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Abstract

We expand on recent work extending the se-
mantic automata model of quantifier verifica-
tion to iteration. We demonstrate a simple and
intuitive method to construct a minimal itera-
tion DFA from two DFA recognizing monadic
regular quantifier languages and prove that de-
terministic CFL are also closed under quanti-
fier iteration. We also touch upon the relation
between computational results and linguistic
discussion of Frege boundary.

1 Introduction

Nearly thirty years ago, van Benthem first intro-
duced the notion of semantic automata, uniting gen-
eralized quantifier theory (GQT) and formal lan-
guage theory in an elegant and powerful way. The
basic idea is to use insights of GQT to identify a
natural language quantifier with an automaton that,
in a precise sense, recognizes the models in which
it is true, letting us consider the quantifier as a pro-
cedure for checking whether it holds. This marriage
enables the use of the Chomsky hierarchy as a mea-
sure of complexity of quantifiers, which “turns out
to make eminent sense, both in its coarse and fine
structure” [2].

Semantic automata have not only led to many ob-
servations interesting in their own theoretical right,
but also to myriad insights in cognitive modeling
and formal learning based on the idea of meaning
as algorithm [9, 5, 25, 4]. A steady flow of research
was inspired by semantic automata in the following
decades, but very little work has been done toward

broadening the model to address more than sim-
ple monadic quantifiers, though the definability of
polyadic quantification is much-studied. Szymanik
[24] provides a computational complexity (Turing
machine-based) perspective on polyadic quantifiers,
showing that some of those natural language con-
structions are polynomial-time closed and others are
NP-hard. Those results prompt the question: can
we also obtain automata characterizations for some
polyadic quantifiers?

This paper is inspired by a recent (2013) answer
to that question by Steinert-Threlkeld and Icard III
[23], exploring semantic automata for iterated quan-
tifiers. They show regular and context-free quanti-
fier languages are closed under iteration; however,
their proposed computational model is unnecessar-
ily powerful. We present a construction that is ap-
propriately powerful. Also in 2013, Kanazawa [11]
answered an open question in [19] characterizing
the class of quantifiers recognized by deterministic
pushdown automata by their corresponding semi-
linear sets. As it turns out, it is rather difficult to
form simple natural language quantifiers that go be-
yond this characterization. Given this new result, it
is interesting to ask whether this natural subset of
context-free languages is closed under quantifier it-
eration. We prove that it is indeed the case.



2 Prerequisites

2.1 Generalized Quantifiers

In this section we recall a few basic concepts of GQT
and refer readers to [20] for more information. GQT
applied to natural language treats determiners as re-
lations between the denotations of other constituents
of a sentence. For example, every is the inclusion
relation: Every student wrote a thesis is true just in
case every individual in the set of students is also in
the set of thesis-writers. We can write the meanings
of the quantifiers as:

every = {(M,A,B) ∶ A ⊆ B}
at least three = {(M,A,B) ∶ ∣ A ∩B ∣≥ 3}

These are simple examples, but a quantifier may de-
note a relation between any number of relations of
any arity. Mostowski [18] first introduced the gen-
eral notion of a unary quantifier, binding a single
variable in a formula similarly to ∀ and ∃ in standard
logic. Lindström extended this to arbitrary types.

Definition 2.1. [16] A Lindström quantifier Q
of type ⟨n1, . . . , nk⟩ is a class of models M =
(M,R1, . . . ,Rk) with the Ri ni-ary that is closed
under isomorphism.

Monadic quantifiers (i.e. of type ⟨1, . . . ,1⟩) are suf-
ficient to analyze simple sentences following the
schema Q1 A are B, as in Every Olympian is an ath-
lete. However, natural language is full of examples
of polyadic quantification, such as the following it-
eration:

Half the students passed every class.

Taking S as the set of students, C as the set of
classes, and P = {(s, c) ∶ s passed c}, we can give
the truth conditions of this sentence as:

(half ⋅ every)(S,C,P )
⇔ half(S,{s ∶ every(C,Ps)})

where Ps is the set {c ∶ (s, c) ∈ P}. The iteration
of half and every yields a new quantifier half ⋅ every
which takes two sets and a binary relation between
them as arguments.

Definition 2.2. Let Q1 and Q2 both be of type ⟨1,1⟩.
Q1 ⋅Q2 is the type ⟨1,1,2⟩ quantifier such that for all

A,B ⊆M and R ⊆M2:

(Q1 ⋅Q2)(A,B,R)⇔ Q1(A,{a ∶ Q2(B,Ra)})

The iteration of three type ⟨1,1⟩ quantifiers creates
a type ⟨1,1,1,3⟩ quantifier, and so forth.

Natural language determiners are generally taken to
satisfy certain semantic universals [1] yielding so-
called CE-quantifiers:

• Q of type ⟨1,1⟩ satisfies extensionality (EXT)
if and only if for all A,B ⊆M and M ⊆M ′:

QM(A,B)⇔ QM ′(A,B)

• Q of type ⟨1,1⟩ is conservative (CONS) if and
only if for all M and A,B ⊆M :

QM(A,B)⇔ QM(A,A ∩B)

• Q of type ⟨1,1⟩ satisfies isomorphism closure
(ISOM)1 if and only if for all A,B ⊆ M and
A′,B′ ⊆M ′, if (M,A,B) ≅ (M ′,A′,B′):

QM(A,B)⇔ QM ′(A′,B′)

Definition 2.3. For Q a type ⟨1,1⟩ CE quantifier,
define Qc by:

Qc(x, y)⇔ ∃M and A,B ⊆M s.t.
∣ A −B ∣= x, ∣ A ∩B ∣= y and QM(A,B)

Theorem 2.4 ([2]). Let Q of type ⟨1,1⟩ be a CE-
quantifier. Then for all M and A,B ⊆M :

Q(A,B)⇔ Qc(∣ A −B ∣, ∣ A ∩B ∣)

2.2 Regular and Deterministic Context-free
Languages

We assume familiarity with formal language theory
[10], but recall a few definitions and key results for
later reference, mostly following [21].

Definition 2.5. A deterministic finite automaton
(DFA) A is a five-tuple (Q,Σ, δ, s, F ) where Q is
a finite set of states, Σ is an input alphabet, δ is a
function from Q × Σ to Q, s ∈ Q is the start state,
and F ⊆ Q is a set of final states.

A DFA is often graphically represented as a set
of nodes (the states of the machine, with the start

1Note that isomorphism closure is part of our definition of
generalized quantifier from the outset.



state indicated by an ingoing arrow with no source,
and the final states doubly circled) with labeled, di-
rected edges between them (representing the tran-
sition function). An edge from q to p labeled a
means that δ(q, a) = p. We can extend δ to be de-
fined for entire strings in the obvious way, setting
δ(q,w) = δ(δ(q, a), v) where w = av and a is a sin-
gle symbol of Σ. The language of A is the set of
strings w such that a run of A (a computation begin-
ning in s, reading w and transitioning according to
δ) ends in a final state:

L(A) = {w ∶ δ(s,w) ∈ F}

The set of languages accepted by some DFA are
the regular languages (REG). REG has nice clo-
sure properties, including closure under concatena-
tion, substitution, and complementation. These re-
sults are all easily proven via automata construction;
however, while the first two generally result in non-
deterministic finite automata due to the addition of ε
transitions, the complement is obtained by switching
final and non-final states.

