalences of various properties of cofi-
nite subsets of natural numbers can no longer be proven. In this report, a
number of these properties are investigated for subsets of natural numbers
as well as binary relations on natural numbers.
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1 Introduction

“Meaningful distinctions deserve
to be maintained.”

— Errett Bishop[2]

This is a report on a project done under the supervision of Benno van den Berg in the
spring of 2016.
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1.1 Motivation

In mathematics, the question of how much should be assumed is a delicate one.
On one hand, making fewer assumptions about our structures of interest en-
riches the study of these structures, providing a more challenging and perhaps
more satisfying environment in which to establish results. On the other hand,
we also want our structures to be tame enough so that we aren’t forever lost
and unable to understand anything about them. This is often reflected in a
mathematician’s own professional taste. For instance, a group theorist might
find abelian groups boring, since the presence of commutativity seems to destroy
many interesting problems and situations. However, they may at the same time
find semigroups and monoids uninteresting as well, since the lack of invertibility
limits the results they can prove and structure they can explore. To summarize:
mathematicians want structure, but only just enough.

This same phenomenon presents itself in the foundations of mathematics. In the
absence of classical principles, familiar notions can split into multiple inequiv-
alent ones. The classical mathematician may find these differences uninspiring
and consequently chooses to meld them back together with classical reasoning.
On the contrary, the constructivist mathematician may welcome these new-
found distinctions as enriching their area of study and providing new topics to
explore.

Regardless of one’s own preferences on these matters, it is difficult to justify
destroying distinctions when said distinctions are natural. As a motivating ex-
ample, consider the following theorem1:

Theorem 1.1 (Skolem-Mahler-Lech). Let f : N → Z be a linear recurrence.
Then the zero set of f is, modulo some finite set of ‘sporadic’ zeroes, a union
of residue classes.

For a nice overview of this result and a discussion of some of the issues we are
about to face, we direct the reader to [4].

We might say that the zero set of f is almost always periodic, where by ‘almost
always’ we mean that it is cofinite.

But what exactly do we mean when we say that X is cofinite? Classically, we
might say that its complement, the set of sporadic zeroes, is bound in size, i.e.
it has size at most n for some n ∈ N. Alternatively, we could say that this
set of sporadic zeroes is bound above by some N . Yet another alternative is to
explicitly list the complement:

N \X = {x0, . . . , xn−1}
1My thanks to Benno van den Berg for drawing my attention to this example.
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for some n and elements xi. Classically, all three are of course equivalent, and
yet the third somehow seems to give us the most information: we have both the
cardinality of the complement (n) as well as an upper bound on it (max(xi)

n−1
i=0 )

and on top of that, we fully understand what X looks like. The upper bound
also seems more useful than the size bound, since an upper bound obviously
doubles as a size bound, but not vice-versa.

Returning to our example, what can we say about our sporadic zeroes construc-
tively? It is known that we may effectively find a bound on the number of
sporadic zeroes of f .[4] However, it is still an open question as to whether or
not we can effectively find an upper bound for these zeroes. We could say that
the sporadic zeroes are effectively bound in size but not in space.

This example seems to suggest that there is a meaningful distinction between
‘bound in size’ and ‘bound in space’ which is hidden by classical logic. But
are these actually two distinct notions? Thus far, all we have said is that it is
not immediately obvious how to obtain the space bound from the size bound.
In this report, we will tackle these sorts of questions and more by exploring
various properties of subsets of natural numbers which all reduce to cofiniteness
in a classical setting. In the specific case mentioned above, we will show that
these two notions are indeed distinct, and through similar proofs we shall see
that there are many more such notions which turn out to be in-equivalent in a
constructive setting.

1.2 Overview of Original Contributions

We provide a proof that the so-called unavoidable and co-limited sets can be
separated constructively. We introduce two new notions of cofiniteness, called
repetition unavoidable and dense, and show that they have the filter properties.
We prove a version of the binary Ramsey theorem for co-limited subsets.

1.3 Notation and Logical Principles

Let 2 := {0, 1}, S denote the set of strictly increasing maps from N to N, and
S∗ denote the (non-strictly) increasing maps from N to N.

Throughout this work, we will be working in some system of constructive set
theory which is neutral regarding classical principles (that is to say, it will be
consistent to add the full Law of Excluded Middle). Consequently, we will not
be able to show that two properties are distinct if they actually coincide in
a classical setting. To get around this, we will instead separate properties by
showing that their equivalence implies a certain constructive ‘taboo’, namely
the Limited Principle of Omniscience.

