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Abstract

In this thesis we combine the study of Netkat with the study of dynamic gossip.
Netkat is a sound and complete network programming language based on Kleene
algebra with tests, originally used to describe packets traveling through networks.
It has a coalgebraic decision procedure deciding Netkat equivalences. Dynamic
gossip is a field in which it is studied how information spreads through a gossip
graph, where the links in the gossip graph are changeable (dynamic). So far
no sound and complete logic is available that describes dynamic gossip in a
satisfactory way. In this thesis we explore the application of Netkat to dynamic
gossip. It is shown that a change of perspective on Netkat in which we keep
track of the state of the switches in a network allows us to use Netkat to model
the Learn New Secrets Protocol, which is one of many gossip protocols. The
addition to Netkat to keep track of the state of switches is formalised and shown
to remain sound and complete with respect to the packet-processing model. It
is shown that the notions of weak successfulness, strong successfulness and sun
graph are formalisable in Netkat and that the theorem from dynamic gossip
“Gossip graph G is a sun if and only if the LNS protocol is strongly successful on
G” is also a theorem of Netkat. In this thesis we thus extensively study Netkat
and explore a concrete application of the language: we show how the framework
of Netkat can be used to formalise and analyse dynamic gossip.
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Chapter 1

Introduction

In this thesis we combine two fields of study that have not been combined
before. The first of those fields is the study of dynamic gossip. Developed in [25],
dynamic gossip studies how information diffuses in a dynamic network. Gossip
protocols are procedures for spreading secrets among a group of agents, using
a connection graph [6]. In the connection graph the agents are represented by
the nodes, and the connections represent the ability of the agents to contact
each other. It is assumed that every agent starts out having a unique secret. In
dynamic gossip the links in the connection graphs can change and it is studied
formally how the secrets of the agents spread throughout these changing graphs.

The second of those fields is the study of Netkat. Recently, a new network
programming language called Netkat was developed. Netkat emerged from a
growing interest in high-level languages for programming networks. So far the
development of such network programming languages had been largely done per
network, specifically for the needs of that network, and not governed by any
foundational principles. Networks have been built in the same way roughly since
the 1970s. These old designs and this lack of foundational principles made it
difficult for instance to incorporate new features in a language: how should the
new features interact with the old ones, and how can one reason precisely about
the code.

However, the recent rise of software-defined networking (sdn) has started
to change the field. The revolutionary aspect of sdn is that there is a physical
separation of the network control plane, which draws the network topology,
and the forwarding plane, which decides what to do with incoming packets [27].
There is a controller machine managing network events such as new connections
from hosts, topology changes, and shifts in traffic load by re-programming the
switches accordingly. The controller has a global view of the network, which
opens up possibilities for a variety of implementations using sdn.

To resolve aforementioned issues with network languages, domain-specific
languages have been developed for sdn in recent years. One of such languages
is Netkat [2]. Netkat is based on a solid mathematical foundation and comes
equipped with a sound and complete equational theory, which makes it possible

1



to reason precisely about the code and when adding new constructs to determine
how they should interact with the existing primitives. Formally, Netkat is an
instance of a mathematical structure called a Kleene algebra with tests (kat),
and it is proven to be sound and complete with respect to its denotational
semantics. An additional advantage of Netkat is that it unifies reasoning about
switches and topology by incorporating the network topology in the programming
language as well. We will see this in detail later. Incorporating network topology
in the programming language is useful when one wants to answer almost any
interesting question about the network such as “Can A send a packet to B?”, or
“Does traffic from A to B pass switch C?”, as end-to-end behaviour of a network
is determined both by switch-behaviours and network topology together.

In [2] it is shown that a decision procedure for Netkat exists, based on the
fact that Kleene algebras with tests have a decision procedure. The problem
of deciding Netkat equivalences is shown to be pspace-complete. In [8] the
coalgebraic theory of Netkat is developed, which leads to a new efficient algorithm
for deciding equivalence using a specialised version of the Brzozowski derivative
and bisimulations: the algorithm constructs a bisimulation between coalgebras
built from Netkat expressions via the Brzozowski derivative. An implementation
of this algorithm is given in OCaml, a functional programming language.

It turned out that Netkat can be used in practical applications such as for
instance syntactic techniques for checking reachability [2]. In [8] experimental
results are reported demonstrating that Netkat and the coalgebraic decision
procedure are competitive with state-of-the-art tools on several benchmarks
including all-pairs connectivity, loop-freedom, and checking the correctness of
compilers. For instance, it can verify reachability in a real-world campus network
in less than a second on a laptop.

In this thesis we will start by exploring Netkat in detail and its coalgebraic
decision procedure. The second half of this thesis will be dedicated to investi-
gating whether Netkat can be applied to dynamic gossip Protocols. We have
added a notion of state to Netkat and show that this version of Netkat is still
sound and complete with respect to its denotational model. Then we show how
to simulate a specific dynamic gossip protocol in Netkat with state. We will
try to argue that Netkat with state can be an appropriate language to capture
dynamic gossip.

Before we get further into the study of Netkat, we will first explore the
foundations that it is based on. First, we will discuss deterministic automata.
We will explore a coalgebraic representation of automata, as that will be useful
in understanding the coalgebraic decision procedure for Netkat. Then we will
look at the important concept of regular expressions and at the relation between
automata and regular expressions via Kleene’s theorem. Next we will describe
Kleene algebras in detail and the extension of Kleene algebras to Kleene algebras
with tests. Then we will continue with some generalities about coalgebraic theory
with respect to automata, with the main result being presented that automata
are coalgebras as well [20]. Furthermore, this chapter will demonstrate the
relations between regular expressions and coalgebras and how this can be used
for Netkat. Chapter 5 concerns Netkat and gives an overview of its syntax and
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semantics and general results, including an overview of its coalgebraic decision
procedure. In the next chapter we explore an extension of Netkat and apply it to
dynamic gossip protocols by simulating a specific gossip protocol in Netkat with
state and translating results and notions from dynamic gossip into Netkat with
state. In Chapter 7 we will give an implementation in Haskell of the simulation
of the gossip protocol studied in Chapter 6, but it is not necessary to grasp this
in order to follow the story of this thesis. At the end of Chapter 7, we present an
example output which demonstrates that Netkat correctly simulates the gossip
protocol, which can be understood without studying the full implementation.
The implementation chapter can also be used (also without understanding the
actual code) to better understand the reasoning behind the protocol simulation
presented in Chapter 6 as it gives a functional specification of the protocol.

In summary, the contributions of this thesis are as follows. We provide
an overview of the study of Netkat and its coalgebraic theory that is not yet
presented as such anywhere else. In addition, we provide a different perspective
on Netkat by adding a notion of state. We show that we keep soundness and
completeness, thereby demonstrating that Netkat can be applied to dynamic
gossip, which is a field of study Netkat had not yet been applied to before.
Lastly we give a new perspective on dynamic gossip, using a sound and complete
language to model a certain type of dynamic gossip protocol and formalise
notions from dynamic gossip.
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Chapter 2

Automata Theory

As mentioned in the introduction, Netkat is based on a Kleene algebra with
tests. Kleene algebras can be roughly characterised as the algebras of regular
expressions. This brings us to the beginning of this thesis: an introduction to
automata theory and the relation between automata and regular expressions.
This is the preparation that is needed to understand Kleene algebras and how
they are used in Netkat, which we will discuss in subsequent chapters.

2.1 Deterministic Automata

We will start by giving two essentially equivalent definitions of deterministic
automata. One of the definitions is more natural in the setting of coalgebras,
and the other one is the classical definition of deterministic automata. It will be
explained later in the thesis why exactly we refer to the non-classical definition
as the coalgebraic definition. We will also introduce some standard concepts for
automata theory such as bisimulations and homomorphisms.

2.1.1 Coalgebraic Definition

Following [20], we define deterministic automata first as follows. Let Σ be a
possibly infinite set of input symbols. A deterministic automaton with input
alphabet Σ is then a triple S = (S, oS , tS) consisting of a set of states S, an
output function oS : S → 2 and a transition function tS : S → SΣ. Note that
2 denotes the set {0, 1} and SΣ = {f | f : Σ → S} (all the functions from Σ
to S). The output function oS indicates whether a state is an accepting state
(oS(s) = 1) or a rejecting state (oS(s) = 0). Intuitively, the transition function is
a function that indicates which states can be moved to in response to an input:
tS assigns to each state s a function tS(s) : Σ→ S indicating which states can be
reached from state s. In a deterministic automaton, this will always be only one
state. More formally, tS(s)(a) represents which state is reached after an input
symbol a has been consumed from state s. For convenience, we will sometimes
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denote oS(s) = 1 with s ↓, oS(s) = 0 with s ↑ and tS(s)(a) = s′ with s
a−→ s′.

If both the state space S of an automaton and the alphabet Σ are finite, the
automaton is called a finite automaton. Here we place no restrictions on either
Σ or S. Note that no state is designated as the start state, but when reasoning
about automata we can appoint a specific state as the start state.

Let us introduce some standard terminology concerning languages. If Σ is an
alphabet, we denote the set of all finite words over Σ with Σ∗. Concatenation of
words w and w′ is denoted with ww′ and ε denotes the empty word. A language
is now defined as any subset of Σ∗. The language accepted by a state s of an
automaton S = (S, oS , tS) is denoted by `S(s) = {a1...an|s

a1−→ s1
a2−→ ...

an−−→
sn ↓}, where s1 = tS(s)(a1) and si+1 = tS(si)(ai) for 1 < i < n. Note that if a
state s is an accepting state, ε needs to be an element of `S(s).

Intuitively, following an example given by [17], a finite automaton with a
designated start state s operates as follows. An input is a string x consisting
of symbols from the alphabet Σ. Put a pebble down in the start state s. Then
read the input string from left to right, one symbol at a time, and move the
pebble according to the transition function tS : if the next symbol of our string
is a and we are in state p, then move the pebble to tS(p)(a). At the end of the
string, the pebble will be in some state q. The string is said to be accepted by
the finite automaton if oS(q) = 1. In other words, if q is an accepting state.

2.1.2 Classical Definition

The coalgebraic definition of an automaton is not the classical one that can be
found in for instance [17]. We will show that the classical definition and the one
given in Section 2.1.1 are essentially the same. The reason we chose to present
the definition from Section 2.1.1 for an automaton is because it allows for a
natural translation into a coalgebraic representation, as we will see below.

In [17], a deterministic finite automaton is defined as a structure

M = (Q,Σ, δ, s, F )

where Q is a finite set of states, Σ is a finite input alphabet, δ : Q× Σ→ Q is
the transition function such that if M is in state q and sees input a, it moves
to state δ(q, a), s ∈ Q is the start state and F is a subset of Q consisting of
accepting states.

Example 1. To give an example, let us describe a simple four-state finite
automaton. Let the set of states be {s1, s2, s3, s4}, the input alphabet {a, b},
the start state s1, the set of accepting states {s4} and the transition function

δ(s1, a) = s2

δ(s2, a) = s3

δ(s3, a) = δ(s4, a) = s4

δ(q, b) = q for q ∈ {s1, s2, s3, s4}

More insightful than the above description, is the diagram below:
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s1 s2 s3 s4

a a a

b b b a, b

The start state is shaded grey, and the accepting states are indicated by double
circles. For this particular automaton, it can be seen that any string containing
at least three a’s will be an accepting string, and strings with fewer a’s will not
be.

As is stated in [20], it is not necessary to indicate one particular state as a
start state as for the coalgebraic representation we are not particularly interested
in it. It is also not required that the alphabet and set of states are finite. Then
we get that both definitions of automata are equivalent, because of bijections
between

P(S) ∼= (S → 2) and (S × Σ→ S) ∼= (S → SΣ).

Hence we have that there is a one-to-one correspondence between (S, F, δ) and
(S, oS , tS).

2.1.3 Bisimulations and Homomorphisms

Two very important definitions for automata are the definitions of bisimulation
and homomorphism. The definitions can be formulated in different ways, and
we decided to follow [20]. Here the definitions for deterministic automata are
given but they can be easily generalised to the definition for non-deterministic
automata.

Definition 1. A bisimulation between two automata S = (S, oS , tS) and T =
(T, oT , tT ) is a relation R ⊆ S × T with for all s ∈ S, s′ ∈ T and a ∈ Σ:

If sRs′ then oS(s) = oT (s′) and tS(s)(a)R tT (s′)(a).

Unions and compositions of bisimulations are bisimulations again. We write
s ∼ s′ whenever there exists a bisimulation R with sRs′.

Another important definition is the one of a homomorphism between two
automata S and T .

Definition 2. A homomorphism between two automata S = (S, oS , tS) and
T = (T, oT , tT ) is any function f : S → T such that for all s ∈ S and a ∈ Σ:

oS(s) = oT (f(s)) and f(tS(s)(a)) = tT (f(s))(a),

The notions of automaton, homomorphism and bisimulation are closely
related. A function f : S → T is a homomorphism if and only if the relation

R := {(s, f(s))|s ∈ S}
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is a bisimulation. For the left to right direction, we need to prove that oS(s) =
oT (f(s)), which is immediate from the assumption that f is a homomorphism
from S to T , and that tS(s)(a)R tT (f(s))(a). For the latter fact, note that we
have that

f(tS(s)(a)) = tT (f(s))(a),

so we need to prove that

tS(s)(a)Rf(tS(s)(a))

This is immediate from the definition of R. For the right to left direction, we
again have that the first condition for f to be a homomorphism from S to T is
satisfied by definition. What is left to prove is that

f(tS(s)(a)) = tT (f(s))(a)

From the assumption that R is a bisimulation, we know that

tS(s)(a)RtT (f(s))(a)

From the definition of R we then immediately get that

f(tS(s)(a)) = tT (f(s))(a).

Also important to note is that bisimulations are automata themselves (we
will use this in Chapter 4): Let R be a bisimulation between S and T , then we
can take

oR : R→ 2 and tR : R→ RΣ

such that for (s, s′) ∈ R and a ∈ Σ we have

oR((s, s′)) = oS(s) = oT (s′) and tR((s, s′)) = (tS(s)(a), tT (s′)(a))

This defines an automaton (R, oR, tR).

Example 2. To clarify, let us look at an example of two automata and a
bisimulation between them. We take a simple alphabet, A = {a, b}, and consider
automata S = {s1, s2, s3} and T = {t1, t2}. The circles represent the states, and
a state with a double circle denotes an accepting state. The arrows represent
the transitions between the states on the input letters labeling the arrows.

s1 s2 s3 t1 t2

a

b

b

a

a

b

a

b

a

b
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A bisimulation between them is {(s1, t1), (s2, t2), (s3, t2)}. To formally show this,
note that

oS(s1) = oT (t1)

oS(s2) = oT (t2)

oS(s3) = oT (t2)

and

tS(s1)(a) = s2Rt2 = tT (t1)(a)

tS(s1)(b) = s3Rt2 = tT (t1)(b)

tS(s2)(a) = s2Rt2 = tT (t2)(a)

tS(s2)(b) = s3Rt2 = tT (t2)(b)

tS(s3)(a) = s2Rt2 = tT (t2)(a)

tS(s3)(b) = s3Rt2 = tT (t2)(b)

So all requirements of a bisimulation are satisfied.

2.2 Regular Expressions

Regular expressions originated with Kleene, describing regular languages and
what he called regular sets, which we will talk about later. Essentially, regular
expressions are a sequence of characters defining a search pattern, making them
widely used in search engines and for instance in search and replace functions in
text editors. Of course ‘patterns’ is not a precisely defined term, but patterns
using only the specific set of symbols given below, are called regular expressions.
Later we will study the axiomatisation of regular expressions using Kleene
algebras.

Let the set R of regular expressions over the finite input alphabet Σ be given
by the following syntax:

r ::= 0 | 1 | a ∈ Σ | r1 + r2 | r1 · r2 | r∗

We will often write r1r2 instead of r1 · r2.
We define a function λ : R → L which assigns to a a regular expression E

the language λ(E) it represents. Such a language is called a regular language.
Before we can define λ, we need to define some so-called regular operators for
languages K ⊆ Σ∗ and L ⊆ Σ∗:

K + L = K ∪ L
K · L = {vw | v ∈ K,w ∈ L}

K∗ =
⋃
n≥0

Kn
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with K0 = {ε} and Kn+1 = K ·Kn = KKn. Now we define λ by induction on
the structure of E:

λ(0) = ∅
λ(1) = {ε}
λ(a) = {a}

λ(r1 + r2) = λ(r1) + λ(r2)

λ(r1 · r2) = λ(r1) · λ(r2)

λ(r∗) = λ(r)∗

2.2.1 Regular Expressions as an Automaton

We can turn the set of regular expressions into a deterministic automaton R.
This idea comes from Brzozowski who proposed this in 1964 [4] and gives rise to
the concept of a derivative of regular expressions, or the Brzozowski derivative.
The automaton has all the regular expressions that can be formed from a finite
input alphabet Σ as its state space, and a function oR for determining acceptance
and a function tR giving the transitions to a next state. Let us denote tR(s)(a)
with ra, with r a regular expression (the state). Then we have that tR is defined
as

(0)a = 0

(1)a = 0

(a′)a =

{
1 if a = a′

0 if a 6= a′

(r1 + r2)a = (r1)a + (r2)a

(r1r2)a =

{
(r1)ar2 if oR(r1) = 0

(r1)ar2 + (r2)a otherwise

(r∗)a = rar
∗

and oR is defined as

oR(0) = 0

oR(1) = 1

oR(a) = 0

oR(r1 + r2) = oR(r1) ∨ oR(r2)

oR(r1r2) = oR(r1) ∧ oR(r2)

oR(r∗) = 1

In the definition of oR we use that {0, 1} can be given a lattice structure
({0, 1},∨,∧, 0, 1) such that zero is neutral with respect to ∨ and 1 with respect
to ∧. We will come back to this in the chapter on Kleene algebras. Intuitively, a
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regular expression r represents an accepting state whenever the empty string is
a member of the regular language corresponding to r. The regular expression ra
(if r is a regular expression, then so is ra [4]) denotes the language containing all
words w such that aw is in the language denoted by r.

Later in this thesis, we will use the concept of regular expressions as an
automaton in the coalgebraic decision procedure for Netkat. Before we will see
it at use there, we will revisit this automaton structure in the chapter about
coalgebras.

2.3 Kleene’s Theorem

The regular languages and finite automata introduced before, can be related in a
very precise manner. This is done via an important theorem known as Kleene’s
theorem [12]:

Theorem 1. A set A ⊆ Σ∗ is the language accepted by a finite automaton M
if and only if A = λ(α) for some regular expression α.

A proof of this theorem can be found in [17].

2.3.1 Regular Sets

To rephrase this theory and introduce some standard terminology, let us introduce
the definition of a regular set according to [17]. A regular set is defined as a
set A ⊆ Σ∗ such that A is the language accepted by some finite automaton.
For Example 1, the set of strings accepted by the automaton were the strings
containing at least three a’s. Hence, the set

{x ∈ {a, b}∗ | x contains at least three a’s}

is a regular set. Note the difference here between a regular set and a regular
language: A is a regular set if A is the language accepted by some finite automaton
and A is a regular language if A = λ(α) for some regular expression α.

This means we can formulate Kleene’s theorem as: A set A ⊆ Σ∗ is a regular
set if and only if A is a regular language.

2.3.2 Examples

In this section we will demonstrate the principle of converting an automaton
M into the corresponding regular expression α such that λ(α) = L(M) where
L(M) is the language accepted by M and vice versa for small automata. There
are algorithms for converting automata into regular expressions and the other
way around, but the demonstration here will be informal.

