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Abstract
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agents. Still, postconditions involving common knowledge are essential to success-
ful multi-agent communication. We propose new systems that extend the epistemic
base language with a new notion of ‘relativized common knowledge’, in such a way
that the resulting full dynamic logic of information flow allows for a compositional
analysis of all epistemic postconditions via perspicuous ‘reduction axioms’. We also
show how such systems can deal with factual alteration, rather than just information
change, making them cover a much wider range of realistic events. After a warm-up
stage of analyzing logics for public announcements, our main technical results are
expressivity and completeness theorems for a much richer logic that we call LCC.
This is a dynamic epistemic logic whose static base is propositional dynamic logic
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ysis for a wide range of informational events. This makes LCC a serious candidate
for a standard in dynamic epistemic logic, as we illustrate by analyzing some com-
plex communication scenarios, including sending successive emails with both ‘cc’
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standard modal techniques, combined with a new application of Kleene’s Theorem
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1 Introduction

Epistemic logic deals with what agents consider possible given their current
information. This includes knowledge about facts, but also higher-order infor-
mation about information that other agents have. A prime example is common
knowledge. A formula ϕ is common knowledge if everybody knows ϕ, every-
body knows that everybody knows that ϕ, and so on. Common belief is an
important related notion. Indeed, although this paper is mainly written in
‘knowledge’ terminology, everything we say also holds, with minor technical
modifications, when describing agents’ beliefs, including common belief.

Dynamic epistemic logics analyze changes in both basic and higher-order in-
formation. One of the main attractions of such systems is their transparent
analysis of effects of communicative actions in the format of an equivalence be-
tween epistemic postconditions and preconditions. A typical example concerns
knowledge of an agent after and before a public announcement:

[ϕ]2aψ ↔ (ϕ→ 2a[ϕ]ψ).

This axiom says that after the announcement that ϕ agent a knows that ψ
iff ϕ implies that agent a knows that after ϕ is announced ψ will be true. We
call such principles reduction axioms, because the announcement operator is
‘pushed through’ the epistemic operator, in such manner that on the right
hand side the complexity of the formula in the scope of the announcement
is less that the complexity of the formula in the scope of the announcement
on the left hand side. This reduction axiom describes the interaction between
the announcement operator and the epistemic operator. If there is a reduc-
tion axiom for each logical operator in the language, such a set of axioms
make logical systems particularly straightforward. For instance, the logic of
public announcements without common knowledge has an easy completeness
proof by way of a translation that follows the reduction axioms. Formulas
with announcements are translated to provably equivalent ones without an-
nouncements, and completeness follows from the known completeness of the
epistemic base logic. Thus, the dynamic logic of the announcement operator
is fully characterized by the reduction axioms.

This is the technical way of putting things. But more importantly, reduction
axioms like the one above also reflect a desirable methodology : they allow for
compositional analysis of the epistemic effects of informational events. This is
particularly helpful with more complex scenarios, where it is not at all easy to
describe just what agents should know, or not, after some communication has
taken place: say, a round of emails involving both public ‘cc’ and half-private
‘bcc’ lines. A dynamic epistemic logic with a complete set of reduction axioms
has an ideal ‘harmony’ between its static and dynamic parts allowing for com-
plete compositional analysis. So, it is worth finding such systems whenever
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they exist. Finally, more locally, specific reduction axioms also express inter-
esting assumptions about the interplay of events and knowledge. E.g., it has
often been observed that the above one for public announcement embodies a
form of ‘Perfect Recall’: the event of announcement does not add or delete
uncertainty lines for agents among those worlds which they consider possible.

In this light, there is a problem with common knowledge for groups in societies
of communicating agents. Understanding group knowledge as it is gained or
lost, is at the heart of analyzing epistemic update. But existing dynamic epis-
temic logics have no compositional reduction axioms for achieving common
knowledge, and this infelicity has been there from the start. Now, the seminal
paper [1] does treat common knowledge per se, but not on a reductive pattern,
and its completeness proof is correspondingly messy. Indeed, reduction axioms
are not available, as the logic with epistemic updates is more expressive than
the logic without them. We think this is an infelicity of design, and our main
aim in this paper is to show how compositional analysis is feasible by some
judicious language extension, restoring the proper harmony between the static
and dynamic features of the system.

In Section 2 we first look at examples of the general kinds of information
change that we are interested in. These include public announcement, but
also communication involving privacy and partial observation, and indeed,
observation of any sort of event that carries information. We also include real
physical actions changing the world. Before we give a system that deals with
all these phenomena, we first look at a pilot case that illustrates many issues
in a simpler setting, the logic PAL of public announcements. Section 3 gives
a new and complete set of reduction axioms for public announcement logic
with common knowledge, obtained by strengthening the base language with
an operator of relativized common knowledge, as first proposed in [3]. More-
over, since languages with model-shifting operators like [ϕ] are of independent
logical interest, we develop the model theory of PAL a bit further, using new
game techniques for epistemic languages with fixed-point operators for com-
mon knowledge to investigate its expressive power. Section 4, the heart of this
paper, then proposes a new dynamic epistemic LCC dealing with the general
case of updating with finite structures of events, generalizing the standard
reference [1] to include a much wider range of epistemic assertions, as well as
factual change. What the section demonstrates, in particular, is that PDL (the
well-known system of propositional dynamic logic), when interpreted epistem-
ically, can serve as a basis for a rich and expressive logic of communication
that allows for smooth compositional analysis of common knowledge after
epistemic updates. To avoid confusion with PDL in its non-epistemic uses for
analyzing actions, we will call our version here LCC.

A general approach that reduces dynamic epistemic logic to propositional dy-
namic logic was first proposed using finite automata techniques in [18], using a
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variant of propositional dynamic logic called ‘automata PDL’. The new tech-
niques used in the present paper (cf. [11]) work directly in epistemic PDL,
using the idea behind Kleene’s Theorem for regular languages and finite au-
tomata to find the relevant reduction axioms inductively by means of ‘program
transformations’. This analysis does not just yield the meta-theorems of com-
pleteness and decidability that we are after. It can also be used in practice to
actually compute valid axioms analyzing common knowledge following specific
communicative or informational events. Section 5 analyzes some of our earlier
communication types in just this fashion, obviating the need for earlier labori-
ous calculations ‘by hand’ (cf. [27]). Finally, Section 6 draws conclusions, and
indicates directions for further research.

The broader context for this paper are earlier systems of dynamic epistemic
logic, with [26], [14], and [1] as key examples of progressively stronger systems,
while [8] is a source of inspiring examples. Reduction axioms were already used
to prove completeness for dynamic epistemic logics in [14] and [1]. Another
major influence is the work of [13] on common knowledge in computational
settings, using a more general temporal-epistemic framework allowing also
for global protocol information about communicative processes. Connections
between the two approaches are found, e.g., in [21]. Further references to the
literature on epistemic actions and to many challenging open problems in the
general landscape of update logics can be found in [5].

Even though the main thrust of this paper may seem technical, our proposal
is much more than just a trick for smoothing completeness proofs, or for find-
ing a new model-theoretic play-ground. It also addresses a significant design
issue of independent interest: what is the most convenient and transparent
epistemic language for describing information flow for groups of agents in a
compositional manner? Our main logic LCC in Section 4 is meant as a serious
proposal for a standard.

2 Modelling Effects of Communication and Change

Epistemic update logics are about the effects of general communication, and
indeed, they describe the logic of observing any kind of information-bearing
event. But in practice, it is helpful to look at more constrained scenarios. A
good source of examples are basic actions in card games. Game moves then
involve looking at a card, showing a card to someone (with or without other
players looking on), exchanging cards with someone (with or without other
players looking on), and perhaps even changing the setting in more drastic
ways (cf. [8]). This is not just a frivolous move toward parlour games. One can
think of ‘card events’ as a sort of normal form for any type of informational
activity — and one which has the additional virtue of evoking vivid intuitions.
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Moreover, scenarios involving the interplay of information and ignorance are
not just logician’s puzzles for their own sake: managing the right mixtures of
information and ignorance is absolutely essential to human intelligence, and
to the functioning of civilized societies.

In this section we list some examples involving combinations of epistemic and
actual change that we think any full-fledged dynamic-epistemic logic should
be able to deal with. The simplest scenario here is public announcement of
some fact P , which merely requires elimination of all worlds in the current
model where P does not hold. But general communication can be much more
complex — just think of whispers in a lecture theatre. This requires updates
of the initial information model beyond mere elimination of worlds. Some
updates even make the current model bigger, as alternatives can multiply.
Since all these actions involve groups of agents, understanding both individual
and common knowledge following certain events is clearly essential.

Card Showing A simple card showing situation goes as follows. Alice, Bob
and Carol each hold one of the cards p q, r. The actual deal is: Alice holds p,
Bob holds q, Carol holds r. Assuming all players looked at their own cards, but
have kept them hidden from the others, this situation is modelled as follows
(xyz represents the situation where Alice holds x, Bob holds y and Carol holds
z, xyz—a—x′y′z′ represents the fact that Alice cannot distinguish xyz from
x′y′z′, and xyz∗ indicates that xyz is the situation that actually is the case):

rpq

qpr

pqr∗ prq

rqp

qrp

a

a

a

b b

bc

c c

Now assume Alice shows her card p to the whole group. This public event
eliminates all worlds from the initial model that conflict with the new infor-
mation. Thus, out of the six given worlds only two remain: pqr and prq. In
the resulting model, Bob and Carol know all the cards, while Alice only knows
that she has p — and both these facts are common knowledge. Now consider
a ‘semi-public’ action of Alice showing her card to Bob, with Carol looking
on (Carol sees that a card is shown, but does not see which card). Here is a
major new idea, due to [1]. We first picture the new event itself as an update
model whose structure is similar to that of epistemic models in general:
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p ∗

qr

c

c

c

According to this picture, the card that Alice shows to Bob is card p, but for
all Carol knows, it might have been q or r. In actual fact it cannot be r, as that
is the card which Carol holds and has just inspected, but this information is
not part of the update action. Note that the events depicted cannot occur in
just any world. Alice can only show card p when she actually holds p, she can
show q when she actually holds q and she can show r when she actually holds
r. The latter information is encoded in so-called preconditions, and indeed,
the fundamental reason why occurrences of events carry information for us is
that we know their preconditions.

Now for the update from the preceding event. Intuitively, we want a new
information model arising from the initial one that the agents were in plus the
update model containing the relevant actions. The new worlds are then old
worlds plus the most recent event attached. Moreover, our intuitions tell us
what the desired result of this update should look like, viz.:

rpq

qpr

pqr∗ prq

rqp

qrp

a

a

a

c

c c

Card Inspection Next, consider acts of observation. Suppose the three
cards are dealt to Alice, Bob and Carol, but are still face down on the table.
The following picture describes an update model for Alice’s inspecting her
own card and discovering it to be p, with the others just looking on.

p ∗

qr

bc

bc

bc

And here is the related update model of Alice picking up her card and showing
it to the others, without taking a look herself:
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p ∗

qr

a

a

a

In all these cases we have clear intuitions about what the outcomes of the up-
dates should be, and these underlie the technical proposals made in Section 4.

Card Exchange Next, we add a case where real physical action takes place,
which is not purely informational. Suppose in the initial situation, where Alice
holds p, Bob holds q and Carol holds r, Alice and Bob exchange cards, without
showing the cards to Carol. To model this, we need an update that also changes
the state of the world. For that, we need to change the valuation for atomic
facts. This may be done by using ‘substitutions’ which reset the truth values
of those atomic statements that are affected by the action:

c

pq

qp

{pq 7→ qp }

{qp 7→ pq }

Note that the diagram now indicates both the earlier preconditions for events
or actions, and postconditions for their successful execution. Here is the result
of applying this update model in the initial situation, where all players have
looked at their cards and the actual deal is pqr:

pqr

qpr∗

c

So far, we have looked at card examples, where actions are meant to be com-
municative, with some intentional agent. But it is important to realize that
dynamic epistemic logic can also serve as a system for analyzing arbitrary
observations of events that carry some information to observers, whether in-
tended or not. That is, it is a logic of perception as much as of communication,
and it is useful for modelling the essence of what goes on in very common ev-
eryday actions. We conclude with two illustrations in the latter mode.

Opening a window The precondition for opening a window is that the
window is closed. To make this into an update that can always be performed,
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we specify different actions depending on the state of the window. If it is open,
nothing needs to be done; if it is closed, then open it. This much is standard
dynamic logic, as used in describing transition systems in computer science.
But now we are in a setting where agents may have different ‘epistemic access’
to what is taking place. E.g., assuming the relevant event is invisible to all
(Alice, Bob and Carol), it can be modelled as follows:

abc

o

¬o

∅

{o 7→ >}

Again, we see both pre- and postconditions, with the latter depending on
the former. Note that this action can make agents ‘out of touch with reality’,
perhaps through laziness in observation. Such a mismatch can also result from
being actively misled. If the window is opened in secret, its update model looks
as follows (o denotes an open window; o 7→ > is the substitution making o

true).

abc abc

abc

o ¬o∅ {o 7→ >}

> ∅

Further variations on this update model are possible. E.g., the window is
in fact opened, while everyone is told that it was already open. Here is the
corresponding update:

abc

abc

o

¬o

∅

{o 7→ >}

Fiddling with a light switch Fiddling with a light switch is an update
that depends on the actual situation as follows: if the light is on, then switch
it off, if it is off, then switch it on. If this fiddling is done in a way such that
the result is visible to all, then here is its update model:
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> {o 7→ ¬o}

If the fiddling (and its result) are kept secret, the corresponding update model
looks like the above opening, but now with the new substitution.