Deterministic context-free languages (DCFLs) are a
proper subclass of context-free languages.

Definition 2.6. A deterministic pushdown au-
tomaton (DPDA) M is given by a six-tuple
(Q,Σ,Γ, Z0, δ, s, F ) where:

• δ is a function from Q × Σ × Γ to (Q × Γ) ∪
{∅} such that the following condition holds for
every q ∈ Q, a ∈ Σ, and x ∈ Γ:

exactly one of δ(q, a, x), δ(q, a, ε), δ(q, ε, x)
and δ(q, ε, ε) is non-empty.

This ensures that M always has exactly one move
per configuration (is deterministic).

DPDA extend DFA with a stack (the last-in-first-
out data structure) having push and pop operations.
They may accept by final state or empty stack, but
these notions are equivalent for end-marked lan-
guages.

Like REG, CFL is closed under concatenation and
substitution, but not complementation. DCFL is
closed under complementation (see Lemma 5.1), but
not substitution.

2.3 Semantic Automata for Monadic
Quantifiers

Recall that if a quantifier Q satisfies CONS, EXT,
and ISOM, then it has an equivalent representation
as a binary relation on natural numbers Qc such that

Q(A,B)⇔ Qc(∣ A −B ∣, ∣ A ∩B ∣)

Since the truth of Q(A,B) depends only on the car-
dinalities of A and A ∩B, we can record all the in-
formation relevant to its evaluation as a string of 0’s
and 1’s with one symbol per element a in A: if a
is in A ∩ B, record a 1, otherwise record 0 (a is in
A−B). Formally, we can define the following trans-
lation function.

Definition 2.7. Let M = ⟨M,A,B⟩ be a model,
a⃗ an enumeration of A, and n =∣ A ∣. We define
τ(a⃗,B) ∈ {0,1}n by

(τ(a⃗,B))i =
⎧⎪⎪⎨⎪⎪⎩

0 ai ∈ A −B
1 ai ∈ A ∩B

For a string s ∈ {0,1}∗ generated by τ(a⃗,B), let
#0(s) denote the number of 0’s in s and #1(s) the
number of 1’s. Then we have

(#0(s),#1(s)) ∈ Qc

⇔ (∣ A −B ∣, ∣ A ∩B ∣) ∈ Qc

⇔ Q(A,B)

Since we have a correspondence between models
and strings, we can take the set of strings corre-
sponding to the set of models where Q is true to
constitute the language of Q:

LQ = {s ∈ {0,1}∗ ∶ (#0(s),#1(s)) ∈ Qc}

For example:

Levery = {s ∈ {0,1}∗ ∶ #0(s) = 0}
Lexactly three = {s ∈ {0,1}∗ ∶ #1(s) = 3}
Leven = {s ∈ {0,1}∗ ∶ #1(s) mod 2 = 0}
Lhalf = {s ∈ {0,1}∗ ∶ #1(s) = #0(s)}

This opens up the application of automata theory to
generalized quantification.

Theorem 2.8. [2] The first-order (FO) definable
quantifiers are precisely those which can be recog-
nized by permutation-invariant acyclic finite state
machines.



Theorem 2.9. [19] Finite automata accept the class
of all monadic quantifiers definable in FO logic ex-
tended with all divisibility quantifiers.

For example, exactly three and every, which are FO
definable, are accepted by the respective automata
in Figure 2. To account for the “counting modulo”
quantifiers such as every, which are not FO defin-
able, we need automata with loops. We will refer
to quantifiers with languages accepted by finite au-
tomata as regular quantifiers.

Theorem 2.10. [2] Every PDA-computable quanti-
fier is FO additively definable.

Theorem 2.11. [2] Every FO additively definable
binary quantifier is PDA-computable.

This means that the proportional quantifiers such as
half or at least two-thirds need the extra computing
power of a stack to keep track of the relative number
of 1’s and 0’s. Similarly, we refer to such quantifiers
as (deterministic) context free quantifiers.

3 New Proof of Closure under Iteration

Shane Steinert-Threlkeld and Thomas Icard III
made the first foray into semantic automata for
polyadic quantifiers with their paper [23]. First we
present a convention for translating models with bi-
nary relations into strings. Then we reprove the
results that regular and context-free languages are
closed under quantifier iteration in a cleaner fash-
ion that makes explicit the intuitions grounding their
proofs.

In order to talk about the language accepted by an
automaton for an iterated quantifier, we need a way
of translating models with non-unary relations into
strings.2 The idea is simple: given a binary relation
R with domain A and range B, look in turn at every
element a of A and record, for each element b of B,
whether or not a is in the relation R with b. To keep
the substrings generated by each a distinguishable,
we introduce a new separator symbol ⧈.

Example 3.1. A quick example will make the def-
inition to follow more intuitive. Figure 1 depicts a

2For simplicity, in this paper, we assume the relations are
binary, but all the results may be easily generalized [17].

model with sets A and B and a relation R between
the two. This could represent, for example, a set of
aunts, a set of books, and the information regard-
ing which aunts read which books. To translate this
model into a string, we look at the elements of A in
some order (the indices yield a natural enumeration)
and examine which elements of B they connect to:
a1 R’s every element ofB, so we write 111⧈; a2 R’s
only the first element, so we write 100⧈; a3 R’s the
last two elements, so we write 011⧈. Concatenating
these three substrings yields 111⧈100⧈011⧈, which
is the string representation of the model.

a1

a2

a3

b1

b2

b3

A B
R

Figure 1: Example for Definition 3.2

Definition 3.2. LetM = ⟨M,A,B,R⟩ be a model,
a⃗ and b⃗ enumerations of A and B, and let n =∣ A ∣.
Define a new translation function τ2 which takes two
sets and a binary relation as arguments:

τ2(a⃗, b⃗,R) = (τ(b⃗,Rai)⧈)i≤n

where Rai = {b ∈ B ∶ (ai, b) ∈ R} is the set of b
in B in the relation R with ai. That is, for each ai,
τ computes a substring with a separator symbol ⧈
appended to the end, recording a 1 if bj is inRai and
a 0 otherwise. The final string is the concatenation
of all these substrings.

Now languages of iterated type ⟨1,1,2⟩ quantifiers
are straightforward extensions of languages in the
monadic type ⟨1,1⟩ case. Recall that a quantifier
Q1 is equivalently a binary relation Qc

1 between the
number of 1’s and 0’s in the strings of its language.
For quantifiers of the form Q1 ⋅Q2, we let subwords
(sequences of 1’s and 0’s separated by ⧈’s) in the
language of Q2 replace 1’s and subwords in the com-
plement of the language of Q2 replace 0’s as the
units upon which Qc

1 is defined. Whether or not a
subword is in the language of Q2 is just an instance
of the simple monadic case.

