
On the complexity of hybrid logics with binders

Balder ten Cate∗ Massimo Franceschet†

Draft February 1, 2005

Abstract

Hybrid logic refers to a group of logics lying between modal and first-
order logic in which one can refer to individual states of the Kripke struc-
ture. In particular, the hybrid logic HL(@, ↓) is an appealing extension
of modal logic that allows one to refer to a state by means of nominals
and to dynamically create names for states.

Unfortunately, as for the richer first-order logic, satisfiability for
HL(@, ↓) is undecidable and model checking for HL(@, ↓) is PSpace-
complete. We carefully analyze these negative results and establish re-
strictions (both syntactic and semantic) that make the logic decidable
again and that lower the complexity of the model checking problem.

1 Introduction

There is a general interest in well-behaved logical languages in-between the
basic modal language and full first-order logic. Ideally, one would like such
languages to combine the good properties of both: to be reasonably expressive,
to be decidable, and to have other good properties, such as the interpolation
property.1

Famous examples of fragments that have been studied are the guarded frag-

ment [1, 15] and the two variable fragment [20, 16]. Both are decidable, rea-
sonably expressive languages, but they lack interpolation. The hybrid logic
HL(@, ↓) is another example of a language in between the basic modal lan-
guage and full first-order logic. It extends the basic modal language with three
constructs: nominals, which act as names of states of the model, satisfaction
operators, which allow one to express that a formula holds at the state named
by a nominal, and ↓, which allows one to give a name the current world. To-
gether, these three elements greatly increase the expressivity of the language.

∗Informatics Institute, University of Amsterdam, The Netherlands. Email:
balder.tencate@uva.nl

†Informatics Institute, University of Amsterdam, The Netherlands; Department of Sci-
ences, University of Chieti and Pescara, Italy. Email: francesc@science.uva.nl

1Interpolation is an important property of logics. Logics that have interpolation are in
many ways very well-behaved. Due to lack of space, we can only refer the reader to [18] for
more information about interpolation and related properties.

Moreover, like the basic modal language and full first-order logic, HL(@, ↓) has
the interpolation property. Unfortunately, it is undecidable.

In this paper, we given an in-depth analysis of the undecidability of
HL(@, ↓). We show how decidability can be regained by making a syntactic
restriction on the formulas, or by restricting the class of models in a natural
way. Moreover, we show how these and similar syntactic and semantic restric-
tions affect the complexity of the model checking problem for hybrid languages.

Incidentally, it should be emphasized that HL(@, ↓) is a proper fragment
of first-order logic, and in fact a very natural fragment. It is the generated
submodel invariant fragment of first-order logic [4], it is the least expressive
extension of the basic hybrid language HL(@) with interpolation [10], and,
finally, it can be characterized as the intersection of first-order logic with second
order propositional modal logic [9]. Some of the results reported in this paper
can be seen as evidence that HL(@, ↓) is better behaved than first-order logic.

The paper is as follows. In Section 2 we introduce hybrid logic and we
show that it is a fragment of first-order logic, while in Section 3 we revisit the
undecidability result for HL(@, ↓). We show how decidability can be regained
by restricting the language in Section 4 and by restricting the class of models in
Section 5. In Section 6 we investigate how these and similar restrictions affect
the complexity of the model checking problem for hybrid logic, and we conclude
in Section 7.

2 Hybrid Logic

In this section we introduce hybrid logic and we show that it is a fragment of
first-order logic. We assume the reader familiar with modal logic [6].

In its basic version, hybrid logic extends modal logic with devices for naming
(individual) states and for accessing states by their names. The key idea is the
use of nominals. Syntactically, nominals behave like ordinary propositions, but
they have an important semantic property. A nominal is true at exactly one state
of the model. In such a way, it gives a name to that point. Besides nominals,
the hybrid language HL(@, ↓) also contains @-operators, that allow one to state
that a formula is true at a state named by a nominal, and the ↓-binder, that
allows one to introduce variables to name points. Formally, HL(@, ↓) is defined
as follows.

Let PROP = {p, q, . . .} be a set of proposition symbols, NOM = {i, j, . . .}
a set of nominals, and SV AR = {x, y, . . .} a set of state variables. We assume
that these sets are disjoint. The formulas of the hybrid language HL(@, ↓) are
given by the following recursive definition.

WFF := > | p | t | ¬α | α ∧ β | 3α | @tα | ↓x.α

where p ∈ PROP , t ∈ NOM ∪SV AR and x ∈ SV AR. We will use the familiar
shorthand notations, such as 2α for ¬3¬α. We say that a state variable x
is free in a hybrid formula α if x is not bound by ↓. A hybrid sentence is a

2

hybrid formula with no free variables. The width of a formula α is the maximum
number of free variables of any subformula of α.

The binder ↓ binds a variable to the current state of evaluation. For instance,
the formula ↓x.3x says that the current state is reflexive. The @ operator com-
bines naturally with the ↓ binder: while ↓ stores the current state of evaluation,
@ enables us to retrieve the information stored by shifting the point of evalu-
ation. As an example, the formula ↓x.3↓y.@x2y states that the current point
has exactly one successor.

Hybrid logic is interpreted over hybrid Kripke structures (or hybrid models)
of the form M = (W,R, V) where W is a set of states, R is a binary relation
over W called the accessability relation, and V : PROP ∪ NOM → ℘(W) is
a valuation function that assigns to each proposition letter or nominal a set of
states, such that V (i) is a singleton set for each nominal i. The pair F = (W,R)
is called the frame of M and M is said a model based on the frame F .

An assignment for M is a function g : SV AR → W . Given such an assign-
ment g, we define gxw to be the assignment that agrees with g on all variables
except x, and that maps the latter to w. More precisely,

gxw(y) =

{

w for x = y
g(y) for x 6= y

LetM = (W,R, V) be a hybrid model and let w ∈W . For any nominal i, let
[i]M,g = V (i), and for any state variable x, let [x]M,g = {g(x)}. The semantics
of the basic hybrid language is as follows:

M, g,w ° >
M, g,w ° p iff w ∈ V (p)
M, g,w ° t iff w ∈ [t]M,g for t ∈ NOM ∪ SV AR
M, g,w ° ¬α iff M, g,w 6° α
M, g, w ° α ∧ β iff M, g,w ° α and M,w ° β
M, g, w ° 3α iff ∃w′.(wRw′ ∧ M, g,w′ ° α)
M, g,w ° @tα iff M,w′ ° α where {w′} = [t]M,g

M, g,w ° ↓x.α iff M, gxw, w ° α

Define the first-order correspondence language to be the first-order language
with equality that has one binary relation symbol R, a unary relation symbol p
for each p ∈ PROP and a constant i for each nominals i ∈ NOM . Every hybrid
Kripke structure (W,R, V) can be viewed as a relational structure for the first-
order correspondence language: the binary relation symbol R is interpreted by
the accessibility relation R, the unary relation symbols p are interpreted by V (p),
and the constants i denote the unique state w such that V (i) = {w}. Then,
the following Standard Translation, defined by mutual recursion between two
functions STx and STy, embeds HL(@, ↓) into the first-order correspondence
language (where p ∈ PROP and t ∈ NOM ∪ SV AR):