Remark: Two Limitations The preceding examples suggest that we can
view an update model with several event as a disjunction of instructions under
conditions, i.e., as a kind of structured program ‘if the window is open then
do A or if the window is ajar, then do B, or, if the window is wide open, then
do C . . . .’ This suggests a set-up where update models are built from simple
actions by means of the regular operations of choice, sequence and iteration —
and perhaps even concurrent composition of events. We will not pursue this
approach here. Indeed, natural though it is, it transcends the boundaries of our
analysis. E.g., Miller and Moss [23] show that just adding finite iteration ∗ of
announcements already leads to an undecidable dynamic logic, not effectively
reducible to its decidable base.

Another boundary that we will not cross is the atomic form of our postcondi-
tions for world-changing actions. In more general scenarios, captured by logics
with operators in the spirit of ‘See To It That ϕ’, one may want to define
some action as having some complex epistemic effect described by arbitrary
ϕ, such as ‘make sure that only courageous people know the true state of af-
fairs’. Modeling complex postconditions raises some delicate technical issues,
orthogonal to our main concerns here.

3 Logics of Public Announcement

Many of the issues we want to deal with in the full-fledged logic of epistemic
updates are also present in the logic of the simplest form of communicative
action: public announcement logic. The corresponding update idea that an-
nouncing a proposition ϕ removes all worlds where ϕ does not hold goes back
far into the mists of logical folklore, and it has been stated explicitly since
the 1970s by Stalnaker, Heim, and others. The same idea also served as a
high-light in the work on epistemic logic in computer science (cf. [13]). Its
first implementation as a dynamic-epistemic logic seems due to Plaza [26].

Section 3.1 is a brief introduction to public announcement logic (PAL) as
usually stated. In Section 3.2 we give a new base logic of relativized common
knowledge, EL-RC. This extension was first proposed in [3], which analyzed up-
dates as a kind of relativization operator on models. Restricted or ‘bounded’
versions of logical operators like quantifiers or modalities are very common in
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semantics, and we will provide further motivation below. The resulting epis-
temic logic with relativized common knowledge is expressive enough to allow
a reduction axiom for common knowledge. A proof system is defined in Sec-
tion 3.3, and shown to be complete in Section 3.4. The system is extended
with reduction axioms for public announcements in Section 3.5. The existence
of reduction axioms for public announcements and relativized common knowl-
edge suggests that this new logic is more expressive than the epistemic logics
with public announcements proposed elsewhere in the literature. Hence it is
interesting to investigate the expressive power of this new logic with charac-
teristic model comparison games. These games are provided in Section 3.6.
This technique is then used to investigate the expressive power of relativized
common knowledge in Section 3.7, settling all issues of system comparison in
this area. Finally, complexity issues are briefly discussed in Section 3.8.

Once again, our systems work for agents’ beliefs as well as knowledge in more
constrained models. In our informal explanations, we will use either notion,
as seems best for getting points across.

3.1 Language and Semantics of PAL

A public announcement is an epistemic event where all agents are told simul-
taneously and transparently that a certain formula holds right now. This is
modeled by a modal operator [ϕ]. A formula of the form [ϕ]ψ is read as ‘ψ
holds after the announcement of ϕ’. If we also add an operator CBϕ to express
that ϕ is common knowledge among agents B, we get public announcement
logic with common knowledge (PAL-C). The languages

�
PAL and

�
PAL-C are

interpreted in standard models for epistemic logic.

Definition 1 (Epistemic Models) Let a finite set of propositional variables
P and a finite set of agents N be given. An epistemic model is a triple M =
(W,R, V ) such that

• W 6= ∅ is a set of possible worlds,
• R : N → ℘(W ×W ) assigns an accessibility relation R(a) to each agent a,
• V : P → ℘(W ) assigns a set of worlds to each propositional variable.

In epistemic logic the relations R(a) are usually equivalence relations. In this
paper we treat the general modal case without such constraints — making
‘knowledge’ more like belief, as observed earlier. But our results also apply to
the special modal S5-case of equivalence relations. The semantics are defined
with respect to models with a distinguished ‘actual world’: M,w.

Definition 2 (Semantics of PAL and PAL-C) Let a model M,w with M =
(W,R, V ) be given. Let a ∈ N , B ⊆ N , and ϕ, ψ ∈

�
PAL. For atomic proposi-
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tions, negations, and conjunctions we take the usual definition. The definitions
for the other operators run as follows:

M,w |= 2aϕ iff M, v |= ϕ for all v such that (w, v) ∈ R(a)

M,w |= [ϕ]ψ iff M,w |= ϕ implies M |ϕ,w |= ψ

M,w |= CBϕ iff M, v |= ϕ for all v such that (w, v) ∈ R(B)+

where R(B) =
⋃

a∈B R(a), and R(B)+ is its transitive closure. The updated
model M |ϕ = (W ′, R′, V ′) is defined by restricting M to those worlds where ϕ
holds. Let

[[ϕ]] = {v ∈W |M, v |= ϕ}.

Now W ′ = [[ϕ]], R′(a) = R(a) ∩ (W × [[ϕ]]), and V ′(p) = V (p) ∩ [[ϕ]].

Here, mostly for convenience, we chose to define common knowledge as a
transitive closure, as in [13]. In [22], common knowledge is defined as the
reflexive transitive closure. Our results will work either way, with minimal
adaptations.

A completeness proof for public announcement logic without an operator for
common knowledge (PAL) is straightforward.

Definition 3 (Proof System for PAL) The proof system for PAL is that for
multi-modal S5 epistemic logic plus the following reduction axioms:

Atoms ` [ϕ]p↔ (ϕ→ p)

Partial Functionality ` [ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ)

Distribution ` [ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ)

Knowledge Announcement ` [ϕ]2aψ ↔ (ϕ→ 2a[ϕ]ψ

as well as the following rules of inference:

(Announcement generalization) From ` ψ, infer ` [ϕ]ψ.

The formulas on the left of these equivalences are of the form [ϕ]ψ. In Atoms
the announcement operator no longer occurs on the right-hand side. In the
other reduction axioms formulas within the scope of an announcement are of
higher complexity on the left than on the right. Note that the Distribution
axiom is the well known K-axiom from modal logic. When applied successively,
these axioms turn every formula of the dynamic language into an equivalent
static one, thus showing the earlier ‘harmony’ between the static and dynamic
parts of the total system.

This system allows for compositional analysis of the epistemic effects of state-
ments made in groups of agents. In this light, even the technical reduction to
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the static part has a more general thrust worth pointing out. What it says
is that knowing the current knowledge of agents in some models suffices, in
principle, for knowing the effects of nay announcement actions that could oc-
cur. Thus, in the terminology of [6], the static language is rich enough to
pre-encode all dynamic effects. This is a powerful idea which also occurs in
conditional logic, and in reasoning with conditional probabilities. One way of
understanding our next topic is as a move towards achieving pre-encoding for
common knowledge, too. Here is why this requires work. For public announce-
ment logic with a common knowledge operator (PAL-C), a completeness proof
via reduction axioms is impossible. There is no such axiom for formulas of the
form [ϕ]CBψ, given the results in [1].

3.2 Relativized Common Knowledge: EL-RC

Even so, the semantic intuitions for achieving common knowledge by an-
nouncement are clear. If ϕ is true in the old model, then every B-path in
the new model ends in a ψ world. This means that in the old model every B-
path that consists exclusively of ϕ-worlds ends in a [ϕ]ψ world. To facilitate
this, we introduce a new operator CB(ϕ, ψ), which expresses that

every B-path which consists exclusively of ϕ-worlds ends in a ψ world.

We call this notion relativized common knowledge. A natural language para-
phrase might be ‘if ϕ is announced it becomes common knowledge among
B that ψ was the case before the announcement.’ A shorter paraphrase of
CB(ϕ, ψ) that we will use henceforth is ‘ψ is ϕ-relative common knowledge
among group B.’ Henceforth we consider only such ϕ-relative or ϕ-conditional
common knowledge of agents, just as one does in logics of doxastic condition-
als, where A =⇒ B means something like “if I were to learn that A, I would
believe that B.” Yet another helpful analogy may be with the well-known
‘Until’ of temporal logic. A temporal sentence ‘ϕ until ψ’ is true iff there is
some point in the future where ψ holds and ϕ is true up to that point. All
these readings show that the new notion has some concrete intuition behind
it. Its other virtue, as we shall see presently, is mathematical elegance.

Definition 4 (Language and Semantics of EL-RC) The language of EL-

RC is that of EL, together with the operator for relativized common knowledge,
with semantics given by:

M,w |= CB(ϕ, ψ)

iff

M, v |= ψ for all v such that (w, v) ∈ (R(B) ∩ (W × [[ϕ]]))+
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where (R(B) ∩ (W × [[ϕ]]))+ is the transitive closure of R(B) ∩ (W × [[ϕ]]).

Note that ϕ-relative common knowledge is not what results from a public up-
date with ϕ. E.g., [p]CB3a¬p is not equivalent to CB(p,3a¬p), for [p]CB3a¬p
is always false, and CB(p,3a¬p) holds in models where every B path through
p worlds ends in a world with an a successor with ¬p. In Section 3.7 we will
show that CB(p,3a¬p) cannot be expressed in PAL-C.

The semantics of the other operators is standard. Ordinary common knowledge
can be defined with the new notion: CBϕ ≡ CB(>, ϕ).

3.3 Proof System for EL-RC

Relativized common knowledge still resembles common knowledge, and so we
need just a slight adaptation of the usual axioms.

Definition 5 (Proof System for EL-RC) The proof system for EL-RC has
these axioms:

Tautologies All instantiations of propositional tautologies

2 Distribution `2a(ϕ→ ψ) → (2aϕ→ 2aψ)

C Distribution `CB(ϕ, ψ → χ) → (CB(ϕ, ψ) → CB(ϕ, χ))

Mix`CB(ϕ, ψ) ↔ EB(ϕ→ (ψ ∧ CB(ϕ, ψ)))

Induction ` (EB(ϕ→ ψ) ∧ CB(ϕ, ψ → EB(ϕ→ ψ))) → CB(ϕ, ψ)

and the following rules of inference:

(Modus Ponens) From ` ϕ and ` ϕ→ ψ infer ` ψ.
(2 Necessitation) From ` ϕ infer ` 2aϕ.
(C Necessitation) From ` ϕ infer ` CB(ψ, ϕ).

In the Mix and the Induction axiom, the notation EBϕ is an abbreviation
of

∧

a∈B 2aϕ ( everybody believes, or knows, ϕ).

These axioms are all sound on the intended interpretation. In particular, un-
derstanding the validity of the relativized versions Mix and Induction pro-
vides the main idea of our analysis.

Next, a proof consists of a sequence of formulas such that each is either an
instance of an axiom, or it can be obtained from formulas that appear earlier
in the sequence by applying a rule. If there is a proof of ϕ, we write ` ϕ.
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Remark It may also be helpful to write CB(ϕ, ψ) as a sentence in propo-
sitional dynamic logic PDL: [(

⋃

a∈B a; ?ϕ)+]ψ. Our proof system essentially
follows the usual PDL-axioms for this formula. This technical observation is
the key to our more general system LCC in Section 4 below.

3.4 Completeness for EL-RC

To prove completeness for our extended static language EL-RC, we follow [16],
[13]. The argument is standard, and our main new point is just that the usual
proof in the literature actually yields information about a richer language than
is commonly realized.

For a start, we take maximally consistent sets with respect to finite fragments
of the language that form a canonical model for that fragment. In particular,
for any given formula ϕ we work with a finite fragment called the closure of ϕ.
This is the appropriate analogue of the Fisher-Ladner closure from the PDL
literature (see [16]).

Definition 6 (Closure) The closure of ϕ is the minimal set Φ such that

(1) ϕ ∈ Φ,
(2) Φ is closed under taking subformulas,
(3) If ψ ∈ Φ and ψ is not a negation, then ¬ψ ∈ Φ,
(4) If CB(ψ, χ) ∈ Φ, then 2a(ψ → (χ ∧ CB(ψ, χ))) ∈ Φ for all a ∈ B.

Definition 7 (Canonical Model) The canonical model Mϕ for ϕ is the
triple (Wϕ, Rϕ, Vϕ) where

• Wϕ = {Γ ⊆ Φ | Γ is maximally consistent in Φ};
• (Γ,∆) ∈ Rϕ(a) iff ψ ∈ ∆ for all ψ with 2aψ ∈ Γ;
• Vϕ(p) = {Γ | p ∈ Γ}.

Next, we show that a formula in such a finite set is true in the canonical model
where that set is taken to be a world, and vice versa.

Lemma 8 (Truth Lemma) For all ψ ∈ Φ, ψ ∈ Γ iff Mϕ,Γ |= ψ.

Proof By induction on ψ. The cases for propositional variables, negations,
conjunction, and individual epistemic operators are straightforward. Therefore
we focus on the case for relativized common knowledge.