To see that this is the correct intuition, recall the def-



inition of binary iterations:

(Q1 ⋅Q2)(A,B,R)⇔ Q1(A,{a ∶ Q2(B,Ra)})

If we denote the set {a ∶ Q2(B,Ra)} by X , then a
single a (yielding a 1 by τ ) is in A ∩X if and only
if Q2-many b are in B ∩Ra (yielding a string in the
language of Q2 by τ ). Thus we also have that a is in
A −X (yielding a 0) if and only if it’s not the case
that Q2-many b are in B ∩Ra (yielding a string not
in the language of Q2–equivalently, a string in the
complement). Since they are equivalent, we write
w /∈ LQ2 and w ∈ L¬Q2 interchangeably throughout.

Definition 3.3. Let Q1 and Q2 be quantifiers of type
⟨1,1⟩. We define the language of Q1 ⋅Q2 by

LQ1⋅Q2 = {w ∈ (wi⧈)∗ ∶ wi ∈ {0,1}∗and

(∣ {wi ∶ wi /∈ LQ2} ∣, ∣ {wi ∶ wi ∈ LQ2} ∣) ∈ Q1
c}.

Example 3.4. The language of the iterated quanti-
fier some ⋅ every still ultimately reduces to a numeri-
cal constraint on the number of 1’s and 0’s in strings
of the language:

s ∈ Lsome⋅every ⇔
(∣ {wi ∶ wi /∈ Levery} ∣, ∣ {wi ∶ wi ∈ Levery} ∣)

∈ somec⇔∣ {wi ∶ wi ∈ Levery} ∣> 0

⇔∣ {wi ∶ (#0(wi),#1(wi)) ∈ everyc} ∣> 0

⇔∣ {wi ∶ #0(wi) = 0} ∣> 0

By a similar derivation we get:

s ∈ Levery⋅some⇔∣ {wi ∶ #1(wi) = 0} ∣= 0

The string from Example 3.1, 111⧈100⧈011⧈, is a
member of both these languages, indicating that the
sentences Every A R some B and Some A R every B
are both true in the model depicted by Figure 1.

In the following sections we often speak of words
in the language of Q2 without explicitly stating
whether we mean words in {0,1} or words ending in
⧈. When considering these strings as input for iter-
ation automata, we will make reference to the well-
formedness of a string. Call a string well-formed if
it ends in ⧈. The reader may wonder why we don’t
define well-formedness in terms of individual sub-
words. To explain this, we must point out that the
language accepted by an iteration automaton is in

a sense bigger than the number of relations whose
translation it accepts [17]3.

Steinert-Threlkeld and Icard III argue the closure of
regular and context-free languages under quantifier
iteration via arguments from regular expressions and
context-free grammars, respectively. Their intuitive
justification does not outright mention the general
closure of regular and context-free languages under
substitution; however, it is informative to deliber-
ately state the fact that quantifier iteration just is an
instance of substitution, from which these closure
results follow straightforwardly. In our reformula-
tions of their proofs, we define substitutions directly
on languages.

Theorem 3.5. Let LQ1 and LQ2 be languages of
type ⟨1,1⟩ regular quantifiers with alphabets Σ1 =
Σ2 = {0,1}. LQ1⋅Q2 is a regular language.

Proof. Define a substitution s on LQ1 by the follow-
ing:

• s(0) = L¬Q2⧈

• s(1) = LQ2⧈

Claim: s(LQ1) = LQ1⋅Q2

Proof: This is immediately clear from the substitu-
tion. For w = (wi⧈)∗, w ∈ LQ1⋅Q2 if and only if (∣
{wi ∶ wi ∈ L¬Q2} ∣, ∣ {wi ∶ wi ∈ LQ2} ∣) ∈ Qc

1, if and
only if w = s(w′) where (#0(w′),#1(w′)) ∈ Qc

1, if
and only if w ∈ s(LQ1). ∎

Thus s is the appropriate substitution. Since regu-
lar languages are closed under complement, L¬Q2 is
regular, and since regular languages are closed under
concatenation, L(¬)Q2

⧈ is regular. Thus s defines a
regular substitution, so by regular substitution clo-
sure, s(LQ1) = LQ1⋅Q2 is a regular language.

Theorem 3.6. Let LQ1 and LQ2 be languages of
type ⟨1,1⟩ context-free quantifiers with alphabets
Σ1 = Σ2 = {0,1}. LQ1⋅Q2 is a context-free language.

Proof. We use the same substitution s on LQ1 :

3For a model M = (M,A,B,R) with n =∣ A ∣ and m =∣

B ∣, τ2 generates strings of the form ((1+ 0)m⧈)n, but LQ1 ⋅Q2

contains strings of the form ((1+0)∗⧈)∗, where subwords need
not have equal length.



• s(0) = L¬Q2⧈

• s(1) = LQ2⧈

Claim: s(LQ1) = LQ1⋅Q2

Proof: The argument for the previous Claim holds
here as well. ∎

Since context-free quantifier languages are closed
under complement4, L¬Q2 is context-free, and since
context-free languages are closed under concate-
nation, L(¬)Q2

is context-free. Thus s defines a
context-free substitution, so by context-free substi-
tution closure, s(LQ1) = LQ1⋅Q2 is a context-free
language.

4 Constructing minimal iteration DFA

As mentioned previously, the construction in [23]
is overly powerful, creating a pushdown automaton
as the iteration of two DFA. Their construction of
Q1 ⋅Q2 consists of a copy of Q2 that pushes a 1 (0)
to the stack for every subword in LQ2 (L¬Q2) and
a “pushdown reader” QP

1 that “reads” the resulting
stack. Further, in that paper they state “There ap-
pears to be no such analogously general mechanism
for generating minimal DFAs.” Of course, there is
great theoretical and practical interest in identify-
ing the least-powerful automata recognizing iterated
quantifiers. The duality between languages and au-
tomata makes formal language theory interesting
in its own right, and the fact that automata often
represent intuitive algorithms for string-membership
provides further motivation from the perspective of
modeling quantifier verification. We show that, as
the iteration closure of regular languages suggests,
there is a general method to construct an iteration
DFA from two DFA, and furthermore we can di-
rectly construct the near-minimal version in every
case.

The definition of languages of iterated quantifiers
already suggests how to go about constructing it-
erated automata from the monadic building blocks.
For languages, just replace 1’s in the first by entire

4This follows from Theorem 2.11, since semilinear or FO
definable sets are closed under complement.

words in the language of the second, and 0’s by en-
tire words in the complement of the language of the
second. To complete the picture, we must ask our-
selves, what is the analogous notion in terms of au-
tomata? Quite simply, 1-transitions of the first au-
tomaton should be replaced by accepting runs of the
second automaton and 0-transitions replaced by re-
jecting runs.