We shall take LPO to denote the Limited Principle of Omniscience, that is,
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LPO :≡ ∀f : N→ 2, (∃x, f(x) = 1) ∨ (∀x, f(x) = 0).

From a computational perspective, LPO tells us that the halting problem can
be decided. Since the halting problem is not computable, and since we expect
constructive proofs to have some computational content, we reasonably take
LPO to be a non-constructive principle.

We shall let AC0,0 denote the following axiom scheme:

∀m ∈ N ∃n ∈ N ϕ(m,n)→ ∃f : N→ N ∀m ∈ N ϕ(m, f(m))

where ϕ is an arbitrary binary predicate on the natural numbers. Construc-
tively, we may justify this axiom scheme by arguing that the strong constructive
readings of the quantifiers on the left-hand side gives us an effective procedure,
yielding the function from the right-hand side.

We shall let M denote Markov’s Principle:

M :≡ ∀f : N→ 2,¬¬∃x.f(x) = 1→ ∃x.f(x) = 1.

Constructively, we may justify this principle as the logical expression of un-
bounded search: If we know that f cannot be zero everywhere, check f(0),
f(1), f(2) and so on until we’ve encountered an i such that f(i) = 1.

By CT we will mean Church’s Thesis:

CT :≡ ∀f : N→ N,∃e ∈ N, e encodes f.

Church’s thesis can be thought of as saying that every function f between
natural numbers is computable in the general recursive sense, and furthermore
that we have access to the “source code” for f (by means of the index e).

2 Notions of Cofiniteness

Let F ⊆ P(N). If F is to match our intuition behind cofinite subsets, it should
satisfy a number of properties. In particular we expect that

1. N ∈ F .

2. For any A,B, if A ∈ F and A ⊆ B, then B ∈ F .

3. For any A,B ∈ F , A ∩B is also in F .

Families of sets that satisfy the above three properties are called filters. Con-
sequently, we shall refer to the above three properties as the filter properties.
Typically, the first two properties are easy to verify, and throughout this work
we will omit proofs of them.
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2.1 Constructive Cofiniteness

Definition 2.1. A ⊆ N is said to be cofinite if there is a natural number n
such that for all k ≥ n, k ∈ A.

Let Cof denote the family of cofinite subsets of N.

Lemma 2.2. Cof is a filter.

Proof. The proof is trivial.

At first glance, it might seem that there is a stronger notion of cofiniteness which
we’ve already mentioned in the introduction. Consider the following proposed
definition:

Definition 2.3. A is said to be strongly cofinite if there is a number n and
numbers b0, . . . bn−1 such that

N \A = {b0, . . . , bn−1}.

As it turns out, this definition is too strong in a constructive setting. Specifically,
it does not form a filter:

Lemma 2.4. Suppose that the strongly cofinite sets are upward closed. Then
the Law of Excluded Middle holds.

Proof. Let ϕ be an arbitrary proposition. Define

Aϕ := {n | ϕ ∨ n > 0}.

Clearly, {1, 2, 3, . . .} is strongly cofinite and {1, 2, 3, . . .} ⊆ Aϕ. However, if Aϕ

is strongly cofinite, we can then decide ϕ by checking whether 0 ∈ N \Aϕ.

As it turns out, Cof is the strongest notion of cofiniteness that satisfies the filter
properties as well as other intuitive properties of cofiniteness. Therefore, we are
justified in giving it the actual name “cofinite”. To show this, we introduce the
following property:

Definition 2.5. Let F ⊆ P(N). We shall say that F is closed under finite
difference if for every A ∈ F and n ∈ N, A \ {n} ∈ F as well.

Lemma 2.6. Cof is closed under finite difference.

Proof. Suppose A ∈ Cof with associated value n, and m ∈ N. It is easy to see
that n′ := max(n,m + 1) does the trick for A \ {m}.
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Clearly, being closed under finite difference is a property that we should expect a
notion of cofiniteness to have. Therefore, we make our argument for Cof being
the strongest constructive notion of cofiniteness through the following lemma:

Lemma 2.7. Let F be a filter which is closed under finite difference. Then
Cof ⊆ F .

Proof. It follows from finite difference and induction that for each n, we have
that {x ∈ N | x ≥ n} ∈ F . For arbitrary A ∈ Cof it is the case that {x ∈ N |
x ≥ n} ⊆ A for some n. Thus A ∈ F by upward-closedness.