From left to right. Suppose CB(ψ, χ) ∈ Γ. If there is no ∆ such that (Γ,∆) ∈
(R(B) ∩ (Wϕ × [[ψ]]))+, then (Mϕ,Γ) |= CB(ψ, χ) holds trivially.

Otherwise, take a ∆ ∈ Wϕ such that (Γ,∆) ∈ (R(B) ∩ (Wϕ × [[ψ]]))+. We
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have to show that ∆ |= χ, but we show something stronger, namely that
∆ |= χ and CB(ψ, χ) ∈ ∆. This is done by induction on the length of the
path from Γ to ∆. The base case is a path of length 1. From our assumption
it follows that ψ ∈ ∆. Our assumption that CB(ψ, χ) ∈ Γ implies that `
δΓ → 2a(ψ → (χ∧CB(ψ, χ))) by the Mix axiom. The formula χ is also in Φ.
Therefore χ ∈ ∆. By applying the induction hypothesis we get (Mϕ,∆) |= χ.
We already assumed that CB(ψ, χ) ∈ Φ, therefore also CB(ψ, χ) ∈ ∆. So we
are done with the base case.

Now suppose that the path to ∆ is of length n+1. There must be a path from
Γ of length n to a Θ in (R(B) ∩ (Wϕ × [[ψ]]))+ such that (Θ,∆) ∈ R(a) for
some a ∈ N and (Mϕ,∆) |= ψ. By the induction hypothesis CB(ψ, χ) ∈ Θ.
Now we can apply the same reasoning as in the base case to conclude that
(Mϕ,∆) |= χ and CB(ψ, χ) ∈ ∆.

From right to left. Suppose (Mϕ,Γ) |= CB(ψ, χ). Now consider the set Λ:

Λ = {δ∆|(Γ,∆) ∈ (R(B) ∩ (Wϕ × [[ψ]]))+}

Let δΛ =
∨

∆∈Λ δ∆ We have to show that

` δΛ → EB(ψ → δΛ) (1)

Observe that if Λ is empty, then it follows trivially, because an empty disjunc-
tion is equivalent to a contradiction.

Otherwise note that for every a ∈ B, for every ∆ ∈ Λ and every ∆′ ∈ Λ
(where Λ is the complement of Λ) either ψ 6∈ ∆′, or there is a formula ϕ∆∆′

such that 2aϕ∆∆′ ∈ ∆ and ϕ∆∆′ 6∈ ∆′. From this it follows in both cases that

` δΛ → EB(ψ → ¬δΛ)

It can also be shown that ` δΛ∨ δΛ, and therefore we get (1). By necessitation
we get

` CB(ψ, δΛ → EB(ψ → δΛ))

By applying the induction axiom we can deduce

` EB(ψ → δΛ) → CB(ψ, δΛ)

Given that ` δΛ → χ, we get

` EB(ψ → δΛ) → CB(ψ, χ)

It is also the case that ` δΓ → EB(ψ → δΛ). Therefore CB(ψ, χ) ∈ Γ. �

The completeness theorem follows in a straightforward way from this lemma.

Theorem 9 (Completeness for EL-RC) |= ϕ iff ` ϕ.
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Proof Let 6` ϕ, i.e. ¬ϕ is consistent. One easily finds a maximally consistent
set Γ in the closure of ¬ϕ with ¬ϕ ∈ Γ, as only finitely many formulas matter.
By the Truth Lemma, M¬ϕ,Γ |= ¬ϕ, i.e., M¬ϕ,Γ 6|= ϕ.

The soundness of the proof system can easily be shown by induction on the
length of proofs, and we do not provide its straightforward details here. �

3.5 Reduction Axioms for PAL-RC

Next, let PAL-RC be the dynamic epistemic logic with both relativized common
knowledge and public announcements. Its semantics combines those for PAL

and EL-RC. We want to find a reduction axiom for [ϕ]CB(ψ, χ), the formula
that expresses that after public announcement of ϕ, every ψ path leads to
a χ world. Note that [ϕ]CB(ψ, χ) holds exactly in those worlds where every
ϕ ∧ [ϕ]ψ path ends in a world where [ϕ]χ is true. This observation yields the
following proof system for PAL-RC:

Definition 10 (Proof System for PAL-RC) The proof system for PAL-RC

is that for EL-RC plus the reduction axioms for PAL, together with C-Red:

[ϕ]CB(ψ, χ) ↔ (ϕ→ CB(ϕ ∧ [ϕ]ψ, [ϕ]χ)) (common knowledge reduction)

as well as an inference rule of necessitation for all announcement modalities.

It turns out that PAL-RC is no more expressive than EL-RC by a direct trans-
lation, where the translation clause for [ϕ]CB(ψ, χ) relies on the above insight:

Definition 11 (Translation from PAL-RC to EL-RC) The function t takes
a formula from the language of PAL-RC and yields a formula in the language
of EL-RC.

t(p) = p

t(¬ϕ) = ¬t(ϕ)

t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ)

t(2aϕ) = 2at(ϕ)

t(CB(ϕ, ψ)) = CB(t(ϕ), t(ψ))

t([ϕ]p) = t(ϕ) → p

t([ϕ]¬ψ) = t(ϕ) → ¬t([ϕ]ψ)

t([ϕ](ψ ∧ χ)) = t([ϕ]ψ) ∧ t([ϕ]χ)

t([ϕ]2aψ) = t(ϕ) → 2at([ϕ]ψ)

t([ϕ]CB(ψ, χ)) = CB(t(ϕ) ∧ t([ϕ]ψ), t([ϕ]χ))

t([ϕ][ψ]χ) = t([ϕ]t([ψ]χ))

The translation induced by these principles can be formulated as an inside-
out procedure, replacing innermost dynamic operators first. To see that it
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terminates, we can define a notion of complexity on formulas such that the
complexity of the formulas is smaller on the right hand side. We have added
the final axiom here for its independent interest, even though it is not strictly
necessary for this procedure. As observed in [4], it describes the effect of se-
quential composition of announcements, something which can also be stated
as an independently valid law of public announcement saying that the effect of
first announcing ϕ and then ψ is the same as announcing one single assertion,
viz. the conjunction ϕ∧ [ϕ]ψ. Standard programming styles for performing the
reduction (cf. [9]) do include the final clause in any case. As to its admissi-
bility, note that, when the last clause is called, the innermost application will
yield a formula of lesser complexity. The following theorems can be proved by
induction on this complexity measure.

Theorem 12 (Translation Correctness) For each dynamic-epistemic for-
mula ϕ of PAL-RC and each semantic model M,w,

M,w |= ϕ iff M,w |= t(ϕ).

Theorem 13 (‘PAL-RC = EL-RC’) The languages PAL-RC and EL-RC have
equal expressive power.

Theorem 14 (Completeness for PAL-RC) |= ϕ iff ` ϕ.

Proof The proof system for EL-RC is complete (Theorem 9), and every for-
mula in

�
PAL-RC is provably equivalent to its translation in

�
EL-RC, given the

reduction axioms. �

3.6 Model Comparison Games for EL-RC

The notion of relativized common knowledge is of independent interest, just as
irreducibly binary general quantifiers (such as Most A are B) lead to natural
completions of logics with only unary quantifiers. It is important to investi-
gate the relation between the logic of epistemic logic with relativized common
knowledge with public announcement logic with common knowledge. We pro-
vide some more information through characteristic games. Model comparison
games for languages with individual modalities are well-known, but dealing
with common knowledge: i.e., arbitrary finite iterations, requires some nice
twists. These games will be used in the next section to investigate the expres-
sivity of EL-RC relative to PAL-C.

Definition 15 (The EL-RC Game) Let two epistemic models M = (W,R,
V ) and M ′ = (W ′, R′, V ′) be given. Starting from each w ∈ W and w′ ∈ W ′,
the n-round EL-RC game between Spoiler and Duplicator is given as follows. If
n = 0 Spoiler wins if w and w′ differ in their atomic properties, otherwise Du-
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plicator wins. Otherwise Spoiler can initiate one of the following two scenarios
in each round:

2a-move Spoiler chooses a point x in one model which is an a-successor of
the current w or w′. Duplicator responds with a matching successor y in the
other model. The output is x, y.

RCB-move Spoiler chooses a B-path x0 . . . xk in either of the models with
x0 the current w or w′. Duplicator responds with a B-path y0 . . . ym in the
other model, with y0 = w′. Then Spoiler can (a) make the end points xk, ym

the output of this round, or (b) he can choose a world yi (with i > 0)
on Duplicator’s path, and Duplicator must respond by choosing a matching
world xj (with j > 0) on Spoilers path, and xj, yi becomes the output.

The game continues with the new output states. If these differ in their atomic
properties, Spoiler wins — otherwise, a player loses whenever he cannot per-
form a move while it is his turn. If Spoiler has not won after all n rounds,
Duplicator wins the whole game.

Definition 16 (Modal Depth) The modal depth of a formula is defined
by:

d(⊥) = d(p) = 1

d(¬ϕ) = d(ϕ)

d(ϕ ∧ ψ) = max(d(ϕ), d(ψ))

d(2aϕ) = d(ϕ) + 1

d(CB(ϕ, ψ)) = max(d(ϕ), d(ψ)) + 1

If two models M,w and M ′, w′ have the same theory up to depth n, we write
M,w ≡n M

′, w′.

The following result holds for all logical languages that we use in this paper.
Recall that our stock of propositional letters is finite.

Lemma 17 (Propositional finiteness) For every n, up to modal depth n,
there are only finitely logically non-equivalent propositions.

Theorem 18 (Adequacy of the EL-RC Game) Duplicator has a winning
strategy for the n-round game from M,w, M ′, w′ iff M,w ≡n M

′, w′.

Proof The proof is by induction on n. The base case is obvious, and all induc-
tive cases are also standard in modal logic, except that for relativized common
knowledge. As usual, perspicuity is increased somewhat by using the dual ex-
istential modality ĈB(ϕ, ψ). From left to right the proof is straightforward.

From right to left. Suppose that M,w ≡n+1 M
′, w′. A winning strategy for
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Duplicator in the (n + 1)-round game can be described as follows. If Spoiler
makes an opening move of type [2a-move], then the usual modal argument
works. Next, suppose that Spoiler opens with a finite sequence in one of the
models: say M , without loss of generality. By the Lemma 17, we know that
there is only a finite number of complete descriptions of points up to logical
depth n, and each point s in the sequence satisfies one of these: say ∆(s, n). In
particular, the end point v satisfies ∆(v, n). Let ∆(n) be the disjunction of all
formulas ∆(s, n) occurring on the path. Then, the initial world w satisfies the
following formula of modal depth n+1: ĈB(∆(n),∆(v, n)). By our assumption,
we also have M ′, w′ |= ĈB(∆(n),∆(v, n)). But any sequence witnessing this
by the truth definition is a response that Duplicator can use for her winning
strategy. Whatever Spoiler does in the rest of this round, Duplicator always
has a matching point that is n-equivalent in the language. �

Thus, games for
�

EL-RC are straightforward. But it is also of interest to look
at the language

�
PAL-C. Here, the shift modality [ϕ] passing to definable sub-

models requires a new type of move, not found in ordinary Ehrenfeucht games,
where players can decide to change the current model. The following descrip-
tion of what happens is ‘modular’: a model changing move can be added to
model comparison games for ordinary epistemic logic (perhaps with common
knowledge), or for our EL-RC game. By way of explanation: we let Spoiler
propose a model shift. Players first discuss the ‘quality’ of that shift, and
Duplicator can win if it is deficient; otherwise, the shift really takes place,
and play continues within the new models. This involves a somewhat unusual
sequential composition of games, but perhaps one of independent interest.

Definition 19 (The PAL-C Game) Let the setting be the same as for the
n-round game in Definition 15. Now Spoiler can initiate one of the following
scenario’s each round

2a-move Spoiler chooses a point x in one model which is an a-successor of
the current w or w′, and Duplicator responds with a matching successor y
in the other model. The output of this move is x, y.

CB-move Spoiler chooses a point x in one model which is reachable by a B-
path from w or w′, and Duplicator responds by choosing a matching world
y in the other model. The output of this move is x, y.

[ϕ]-move Spoiler chooses a number r < n, and sets S ⊆ W and S ′ ⊆ W ′,
with the current w ∈ S and likewise w′ ∈ S ′. Stage 1: Duplicator chooses
states s in S∪S ′, s in S∪S ′ (where S is the complement of S). Then Spoiler
and Duplicator play the r-round game for these worlds. If Duplicator wins
this subgame, she wins the n-round game. Stage 2: Otherwise, the game
continues in the relativized models M |S,w and M ′|S ′, w′ over n− r rounds.

The definition of depth is extended to formulas [ϕ]ψ as d([ϕ]ψ) = d(ϕ)+d(ψ).
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Theorem 20 (Adequacy of the PAL-RC Game) Duplicator has a winning
strategy for the n-round game on M,w and M ′, w′ iff M,w ≡n M ′, w′ in
�

PAL-RC.

Proof We only discuss the inductive case demonstrating the match between
announcement modalities and model-changing steps. From left to right, the
proof is straightforward.