3

STx(>) = > STy(>) = >

STx(p) = p(x) STy(p) = p(y)
STx(t) = x = t STy(t) = y = t

STx(¬α) = ¬STx(α) STy(¬α) = ¬STy(α)
STx(α ∧ β) = STx(α) ∧ STx(β) STy(α ∧ β) = STy(α) ∧ STy(β)
STx(3α) = ∃y.(xRy ∧ STy(α)) STy(3α) = ∃x.(yRx ∧ STx(α))
STx(@tα) = ∃y.(y = t ∧ STy(α)) STy(@tα) = ∃x.(x = t ∧ STx(α))
STx(↓z.α) = ∃z.(z = x ∧ STx(α)) STy(↓z.α) = ∃z.(z = y ∧ STy(α))

Here, it is assumed that the variables x, y do not occur in α. For each
HL(@, ↓)-formula α with free variables y1, . . . , yn, STx(α) is a first-order for-
mula with free variables in {x, y1, . . . , yn}. Moreover, it is easy to show that for
any Kripke structure M , assignment g and world w, M, g,w ° α if, and only
if, M, gxw |= STx(α). It follows that HL(@, ↓) is a fragment of the first-order
correspondence language. In fact, it is the fragment containing (modulo logical
equivalence) the formulas that are invariant under generated submodels [4].

It is worth noticing that hybrid sentences of width k are mapped by the
above translation to first-order formulas of width at most k + 2.

As was pointed out by Guillaume Malod (personal communication), the
clause for the ↓-binder in the Standard Translation for HL(@, ↓) given in [4],
i.e., STx(↓z.α) = STx(α)[z/x] and STy(↓z.α) = STy(α)[z/y], is incorrect. In-
deed, consider the formula ↓z.33z. The Standard Translation of this formula
according to the definitions in [4] is ∃y.(xRy ∧ ∃x.(yRx ∧ x = z))[z/x] =
∃y.(xRy ∧ ∃x.(yRx ∧ x = x)), which clearly fails to capture the semantics of
the hybrid formula.

So far, we have only introduced uni-modal HL(@, ↓). This was only for con-
venience of exposition. It is straightforward to extend the above definitions to
the multi-modal case. In fact, in the remainder of this paper, we will frequently
make use of multi-modal formulas.

3 The undecidability of HL(@, ↓) revisited

In this section, we revisit the negative result that is central to this paper: the
undecidability of HL(@, ↓) [7]. As a warming up, we give a very simple unde-
cidability proof, by reducing the satisfiability problem for first-order correspon-
dence language to the satisfiability problem for HL(@, ↓). Then, we show how
the undecidability result can be sharpened using a reduction from an undecid-
able tiling problem.

Following [8] we call a fragment of first-order logic a conservative reduction

class if there is a recursive function τ mapping first-order formulas to formulas
in the fragment, such that for all formulas α, τ(α) is satisfiable iff α is, and
τ(α) has a finite model iff α has. Clearly, every conservative reduction class has
an undecidable (in fact Π0

1-complete) satisfiability problem, as well as an un-
decidable (in fact Σ0

1-complete) finite satisfiability problem [8]. As was already
suggested in [2], HL(@, ↓) is a conservative reduction class.

Theorem 3.1 HL(@, ↓) is a conservative reduction class.

4

Proof. The class of first-order formulas with equality in a single binary relation
is known to be a conservative reduction class [8]. Now, consider the following
embedding τ from this first-order language to the hybrid language with @ and
↓, where s be a fixed nominal:

τ(xRy) = @x3y
τ(p(x)) = @xp
τ(x = y) = @xy
τ(¬α) = ¬τ(α)
τ(α ∧ β) = τ(α) ∧ τ(β)
τ(∃x.α) = @s3↓x. τ(α)

Clearly, τ is a recursive function. We claim that for each first-order sentence α,
α is has a (finite) model iff τ(α) is has a (finite) model.

First, suppose M |= α. Let the model M ′ be obtained from M by adding a
new state w, labelled with nominal s, and by extending the accessibility relation
R such that (w, v) ∈ R for all states v of M . Then M ′, w |= τ(α). Moreover,
M ′ is finite if M is.

Conversely, suppose M,w |= τ(α). Let v be the state in M labelled by the
nominal s. LetM ′ be the submodel of M consisting of all successors of v. Then
M ′ |= α. Moreover, M ′ is finite if M is. qed

Notice that the nesting degree of the ↓ binder in τ(α) corresponds to the
quantifier depth of α, which, in general, is not bounded. Hence, from the above
proof, it is not clear whether fragments of the full hybrid logic in which formulas
have a small nesting degree of ↓ are decidable.

We now present a different undecidability proof that exploits the N×N tiling
problem. The contribution of this new proof is that the hybrid formulas it uses
do not nest the ↓ operator and they contain one state variable only. This proof
will be useful to spot the source of complexity of hybrid logic. We will use a
hybrid logic with three modalities: 31 (to move one step up in the grid), 32 (to
move one step to the right in the grid), and 3 (to reach all the points of the grid),
interpreted by the accessibility relations R1, R2 and R, respectively. Moreover,
we will take advantage of their converse operators. We will comment later on
how to eliminate the converse operators and how to reduce to one accessability
relation only.

We first recall the N × N tiling problem. A tile type is a square, fixed in
orientation, each side of it has a color. Formally, it can be identified with a
4-tuple of elements of some finite set of colors. To tile a space, we have to
ensure that adjacent tiles have the same color on the common side. The N×N

tiling problem is as follows: given a finite set of tile types T , can T tile N×N?
This problem in undecidable (see, e.g., [17]). We now reduce this problem to
the satisfiability problem for HL(@, ↓) with converse modalities.

Let T be a finite set of tiles, and for each tile t ∈ T let
left(t), right(t), top(t), bottom(t) denote the four colors of t. We will now give
a hybrid formula that describes an N× N grid tiled with the tiles in T .

5

Functionality α1 = 2↓x.(2−1 21x ∧ 2
−
2 22x). This property says that the

accessability relations R1 and R2 are in fact functions.

Grid α2 = 2↓x.31323
−
1 3

−
2 x. This property says that the accessability rela-

tions R1 and R2 describe a grid, that is, if, from a given point, we move
up and then right, or right and then up, then we end up in the same point.

Tiling β = 2(β1 ∧ β2 ∧ β3), where β1 =
∨

t∈T (pt ∧
∧

t,t′∈T ;t6=t′ ¬pt′)
states that exactly one tile is placed at each node of the grid, β2 =
∧

t∈T (pt → 2
∨

t′∈T ;left(t′)=right(t) pt′) says that horizontally adjacent tiles

must match, β3 =
∧

t∈T (pt → 2
∨

t′∈T ;bottom(t′)=top(t) pt′) says that verti-
cally adjacent tiles must match. Hence, β states that the space is well-tiled.

Spypoint γ = s ∧ 3s ∧ 2213
−s ∧ 2223

−s, where s is a nominal. This
property says that there is a spypoint labelled with nominal s that can
reach each point of the grid trough the relation R.