2.2 Co-limitedness

Definition 2.8. A ⊆ N is said to be co-limited if there is a natural number n
such that for all sets of numbers a0, . . . , an distinct, there is some ai (0 ≤ i ≤ n)
such that ai ∈ A.

Let Col denote the family of co-limited subsets of N.

Lemma 2.9. Let A ∈ Col with associated value k. For every n and a0, . . . , ak+n

distinct, there are ai0 , . . . , ain ∈ A which are distinct.

Proof. Induction on n. If n = 0 this is precisely the definition of co-limitedness.
Suppose then that the statement holds for n and we have a0, . . . , ak+n+1 distinct.
By the inductive hypothesis, we can find ai0 , . . . , ain ∈ A. There are k + n +
2 − (n + 1) = k + 1 remaining numbers, so we may select one more number in
A amongst the numbers which haven’t already been selected.

Lemma 2.10. Col is a filter.

Proof. Let A,B ∈ Col with associated values k and l, respectively. We claim
that k + l does the trick for A ∩ B. Suppose that a0, . . . , ak+l are distinct
numbers. By the previous lemma, there are ai0 , . . . , ail ∈ A which are distinct.
It then follows from the co-limitedness of B that there is some aij ∈ B amongst
these numbers. We then conclude that aij ∈ A ∩B.

Just as cofinite sets can be thought of as sets whose complement is explicitly
bound, co-limited sets can be thought of as sets whose complement is bound
in terms of cardinality. A bound on the complement of a set obviously gives a
cardinality bound as well, but the cardinality bound will generally not tell us
how to bound the complement spatially. These facts are expressed and proven
below:

Lemma 2.11. Cof ⊆ Col.

Proof. Suppose A ∈ Cof with associated value n. If a0, . . . , an are distinct,
then there is some ai ≥ n by the pigeonhole principle. Therefore, ai ∈ A.

Lemma 2.12. Col ⊆ Cof ⇒ LPO
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Proof. Suppose Col ⊆ Cof and let f : N → 2 be arbitrary. Define f̂ : N → 2
so that f̂(n) = 1 if and only if n is the least value such that f(n) = 1. It is

easy to see that f̂ is primitive-recursively definable from f , and so its existence
is justified constructively.

Let Af := {n | f̂(n) = 0}. Af is co-limited using the value n = 1: If a0, a1 are
distinct, then at most one of them can correspond to the first occurrence of a
1 in f . Therefore, at least one of them is in Af . Thus, we have that Af is also
cofinite, by our assumption that all co-limited sets are cofinite. Let n then be
such that for all k ≥ n, k ∈ Af . If a 1 occurs in f , then clearly the first such
occurrence happens before n, by the definition of Af . It then suffices to check
only the values f(0), . . . , f(n − 1): if one of them is 1, we have found that f
achieves the value 1 somewhere; and if they are all 0, we are assured that f is
0 everywhere.

2.3 Unavoidable Sets

Definition 2.13. A ⊆ N is said to be unavoidable or almost full if for every
f ∈ S, there is some n such that f(n) ∈ A.

Definition 2.14. A ⊆ N is said to be repetition unavoidable if for every
f ∈ S∗, there is either some n such that f(n) ∈ A, or i 6= j such that f(i) = f(j).

Let Una and Una∗ denote the families of unavoidable and repetition unavoid-
able sets, respectively.

Lemma 2.15. Let A ∈ Una. Then for every f ∈ S, there is some g ∈ S such
that (f ◦ g)(N) ⊆ A.

Proof. See Lemma 5.2 in [5]. Note that this proof makes use of AC0,0.

Lemma 2.16. Let A ∈ Una∗. Then for every f ∈ S, there is some g ∈ S∗
such that for all n, f(g(n)) is either in A or occurs twice in the image of f .

Proof. The proof is almost identical to the proof of Lemma 5.2 of [5]. The only
difference is that instead of proving that

∀m∃n.(n > m ∧ n ∈ A)

we prove that

∀m∃n.(n ≥ m ∧ (n ∈ A ∨ ∃n′.n′ 6= n ∧ f(n) = f(n′)))

in much the same way as in the original proof. We then obtain a sequence by
apply AC0,0 as before.

Lemma 2.17. Una is a filter.
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Proof. Let A,B be unavoidable, and let f ∈ S. Let g ∈ S be as in 2.15. Since S
is closed under composition, f ◦g ∈ S. Since B is unavoidable, there is an n such
that f(g(n)) ∈ B. By the previous lemma, f(g(n)) ∈ A, so f(g(n)) ∈ A∩B.