Example 3. We will start with the regular expression (aaa)∗ + (aaaaa)∗ and
we will construct a finite automaton M such that L(M) = λ((aaa)∗+ (aaaaa)∗).

10



Note that

λ((aaa)∗ + (aaaaa)∗) = λ((aaa)∗) ∪ λ((aaaaa)∗) =
⋃
n≥0

(aaa)n ∪
⋃
n≥0

(aaaaa)n

We first take an automaton such that the set of strings accepted by the automaton
is L(aaa) = {aaa}.

s1 s2 s3 s4

a a a

Then add a new start state s and ε-transition from s to the old start state and
from the accepting state to s:

s s1 s2 s3 s4

ε

ε

a a a

Do a similar thing for an automaton that accepts the set of strings λ(aaaaa) =
{aaaaa}. Now we thus have two automata, one of which accepts the set of
strings λ((aaa)∗) and one of which accepts the set of strings λ((aaaaa)∗). The
automaton accepting λ((aaa)∗ + (aaaaa)∗) is simply the disjoint union of these
two automata.

Example 4. Now let us look at an example the other way around, thus going
from an automaton M to a regular expression α such that λ(α) = L(M).
Consider the automaton

s1 s2

s3

a

b
b

a

a

We will now define the regular expression representing this automaton. We see
that s1 is the only start and accept state. We will explain the reasoning behind
our procedure as we go. To start with we pick state s3 as the state that we will
remove, but we could have chosen s2 as well. We know that every path in the
automaton that leads to acceptance must go from s1 to s1. Such a path either
passes through s3 or does not pass through s3. In case the path includes s3 it
must go from s1 to s3, then pass s3 finitely many times and lastly go from s3 to
s1.

Via informal reasoning (looking at the automaton) we can see that the only
path going from s1 to s1 without using state s3 is the loop labeled with a, so we
have that the regular expression

a∗

11



is a string that leads to acceptance. Now we will identify the regular expression
that takes us from s1 to s3, then travels from s3 to s3 finitely many more times,
and then takes us from s3 to s1. We see that the only path from s1 to s3 is a∗b.
Similarly to travel from s3 to s3 we have a regular expression that looks like
ε+ ab+ aaa∗b. Finally, to travel from s3 to s1 we have the regular expression
aaa∗.

Now we can conclude that r = a∗ + a∗b(ε+ ab+ aaa∗b)aaa∗ is the regular
expression such that λ(r) is the set of strings accepted by the automaton.

12



Chapter 3

Kleene Algebras

Now that we have seen regular expressions and their link to automata, we will
formalise regular expressions a bit more. Roughly said, Kleene algebra is the
algebra of regular expressions. More formally, Kleene algebras are algebraic
structures with operators +, ·,∗ , 0, 1 satisfying certain axioms. Although Kleene
did not define Kleene algebras, he laid the theoretical groundwork [12]. Originally,
he studied regular expressions and their algebraical laws. Kleene posed the
axiomatisation of these what he called ‘regular events’ as an open problem.
Important contributions to this field were made by Conway [5], among others.
See [16] for an overview. As we will see below, an important Kleene algebra is
indeed the family of regular sets over a finite alphabet, but there are many more.

As mentioned before, many scholars have studied the axiomatisation of Kleene
algebras since 1956. In fact, there are several inequivalent definitions of Kleene
algebras that can be found in the literature. In this thesis we will follow the
definition of Kleene algebras (KAs) as can be found in [16], which seems to be
the most widely adopted definition. Kozen defines a Kleene algebra as any model
of the equations and equational implications given in Section 3.1.

Kleene algebras can be found in a number of settings, and a very natural
one is the field of automata and logic of programs, which is the field relevant to
us. Namely, an important example of a Kleene algebra is the family of regular
sets over a finite alphabet Σ, using the definition of regular sets given in Section
2.3.1. We then have the +, · and ∗ operators as defined before, ∅ for 0, and
{ε} for 1 [17]. The equational theory of this Kleene algebra has been called the
algebra of regular events.

Another example of a Kleene algebra is the family of binary relations on a
set with the operations of ∪ for +, the relational composition

R · S = {(x, z) | ∃y(x, y) ∈ R, (y, z) ∈ S}

for ·, the empty relation for 0, the identity relation for 1 and reflexive transitive
closure for ∗.
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3.1 Axioms for Kleene Algebras

More formally [16], a Kleene algebra is an algebraic structure

K = (K,+, ·,∗ , 0, 1)

satisfying the following equations and equational implications:

p+ (q + r) ≡ (p+ q) + r (3.1)

p+ q ≡ q + p (3.2)

p+ 0 ≡ p (3.3)

p+ p ≡ p (3.4)

p(qr) ≡ (pq)r (3.5)

1p ≡ p (3.6)

p1 ≡ p (3.7)

p(q + r) ≡ pq + pr (3.8)

(p+ q)r ≡ pr + qr (3.9)

0p ≡ 0 (3.10)

p0 ≡ 0 (3.11)

1 + pp∗ ≡ p∗ (3.12)

1 + p∗p ≡ p∗ (3.13)

q + pr ≤ r ⇒ p∗q ≤ r (3.14)

q + rp ≤ r ⇒ qp∗ ≤ r (3.15)

where ≤ refers to the natural partial order on K:

p ≤ q ⇔ p+ q ≡ q.

As we can see from axioms (12− 15), the ∗-operator behaves like the Kleene star
operator or the reflexive transitive closure operator of relational algebra. Such
structures can also be classified as idempotent semirings.

3.2 General Properties of Kleene Algebras

It follows quite easily that ≤ is a partial order:

• ≤ is reflexive: a ≤ a as a+ a ≡ a by (3.4)

• ≤ is transitive: a ≤ b and b ≤ c gives a ≤ c as we have that a+ b ≡ b and
b+ c ≡ c, which gives us that a+ c ≡ a+ b+ c ≡ b+ c ≡ c and hence we
have that a ≤ c.

• ≤ is antisymmetric: a ≤ b and b ≤ a gives us that a+ b ≡ b and b+ a ≡ a,
and as a+ b ≡ b+ a, this gives us that a ≡ b.
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Note also that all operators are monotone with respect to ≤.
Another important thing to notice is that a+ b is the least upper bound of a

and b with respect to ≤. We have three cases to distinguish:

• a ≡ b, in this case a+ b ≡ a ≡ b and it is trivial that this is the least upper
bound.

• a ≤ b, in this case we have that a+ b ≡ b, which means that a+ b is indeed
an upper bound of both a and b. Now suppose that a+ b is not the least
upper bound. So there exists an element d such that d ≤ a+ b and a ≤ d
and b ≤ d. The latter two facts give us that a+ d ≡ d and b+ d ≡ d and
d ≤ a+ b gives us that d+ a+ b ≡ a+ b. Combining that with the fact
that a+ b ≡ b via substitution, we get that

a+ b ≡ d+ a+ b ≡ d+ b ≡ b+ d ≡ d

Hence, we get that a+ b ≡ d, which is a contradiction with the assumption
that a + b is not the least upper bound. Thus a + b is the least upper
bound of a and b.

• b ≤ a, similar as for the previous case.

From this we can conclude that K is an upper semilattice with join given by +
and minimum element 0.

3.2.1 Soundness and Completeness

In [16], Kozen proves the soundness and completeness of the axioms stated in
Section 3.1 for the algebra of regular events. In other words, we have that two
regular expression α and β over Σ denote the same regular set if and only if
α ≡ β is a theorem of Kleene algebra (i.e. a logical consequence of the axioms).

3.3 Kleene Algebra with Tests

One of the most well-studied extensions of Kleene algebra is Kleene algebra with
tests [15], [18]. This is an algebraic structure consisting of a Kleene algebra with
an embedded Boolean subalgebra. Its soundness and completeness with respect
to relational models and language-theoretic models is proven in [18]. Formally, a
Kleene algebra with tests (kat) is a two-sorted algebraic structure

(K,B,+, ·,∗ , 0, 1,¬)

where ¬ is a unary operator defined only on B such that

• (K,+, ·,∗ , 0, 1) is a Kleene algebra,

• (B,+, ·, 0, 1,¬) is a Boolean algebra and

• (B,+, ·, 0, 1,¬) is a subalgebra of (K,+, ·,∗ , 0, 1).
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The axioms of kat are the axioms of Kleene algebra listed in Section 3.1
plus additional axioms for Boolean algebras given below. Usually in work on
kat, the elements of B are referred to as tests and the elements of K as actions.
In this paper, conform Netkat standards, we will call them predicates and
policies respectively. We use the letters a, b, c, d, .. for predicates and p, q, r, s, ...
for policies. The additional axioms of a Boolean algebra needed are:

a+ (b · c) ≡ (a+ b) · (a+ c) (3.16)

a+ 1 ≡ 1 (3.17)

a+ ¬a ≡ 1 (3.18)

a · b ≡ b · a (3.19)

a · ¬a ≡ 0 (3.20)

a · a ≡ a (3.21)
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Chapter 4

Automata and Coalgebras

As we have seen in the second chapter, we can approach classical deterministic
automata in terms of the notions of homomorphisms and bisimulation, which
are also cornerstones of the theory of coalgebra. We do not aim to give an
introduction to the field of coalgebra. However, for the treatment of automata
theory in terms of coalgebraic notions, we will explain the necessary background
information. The main sources used for this are [20], [21] and [22]. Later we will
give a short introduction into the coalgebraic theory of Netkat.

There is a lot one can say about coalgebras, but as that is not the focus of this
thesis, we will not spend too much time on the general field of coalgebra. However,
some attention will be spent to create a general feeling for the coalgebraic
perspective.

In short, one can describe coalgebras as mathematical structures that capture
the essence of dynamic or evolving systems. Many structures in theoretical
computer science can naturally be represented as coalgebras, one of which is
the one we are interested in: automata as coalgebras. But one can also imagine
other examples, such as infinite data structures and modeling non-well-founded
sets. It is often noted that algebraic operations are ways to construct complex
objects out of simple ones, and coalgebraic operations on the other hand should
be seen as ways to unfold or observe objects. [26]

For the coalgebras we will consider, we can make it a bit more concrete [22].
Destructors (or observers, or transition functions) tell us what we can observe
about states in our state space. For instance, the operators head and tail tell
us what we can observe about the elements of an infinite list: head gives the
first element in the list, so this is the direct observation, and tail gives the
remaining part of the list, which is effectively the ‘next state’. One can imagine
that we can use coinductive definitions on infinite lists.

Example 5. Let us give an example of a typically coalgebraic phenomenon,
taken from [22]. Consider a black-box machine with one external button and
one light. The machine performs a certain action only if the button is pressed
and the light goes on only if the machine stops operating. In terms of states: if
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the machine has reached an accepting state. In that case, pressing the button
has no effect anymore. A person on the outside of this machine cannot observe
directly in which internal state the machine is; the user can only observe the
machines behaviour via the button and the light. In other words, the only thing
that can be observed directly about a particular state of the machine is whether
the light is on or not. Hence, whether the state is an accepting state or not. By
repeatedly pressing the button, the user can observe how many times the button
needs to be pressed for the light to go on.

In [22], this example is described mathematically as saying we have a set X
denoting the unknown state space of the machine, and a function

button: X → {∗} ∪X

where ∗ is a new symbol not occurring in X. In a particular state x ∈ X,
applying the function ‘button’, which corresponds to pressing the button, has
outcome ∗, meaning that the machine has stopped operating and the light goes
on, or it has an outcome in X, meaning that the machine has moved to another
state in X. The set X together with the function ‘button’ constitute an example
of a coalgebra.

There are many examples of coalgebras similar to this one, and an important
similarity between them is that in each case there is a state space X about which
no assumptions are made, there is a function defined on this state space allowing
one to observe some aspect of the state directly or to move on to next states and
there is no other access to this state space other than for observing or modifying
via these specified operations. By making successive observations, one can say
something about the behaviour of a state.

This ‘behaviour’ of a state is closely related to the notion of bisimulation. The
only ‘observable’ fact about a state in an automaton is whether it is an accepting
state or not. Further information about a state can be acquired by offering an
input symbol which leads to a new state. Two states between which there exists
a bisimulation relation are said to be observationally indistinguishable: one can
observe the same facts and offering any input symbol will lead to the same new
states (again two indistinguishable states).

We can formalise this a bit more. Let F : Set → Set be a functor on the
category of sets and functions. One can view the functor as the type of the
coalgebra and in this thesis we will only consider coalgebras of the deterministic
automaton type, introduced below. An F -coalgebra is a pair (S, αS) consisting
of a set S and a function αS : S → F (S). The set S is called the carrier of the
coalgebra, or the set of states, and the function αS is called the F -transition
structure. We will see later that the deterministic automata functor we will
consider has some special properties that turn out to be quite convenient. [21]

In the next section we will discuss the notions of bisimulation and homo-
morphism in their coalgebraic representation and show that this representation
is in fact a general definition and the classical definitions of homomorphism
and bisimulation for automata we had in Section 2.1.3 can be recovered as a
special case of this general definition. We will see how to view automata as
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coalgebras and we will demonstrate the proof principle of coinduction. We will
see that the set of all languages is a final coalgebra, which is a concept that will
be explained in due time, and how this relates to the automaton of the set of
regular expressions and to automata in general. Towards the end of the chapter
we will hint at how all these connections are used in the coalgebraic theory for
Netkat.

4.1 Bisimulations and Homomorphisms

We will start with the universal coalgebraic definitions of bisimulations and
homomorphisms as can be found in [21]. Later on we will see that when viewing
automata as coalgebras, these coalgebraic definitions coincide with the familiar
definitions of bisimulation and homomorphism on automata.

Definition 3. Consider an arbitrary functor F : Set → Set and let (S, αS)
and (T, αT ) be two F -coalgebras. A function f : S → T is a homomorphism of
F -coalgebras, or F -homomorphism, if

F (f) ◦ αS = αT ◦ f

In diagrammatic representation:

S T

F (S) F (T )

αS

f

F (f)

αT

If f is indeed a homomorphism, the diagram above commutes. The identity
function on an F -coalgebra is always a homomorphism and the composition of
two homomorphisms is again a homomorphism. Intuitively, a homomorphism is
a function that is transition-preserving and reflecting.

A bisimulation between two coalgebras intuitively is a transition structure
respecting a relation between sets of states.

Definition 4. Let F : Set→ Set be an arbitrary set functor and let (S, αS) and
(T, αT ) be two F -coalgebras. A subset R ⊆ S × T is called an F -bisimulation
between S and T if there exists an F -transition structure αR : R→ F (R) such
that the projections from R to S and T are F -homomorphisms. This is expressed
by the following diagram:
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S R T

F (S) F (R) F (T )

αR

π1

αS

F (π1) F (π2)

αT

π2

Two states s and t are called bisimilar if there exists a bisimulation R such that
(s, t) ∈ R.

4.2 Automata as Coalgebras

As can be found in [20], the reason to be interested in a coalgebraic representation
of automata is that there exists a number of notions and results on coalgebras
in general that can now be applied to automata. The reason why we introduced
an alternative representation of automata is because it allows for a natural
correspondence between automata and coalgebras [20]: automata can be seen as
coalgebras.

Automata are coalgebras of the following functor D : Set → Set. Let
D(S) for a set S be defined by D(S) = 2 × SΣ. How the functor D acts on
functions we shall define below. For an automaton S = (S, oS , tS), we had
the functions oS : S → 2 and tS : S → SΣ. We can combine them into a
single function (oS , tS) : S → 2 × SΣ, which is a function that maps a state
s ∈ S to the pair (oS(s), tS(s)). Our automaton S has thus been represented
as a D-coalgebra: (oS , tS) : S → D(S). For a function f : S → T where
both (S, (oS , tS)) and (T, (oT , tT )) are D-coalgebras, we have that the function
D(f) : (2 × SΣ) → (2 × TΣ) is defined for any x ∈ 2 and h ∈ SΣ such that
D(f)((x, h)) = (x, f ◦ h).

4.3 Instantiation of Definitions for Homomor-
phism and Bisimulation

4.3.1 Homomorphisms

We will now prove that the classical representation of bisimulation and homo-
morphism on automata are instances of the coalgebraic definition of the concepts
of bisimulation and homomorphism.

Consider two D-coalgebras (hence, two automata) (S, (oS , tS)) and
(T, (oT , tT )) with (oS , tS) : S → D(S) and (oT , tT ) : T → D(T ). Following
the definition of a homomorphism for F -coalgebras given in Definition 3, a homo-
morphism of D-coalgebras is a function f : S → T if D(f)◦(oS , tS) = (oT , tT )◦f .
Applying the definition of D(f) given in the second paragraph of this section,
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we get that

D(f) ◦ (oS , tS)(s) = (oS(s), f ◦ tS(s)) = (oS(s), f(tS(s)))

Using that

D(f) ◦ (oS , tS) = (oT , tT ) ◦ f

we can conclude that

(oS(s), f(tS(s))) = (oT , tT ) ◦ f(s) = (oT (f(s)), tT (f(s))).

Looking at the last line, we can conclude that

oS(s) = oT (f(s)) and f(tS(s)) = tT (f(s))

These two conclusions are exactly the requirements of a homomorphism between
two automata we saw before.

4.3.2 Bisimulations

Now for bisimulations. Consider two D-coalgebras (hence, two automata)
(S, (oS , tS)) and (T, (oT , tT )) with (oS , tS) : S → D(S) and (oT , tT ) : T → D(T ).
Following the definition of a bisimulation for F -coalgebras given in Defini-
tion 4, a bisimulation R between D-coalgebras is a D-coalgebra structure
(oR, tR) : R→ D(R) such that the projections π1 : R→ S and π2 : R→ T are
D-homomorphisms. Suppose that (s, s′) ∈ R with s ∈ S and s′ ∈ T . We need
to show that

oS(s) = oT (s′) and tS(s)(a)RtT (s′)(a)

for all a ∈ Σ. Given that π1 and π2 are D-homomorphisms, we get that

D(π1) ◦ (oR, tR) = (oS , tS) ◦ π1 and D(π2) ◦ (oR, tR) = (oT , tT ) ◦ π2

Writing the first half of these equations out using the definition of D on functions,
we get that

D(π1) ◦ (oR, tR)(s, s′) = (oR(s, s′), π1 ◦ tR(s, s′))

= (oS , tS) ◦ π1(s, s′)

= (oS(s), tS(s))

and

D(π2) ◦ (oR, tR)(s, s′) = (oR(s, s′), π2 ◦ tR(s, s′))

= (oT , tT ) ◦ π2(s, s′)

= (oT (s′), tT (s′))
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This immediately gives us that oR(s, s′) = oS(s) and oR(s, s′) = oT (s′), and thus
that oS(s) = oT (s′), as required.

To see that (tS(s)(a), tT (s′)) ∈ R, we use the diagram first given above for
F -coalgebras and repeated below for D-coalgebras. Suppose that tS(s)(a) = e for
some a ∈ Σ. We know that π1(s, s′) = s, which implies that tS(π1(s, s′))(a) = e.
From the fact that π1 is a homomorphism, we then know that there must exist a
pair (u,w) ∈ R such that tR((s, s′))(a) = (u,w) and π1(u,w) = e. This gives us
that u = e and thus that (tS(s)(a), w) ∈ R. Now as π2 is also a homomorphism
and we know that tR((s, s′))(a) = (tS(s)(a), w(a)) , we have that

D(π2) ◦ (oR, tR)(s, s′)(a) = (oR(s, s′), π2(tS(s)(a), w(a)))

= (oR(s, s′), w(a))

= (oT , tT ) ◦ π2(s, s′)(a)

= (oT (s′), tT (s′)(a))

Hence we can conclude that w = tT (s′) and
(
tS(s)(a), tT (s′)

)
∈ R, as required.