It is easy to prove that there is a solution to the tiling problem if, and only
if, the hybrid formula π = α1 ∧ α2 ∧ β ∧ γ is satisfiable. The formulas α1

and α2 make use of converse operators (also called tense operators or backward
looking operators). Alternatively, 3

−
1 and 3

−
2 could be considered as indepen-

dent modalities, in which case π must be extended with additional conjuncts
2↓x.(2k3

−
k x ∧2

−
k 3kx) (for k = 1, 2).

It is worth noticing that the formula π does not nest the ↓ binder and it
contains only one variable. Moreover, the functionality statement α1 in the
only conjunct in π containing a 2↓2-pattern, that is, a 2-operator that has
scope over a ↓ that in turn has scope over a 2-operator. We can conclude that
the source of undecidability for hybrid logic is not the nesting degree of ↓ nor
the number of state variables used the formulas. As we will show in the next
section, the source of complexity of the satisfiability problem for hybrid logic is
instead the 2↓2-pattern.

We conclude this section by briefly surveying the undecidability proofs for
hybrid logic with ↓ binder. The first undecidability proofs appear in [7, 14].
Both the proofs embed the tiling problem into the satisfiability for hybrid logic
with ↓ binder. However, Goranko takes advantage of a primitive global modality
to create the grid. Blackburn and Seligman, instead, make use of a spy point
technique: each point in the grid is seen by a spy point s (not belonging to the
grid) and it sees s back. Since they do not use converse operators, their proof is a
bit more complicated than ours and the encoding formulas do nest the ↓ binder.
Areces, Blackburn, and Marx give another proof in which they embed the global
satisfaction problem for K23 (the class of frames in which every state has at most
2 successors and at most 3 two-step successors) [4]. This proof is very simple
but it makes us of a deep nesting of ↓. Finally, Marx gives another proof by
embedding the tiling problem into a fragment of description logic extended with
↓ [19]. The formulas used in this proof do not nest ↓ and contain only one state
variable. Moreover, only one relation and no converse operators are used. The
encoding of the tiling problem with only one relation is made possible by adding

6

an additional point labelled with the proposition up (respectively, right) between
any two consecutive vertical (respectively, horizontal) points in the grid and by
using a symmetric accessibility relation. However, this proof far more involving
then ours. All the above proofs use formulas showing the 2↓2-pattern. We
think that the proof we gave above is simple and, since it also uses very simple
formulas, it spots the complexity source of the problem.

4 Syntactic restrictions

The undecidability proofs in the previous section involve formulas containing a
2↓2-pattern. In this section, we show that such formulas are actually necessary
for the undecidability of the satisfiability problem.

We first extend the hybrid language with the global modality Eα and with
the converse operator 3−α, and their duals Aα = ¬A¬α and 2−α = ¬3−¬α,
respectively. The new semantics clauses are as follows:

M, g,w ° Eα iff ∃w′. M, g, w′ ° α
M, g, w ° 3−α iff ∃w′. (w′Rw ∧ M, g,w′ ° α)

The Standard Translation of the new operators into the first-order corre-
spondence language is as follows:

STx(Eα) = ∃y.(y = y ∧ STy(α)) STy(Eα) = ∃x.(x = x ∧ STx(α))
STx(3

−α) = ∃y.(yRx ∧ STy(α)) STy(3
−α) = ∃x.(xRy ∧ STx(α))

We call the resulting language the full hybrid language (FHL, for short). Let
us define HL(θ1, . . . , θn) as the extension of the modal language with nominals
and operators θ1, . . . , θn (if ↓ is among θ1, . . . , θn then it is understood that the
languages contains state variables as well). For instance, HL(@) is the basic
hybrid language with nominals and @, while HL(@,3−, E, ↓) is the full hybrid
language. It is known that HL(@) is PSPACE-complete and HL(@,3−, E) is
ExpTime-complete [3]. As we already know, HL(@, ↓) is undecidable (even
without @ and nominals) [4].

In this section, we will consider the universal operators 2 and 2− as well as
the disjunction ∨ as part of the language (and not just as shorthand definitions).
Moreover, we will restrict ourselves to hybrid sentences, that is hybrid formulas
with no free variables. This is not a limitation for our purpose, since, given a
formula with free variables, we can always replace the free variables with fresh
nominals obtaining an equisatisfiable formula.

We say that a hybrid formula α is in negation normal form (NNF) if the
negation symbol ¬ appears in front of atomic formulas only. Notice that each
hybrid formula in equivalent to a hybrid formula in NNF. For instance, we have
that ¬↓x.3(x ∧ ¬p) ≡ ↓x.2(¬x ∨ p).

We call universal operators the modalities 2, 2− and A, and existential

operators the modalities 3, 3− and E. We define a 2↓-formula (respectively,
3↓-formula) as a hybrid formula in NNF in which some occurrence of ↓ is in the
scope of a universal (respectively, existential) operator. Moreover, we define a

7

↓2-formula (respectively, ↓3-formula) as a hybrid formula in NNF in which an
occurrence of a universal (respectively, existential) operator is in the scope of a
↓. Similar definitions hold for different patterns. For example, 2↓2-formula is
a formula in NNF containing a universal operator in contains in its scope a ↓
that contains in its scope a universal operator. A ↓-formula is simply a formula
in NNF containing a ↓ binder. Given a pattern π, we define FHL \ π as the
fragment of the full hybrid language consisting of all formulas in NNF that are
not of the form π. Notice that languages FHL \ π are not necessarily closed
under negation.

Theorem 4.1 There is a polynomial satisfiability-preserving translation from

FHL \ 2↓ to HL(@,3−, E). Moreover, the translation preserve satisfiability

relative to any class of frames.

Proof. It is convenient to introduce a new hybrid binder ∃. We add to the
language formulas of the form ∃x.α, where x is a state variable, interpreted as
follows:

M, g,w ° ∃x.α iff M, gxw′ , w ° α for some state w′

Notice that ↓ can be defined in terms of ∃ as follows: ↓x.α ≡ ∃x.(x ∧ α).
Let us proceed with the proof. Let α0 be a hybrid formula in FHL\2↓. We

show how to polynomially translate α0 into a formula α3 in HL(@,3−, E) such
that α0 is satisfiable if, and only if, α3 is satisfiable. The translation consists of
three steps:

1. rewrite each subformula of α0 of the form ↓x.ϕ as ∃x(x ∧ ϕ) and let α1 be
the resulting equivalent formula. Since no occurrence of the ↓ binder in α0

is in the scope of a universal operator, the same holds for the occurrences
of the ∃ binder in α1;

2. rewrite α1 in prenex normal form, which means with all the existential
binders ∃ in front of the formula. This is possible using the following
equivalences: 3∃x.ϕ ≡ ∃x.3ϕ, 3−∃x.ϕ ≡ ∃x.3−ϕ, E ∃x.ϕ ≡ ∃x.Eϕ,
@∃x.ϕ ≡ ∃x.@ϕ, ψ ∧ ∃x.ϕ ≡ ∃x.(ψ ∧ ϕ), ψ ∨ ∃x.ϕ ≡ ∃x.(ψ ∨ ϕ). Let’s
α2 be the resulting equivalent formula;

3. replace each state variable in α2 by a fresh nominal and drop the corre-
sponding existential quantifier. Let’s call α3 the resulting formula.