From right to left. Suppose that M,w and M ′, w′ are equivalent up to modal
depth n+1. We need to show that Duplicator has a winning strategy. Consider
any opening choice of S, S ′ and r < n + 1 made by Spoiler. Case 1 : Suppose
there are two points s, s that are equivalent up to depth r. By the induction
hypothesis, this is the case if and only if Duplicator has a winning strategy for
the r-round game starting from these worlds and so has a winning strategy in
Stage 1. Case 2 : Duplicator has no such winning strategy, which means that
Spoiler has one — or equivalently by the inductive hypothesis, every pair s, s
is distinguished by some formula ϕss of depth at most r which is true in s

and false in s. Observe that δs =
∧

s∈S∪S′ ϕss is true in s and false in S ∪ S ′.
Note that there can be infinitely many worlds involved in the comparison, but
finitely many different formulas will suffice by the Lemma 17, which also holds
for this extended language. Further, the formula ∆S =

∨

s∈S δs is true in S and
false in S ∪ S ′. A formula ∆S′ is found likewise, and we let ∆ be ∆S′ ∨ ∆S.
It is easy to see that ∆ is of depth r and defines S in M and S ′ in M ′. Now
we use the given language equivalence between M,w and M ′, w′ with respect
to all depth (n + 1)-formulas 〈∆〉ψ where ψ runs over all formulas of depth
(n + 1) − r. We can conclude that M |∆, w and M ′|∆, w′ are equivalent up
to depth (n + 1) − r, and hence Duplicator has a winning strategy for the
remaining game, by the inductive hypothesis. So in this case Duplicator has
a winning strategy in Stage 2. �

In the next section we will use this game to show that EL-RC is more expressive
than PAL-C. For now, we will give an example of how this game can be played.

Definition 21 Let the model M(n) = (W,R, V ) be defined by

• W = {x ∈ N | 0 ≤ x ≤ n}
• R = {(x, x− 1) | 1 ≤ x ≤ n}
• V (p) = W

These models are simply lines of worlds. They can all be seen as submodels
of the entire line of natural numbers (where W = N). The idea is that Spoiler
cannot distinguish two of these models if the line is long enough. The only
hope that Spoiler has is to force one of the current worlds to an endpoint and
the other not to be an endpoint. In that case Spoiler can make a 2-move in the
world that is not an endpoint and Duplicator is stuck. This will not succeed
if the lines are long enough. Note that a C-move does not help Spoiler. Also
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0 M(y)

min(x, y)r max(x, y)

These must all be
selected by Spoiler.

For these Spoiler
must make the
same choice in
both models.

M(x)

Fig. 1. Illustration of the proof of Lemma 22.

a [ϕ]-move will not help Spoiler. Such a move will shorten the lines, but that
will cost as many rounds as it shortens them, so Spoiler still loses if they are
long enough. The following Lemma captures this idea.

Lemma 22 For all m, n, and all x ≤ m and y ≤ n Duplicator has a winning
for the PAL-C game for M(m), x and M(n), y with at most min(x, y) rounds.

Proof If x = y, the proof is trivial. We proceed by induction on the number
of rounds. Suppose the number of rounds is 0. Then x and y only have to
agree on propositional variables. They must agree, since p is true everywhere.

Suppose that the number of rounds is k+1 (i.e. min(x, y) = k+1). Duplicator’s
strategy is the following. If Spoiler chooses to play a 2-move, he moves to x−1
(or to y−1). Duplicator responds by choosing y−1 (or x−1). Duplicator has
a winning strategy for the resulting subgame by the induction hypothesis.

Suppose Spoiler chooses to play a C-move. If Spoiler chooses a z < min(x, y),
then Duplicator also chooses z. Otherwise, Duplicator takes just one step (the
minimum she is required to do). Duplicator has a winning strategy for the
resulting subgame by the induction hypothesis.

Suppose Spoiler chooses to play a [ϕ]-move. Spoiler chooses a number of rounds
r and some S and S ′. Observe that for all z < min(x, y) it must be the case
that z ∈ S iff z ∈ S ′. Otherwise, Duplicator has a winning strategy by the
induction hypothesis by choosing z and z. Moreover for all z ≥ r it must be
the case that z ∈ S ∪S ′. Otherwise, Duplicator has a winning strategy by the
induction hypothesis for min(x, y) and z. In Stage 2 the resulting subgame
will be for two models bisimilar to models to which the induction hypothesis
applies. The number of rounds will be (k+1)−r, and the lines will be at least
min(x, y) − r long (and (min(x, y) = k + 1). This is sketched in Figure 1. �
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Fig. 2. Expressive power of static and dynamic epistemic logics.

3.7 Expressivity Results

In this section we investigate the expressive power of the logics under con-
sideration here. Reduction axioms and the accompanying translation tell us
that two logics have equal expressive power. But our inability to find a com-
positional translation from one logic to another does not imply that those
logics have different expressive power. Here are some known facts. Epistemic
logic with common knowledge is more expressive than epistemic logic with-
out common knowledge. In [1] it was shown that public announcement logic
with common knowledge is more expressive than epistemic logic with common
knowledge. This can also be shown using the results on PDL in [15]. In this
section we show that relativized common knowledge logic is more expressive
than public announcement logic with common knowledge. The landscape of
expressive power is summarized in Figure 2. All arrows are strict.

In general one logic L is more expressive than another logic L′ (L′ −→ L in
Figure 2) if there is a formula in the language of L which is not equivalent
to any formula in the language of L′ (and every formula in the language of
L′ is equivalent to some formula in the language of L). So, in order to show
that EL-RC is more expressive than PAL-C we need to find a formula in

�
EL-RC

which is not equivalent to any formula in
�

PAL-C. The formula

C(p,¬2p)

fits this purpose. This will be shown in Theorem 27.

We can show that this formula cannot be expressed in
�

PAL-C by using model
comparison games. We will show that for any number of rounds there are two
models such that Duplicator has a winning strategy for the model comparison
game, but C(p,¬2p) is true in one of these models and false in the other.

In Definition 25 we provide the models that EL-RC can distinguish, but PAL-C

cannot. Since the model comparison game for PAL-C contains the [ϕ]-move,
we also need to prove that the relevant submodels cannot be distinguished by
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PAL-C. We deal with these submodels first in the next definition and lemma.

Definition 23 Let the model M(m,n) = (W,R, V ) where 0 < n ≤ m be
defined by

• W = {sx | 0 ≤ x ≤ m} ∪ {tx | n ≤ x ≤ m} ∪ {u}
• R = {(sx, sx−1) | 1 ≤ x ≤ m} ∪ {(tx, tx−1) | n+ 1 ≤ x ≤ m} ∪ {(w, u) | w ∈
W \ {u}} ∪ {(u, sm), (u, tm)}

• V (p) = W \ {u}

The picture below represents M(2, 1).

s2s1s0

t2t1

u

Let us call these models ‘hourglasses’. The idea is that Spoiler cannot dis-
tinguish the top line from the bottom line of these models if they are long
enough. Note that apart from u this model consists of two lines. So if Spoiler
plays 2-moves on these lines, Duplicator’s strategy is the same as for the
line models described above. If he moves to u, Duplicator also moves to u,
and surely Duplicator cannot lose the subsequent game in that case. In these
models a C-move is very bad for Spoiler, since all worlds are connected by the
reflexive transitive closure of R. A [ϕ]-move will either yield two lines which
are too long, or it will be a smaller hourglass model, which will still be too
large, since the [ϕ]-move reduces the number of available moves. The Lemma
below captures this idea.

In what follows, wx is a variable ranging over sx and tx. And if tx does not
exist it refers to sx.

Lemma 24 For all m, n and all x ≤ m and y ≤ m Duplicator has a winning
strategy for the public announcement game for M(m,n), wx and M(m,n), wy

with at most min(x, y) − n rounds.

Proof We prove the case when wx = sx and wy = ty (the other cases are
completely analogous) by induction. Suppose the number of rounds is 0. Then
sx and ty only have to agree on propositional variables. They do agree, since
p is true in both.

Suppose that the number of rounds is k + 1. Duplicator’s winning strategy is
the following. If Spoiler chooses to play a 2-move, he moves to sx−1 (or to
ty−1), or to u. In the last case Duplicator responds by also choosing u, and has
a winning strategy for the resulting subgame. Otherwise Duplicator moves to
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the ty−1 (or sx−1). Duplicator has a winning strategy for the resulting subgame
by the inductive hypothesis.

Suppose Spoiler plays a C-move. If Spoiler moves to w, then Duplicator moves
to the same w, and has a winning strategy for the resulting subgame.

Suppose Spoiler chooses to play a [ϕ]-move. Spoiler chooses a number of rounds
r and some S. Since there is only one model, Spoiler only chooses one subset
of W . Moreover for all z ≥ min(x, y)− n− r it must be the case that wz ∈ S.
Otherwise, Duplicator has a winning strategy by the induction hypothesis for
sx and wz. In Stage 2 the result will be two models bisimilar to models to
which the inductive hypothesis applies, or to which Lemma 22 applies. �

Lastly consider the following class of models.

Definition 25 Let the model M+(m,n) = (W,R, V ) where 0 < n ≤ m be
defined by

• W = {sx | n ≤ x ≤ m} ∪ {tx | 0 ≤ x ≤ m} ∪ {v, u}

• R = {(sx, sx−1) | n+ 1 ≤ x ≤ m} ∪ {(tx, tx−1) | 1 ≤ x ≤ m}∪

{(w, u) | w ∈W \ {v, u}} ∪ {(t0, v)} ∪ {(u, sm), (u, tm)}

• V (p) = W \ {u}

The picture below represents M+(2, 0).

s2s1s0

t2t1t0

u

v

In these ‘hourglasses with an appendage’, the idea is that Duplicator cannot
distinguish the top line from the bottom line of these models when they are
long enough. Apart from v, the model is just like a hourglass. So the only new
option for Spoiler is to force one of the current worlds to v, and the other to
another world. Then Spoiler chooses a 2-move and takes a step from the non-v
world and Duplicator is stuck at v. However if the model is large enough v is
too far away. Again a C-move does not help Spoiler, because it can be matched
exactly by Duplicator. Reducing the model with a [ϕ]-move will yield either a
hourglass (with or without an appendage) or two lines, for which Spoiler does
not have a winning strategy. This idea leads to the following Lemma.

Lemma 26 For all m, n and all x ≤ m and y ≤ m Duplicator has a winning
strategy for the public announcement game for M+(m,n), wx and M+(m,n),
wy with at most min(x, y) − n rounds.
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Proof The proof is analogous to the proof of Lemma 24. �

This Lemma now yields to the following theorem.

Theorem 27 EL-RC is more expressive than PAL-C.

Proof Suppose PAL-C is just as expressive as EL-RC. Then there is a formula
ϕ ∈

�
PAL-C with ϕ ≡ C(p,¬2p). Suppose d(ϕ) = n. In that case we would

haveM+(n, 0), sn |= ϕ and M+(n, 0), tn 6|= ϕ, contradicting Lemma 26. Hence,
EL-RC is more expressive. �

3.8 Complexity Results

Update logics are about processes that manipulate information, and hence
they raise natural questions of complexity, as a counterpoint to the expres-
sive power of communication and observation scenarios. In particular, all of
the usual complexity questions concerning a logical system make sense. Model
checking asks where a given formula is true in a model, and this is obviously
crucial to computing updates. Satisfiability testing asks when a given formula
has a model, which corresponds to consistency of conversational scenarios in
our dynamic epistemic setting. Or, stating the issue in terms of validity : when
will a given epistemic update always produce some global specified effect?
Finally, just as in basic modal logic, there is a non-trivial issue of model com-
parison: when do two given models satisfy the same formulas in our language,
i.e., when are two group information states ‘the same’ for our purposes? As
usual, this is related with checking for bisimulation, or in a more finely-grained
version, the existence of winning strategies for Duplicator in the above model
comparison games.

Now technically, the translation of Definition 11 combined with known al-
gorithms for model checking, satisfiability, validity, or model comparison for
epistemic logic yield similar algorithms for public announcement logic. But,
in a worst case, the length of the translation of a formula is exponential in
the length of the formula. E.g., the translation of ϕ occurs three times in
that of [ϕ]CB(ψ, χ). Therefore, a direct complexity analysis is worth-while.
We provide two results plus some references.

Lemma 28 Deciding whether a finite model M,w satisfies ϕ ∈
�

EL-RC is
computable in polynomial time in the length of ϕ and the size of M .

Proof The argument is an easy adaptation of the usual proof for PDL or
common knowledge with common knowledge: see [16, p.202] and [13, p.91].

�
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This algorithm does not suffice for the case with public announcements. The
truth values of ϕ and ψ in the given model do not fix that of [ϕ]ψ. We must
also know the value of ψ in the model restricted to ϕ worlds.

Lemma 29 Deciding whether a finite model M,w satisfies ϕ ∈
�

PAL-RC is
computable in polynomial time in the length of ϕ and the size of M .

Proof Again there are at most |ϕ | subformulas of ϕ. Now we make a binary
tree of these formulas which splits with formulas of the form [ψ]χ. On the left
subtree all subformulas of ψ occur, on the right all those of χ. This tree can be
constructed in time O(|ϕ |). Labeling the model is done by processing this tree
from bottom to top from left to right. The only new case is when we encounter
a formula [ψ]χ. In that case we have already processed the left subtree for ψ.
Now we first label those worlds where ψ does not hold as worlds where [ψ]χ
holds, then we process the right subtree under [ψ]χ where we restrict the
model to worlds labeled as ψ-worlds. After this process we label those worlds
that were labeled with χ as worlds where [ψ]χ holds and the remaining as
worlds where it does not hold. We can see by induction on formula complexity
that this algorithm is correct.