Lemma 2.18. Una∗ is a filter.

Proof. Similar to the above proof.

Lemma 2.19. Una∗ ⊆ Una.

Proof. Obvious.

Lemma 2.20. Col ⊆ Una∗

Proof. Suppose A is co-limited by the value n and suppose f ∈ S∗. Check
the values of f(0), . . . , f(n). This is a finite list of numbers, so of course we
may check for repetition. If there is repetition, we are done. If not, then
f(0), . . . , f(n) constitute n+1 distinct numbers, and so f(i) ∈ A for some i ≤ n
by co-limitedness of A.

Lemma 2.21. Una∗ ⊆ Col⇒ LPO.

Proof. Suppose Una∗ ⊆ Col and let f : N→ 2 be arbitrary. Define f̂ : N→ 2
so that f̂(n) = 1 if and only if s ≤ n ≤ 2s where s is the first occurrence of

a 1 in f (if it exists), and 0 otherwise. Once more, f̂ is primitive-recursively
definable from f .

Let Af := {n | f̂(n) = 0}. Af is repetition unavoidable: if g ∈ S∗, then first

check the value that f̂ takes at g(0). If f̂(g(0)) = 0, we are done. If f̂(g(0)) = 1,
then we have that s ≤ g(0) ≤ 2s where s is the first occurrence of a 1 in f .
Then check the values of g(0), g(1), . . . , g(g(0)), g(g(0) + 1). If there is repe-
tition in this list, we are done. Since g ∈ S∗, we may then suppose that this
list is strictly increasing. Thus, g(g(0)+1) > 2g(0) ≥ 2s and so g(g(0)+1) ∈ Af .

By assumption, this means that Af is co-limited. Suppose then it is co-limited
by the value k. If f does achieve the value one at some point, then the first
such occurrence s must occur before k: s, . . . , 2s are s+ 1 distinct numbers not
in Af , so s < k. Therefore, we may decide as before whether or not f achieves
the value 1 by only looking at the finitely many values f(0), . . . , f(k − 1).

3 Cofiniteness for Decidable Subsets

We briefly turn our attention to notions of cofiniteness for decidable subsets.
Let Pdec(N) denote the collection of decidable subsets of N. All of the classes of
subsets we have introduced can obviously be recast in terms of Pdec(N) instead
of P(N).

As it turns out, Cof and Col as well as Col and Una∗ remain separated, even
after restrict them to decidable subsets:
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Lemma 3.1. Col ⊆ Cof ⇒ LPO and Una∗ ⊆ Col⇒ LPO still hold, even if
we take those families to range over Pdec(N) instead of P(N).

Proof. Examination of the proofs of 2.12 and 2.21 shows that the counterexam-
ples that were constructed were always decidable.

However, we have good evidence that Una and Una∗ cannot be separated
within Pdec(N):

Lemma 3.2.
M⇒ Una ∩ Pdec(N) ⊆ Una∗ ∩ Pdec(N).

Proof. Let A be unavoidable and decidable, and let f ∈ S∗. Our claim is that

∃i, j ∈ N.(f(i) ∈ A ∨ (i 6= j ∧ f(i) = f(j))

which would complete the proof. Since A is decidable, the entire matrix of this
formula is decidable with respect to i, j. Thus, by Markov’s principle, it suffices
to show

¬¬∃i, j ∈ N.(f(i) ∈ A ∨ (i 6= j ∧ f(i) = f(j))

≡¬∀i, j ∈ N.(f(i) 6∈ A ∧ (i = j ∨ f(i) 6= f(j)).

This last formula says that it can’t be the case that f never hits A while also
being injective. Since f is increasing, this means that it can’t be that f never
hits A while also being strictly increasing. This of course follows from the un-
avoidability of A.

3.1 Dense Sets

We now introduce a unique notion of cofiniteness for decidable subsets.

Let A ⊆ N be decidable. For any number n and function f : N → N, let
Af,n := {k | k ≤ n ∧ f(k) ∈ A}.

We shall say that A is dense if for every f ∈ S we have that

lim
n→∞

|Af,n|
n + 1

= 1.

Let Dense ⊆ Pdec(N) denote the family of dense subsets.

Notice that decidability of A is required so that |Af,n| can be computed. It is
then not obvious how this definition could be extended to arbitrary (possibly
undecidable) subsets of N.
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It is fairly obvious that N is dense, and that dense sets are upward closed.
Showing that they are closed under intersection is a bit more interesting. To do
so, keep the following basic combinatorial lemma in mind:

Lemma 3.3. Let A,B be finite sets. Then |A ∪B| = |A|+ |B| − |A ∩B|.