Notice that α3 is in HL(@,3−, E) and the size of α3 is linear in the size of
α0. We claim that α0 is satisfiable if, and only if, α3 is satisfiable. Since α0 is
equivalent to α2, it is sufficient to prove that α2 and α3 are equi-satisfiable.

Assume that α2 = ∃x1. . . . ∃xn.β, and α3 is obtained from β by replacing,
for j = 1, . . . n, the state variable xj by the nominal ij .

If α2 is satisfiable, then there is a hybrid model M = (W,R, V), an assign-
ment g, and a state w such that M, g,w ² α2. Hence, there is an sequence
(w1, . . . , wn) ∈ Wn such that M, g′, w ² β, where g′ = g[x1/w1, . . . , xn/wn].

8

Let M ′ = (W,R, V ′), where V ′ is such that V ′(ij) = {wj} and V
′(t) = V (t) for

t 6∈ {i1, . . . in}. It follows that M
′, g, w ² α3, hence α3 is satisfiable.

Conversely, if α3 is satisfiable, then there is a hybrid model M = (W,R, V),
an assignment g, and a state w such that M, g,w ² α3. Let V (ij) = {wj}, for
j = 1, . . . n. Then, M, g′, w ² β, where g′ = g[x1/w1, . . . , xn/wn]. It follows
that M, g,w ² ∃x1. . . . ∃xn.β, that is, M, g,w ² α2, hence α2 is satisfiable. qed

Corollary 4.2 The satisfiability problem for FHL \2↓ is ExpTime-complete.

Proof. The lower bound follows from the fact that FHL\2↓ embeds the basic
modal language with global modality, which is known to have an ExpTime-
complete satisfiability problem [12]. The upper bound follows from Theorem
4.1 since satisfiability of HL(@,3−, E)-formulas can be decided in ExpTime.
qed

We now prove the mirror image of Theorem 4.1: satisfiability for FHL \ ↓2
is decidable. We use a technique similar to the one used to prove Theorem 1 in
[19], embedding FHL \ ↓2 into the universally guarded fragment. Formulas in
this fragment are constructed from atoms and their negations by conjunction,
disjunction, unrestricted existential quantification and guarded universal quan-
tification. Hence only universal quantification is constrained. The satisfiability
problem for the universal guarded fragment is 2ExpTime-complete. The sat-
isfiability problem becomes ExpTime-complete when there is a uniform bound
on the width of the formula. For more details, cf. [11].

Theorem 4.3 The satisfiability problem for FHL \ ↓2 is in 2ExpTime. The

satisfiability problem for FHL \ ↓2-formulas of bounded width is ExpTime-

complete.

Proof. Let α be any FHL \ ↓2-sentence. We will show by induction on α
that STx(α) is universally guarded. Since STx(α) can be obtained from α in
polynomial time, this proved that the satisfiability problem for FHL \ ↓2 is in
2ExpTime.

If α is a (negated) atomic formula, then STx(α) is quantifier-free, hence
universally guarded. If α is of the form α1∧α2, then it follows from the induction
hypothesis that STx(α) is the conjunction of two universally guarded formulas,
hence itself universally guarded. Similarly for α is of the form α1 ∨ α2.

Next, suppose α is of the form Xα1, where X is an existential operator. By
induction hypothesis, STy(α1) is universally guarded. Inspection of the rele-
vant clauses of the Standard Translation shows that STx(α) is also universally
guarded. Similarly if α is of the form @tα1.

Consider the case where α is of the form Xα1, for some universal operator
X. Again, by induction hypothesis, STy(α1) is universally guarded. Also, since
our original formula α is a FHL\↓2-formula, α1 does not contain any free state
variables. It follows that STy(α1) contains no free variables besides (possibly)
y. Inspection of the relevant clauses of the Standard Translation shows that

9

this variable y is appropriately guarded in STx(α), hence STx(α) is universally
guarded.

Finally, suppose α is of the form ↓z.α1. Then, STx(α) = ∃z.(z = x ∧
STx(α1)). Since α is a FHL \ ↓2-formula, α1 does not contain any universal
operator, hence STx(α1) does not contain any universal quantifier, and thus it
is universally guarded. It follows that STx(α) is also universally guarded.

As was already mentioned in Section 2, if a hybrid formula α has width w,
then the width of STx(α) is at most w+2. Hence, a bound on the width of the
FHL \ ↓2-formula α implies a bound on the width of its universally guarded
translation STx(α). Since the satisfiability problem for universally guarded
formulas of bounded width is ExpTime-complete, this gives us an ExpTime

upper bound. The lower bound follows from the ExpTime-hardness of the
basic modal logic extended with the global modality [12]. qed

Satisfiability for FHL \ ↓2 is ExpTime-hard, since satisfiability for modal
logic with the global modality is already ExpTime-hard [12]. We don’t know the
exact complexity of FHL\↓2, but we conjecture that is it ExpTime-complete.

By combining the techniques used to prove Theorems 4.1 and 4.3, we have
the main result of this section:

Theorem 4.4 The satisfiability problem for FHL\2↓2 is in 2ExpTime. The

satisfiability problem for FHL \ 2↓2-formulas of bounded width is ExpTime-

complete.

Proof. Let α ∈ FHL\2↓2. If α ∈ FHL\↓2, then the satisfiability of α can be
decided in 2ExpTime by Theorem 4.3. Suppose therefore that α 6∈ FHL \ ↓2.
Let β be a minimal ↓2-subformula of α. Since α ∈ FHL \ 2↓2, β cannot
be in the scope of a universal operator in α. It follows that this occurrence
of ↓ can be removed as in the proof of Theorem 4.1. Repeating this step for
each minimal ↓2-subformula of α, we obtain a formula β ∈ FHL \ ↓2 that is
satisfiable iff α is satisfiable. By Theorem 4.3, satisfiability of β can be checked
in 2ExpTime. The ExpTime-completeness in the case of bounded width follows
from the bounded width case of Theorem 4.3. qed

Since the negation of an FHL\3↓3-formula is equivalent to an FHL\2↓2-
formula, we have as a corollary the following dual result.

Corollary 4.5 The validity problem for FHL\3↓3 is in 2ExpTime. The va-

lidity problem for FHL\3↓3-formulas of bounded width is ExpTime-complete.

In particular, if a hybrid formula φ contains neither the 2↓2 pattern and nor
the 3↓3 pattern, then both satisfiability and validity of φ are decidable.