Also by induction on ϕ, this algorithm takes time O(|ϕ | ×‖M‖2). The only
difficult step is labeling the model with [ψ]χ. By the induction hypothesis,
restricting the model to ψ takes time O(| ψ | ×‖M‖2). We simply remove
(temporarily) all worlds labelled ¬ϕ and all arrows pointing to such worlds.
Again by the induction hypothesis, checking χ in this new model takes O(|ψ |
×‖M‖2) steps. The rest of the process takes ‖M‖ steps. So, this step takes
over-all time O(| [ψ]χ | ×‖M‖2). �

Moving on from model checking, the satisfiability and the validity problem
of epistemic logic with common knowledge are both known to be EXPTIME-
complete. In fact, this is true for almost any logic that contains a transi-
tive closure modality. Satisfiability and validity for PDL are also EXPTIME-
complete. Now there is a linear time translation of the language of EL-RC to
that of PDL. Therefore the satisfiability and validity problems for EL-RC are
also EXPTIME-complete. For PAL-RC and even PAL-C, however, the com-
plexity of satisfiability and validity is not settled by this. Lutz [20] shows that
satisfiability in PAL is PSPACE-complete, using a polynomial-time translation
from dynamic-epistemic to purely epistemic formulas. The latter is unlike the
translation underpinning our reduction axioms, in that it is not meaning-
preserving. The same method probably extends to PAL-C and PAL-RC.

Finally, the complexity of model comparison for finite models is the same as
that for ordinary epistemic logic, viz. PTIME. The reason is that even basic
modal equivalence on finite models implies the existence of a bisimulation,
while all our extended languages are bisimulation-invariant.
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This completes our in-depth analysis of a redesigned dynamic logic of public
announcement. Having shown the interest of such a system, we now consider
more powerful versions, covering a much wider range of phenomena.

4 A New Logic of Communication and Change

The examples in the Section 2 set a high ambition level for a dynamic epis-
temic logic updating with events involving both communication and actual
change. As we explained, systems of this general sort were proposed in [1,2],
but without reduction axioms for common knowledge. We now proceed to a
version which can deal with common knowledge, generalizing the composi-
tional methodology for epistemic logic with announcements of Section 3.

In Section 4.1 we introduce update models and specify their execution on
epistemic models in terms of ‘product update’. The only difference with the
references above is our addition of fact-changing actions by substitutions.
In Section 4.2 we review propositional dynamic logic (PDL) under its epis-
temic/doxastic interpretation, written henceforth as E-PDL. In Section 4.3 we
then present our dynamic epistemic logic of communication and change LCC

as an extension of E-PDL with dynamic modalities for update models. In Sec-
tion 4.4 we show that LCC is in harmony with E-PDL through a semantic
analysis of epistemic postconditions, and in Section 4.5 we present a proof
system for LCC in terms of reduction axioms based on this insight [11,10].

From a technical perspective, the proofs to follow are not just simple general-
izations of those for public announcements. In [18] a correspondence between
update models and finite automata is used to obtain reduction axioms in
a dynamic epistemic logic based on so-called ‘automata PDL’, a variant of
E-PDL. Our main new idea here is that this can be stream-lined by analyzing
the automata inductively inside E-PDL itself [11], using the well-known proof
of Kleene’s theorem, stating that languages generated by nondeterministic
finite automata are regular [17]. The main theorems to follow use an induc-
tive ‘program transformation’ approach to epistemic updates whose structure
resembles that of Kleene’s translation from finite automata to regular expres-
sions. This technique for deriving compositional reduction axioms may be of
independent interest beyond the present setting.

4.1 Update Models and their Execution

When viewed by themselves, communicative or other information-bearing sce-
narios are similar to static epistemic models, in that they involve a space of
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possible events and agents’ abilities to distinguish between these. In [1] this
observation is used as the engine for general update of epistemic models un-
der epistemic actions. In particular, individual events come with preconditions
holding only at those worlds where they can occur.

Of course, events normally do not just signal information, they also change the
world in more concrete ways. Before describing the update mechanism, we en-
rich our dynamic models with postconditions for events that really change the
world. For this purpose we use ‘substitutions’ that effect changes in valuations
at given worlds, serving as postconditions for events to occur.

Definition 30 (Substitutions)
�

substitutions are functions of type
�

→
�

that distribute over all language constructs, and that map all but a finite
number of basic propositions to themselves.

�
substitutions can be represented

as sets of bindings

{p1 7→ ϕ1, . . . , pn 7→ ϕn}

where all the pi are different . If σ is a
�

substitution, then the set {p ∈
P | σ(p) 6= p} is called its domain, notation dom(σ). Use ε for the identity
substitution. Let SUB � be the set of all

�
substitutions.

Definition 31 (Epistemic Models under a Substitution) If M = (W,
V,R) is an epistemic model and σ is a

�
substitution (for an appropriate

epistemic language
�

), then V σ
M is the valuation given by λp · [[σ(p)]]M . In

other words, V σ
M assigns to w the set of worlds w in which σ(p) is true. For

M = (W,V,R), call Mσ the model given by (W,V σ
M , R).

Definition 32 (Update Models) An update model for a finite set of agents
N with a language

�
is a quadruple U = (E,R, pre, sub) where

• E = {e0, . . . , en−1} is a finite non-empty set of events,
• R : N → ℘(E2) assigns an accessibility relation R(a) to each agent a ∈ N .
• pre : E →

�
assigns a precondition to each event,

• sub : E → SUB � assigns a
�

substitution to each event.

A pair U, e is an update model with a distinguished actual event e ∈ E.

In these definitions,
�

can be any language that can be interpreted in the
models of Definition 1. Note that an ‘action model’ in the sense of [1] is a
special update model in our sense, where sub assigns the identity substitution
ε to every event. Our substitutions then take the original action model philos-
ophy one step further. In particular, our notion of update execution will reset
both basic features of information models: epistemic accessibility relations, but
also the propositional valuation. Section 4.3 then presents a dynamic logic for
communication and real change based on these general update models.
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Remark: Information Change and Real Change Note that the world-
changing feature is modular here. Readers only interested in epistemic infor-
mation flow can think of models in the original dynamic epistemic style. All
of our major results hold in this special case, and proofs proceed by merely
skipping base steps or inductive steps involving the substitutions.

Executing an update is now modeled by the following product construction.

Definition 33 (Update Execution) Given a static epistemic model M =
(W,R, V ), a world w ∈W , an update model U = (E,R, pre, sub) and an action
state e ∈ E with M,w |= pre(e), we say that the result of executing U, e in
M,w is the model M ◦ U, (w, e) = (W ′, R′, V ′), (w, e) where

• W ′ = {(v, f) |M, v |= pre(f)},
• R′(a) = {((v, f), (u, g)) | (v, u) ∈ R(a) and (f, g) ∈ R(a)},
• V ′(p) = {(v, f) |M, v |= sub(f)(p)}

Once again, Definitions 32 (with all substitutions set equal to ε) and 33 provide
a semantics for the logic of epistemic actions LEA of [1]. The basic epistemic
language

�
LEA can then be extended with dynamic modalities [U, e]ϕ, where

a U is any finite update model for
�

LEA. These say that ‘every execution of
U, e yields a model where ϕ holds’:

M,w |= [U, e]ϕ iff M,w |= pre(e) implies that M ◦ U, (w, e) |= ϕ

In [1] an axiomatic system for LEA is presented with a, somewhat complicated,
completeness proof, without reduction axioms for common knowledge. Our
analysis to follow will improve on this.

To see what is needed, observe that, again, the semantic intuition about the
crucial case M,w |= [U, e]CBϕ is clear. It says that, if there is a B-path
w0, . . . , wn (with w0 = w) in the static model and a matching B-path e0, . . . , en

(with e0 = e) in the update model with M,wi |= pre(ei) for all i ≤ n, then
M,wn |= ϕ. To express all this in the initial static model, it turns out to
be convenient to choose a representation of complex epistemic assertions that
meshes well with update models.

Now, the relevant finite paths in static models involve strings of agent accessi-
bility steps and tests on formulas. And these finite traces of actions and tests
are precisely the sort of structure whose study led to the design of propositional
dynamic logic (PDL). Initially, PDL was designed for the analysis of programs.
In what follows, however, we will give it an epistemic interpretation.

29



4.2 Epistemic PDL

The language of propositional dynamic logic and all further information about
its semantics and proof theory may be found in [16], which also has references
to the history of this calculus, and its original motivations in computer science.
We briefly recall some major notions and results.

Definition 34 (PDL, Language) Let a set of propositional variables P and
a set of relational atoms N be given, with p ranging over P and a over N .
The language of PDL is given by:

ϕ ::=> | p | ¬ϕ | ϕ1 ∧ ϕ2 | [π]ϕ

π ::= a |?ϕ | π1;π2 | π1 ∪ π2 | π
∗

We employ the usual abbreviations: ⊥ is shorthand for ¬>, ϕ1∨ϕ2 is shorthand
for ¬(¬ϕ1 ∧¬ϕ2), ϕ1 → ϕ2 is shorthand for ¬(ϕ1 ∧ϕ2), ϕ1 ↔ ϕ2 is shorthand
for (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1), and 〈π〉ϕ is shorthand for ¬[π]¬ϕ.

Definition 35 (PDL, Semantics) The semantics of PDL over P,N is given
in models M = (W,R, V ) for signature P,N . Formulas of PDL are inter-
preted as subsets of W , relational atoms a as binary relations on W (with the
interpretation of relational atoms a given as R(a)), as follows:

[[>]]M =W

[[p]]M =V (p)

[[¬ϕ]]M =W \ [[ϕ]]M

[[ϕ1 ∧ ϕ2]]
M = [[ϕ1]]

M ∩ [[ϕ2]]
M

[[ [π]ϕ]]M = {w ∈ W | ∀v if (w, v) ∈ [[π]]M then v ∈ [[ϕ]]M}

[[a]]M =R(a)

[[?ϕ]]M = {(w,w) ∈ W ×W | w ∈ [[ϕ]]M}

[[π1;π2]]
M = [[π1]]

M ◦ [[π2]]
M

[[π1 ∪ π2]]
M = [[π1]]

M ∪ [[π2]]
M

[[π∗]]M = ([[π]]M)∗

Here ([[π]]M)∗ is the reflexive transitive closure of binary relation [[π]]M . If
w ∈ W then we use M,w |= ϕ for w ∈ [[ϕ]]M , and we say that ϕ is true at w.
A PDL formula ϕ is true in a model if it holds at every state in that model.
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These definitions specify how formulas of PDL can be used to make assertions
about PDL models. E.g., the formula 〈a〉> says that the current state has an
R(a)-successor. Truth of 〈a〉> in a model says that R(a) is serial.

Note that ? is an operation for mapping formulas to programs. Programs of
the form ?ϕ are called tests; they are interpreted as the identity relation,
restricted to the states s satisfying the formula ϕ.

If σ = {p1 7→ ϕ1, . . . , pn 7→ ϕn} is a PDL substitution, we use ϕσ for σ(ϕ) and
πσ for σ(π). We can spell out ϕσ and πσ, as follows:

>σ = >

pσ = σ(p)

(¬ϕ)σ = ¬ϕσ

(ϕ1 ∧ ϕ2)
σ = ϕσ

1 ∧ ϕσ
2

([π]ϕ)σ = [πσ]ϕσ

aσ = a

(?ϕ)σ = ?ϕσ

(π1;π2)
σ = πσ

1 ;πσ
2

(π1 ∪ π2)
σ = πσ

1 ∪ πσ
2

(π∗)σ = (πσ)∗.

The following holds by simultaneous induction on the structure of formulas
and programs:

Lemma 36 (Substitution) For all PDL models M , all PDL formulas σ, all
PDL programs π, all PDL substitutions σ:

M,w |= ϕσ iff Mσ, w |= ϕ.

(w,w′) ∈ [[πσ]]M iff (w,w′) ∈ [[π]]M
σ

.

This is just the beginning of a more general model-theory for PDL, which is
bisimulation-based just like basic modal logic.

One striking feature of PDL is that its set of validities is decidable, with a
perspicuous axiomatization. We display it here, just to fix thoughts — but no
details will be used in what follows.

Theorem 37 The following axioms and inference rules are complete for PDL:

(K) ` [π](ϕ→ ψ) → ([π]ϕ→ [π]ψ)

(test) ` [?ϕ1]ϕ2 ↔ (ϕ1 → ϕ2)

(sequence) ` [π1;π2]ϕ↔ [π1][π2]ϕ

(choice) ` [π1 ∪ π2]ϕ↔ [π1]ϕ ∧ [π2]ϕ

(mix) ` [π∗]ϕ↔ ϕ ∧ [π][π∗]ϕ

(induction) ` (ϕ ∧ [π∗](ϕ→ [π]ϕ)) → [π∗]ϕ
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and the following rules of inference:

(Modus Ponens) From ` ϕ1 and ` ϕ1 → ϕ2, infer ` ϕ2.
(Modal Generalisation) From ` ϕ, infer ` [π]ϕ.