We now proceed with a proof that dense sets are closed under intersection:

Lemma 3.4. Dense is a filter.

Proof. Suppose A,B are dense. Let f be a strictly increasing function and let
ε > 0 be arbitrary. Since A and B are dense, there are N0, N1, respectively,
such that for every n ≥ N0 we have that

|Af,n|
n + 1

> 1− ε

2

and for every n ≥ N1 we have that

|Bf,n|
n + 1

> 1− ε

2

Take N := max(N0, N1), and let n ≥ N . By the above lemma, we have that

|(A ∩B)f,n| = |Af,n ∩Bf,n|
= |Af,n|+ |Bf,n| − |(A ∪B)f,n|
≥ |Af,n|+ |Bf,n| − (n + 1).

Dividing out by n + 1 yields

|(A ∩B)f,n|
n + 1

≥ |Af,n|
n + 1

+
|Bf,n|
n + 1

− 1

> (1− ε

2
) + (1− ε

2
)− 1

= 1− ε.

Claim 3.5. Col ⊆ Dense.

Proof. Let A be co-limited via the value k, and let f be strictly increasing. Given
ε > 0, pick N such that N

N+k > 1− ε. By co-limitedness, among f(0), . . . , f(k)
there is some f(i) ∈ A. Likewise, among f(0), . . . f(i−1), f(i+1), . . . , f(k), f(k+
1) we may find some f(j) ∈ A. More generally, for any n we may find n elements
of A among f(0), . . . , f(k + n − 1). Thus, |Af,k+n−1| ≥ n. If n ≥ N , we then
have that

|Af,k+n−1|
k + n

≥ n

k + n
≥ N

k + N
> 1− ε.
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Claim 3.6. Dense ⊆ Una.

Proof. Let A be dense and f ∈ S. By density, there is some N such that
Af,N

N+1 ≥
1
2 . Thus, Af,n contains at least one element.

Claim 3.7. (Una ⊆ Dense)⇒ LPO.

Proof. Suppose Una ⊆ Dense and let f : N → 2 be arbitrary. Define f̂ and
Af as in 2.21. As before, Af is repetition unavoidable and thus unavoidable.
Therefore, Af is dense by assumption, and so there is some N such that for all
n ≥ N we have that

|(Af )id,n|
n + 1

≥ 2

3
.

If s is the first occurrence of a 1 in f , then clearly, 2s ≤ N , since the proportion
of 1’s below 2s in Af is exactly 1

2 . Therefore, we may decide whether or not f

achieves the value 1 by checking f up to N
2 .

We end with section with a couple of open questions:

1. Can the notion of density be reasonably defined on all subsets of N?

2. Can Dense and Col be separated constructively?

3. Call A weakly dense if for every strictly increasing f , we have that

lim
n→∞

|Af,n|
n + 1

> 0.

Call A uniformly weakly dense if there is some p ∈ (0, 1] such that for
every f strictly increasing, we have that

lim
n→∞

|Af,n|
n + 1

> p.

How do the notions of dense, weakly dense, and uniformly weakly dense
relate?

4 Binary Ramsey Theorems

In this section we will concern ourselves with questions about binary relations
on N. We shall extend our notions of cofiniteness to cover binary relations as
well. We will recall the Finite Ramsey Theorem and show that binary co-limited
relations are closed under intersection.

Throughout this section we shall take a graph to be simple and undirected, i.e.
an irreflexive and symmetric binary relation.

Recall the following constructively valid result, due to Ramsey:
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Theorem 4.1 (Finite Ramsey Theorem). For any natural numbers n, k, there
is a natural number N such that for every graph G of size N with edges colored
using k colors, there is a n-sized clique in G of homogeneous coloring.

Letting k = 2, we obtain the following corollary:

Corollary 4.2. For any natural number n, there is a natural number N such
that for any decidable, symmetric and irreflexive binary relation R on N, we
have that for every set A = {a0, . . . , aN−1}, there is either an R-n-clique in A
or an R-n-clique in A.

We now define some classes of binary relations which in some sense correspond
with the notions of cofiniteness which we discussed earlier.

Definition 4.3. Let R be a binary relation on N. We say that R is unavoid-
able if for every f ∈ S there are m,n such that R((f(m), f(n)).

Lemma 4.4. Let R,S be unavoidable. Then R ∩ S is unavoidable.