S R T

D(S) D(R) D(T )

(oR, tR)

π1

(oS , tS)

D(π1) D(π2)

(oT , tT )

π2

4.4 The set of all languages is an automaton

In this section we will demonstrate that the set of all languages is an automaton.
The language recognised by a state s in an automaton is the behaviour (or the
semantics) of s [24]. This means we can see the set of all subsets of Σ∗, the set
of all languages over Σ, as the universe of all possible behaviours for automata.
To turn this set into an automaton, we need some definitions.

Following [20] and [4], let

L = {L|L ⊆ Σ∗}

be the set of all languages. For a word w ∈ Σ∗, the w-derivative of a language L
is

Lw = {v ∈ Σ∗|wv ∈ L}

We also define an a-derivative, for a ∈ Σ:

La = {v ∈ Σ∗|av ∈ L}
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We can use this derivative to turn the set L of all languages into an automaton
(L, oL, tL) with oL(L) = 1 if ε ∈ L and 0 otherwise and tL(L)(a) = La. This
automaton is such that the language accepted by a state L ∈ L is exactly L
itself. We will prove this later. We have the following rules for termination: ∅ ↑,
{ε} ↓, {a} ↑, (K + L) ↓ if and only if K ↓ or L ↓, (K · L) ↓ if and only if K ↓
and L ↓, and K∗ ↓.

Hence, the set of all languages is a coalgebra with continuation and observation
maps given by the Brzozowski derivative. In addition to the semantic definition,
we have the following properties for calculating the a-derivative La of a language
L:

∅a = ∅
{ε}a = ∅

{b}a =

{
{ε}, if b = a

∅, if b 6= a

(K + L)a = Ka + La

(K · L)a =

{
KaL, if K ↑
KaL+ La, if K ↓

(K∗)a = KaK
∗

These rules are easily verified with the semantic definition.

4.5 `S is a homomorphism from S to L
We have now seen that the set of all languages is an automaton. We will
continue by discussing the function `S that maps a state of an automaton to
the language it accepts. Using the set L, `S is essentially a function from any
automaton S = (S, oS , tS) to L: `S : S → L. And it is not just a function: it
is a homomorphism. According to the definition of homomorphism we saw in
Section 2.1.3, we need to show that for all s ∈ S and all a ∈ Σ we have that:

• oS(s) = oL(`S(s))

• `S(tS(s)(a)) = tL(`S(s))(a)

Proof. For the first item, remember that s is an accepting state if and only if
ε ∈ `S(s). By definition of oL we have that `S(s) is an accepting state if and only
if ε ∈ `S(s) as well. For the second item, take an arbitrary word w ∈ `S(tS(s)(a)).
Hence, w is in the language accepted by state tS(s)(a). This means that aw is
accepted by state s, and thus that aw ∈ `S(s). By definition,

tL(`S(s))(a) = (`S(s))a = {v ∈ Σ∗|av ∈ `S(s)}

As aw ∈ `S(s), we thus have that w ∈ (`S(s))a, and we have that
`S(tS(s)(a)) ⊆ tL(`S(s))(a). The other direction is identical and hence we
have that `S(tS(s)(a)) = tL(`S(s))(a), which completes the proof.
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In a coalgebraic representation seeing L as an automaton, the fact that `S is
a homomorphism makes the diagram below commute:

S L

D(S) D(L)

(oS , tS)

`S

(oL, tL)

D(`S)

4.6 Coinduction on L
In this section we will present a proof relating states in L through bisimulation,
which we will use later to prove a general coinduction principle. For the automa-
ton (L, oL, tL) we have that for all languages K and L and a bisimulation on
L:

if K ∼ L then K = L (4.1)

Note that the converse trivially holds and that any bisimulation R on L has the
property that if KRL then K ↓⇔ L ↓ and for any a ∈ Σ we have that KaRLa.

Proof. Assume that we have languages K and L such that K ∼ L. We will first
prove that K ⊆ L by induction on the length of words. The base case is the
empty string ε. Because R is a bisimulation and KRL, we have that ε ∈ K
implies that ε ∈ L. Now for the induction step. Consider an arbitrary word
w ∈ K of length n+ 1. Hence w = aw′ for some a ∈ Σ and w′ ∈ Σ∗ and w′ has
length n. We also have that w′ ∈ Ka. As K ∼ L we know that for all a ∈ Σ, but
in particular this a, we have that KaRLa. From our induction hypothesis we
get w′ ∈ La, which by definition gives us that w ∈ L. The proof of the converse
L ⊆ K is similar. Hence we get that K = L.

Result 4.1 does not only hold for L. In fact, it can be generalised to all final
coalgebras: if two states in a final coalgebra are bisimilar, they are the same.
We will show in the next section that L is indeed a final coalgebra. This result
implies that to prove that two states s and s′ in a final coalgebra are equal, it is
enough to show there exists a bisimulation R on the final coalgebra such that
(s, s′) ∈ R. [24]

Example 6. To conclude this section, let us look at two (trivial) examples of
how we can prove the equality of two languages using coinduction. For K ⊆ Σ∗,
to show that K + ∅ = K, we will prove that

R = {(K + ∅,K)|K ∈ L}
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is a bisimulation. Then, from the coinduction principle, we can conclude that
K + ∅ = K. First note that (K + ∅) ↓ if and only if K ↓, so the first condition
of a bisimulation is already satisfied. Then we have that for any a ∈ Σ:

(K + ∅)a = Ka + ∅a
= Ka + ∅

From the definition of R we know that ((Ka + ∅),Ka) ∈ R, and thus that
((K + ∅)a,Ka) ∈ R. Hence we have proven that R is indeed a bisimulation. It
follows that K + ∅ = K.

Example 7. For K ⊆ Σ∗, to show that K · {ε} = K, we will prove that

R = {(K · {ε},K)|K ∈ L}

is a bisimulation. Then, from the coinduction principle, we can conclude that
K · {ε} = K. First note that (K · {ε}) ↓ if and only if K ↓ ({ε} ↓ by definition),
so the first condition of a bisimulation is already satisfied. We will only consider
the situation where K ↓ as it is trivial when K ↑. Then we have that for any
a ∈ Σ:

(K · {ε})a = Ka · {ε}+ {ε}a
= Ka · {ε}

In the last line we use the result from Example 6 and the fact that {ε}a = ∅.
From the definition of R we know that ((Ka · {ε}),Ka) ∈ R, and thus that
((K · {ε})a,Ka) ∈ R. Hence we have proven that R is indeed a bisimulation, and
thus that K · {ε} = K.

4.7 Coinduction

In this section, we will illustrate the principle of coinduction and we will relate
it to the example of a bisimulation we saw in Section 2.1.3. In the concluding
section of this chapter we will see how the coinduction principle is related to
coalgebras of the deterministic automata type in general.

Theorem 2 (The Coinduction Principle). Take two deterministic automata
(S, oS , ts) and (T, oT , tT ). Then for all s ∈ S and t ∈ T

if s ∼ t then `S(s) = `T (t)

where `S(s) and `T (t) describe the languages accepted by state s and t. Note
that any bisimulation R between S and T has the property that if sRt then
oS(s) = oT (t) and for any a ∈ Σ saRta, where sa denotes tS(s)(a). Now for the
proof of the coinduction principle.

Proof. Assume that s ∼ t. As we know that `S is a homomorphism, we know
that `S(s) ∼ `T (t). As `S(s) and `T (t) are both languages, from equation 4.1
we get that `S(s) = `T (t).

25



This coinduction proof principle ensures that in order to determine whether two
states s and t of two deterministic automata recognise the same language, it is
sufficient to construct a bisimulation containing the pair (s, t). For example, the
bisimulation example in Section 2.1.3, showed us that s1 and t1 recognise the
same language, as well as s2, s3 and t2.

4.8 The Set L is Final

From the coinduction proof principle we thus have that in order to prove the
equality of languages K and L, one can show that there exists a bisimulation on
L such that K ∼ L and from that conclude equality of K and L. We will use this
principle to show that the automaton L is final among all automata, which means
that for any automaton S = (S, oS , tS) there exists a unique homomorphism
from S to L.

Proof. First of all, we know there is at least one homomorphism from S to L:
we saw in Section 4.5 that `S is a homomorphism from S to L. Now we just
need to prove that it is unique. Suppose we have two homomorphisms from S
to L: f and g. As f(s) and g(s) are both elements of L, we have seen before
that it suffices to prove that f(s) ∼ g(s). Then we can conclude that they are
equal. Hence, we need to prove that

R = {(f(s), g(s))|s ∈ S}

is a bisimulation. We thus need to prove that:

• oL(f(s)) = oL(g(s))

• (tL(f(s))(a), tL(g(s))(a)) ∈ R

For the first item, note that by definition of a homomorphism, we have that
oS(s) = oL(f(s)) = oL(g(s)), so this is immediate. For the second item, first
note that again by definition of a homomorphism, we have that

tL(f(s))(a) = f(tS(s)(a)) and tL(g(s))(a) = g(tS(s)(a))

As we know that

(f(tS(s)(a)), g(tS(s)(a))) ∈ R

by definition of R, we immediately get that

(tL(f(s))(a), tL(g(s))(a)) ∈ R.

Thus we have that the unique homomorphism from an automaton into the
final coalgebra takes a state s to the set of strings accepted by s. Relating
this to Kleene’s theorem, which tells us that the language accepted by a finite
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automaton is equal to a regular language, we get that the map taking a regular
expression to the set of strings it represents (to its regular language) is the unique
homomorphism into the final coalgebra. To elaborate on this a bit more, if we
remember the structure of the regular expression automaton R, consisting of
regular expressions over a finite input alphabet, and view it as a coalgebra, the
unique homomorphism `R from R into the final coalgebra L maps a state, thus
a regular expression, to the set of strings accepted by that state, which is indeed
exactly the set of strings we get when we translate the regular expression into its
belonging regular language. An exact proof of this can be found in [24], where it
is proven that a word w ∈ Σ∗ is an element of the regular language belonging to
regular expression r over Σ if and only if the state rw is an accepting state.

Given the fact that L is final, we can prove that the language accepted by a
state L in L is exactly L itself. From the finality of L we know that the identity
function can be the only homomorphism from L to itself. This means that
`L : L → L is the identity function. As this is the function that maps a state to
the language it accepts, and it maps L to L, we get that the language accepted
by L is L itself.

Remember the coinduction principle that we had, stating that for two de-
terministic automata (S, oS , ts) and (T, oT , tT ) we have that for all s ∈ S and
t ∈ T

if s ∼ t then `S(s) = `T (t) (4.1)

In fact, equation 4.1 is not just an implication, but an equivalence, meaning that
the semantics induced by the map `, the unique map into the final coalgebra, is
equivalent with the bisimulation semantics. This is the case for many functors
including the deterministic automata functor D we defined before. A general
proof of this statement can be found in [21], where it is shown that for functors
with certain properties two states in a coalgebra of that functor are bisimilar if
and only if they are mapped to the same element in the final coalgebra.

To summarise and to relate this coalgebraic machinery to the coalgebraic
decision procedure for Netkat, we have seen how to relate automata and
coalgebras, and how to use the nice properties of the deterministic automaton
functor to relate bisimulations between states to the language accepted by states,
through the use of the final coalgebra. We will see that for Netkat we have the
same property as before: two states are bisimilar if and only if they are mapped
to the same element in the final coalgebra. We have seen how to turn the set
of regular expressions into an automaton (and thus a coalgebra) such that the
unique map into the final coalgebra, the automaton consisting of the set of all
languages, maps a state to the language it accepts (its corresponding regular
language). For Netkat, a similar thing is done. Instead of regular expressions
we will work with Netkat expressions, and there will be a unique mapping from
a Netkat automaton to the final coalgebra, mapping a Netkat expression e to
the language represented by that expression and hence to the language accepted
by the state represented by e.
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Chapter 5

NetKAT

Now that all machinery we need is in place, we will delve into the syntax and
semantics of Netkat, and look at its coalgebraic theory. Netkat was developed
in [2] and [8], and all the information in the following sections comes from those
two papers.

Netkat was developed as a network programming language. Before we start
with the syntactic and semantic details of Netkat, let us look at it from an
abstract perspective and discuss the semantic foundations. A network can be
seen as an automaton that moves packets from node to node along the links in
its topology. It is very natural to use regular expressions, the language of finite
automata, to describe a network. In fact, regular expressions are a standard
way to formulate the packet-processing behaviour of a network: a path through
the network is encoded as a concatenation of processing steps (we will call those
policies) p · q · ..., and a set of paths is encoded as a union of paths p+ q + ....
Iterated processing is encoded using the Kleene star. A standard equational
theory governing regular expressions, is, as mentioned before, a Kleene algebra.

Another important aspect of describing networks is switch-processing be-
haviour. The way a packet moves through a network is determined both by the
network topology and switch-behaviour. Switch-processing behaviour concerns
predicates to match packets (eg. check whether a packet has a certain property
such as a particular destination) and consequently perform a certain action on
the packet such as forwarding or transforming matching packets.

As we have seen before, Kleene algebra does not allow for reasoning about
predicates, but a Boolean algebra does. A solution for combining those two
is found in kat, Kleene algebra with tests. We then have Kleene algebra for
reasoning about network structure and Boolean algebra for reasoning about the
predicates that define switch behaviour. In Section 3.3, the theory for kat was
developed. Kleene algebra with tests is very similar to Propositional Dynamic
Logic (PDL), which is a mixture of Kleene algebra, Boolean algebra and modal
logic [15], [7].

The axioms of Netkat consist of the axioms of kat and some additional
Netkat specific axioms. The axioms of kat dictate the interactions between
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primitive actions, predicates and other operators. We thus have a foundational
structure and a consistent reasoning principle that can be used when modifying
or adding primitives. In addition to the kat axioms, we will present a finite
set of equations that capture equivalences between Netkat programs, needed
for specification of and reasoning about transformations on packets. We then
have an equational theory that enables reasoning about local switch-processing
behaviours as well as global network structures. In [2] it is shown that this
theory is sound and complete with respect to the denotational semantics. We
will not repeat the soundness and completeness proofs, but the axioms will be
stated and discussed below and a proof sketch will be given.

5.1 Preliminaries

Formally, a packet pk is a record with fields (f1, ..., fn) mapping to fixed-width
integers n. Netkat assumes a finite amount of packet headers such as source
address (src), destination address (dst), protocol type (typ) and two fields
identifying the current location of the packet in the network: switch (sw) and
port (pt). For simplicity, we assume that every packet contains the same fields.
Following [2], we write pk.f for the value in field f of pk and pk[f := n] for the
packet obtained from pk by updating field f to n.

In order to reason about the path taken by a packet through the network,
Netkat keeps track of a packet history recording the state of each packet as
it travels from switch to switch. Formally, a packet history h is a non-empty
sequence of packets. We write pk :: 〈〉 to denote a history with one element, pk :: h
to denote the history constructed by prepending pk on to h and 〈pk1, ..., pkn〉
for the history with elements pk1 to pkn. We denote the current packet as the
first element of a history, other elements denote previously processed packets.
Let H be the set of all histories.

Intuitively, Netkat policies can be seen as programs. For instance, a policy
regarding forwarding behaviour or a policy for access control. Atomic Netkat
policies filter and modify packets. A filter (f = n) takes any input packet pk
and outputs the singleton set {pk} if field f of pk equals n, and {} otherwise.
A modification (f ← n) takes any input packet pk and yields the singleton set
{pk′}, where pk′ is the packet obtained from pk by setting f to n. To build up
more complicated policies, Netkat has policy combinators union and sequential
composition. The union combinator (p + q) generates the union of the sets
produced by applying both p and q to the input packet, while the sequential
compositions combinator (p · q) first applies p to the input packet and then
applies q to each packet in the resulting set and finally takes the union of all
of the resulting sets. Note that Netkat treats + as conjunctive instead of
nondeterministic choice in the usual Kleene algebra interpretation: after policy
p+ q the packets resulting from applying policy p to the input packet will exist
in the network as well as the packets resulting from applying policy q to the
input packet. Policy iteration (p∗) denotes performing policy p finitely many
times (possibly zero) on input packet pk and subsequently resulting packets. A
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Fields f :: = f1|...|fk
Packets pk :: = {f1 = v1, ..., fk = vk}
Histories h :: = pk :: 〈〉|pk :: h

Predicates a, b ::= 1 Identity

| 0 Drop

| f = n Test

| a+ b Disjunction

| a · b Conjunction

| ¬a Negation

Policies p, q ::= a Filter

| f ← n Modification

| p+ q Union

| p · q Sequential composition

| p∗ Kleene star

| dup Duplication

Figure 5.1: Syntax of NetKAT

more formal definition is given in the following sections.

5.2 Syntax

Syntactically, Netkat expressions can be predicates (a, b) and policies (p, q).
Predicates include the constants true and false (1 and 0 respectively), tests
(f = n) and negation (¬a), disjunction (a+ b) and conjunction (a · b) operators.
Policies include predicates, modifications (f ← n), union (p+ q) and sequential
composition (p · q), iteration (p∗), and a special policy that records the current
packet in the history (dup). The complete syntax is presented in Figure 5.1.

5.3 Semantics

Semantically, every Netkat predicate and policy is a function that takes a history
h and produces a (possibly empty) set of histories {h1, ...hn}. Producing the
empty set models dropping the packet, and producing a set with multiple entries
models modifying the packet in several ways or sending it to multiple locations.
When one wishes to implement this, one does not need to take histories into
account as only the first packet in the history (the current packet) is modified
by a policy. Histories are meant solely to facilitate reasoning about the code.
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JpK ∈ H → P(H)

J1K h = {h}
J0K h = {}

Jf = nK (pk :: h) =

{
{pk :: h}, if pk.f = n

{}, otherwise

J¬aK h = {h} \ (JaK h)

Jf ← nK (pk :: h) = {pk[f := n] :: h}
Jp+ qK h = JpK h ∪ JqK h
Jp · qK h = (JpK • JqK) h

Jp∗K h =
⋃
i∈N

F ih

where F 0 h = {h} and F i+1 h = (JpK • F i) h
JdupK (pk :: h) = {pk :: (pk :: h)}

Figure 5.2: Semantics of NetKAT

The denotational semantics of Netkat are given in Figure 5.2. Note that
there is no separate definition for predicates. This is because every predicate is
a policy, and the reason there is a syntactic distinction between the two is to
make sure that only predicates can be negated. Formally, a predicate behaves
like a filter.

In light of the representation with histories, a filter (f = n) returns either
the empty set or {h} when applied to a single history h, depending on whether
field f of the first packet in the history h had value n or not. A modification
(f ← n) becomes a function that returns a singleton history in which the field f
of the current packet has been updated to n. The union operator (p+ q) still
denotes a function that returns the union of the sets generated by p and q, and
sequential composition (p · q) is formally defined as Kleisli composition of the
functions p and q. For functions of type H → P(H), the Kleisli composition (•)
of f and g is defined as

(f • g)x =
⋃
{gy | y ∈ fx}

Policy iteration (p∗) formally denotes the union of semantic functions Fi of h,
where each Fi is the Kleisli composition of functions denoted by p i times.

Example 8. Let us look at a simple example network and possible policies to
familiarise ourselves with the Netkat terminology. The following example can
be found in [2]. Consider the network shown below. It consists of hosts 1 and 2
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(squares) and switches A and B (circles) with ports 1, 2, 3 and 4. In this case,
the switches and hosts are connected in series.