The main idea is to start with Q1 as the backbone of
Q1 ⋅Q2 and then replace each of its states with a copy
of Q2. To make things easier, imagine these copies
are indexed by the state they replace. From here on
we refer to such copies by Qq

2 and refer to their com-
ponents in the obvious way (e.g. Qq

2, s
q
2, δ

q
2, F

q
2 ). If

some copy Qq
2 ends in a final state seeing some sub-

word, then the machine should behave as if Q1 had
seen a 1. Suppose q would transition to p on a 1.
This means that every final state of Qq

2 should tran-
sition to the start state of Qp

2 on ⧈ (as this marks the
end of the subword). Similarly, every rejecting state
of Qq

2 should have a ⧈-transition to Qr
2, where r is

the state that q would transition to on a 0. Q1 ⋅ Q2

has the same start and final states as Q1.

Before giving the formal definition, let us dig a lit-
tle deeper with an example. Consider the automa-
ton exactly three ⋅ every depicted in Figure 3. The
vestiges of the original state-space of exactly three
is clearly visible as the “spine” of the automaton,
enclosed in the darker dashed box, but the original
states have been replaced by copies of every, en-
closed in the lighter dashed boxes. There are three
exceptions to this simple replacement scheme:

(i) Final states: Notice that the final state of ex-
actly three remains externally linked up with
a copy of every. This is so that the automa-
ton cannot erroneously accept a word ending in
111, for example, which is not well-formed.

(ii) Terminal states: Notice that the terminal state
of exactly three doesn’t seem to have been re-
placed at all. If the automaton reaches state q5,
the rest of the input is irrelevant. The automa-
ton can only reject at this point, hence the loop-
ing on every symbol.

(iii) Final, terminal states: The current example
does not exhibit this exception, but when an au-



tomaton reaches a state that is both final and
terminal, it should accept irrespective of the
remaining input so long as it is well-formed.
Such states q require at most one extra state eq
to go to in which to loop on 0 and 1 and then
return to q on ⧈. If q has a predecessor state r
with equivalent behavior, then the extra state is
unnecessary (as q may just go to r on 0 and 1).

q q′
1 1 1 1

0 0 0 0 0, 1

0

0, 11

Figure 2: exactly three and every

q1 q2 q3 q4 q5

q′1 q′′4 q′4

⧈ ⧈ ⧈ ⧈

⧈ ⧈ ⧈ ⧈ ⧈0 0 0 0
1

0

0, 1 0, 1 0, 1 0, 1 1

1 1 1 0, 1, ⧈

Q2

Q1

Figure 3: exactly three⋅every

As the state-space is given by the replacement
scheme, and the 1 and 0-transitions are given by the
copies of Q2, all that remains is to specify the ⧈-
transitions, which are determined by the 1 and 0-
transitions in the original Q1. Consider the states q1
and q′1, together comprising Qq

2, replacing q in ex-
actly three. Since q1 is an accepting state in every, a
subrun ending there is analogous to a 1. Thus the ⧈-
transition from q1 should mimic the 1-transition of q
to q′, going to the start state of the copy of Q2 replac-
ing q′. Similarly, q′1 should mimic the 0-behavior of
q, which is to loop, meaning q′1 should return to the
start state of the Q2 copy of which it is a member.

The final state q4 is not itself a member of any copy
of Q2, but its ⧈ transitions are still decided by the
start state of its associated copy of Q2. If ⧈ is seen
in such a state, this means the current subword was
empty; this works because ε (the empty string) is in

the language of Q2 if and only if s2 is final, so s2
appropriately determines ⧈-behavior.

Definition 4.1. Previously we likened the state
space of Q1 to the spine or essential structure of
Q1 ⋅Q2. Here we make this idea precise by describ-
ing a mapping betweenQ1 and a subspace ofQ (the
state-space of the iteration automaton). Define a bi-
jection f ∶ Q1 → Q by the following:

f(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

qF q ∈ F1, non-terminal
sq2 q /∈ F1, non-terminal
qFT q ∈ F1, terminal
qT q /∈ F1, terminal

For example, if a state inQ has the subscript F , then
the corresponding state in Q1 must have been both
final and non-terminal. Not every sq2 in Q is f(q)
for some q ∈ Q1, but if q ∈ Q1 is non-final and non-
terminal, it will be merged with the start state of its
copy of Q2. This state mapping will be mostly useful
for defining the transition function for the iteration
automata. Using this mapping to convert between
q and f(q) and vice versa, we can be sensitive to
the above-mentioned exceptions in the replacement
scheme while still using δ1 to define δ. When the
value of f for some q is clear, we may write it di-
rectly, e.g. “qFT ” in lieu of “f(q),” and similarly
for f−1. Sometimes we write, e.g., qT to mean a
specific state, and other times to mean the set of all
states that are f(q) for some non-final, terminal state
q. The intention should be clear from the context.

Definition 4.2. Let Q1 = (Q1,Σ1, δ1, s1, F1) and
Q2 = (Q2,Σ2, δ2, s2, F2) be DFAs accepting the
monadic quantifier languages LQ1 and LQ2 , respec-
tively. The iteration DFA Q1 ⋅Q2 is given by:

• Q: ⋃
q∈Q1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Qq
2 ∪ {qF } q ∈ F1, non-terminal
Qq

2 q /∈ F1, non-terminal
{eq, qFT } q ∈ F1, terminal
{qT } q /∈ F1, terminal

Here eq is the (potentially unnecessary) state
added to make sure input seen in qFT is well-
formed.

• Σ = {0,1,⧈}

• Transition function:



– For p ∈ Qq
2 ∶ δ(p, x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δq2(p, x) x ∈ {0,1}
f(δ1(f−1(p),1)) x = ⧈, p ∈ F q

2

f(δ1(f−1(p),0)) x = ⧈, p /∈ F q
2

– For q ∈ {qF }: δ(q, x) = δq2(s
q
2, x)

– For q ∈ {qT }: δ(q, x) = q

– For q ∈ {qFT }: δ(q, x) =
⎧⎪⎪⎨⎪⎪⎩

eq x ∈ {0,1}
q x = ⧈

– For p ∈ {eq}: δ(p, x) =
⎧⎪⎪⎨⎪⎪⎩

eq x ∈ {0,1}
q x = ⧈

• s = f(s1)

• F = {f(q) ∣ q ∈ F1}

As remarked earlier, the eq may not be necessary,
but whether they are needed is easily seen after δ
has been specified. Once the above construction is
completed, one must inspect the state p such that
δ(p,⧈) = q, for each q in qFT . If p also loops on
0 and 1, then eq can be removed, and δ amended
such that q transitions to p on ⧈.