Proof. See Theorem 6.5 of [5].

It is worth noting that the proof in Veldman and Bezem makes use of monotone
bar induction, a rather strong intuitionistic principle in Brouwerian analysis.
A testament to its strength is that it is inconsistent with other constructive
principles, namely Church’s thesis (see 8.6.1 of [5]). Veldman and Bezem fur-
ther show that CT is able to prove the negation of 4.4, showing that the use
of bar induction is necessary for their proof. Nonetheless, a proof avoiding the
use of bar induction is given by Coquand within the alternative framework of
inductive definitions.[3]

We shall prove similar results in the cases of cofinite, dense, and co-limited
binary relations which avoids the use of this principle.

Definition 4.5. Let R be a binary relation on N. We say that R is cofinite if
there is an N such that for all m 6= n ≥ N , R(m,n).

Lemma 4.6. Let R,S be cofinite. Then R ∩ S is cofinite.

Proof. Trivial.

Definition 4.7. Let R be a decidable binary relation on N. We say that R
is dense if for every f ∈ S the proportion of edges among f(0), . . . , f(n) in R
tends to 1 as n tends to infinity.

Lemma 4.8. Let R,S be dense. The R ∩ S is dense.

Proof. Similar to the proof of 3.4.
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Much more interesting is the proof that co-limited relations are closed under
intersection:

Definition 4.9. Let R be a binary relation on N. We say that R is co-limited
if there is a k such that for all a0, . . . , ak−1 distinct, there are i 6= j < k such
that R(ai, aj).

Using 4.2, we immediately obtain the desired result for decidable relations:

Lemma 4.10. Let R,S be decidable and co-limited. Then R ∩ S is co-limited.

Proof. Let R,S be co-limited via the values n, k respectively, and without loss
of generality, suppose n ≥ k. By 4.2, there is an N such that for every
A = {a0, . . . , aN−1} we have that either there is an R-n-clique in A or an
R-n-clique in A. The second case is ruled out, since R is co-limited by n. Thus,
there is an R-n-clique in A, whose elements we will denote by ai1 , . . . , ain . Since
k ≤ n, it follows from the co-limitedness of S that there are aij 6= aik such that
S(aij , aik). Since they are elements of the R-clique, we also have that R(aij , aik).
Thus, (R ∩ S)(aij , aik).

This is true for arbitrary A, so we see that R ∩ S is co-limited by N .

Can we extend this result to arbitrary relations? First, we need the following
lemma:

Lemma 4.11. Let R be co-limited. For every natural number l, there is a
number N such that for all a0, . . . , aN−1 ∈ N distinct, there are ai1 , . . . , ail
distinct such that they are a clique in R.

Proof. Suppose that R is co-limited via the number k. Let n := max(k, l) and
let N be the number corresponding to n from 4.2. Let A = {a0, . . . , aN−1} be
an arbitrary set of N distinct numbers.

Our strategy now is to construct an n-clique in A by iteratively building up a
decidable sub-relation of R in A by repeatedly applying Corollary 4.2.

Let S0 := ∅, the empty relation. From Si, use the corollary to see if there is an
Si-n-clique or a Si-n-clique in A. In the former case, we are done, since Si ⊆ R.
In the latter case, use the co-limitedness of R to find some (a, b) ∈ R which is
in the Si-n-clique. Then let Si+1 := Si ∪ {(a, b)}.

It is easy to see by induction that each Si is indeed contained in R and is
decidable. Therefore, this algorithm is well-defined. Furthermore, the number
of edges in Si is strictly increasing in i, since we are always adding a new edge
from an Si-clique. Therefore, we know this algorithm must terminate and give

us an R-n-clique in A in at most N(N−1)
2 stages. 2

2For the reader that prefers a tighter bound, Turán’s Theorem tells us that a graph on N

vertices without a n-clique can have at most bN2(n−2)
2(n−1)

c edges.
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We are finally ready to show that co-limited relations are closed under intersec-
tion:

Lemma 4.12. Let R,S be co-limited binary relations on N. Then R ∩ S is
co-limited.

Proof. Let l be the constant corresponding to the co-limitedness of S. By the
previous lemma, there is some N such that every set of N elements has an R-
l-clique.

For any N distinct elements in N, we may then find an R-l-clique within these
elements. We may then use the co-limitedness of S to find a, b within this
clique such that S(a, b). Since a, b are in an R-l-clique, R(a, b). Therefore,
(R ∩ S)(a, b).
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