In the rest of this paper, we are going to use PDL for a very special purpose,
viz. as a rich epistemic language. This may be confusing at first sight, since
the objects in our update models are events, and hence one might naturally
think of a propositional dynamic logic for sequences of these. The latter use
would be close to describing operational structure on update models viewed
as programs, which we noted in Section 2, but then decided to forego. We ask
the reader to firmly resist this association henceforth, and focus instead on the
following epistemic perspective ([24,28]). To make the distinction even clearer,
we will often refer to propositional dynamic logic in this epistemic guise as
E-PDL.

Atomic relations will be epistemic accessibilities of single agents. Compositions
like b1; b2 then express the ‘levels of knowledge’ of Parikh: if ϕ expresses that
b1 wants b2 to pick up the children, then [b1; b2]ϕ states that b1 knows that
b2 knows what is expected of him (a precondition for being at ease about
the arrangement). Next, if B ⊆ N and B is finite, we use B as shorthand
for b1 ∪ b2 ∪ · · · . Under this convention, the general knowledge operator EBϕ

takes the shape [B]ϕ, while the common knowledge operator CBϕ appears as
[B∗]ϕ, i.e., [B]ϕ expresses that it is general knowledge among agents B that
ϕ, and [B∗]ϕ expresses that it is common knowledge among agents B that ϕ.
In the special case where B = ∅, B turns out equivalent to ?⊥, the program
that always fails. In the same vein, common belief among agents B that ϕ
can be expressed as [B;B∗]ϕ. But E-PDL is much richer than these notions, in
that it also allows for much more complex combinations of agent accessibility
relations, corresponding to some pretty baroque ‘generalized agents’. We have
found no practical use for these at present, but they are the price that we
cheerfully pay for having a language living in expressive harmony with its
dynamic superstructure — as will be described now.

4.3 LCC, a Dynamic Logic of Communication and Change

Now we have all the ingredients for the definition of the logic of communication
and change.

Definition 38 (LCC, Language) The language
�

LCC is the result of adding
a clause [U, e]ϕ for update execution to the language of E-PDL, where U is an
update model for

�
LCC.

Definition 39 (LCC, Semantics) The semantics [[ϕ]]M is the standard se-
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mantics of PDL, with the meaning of [U, e]ϕ in M = (W,R, V ) given by:

[[[U, e]ϕ]]M = {w ∈W | if M,w |= pre(e) then (w, e) ∈ [[ϕ]]M◦U}.

We have to check that the definition of execution of update models is well
behaved. The following theorems state that it is, in the sense that it preserves
epistemic model bisimulation and update model bisimulation (the correspond-
ing theorems for LEA are proved in [1]).

Theorem 40 For all PDL models M,w and N, v and all formulas ϕ ∈
�

LCC

If M,w↔N, v then w ∈ [[ϕ]]M iff v ∈ [[ϕ]]N

This theorem must be proved simultaneously with the following result.

Theorem 41 For all PDL models M,w and N, v, all update models U, e:

If M,w↔N, v then M ◦ U, (w, e)↔N ◦ U, (v, a).

Proof We prove both results simultaneously by induction on formulas ϕ and
the preconditions of the relevant update models.

• Proof of Theorem 40: the base case for propositional variables and the cases
for negation, conjunction, and program modalities is standard. The only
interesting case is for formulas of the form [U, e]ϕ. Suppose w ∈ [[[U, e]ϕ]]M .
Therefore w ∈ [[pre(e)]]M implies (w, e) ∈ [[ϕ]]M◦U. By the induction hypoth-
esis w ∈ [[pre(e)]]M iff v ∈ [[pre(e)]]N and M ◦U, (w, e)↔N ◦U, (v, e). Then, by
applying the induction hypothesis to M ◦U, (w, a) and N ◦U, (v, e), we infer
v ∈ [[pre(e)]]N implies (v, e) ∈ [[ϕ]]N◦U. By the semantics this is equivalent to
v ∈ [[[U, e]ϕ]]N . The other way around is completely analogous.

• Proof of Theorem 41: Let B be a bisimulation witnessing M,w↔N, v. Then
the relation C between WM × EU and WN × EU defined by

(w, e)C(v, f) iff wBv and e = f

is a bisimulation.
The induction hypothesis guarantees that (w, e) exists iff (v, f) exists.
Suppose (w, e)C(v, f). Then wBv and e = f. The only non-trivial check

is the check for sameness of valuation. By wBv, w and v satisfy VM(w) =
VN(v). By e = f, e and f have the same substitution σ. By the fact that w
and v are bisimilar, by the induction hypothesis we have that w ∈ [[ϕ]]M iff
v ∈ [[ϕ]]N . Thus, by VM(w) = VN(s) and the definition of V σ

M and V σ
N , we

get V σ
M(w) = V σ

N (v).

�
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Theorem 42 For all PDL models M,w, all update models U1, e and U2, f:

If U1, e↔U2, f then M ◦ U1, (w, e)↔M ◦ U2, (w, f).

Proof Let R be a bisimulation witnessing U1, e↔U2, f. Then the relation C

between WM × EU1
and WM × EU2

given by

(w, e)C(v, f) iff w = v and eRf

is a bisimulation.

Suppose (w, e)C(v, f). Then w = v and eRf. Again, the only non-trivial check
is the check for sameness of valuation. By eRf, the substitutions σ of e and τ of
f are equivalent. By w = v, VM(w) = VM(v). It follows that V σ

M(w) = V σ
M(v),

i.e., (w, e) and (v, f) have the same valuation. �

4.4 Expressive Power of LCC

Now, if we have designed things well, the dynamic system just defined should
be in harmony with its static substructure. In particular, we expect reduction
axioms for compositional analysis of the effects of arbitrary update models:
[U, e][π]ϕ. These will then, if one wants to phrase this somewhat negatively,
‘reduce LCC to E-PDL.’ As before, the quest for such principles starts with an
attempt to describe what is the case after the update in terms of what is the
case before the update. In case of LCC, epistemic relations can take the shape
of arbitrary E-PDL programs. So we must ask ourselves how we can find, for
a given relation [[π]]M◦U a corresponding relation in the original model M,w.

A formula of the form 〈U, ei〉〈π〉ϕ is true in some model M,w iff there is a
π-path in M ◦U leading from (w, ei) to a ϕ world (v, ej). That means there is
some path w . . . v in M and some path ei . . . ej in U such that (M,w) |= pre(ei)
and . . . and (M, v) |= pre(ej) and of course (M, v) |= 〈U, ej〉ϕ. The program
TU

ij (π), to be defined below, captures this. A T U
ij (π)-path in the original model

corresponds to a π-path in the updated model. But in defining T U
ij (π) we

cannot refer to a model M . The definition of the transformed program T U
ij (π)

only depends on π, U, ei and ej. These program transformers are used in the
reduction axiom, which can be formulated as follows:

[U, ei][π]ϕ↔
n−1
∧

j=0

[TU

ij (π)][U, ej]ϕ.

The remainder of this section is directed towards showing that this axiom is
sound (Theorem 48). Our main new technical contribution in this paper lies
in the machinery leading up to this.
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The program transformer TU
ij is defined as follows:

Definition 43 (TU
ij Program Transformers)

TU

ij (a) =











?pre(ei); a if eiR(a)ej,

?⊥ otherwise

TU

ij (?ϕ) =











?(pre(ei) ∧ [U, ei]ϕ) if i = j,

?⊥ otherwise

TU

ij (π1;π2) =
n−1
⋃

k=0

(TU

ik(π1);T
U

kj(π2))

TU

ij (π1 ∪ π2) =TU

ij (π1) ∪ T
U

ij (π2)

TU

ij (π
∗) =KU

ijn(π)

where KU
ijn(π) is given by Definition 44.

We need the additional program transformer KU
ijn in order to build the paths

corresponding to the transitive closure of π in the updated model step by
step, where we take more and more worlds of the update model into account.
Intuitively, KU

ijk(π) is a (transformed) program for all the π paths from (w, ei)
to (v, ej) that can be traced through M ◦ U while avoiding a pass through
intermediate states with events ek and higher (this is the thrust of Definition
44). Here, a π path from (w, ei) to (v, ej) is a path of the form (w, ei), (v, ej) (in
case i = j), or (w, ei)

π−−→· · · π−−→(v, ej). Intermediate states are the states at
positions · · · where a π step ends and a π step starts. Note that the restriction
only applies to intermediate states. States passed in the execution of π may
involve events em with m > k. A given intermediate state er may occur more
than once in a π path.

Just as the definition of TU
ij (π) does not refer to a concrete model M , also

KU
ijn(π) does not depend on a concrete modelM . We only need to be concerned

about the paths from ei to ej that could be the event components in a π-path
in the updated model. Thus, KU

ij0(π) is a program for all the paths from ei to
ej that can be traced through U without stopovers at intermediate states that
could yield a π path in an updated model. If i = j it either is the skip action
or a direct π loop, and otherwise it is a direct T U

ij (π) step. This explains the
base case in the following notion:

Definition 44 (KU
ijk Path Transformers) KU

ijk(π) is defined by recursing
on k, as follows:
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KU

ij0(π)=



















?> ∪ TU
ij (π) if i = j,

TU
ij (π) otherwise

KU

ij(k+1)(π)=



































































(KU
kkk(π))∗ if i = k = j,

(KU
kkk(π))∗;KU

kjk(π) if i = k 6= j,

KU
ikk(π); (KU

kkk(π))∗ if i 6= k = j,

KU
ijk(π) ∪ (KU

ikk(π); (KU
kkk(π))∗;KU

kjk(π)) otherwise
(i 6= k 6= j).

Concrete applications of Definitions 43 and 44 are found in Section 5. The
next theorem states that the program transformation yields all the paths in
the original model that correspond to paths in the updated model.

Theorem 45 (Program Transformation into E-PDL) For all update mo-
dels U and all E-PDL programs π, the following equivalence holds:

(w, v) ∈ [[TU

ij (π); ?pre(ej)]]
M iff ((w, ei), (v, ej)) ∈ [[π]]M◦U.

To prove Theorem 45 we need two auxiliary results.

Lemma 46 (Constrained Kleene Path) Suppose

(w, v) ∈ [[TU

ij (π); ?pre(ej)]]
M iff ((w, ei), (v, ej)) ∈ [[π]]M◦U.

Then (w, v) ∈ [[KU
ijk(π); ?pre(ej)]]

M iff there is a π path from (w, ei) t (v, ej)

in M ◦ U that does not have intermediate states · · · π−−→(u, er)
π−−→· · · with

r ≥ k.

Proof We use induction on k, following the definition of KU
ijk, distinguishing

a number of cases.

(a) Base case k = 0, subcase i = j: A π path from (w, ei) to (v, ej) in M ◦ U

that does not visit any intermediate states is either empty or a single π step
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from (w, ei) to (v, ej). Such a path exists iff

((w, ei).(v, ej)) ∈ [[?> ∪ π]]M◦U

iff (assumption) (w, v) ∈ [[TU
ij (?> ∪ π); ?pre(ej)]]

M

iff (definition TU
ij ) (w, v) ∈ [[?(pre(ei) ∧ [U, ei]>) ∪ TU

ij (π); ?pre(ej)]]
M

iff (i = j, (w, v) ∈ [[?> ∪ TU
ij (π); ?pre(ej)]]

M

so pre(ei) = pre(ej))

iff (definition KU
ij0) (w, v) ∈ [[KU

ij0(π); ?pre(ej)]]
M .

(b) Base case k = 0, subcase i 6= j: A π path from (w, ei) to (v, ej) in M ◦ U

that does not visit any intermediate states is a single π step from (w, ei) to
(v, ej). Such a path exists iff

((w, ei).(v, ej)) ∈ [[π]]M◦U

iff (assumption) (w, v) ∈ [[TU
ij (π); ?pre(ej)]]

M

iff (definition KU
ij0) (w, v) ∈ [[KU

ij0(π); ?pre(ej)]]
M .

(c) Induction step. Assume that (w, v) ∈ [[KU
ijk(π); ?pre(ej]]

M iff there is a π

path from (w, ei) to (v, ej) in M ◦U that does not pass through any pairs (u, e)
with e ∈ {ek, . . . , en−1}.

We have to show that (w, v) ∈ [[KU

ij(k+1)(π); ?pre(ej]]
M iff there is a π path

from (w, ei) to (v, ej) in M ◦ U that does not pass through any pairs (u, e)
with e ∈ {ek+1, . . . , en−1}.

Case i = k = j. A π path from (w, ei) to (v, ej) in M ◦ U that does not pass
through any pairs (u, e) with e ∈ {ek+1, . . . , en−1} now consists of an arbitrary
composition of π paths from ek to ek that do not visit any intermediate states
with event component ek or higher. By the induction hypothesis, such a path
exists iff (w, v) ∈ [[(KU

kkk(π))∗; ?pre(ej]]
M iff (definition of KU

ij(k+1)) (w, v) ∈

[[KU

ij(k+1)(π); ?pre(ej]]
M .