The definition ofQmakes obvious the following up-
per bound on the size of iteration DFAs:

Fact 4.3. The state space of Q1 ⋅Q2 is at most

∑
q∈Q1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣ Q2 ∣ +1 q ∈ F1, non-terminal
∣ Q2 ∣ q /∈ F1, non-terminal
2 q ∈ F1, terminal
1 q ∈ F1, non-terminal

This fact gives us the state complexity of iteration
DFA, which is a worst-case notion of state-space
size5, and thus an upper bound.6 Since our defini-

5See [8] for an overview of the concept. “The state com-
plexity of a regular language L . . .is the number of states of its
minimal DFA,” and “[t]he state complexity of an operation (or
operational state complexity) on regular languages is the worst-
case complexity of a language resulting from the operation, con-
sidered as a function of the state complexities of the operands.”

6In [22] (2014), Steinert-Threlkeld also gives a definition
(developed independently) of iteration DFA for type ⟨1,1,2⟩
regular iterations (different to the PDA construction developed
in [23]). His definition uses the cross-product ofQ1 andQ2 for
the state space with an “unrolled” version of Q2 with an extra
state if s2 is final. This leads to a state complexity of ∣ Q1 ∣ ⋅ ∣

tion uses cases, it is generally tight for any language.
Iteration DFA may have fewer states if, as discussed
above, extra states eq are not needed to ensure well-
formedness of the input (see Figure 4). Thus, the
size of Q1 ⋅ Q2 is generally within m =∣ {qFT } ∣
of this upper bound (and m is at most 1 for reg-
ular quantifiers). It is also possible for unforseen
state equivalences to occur (see, for example, Figure
5), but such minimizations are similarly restricted to
“end behavior.”

q1 q2

1
⧈

0, 1

0, 1

0, ⧈ ⧈

(a) some ⋅ some

p1 p2

ep2

⧈

0 0, 1⧈ ⧈

0, 1

⧈1

0, 1

(b) some ⋅ every

Figure 4: In (a), the terminal final state q2 of the outer
some can 0,1-transition to the terminal state of the em-
bedded some. In (b), our definition correctly predicts the
necessity of ep2 .

0
1

1 1 1

⧈

1⧈
⧈

⧈

⧈

⧈
0 0 0 0

1
0, 1

0, 1, ⧈

Figure 5: every⋅exactly three. Solid lines indicate the
minimal DFA. Dashed lines indicate the output of the
construction, with a full copy of exactly three.

We now make explicit the correctness of the defini-
tion of iteration automata by showing that the lan-
guage accepted by the automaton constructed from
the automata for regular quantifiers Q1 and Q2 and
the language LQ1⋅Q2 are equivalent. To prove this,
we first introduce a bit more helpful terminology
and a preliminary lemma. Define a function g ∶
{0,1}∗ → {0,1} by:

Q2 + 1 ∣. Using the function f to distinguish different cases in
defining the state space, we achieve a smaller state complexity
that only reaches ∣ Q1 ∣ ⋅ ∣ Q2 + 1 ∣ in case Q1 is a trivial
language (having only final states).



g(w) =
⎧⎪⎪⎨⎪⎪⎩

0 w /∈ LQ2

1 w ∈ LQ2

so g is the characteristic function of LQ2 , and let
g′(w) = g(wi)i≤#⧈(w), where w ∈ (wi⧈)∗. For ex-
ample, letting Q2 = every, we can calculate g′(111⧈
101⧈) = g(111)g(101) = 10.

Using g and the function f from Definition 4.1, in
the following lemma we prove the intuition ground-
ing our construction in the first place: that transitions
on words in the language of Q2 and its complement
in Q1 ⋅Q2 are somehow equivalent to transitions on
1’s and 0’s in Q1. See Figure 6 for an illustration
of this idea. Given this correspondence, the desired
result will be easy to see.

Lemma 4.4. For wi ∈ {0,1} and p = f(q) for some
q ∈ Q1, δ(p,wi⧈) = f(δ1(f−1(p), g(wi))). This
means that the state Q1 ⋅Q2 reaches from p reading
wi⧈ is the result of applying f to the state that Q1

reaches from f−1(p) reading g(wi).

p f(q)

δ(p,wi⧈)

f−1(p)

f−1

q

δ1(f−1(p), g(wi))
f

Figure 6: Diagram for Lemma 4.4

Proof. There are four cases to consider, depending
on what kind of state p is:

(i) sq2: Suppose wi ∈ LQ2 . Then δ(sq2,wi) = p
where p ∈ F q

2 , and δ(p,⧈) = f(δ1(q,1)),
which is precisely f(δq(f−1(sq2), g(wi))).
The case for wi /∈ L2 is symmetric.

(ii) qF : Suppose wi ≠ ε, so wi = xw′
i where

x ∈ {0,1}. Then δ(qF , x) ∈ Qq
2, and this col-

lapses to case (i). Suppose wi = ε, and ε ∈ LQ2 ,
so g(wi) = 1. Then δ(qF ,⧈) = δ(sq2,⧈) =
f(δ1(q,1)), since sq2 ∈ F q

2 (and similarly if
ε /∈ LQ2).

(iii) qFT : Since q = f−1(qFT ) is terminal,
δ1(q, g(wi)) = q. If wi = ε, then δ(qFT ,⧈) =

qFT = f(q). If not, then δ(qFT ,wi) = eq, and
δ(eq,⧈) = qFT = f(q).

(iv) qT : Again, q = f−1(qT ) is terminal, so
δ1(q, g(wi)) = q, and δ(qT ,wi⧈) = qT = f(q).

Theorem 4.5. The language accepted by Q1 ⋅Q2 is
LQ1⋅Q2 .

Proof. It follows from Lemma 4.4 that if w is a
string of the form (wi⧈)∗, Q1 ⋅Q2 accepts w visiting
a sequence of states ss12 q1⋯qn (with qi = f(q) for
some q ∈ Q1, and possibly repeating) if and only if
Q1 accepts the string g′(w) visiting the sequence of
states s1f−1(q1)⋯f−1(qn). That is, w ∈ L(Q1 ⋅Q2)
if and only if g′(w) ∈ LQ1 . But g′(w) ∈ LQ1 if and
only if (#0(g(w)),#1(g(w))) ∈ Qc

1, if and only
if, by definition, (∣ {wi ∶ wi /∈ LQ2} ∣, ∣ {wi ∶ wi ∈
LQ2} ∣) ∈ Qc

1, which is the definition of membership
for LQ1⋅Q2 .

5 Closure of DCFLs under Iteration

Now, it is natural and relevant to ask whether deter-
ministic context-free quantifier languages, identified
recently by Kanazawa [11], are closed under itera-
tion. In this section we answer this open question
in the affirmative.7 The result is not obvious since
DCFLs do not enjoy general substitution closure.

First we establish a sort of normal form for DPDA
that is necessary to preserve determinism in the re-
sulting iteration automaton.