H1 A B H2
1 2 3 4

Suppose that we want to implement two policies: one for transferring packets
between the hosts and one to block ssh packets. For the forwarding policy, we
want the policy to forward packets from host 1 to host 2 and vice versa. Formally,
if a packet has destination H1 it should travel to H2 and the other way around.
Putting this into Netkat syntax, the forwarding policy looks as follows:

pf := (dst = H1 · sw = A · pt← 1) + (dst = H1 · sw = B · pt← 3)+

(dst = H2 · sw = A · pt← 2) + (dst = H2 · sw = B · pt← 4)

If we would label the ports for both switches the same, the policy could be made
more concise, but throughout this thesis we have chosen to give each port a
unique label. At the top level, this policy is the union of four sub-policies. For
example, the first one updates the pt field of all packets destined for H1 while at
switch A to 1. The policy pf now forwards packets between host 1 and host 2
via switches A and B.

Now we wish to extend the policy pf to block ssh packets between the hosts.
There are multiple ways to implement this, but we will simply create a filter and
put that in sequence with our forwarding policy:

pa := ¬(typ = ssh) · pf

This policy drops all input packets of type ssh, and otherwise forwards the
packet according to policy pf .

It would be more clever to not check all packets at all locations in the network
to block certain types of packets, but to only filter at one of the switches, as
packets between the hosts will cross both switches in any case. Hence, it would
be sufficient to filter only at switch A or B:

pas := (sw = A · ¬(typ = ssh) · pf ) + (sw = B · pf )

The policy pas filters out packets of type ssh at switch A.
One can imagine that we would like to answer questions about this network

such as “Can host 1 reach host 2?” or “Are pas and pa indeed equivalent?”. By
simply inspecting the policies we cannot answer these questions. We need to
consider the network topology itself along with the specific switch policies in
order to say anything interesting about the network. To incorporate network
topology information into a Netkat program, network topologies are modelled
as the union of smaller policies that encode the behaviour of each link.

To model an internal link, a link between two switches, we use the sequential
composition of a filter that matches packets located at one end of the link and a
modification that updates the sw and pt fields to the location at the other end of
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the link. Bi-directional links are encoded as the union of two uni-directional links
along the same edge. To model a link on the outside of the network, between a
host and a switch, just use a filter that keeps packets located at the ingress port.
For our example network, the topology t is modelled as:

t := (sw = A · pt = 2 · sw← B · pt← 3)+

(sw = B · pt = 3 · sw← A · pt← 2)+

(sw = A · pt = 1)+

(sw = B · pt = 4)

To model a packet moving through the network, it will encounter both switch
policies and policies representing links in the network. As a packet might require
an arbitrary number of steps (a topology could have a cycle), we model the
overall behaviour of the network using the Kleene star operator:

(pa · t)∗

A little bit of thought on this expression will show that this policy processes
packets that enter and exit the network at arbitrary locations. One might want
to restrict this policy by only looking at packets entering and exiting the network
at specified locations. For instance, we can have

pin,out := (sw = A · pt = 1) + (sw = B · pt = 4)

We now encode the overall behaviour of the network as

pin,out · (pa · t)∗ · pin,out

Using the equational theory below we could now answer the questions posed
before such as “Can host 1 reach host 2?” and “Are pas and pa indeed equivalent?”.
As we will see later, the equational theory of Netkat is complete with respect
to its denotational semantics, so it can indeed answer all questions posed about
equivalences of Netkat expressions.

5.4 Equational Theory

Previously, we have seen the axioms of Kleene algebra and of Kleene algebra with
tests. The axioms for Netkat include all those axioms and some additional ones.
The additional axioms are needed to make Netkat complete for the underlying
Netkat packet model. Below are the additional Netkat axioms listed. The
other axioms can be found in Section 3.1 and 3.3.
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(f ← n · f ′ ← n′) ≡ (f ′ ← n′ · f ← n), if f 6= f ′ mod-mod-comm

(f ← n · f ′ = n′) ≡ (f ′ = n′ · f ← n), if f 6= f ′ mod-filter-comm

(dup · f = n) ≡ (f = n · dup) dup-filter-comm

(f ← n · f = n) ≡ (f ← n) mod-filter

(f = n · f ← n) ≡ (f = n) filter-mod

(f ← n · f ← n′) ≡ (f ← n′) mod-mod

(f = n · f = n′) ≡ 0, if n 6= n′ contra∑
i

(f = i) ≡ 1 match-all

where
∑

denotes taking the sum of all f = i terms using the + operator from
Kleene algebra.

The packet axioms are very intuitive. The first three axioms ensure commu-
tativity conditions. Updating two different fields will yield the same outcome
regardless of the order, and performing a test and then an update on a different
field will also be the same if one switches the order. The next three axioms
specify modifications. They specify that performing a modification changing a
field to n and then filtering packets where that field has value n is the same
as performing just the modification, and performing a test to check if a field
has value n and then modifying that value to n is the same as simply the filter.
The pa-mod-mod axiom specifies that performing consecutive modifications
on the same field is the same as performing simply the last modification. The
last two axioms characterise filters. The first one specifies that performing two
consecutive filters on the same field with different values will always result in
dropping the packet as a field cannot be equal to two different values at the
same time. And the last axiom states that if one does a union of filters with all
values for a field, one will always keep the packet as one of them will come out
as true. This axiom implies that packet values are taken from a finite domain,
such as fixed-width integers.

5.5 Main results regarding NetKAT

In this section we will list the most important theoretical results for Netkat.
They are all taken from [2] and [8] where the full proofs of the theorems stated
here can also be found.

Important results are the soundness and completeness of Netkat axioms with
respect to the denotational semantics defined before. Intuitively, this means that
every equivalence provable from the Netkat axioms also holds in the denotational
model (soundness) and that every equivalence that holds in the denotational
model is provable from the Netkat axioms (completeness). We will not provide
the full proofs, but a short proof sketch will be given for both theorems.
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Theorem 3 (Soundness). The Netkat axioms are sound with respect to the
semantics defined before. That is, if ` p ≡ q, then JpK = JqK.
Proof Sketch: One first proves that the packet-history model used in the
denotational semantics is isomorphic to a binary relations model, as is done in [1].
Instead of modelling the policies and predicates as functions JpK ∈ H → P(H),
policies and predicates are interpreted as a binary relation [p] ⊆ H ×H:

(h1, h2) ∈ [p]↔ h2 ∈ JpK(h1)

You can see [p] as the set of input-output pairs of the policy p. In the relational
model, product is interpreted as relational composition and the remaining kat
operations translate under the isomorphism to the usual kat operations on
binary relations. As mentioned before, it is shown in for instance [18] that
relational models with these operations satisfy the kat axioms. We then know
that Netkat models with the packet-history semantics also satisfy the kat
axioms. It remains to show that the additional Netkat packet axioms given
in Section 5.4 are also satisfied. As shown in [1] this is done by arguments
in relational algebra, found in for instance [23], and some axioms are special
instances of equations (6)-(11) found in [3].

Theorem 4 (Completeness). Every semantically equivalent pair of Netkat
expressions is provably equivalent using the Netkat axioms. That is, if JpK = JqK,
then ` p = q.

Proof Sketch: The proof of completeness is more complicated than for sound-
ness, but we will not go into details. First, a language model is developed that
plays the same role as regular sets of strings and guarded strings do for ka and
kat respectively. Then it is shown that packet-history and language model are
isomorphic by proving that two Netkat expressions have the same semantics
(send the same packets to the same locations) if and only if the two expressions
are mapped to the same set of strings in the language model. It is also proven
that these sets of strings in the language model are in fact regular sets, meaning
we can use the completeness of ka to prove the completeness of the Netkat
axioms.

Another important result is that deciding equivalences of Netkat has the
same complexity as deciding kat or ka.

Theorem 5. The equational theory of Netkat is pspace-complete.

The proof of Theorem 5 is given in [2]. In [8] a more sophisticated algorithm
for deciding the equational theory of Netkat is given, which is still exponential
in the worst case, but a lot more efficient in a lot of practical examples. We will
discuss this algorithm in a bit more detail in the next section.

5.6 NetKAT Coalgebra

As mentioned before, a coalgebraic decision procedure for Netkat was developed
in [8]. Central in this procedure is the use of bisimulation to characterise
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equivalence. In order to apply these coalgebraic techniques to Netkat, [8] first
develops the coalgebraic theory of Netkat. We will not give the full coalgebraic
machinery for Netkat, as that is not the focus of this thesis. What we will do
instead, is give an overview of the coalgebraic theory for Netkat and try to
explain what it does and why it works, without going into too many details.

As we have seen before, we define coalgebras in terms of a set of states
together with a function giving a direct observation of the current state and
information about next states reachable from the current state. A Netkat
coalgebra consists of set of states S along with continuation and observation
maps

δαβ : S → S and εαβ : S → 2

where α and β are atoms. We denote the set of atoms with At. Atoms are
complete tests, meaning that they are of the form

f1 = n1...fk = nk

where f1, ..., fk is the list of all fields of a packet. Besides complete tests, we also
have complete assignments:

f1 ← n1...fk ← nk

The complete tests are often called atoms because they are the minimal nonzero
elements of the Boolean algebra generated by the tests. Note that complete tests
and complete assignments are in one-to-one correspondence according to the
values of n1, ..., nk.

To show that every Netkat expression can be written as a reduced string
(a string where every test and assignment is complete) we need a simplified
version of the Netkat axioms. For reduced strings the Netkat axioms, the ones
specific for packet-processing, can be presented in a simpler form. Let αp be
the complete test corresponding to the complete assignment p and let pβ be the
complete assignment corresponding to the complete test β. The Netkat axioms
for reduced strings are:

α dup = dup α (5.1)

pαp = p (5.2)

αpα = α (5.3)

αα = α (5.4)

αβ = 0 if α 6= β (5.5)

qp = p (5.6)∑
a∈At

α = 1 (5.7)

In [2] it is shown that every Netkat expression can be rewritten to an equivalent
reduced expression in which every test is a complete test and every assignment
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is a complete assignment. To translate a Netkat expression into a reduced
expression, we only need to replace all atomic assignments f ← n and tests f = n
with complete ones. This can be done as follows. Note that

∑
α∈At(α · πα) = 1,

using axioms 5.3 and 5.7.

(f ← n) = 1 · f ← n

= (
∑
α∈At

α · pα) · (f ← n)

=
∑
α∈At

α · p′α

where p′ is the complete assignment resulting from p with the assignment to f
replaced by f ← n. For tests we have

b =
∑
α≤b

α

The input to our Netkat coalgebras (automata) will be reduced strings
belonging to the set U = At · P · (dup · P )∗, where P is the set of complete
assignments and At the set of complete tests. U is a subset of all the reduced
Netkat strings. In [2] a mapping G is defined, mapping a reduced Netkat
expression e to a regular subset of U . This mapping can be seen as the mapping
` we had in the chapter on coalgebras. It is the mapping going from a regular
expression to corresponding regular subsets. The continuation and observation
maps for a Netkat coalgebra can then also be given by a variant of the Brzozowski
derivative for Netkat. As we do not go into these details we do not need the
exact definition, but it can be found in [8]. Intuitively, the Brzozowski derivative
tells us how to move from one state in the Netkat automaton to the next and
whether a state is an accepting state or not.

To relate Netkat expressions to Netkat automata, a generalisation of
Kleene’s theorem is proven in [8]. This theorem states that any subset of
U is equal to G(e) for some Netkat expression e if and only if it is the set of
strings accepted by some finite Netkat automaton.

In rough lines, what the coalgebraic decision procedure does is the following.
It takes two Netkat expressions e1 and e2 and translates those into reduced
Netkat expressions. Then the procedure normalises them (shown in [2]) such
that when the mapping G is performed on the expressions the outcomes will
be subsets of U . From now on e1 and e2 represent normalised reduced Netkat
expressions. This means that G(e1) and G(e2) are both subsets of U . Using
Kleene’s theorem for Netkat, we then know for sure that there will be two
automata corresponding to e1 and e2 such that these automata accept G(e1) and
G(e2). The algorithm will construct these automata according to the Brzozowski
derivative for Netkat and will then check if they are bisimilar. In case they are
bisimilar we know that e1 ≡ e2 and in case they are not bisimilar we have that
e1 6≡ e2. To keep the complexity low of the part where it is checked whether
the two automata are bisimilar the coalgebraic perspective on these automata is
exploited as can be seen in [8] but is not discussed here.
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Let us elaborate on why checking for bisimulation will answer the question
whether e1 ≡ e2. The mapping G is the unique homomorphism from the Netkat
coalgebra (automaton) into the final coalgebra. Using the coinduction principle,
we know that two states in two Netkat automata are bisimilar if and only
if they are mapped to the same set in the final coalgebra. In other words,
two states s and t are bisimilar if and only if they accept the same language
(G(s) = G(t)). This means that we can actually conclude that checking whether
the two automata are bisimilar will give us the answer to the question if they
accept the same language. In the case of the example where we had expressions
e1 and e2, that would mean that we get an answer to the question whether
G(e1) = G(e2). As is proven in [2], we know that Je1K = Je2K if and only if
G(e1) = G(e2) and by completeness of Netkat we thus get an answer to the
question whether e1 ≡ e2 as desired.
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Chapter 6

Gossip through a State
Vector Perspective on
NetKAT

In this chapter we will explore dynamic gossip in Netkat by adding a state vector
perspective to Netkat. As we have seen so far, Netkat describes a single packet
traveling through a network. One can for instance ask questions concerning the
route taken by the packet or the topology of the network. Now we will extend the
semantics in such a way that it allows for some form of indirect communication
between switches via a state vector.

6.1 Indirect Switch Interaction

Ideally we wish to describe multiple packets in a network. This requires a sense
of concurrency: which packet was where first? Did packet 1 pass before or after
packet 2? A sense of concurrency would be useful for modelling dynamic gossip,
but we can also think of consequences this can have such as that packet 1 can
only pass if packet 2 has already passed at this switch.

In our case we are focused on modelling dynamic gossip. As we do not have
the means to describe multiple packets, we instead follow [19] in adding a global
‘state’ to the network. In that paper a state extension of Netkat is proposed.
However, the formalisation given in that paper is based on extracting the static
(standard) Netkat version from Netkat with state, whereas our formalisation
will directly integrate Netkat with state into standard Netkat. Therefore, one
can say that the extension proposed here is inspired by [19], but is not the same.
A global ‘state’ in a network is interpreted to be comprised of states of the
individual switches in the network.

Adding a state allows us to model indirect communication between switches
via changing switch configurations. Intuitively, this means that each switch can
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change configuration based on its state. For instance, a packet arriving at a
switch makes the switch change configuration based on the values of certain
fields on the packet. Information exchange could also go the other way around:
a switch alters certain fields of an arriving packet based on which configuration
the switch is in. We will give a more precise explanation below in combination
with an explanation of how to model gossip.

One can think of various applications of Netkat with state, but in this thesis
we will focus solely on using it to model dynamic gossip protocols. Another
application could be to use Netkat with state in the study of how infections
spread in a network while incorporating factors such as immunity of agents, as
is done in for instance [11].

To state that Netkat does not describe multiple packets is not entirely true.
Even though Netkat describes how a single packet travels through a network, it
can implicitly describe the semantics of a set of packets. This happens when
a policy results in multiple packets through the + operator and another policy
is applied to this set sequentially. To formalise this explicitly, one can see the
semantics as:

JpK H =
⋃
h′∈H

JpK h′ (6.1)

where p is an arbitrary policy, H a set of histories and JpKh′ the usual definition
of the Netkat semantics stated in Figure 5.2. Intuitively, in Equation 6.1 one
can see a policy on multiple packets as a policy on individual packets in parallel
networks. However, as Netkat interprets the + operator as a conjunctive, it is
interpreted as that all those packets exist in the same network, but no interaction
between them is possible.

6.2 NetKAT with state

Before turning to gossip protocols, we will describe Netkat with state and its
semantics. A network configuration is denoted with a vector ~k, such that the
entries denote the configuration of the different switches. A configuration is
denoted with an integer and the integers encode Netkat policies, thereby directly
showing the forwarding behaviour of that switch. For simplicity we assume
that the entries of ~k are labeled with switches in alphabetical order (entry 1
denotes the configuration of switch A). We call this vector a state vector. The
configurations in the state vector are from a finite domain such as fixed-width
integers. Therefore, the configurations an entry in the state vector can take are
finite. The encoding between policies and integers is specified externally. In the
implementation, we will handle the working with states a bit differently, but
details on this will be given later.
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6.2.1 Semantics

We first change the interpretation of the + operator to non-deterministic choice,
as is usual with Kleene algebras. This change of interpretation does not change
anything formally about standard Netkat, it only changes the interpretation of
a set of packets that comes out of a policy. Instead of interpreting a set of output
packets as that all these packets exist in the network, they now all resemble
possible outcomes that could have happened, but in each outcome only the
outcome packet exists in the network. As we will see, changing the interpretation
of the + operator to non-deterministic choice is more natural when modelling
dynamic gossip.

Another change we make to the original Netkat semantics is that the
semantics will now describe how a packet and state vector and their history
transform into a set of packets/state vectors and histories (or the empty set).
Instead of the usual semantics of Netkat that describe how a packet and its
history transform into a set of packets and histories (or the empty set):

JpK : H → P(H)

where H describes the set of all histories, we change it into:

JpK : HV → P(HV )

where HV describes the set of all histories of all packets/state vector pairs we

can have. In other words, HV is the set of all histories of the set (PK × ~K),

where PK is the set of all packets and ~K the set of all state vectors.
Intuitively, when a packet/state vector pair is processed by a policy, the

output is the set of packets/state vectors that can result from this policy. The
state vectors denote the state of the network as a result of the route taken by the
corresponding packet. For instance, if a packet is sent to two different locations
A and B with the + operator, this will result in two different state vectors each
reflecting either the move of the packet to A or the move to B. Hence, the
outcome will be a set with two elements: a packet/state vector pair at A and a
packet/state vector pair at B, where the state vector reflects the move to A or
B respectively. Here it is demonstrated that it is more natural to interpret the
+ operator as non-deterministic choice: we cannot have a network in two states,
so only one of the situations will have occurred.

This change of packet histories to histories of packet/state vector pairs has
not changed anything essential in the semantics. Therefore, the definitions
stay almost the same as in Figure 5.2, and we have just added a definition for
a test and assignment on the state vector to obtain the definition in Figure
6.1. The state assignment operator can be understood similarly to the normal
assignment operator: it assigns a certain value to a certain row in the vector
thereby changing the configuration of that switch. The same goes for the state
test operator: it tests whether a certain row in the state vector has a certain
value, so whether a certain switch has that configuration. We denote a history
of a packet/state vector pair with hv. The negation of the state test operator
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J1K (hv) = {hv}
J0K (hv) = {}

Jf = nK ((pk,~k) :: hv) =

{
{(pk,~k) :: hv}, if pk.f = n

{}, otherwise

J¬aK (hv) = {hv} \ (JaK (hv))

Jf ← nK ((pk,~k) :: hv) = {(pk[f := n],~k) :: hv}
Jp+ qK (hv) = JpK (hv) ∪ JqK (hv)

Jp · qK (hv) = (JpK • JqK) (hv)

Jp∗K (hv) =
⋃
i∈N

F i(hv)

where F 0 (hv) = {hv} and F i+1 (hv) = (JpK • F i) (hv)

JdupK ((pk,~k) :: hv) = {(pk,~k) :: (pk,~k) :: hv}

Jstate(x) = nK ((pk,~k) :: hv) =

{
{(pk,~k) :: hv}, if ~k(x) = n

{}, otherwise

Jstate(x)← nK ((pk,~k) :: hv) = {(pk,~k(x) := n) :: hv}

Figure 6.1: Semantics for NetKAT with state

is the same as the negation of the normal test operator and is not mentioned
separately in the figure.