5 Semantic restrictions

In this section, we restrict attention to uni-modal models of bounded width, i.e.,
models with only one binary relation R, in which each node is R-related only to

10

Table 1: Complexity of the satisfiability problem on κ-models

HL(@, ↓) first-order correspondence language

κ = 1 NP-complete NExpTime-complete
κ = 2 NP-complete Decidable, not elementary recursive
3 ≤ κ < ω NExpTime-complete Π0

1-complete (co-r.e., not decidable)
κ = ω Σ0

1-complete (r.e., not decidable) Σ1
1-complete (highly undecidable)

κ > ω Π0
1-complete (co-r.e., not decidable) Π

0
1-complete (co-r.e., not decidable)

a restricted number of points. More precisely, for any cardinal κ, let Kκ be the
class of uni-modal models in which for every node d there are strictly less than
κ nodes e such that (d, e) ∈ R. In particular, K2 is the class of models in which
every points has at most one R-successor, and Kω is the class of models in which
every node has only finitely many R-successors. We will refer to elements of Kκ

as κ-models for short. In what follows we will consider the satisfiability problem
of HL(@, ↓) and of the first-order correspondence language on κ-models, for
particular κ. Our results are summarized in Table 1. All results generalize to
to case with multiple modalities, except for the decidability of the first-order
correspondence language on K2.

The terminology and results used in this section can be found in [8] and [17],
or in other texts on computational complexity. In particular, we follow the usual
terminology from recursion theory: the language of second-order arithmetic is
the second-order language with constants 0, 1, function symbols + and ×, and
equality. Formulas of second-order arithmetic are interpreted over the natural
numbers. A Σ1

1 formula of second order arithmetic is a formula of the form
∃R1 . . . Rn.φ where φ contains no second-order quantifiers. A set A of natural
numbers is said to be in Σ1

1 if it is defined by a Σ1
1 formula that has one free first-

order variable and no free second-order variables. A set A of natural numbers is
Σ1

1-hard if for every B in Σ1
1 there is a computable function f : N → N such that

for all n ∈ N, n ∈ B iff f(n) ∈ A. A set of natural numbers is Σ1
1-complete if it

is both in Σ1
1 and Σ1

1-hard. It is well known that Σ1
1-hard sets are not recursively

enumerable. When one speaks of an arbitrary decision problem as being in Σ1
1

or Σ1
1-hard, it is implicitly understood that the instances of the decision problem

are coded into natural numbers (under some computable encoding).
Following [8], we call a decidable problem elementary recursive if the time

complexity can be bounded by a constant number of iterations of the exponential
function.

Finally, given a formula φ and a unary predicate P , we will use the nota-
tion φP to refer to the relativisation of φ by P , i.e., the result of replacing all
subformulas in φ of the form ∃x.ψ or ∀x.ψ by ∃x.(Px ∧ ψ) resp. ∀x.(Px→ ψ).

Theorem 5.1 The satisfiability problem of HL(@, ↓) on the class of models Kκ

is

1. NP-complete, for κ = 1, 2

11

2. NExpTime-complete, for 3 ≤ κ < ω.

3. Recursively enumerable but not decidable, for κ = ω

4. Co-recursively enumerable but not decidable, for κ > ω

Proof.

1. The lower bound follows from the NP-hardness of propositional satisfi-
ability. The upper bound is proved by establishing the polynomial size
model property.

For κ = 1, 2, every κ-satisfiable HL(@, ↓)-formula is satisfiable in a κ-
model with at most O(|φ|2) nodes. For, suppose M, w |= φ for some
κ-model M = (W,R, V). Let W ′ ⊆ W consist of all worlds that are
reachable from w or from a world named by one of the nominals occurring
in φ in at most md(φ) steps, where md(φ) is the modal depth of φ. Let
M
′ be the submodel of M with domain W ′. Clearly, M

′ is a κ-model and
M
′ satisfies the cardinality requirements. Furthermore, a straightforward

induction argument shows that M
′, w |= φ.

This leads to a non-deterministic polynomial time algorithm for testing
satisfiability of an HL(@, ↓)-formula φ on κ-models, for κ = 1, 2. The
algorithm first non-deterministically chooses a candidate model (M, w) of
size O(|φ|2), and then it tests whether M, w |= φ and M ∈ Kκ. The
latter tests can be performed in polynomial time using a top down model
checking algorithm (cf. Theorem 6.1 below).

2. [Upper bound] For 3 ≤ κ < ω, every formula satisfiable on a κ-model is
satisfiable on a κ-model with at most O(|φ| · κmd(φ)) nodes. For, suppose
M, w |= φ for some κ-model M = (W,R, V). Let W ′ ⊆ W consist of all
worlds that are reachable from w or from a world named by one of the
nominals occurring in φ in at most md(φ) steps. Let M

′ be the submodel
of M with domain W ′. Note that the cardinality of M

′ is O(|φ| ·κ|φ|), and
M
′ is still a κ-model. Furthermore, a straightforward induction argument

shows that M
′, w |= φ.

This leads to a non-deterministic ExpTime algorithm for testing satisfi-
ability of an HL(@, ↓)-formula φ on κ-models. The algorithm first non-
deterministically chooses a candidate model (M, w) of size O(|φ| · κ|φ|),
and then tests whether M, w |= φ. The latter test can be performed in

time O(|M||φ|) [13], which is O((|φ| · κ|φ|)|φ|) = O(|φ||φ| · κ(|φ|2)).

[Lower bound] Consider monadic first-order formulas without equality,
i.e., first-order formulas containing unary predicates only, without equal-
ity. Any such satisfiable formula φ of length n has a model with at most
2n nodes, and the satisfiability problem for such formulas is NExpTime-
complete [8, Section 6.2.1]. We will reduce this problem to the satisfiability
problem for HL(@, ↓)-formulas on κ-models (for 3 ≤ κ < ω), thus showing
that the latter problem is NExpTime-hard.

12

Fix a nominal i, and for any monadic first-order formula φ without equal-
ity, define φ+ inductively, such that (x = y)+ = @xy, (Px)

+ = @xp, (·)
+

commutes with the Boolean connectives and (∃x.ψ)+ = @i3
|φ|↓x.ψ. In

words, φ+ states that φ holds in the submodel consisting of all points
reachable from the point named i in exactly |φ| many steps. In general,
there can be up to (κ− 1)|φ| many points reachable from the point named
i in exactly |φ| many steps (in particular, this will be the case if the sub-
model generated by i is a (κ− 1)-ary tree). It follows that φ is satisfiable
iff φ is satisfiable in a model with at most 2|φ| nodes iff φ+ is satisfiable
in a κ-model, for κ ≥ 3.

3. We will provide polynomial reductions between this problem and the finite
satisfiability problem for first-order logic. The satisfiability problem for
first-order logic on finite models is Σ0

1-complete, even in the case with only
a single, binary relation [8, Section 3.2].

Trivially, if an HL(@, ↓)-formula is satisfiable in a finite model, it in a
ω-model. Conversely, if an HL(@, ↓)-formula is satisfiable in an ω-model
then is satisfiable in a finite model, since the modal depth of the formula
provides a bound on the depth of the model. Hence, the satisfiability
problem of HL(@, ↓) on ω-models reduces (by the Standard Translation)
to the satisfiability problem for first-order logic on finite models.