Case i = k 6= j. A π path from (w, ei) to (v, ej) in M ◦ U that does pass
through any pairs (u, e) with e ∈ {ek+1, . . . , en−1} now consists of a π path
starting in (w, ek) visiting states of the form (u, ek) an arbitrary number of
times, but never visiting states with event component ek or higher in between,
and ending in (v, ek), followed by a π path from (u, ek) to (v, ej) that does
not visit any pairs with event component e ∈ {ek, . . . , en−1}. By the induc-
tion hypothesis, a π path from (w, ek) to (u, ek) of the first kind exists iff
(w, u) ∈ [[(KU

kkk(π))∗; ?pre(ek)]]
M . Again by the induction hypothesis, a path
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from (u, ek) to (v, ej) of the second kind exists iff (u, v) ∈ [[KU
kjk; ?pre(ej)]]

M .
Thus, the required path from (w, ei) to (v, ej) in M ◦ U exists iff (w, v) ∈
[[(KU

kkk(π))∗;KU
kjk(π); ?pre(ej)]]

M , which, by the definition of KU

ij(k+1), is the

case iff (w, v) ∈ [[KU

ij(k+1)(π); ?pre(ej)]]
M .

The other two cases are similar. �

Lemma 47 (General Kleene Path) Suppose (w, v) ∈ [[T U
ij (π)); ?pre(ej)]]

M

iff there is a π step from (w, ei) to (v, ej) in M ◦ U.

Then (w, v) ∈ [[KU
ijn(π)); ?pre(ej)]]

M iff there is a π path from (w, ei) to (v, ej)
in M ◦ U.

Proof Suppose (w, v) ∈ [[TU
ij (π); ?pre(ej)]]

M iff there is a π path from (w, ei) to
(v, ej) in M ◦U. Then, assuming that U has states e0, . . . , en−1, an application
of Lemma 46 yields that KU

ijn(π) is a program for all the π paths from (w, ei)
to (v, ej) that can be traced through M ◦ U, for stopovers at any (u, ek) with
0 ≤ k ≤ n− 1 are allowed. �

Lemma 47 explains the use of KU
ijn in the clause for π∗ in Definition 43. Now,

we can clinch matters:

Proof of Theorem 45. This time, we use induction on the structure of π.

Base case a:

(w, v) ∈ [[TU
ij (a); ?pre(ej)]]

M

iff (w, v) ∈ [[?pre(ei); a; ?pre(ej)]]
M and eiR(a)ej

iff M,w |= pre(ei), (w, v) ∈ [[a]]M , eiR(a)ej and M, v |= pre(ej)

iff ((w, ei), (v, ej)) ∈ [[π]]M◦U.

Base case ?ϕ, subcase i = j:

(w, v) ∈ [[TU
ij (?ϕ); ?pre(ej)]]

M

iff (w, v) ∈ [[?(pre(ei) ∧ [U, ei]ϕ); ?pre(ej)]]
M

iff w = v and M,w |= pre(ei) and M,w |= [U, ei]ϕ

iff w = v and M,w |= pre(ei) and M,w |= pre(ei) implies M ◦ U, (w, ei) |= ϕ

iff w = v and M ◦ U, (w, ei) |= ϕ

iff ((w, ei), (v, ej)) ∈ [[?ϕ]]M◦U.
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Base case ?ϕ, subcase i 6= j:

(w, v) ∈ [[TU
ij (?ϕ); ?pre(ej)]]

M

iff (w, v) ∈ [[?⊥]]M

iff ((w, ei), (v, ej)) ∈ [[?ϕ]]M◦U.

Induction step: Now consider any complex program π and assume for all com-
ponents π′ of π that:

(w, v) ∈ [[TU

ij (π
′); ?pre(ej)]]

M iff ((w, ei), (v, ej)) ∈ [[π′]]M◦U.

We have to show:

(w, v) ∈ [[TU

ij (π); ?pre(ej)]]
M iff ((w, ei), (v, ej)) ∈ [[π]]M◦U.

Here are the three relevant program operations: π = π1;π2:

(w, v) ∈ [[TU
ij (π1;π2); ?pre(ej)]]

M

iff (w, v) ∈ [[
⋃n−1

k=0(T
U
ik(π1);T

U
kj(π2)); ?pre(ej)]]

M

iff for some k ∈ {0, . . . , n− 1}(w, v) ∈ [[T U
ik(π1);T

U
kj(π2); ?pre(ej)]]

M

iff for some k ∈ {0, . . . , n− 1} and some u ∈ W

(w, u) ∈ [[TU
ik(π1)]]

M and (u, v) ∈ [[TU
kj(π2); ?pre(ej)]]

M

iff (ih) for some k ∈ {0, . . . , n− 1} and some u ∈ W

(w, u) ∈ [[TU
ik(π1)]]

M and ((u, ek), (v, ej)) ∈ [[π2]]
M◦U

iff for some k ∈ {0, . . . , n− 1} and some u ∈ W

(w, u) ∈ [[TU
ik(π1)]]

M , and

M,u |= pre(ek) and ((u, ek), (v, ej)) ∈ [[π2]]
M◦U

iff for some k ∈ {0, . . . , n− 1} and some u ∈ W

(w, u) ∈ [[TU
ik(π1); pre(ek)]]

M and ((u, ek), (v, ej)) ∈ [[π2]]
M◦U

iff (ih too) for some k ∈ {0, . . . , n− 1} and some u ∈ W

((w, ei), (u, ek)) ∈ [[π1]]
M◦U and ((u, ek), (v, ej)) ∈ [[π2]]

M◦U

iff ((w, ei), (v, ej)) ∈ [[π]]M◦U.
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π = π1 ∪ π2:

(w, v) ∈ [[TU
ij (π1 ∪ π2); ?pre(ej)]]

M

iff (w, v) ∈ [[(TU
ij (π1) ∪ T

U
ij (π2)); ?pre(ej)]]

M

iff (w, v) ∈ [[(TU
ij (π1); ?pre(ej)) ∪ (TU

ij (π2)?pre(ej))]]
M

iff (w, v) ∈ [[TU
ij (π1); ?pre(ej)]]

M or (w, v) ∈ [[TU
ij (π2); ?pre(ej)]]

M

iff (ih) ((w, ei), (v, ej)) ∈ [[π1]]
M◦U or ((w, ei), (v, ej)) ∈ [[π2]]

M◦U

iff ((w, ei), (v, ej)) ∈ [[π]]M◦U.

π = π∗:

(w, v) ∈ [[TU
ij (π

∗); ?pre(ej)]]
M

iff (definition TU
ij ) (w, v) ∈ [[KU

ijn(π); ?pre(ej)]]
M

iff (ih, Lemma 47) there is a π path from (w, ei) to (v, ej) in M ◦ U

iff ((w, ei), (v, ej)) ∈ [[π∗]]M◦U.

�

Theorem 48 (Reduction Equivalence) Suppose that the model U has n
states e0, . . . , en−1. Then:

M,w |= [U, ei][π]ϕ iff M,w |=
n−1
∧

j=0

[TU

ij (π)][U, ej]ϕ.

Proof The result is derived by the following chain of equivalences:

M,w |= [U, ei][π]ϕ

iff M,w |= pre(ei) implies M ◦ U, (w, ei) |= [π]ϕ

iff ∀v ∈W, j ∈ {0, . . . , n− 1} with ((w, ei), (v, ej)) ∈ [[π]]M◦U,

M ◦ U, (v, ej) |= ϕ

iff (Thm 45) ∀v ∈W, j ∈ {0, . . . , n− 1} with (w, v) ∈ [[T U
ij (π); ?pre(ej)]]

M ,

M ◦ U, (v, ej) |= ϕ

iff ∀v ∈W, j ∈ {0, . . . , n− 1} with (w, v) ∈ [[T U
ij (π)]]M ,

M, v |= pre(ej) implies M ◦ U, (v, ej) |= ϕ

iff ∀v ∈W, j ∈ {0, . . . , n− 1} with (w, v) ∈ [[T U
ij (π)]]M ,

M, v |= [U, ej]ϕ

iff M,w |=
∧n−1

j=0 [TU
ij (π)][U, ej]ϕ
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What the Reduction Equivalence tells us is that LCC is equivalent to E-PDL,
and hence, that a proof system for LCC can be given in terms of axioms that
reduce formulas of the form [U, e]ϕ to equivalent formulas ψ with the property
that their main operator is not an update modality for U. First, we state the
former model-theoretic expressiveness result, which is the first main theorem
of this paper:

Theorem 49 (‘LCC = E-PDL’) The languages of LCC and E-PDL have equal
expressive power.

The earlier-mentioned similarity between finite automata and our current ap-
proach is most striking in the definition of the transformation for starred pro-
grams. The definition of transformed π∗ paths in terms of operators Kijk(π)
resembles the definition of sets of regular languages Lk generated by moving
through a non-deterministic finite automaton without passing through states
numbered k or higher, in the well-known proof of Kleene’s Theorem. Textbook
versions of its proof can be found in many places, e.g., [19, Theorem 2.5.1].

Another, more technical, interpretation of Theorems 11, 12 is that they es-
tablish a strong closure property for propositional dynamic logic: not just un-
der the usual syntactic relativizations to submodels, but also under syntactic
counterparts for much more general model transformations.

4.5 Reduction Axioms and Completeness for LCC

The results from the previous section point the way to appropriate reduction
axioms for LCC. In the axioms below psub(e) is sub(e)(p) if p is in the domain
of sub(e), otherwise it is p.

Definition 50 (Proof System for LCC) The proof system for LCC consists
of all axioms and rules of PDL, plus the following reduction axioms:

[U, e]>↔>

[U, e]p ↔ (pre(e) → psub(e))

[U, e]¬ϕ↔ (pre(e) → ¬[U, e]ϕ)

[U, e](ϕ1 ∧ ϕ2)↔ ([U, e]ϕ1 ∧ [U, e]ϕ2)

[U, ei][π]ϕ↔
n−1
∧

j=0

[TU

ij (π)][U, ej]ϕ.

plus inference rules of necessitation for all update model modalities.
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The last, and most crucial, of the reduction axioms in the given list is based
on program transformation. Incidentally, if slightly more general updates with
so-called ‘multiple pointed update models’ (cf. [12]) are added to the language,
we would need this additional reduction axiom:

[U,W]ϕ↔
∧

e∈W

[U, e]ϕ

As before with logics for public announcement, these reduction axioms also
drive a translation procedure. The results of Section 4.4 tell us that LCC is
no more expressive than E-PDL; indeed, program transformations provide the
following translation:

Definition 51 (Translation) The function t takes a formula from the lan-
guage of LCC and yields a formula in the language of PDL.

t(>) = >

t(p) = p

t(¬ϕ) = ¬t(ϕ)

t(ϕ1 ∧ ϕ2) = t(ϕ1) ∧ t(ϕ2)

t([π]ϕ) = [r(π)]t(ϕ)

t([U, e]>) = >

t([U, e]p) = t(pre(e)) → psub(e)

t([U, e]¬ϕ) = t(pre(e)) → ¬t([U, e]ϕ)

t([U, e](ϕ1 ∧ ϕ2) = t([U, e]ϕ1) ∧ t([U, e]ϕ2)

t([U, ei][π]ϕ =
∧n−1

j=0 [TU
ij (r(π))]t([U, ej]ϕ)

t([U, e][U′, e′]ϕ = t([U, e]t([U′, e′]ϕ))

r(a) = a

r(B) = B

r(?ϕ) = ?t(ϕ)

r(π1;π2) = r(π1); r(π2)

r(π1 ∪ π2) = r(π1) ∪ r(π2)

r(π∗) = (r(π))∗.

The correctness of this translation follows from direct semantic inspection,
using the program transformation corollary for the translation of [U, ei][π]ϕ
formulas. The clause for iterated update modalities gives rise to exactly the
same comments as those made for PAL-RC in Section 3.5.

As for deduction in our system, we note the following result:

Theorem 52 (Completeness for LCC) |= ϕ iff ` ϕ.

Proof The proof system for PDL is complete, and every formula in the lan-
guage of LCC is provably equivalent to a PDL formula. �
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5 Analyzing Major Communication Types

Our analysis of LCC has been abstract and general. But the program transfor-
mation approach has a concrete pay-off! It provides a systematic perspective
on communicative updates that occur in practice. For public announcement
and common knowledge, it was still possible to find appropriate reduction
axioms by hand. Such axioms can also be generated automatically, however,
by program transformation, as we will now show. This method then allows us
to deal with much more complicated cases, such as secret group communica-
tion and common belief, or subgroup announcement and common knowledge,
where axiom generation by hand is infeasible. For a border-line case, see [27]
for a direct axiomatization of the logic of subgroup communication with com-
mon knowledge — a topic conspicuously absent from, e.g., [14]. Our analysis
obviates the need for this laborious, and error-prone, work.

The following generated axioms may look unwieldy, illustrating the fact that
E-PDL functions as an assembler language for detailed analysis of the higher
level specifications of communicative updates in terms of update models. But
upon closer inspection, they make sense, and indeed, for simple communicative
scenarios, they can be seen to reduce to EL-RC.

5.1 Public Announcement and Common Knowledge

The update model for public announcement that ϕ consists of a single state e0

with precondition ϕ and epistemic relation {(e0, e0)} for all agents. Call this
model Pϕ.

e0ϕ

N

We are interested how public announcement that ϕ affects common knowledge
in a group of agents B, i.e., we want to compute [Pϕ, e0][B

∗]ψ. For this, we

need T
Pϕ

00 (B∗), which equalled K
Pϕ

001(B).