Lemma 5.1. For every DPDA P recognizing some
LQ that is the language of a deterministic context-
free type ⟨1,1⟩ quantifier Q, there is a DPDA P ′

with the following properties:

7This closure result was announced independently by Shane
Steinert-Threlkeld and a proof sketch appears in [22], however,
it indicates that the DPDA construction proceeds similarly to the
DFA case. Since simply complementing the accepting states of
a given DPDA may not result in the correct behavior (as it may
continue to transition between accepting and rejecting states af-
ter reading the input), the correctness of our definitions in this
section relies on the modifications described in Lemma 5.1. The
cases are not necessarily similar (that is, we can not necessar-
ily use a single DPDA Q2 to decide if w ∈ LQ2 or w ∈ L¬Q2 )
without the kind of normal form for DPDA we describe here.



1. P ′ has a single accept state qaccept such that

(q0,w⧈, ε)
∗⊢ (qaccept, ε) if and only if w ∈ LQ

2. P ′ has a state qreject such that (q0,w⧈, ε)
∗⊢

(qreject, ε) if and only if w ∈ L¬Q
That is, given P recognizing the language of Q, we
can construct another DPDA that in a sense recog-
nizes both Q and ¬Q by empty stack given an end-
marker.

Proof. This follows from the complementation clo-
sure of DCFL and the ability to recognize the end
of the string. The original DPDA may enter both
final and non-final states via ε moves after the last
symbol, so inverting final and non-final states is in-
sufficient to construct the complement. The key is
to identify a set of reading states R without ε moves
and a new set of final states F contained in R such
that R − F is accepting for the complement of P .
Then add a new accept state qaccept and modify the
transition function such that the automaton empties
its stack and goes to qaccept if it enters a state in F af-
ter reading ⧈, satisfying (1). We do the same for a
new state qreject and R − F , satisfying (2).

F

F

qaccept

qreject

R

Figure 7: End result of DPDA modification according to
Lemma 5.1

Now we can demonstrate the following with a proof
by automata8:

Theorem 5.2. Deterministic context-free languages
are closed under quantifier iteration.9

8An alternative proof via iterated grammars and the DK-test
(see [15] and [21]) is also presented in [17]

9Note that, though we state this proof in terms of quanti-
fier languages, it applies to the “quantifier iteration” of any two
binary DPDA-recognizable languages.

Recall that we use the notation ⟨q, x,α, β, q′⟩ for
δ(q, x,α) = (q′, β) for (D)PDA.

Definition 5.3. Let Q1 = (Q1,Σ1,Γ1, δ1, s1, F1)
be any DPDA recognizing a deterministic context-
free quantifier language LQ1 . Let Q2 =
(Q2,Σ2,Γ2, δ2, s2, qaccept, qreject) be a DPDA modified
according to Lemma 5.1 recognizing an endmarked
deterministic context-free quantifier language LQ2 .
Define the iteration DPDA Q1 ⋅Q2 by:

• Q = Q1 ∪Q2

• Σ = Σ1 ∪Σ2

• Γ = Γ1 ∪ Γ2 ∪Q1

• δ =
δ2 (1)
∪{⟨q, ε, α, β, q′⟩ ∶ ⟨q, ε, α, β, q′⟩ ∈ δ1} (2)
∪{⟨q, ε, α, qα, s2⟩ ∶ (q, x,α) ∈ dom(δ1) (3)

and x ∈ {0,1}
∪{⟨qaccept, ε, qα, β, q

′⟩ ∶ ⟨q,1, α, β, q′⟩ ∈ δ1} (4)
∪{⟨qreject, ε, qα, β, q

′⟩ ∶ ⟨q,0, α, β, q′⟩ ∈ δ1} (5)

• s = s1

• F = F1

We take the states of Q1 and the states of Q2 and
connect them in the following way: for every transi-
tion in δ1 in which some state q reads a symbol, we
replace that transition with an ε transition to the start
state of Q2 and push q to the stack. Thus all sub-
words wi⧈ of the input are processed by Q2; in any
case, Q2 empties its stack up to q and ends up in one
of qaccept or qreject, and transitions back into Q1—with
the new state and new stack contents decided by q.

Of course, natural language iterations often involve
a mixture of regular and context-free quantifiers:

(i) A third of the students answered every question
correctly.

(ii) Fewer than five students attended more than
half of the presentations.

Since REG⊂DCFL, every DFA can be converted to
an equivalent DPDA with no stack manipulation, so
the above definition is general enough to accommo-
date the case that one or both of the input automata
are DFA.



Claim 5.4. The automaton Q1 ⋅Q2 yielded by Defi-
nition 5.3 is deterministic.

Proof. First we show this holds when both Q1 and
Q2 are DPDA. We show there is only one move per
configuration in δ by examining each part (1)-(5) of
the definition:

(1) δ2 has at most one move per configuration.

(2) δ1 has at most one move per configuration.

(3) A transition of this type is added if q has 0,1
moves in δ1 with α on the stack. This means q
does not have an ε move with α on the stack in
δ1 (or a transition with both ε input and stack).
Thus, replacing 0,1 with ε with α on the stack
leaves q with one choice in δ.

(4) In δ2, qaccept has no moves by construction, and
δ1 is deterministic, so there is exactly one move
in δ for configuration (p, ε, qα).

(5) The same argument in (4) applies for qreject.

To see the correctness of this definition, we again
prove a lemma relating transitions on ⧈-ended words
in Q1 ⋅Q2 to transitions on individual symbols in Q1.

Lemma 5.5. Let g be the characteristic function of
LQ2 . For wi ∈ {0,1}∗ and q ∈ Q1, δ(q,wi⧈, α) =
δ1(q, g(wi), α).

Proof. Let Q1,Q2 both be DPDA. Assume w.l.o.g.
that q has 0,1-transitions in δ1 (otherwise there is an
ε-transition to some q′, in both δ1 and δ2, with the
same effect on the stack (2)). Then in δ, q has an ε-
move to s2 with q pushed to the stack (3). Since q is
not in Γ2, this is effectively an empty stack to δ2, so
by (1) and Lemma 5.1 we have that δ(s2,wi⧈, qα)
goes to (qaccept, qα) if g(wi) = 1 or (qreject, qα) if
g(wi) = 0. By (4) and (5), there is an ε-move to
δ1(q, g(wi), α).

Theorem 5.6. The language accepted by the DPDA
Q1 ⋅Q2 is LQ1⋅Q2 .

Proof. Given the above lemma, the proof is very
similar to that of Theorem 4.5

6 Frege Boundary

Iterations represent a kind of default, the ‘bread
and butter’ of multiple quantification in natural lan-
guage, hence a popular proposal, so-called Frege’s
Thesis: All polyadic quantification in natural lan-
guage is iterated monadic quantification. The Frege
boundary demarcates the line between reducible and
irreducible polyadic quantifiers. Historically, when
proposing the boundary, Van Benthem [3] referred
to Frege, who introduced the familiar notion of
quantification to modern logic. Frege was also the
first to give a satisfactory analysis of multiple quan-
tification, by simply taking every instance of mul-
tiple quantification to be an iteration. Van Benthem
calls this ‘solving the problem by ignoring it’—since
within this view we can preemptively give an ac-
count of any polyadic quantifier in terms of simple
monadic quantifiers. Thus, those polyadic quanti-
fiers that can be analyzed as iterations of monadic
quantifiers are deemed reducible, or simply Fregean.
Those that can be given no such analysis are irre-
ducible or non-Fregean, and may be considered gen-
uinely polyadic.