Conversely, the finite satisfiability problem for first-order logic can be
reduced to satisfiability of HL(@, ↓) on ω-models. Fix a nominal i, and
for any first-order formula φ, define φ+ inductively, such that (x = y)+ =
@xy, (Rxy)

+ = @x3y, (·)
+ commutes with the Boolean connectives and

(∃x.ψ)+ = @i3↓x.ψ
+. In words, φ+ states that φ holds in the submodel

consisting of the successors of the point named i. It follows that φ is
satisfiable in a finite model iff the HL(@, ↓)-formula φ+ is satisfiable on
an finitely branching ω-model.

4. By the Löwenheim-Skolem theorem, a first-order formula is satisfiable if
and only if it is satisfiable on a finite or countably infinite model. Since
HL(@, ↓) is a fragment of first-order logic, the Löwenheim-Skolem theorem
also applies toHL(@, ↓)-formulas. It follows that the satisfiability problem
for HL(@, ↓) on countably branching models coincides with the general
satisfiability problem of HL(@, ↓), which is Π0

1 complete by Theorem 3.1.

qed

Theorem 5.2 The satisfiability problem of first-order sentences of the corre-

spondence language on Kκ is

1. NExpTime complete, for κ = 1

2. decidable but not elementary recursive, for κ = 2

3. Co-recursively enumerable but not decidable, for 3 ≤ κ < ω

13

4. Σ1
1-hard, and hence neither recursively enumerable nor co-recursively enu-

merable, for κ = ω

5. Co-recursively enumerable but not decidable, for κ > ω

Proof.

1. This case coincides with the satisfiability problem for monadic first-order
logic (on 1-models, every formula of the form Rst is equivalent to ⊥),
which is known to be NExpTime complete [8].

2. Consider the satisfiability problem for first-order logic with one unary
function symbol, an arbitrary number of unary relation symbols and equal-
ity (“the Rabin class”). This problem is decidable, but not elementary
recursive [8]. We will provide reductions between this problem and the
satisfiability problem for first-order logic on 2-models.

• Let φ be any first-order formula containing one unary function symbol
f and any number of unary relation symbols and equality. Let R be a
binary relation symbol, and let φR be obtained from φ by repeatedly
applying the rewrite rules

– replace atomic formulas of the form Pf(t) by ∃x.(Rtx ∧ Px)

– replace atomic formulas of the form f(s) = t or t = f(s) by
∃x.(Rsx ∧ x = t)

until the function symbol f does not occur in the formula anymore
(in case of nested function symbols, the above rules might need to
be applied several times). It is not hard to see that φ is satisfiable iff
φR ∧ ∀x∃y.Rxy is satisfiable on a 2-model.

• Let φ be any first-order formula with one binary relation symbol
R and any number of unary relation symbols. Let f be a unary
function symbol and let P be a new unary relation, and let φf be the
result of replacing all subformulas of φ of the form Rst by Ps ∧ (t =
fs). Intuitively, the unary predicate P represents the existence of a
successor, and the unary function f encodes the successor of a node,
if it exists. One can easily see that φ is satisfiable on a 2-model iff
φf is satisfiable (simply let R denote the graph of f , or vice versa).

It follows that the satisfiability problem of first-order logic on 2-models is
decidable but not elementary recursive.

3. It is known that the satisfiability problem for first-order sentences with
a single binary relation R is Π0

1-complete [8]. For any such first-order
formula φ define φ∗ as follows:

(x = y)∗ = x = y
(Rxy)∗ = ∃x′y′.(¬Rx′x′ ∧ ¬Ry′y′ ∧Rx′y′ ∧Rx′x ∧Ry′y)
(¬φ)∗ = ¬φ∗

(φ ∧ ψ)∗ = φ∗ ∧ ψ∗

(∃x.φ)∗ = ∃x(Rxx ∧ φ∗)

14

We claim that φ is satisfiable in a model M iff φ∗ is satisfiable on a 3-
model M

′. Intuitively, the reflexive nodes of M
′ will correspond to the

nodes of M, and the irreflexive nodes of M
′ will be used to encode the

binary relation of M: we think of reflexive points d, e as standing in the
binary relation iff there are irreflexive points d′, e′ such that (d′, d) ∈ R,
(d′, e′) ∈ R and (e′, e) ∈ R. More precisely, the argument can be spelled
out as follows.

[⇒] Suppose M |= φ, with M = (D,R). Let D′ be a set of objects
obtained from D by adding by adding new objects (d, e)1 and (d, e)2
for all d, e ∈ D. Let R′ = {(d, d), ((d, e)1, d), ((d, e)2, d) | d ∈ D} ∪
{((d, e)1, (d, e)2) | (d, e) ∈ R}. The model (D′, R′) is a 3-model, and
by induction on can easily show that M

′ |= φ∗.

[⇐] Suppose M |= φ∗ for some 3-model M = (D, I). Let D′ = {d ∈ D |
(d, d) ∈ R}. Let R′ = {(d, e) ∈ (D′)2 | (d′, d′) 6∈ R and (e′, e′) 6∈
R and (d′, d) ∈ R and (e′, e) ∈ R and (d′, e′) ∈ R, for some d′, e′ ∈
D}. Let M

′ = (D′, R′). A straightforward induction shows that
M
′ |= φ.

For 3 < κ < ω, it follows that a first-order formulas φ with one binary
relation R is satisfiable iff φ∗ ∧ ∀x∃≤2y.Rxy is satisfiable on a κ-model.
Hence, satisfiability of first-order formulas on κ-models is Π0

1-hard. Fi-
nally, membership of Π0

1 follows from the fact that the satisfiability prob-
lem for first-order formulas is in Π0

1, since φ is satisfiable on a κ-model iff
φ ∧ ∀x∃≤κy.Rxy is satisfiable.

4. We will provide reductions between that the satisfiability problem for first-
order formulas on ω-models and the problem of deciding whether an exis-
tential second order sentence holds in the model (N, <). This proves the
result, since the latter problem is Σ1

1-complete [9].

Let φ(N,>) be a first-order sentence expressing that R is a strict linear
order and ∀x∃y.Ryx. Then a finitely branching model satisfies φ(N,>)

precisely if the model is isomorphic to (N, >). For any existential second
order sentence φ = ∃R1 . . . Rn.ψ(R1, . . . , Rn, >), let φ

∗ be the defined as
follows, where P1, . . . , Pn, N are new, distinct unary predicates.

(x = y)∗ = x = y
(x > y)∗ = Rxy
(Rkx1 . . . xn)

∗ = ∃y1 . . . yn.
(
∧

m=1...n(Pkym ∧Rymxm) ∧
∧

m=1...n−1(Rymym+1)
)

(¬φ)∗ = ¬φ∗

(φ ∧ ψ)∗ = φ∗ ∧ ψ∗

(∃x.φ)∗ = ∃x(Nx ∧ φ∗)

We claim that (N, >) |= φ iff φ∗∧φN(N,>) is satisfiable in a finitely branching

model, where φN(N,>) is the result of relativising all quantifiers in φ(N,>) by

15

N . This can be seem as follows. The submodel consisting of the points
satisfying N is the “intended model”, while the elements satisfying one
of the unary predicates Pk are only used to encode which tuples stand in
the Rk relation. More specifically, a tuple (d1, . . . , dn) of points satisfying
N is thought to stand in the Rk relation iff there are points e1, . . . , en
satisfying Pk such that emRdm for all m ≤ n and emRem+1 for all m < n.
We will omit the details of the proof here.