To work out K
Pϕ

001(B), we need K
Pϕ

000(B), and for K
Pϕ

000(B), we need T
Pϕ

00 (B),
which turns out to be

⋃

b∈B(?ϕ; b), or equivalently, ?ϕ;B. Working upwards
from this, we get:

K
Pϕ

000(B) =?> ∪ T
Pϕ

00 (B) =?> ∪ (?ϕ;B),

and therefore:
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K
Pϕ

001(B) = (K
Pϕ

000(B))∗

=(?> ∪ (?ϕ;B))∗

=(?ϕ;B)∗.

Thus, the reduction axiom for the public announcement update Pϕ with re-
spect to the program for common knowledge among agents B, works out as
follows:

[Pϕ, e0][B
∗]ψ↔ [T

Pϕ

00 (B∗)][Pϕ, e0]ψ

↔ [K
Pϕ

001(B)][Pϕ, e0]ψ

↔ [(?ϕ;B)∗][Pϕ, e0]ψ.

This expresses that every B path consisting of ϕ worlds ends in a [Pϕ, e0]ψ
world, i.e., it expresses what is captured by the special purpose operator
CB(ϕ, ψ) from Section 3.2.

5.2 Secret Group Communication and Common Belief

The logic of secret group communication is the logic of email ‘cc’ (assum-
ing that emails arrive immediately and are read immediately). The update
model for a secret group message to B that ϕ consists of two possible events
e0, e1, where e0 has precondition ϕ and e1 has precondition >, and where the
accessibilities T are given by:

T = {e0R(b)e0 | b ∈ B} ∪ {e0R(a)e1 | a ∈ N \B} ∪ {e1R(a)e1 | a ∈ N}.

The actual event is e0. The members of B are aware that ϕ gets communi-
cated; the others think that nothing happens. In this thought they are mis-
taken, which is why ‘cc’ updates generate KD45 models: i.e., ‘cc’ updates make
knowledge degenerate into belief.

e0ϕ

e1
>

N \B

B

N

We work out the program transformations that this update engenders for
common knowledge among a group of agents D. Call the update model CCB

ϕ .

44



We will have to work out K
CCB

ϕ

002 D, K
CCB

ϕ

012 D, K
CCB

ϕ

112 D, K
CCB

ϕ

102 D.

For these, we need K
CCB

ϕ

001 D, K
CCB

ϕ

011 D, K
CCB

ϕ

111 D, K
CCB

ϕ

101 D.

For these in turn, we need K
CCB

ϕ

000 D, K
CCB

ϕ

010 D, K
CCB

ϕ

110 D, K
CCB

ϕ

100 D.

For these, we need:

T
CCB

ϕ

00 D=
⋃

d∈B∩D

(?ϕ; d) = ?ϕ; (B ∩D)

T
CCB

ϕ

01 D=
⋃

d∈D\B

(?ϕ; d) = ?ϕ; (D \B)

T
CCB

ϕ

11 D=D

T
CCB

ϕ

10 D= ?⊥

It follows that:

K
CCB

ϕ

000 D= ?> ∪ (?ϕ; (B ∩D))

K
CCB

ϕ

010 D= ?ϕ; (D \B)

K
CCB

ϕ

110 D= ?> ∪D,

K
CCB

ϕ

100 D= ?⊥

From this we can work out the Kij1, as follows:

K
CCB

ϕ

001 D= (?ϕ; (B ∩D))∗

K
CCB

ϕ

011 D= (?ϕ; (B ∩D))∗; (D \B)

K
CCB

ϕ

111 D= ?> ∪D

K
CCB

ϕ

101 D= ?⊥.

Finally, we get K002 and K012 from this:
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K
CCB

ϕ

002 D=K
CCB

ϕ

001 D ∪K
CCB

ϕ

011 D; (K
CCB

ϕ

111 D)∗;K
CCB

ϕ

101 D

=K
CCB

ϕ

001 D (since the right-hand expression evaluates to ?⊥)

= (?ϕ; (B ∩D))∗

K
CCB

ϕ

012 D=K
CCB

ϕ

011 D ∪K
CCB

ϕ

011 D; (K
CCB

ϕ

111 D)∗

=K
CCB

ϕ

011 D; (K
CCB

ϕ

111 D)∗

= (?ϕ; (B ∩D))∗; (D \B);D∗.

Thus, the program transformation for common belief among D works out as
follows:

[CCB
ϕ , e0][D

∗]ψ

↔

[(?ϕ; (B ∩D))∗][CCB
ϕ , e0]ψ ∧ [(?ϕ; (B ∩D))∗; (D \B);D∗][CCB

ϕ , e1]ψ.

This transformation yields a reduction axiom that shows that EL-RC also
suffices to provide reduction axioms for secret group communication.

5.3 Group Messages and Common Knowledge

Finally, we consider group messages. This example is one of the simplest cases
that shows that program transformations gives us reduction axioms that are
no longer feasible to give by hand.

The update model for a group message to B that ϕ consists of two states
e0, e1, where e0 has precondition ϕ and e1 has precondition >, and where the
accessibilities T are given by:

T = {e0R(b)e0 | b ∈ B}∪

{e1R(b)e1 | b ∈ B}∪

{e0R(a)e1 | a ∈ N \B}∪

{e1R(a)e0 | a ∈ N \B}.

This captures the fact that the members of B can distinguish the ϕ update
from the > update, while the other agents (the members of N \ B) cannot.
The actual event is e0. Call this model GB

ϕ .
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e0ϕ

e1
>

N \B

N

N

A difference with the ‘cc’ case is that group messages are S5 models. Since
updates of S5 models with S5 models are S5, group messages engender common
knowledge (as opposed to mere common belief). Let us work out the program
transformation that this update engenders for common knowledge among a
group of agents D.

We will have to work out K
GB

ϕ

002D, K
GB

ϕ

012D, K
GB

ϕ

112D, K
GB

ϕ

102D.

For these, we need K
GB

ϕ

001D, K
GB

ϕ

011D, K
GB

ϕ

111D, K
GB

ϕ

101D.

For these in turn, we need K
GB

ϕ

000D, K
GB

ϕ

010D, K
GB

ϕ

110D, K
GB

ϕ

100D.

For these, we need:

T
GB

ϕ

00 D=
⋃

d∈D

(?ϕ; d) =?ϕ;D,

T
GB

ϕ

01 D=
⋃

d∈D\B

(?ϕ; d) =?ϕ; (D \B),

T
GB

ϕ

11 D=D,

T
GB

ϕ

10 D=D \B.

It follows that:

K
GB

ϕ

000D= ?> ∪ (?ϕ;D),

K
GB

ϕ

010D= ?ϕ; (D \B),

K
GB

ϕ

110D= ?> ∪D,

K
GB

ϕ

100D=D \B.

From this we can work out the Kij1, as follows:
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K
GB

ϕ

001D= (?ϕ;D)∗,

K
GB

ϕ

011D= (?ϕ;D)∗; ?ϕ;D \B,

K
GB

ϕ

111D= ?> ∪D ∪ (D \B; (?ϕ;D)∗; ?ϕ;D \B),

K
GB

ϕ

101D=D \B; (?ϕ;D)∗.

Finally, we get K002 and K012 from this:

K
GB

ϕ

002D=K
GB

ϕ

001D ∪K
GB

ϕ

011D; (K
GB

ϕ

111D)∗;K
GB

ϕ

101D

= (?ϕ;D)∗ ∪

(?ϕ;D)∗; ?ϕ;D \B; (D ∪ (D \B; (?ϕ;D)∗; ?ϕ;D \B))∗ ;

D \B; (?ϕ;D)∗,

K
GB

ϕ

012D=K
GB

ϕ

011D; (K
GB

ϕ

111D)∗

= (?ϕ;D)∗; ?ϕ;D \B; (D ∪ (D \B; (?ϕ;D)∗; ?ϕ;D \B))∗.

Abbreviating D∪ (D \B; (?ϕ;D)∗; ?ϕ;D \B) as π, we get the following trans-
formation for common knowledge among D after a group message to B that
ϕ:

[GB
ϕ , e0][D

∗]ψ

↔

[(?ϕ;D)∗ ∪ ((?ϕ;D)∗; ?ϕ;D \B;π∗;D \B; (?ϕ;D)∗)][GB
ϕ , e0]ψ∧

[(?ϕ;D)∗; ?ϕ;D \B;π∗][GB
ϕ , e1]ψ.

This formula makes it clear that, although we can translate every formula of
LCC to PDL, higher order descriptions using update models are more conve-
nient for reasoning about information change.

One interesting side-effect of this bunch of illustrations is that it demonstrates
the computational character of our analysis. Indeed, the above axioms were
found by a machine! Cf. [9] on the use of computational tools in exploring the
universe of iterated epistemic updates.

6 Conclusion and Further Research

Dynamic-epistemic logics provide systematic means for studying exchange of
factual and higher-order information. In this many-agent setting, common
knowledge is an essential concept. We have presented two extended languages
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for dynamic-epistemic logic that admit explicit reduction axioms for common
knowledge resulting from an update: one (PAL-RC) for public announcement
only, and one (LCC with its static base E-PDL) for general scenarios with
information flow. These systems make proof and complexity analysis for in-
formative actions more perspicuous than earlier attempts in the literature.
Still, PAL-RC and LCC are just two extremes on a spectrum, and many fur-
ther natural update logics may lie in between. We conclude by pointing out
some further research topics that arise on our analysis.

• Downward in expressive power from E-PDL. Which weaker language frag-
ments are in ‘dynamic-static harmony’, in the sense of having reduction
axioms for compositional analysis of update effects, and the corresponding
meaning-preserving translation? Our program transformer approach does
work also with certain restrictions on tests in our full logic LCC, but we
have not yet been able to identify natural intermediate levels.

• Upward in expressive power from E-PDL. Which richer languages are in
dynamic-static harmony? A typical candidate is the epistemic µ-calculus,
which allows arbitrary operators for defining smallest and greatest fixed-
points. Indeed, we have a proof that the results of Section 3 extend to the
calculus PAL-µ for public announcements, which takes the complete epis-
temic µ-calculus for its static language (allowing no binding into announce-
ment positions). Our conjecture is that our expressivity and axiomatization
results of Section 4 also extend to the full µ-calculus version of LCC. Cf. [7]
for a first proposal.

• Other notions of group knowledge. Another test of our methodology via re-
duction axioms are further notions of group knowledge. For instance, instead
of common knowledge, consider distributed group knowledge DBϕ consist-
ing of those statements which are available implicitly to the group, in the
sense of ϕ being true at every world reachable from the current one by the
intersection of all epistemic accessibility relations. The following simple re-
duction holds for public announcements: [ϕ]DBψ ↔ (ϕ → DB[ϕ]ψ). We
have not yet investigated our full system LCC extended with distributed
knowledge.

• Program constructions over update models. One can add the usual regu-
lar operations of composition, choice, and iteration over update models, to
obtain a calculus describing effects of more complex information-bearing
events. It is known that this extension makes PAL undecidable, but what
about partial axiomatizations in our style? One can also look at such ex-
tensions as moving toward a still richer epistemic temporal logic with future
and past operators over universes of finite sequences of events starting from
some initial model. This would be more in line with the frameworks of
[13,25], to which our analysis might be generalized.

• Alternative questions about update reasoning. With one exception, our re-
duction axioms are all schematically valid in the sense that substituting
arbitrary formulas for proposition letters again yields a valid formula. The
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exception is the base clause, which really only holds for atomic proposition
letters p. As discussed in [4], this means that certain schematically valid laws
of update need not be derivable from our axioms in an explicit schematic
manner, even though all their concrete instances will be by our complete-
ness theorem. An example is the schematic law stating the associativity of
successive announcements. It is not known whether schematic validity is
decidable, even for PAL, and no complete axiomatization is known either.
This is just one instance of open problems concerning PAL and its ilk for
public announcement (cf. the survey in [5]), which all return for LCC, with
our program transformations as a vehicle for generalizing the issues.

• Belief revision. Even though our language can describe agents’ beliefs, the
product update mechanism does not describe genuine belief revision. New
information which contradicts current beliefs just leads to inconsistent be-
liefs. There are recent systems, however, which handle belief revision as
update of plausibility rankings in models [6]. But so far, these systems only
handle beliefs of single agents. Our analysis of common belief might be added
on top of these, to create a more richly structured account of ‘group-based
belief revision’.

• General logical perspectives. Languages with relativizations are very com-
mon in logic. Indeed, closure under relativization is sometimes stated as
a defining condition on logics in abstract model theory. Basic modal or
first-order logic as they stand are closed under relativizations [A]ϕ, often
written (ϕ)A. The same is true for logics with fixed-point constructions, like
PDL (cf. [3]) or the modal µ-calculus. E.g., computing a relativized least
fixed-point [A]µp.ϕ(p) works much as evaluation of µp.ϕ(p)∧A – which ac-
tually suggests a corresponding dynamic epistemic reduction axiom (cf. [7]).
The setting of Section 4 lifts relativization to some sort of ‘update closure’
for general logical languages, referring to relative interpretations in defin-
able submodels of products. Languages with this property include again
first-order logic and its fixed-point extensions, as well as fragments of the
µ-calculus, and temporal UNTIL logics.
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