(Q1 ⋅ Q2)(A,B,R) is simply Q1aQ2bR(a, b), and
thus iteration is monadically definable: this is the
sense in which the lift is not taken to be genuinely
polyadic. The other lifts, for instance, cumulation
and constructions containing same and different are
generally not reducible to iterations. But how we
can characterize the Frege boundary? What makes a
quantifier non-Fregean?

6.1 Classic Characterization Results

Let us start with a definition to systematize the above
discussion:

Definition 6.1. Let us call a type (2) quantifier
Fregean if it is an iteration of monadic quantifiers
(or a Boolean combination thereof). We say a quan-
tifier ‘lies beyond the Frege boundary’ if it is not
Fregean.

We proceed historically, starting with the first char-
acterization:

Theorem 6.2 ([3]). On any finite universe, a binary
quantifier Q is a right complex (a Boolean combina-



tion of iterations) if and only if it is both logical and
right-oriented.

A quantifier is logical if it is closed under permu-
tations of individuals: R ∈ Q if and only if any
π(R) ∈ Q. If S = π(R), we write S ≈ R, and
say that Q is closed under ≈. A quantifier is right-
oriented if it is closed under ∼, where we write
R ∼ S if for all x, ∣(Rx)∣ = ∣(Sx)∣. This corresponds
to preserving the entire arrow pattern of a relation
and preserving the outgoing arrow pattern of a rela-
tion.10

[14] provides a characterization that also applies to
nonlogical quantifiers and relies on the interesting
observation that if two reducible quantifiers behave
the same on relations that are cross-products, they
actually behave the same on every relation (i.e., are
equivalent).

Theorem 6.3 ([14]). For reducible type (2) quanti-
fiers Q and Q′, Q = Q′ if and only if for all subsets
A,B of M , Q(A ×B) = Q′(A ×B).

The following equivalent statement of the theorem
provides a test for reducibility: if Q(A × B) =
Q′(A × B) for all A,B ∈ P(M), and we know
Q′ = Q1 ⋅ Q2, then Q is reducible if and only if
Q = Q1 ⋅Q2.

Dekker then generalizes this to quantifiers of arbi-
trary arity:

Theorem 6.4 ([6]). For type (n) quantifiers Q and
Q′ that are n-reducible, Q = Q′ if and only if for
all subsets A1, . . . ,An of M , Q(A1 × ⋯ × An) =
Q′(A1 ×⋯ ×An).

Therefore, Q and Q′ have the same behavior on
cross-products and Q′ is reducible, thus Q is re-
ducible only if it equals Q′.

Dekker also defines Q to be invariant for sets in
products if Q(A1 × ⋯ × An) and Q(A′

1 × ⋯ × A′
n)

imply Q(A1 × ⋯ × A′
i × ⋯ × An) and shows Q is

invariant for sets if and only if it is product equiv-
alent to some Q′ = Q1 ○ ⋯ ○ Qn.11 Furthermore,
the proof actually constructs the Qi, widening the

10Van Benthem’s theorem holds for local (on a particular fi-
nite universe) definability, but can be used to refute definability
on any universe [26].

applicability of the Keenan-style reducibility test by
removing the problem that ‘maybe one has not tried
hard enough’ to find the product-equivalent iteration
for comparison.

Example 6.5. Consider the sentence Every profes-
sor wrote the same number of recommendation let-
ters, formalized as (everyP , same numberL)(W ).
This is product-equivalent to (everyP ⋅everyL)(W ),
since when W is a cross-product relation, every p
is always connected to every l, and thus incidentally
every p is connected to the same number of l. Since
these quantifiers are not the same (take a model in
which every p is connected to the same number of
l, but ∣Wp∣ < ∣L∣), (every, same number) is not re-
ducible to any two unary quantifiers.

Other examples of non-Fregean quantifiers include:

• Reflexives (The type (2) quantifier consisting
of all reflexive binary relations is not Fregean.),
e.g.:

1. Every student is enjoying him/herself.

2. Every company advertises itself.

• Different/different [14], e.g.:

1. Different students answered different
questions.

2. Truth-conditions:

∀a ≠ b ∈ students ∶ answered(a) ≠ answered(b).

• Dependent comparatives [12], e.g.:

1. A certain number of professors read a
much larger number of grad school appli-
cations.

2. Truth-conditions:

∣dom(read)∩professors∣ < ∣ran(read)∩applications∣.

• Branching, resumption, cumulatives, Ramseys
(see the following chapter for discussion)

11We can not find a natural language example where this is
useful, but it is needed to show that the property of a relation
being symmetric, which is product-equivalent to no iteration, is
not reducible. A ×A and B ×B are symmetric, but neither of
A ×B nor B ×A is [6].



Dekker nicely sums up what cross-product charac-
terizations tell us about iterations:

Not only is this a new and welcome
generalization, it also gives some insight
into the intimate relation between (n)-
reducible type ⟨n⟩ quantifiers and n-ary
product relations. If type ⟨n⟩ quantifier
Fn is (n)-reducible. . .then Fn is satisfied
by Q1 × ⋯ ×Qn iff each composing fi is
satisfied by Qi [6].

Jan van Eijck [7] introduces the notion of (m,n)-
reducibility, making it possible to say something
about polyadic quantifiers of type (m + n) that are
not fully (m + n)-reducible.

Definition 6.6. Q of type (m,n) is (m,n)-
reducible if there are Q1 and Q2 of types (m) and
(n) such that Q = Q1 ⋅Q2.

Van Eijck also defines the corresponding notions of
reducibility equivalence and invariance for sets in
products. The striking consequence of generalizing
reducibility is the existence of a diamond property
and normal form for quantifiers, meaning reducibil-
ity is confluent: if a quantifier reduces to two dif-
ferent iterations, these reducts must have a common
further decomposition. If Q of type (m+n) reduces
both to Q1 ⋅Q2 (of types (m) and (n)) and to Q′

1 ⋅Q′
2

(of types (m′) and (m + n −m′)), then there exists
Q3 (of type (m′ −m)) such that Q = Q1 ⋅Q3 ⋅Q′

2.

Q

Q1 ⋅Q2 Q′
1 ⋅Q′

2

Q1 ⋅Q3 ⋅Q′
2

Figure 8: Van Eijck’s diamond property.