6.2.2 Equational Theory, Soundness and Completeness

In this section we present a different view on Netkat with state in order to
demonstrate that Netkat with state is not an extension of standard Netkat but
is merely a change of perspective. This will allow us to use the soundness and
completeness of standard Netkat to argue that Netkat with state is sound and
complete.

We could see the rows in the state vector as fields of the corresponding packet
with which the state vector is paired. So the packet would have extra fields
with the configuration of switch A, switch B etc. The state modifications and
state tests on row S in the state vector would then simply be normal packet
modifications and tests on the field corresponding to row S. For example, if we
have the input ((pk,~k) :: hv) where pk is a packet and ~k is the state vector
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~k =

[
1
2

]
with the configuration of switch A on row 1 and the configuration of switch
B on row 2 encoded by the integers 1 and 2, we could also see it as that the
packet pk gets extra fields CA and CB that get the values 1 and 2 respectively.
Changing the configurations into extra fields of a packet can always be done as
the packet and state vector are always paired together. Note that the values of
the configuration still come from a finite set of possibilities, so we do not make
the match-all axiom invalid.

To clarify the distinction between packets and state vectors we have introduced
a special operator for tests and assignments on the state vector. Formally
speaking, these operators behave just like operators on packets and hence obey
the same axioms. They are introduced simply to provide notational clarity and
keep packets separate from configurations.

The equational theory of Netkat given in Section 5.4 then stays in place
for Netkat with state and does not need to be altered. From this we can
easily conclude that the proof system of Netkat with state is still sound and
complete with respect to the packet-processing model, based on the soundness
and completeness of standard Netkat.

The reason we choose not to represent gossip in the way of extra fields within
a packet but with a state vector, is because using a separate state vector allows
for a more elegant representation of the protocol. The separation between the
packet and configuration seems very natural. In that way the packet is simply a
communication facilitator whereas the configuration belongs to the switches as
it represents the state of the network. One can also imagine that once multiple
packets with Netkat can be described, having the packet separate from the
network configuration is desired. Note that this might require a slightly different
formalisation, as the state of the network (the configurations of the switches) is
then not so closely tied to a packet, but that is for future research.

6.3 Dynamic Gossip

Dynamic gossip protocols were developed and researched for the first time in [25].
A more in depth study can be found in [6]. In this thesis we do not wish to get
into details about dynamic gossip, but we will give the information we need to
understand one specific protocol. We will first demonstrate with an example and
then later show more formally that Netkat can simulate this specific protocol.
We will also translate various results from dynamic gossip into Netkat. So far no
sound and complete axiomatisation has been found to describe dynamic gossip.
In this thesis we claim that Netkat can offer such a framework.

A gossip protocol is a procedure for spreading secrets among a group of
agents, using a connection graph. It is assumed that everyone has a unique secret
and each agent starts out with a secret only known to that agent. Calls between
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agents involve only two agents. When a call takes place, all secrets known to
the agents involved in the call are exchanged. Dynamic gossip protocols have
the added feature that when a call takes place not only secrets are exchanged
but also phone numbers, i.e. links in the gossip graph. Thereby each call in the
gossip graph influences the distribution of secrets and the links in the graph. We
assume that each agent starts out then with knowing only their own secret and
an amount of phone numbers always including at least their own phone number.

The gossip procedure we study is not regulated by an outside authority.
Instead, we use a distributed protocol from [25] called Learn New Secrets (LNS).
The LNS protocol works as follows:

While not every agent knows all secrets, let an agent x randomly

select an agent y such that x knows y’s phone number but does not

know y’s secret, and let x call y.

In essence such a protocol allows us to investigate how information spreads
through a network.

We will not get into too many details about gossip graphs, but we need some
terminology on how they are defined formally. A gossip graph G is represented
as a triple (A,N, S), where A is the finite set of agents and N and S are binary
relations on A. Nxy expresses that x has a link to y, or x knows y’s phone
number and Sxy expresses that x knows y’s secret. We represent a call from x
to y as a tuple xy. We denote Gxy to be the gossip graph after the call xy has
taken place in G.

Definition 5 (Gossip Graph). A gossip graph is a triple G = (A,N, S), where
A is the finite set of vertices or agents and N ⊆ A2 and S ⊆ A2 are relations on
A. We denote Gxy to be the gossip graph after the call xy has taken place in G.

Definition 6 (Call Sequence). A call sequence σ is a finite list of calls. σ; τ
denotes the call sequence σ concatenated with the call sequence τ . ε denotes the
empty call sequence. The empty call sequence performed on a graph G is Gε

and Gε = G. The graph Gσ is the result of call sequence σ on graph G.

This terminology was needed to show the following result: for a gossip graph
where each agent in the beginning knows only their own secret and at least their
own phone number, an agent will only know another agent’s secret if he also
knows his phone number. Formally, if we have a gossip graph G = (A,N, S)
with a calling sequence σ for G such that S = id, we have that Sσxy only if
Nσxy. Hence:

Lemma 1. For any gossip graph G = (A,N, S) with S = id and a calling
sequence σ for G we have that Sσ ⊆ Nσ.

Proof. We will prove this by induction on the call sequence σ. The base case
follows instantly as we always start with every agent knowing only their own
secret and at least their own phone number. Hence we have that Sε ⊆ N ε.
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For the induction step take a possible calling sequence σ for G. We assume
that Sσ ⊆ Nσ as our induction hypothesis. Let xy be a possible call in Gσ and
let (a, b) ∈ Sσ;xy. We have two possibilities. Either (a, b) ∈ Sσ or (a, b) ∈ Sσ;xy

but (a, b) /∈ Sσ. In the first case, by the induction hypothesis we instantly know
that (a, b) ∈ Nσ. And as knowledge does not get lost in these protocols (you
never lose secrets or phone numbers but only gain new ones), we can conclude
that (a, b) ∈ Nσ;xy. In the second case, we can assume without loss of generality
that a = x. This means that (y, b) ∈ Sσ. From our induction hypothesis we get
that (y, b) ∈ Nσ and hence we have that (x, b) = (a, b) ∈ Nσ;xy as all secrets
and phone numbers that x and y know are exchanged in their call.

6.4 Gossip in NetKAT with state

To express dynamic gossip in Netkat, we need the following definitions. Let
the switches in a Netkat network describe the agents, and let the configuration
of a switch denote the current knowledge of the agent concerning what phone
numbers and what secrets he knows. We only consider networks where each
switch is connected to each other switch to ensure that each agent could in
theory communicate with each other agent. The initial links in the gossip
graph are incorporated into the Netkat model via the initial packet/state
vector that enters the network. The packet plays the role of carrier pigeon
facilitating the communication between agents and the state vector gets an
initial configuration corresponding to the initial knowledge distribution in the
gossip graph. The possession of phone numbers is incorporated locally by
checking what configuration a switch is in. To simplify, we assume that only
one call at a time takes place. That means even if we have multiple players, we
cannot have player 1 and 2 calling and player 3 and 4 calling at the same time.
This assumption is also common in existing work on dynamic gossip [6].

We wish to model the Learn New Secrets protocol. This means that we must
allow for calls between agents only if certain conditions are satisfied, i.e. an agent
does not know the secret of the agent he is going to call and he knows the phone
number of the agent he will call. Roughly, our Netkat policy describing this
protocol will look as follows. First the input packet will be distributed to every
agent in the network. Then, using the Kleene star, each iteration will represent
one call that is made. The policy will include checking that the conditions that
allow for a call are satisfied, and will update the configurations accordingly after
a call has taken place. Using the nice property of the + operator that it behaves
as non-deterministic choice, we will model all possible calls in formally separate
versions of the network, so we do not need to use randomness.

The packets have four fields. The first two fields of a packet denote its
location, so we have a field for at which agent a packet is, denoted with ag, and
a field for at which port the packet is, denoted with pt. The other two fields
are used to transfer knowledge of secrets and phone numbers. We will describe
this as a packet knowing things, but in fact they are just transferring knowledge
from one agent to another agent. There is a field S denoting the secrets a packet
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knows and a field N denoting the phone numbers. As we are not interested in
the actual value of the secrets and phone numbers but purely in whose secrets
and phone numbers a packet possesses, we will denote for instance that a packet
only knows agent A’s secret as S = {a}.

As one can see, we have extended the values a field can take from only
integers to also sets of, in this case, agents. The justification for this is as follows.
The values a field can take need to come from a finite set of possibilities. This
is still the case, as the S and N fields draw their values from the power set of
the set of agents, and we always work with a finite amount of agents. Moreover,
when one is working with for instance three agents, instead of writing S = {a}
to represent that a packet only knows the secret of agent A, one can visualise
this as giving the packet three fields Sa, Sb, Sc and then simply giving Sa the
value 1 and Sb and Sc the value 0. As the set-theoretic notation is much more
elegant, we will use that below.

The set-theoretic notation gives us an additional feature that we will make
use of. It allows us to introduce a test of the form e ∈ f , which checks if e is an
element of the value of the f field. We call this test the inclusion test and it will
shorten notation of our gossip policy. Conceptually, a ∈ S could be seen as the
normal test Sa = 1. Hence, we know that Netkat can express such an inclusion
test, thereby justifying to use the more elegant notation. The negation of e ∈ f
will be denoted as e /∈ f as opposed to classical Netkat negation of tests which
would look like ¬(e ∈ f).

The policy simulating the LNS protocol will consist out of three parts, that
we will discuss in the next section via an example.

6.4.1 A worked out Example

Example 9. Consider two agents, A and B, and each agent has two ports:
one port is their private ‘home’ port used to initialise the packet and a port
connected to the other agent’s port. The network then looks as follows:

p1 A B p2
1 2 3 4

The switches are denoted with circles and are called agents from now on and
the packets that will be initialised in the network are denoted with p1 and p2,
and are already visible in the network. Strictly speaking we start with one input
packet, but as that packet is distributed to every home port in the network
immediately, we chose to show the initial packets after this distribution. Note
that this network could be used for any gossip graph with two agents, as we
now have not specified yet what phone numbers the agents know initially (the
links in the gossip graph). The distribution of phone numbers will be done via
the configurations, and will show up in the initial state vector belonging to the
input packet.
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Configurations

However, before we can give the policy describing LNS for two agents, we need
to specify which configurations we have. A configuration is a state an agent can
be in, and thus represents that agent’s knowledge of secrets and phone numbers.
In essence a configuration is a policy belonging to an agent. We will encode
the configurations with integers. Some integers give configurations for agent A
and some for agent B (not all configurations can belong to each agent). The
encoding is as follows:

1 : S = {a} ·N = {a}
2 : S = {b} ·N = {b}
3 : S = {a} ·N = {a, b}
4 : S = {b} ·N = {a, b}
5 : S = {a, b} ·N = {a, b}

A state vector in this case is a vector with two rows: the top row denotes the
configuration of agent A and the bottom row the configuration of agent B. Note
that some configurations do not occur in the encoding. This is because of Lemma
1, so that configurations where an agent knows the secret but not the phone
number of an agent are not possible.

The Policy for modelling Dynamic Gossip

Before giving the full policy for making phone calls we will discuss how Netkat
can describe updating fields as opposed to overwriting them. The need for
updating occurs when we wish to facilitate information exchange between a
packet and a state vector: when a packet arrives at a switch, depending on the
state of that switch, the secret and phone number fields of the packet will be
updated with the knowledge of the switch and the configuration of the switch will
be updated according to the information on the packet. This means that we wish
to add new knowledge to the current value of a field in a packet. Note that we are
always only adding knowledge and there will never be values disappearing from
the S and N fields, as the knowledge in dynamic gossip protocols is monotone
and does not get lost.

As Netkat has no means of describing that a certain value will be added
to the current value of a field but can only overwrite values, we are forced to
test which value a field has now, and act according to that. Hence, we have to
take the sum of policies each testing for a value of S, N and the state and then
have the assignment behave accordingly by overwriting the fields such that a
new value is added. Let us look at a tiny example to clarify this. For simplicity,
let us assume we wish to just add a value to the secret field. We know that
the secret field can only take a finite amount of values, and here we assume the
secret field can take values that are all subsets of {a, b, c}. Then, the policy for
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adding value {c} to that field, would look like this:

poladd := S = {a} · S ← {a, c}
+S = {b} · S ← {b, c}
+S = {c} · S ← {c}
+S = {a, b} · S ← {a, b, c}
+S = {a, c} · S ← {a, c}
+S = {b, c} · S ← {b, c}
+S = {a, b, c} · S ← {a, b, c}
+S = {} · S ← {c}

We will use this principle below to describe the policy for dynamic gossip. When
it comes to the implementation, we will add values to fields directly, as Netkat
does not lack expressiveness but just lacks the tools to express it neatly and it
will save a lot of space in the implementation.

Staying close to the original use of Netkat, the policy we will describe consists
of three parts. As mentioned before, the packets are merely the communication
facilitators. Therefore, each agent starts with a packet on their home port with
empty S and N fields. This is their carrier pigeon. We do not start with only
one agent having a pigeon-packet, as each agent in the protocol is allowed to
make the first call. To elaborate on this, if agent x does not start with a pigeon
packet, there will be no output that is a consequence of a call sequence starting
with agent x making a call. This is undesirable, because we want to study every
possible call sequence. Therefore, every agent starts with a packet. To ensure
each agent starts with a packet, the original input packet is first distributed to
every home port in the network. This is the first part of the policy describing
the LNS protocol and is denoted with poldstr.

The second part of the LNS policy gives the forwarding behaviour of the
agents. Thus, depending on what phone numbers and secrets an agent knows,
packets are forwarded to the ports connected to the agents an agent will call.
As the packet started empty but now needs to transfer information, its S and N
fields will be updated according to the state (and thus the knowledge) of the
agent.

The third part concerns making phone calls. Here a packet will move from
an agent, for instance agent A, to another agent, let us call him agent B, have
information exchange with that agent, and then move back to agent A and
change the state of that agent too. Now we have seen a call between agent A and
B and the state vector has been updated accordingly. Subsequently, any other
two agents could have a call. To incorporate this, after the calling happened,
the S and N fields of the packet will be emptied, hence making it a clean carrier
pigeon again, and a copy of this packet with accompanying state vector will be
distributed to every home port in the network. In this way the updated state
vector will be used in any subsequent calls.

To elaborate on the update of the state vector, note that as long as we do
not have an operator for concurrency, we cannot describe how to actually handle
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multiple packets that might all influence the state vector differently. For that, we
came up with the solution to just distribute an empty packet with corresponding
state vector to all home ports in the network at the end of each round to ensure
that the new state vector is used in the next round of calls.

Let us denote the second part with polforward and the third part with polcall.
The full protocol will then be described by:

polgossip := poldstr · (polforward · polcall)∗

This statement is further discussed after the example. It might seem that an
agent is making multiple calls at the same time if he has the phone numbers
of more than one agent, but by the way the + operator is designed in Netkat
calls are not made at the same time, but will both be the only call made in
that round in a separate version of the network. For instance, if agent A will
make a call to agent B and C because he has both their phone numbers, there
will be an outcome (a packet/state vector pair) where the call to B has taken
place and an outcome where the call to C has taken place. In the next round,
so a next iteration of the Kleene star, we might have an outcome representing
agent A first having called B and then now calling C and agent A first having
called C and then now calling B. But each outcome represents its own unique
sequence of calls where no two calls are made at the same time (per iteration of
the Kleene star only one call takes place per outcome).

The first part is given by:

poldstr := ag ← A · pt← 1 + ag ← B · pt← 4

As this policy contains no filters, every packet/state vector pair will be distributed
to the home port of agent A and agent B as a consequence of this policy. Hence,
starting with any input packet/state vector, the result of this policy is that this
packet is distributed to the home ports in the network and every agent can thus
make the first call. Note that, as we interpret the + operator as non-deterministic
choice, formally the input packet/state vector is thus distributed to only one
agent’s home port in every sequence of calls that we will model. However, as we
model every sequence of calls, this does not make a difference.

The second part is polforward given below, and for convenience, the integer
encoding of the states is repeated below the policy.

polforward := ag = A · pt = 1 · State(A) = 3 · S ← {a} ·N ← {a, b} · (b /∈ S) · (b ∈ N) · pt← 2

+ag = B · pt = 4 · State(B) = 4 · S ← {b} ·N ← {a, b} · (a /∈ S) · (a ∈ N) · pt← 3

1 : S = {a} ·N = {a}
2 : S = {b} ·N = {b}
3 : S = {a} ·N = {a, b}
4 : S = {b} ·N = {a, b}
5 : S = {a, b} ·N = {a, b}
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Intuitively, this policy says the following. We have 2 sub-policies combined via
the + operator. The first sub-policy states that if a packet is at agent A’s home
port and agent A knows B’s phone number but not his secret, the packet is
updated according to agent A’s knowledge and is then moved to port 2, which
is the port linked to agent B. We have a similar sub-policy describing what
a packet at switch B will do. The extra tests for whether the agent knows
the number of the callee and not the secret of the callee are strictly speaking
superfluous: this is tested all at once by checking the state of an agent. However,
when generalising the policy to n agents instead of two, it is easiest to use the
test for which state an agent is in only to make sure the S and N fields of
the packet are updated according to the agent’s knowledge, and specifying if
the call takes place by using the inclusion tests. Hence, (b /∈ S) · (b ∈ N) and
(a /∈ S) · (a ∈ N) are included at the end of polforward. It also makes it explicit
that the call only takes place if these two conditions are satisfied.

Note that the situation where an agent has no phone number other than
their own will now drop out (that trace will result in the empty set). This is
desired, as in such a situation that agent will definitely not make a call in that
round and hence does not need a packet in this round (he might gain one in the
next round and if he has then learned a phone number by an agent calling him,
he can also make a call himself).

Also note that in the case the agent already knows everything, which is
state 5, this packet/state vector pair drops out. An agent who knows all secrets
is no longer interested in making calls to other agents and therefore does not
need his carrier pigeon anymore. With the packet dropping out we also lose
the corresponding state vector, but as we are working with the Kleene star
we can still see that an agent knew all secrets in the previous round. Also, in
possible subsequent rounds if the agent gets another packet, the corresponding
state vector will denote he knows all secrets, as the state vector gets passed and
updated every round and knowledge does not get lost.

Before we give polcall, let us discuss it in a bit more detail. We will present
two identical versions of polcall. The first one stays very close to Netkat and
demonstrates conceptually how Netkat could express the desired policy. This
might be only interesting for the reader familiar with Netkat. The second one
is a lot more readable but makes use of syntactic sugar to abbreviate standard
Netkat.

Here we will discuss the first version of polcall, which can be skipped if one
only wishes to see the readable version. In polcall we need to describe all possible
calls that can happen between A and B. This means we have a set of policies
describing calls from A to B (the first half) and a set describing calls from B
to A (the second half). These are identical but opposite. Let us consider the
policies describing calls from A to B. The policy of A calling B describes all
possible combinations we can have of the state of B and the values of the S
and N fields and the updates of those fields and the configuration of A and
B in response to the call. Note that the testing what the state of agent B is
corresponds to testing what his knowledge is and testing the S and N fields of
the packets correspond to testing what the knowledge of agent A is as the packet
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comes from A and is carrying that agent’s information.
In the situation of two agents, the update of the state vector and packet

fields in response to the call is the same in all situations we can have before the
call takes place. In other words, in the case of two players, regardless of the
state of agent A and B and what knowledge they have, after one call everyone
knows all secrets and phone numbers. Therefore, using distributivity, we can
shorten the policy a bit, as can be seen on the next page.