Now for the other direction. First, observe that whenever a first-order
formula has a finitely branching model M, then it has a countable such
model (indeed, it suffices to take any countable elementary submodel of
M). Now, for any first-order formula φ(R,P1, . . . , Pn), let φ

′ be the exis-
tential second order sentence ∃R,P1, . . . , Pn.(φ∧∀x∃y∀z.(Rxz → z < y)).
Observe how, on the natural numbers, the second conjunct enforces that
each point has only finite many R-successors). It follows that φ is satis-
fiable in a countable ω-model iff φ′ is true in a submodel of (N, <). The
latter in turn holds iff ∃Q.(φ′)Q is true in (N, <), where (φ′)Q is the result
of relativising all quantifiers in φ′ by Q.

5. By the Löwenheim-Skolem theorem, a first-order formula is satisfiable if
and only if it is satisfiable on a finite or countably infinite model. Hence,
the satisfiability problem on countably branching models coincides with
the general satisfiability problem, which is known to be Π0

1-complete [8].

qed

6 Model checking

So far, we only studied the satisfiability and the validity problems. It is natural
to ask how our syntactic and semantic restrictions affect the complexity of the
model checking problem.

Given a hybrid model M , an assignment g, a state w, and a hybrid formula
α, the model checking problem is to check whether M, g,w ² α. We will restrict
ourselves to hybrid sentences. This is not a limitation, since we can always
replace a free variable x by a fresh nominal ix such that the valuation V of ix
is the state associated to x by the assignment g.

In [13], the authors give a polynomial time model checker for HL(@,3−, E).
Moreover, they prove that the model checking problem for HL(@, ↓) is PSpace-
complete, as is the case for the full first-order correspondence language. This
result holds even for formulas without @, nominals, and propositions.

Theorem 6.1 The model checking problem for HL(@, ↓) on κ-models can be

solved in polynomial time for κ ≤ 2, and is PSpace-complete for κ ≥ 3.

Proof. The first part of the theorem can be proved using a straightforward
top-down model checking algorithm. Since each state in the model has at most
one successor, the algorithm takes time linear in the length of the input formula.

16

As for the second part, the proof of PSpace-hardness of model checking for
HL(@, ↓) given in [13] uses a model with out-degree 2. It follows that the model
checking problem for HL(@, ↓) on κ-models, with κ ≥ 3, is PSpace-complete.
qed

On the contrary, model checking for HL(@, E, ↓) and for first-order logic is
PSpace-complete even on 1-models [13].

In the following, we investigate how to restrict the syntax of hybrid languages
in order to lower down the complexity of model checking. A first result is that, if
formulas do not show the ↓2↓ pattern, then the model checking problem drops
from PSpace-complete to NP-complete.

Theorem 6.2 The model checking problem for FHL \ ↓2↓ is NP-complete.

Proof. To prove NP-hardness, we embed the satisfiability problem for propo-
sitional formulas (SAT) into the model checking problem for HL \ ↓2↓. Let
φ(p1, . . . , pn) be any propositional formula, and let M = (W,R, V), where
W = {0, 1}, R =W ×W . For each pk occurring in φ, pick a corresponding state
variable xk. Furthermore, let y be a state variable distinct from all x1, . . . , xn.
Let φ′ be obtained from φ by replacing each occurrence of pk by 3(xk ∧ y), for
k = 1 . . . n. Intuitively, the two states of M represent truth and falsity, and
among these two states the variable y denotes the truth state. It is easily seen
that the propositional formula φ is satisfiable iff 3↓y3↓x13↓x2 . . .3↓xn.φ

′ is
true inM (at any of the nodes 0, 1). The latter formula contains no 2 operators,
and hence belongs to FHL \ ↓2↓.

To prove membership of NP, we give a nondeterministic algorithm that
solves the model checking problem in polynomial time. Let α be an FHL \ ↓2↓
sentence, M = (W,R, V) be a model and v ∈W . Replace each subformula of α
of the form ↓x.ϕ by ∃x.(x ∧ ϕ), and apply the equivalences given in the proof
of Theorem 4.1 in order to move the existential quantifiers out of the scope of
as many connectives as possible. The resulting sentence α′ is equivalent to α
and has the following properties:

1. α′ is built up from literals (i.e., formulas of the form (¬)p, (¬)i or (¬)x)
using conjunction, disjunction, existential operators (3,3−, E), universal
operators (2,2−, A) and existential quantifiers.

2. All existential quantifiers in α′ either immediately follow a universal op-
erator (e.g., as in 2∃x1 . . . xnβ) or occur at the start of the formula.

3. For all subformulas of α′ of the form X∃x1 . . . xnβ, with X a universal
operator, β contains no free variables besides x1, . . . , xn.

List all subformulas of α′ of the form Xβ, with X a universal operator and
β = ∃x1 . . . ∃xm.γ(x1 . . . xm), in order of increasing length, and do the following
for each:

17

Create a new proposition symbol pβ and replace β by pβ in α′. For
each state w ∈ W , check whether M,w ² β, and if so, insert the
state w in V (pβ).

Finally, apply the usual model checking algorithm to check if in polynomial time
if v satisfies the resulting HL(@,3−, E) formula. If so, return true, else return
false.

The nondeterminism is hidden in the test M,w ² β in step 3. To check
M,w ² ∃x1 . . . ∃xm.γ(x1 . . . xm), the algorithm guesses an assignment g for the
variables x1, . . . , xn and checks whether M, g,w ² γ(x1 . . . xm). Since γ does
not contain any existential quantifiers (the subformulas were processed in order
of increasing length), it belongs to HL(@,3−, E). Hence, the check whether
M, g,w |= γ can be performed in polynomial time. All in all, our model checking
algorithm runs in nondeterministic polynomial time. qed

Notice that the NP-hardness holds even for formulas without proposition letters,
nominals and @-operators. Also note that both FHL \ 2↓ and FHL \ ↓2 are
subsets of FHL \ ↓2↓. Hence, the model checking for both FHL \ 2↓ and
FHL\↓2 is NP-complete. A typical example of a formula to which Theorem 6.2
does not apply is ↓x.22↓y.@x3y, which expresses a local form of transitivity.

In Section 4, we saw that FHL \2↓2 has a decidable satisfiability problem.
We leave it as an open question whether the model checking complexity of that
fragment also below PSpace (since the SAT problem can be embedded into the
model checking problem for FHL \ 2↓2 as done in the proof of Theorem 6.2,
the problem is at least NP-hard). Conversely, the fragment FHL \ ↓2↓ for
which we have just proved that the model checking problem is NP-complete,
has an undecidable satisfiability problem: it suffices to note that the encoding
of the tiling problem given in Section 3 does not make use of ↓2↓-formulas.