Example 6.7. Consider the sentence Every teacher
assigned different students different problems ana-
lyzed as the type ⟨3⟩ quantifier (everyT , differentS ,
differentP ) applied to the assign relation, and let 0
denote the unary quantifier that is false of every set.
By Dekker’s results we can see this is not fully 3-
reducible, since it is equivalent to every ⋅ 0 ⋅ 0 on

cross-products (i.e., it is true of no cross-product),
but obviously is not generally equal to every ⋅ 0 ⋅ 0,
since we can construct non-cross-product relations
on which it is true. However, by van Eijck’s results
we can also state a positive result, that it is in fact
(1,2)-reducible, equivalent to every⋅(different, dif-
ferent). Further, we know it cannot also be (2,1)-
reducible to some type (2) Q1 and type (1) Q2, or
else by the diamond property there would exist some
type (1) Q3 making it 3-reducible to every ⋅Q3 ⋅Q2,
a contradiction.

6.2 The Frege Boundary and The Chomsky
Hierarchy?

The above discussion on the characterization of the
Frege boundary was initiated around the time the se-
mantic automata were introduced. However, sur-
prisingly these two perspectives have not been in
much contact and there is still a major unanswered
question: Where is the Frege boundary located in
the Chomsky hierarchy? One could argue that ir-
reducible languages are at least non-context-free as-
suming that for the language of a non-Fregean quan-
tifier to even make sense the subwords (between ⧈)
must all have the same length. A simple pump-
ing lemma argument demonstrates that no language
with an arbitrary number of equal-length subwords
is context-free. [17]

Looking at the problem from a somewhat different
perspective, we saw a number of characterization re-
sults of the Frege boundary. So the question nat-
urally arises: is the characterization of the Frege
boundary effective? That is, given an arbitrary type
(2) quantifier, can one effectively decide whether or
not it is an iteration? The computational perspective
allows us to ask this question as: given a language
L ⊆ {0,1,⧈}, is it decidable whether or not there
are languages L1 and L2 such that L = L1 ⋅L2? (Re-
call Definition 3.3.) Steinert-Threlkeld [22] studies
this problem and gives some partial answers, how-
ever, it seems like the conceptual challenge of prov-
ing a general result is still open. For instance, he
shows that if L ⊆ {0,1,⧈}∗ is a regular language
then it is decidable whether there are regular lan-
guages L1, L2 in {0,1} such that L = L1 ⋅ L2. He
shows that the answer is positive in case of the reg-



ular quantifiers:

Theorem 6.8 ([22]). Let L ⊆ {0,1,⧈}∗ be a regular
language. Then it is decidable whether there are reg-
ular languages L1, L2 in {0,1} such that L = L1 ⋅L2.

The main obstacle to prove the decidability of it-
eration for context-free languages is that language
equality is undecidable. This leads to the follow-
ing conjecture: It is undecidable whether a given
context-free language L in {0,1,⧈} is an iteration
of two context-free languages in {0,1}. However,
as a corollary of Theorem 3.6 we have:

Corollary 6.9. It is decidable whether a given de-
terministic context-free language in {0,1,⧈} is an
iteration.

This discussion shows that the interaction between
quantifiers and automata raises new and interest-
ing questions in both domains (i.e., formal lan-
guage theory and generalized quantifier theory).
But there’s a lot more to be done if we want to
find a genuinely automata-theoretic characteriza-
tion of the Frege boundary. Also, irreducible lan-
guages will come in different levels of difficulty.
How can we further stratify languages of irreducible
polyadic quantifiers in terms of the Chomsky hi-
erarchy? Right now it seems that to make some
progress on these issues one needs find suitable
automata/language models and suitable representa-
tions (translation functions) [17, 22]. In other words,
the following questions arise: Are there ways of rep-
resenting models that are more appropriate to recog-
nizing irreducible quantifiers? How would the lan-
guages of specific quantifiers be affected by such ex-
tensions, and how would the Frege boundary move
up or down the Chomsky hierarchy as a result? And
finally, we know hardly anything about the cognitive
reality of the Frege boundary.

7 Conclusions

In the paper we have investigated semantic automata
for polyadic quantifiers, extending recent results on
quantifier iterations. First of all, we have given a
new proof that regular and context-free languages
are closed under quantifier iterations. Our proof em-

phasizes the explicit link between quantifier itera-
tion and the standard concept of substitution known
from formal language theory. Then we have pro-
posed an explicit construction for minimal iteration
DFA. Furthermore, we have provided a construction
for the quantifier iteration of DCFL, hence, solving
positively a natural question whether recently identi-
fied deterministic context-free quantifiers are closed
under iteration.

Natural language also teems with genuinely
polyadic quantification [13]. For example, none of
the following are definable as or reducible to the
iteration of any two monadic quantifiers, and thus
are beyond the so-called Frege boundary [3, 14]:

1. Three researchers together published five pa-
pers (Cumulation12)

2. Not all twins are friends (Resumption)

3. Six hockey players punched each other (Recip-
rocal)

4. Every child read the same book (Same)

5. Most villagers and most townsmen hate each
other (Branching)

Given the recent extension to iteration, a next natu-
ral pursuit is to account for different forms of irre-
ducible quantification with semantic automata. This
leads to the question of where the Frege boundary
lies in the Chomsky hierarchy. Some challenges to
this pursuit are discussed in [17]. For example, the
model translation described in this paper is just one
possible function that is moreover particularly well-
suited for encoding iterations, which are character-
ized by closure under right-orientation. Recall the
model drawn in Figure 1: all that matters to the
truth of an iteration is the number of outgoing ar-
rows from each a ∈ A, and not which b ∈ B the
arrows point to. For irreducible polyadic quantifi-
cation, the identities of the individuals in the model

12Cumulation is “on the boundary,” definable as a Boolean
combination of iterations: (Q1 ⋅ some)(A,B,R) ∧ (Q2 ⋅

some)(B,A,R−1
). The definition suggests the new translation

function, more or less concatenating a string from τ2(A,B,R)
with a string from τ2(B,A,R

−1
), and a formal automata con-

struction and proof of REG and (D)CFL closure under cumula-
tion is given in [17].



somehow contribute to the truth conditions. To iden-
tify the same element in different subwords, with the
given translation, requires that all subwords have the
same length (so we can identify elements by their
position). But this alone makes irreducible quan-
tifier languages far too complex, and certainly not
context-free.

Future work will likely need to explore different
model representations to move the project of iden-
tifying semantic automata for irreducible quantifiers
forward. Additionally, it may be useful to explore
automata models that have some sort of back-and-
forth functionality, such as two-way automata, mul-
tihead and multitape automata, and automata with
erasure, as a way of “having a finger on” more than
one symbol in the input string at once.

The results in this paper and the possibility of future
extensions also lead to many new empirical ques-
tions for cognitive modeling and formal learning
theory. So far, experimentally measured difficulty
in verification has neatly linked up with theoretical
complexity, for both fine and more coarse-grained
classifications of quantifiers.

We hope these contributions add momentum to
the recent revival of interest in semantic automata,
spurring further research into automata for polyadic
quantifiers, and that the fruits of the algorithmic per-
spective on meaning may be brought to bear on prac-
tical applications related to multiquantifier construc-
tions in natural language.
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