The policy of A calling B consists of three parts. The first part describes the
packet moving from A to B followed by all possible combinations we can have of
the state of B and the values of the S and N fields. The second part describes
the updates of the S and N fields and of the configuration of A and of B in
accordance with their earlier values and how the packet moves back from B to
A. The third part describes how after that the S and N fields will be emptied
and a copy of the packet is distributed to A’s home port (note that the packet
has already moved back to A and does not need to change agent in that case)
and to B’s home port. Further explanation is given after the policy.

The third part of polgossip is then given by:

polcall :=

( 5∑
i=1

(ag = A · pt = 2 · ag ← B · pt← 3 · state(B) = i · S = {a} ·N = {a})

+

5∑
i=1

(ag = A · pt = 2 · ag ← B · pt← 3 · state(B) = i · S = {a} ·N = {a, b})
)

·
(
S ← {a, b} ·N ← {a, b} · state(B)← 5 · ag ← A · pt← 2 · state(A)← 5

)
·
(
(S ← ∅ ·N ← ∅) · (pt← 1 + ag ← b · pt← 4)

)

+

( 5∑
i=1

(ag = B · pt = 3 · ag ← A · pt← 2 · state(A) = i · S = {b} ·N = {b})

+

5∑
i=1

(ag = B · pt = 3 · ag ← A · pt← 2 · state(A) = i · S = {b} ·N = {a, b})
)

·
(
S ← {a, b} ·N ← {a, b} · state(A)← 5 · ag ← B · pt← 3 · state(B)← 5

)
·
(
(S ← ∅ ·N ← ∅) · (pt← 4 + ag ← a · pt← 1)

)
Note that we test for values of the states of A and B that they will never have,
but that is not a problem as in that case the packet/state vector pair will just
drop out for that sequence as desired.

Intuitively, this scary expression states the following. The calls from A to B
and from B to A can all be seen to consist out of three parts. The first state in
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the sum that B will actually have (so where the trace will not end in the empty
set) is state 2. Then the first sub-policy (note that we take the entire sub-policy,
so

ag = A · pt = 2 · ag ← B · pt← 3 · state(B) = 2 · S = {a} ·N = {a}
· S ← {a, b} ·N ← {a, b} · state(B)← 5 · ag ← A · pt← 2 · state(A)← 5

· S ← ∅ ·N ← ∅) · pt← 1 + ag ← b · pt← 4

found using distributivity) tells us that if a packet is at port 2 of agent A, it
will move to port 3 of agent B. If the state of B and the values of the S and
N fields are all as specified in the sub-policy, the S and N field will both be
updated to {a, b}. Then the state of B will be updated and the packet will move
back to port 2 of agent A. The state of agent A is then also updated. Next the
packet will be distributed to both A and B’s home port. Here we choose to not
follow the network route as the distribution to the home ports is really not part
of the packet’s path but merely a preparation for the next round. During the
phone call we do try to follow the network’s paths, as in that way the protocol
resembles an actual network as much as possible, and it is convenient to have
configuration changes only happen at the switch they concern if one is working
with multiple packets in the future.

The rest of the sub-policies are all variations of this first one. They check for
different combinations of S and N values and a state, and respond accordingly.
In fact, for each state the agent at which the packet arrives can be in, we checked
for two S and N values. We do not need to test all combinations, as these two
combinations are the only possible ones. This is because a packet coming from
agent A will always know A’s phone number and secret, and an agent never
knows a secret without knowing the corresponding phone number. Also, the
situation where the agent knows all secrets or the secret of the agent he calls is
not interesting, as the agent would not be calling in such a situation.

Closely inspecting the sub-policies one can see that some are still superfluous,
as the response is the same everywhere (changing S and N both to {a, b}), but
all options are included to demonstrate the principle if one would be working
with more than two agents.

To make polcall more understandable, we will now present polcall with some
syntactic sugar. However, as Netkat cannot directly express the shortening of
notation that we introduce, we have first presented the long version of polcall to
demonstrate the principle. We will introduce an M operator, which will merge
the values of a specific field of the packet and of a specific switch in the state
vector. In other words, instead of testing for all combinations of the state the
callee can be in and the values of the S and N fields of the packet, we will directly
write M S b to denote that the S field of the packet and of the callee, in this
case agent B, should be merged and they are thus exchanging their secrets. In
the implementation we will follow the same strategy to not have the complexity
of our method be too big.
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Formally, M is defined as:

JM f nK((pk,~k) :: hv) =

{
{(pk[f := union],~k(n) := m) :: hv}, if f = S or f = N

{}, otherwise

where union represents the union of the current value of the f -field of the packet
with the current value of f in entry n of the state vector and m is the state
that agent n will get as a result of adding the current value of the f field of the
packet to the current value of the f field of the state. Thus, the merge operator
M can only be used for the fields S and N (secrets and phone numbers) as that
is the only field that has a value in the entries of the state vector.

This syntactic sugar transforms polcall into:

polcall := ag = A · pt = 2 · ag ← B · pt← 3 · (M S b) · (M N b) · ag ← A · pt← 2

· (M S a) · (M N a) · S ← ∅ ·N ← ∅ · (pt← 4 + ag ← a · pt← 1)

+ ag = B · pt = 3 · ag ← A · pt← 2 · (M S a) · (M N a) · ag ← B · pt← 3

· (M S b) · (M N b) · S ← ∅ ·N ← ∅ · (pt← 1 + ag ← b · pt← 4)

The first sub-policy can be read as: if a packet is at port 2 of agent A, then
move it to port 3 of agent B, have agent B exchange information with the packet
(the call) and move the packet back to port 2 of agent A. There the packet will
exchange information with agent A (updating the caller with the knowledge of
the callee) and will be subsequently emptied and distributed to every home port
in the network. The second sub-policy describes the call from B to A.

6.5 General Definition for n Agents

Example 9 demonstrates the principle of how we wish to translate the LNS
protocol into Netkat, but if we wish to make any general claims, we need a
definition of polgossip for n agents.

We will start by describing poldstr for n agents. We denote the home port of
agent i with homei.

poldstr :=

n∑
i=1

distributei

where

distributei = ag ← i · pt← homei

To describe polforward for n agents we need sub-policies that describe the
forwarding of the carrier pigeon of each agent to the ports connected to the
agents he will make calls to. What calls an agent will make depends on what
phone numbers he knows and whose secrets he knows, which is information
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encoded in the state. In other words, we need the sum of policies where each
term describes the calls that will be made by one specific agent, which consists
of that agents’ carrier pigeon copying the knowledge of the agent and being
forwarded to the right port. In case an agent can make multiple calls (in case we
have more than two agents) this term will consist of a sum itself. We denote the
home port of agent i with homei. Depending on the network, this port will have
a specific number. To keep notation short we make use of the inclusion test.

To keep it general, we have a policy polcopy which copies the knowledge of
the agent (updates the S and N fields according to the information in the state)
and a policy polport which forwards the packet to the appropriate port based on
to whom the call is taking place. By appropriate port we mean that the packet
is forwarded to the port that connects to a port of the callee. We suppose we
have k states (configurations) the agents can be in and to denote the set of all
agents we use A.

To generalise:

polforward :=

n∑
i=1

forwardi

where

forwardi :=
∑

j∈A\{i}

forwardij

where

forwardij :=

k∑
s=1

forwardijs

where

forwardijs := ag = i · pt = homei · State(i) = s · polcopy · (j /∈ S) · (j ∈ N) · polport

To summarise, forwardijs gives the forwarding policy for agent i calling agent
j when the state of agent i is s. The policy forwardij gives the forwarding
policy for agent i calling j while taking into account every possible state agent
i can have. The policy forwardi gives the policy describing the distribution
of the packet to all the ports in accordance with what calls agent i will make.
Lastly, the policy polforward gives the full forwarding policy for all n agents.
The reasoning behind the general definition of polgossip is the same reasoning as
used in the implementation.

Now we will generalise polcall making use of the newly introduced merge
operator M to increase readability. We will describe all the calls that can take
place between every agent. This means we need a sum of policies describing
for each agent what the calls that agent can make will look like. An agent can
make a call from every port he has except for his home port, as every port other
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than his home port is uniquely connected to another agent. Hence, the calls one
specific agent can make will be described by taking the sum of calls that can
happen from each port of that agent. We describe the set of ports of agent i
without counting his home port as Ci. To generalise, we also have a policy poldest
that will change the agent and port of the packet according to its location and
the link in the network. In other words, poldest moves the packet from the caller
to the callee. We denote the callee (which is uniquely determined by from which
agent/port pair the call arises) with l. Last we make use of a policy polhome
which is a sum of modifications forwarding the packet to every home port in the
network.

polcall :=

n∑
i=1

calli

where

calli :=
∑
p∈Ci

callip

where

callip := ag = i · pt = p · poldest · (M S l) · (M N l) · ag ← i · pt← p

· (M S i) · (M N i) · S ← ∅ ·N ← ∅ · (polhome)

To summarise, callip gives the policy of a call taking place from the agent i at
port p. This call can only have one callee by how the network is constructed.
The policy calli gives a sum of all the calls that can take place by one agent and
the policy polcall gives all calls that can take place between all agents.

We now have a gossip policy formulated for n agents:

polgossip := poldstr · (polforward · polcall)∗

From now on, if we talk about polgossip, we mean this generalised version.

6.6 Discussion

In this section we will consider what the policy polgossip actually describes and
how it simulates the Learn New Secrets protocol, and what Netkat could say
about dynamic gossip. We give a proof that a theorem of dynamic gossip is also
a theorem in Netkat, thereby strengthening our claim that Netkat can be used
as a logic for dynamic gossip.

The policy

polgossip := poldstr · (polforward · polcall)∗

outputs a list of packets and state vector pairs that all represent a specific
sequence of calls that have been made. In each iteration of the Kleene star, an
empty packet with corresponding state vector is distributed to all home ports
in the network to ensure that the new state vector is used in the next round of
calls. All possible call sequences will be in the output of polgossip.
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Correctness of the Gossip Policy

We claim that the policy polgossip simulates the LNS protocol from [25] perfectly.
The Netkat policy polgossip describes all sequences of calls that we can have
until a fixpoint is reached (using the Kleene star) and no new packet/state vector
pairs and hence new situations arise. Each iteration in the polgossip policy results
in one call and similar to what we had with gossip graphs we will denote a trace
of agents that called one another via the polgossip policy with a call sequence σ.
The input packet/state vector is a packet with a random location (any location
works), and a state vector that corresponds to the distribution of knowledge in
the gossip graph. The Netkat model NG corresponding to gossip graph G is
formed as follows:

Definition 7 (NetKAT model corresponding to Gossip Graph). The Netkat
model NG corresponding to gossip graph G = (A,N, S) is a totally connected
Netkat model with a number of switches equal to the number of agents in A,
where each switch also has a private port not connected to any other agent. The
input state vector is such that it resembles the S and N relations of the gossip
graph: if Nxy then entry x of the state vector has y in its phone number field.
Same for Sxy.

We will prove by induction on the call sequence that the distribution of
secrets and phone numbers is the same in the gossip graph and the corresponding
Netkat model plus packet/state vector if we apply the same call sequence. This
result will be used to argue that indeed the same calls can and will take place
in both models as a result of the LNS protocol and the polgossip policy. By
distribution of secrets and phone numbers we refer to the knowledge of each
agent. In case of the Netkat model the distribution of knowledge after call
sequence σ is visible in the state vector corresponding to that trace. Applying
a call sequence to a Netkat model with initial packet/state vector should be
understood as polcall: when a call between agent x and y takes place they
exchange secrets and phone numbers. If we denote the ports connecting agent x
and y with i and j, the policy applied to perform a call is:

callxy := ag = x · pt = i · ag ← y · pt← j · M S y

· M N y · ag ← x · pt← j · M S x · M N x (6.1)

This is exactly as the part of polcall where the actual call takes place.

Lemma 2. Call sequence σ applied to gossip graph G = (A,N, S) results in
the same distribution of secrets and phone numbers as when σ is applied to the
corresponding Netkat model with initial packet/state vector, NG.

Proof. Let us assume that σ only has calls between agents that exist in G. In
case there are calls between agents not in G, they will also not exist in NG and
therefore will have no effect on either of the two models.

The base case is where σ is the empty call sequence. By construction the
distribution of knowledge is the same.
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Now assume as an induction hypothesis that after call sequence σ the distri-
bution of knowledge is the same. Another call takes place: xy. We will show
that (a, b) ∈ Sσ;xy if and only if agent a will know b’s secret in NG after σ;xy,
and (a, b) ∈ Nσ;xy if and only if agent a will know b’s phone number in NG after
σ;xy.

We will start by proving that if (a, b) ∈ Sσ;xy then agent a will know b’s
secret in NG after σ;xy. We have two situations to distinguish: either (a, b) ∈ Sσ
or (a, b) /∈ Sσ. In the former case the result we need follows instantly by the
induction hypothesis. In the latter case we can assume without loss of generality
that x = a. Hence, we get that (y, b) ∈ Sσ. By our induction hypothesis we
know that in the Netkat state vector corresponding to the trace represented by
σ agent y knew b’s secret after σ as well. Then, as all secrets are exchanged in a
call from x to y (can be seen in the policy callxy from the occurrences of the
merge operator M), we get that agent x will know b’s secret after σ;xy. Thus
we have that agent a will know b’s secret in NG after σ;xy. The converse of the
statement is proven similarly.

That the phone numbers will be distributed in the same way can be proven
in a similar manner and is omitted.

To argue that the same calls will and can take place in a gossip graph
through the LNS protocol and in the corresponding Netkat model plus initial
packet/state vector through polgossip we will use Lemma 2. When applying the
LNS protocol to a gossip graph, all call sequences that arise are subject to two
conditions: a call is only made if the caller does not know the secret of the callee
and if the caller has the callee’s phone number. This procedure continues until
no new situations arise, meaning that either we have that every agent is an expert
(knows all secrets) or no new calls can be made. The polgossip policy works in
the same way: first the packet is distributed to every home port in the network
to ensure that the first calls made are the same as in the gossip graph, and then
in each iteration of the Kleene star one call is made and the call takes place if
and only if the secret of the callee is not known to the caller and the caller knows
the callee’s phone number. By Lemma 2 we know that the distribution of secrets
and phone numbers stays the same in the Netkat model plus packet/state vector
and in the gossip graph in each specific call sequence, meaning that the same
calls can be made as in the gossip graph in the continuation of that trace. The
iteration of the Kleene star stops after no new situation arises, meaning no more
calls can take place, which happens after every agent has become an expert or
when no agent has the phone number of an agent whose secret he does not know.
An implementation of this protocol is given in Chapter 7.

Properties of Dynamic Gossip in NetKAT

Now we will discuss some properties of dynamic gossip that Netkat can capture.
We follow the terminology in [6] by distinguishing between two types of success
for the LNS protocol.
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Definition 8 (Weakly Successful). The LNS protocol is weakly successful on a
given gossip graph if there is a possible call sequence following the LNS protocol
that leads to success (every agent knows all secrets).

and

Definition 9 (Strongly Successful). The LNS protocol is strongly successful on
a given gossip graph if every possible call sequence following the LNS protocol
leads to success.

We also need the following result about Netkat in the discussion that will
follow. In [2] the following result on reachability is proven:

Lemma 3. For predicates a and b, a policy p and topology t, b is reachable
from a if and only if a · dup · (p · t · dup)∗ · b 6≡ 0

The dup’s are there to account for the individual hops a packet takes through
the network thereby making up the packet’s path. Intuitively, a is a test filtering
packets such that only packets satisfying test a (starting at location a) are
included and b is a test filtering packets such that only packets satisfying test b
(ending at location b) are left.

To argue that Netkat can be used as a logic for dynamic gossip we need
to show that theorems from dynamic gossip are also theorems of Netkat. One
important theorem of dynamic gossip that we will discuss is the following:

Theorem 6. The LNS protocol is strongly successful on an initial gossip graph
G if and only if G is a sun graph, where a sun graph is defined as a graph
G = (A,N, S) such that N is strongly connected on A after removing all agents
that only know their own number (terminal nodes of the gossip graph). N is
defined to be strongly connected on A if and only if for every x, y ∈ A there is
an N -path from x to y.

We will now show that Netkat can express when the LNS protocol is weakly
successful on a given gossip graph, when the LNS protocol is strongly successful
on a given gossip graph and when the graph is a sun.

If we wish to capture with a Netkat statement that the LNS protocol will
be weakly successful or not for a specific gossip graph, we extend polgossip by
sequentially adding a policy testing for the state such that the input packet/state
vector represents the gossip graph, polgraph, and a policy checking for success,
polsuccess. Checking if the input packet/state vector represents the gossip graph
is done by testing whether all agents are in the appropriate state in the beginning
of the policy. Checking for success would mean filtering out all situations where
the agents do not know all secrets, which can be done by testing if the agents
are all in the right state at the end of the policy. Note that we now not check
if we have the right number of agents in the Netkat model. This cannot be
tested inside a Netkat policy and we therefore assume this condition is always
satisfied.

Testing whether the LNS protocol will be weakly successful on a specific
gossip graph can be seen as a reachability question. We ask whether the input
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packet/state vector, representing the gossip graph, can get to the output pack-
et/state vector (where all agents know all secrets) via a route in the corresponding
Netkat model using polgossip. Relating this to how reachability is formulated in
Netkat, we have that the network topology is encoded in polgossip, and polgraph
and polsuccess represent a and b respectively. To accommodate for the necessary
dup, we change polgossip to poldstr · (polforward · polcall · dup)∗. Note that the
dup records the individual ‘hops’ a packet makes, and in this case it records all
the states that a packet/state vector pair goes through.

Thus we can take any gossip graph, translate it into the appropriate Netkat
model with accompanying starting packets and state vectors, and run the
extended polgossip policy on this to simulate the LNS protocol. Using the result
from [2] on reachability, we know that the question we need to answer to know
whether the LNS protocol is weakly successful on a specific gossip graph is
equivalent to

polgraph · dup · polgossip · polsuccess 6≡ 0

Theorem 7. LNS is weakly successful on a given gossip graph G if and only if
polG · dup · polgossip · polsuccess 6≡ 0, where polG is polgraph for gossip graph G.

We can now answer the question whether a successful call sequence exists. If
we wish to know what the specific call sequence was, we can use the implemen-
tation. One could also make use of the histories of the packet/state vector pairs,
but in order to do so the policy polgossip should be extended with dup’s as is
done above. If the polgossip policy is not extended with dup’s, the histories of
all the output packets will be empty as the history is only altered in case a dup
occurs (see Figure 6.1).

Now we wish to formulate when the LNS protocol is strongly successful on
a given gossip graph. Strongly successful means that every call sequence that
we can have for the gossip graph will lead to the outcome where every agent
knows all secrets (Definition 9). Relating this to Netkat, we can conclude that
a policy that starts by checking if the input packet/state vector represents the
initial gossip graph correctly, then performs the gossip, and then checks whether
the outcomes are successful must give the same results as the policy that only
checks if the input packet/state vector represents the initial gossip graph and
then performs the gossip, as all outcomes are supposed to pass the test of success.
To translate this into a Netkat policy, we introduce a policy polfin to represent
a test checking whether the protocol has finished. The protocol has finished
if no more calls can take place. The policy polfin thus comprises a number of
tests to see if all agents are in a state where they can no longer make calls (they
do not have the phone number of an agent whose secret they do not know).
Let polG again represent the policy checking if the input packet/state vector
resembles gossip graph G and polsuccess the policy testing whether all agents
know all secrets. Note that the dup’s are again included in polgossip and after
the initial state to keep track of the different states a packet/state vector pair
goes through, which allows us to say something about the trace created by a
packet/state vector pair.
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Theorem 8. LNS is strongly successful on a given gossip graph G if and only
if polG · dup · polgossip · polfin ≤ polG · dup · polgossip · polsuccess.