We conclude this section with a hierarchy of fragments of the full hybrid
language with ↓ binder that admits polynomial time model checking. As we
remarked already in Section 2, if a hybrid formula α has width w, then STx(α)
has width at most w + 2. Hence, a bound on the width of the hybrid formulas
implies a bound on the width of the standard translations. Moreover, model
checking for first-order formulas using a bounded number of variables can be
performed in polynomial time [21]. It is known that first-order formulas of a
bounded width can be rewritten using a bounded number of variables (cf. [11]
for an explicit proof). Thus, we obtain the following.

Theorem 6.3 The model checking problem for formulas of the full hybrid lan-

guage of bounded width can be solved in polynomial time.

Proof. Let M be a hybrid model with n nodes and α be a formula of length
k and width w. Applying the Standard Translation to α, we obtain STx(α), a
first-order formula with width at most w+2. The Standard Translation can be
implemented in linear time O(k). Each first-order formula of width w can be
translated in quadratic time O(k2) into a formula using at most w variables [11].
Finally, model checking a first-order formula of length k containing v variables

18

on a model of n nodes costs O(k ·nv) [21]. Hence, we can model check α in time
O(k2 + k · nw+2). This is polynomial since w is constant. qed

Notice that a formula of bounded width can use an arbitrary number of
variables and can have an arbitrary nesting degree of ↓. For instance, let α0 =
x1, and, for n > 0, let αn = E↓xn.(3xn+1 ∧ αn−1). For n > 0, the formula αn
says that there are points x1, . . . , xn+1 such that xi reaches xi+1 for i = 1, . . . , n.
It is easy to see that, for n > 0, the width of αn is 2. Moreover, αn uses n+ 1
variables and the nesting degree of ↓ in αn is n.

7 Conclusion

In this paper, we described two ways to tame the hybrid logic HL(@, ↓), and
in fact the full hybrid language HL(@, E, ↓,3−). By taming a logic we mean
restricting it in such a way that it becomes decidable. These two ways are:

1. Restricting the syntax by excluding formulas containing the pattern 2↓2.

2. Restricting the class of models by assuming a bound on the branching
degree of the models.

Furthermore, we showed that similar restrictions can be used to lower the
complexity of model checking task for these logics.

Some results in this paper show that, under certain natural conditions,
H(@, ↓) behaves better than the first-order correspondence language, compu-
tationally speaking. Incidentally, the full hybrid language HL(@, E, ↓,3−) has
the same expressive power as the full first-order correspondence language, as is
shown by the following translation [5]:

HT (x = y) = @xy
HT (Px) = @xp
HT (Rxy) = @x3y
HT (¬φ) = ¬HT (φ)
HT (φ ∧ ψ) = HT (φ) ∧HT (ψ)
HT (∃x.φ) = E↓x.HT (φ)

The last clause of this translation shows that, in some sense, the first-order
quantifier ∃x consist of two parts, namely the picking a state of the model part,
which is captured by the global modality, and the variable binding part, which
is captured by the ↓. The syntax of HL(@, E, ↓,3−) allows us to distinguish
these two parts. Hence, one could say that some of our results identify compu-
tationally tractable fragments of first-order logic that can only be distinguished
once these two parts of the quantifiers are split. In this sense, our paper can be
seen as a fine study of the structure of first-order quantifiers.

By analogy to the study of decidable quantifier prefix classes [], one could also
view our decidability result for FHL\2↓2 from a more systematic perspective.
For any sequence σ of elements of {2,3, ↓,@} (where 2 and 3 now stand

19

for a sequence of universal resp. existential operators), one could consider the
fragment FHL \ σ. Then it follows from the undecidability proof by tiling
in Section 3 that there is no such sequence σ that contains 2↓2 as a proper
subsequence and such that FHL\σ is decidable. In other words, our decidability
result is optimal.

Finally, the outcomes of our investigation show once more that, from a com-
putational point of view, the satisfiability problem and the model checking prob-
lem for a logic are sensitive to different sources of complexity. Restricting the
width (i.e., the out-degree) of the model makes the satisfiability problem de-
cidable, but it does not lower the complexity of the model checking problem
(unless the width is less than two). On the other hand, restricting the width of
the formula makes the model checking problem more tractable, but it does not
affect the undecidability of the satisfiability problem (unless the width is 0).

References

[1] H. Andréka, J. van Benthem, and I. Németi. Modal logics and bounded
fragments of predicate logic. Journal of Philosophical Logic, 27(3):217–274,
1998.

[2] C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for
hybrid logics. In J. Flum and M. Rodŕıguez Artalejo, editors, Proceedings
of the 8th Annual Conference of the EACSL, Madrid, 1999.

[3] C. Areces, P. Blackburn, and M. Marx. The computational complexity of
hybrid temporal logics. Logic Journal of the IGPL, 8(5):653–679, 2000.

[4] C. Areces, P. Blackburn, and M. Marx. Hybrid logics: Characterization,
interpolation, and complexity. Journal of Symbolic Logic, 66(3):977–1010,
2001.

[5] P. Blackburn. Representation, reasoning, and relational structures: A hy-
brid logic manifesto. Logic Journal of the IGPL, 8(3):339–365, 2000.

[6] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge
University Press, 2001.

[7] P. Blackburn and J. Seligman. Hybrid languages. Journal of Logic, Lan-

guage and Information, 4:251–272, 1995.

[8] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem.
Springer, Berlin, 1997.

[9] B. ten Cate. Model theory for Extended Modal Languages. PhD thesis,
ILLC, University of Amsterdam, 2005.

[10] B. ten Cate. Interpolation for extended modal languages. Journal of

Symbolic Logic, To appear. A preliminary version is available from
http://staff.science.uva.nl/~bcate

20

[11] B. ten Cate and M. Franceschet. Guarded fragments with constants. Tech-
nical Report PP-2004-32, ILLC, University of Amsterdam, 2004.

[12] M. Fisher and R. Ladner. Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences, 18(2):194–211, 1979.

[13] M. Franceschet and M. de Rijke. Model checking for hybrid logics. In
Proceedings of the Workshop Methods for Modalities, 2003.

[14] V. Goranko. Hierarchies of modal and temporal logics with reference point-
ers. Journal of Logic, Language, and Information, 5(1):1–24, 1996.

[15] E. Grädel. On the restraining power of guards. Journal of Symbolic Logic,
64:1719–1742, 1999.

[16] E. Grädel and M. Otto. On logics with two variables. Theoretical computer

science, 224(1-2):73–113, 1999.

[17] D. Harel. Recurring dominoes: making the highly undecidable highly un-
derstandable. Annals of Discrete Mathematics, 24:51–72, 1985.

[18] E. Hoogland. Definability and Interpolation. PhD thesis, University of
Amsterdam, 2001.

[19] M. Marx. Narcissists, stepmothers and spies. In Proceedings of the Inter-

national Workshop on Description Logics, 2002.

[20] M. Mortimer. On languages with two variables. Zeitschrift für mathema-

tische Logik und Grundlagen der Mathematik, 21:135–140, 1975.

[21] M. Y. Vardi. On the complexity of bounded-variable queries. In Proceed-

ings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, pages 266–276, 1995.

21