Proof. ⇒ ) If LNS is strongly successful on a given gossip graph G we know that
all outcomes will lead to success. We will show that then for arbitrary input
packet/state vector pair pk1 we have:

JpolG · dup · polgossip · polfinK(pk1) ⊆ JpolG · dup · polgossip · polsuccessK(pk1).

Suppose we have an element g of Jpolgraph · dup · polgossip · polfinK(pk1). In other
words, g is an outcome packet/state vector in response to input pk1. This means
that the initial state of pk1 passed the test of polG and there is a trace 〈g, .., pk1〉
(note that the first packet in the history is the final packet) in Jdup · polgossipK
such that g, the final packet/state vector, passed the test that the protocol has
finished. To be clear, by traces in Jdup · polgossipK we refer to all traces of input
to output packets we can get as a result of this policy on all possible inputs.

As we had assumed LNS to be strongly successful, we know that g also
satisfies polsuccess. Hence we have a trace 〈g, .., pk1〉 in Jdup · polgossipK such
that g passes the test polsuccess and pk1 passes the test polG, leading to the
conclusion that g ∈ Jpolgraph · dup · polgossip · polsuccessK(pk1).

Now using completeness we get that polgraph · polgossip · polfin ≤ polgraph ·
polgossip · polsuccess.
⇐ ) This direction is similar to what we did for the right to left direction,

except that we now make use of soundness.

The next thing we wish to formulate is a Netkat statement characterising
when the given gossip graph is a sun. In a sun graph every agent must either
only know their own number, or there must be a path from that agent to every
other agent using the links created by the phone numbers relation (N). We can
capture this in Netkat by creating a policy that for each agent tests whether
they can reach all other agents via a phone number path or only have their own
number. In case this holds for each agent, they should all pass the test. We
denote the state where an agent only has their own phone number with self . In
other words:

Theorem 9. A graph G = (A,N, S) is a sun graph if and only if

polG ·
∑
i∈A ag = i ≤ polG ·

∑
i∈A

(∏
j∈A\{i}

(
ag = i · pt = homei · polnet · ag =

j · ag ← i · pt← homei
)

+ State(i) = self

)
.

where polG is the usual policy checking if the input represents the graph G
correctly. This is done by testing whether each agent is in the correct state.
The policy polnet describes moving the packet/state vector through the network
according to the phone number links. Let us assume we have n agents and k
states and we denote the set of ports belonging to agent i minus his home port
with Ci.

polnet := (polforwardnet · polcallnet)∗
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where

polforwardnet :=

n∑
i=1

forwardi

and

polcallnet :=

n∑
i=1

calli

These definitions are similar to what we had before, so we have a policy polcopy
copying the knowledge of the agent onto his carrier pigeon (in this case only
what phone numbers an agent knows), a policy polport transferring a packet to
the port connecting to a port of the agent that will be called (j) and a policy
poldest moving the packet to the callee. We have polhomec to denote the policy
of moving the packet to the home port of the callee.

forwardi :=
∑

j∈A\{i}

forwardij

forwardij :=

k∑
s=1

forwardijs

forwardijs :=ag = i · pt = homei · state(i) = s · polcopy · j ∈ N · polport

calli :=
∑
p∈Ci

callip

callip :=ag = i · pt = p · poldest ·N ← ∅ · polhomec

Note that these definitions are similar to the definitions for polgossip for n agents
we saw in section 6.5. The policy polnet distributes packets everywhere they can
go according to the initial N relation between the agents. In the forward-part
a packet is forwarded to all ports connecting to agents whose phone number an
agent has, and in the call-part the calls take place by moving the packet to the
home port of the callee. As we wish to see if there is a path to every other agent,
we do not move the packet back to the caller as we did before, but we leave the
packet at the callee so that he can make the next calls and we can study the
N -path. As phone numbers are not exchanged there is also no point in moving
the packet back to the caller (the caller will be able to make the same calls in
every round).

We will abbreviate∏
j∈A\{i}

(
ag = i · pt = homei · polnet · ag = j · ag ← i · pt← homei

)
from now on with simply the word producti.

Before we can give a proof of Theorem 9, we also need to prove that:
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Lemma 4. For a gossip graph G = (A,N, S) and input a packet/state vector
pair g such that the packet starts at the home port of an agent from A, let us
say agent x, with a state vector representing the distribution of knowledge of
phone numbers in G, we have that JproductxK(g) = {g} if and only if the agent
x has an N -path to every other agent.

Proof. Suppose that JproductxK(g) = {g}. Note that no dup is used here, making
the histories of the output packets empty. The assignments that take place are
all only on the location fields (which agent and which port), and at the end
of the policy these are restored to the original ones. From these facts we can
conclude that this policy only performs tests on a packet, and its only output
can be the empty set or the input itself (or subsets of the input in case the input
consists of multiple packets). We get that for each other agent j in the network
but x the policy JproductxK(g) returns g. This can only be the case if polnet has
distributed g to every other agent starting from agent x, ensuring that agent x
has an N -path to every other agent. The other way around follows the same
reasoning.

Now for the proof of Theorem 9:

Proof. ⇒ ) Suppose that a graph G = (A,N, S) is a sun. For each agent we
must have that either there is an N -path to every other agent or they only
know their own number. Following a similar strategy as for Theorem 8, take
an element g ∈ JpolG ·

∑
i∈A ag = iK(pk1). As we do not use dup anywhere or

any assignments, we know that the history of g is empty and all other fields
of the packet and state vector are the same as for the input. Hence, pk1 = g.
Thus g is such that it correctly captures the gossip graph (passes polG) and
represents a packet/state vector belonging to a particular agent in the gossip
graph. It then trivially passes one of the test ag = i for the agent g started
at. Let us denote the agent that g started at with x. As we assume that G
is a sun, we know that either there is an N-path from x to every other agent
or that x only knows his own number. Using Lemma 4 we can conclude that
g ∈ JpolG ·

∑
i∈A

(
producti+State(i) = self

)
K(g). As pk1 = g we get the desired

result.
Using completeness we can conclude that

polG ·
∑
i∈A

ag = i ≤ polG ·
∑
i∈A

(
producti + State(i) = self

)
⇐ ) Similarly using soundness.

We now have the following important result:

Theorem 10. “LNS is strongly successful on a given gossip graph G if and only
if G is a sun” can be expressed and proven as a theorem of Netkat.
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Proof. ⇒ ) If LNS is strongly successful we know from Theorem 8 that polgraph ·
polgossip · polfin ≤ polgraph · polgossip · polsuccess. Similarly, a graph G is a
sun is characterised by Theorem 9. From [6] we know that LNS is strongly
successful on a given gossip graph G if and only if G is a sun. Thus we get
that polgraph · polgossip · polfin ≤ polgraph · polgossip · polsuccess if and only if
polG ·

∑
i∈A ag = i ≤ polG ·

∑
i∈A

(
producti+State(i) = self

)
must semantically

hold. Using completeness of Netkat we know this is a theorem of Netkat

We leave it to future research to investigate whether the proof of Theorem 6 as
given in [6] can be mirrored in Netkat with the same steps, lemmas, etc.

We also wish to prove a theorem concerning making the same call twice. If
agent A calls agent B and then calls agent B again this should be the same as
calling agent B only once. To formalise this, we first need to formalise what
we define as agent A calling agent B. We define a call from agent A to B as
the carrier pigeon of agent A travelling to B, exchanging information and then
travelling back to A and exchanging information again, denoted with polab. To
describe polab, let agent A before the call be in state k1 where S = x1 and
N = y1 and let agent B in state k2 where S = x2 and N = y2. Let the ports
connecting agent A and B be i and j belonging to A and B respectively. Let k3

denote the state where the knowledge regarding phone numbers and secrets of
agent A and B is combined. Then we have that:

polab := ag = A · pt = i · ag ← B · pt← j · S ← x1 ∪ x2

·N ← y1 ∪ y2 · state(B)← k3 · ag ← A · pt← i · state(A)← k3

We chose to define a call here without using the merge operator M as we did in
Equation 6.1 because it is easier to prove Theorem 11 that way. Note that both
policies give the same outputs.

Theorem 11. polab · polab ≡ polab

Proof. As before, suppose that agent A is in state k1 where S = x1 and N = y1

and agent B is in state k2 where S = x2 and N = y2. Let the ports connecting
agent A and B be i and j belonging to A and B respectively. Let k3 denote the
state where the knowledge regarding phone numbers and secrets of agent A and
B is combined. Performing the call between A and B once means that agent A
and B combine their knowledge and will both be in state k3. Performing the
call twice after each other means combining the knowledge of agent A and B for
a second time, but as none of them gained any new knowledge, this will both
leave them in state k3. Hence, after the first call between A and B we get an
outcome of a packet located at agent A with S field x1 ∪ x2 and N field y1 ∪ y2,
and a state vector where agent A and B are both in state k3. After performing
the second call, the outcome is a packet again located at agent A, and the S
field will now be ((x1 ∪ x2) ∪ (x1 ∪ x2)) = x1 ∪ x2 and the N field y1 ∪ y2 via
similar reasoning. We also had that the agents are in the same state after the
first call and second call. Note that the polab does not contain any dup, meaning
that the history of the output packets is always empty. Hence, we get the same
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outcome when the call is performed once or twice. Using completeness, we find
that polab · polab ≡ polab.

We now have only described the LNS protocol using Netkat. Clearly, other
protocols from the dynamic gossip literature can be formalised in a similar way
such as the Call Me Once protocol. In that protocol a call between agents takes
place if and only if the caller has the phone number of the callee and if they have
not called before. This could be easily done making use of Netkat’s histories.
Or, alternatively, this could be achieved by giving a packet a certain mark if a
call between particular agents has taken place.

We have proven that it is a theorem of Netkat that a gossip graph is
a sun if and only if the LNS protocol is strongly successful on that graph.
Another important theorem characterises when the LNS protocol is weakly
successful [6]. In this section we have already described how to capture weakly
successful in Netkat, and future research could investigate how to translate that
characterisation into a Netkat theorem as well.

6.7 LNS for static gossip

So far we have been investigating whether Netkat can provide a sound and
complete logic to describe dynamic gossip protocols. Instead of looking at the
LNS protocol for dynamic gossip, one can also study the LNS protocol for static
gossip.

In the LNS protocol for static gossip the phone numbers do not get updated.
This means that we have an initial distribution of phone numbers and this stays
the same throughout the evaluation of the protocol. In other words, the links in
the gossip graph are static. During a phone call between two agents they only
exchange all the secrets that they know.

The LNS protocol for static gossip can be modelled in Netkat in a way
similar to what we did for the dynamic version. However, it is a bit simpler now.
We no longer need to update the phone numbers. Other than that, the protocol
stays the same. The policy that describes the protocol will be denoted with
polstatic. As we had before, we have a first part and a second part:

polstatic := poldstr · (polforwardstatic · polcallstatic)∗

We will not repeat the explanation of this policy as it can be found in Section
6.4 and 6.5. Similarly to what we had in those sections, poldstr, polforwardstatic
and polcallstatic are defined as follows. The only difference with dynamic gossip
is that the phone numbers do not get updated, which will become can be seen
in the definition for polcallstatic.

poldstr :=

n∑
i=1

distributei
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where

distributei = ag ← i · pt← homei

and

polforwardstatic :=

n∑
i=1

forwardi

where

forwardi :=
∑

j∈A\{i}

forwardij

where

forwardij :=

k∑
s=1

forwardijs

where

forwardijs := ag = i · pt = homei · State(i) = s · polcopy · (j /∈ S) · (j ∈ N) · polport

and

polcallstatic :=

n∑
i=1

calli

where

calli :=
∑
p∈Ci

callip

where

callip := ag = i · pt = p · poldest · (M S l) · ag ← i · pt← p

· (M S i) · S ← ∅ ·N ← ∅ · (polhome)

Hence, we have that polstatic gives a policy for the static LNS protocol for n
agents. Let polG denote a policy testing if the input packet correctly resembled the
initial gossip graph G and let polsuccess be a policy testing whether a packet/state
vector is in a state of success (every agent knows all secrets). Similar to what we
had before, we get that the question of whether the initial input packets/state
vectors resembling the gossip graph can get to output packets/state vectors
where every agent knows all secrets boils down to a reachability query in Netkat.

We get the following theorem:

Theorem 12. The static LNS protocol is weakly successful on a given gossip
graph G if and only if polG · dup · polstatic · polsuccess 6≡ 0.
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Establishing the precise complexity class of the question whether the static
LNS protocol is weakly successful on a given gossip graph is an open problem [14].
The statement polG · dup · polstatic · polsuccess 6≡ 0 is decidable using Netkat’s
coalgebraic decision procedure, meaning that the question of whether the static
LNS protocol is weakly successful on a given gossip graph is decidable in pspace.
As this problem is already known to be in NP, perhaps Netkat’s coalgebraic
decision procedure can be tailored to this specific question in order to achieve a
nicer complexity bound. We leave this for future research.
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Chapter 7

Implementation

In this chapter we give an implementation of the polgossip policy in Netkat.
As mentioned before, it is not necessary to understand the implementation to
follow the story of this thesis, but it is a nice tool to see that the polgossip policy
indeed gives the outcomes of the LNS protocol. Through the implementation we
also present the functional specifications of the polgossip policy. This functional
overview of the policy can be used to understand the polgossip policy better.
The implementation might also be used as a reasoning tool for future research.
The last part of the implementation gives the possible call sequences and which
ones were successful and which ones failed according to the LNS protocol. An
example output can be found at the end, which is probably nice to look at even
if one wishes to skip the implementation. All of the code can be found in a
public git repository: https://github.com/janawagemaker/GossipKATS.

7.1 Preliminaries

This part of the thesis is written using literate programming style [13]. This
allows us to keep the code and written text in the same file and in sync with one
another. The implementation of gossip in Netkat uses the modules Data.List,
Data.Maybe and Control.Monad.

module Netcall where
import Data.List
import Data.Maybe
import Control.Monad

To model gossip in Netkat using Haskell, we need some new definitions.

newtype Host = Host Int deriving (Eq,Ord ,Show)
newtype Port = Port Int deriving (Eq,Ord ,Show)
newtype Switch = Switch Int deriving (Eq ,Ord)

a,b,c :: Switch
a = Switch 0 ; b = Switch 1 ; c = Switch 2
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We have hosts, ports and switches. To make our lives a bit simpler, we have
named three switches that we will use in our examples later on: the agents a, b
and c. Please remember that we let the switches denote the agents.

Another data type that we need is that of models. We have chosen to denote
models as follows:

data NetKATM = Mo
[Host]
[Switch]
[Port]
[(Switch ,[Port])]
[(( Switch ,Port) ,(Switch ,Port))]
[(Host ,Port)] deriving (Eq ,Show)

The first three things are lists of hosts, switches and ports. The fourth entry
gives all the ports belonging to a specific switch. The next one gives internal
links in the network between two different switches and the last entry gives for
each host to which switch/port pair they are connected. In case of gossip, hosts
do not play a role. However, they are needed in the implementation because
they represent the home port belonging to an agent. So the port to which a host
is connected is the agent’s home port.

In addition to models, we also need a few other data types. As described
before, a packet is a list of fields with corresponding values. The values we need
for our purposes for the fields are of the type agent, list of agents or ports. We
also needed a type for state vectors, and they are denoted with a list of pairs of
switches and states. The configurations are represented as a list of pairs of fields
and list of switches. In the case of gossip a configuration is then a list of two
pairs: one with the secret field and the list of agents whose secrets are known
and the other with the phone number field and the list of agents whose phone
numbers are known. In this way we can easily access the knowledge of an agent
while programming. Of course this diverges from Netkat terminology, but for
the implementation we are only interested in the result, and not in how fast it
could be computed using purely Netkat. Lastly there is a type to shorten the
notation for an internal link in the network.

type Field = String
data Value = S Switch | LS [Switch] | P Port deriving (Eq,Ord ,Show)
type Packet = [(Field ,Value)]
type StateVector = [(Switch , State)]
type State = [(Field , [Switch ])]
type Element = Switch
type Internallinks = [(( Switch ,Port),(Switch ,Port))]

7.1.1 Generating NetKAT gossip models

The models we need for gossip will be models where every agent is connected to
every other agent. This is to ensure that in principle every agent could contact
every other agent. Whether they have the right phone number and are actually
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able to contact the other agent is represented in the state which the agent is in,
as we have seen in Example 9.

To not have to hard code these networks every time we use a different
number of agents, we have implemented a Netkat gossip network generator.

netkatmGen :: [Host] -> [Switch] -> NetKATM
netkatmGen [] _ = error "no hosts"
netkatmGen _ [] = error "no switches"
netkatmGen h s | length h /= length s = error "wrong number"

| otherwise = netGosGen h s where
netGosGen x k = Mo hosts switches ports combiswitchport internallinks

outerlinks where
hosts = x
switches = k
ports = makeList (portCount x k)
combiswitchport = combineSwitchesPorts s ports
internallinks = internalLinks combiswitchport
outerlinks = combineHosts h combiswitchport

One can input a list of hosts and a list of switches, and the output is a connected
Netkat model. Please note that for gossip models one needs to input an equal
number of hosts and switches, as the switches represent the agents and each one
of them has one home port (thus one host).

The other functions that are used in generating the models are the following:
portCount :: [Host] -> [Switch] -> Int
portCount h s = length h * length s

makeList :: Int -> [Port]
makeList 0 = []
makeList n = Port n : makeList (n-1)

combineSwitchesPorts :: [Switch] -> [Port] -> [(Switch ,[Port])]
combineSwitchesPorts [] [] = []
combineSwitchesPorts [] _ = []
combineSwitchesPorts _ [] = []
combineSwitchesPorts (w:ws) ps = loop (w:ws) (w:ws) ps where

loop:: [Switch] -> [Switch] -> [Port] -> [(Switch ,[Port])]
loop [] _ [] = []
loop _ _ [] = []
loop [] _ _ = []
loop (y:ys) xs ks = (y, port) : loop ys xs (ks\\port) where

port = take (length xs) ks

internalLinks :: [(Switch ,[Port])] -> [((Switch ,Port),(Switch ,Port))]
internalLinks [] = []
internalLinks (z:zs) = internalLinksPerSwitch (z:zs) ++ internalLinks (

eliminate zs) where
eliminate :: [(Switch ,[Port])] -> [(Switch ,[Port])]
eliminate = map (\(x,_:ys) -> (x, ys))

internalLinksPerSwitch :: [(Switch ,[Port])] -> Internallinks
internalLinksPerSwitch [] = []
internalLinksPerSwitch ((_,[]):_) = []
internalLinksPerSwitch [(_,_)] = []
internalLinksPerSwitch ((t, _ : ps):(w, fs):zs) = ((t,head ps), (w, head (tail

fs))): internalLinksPerSwitch ((t,ps):zs)

combineHosts :: [Host] -> [(Switch ,[Port])] -> [(Host ,Port)]
combineHosts _ [] = []
combineHosts [] _ = []
combineHosts _ ((_,[]):_) = []
combineHosts (h:hs) ((_, p:_):zs) = (h, p):combineHosts hs zs
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The function portCount gives the amount of ports in a network based on the
lists of hosts and switches. As every agent needs to connect to every other
agent plus their home port, and each of these connections use a new port, every
agent needs an amount of ports equal to the number of agents. The function
is a bit more general and uses the number of hosts and switches. The function
makeList creates a list of ports. The next function is combineSwitchesPorts

which gives the ports belonging to each switch. The next two functions produce
the internal links between different agents based on what ports each agent has
and the function combineHosts gives each agent a home port that is not used
to connect to other agents.

7.2 NetKAT language in Haskell

To describe the Netkat language in Haskell we first need data types for
predicates and policies. After giving those, we will describe their semantics
by implementing how Haskell should evaluate them. We have a few more
possibilities for predicates and policies as normally for Netkat. The reason for
this is that they make the implementation a lot more efficient, but they do not
enable any behaviour that we cannot express with the normal primitives of
Netkat with a state.

data Predicate = One
| Zero
| Test Field Value
| TestEl Field Element
| TestAllSecrets Field [Switch] Switch
| Cup [Predicate]
| Seq [Predicate]
| Neg Predicate
| StateTest Switch State
deriving (Eq ,Ord)

data Policy = Filter Predicate
| Mod Field Value
| PCup [Policy]
| PSeq [Policy]
| Star Policy
| StateMod Switch State
| Merge Field Switch
| Call Switch Switch

deriving (Eq , Ord)

The first data type describes predicates. We have a predicate for one and zero,
a test on packets and a test on state vectors, and the option to union predicates,
negate them and sequentially compose them. We also have a predicate for
the inclusion test: TestEl. This predicate allows us to test whether a certain
agent is an element of a certain field. We can use this to test whether an agent
knows a phone number. A predicate that is only used in the implementation
is TestAllSecrets. This predicate does not belong to the Netkat language
itself, but does not increase expressivity, and simplifies the implementation. The
TestAllSecrets predicate allows us to test whether a certain field has a list
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of agents as its corresponding value. This allows us to test whether an agent
already knows all secrets, which is normally done via the state.

The next data type describes policies. A policy can be a predicate, and
following Netkat this is called Filter. A policy can also be a modification
of either a packet or a state vector, and policies can be composed by union,
sequentially or by the Kleene star. As can be seen, we have two policy types
that are not part of Netkat. The Merge policy allows us to merge the values
of a certain field in the packet and the state vector. We will demonstrate this
below with an example to see how it is evaluated. Another policy is the Call
policy, enabling a call between two agents. This policy actually does nothing (as
can be seen in the evaluation), but is used merely in the representation of the
outcome to allow for the call sequence to be visible. More details on this below.

The reason predicates and policies are separated is because predicates can
be negated and policies cannot. We also have special implementations of how to
display predicates and policies, such that it resembles the looks of Netkat as we
are used to it.

7.2.1 Evaluating policies and predicates

To evaluate predicates and policies, the input is a list of pairs of packets and
state vectors, and the output is of the same type. The evaluation shows what
happens to the input packets in response to the concerned predicate or policy.

evalPred :: [(Packet , StateVector)] -> Predicate -> [(Packet , StateVector)]
evalPred [] _ = []
evalPred (x:xs) One = x : evalPred xs One
evalPred _ Zero = []
evalPred ((x,f):xs) (Test g w) | x ! g == w = (x,f) : evalPred xs (Test g w)

| otherwise = evalPred xs (Test g w)
evalPred ((x,f):xs) (TestEl g w) | w ‘elem ‘ whatValue (x ! g) = (x,f) :

evalPred xs (TestEl g w)
| otherwise = evalPred xs (TestEl g w)

evalPred ((x,f):xs) (TestAllSecrets g w s) | w == (f ! s) ! g = (x,f) :
evalPred xs (TestAllSecrets g w s)

| otherwise = evalPred xs (
TestAllSecrets g w s)

evalPred _ (Cup []) = []
evalPred xs (Cup (p:ps)) = evalPred xs p ++ evalPred xs (Cup ps)
evalPred xs (Seq []) = evalPred xs One
evalPred xs (Seq (p:ps)) = evalPred (evalPred xs p) (Seq ps)
evalPred (x:xs) (Neg predi) | null (evalPred [x] predi) = x : evalPred xs (Neg

predi)
| otherwise = evalPred xs (Neg predi)

evalPred ((x,f):xs) (StateTest g w) | f ! g == w = (x,f) : evalPred xs (
StateTest g w)

| otherwise = evalPred xs (StateTest g w)

instance Show Predicate where
show One = "one"
show Zero = "zero"
show (Test field value) = field ++ " = " ++ show value
show (TestEl field element) = show element ++ "∈" ++ field
show (TestAllSecrets field value switch)= show switch ++ "." ++ field ++ " =

" ++ show value
show (Cup xs) = intercalate " + " (map show xs)
show (Seq xs) = intercalate " • " (map show xs)
show (Neg x) = "¬" ++ " (" ++ show x ++ ")"
show (StateTest entry value) = "State(" ++ show entry ++ ") = " ++ show value
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evalPol :: [(Packet , StateVector)] -> Policy -> [(Packet , StateVector)]
evalPol [] _ = []
evalPol xs (Filter predi) = evalPred xs predi
evalPol xs (Mod g w) = map (update g w) xs
evalPol _ (PCup []) = []
evalPol xs (PCup (p:ps)) = evalPol xs p ++ evalPol xs (PCup ps)
evalPol xs (PSeq []) = xs
evalPol xs (PSeq (p:ps)) = evalPol (evalPol xs p) (PSeq ps)
evalPol xs (Star pol) = lfp extend xs where

extend :: [(Packet , StateVector)] -> [(Packet , StateVector)]
extend ps = nub $ ps ++ evalPol ps pol

evalPol xs (StateMod g w) = map (updateVec g w) xs
evalPol xs (Merge f s) = map (mergeField f s) xs
evalPol xs (Call _ _) = evalPol xs (Filter One)

instance Show Policy where
show (Filter predi) = show predi
show (Mod field value) = field ++ " ← " ++ show value
show (PCup xs) = intercalate " + " (map show xs)
show (PSeq xs) = "(" ++ intercalate " • " (map show xs) ++ ")"
show (Star x) = show x ++ "*"
show (StateMod entry value) = "State(" ++ show entry ++ ") ← " ++ show value
show (Merge field switch) = "Merge (" ++ field ++ " , " ++ show switch ++ ")"
show (Call _ _) = ""

For the evaluation of f ← n, which is denoted Mod f n, we need a helper
function called update. It updates the right field of the packet. We have a
similar helper function for the evaluation of state(f) ← n, called updateVec.
For the evaluation of the Kleene star we make use of the least fix point to make
sure it stops iterating after no new packets appear. The function searching the
least fix point is called lfp. We also have a helper function for Merge. Because
that function is quite unreadable, what it does is demonstrated with an example
below these functions. The function mergeField uses a function whatValue

which unwraps a value into a list of switches.

update :: Field -> Value -> (Packet , StateVector) -> (Packet , StateVector)
update f v (p,s) = ([ (g, if g==f then v else w) | (g,w) <- p ], s)

updateVec :: Switch -> State -> (Packet , StateVector) -> (Packet , StateVector)
updateVec f v (p,s) = (p, [ (g, if g==f then v else w) | (g,w) <- s ])

lfp :: Eq a => (a -> a) -> a -> a
lfp f x | x == f x = x

| otherwise = lfp f (f x)

mergeField :: Field -> Switch -> (Packet , StateVector) -> (Packet , StateVector)
mergeField f i (p, s) = (newPacket , newSV) where

newPacket = [ (g, if g==f then LS (sort $ nub $ ((s ! i) ! f) ++ whatValue
w) else w) | (g,w) <- p ]

newSV = [ (sw, if sw==i then newST else pr) | (sw , pr) <- s ]
newST = [ (g, if g==f then sort $ nub $ whatValue (p ! f) ++ w else w) | (g

,w) <- s ! i ]

whatValue :: Value -> [Switch]
whatValue (LS w) = w
whatValue (P _) = error "not the right type"
whatValue (S _) = error "not the right type"

72



An example for what mergeField does:
*Netcall > mergeField "S" a ([("S", LS [b])],[(a,[("S",[c])])])
([("S",LS [b,c])],[(a,[("S" ,[b,c])])])

What happens here is that we told the S field of the packet to merge with the
S field corresponding to switch A in the configuration. As a result the packet
learned the secret of agent c and agent a learned the secret of agent b.

7.3 Implementing Dynamic Gossip

To implement dynamic gossip, we need the ingredients mentioned in Example 9:
we need to be able to generate the first, second and third part of the policy, and
then we can use the Kleene star to get the outcomes. The outcomes consist of
the resulting configurations after every possible call sequence. After that we have
written a function that filters these outputs and tells us which call sequences led
to success (every agent knows every secret) or which call sequences failed.

What we now need is the first, second and third part of the protocol. The
first part takes care of the initial distribution of the input packet. The code for
this is:

polDistribute :: NetKATM -> Policy
polDistribute (Mo _ _ _ ((_, []):_) _ _) = error "no ports"
polDistribute (Mo _ _ _ [] _ _) = Filter Zero
polDistribute (Mo h s k ((w,p:_):zs) e f) = PCup [PSeq [Mod "ag" (S w),

Mod "pt" (P p)],
polDistribute (Mo h s k zs e f)]

polDistributeSimple :: NetKATM -> Policy
polDistributeSimple m = simplify (polDistribute m)

The function polDistribute creates a policy distributing the input to every
home port in the network, and the function polDistributeSimple simplifies
that policy by taking out redundancies. The exact code for simplifying can be
found in the code appendix.

The second part tells us what calls will take place in that round. The
implementation of this bit is the code that follows below. genModel gives the
policy for what calls can take place that round based on a Netkat model where
every agent is connected to every other agent. Thus, a sub-policy is generated for
every possible agent an agent could call, and based on the input packets/state
vectors, these calls will take place or not: there are tests to see if the agent
actually has the right phone number and does not know the secret of the agent
he would call. The function genModelSimple simplifies that policy by taking
out redundancies.

The forwarding policy, genForwardSwitch, is first generated per specific pair
of a switch (agent) and its corresponding ports. In other words, this function
outputs the policy for one specific agent concerning what calls he will be making.
In the policy created one can already see the tests that will be performed in
the code. These tests ensure we are following the LNS protocol. There is a
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test to check if the agent does not know the secret of the agent he will call
and a test if he has the phone number of the agent he will call. If these tests
fail, the call does not take place. If one wishes to use the code to implement
different protocols, here one could put in different conditions that need to be
satisfied before a call takes place. The function decide that is used there gives
the right modification for the port corresponding to what agent will be called.
The function genForward then gives the calling policy for all agents.

genModel :: NetKATM -> Policy
genModel (Mo _ p _ d e _) = genForward p d e

genModelSimple :: NetKATM -> Policy
genModelSimple m = simplify (genModel m)

genForward :: [Switch] -> [(Switch , [Port])] -> Internallinks -> Policy
genForward _ _ [] = error "no links"
genForward _ [] _ = Filter Zero
genForward [] _ _ = error "no switches"
genForward t ((s,p):xs) z = PCup [genForwardSwitch t (s,p) z, genForward t xs z

]

genForwardSwitch :: [Switch] -> (Switch , [Port]) -> Internallinks -> Policy
genForwardSwitch ws (s,p) z = loop ws where

loop [] = Filter Zero
loop (v:vs) | v == s = loop vs

| otherwise = PCup [ PSeq [ Filter (Test "ag" (S s) )
, Filter (Test "pt" (P (head p)))
, Merge "S" s
, Merge "N" s
, Filter (Neg (TestEl "S" v))
, Filter (TestEl "N" v)
, decide s v z ]

, loop vs ]

decide :: Switch -> Switch -> Internallinks -> Policy
decide _ _ [] = Filter Zero
decide s t (((h,w),(i,o)):zs) | (h == s) && (i == t) = Mod "pt" (P w)

| otherwise =
if (i == s) && (h == t)

then Mod "pt" (P o)
else decide s t zs

The third part of the protocol concerns the actual call. When the packets
have been distributed to the right ports (the ports connected to the agents they
should be making calls to), the packet needs to go back and forth and updates
need to be performed accordingly. At the end a copy of the packet needs to
be distributed to each agent’s home port. Similar to what we had before, we
have a function genCallSimple that takes out redundancies in the policy. We
first have a function callPolPort, generating the call policy for a specific
switch/port pair. The function intLink gives the beginning of the calling policy
testing for a packet’s location and then moving it to the right agent and port
(the one he is calling to). Based on a packet’s location there is only one agent
he could be calling, as each port is only connected to one other port. Then the
function callPolSwitch makes the calling policy for a switch and all its ports,
and lastly the function makePolCall creates the full calling policy.
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genCall :: NetKATM -> Policy
genCall (Mo _ p _ d e _) = makePolCall p d e

genCallSimple :: NetKATM -> Policy
genCallSimple m = simplify (genCall m)

makePolCall :: [Switch] -> [(Switch , [Port])] -> Internallinks -> Policy
makePolCall [] _ _ = Filter Zero
makePolCall (x:xs) e z = PCup [ callPolSwitch (x, e ! x) x z e

, makePolCall xs e z ]

callPolSwitch :: (Switch , [Port]) -> Switch -> Internallinks -> [(Switch , [Port
])] -> Policy

callPolSwitch (_, []) _ _ _ = error "where is the home port"
callPolSwitch (_, [_]) _ _ _ = Filter Zero
callPolSwitch (s, _:ps) t z e = PCup [ callPolPort (head ps) s z e

, callPolSwitch (s, ps) t z e ]

callPolPort :: Port -> Switch -> Internallinks -> [(Switch , [Port])] -> Policy
callPolPort p s z = loop where

loop:: [(Switch , [Port])] -> Policy
loop [] = Filter Zero
loop (v:vs) = PCup [ PSeq [ Call s (destination s p z)

, intLink p s z
, Merge "S" (destination s p z)
, Merge "N" (destination s p z)
, Mod "ag" (S s)
, Mod "pt" (P p)
, Merge "S" s
, Merge "N" s
, Mod "S" (LS [])
, Mod "N" (LS [])
, Mod "ag" (S (fst v))
, Mod "pt" (P (head (snd v))) ]

, loop vs]

intLink :: Port -> Switch -> Internallinks -> Policy
intLink p s z | isNothing (lookup (s, p) z) = check p s z

| otherwise = PSeq [Filter (Test "ag" (S s))
, Filter (Test "pt" (P p))
, Mod "ag" (S (fst (z ! (s,p))))
, Mod "pt" (P (snd (z ! (s,p)))) ]

destination :: Switch -> Port -> Internallinks -> Switch
destination s p z | isNothing (lookup (s, p) z) = checksecond s p z

| otherwise = fst (z ! (s,p))

checksecond :: Switch -> Port -> Internallinks -> Switch
checksecond _ _ [] = error "pair not found"
checksecond s p (((f,_) ,(w,t)):zs) | (s,p) == (w,t) = f

| otherwise = checksecond s p zs

check:: Port -> Switch -> Internallinks -> Policy
check _ _ [] = error "pair not found"
check p s (((f,v),(w,t)):zs) | (s,p) == (w,t) = PSeq [Filter (Test "ag" (S s))

, Filter (Test "pt" (P p))
, Mod "ag" (S f)
, Mod "pt" (P v) ]

| otherwise = check p s zs
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Now that we have both parts of the policy we need to represent the LNS
protocol in place, we can create a full calling policy using the Kleene star. To
evaluate the full calling policy we run the following code:

callSequence :: NetKATM -> [(Packet , StateVector)] -> [(Packet , StateVector)]
callSequence mo packstate = evalPol packstate (PSeq [polDistributeSimple mo,

Star (PSeq [genModelSimple
mo, genCallSimple mo

])])

Based on a Netkat model and an initial situation of a packet (in our case that
will always be a packet starting anywhere) and a state vector (each agent will
always know only their own secret and at least their own phone number), we
get a set of outcome packets and configurations equal to performing the Netkat
policy

polgossip := poldstr · (polforward · polcall)∗

As it is desirable to see the call sequences behind those outcomes, we created
a special evaluation function for policies that writes which calls has been made.

evalPolString :: [(String ,(Packet , StateVector))] -> Policy -> [(String ,(Packet
, StateVector))]

evalPolString [] _ = []
evalPolString ((s,x):xs) (Filter predi) | null $ evalPred [x] predi =

evalPolString xs (Filter predi)
| otherwise = (s, head (evalPred [x]

predi)) : evalPolString xs (Filter
predi)

evalPolString ((s,x):xs) (Mod g w) = (s, head (evalPol [x] (Mod g w))) :
evalPolString xs (Mod g w)

evalPolString _ (PCup []) = []
evalPolString xs (PCup (p:ps)) = evalPolString xs p ++ evalPolString

xs (PCup ps)
evalPolString xs (PSeq []) = xs
evalPolString xs (PSeq (p:ps)) = evalPolString (evalPolString xs p) (

PSeq ps)
evalPolString xs (Star pol) = lfp extend xs where

extend :: [(String ,(Packet , StateVector))] -> [(String ,(Packet , StateVector))
]

extend ps = nub $ ps ++ evalPolString ps pol
evalPolString ((s,x):xs) (StateMod g w) = (s, updateVec g w x) : evalPolString

xs (StateMod g w)
evalPolString ((s,x):xs) (Merge f w) = (s, mergeField f w x) : evalPolString

xs (Merge f w)
evalPolString ((s,x):xs) (Call z w) = (s ++ show z ++ " calls " ++ show w

++ ", ", x) : evalPolString xs (Call z w)

To then get a full output of what call sequences have taken place and what the
corresponding result with respect to the distribution of knowledge is we can use:

callSequenceString :: NetKATM -> [(String ,(Packet , StateVector))] -> [(String ,(
Packet , StateVector))]

callSequenceString mo stringpackstate = evalPolString stringpackstate
(PSeq [polDistributeSimple mo,

Star (PSeq [genModelSimple mo,
genCallSimple mo])])
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7.4 Success or failure of the LNS protocol

To directly see the call sequences that led to failure of the LNS protocol (not
all agents know all secrets and no more calls can take place) and what call
sequences led to success (all agents know all secrets), we created the following
functions.

niceOutput :: NetKATM -> [(String ,(Packet , StateVector))] -> [(String ,(Packet ,
StateVector))]

niceOutput mo strpacst = filter (\z -> isUnique (fst z) (map fst $
callSequenceString mo strpacst)) (callSequenceString mo strpacst)

isUnique :: String -> [String] -> Bool
isUnique _ [] = True
isUnique x (v:vs) | myPrefix x v = False

| otherwise = isUnique x vs

myPrefix :: String -> String -> Bool
myPrefix [] [] = False
myPrefix [] _ = True
myPrefix _ [] = False
myPrefix (x:xs) (y:ys) = (x == y) && myPrefix xs ys

filteredOutput :: NetKATM -> [(String ,(Packet , StateVector))] -> String
filteredOutput mo strpacst =

"These are successful call sequences :\n "
++ intercalate "\n " successes
++ "\nThese are not successful call sequences :\n "
++ intercalate "\n" failures where

failures = nub $ failString mo outputs
outputs = niceOutput mo strpacst
successes = nub $ successString mo outputs

failString :: NetKATM -> [(String ,(Packet , StateVector))] -> [String]
failString Mo{} [] = []
failString (Mo h s p z e f) (x:xs) | null $ evalPol [snd x] (successPol s s (Mo

h s p z e f ))
= fst x : failString (Mo h s p z e f)

xs
| otherwise = failString (Mo h s p z e f) xs

successString :: NetKATM -> [(String ,(Packet , StateVector))] -> [String]
successString Mo{} [] = []
successString (Mo h s p z e f) (x:xs) | null $ evalPol [snd x] (successPol s s

(Mo h s p z e f ))
= successString (Mo h s p z e f) xs

| otherwise = fst x : successString (Mo h
s p z e f) xs

successPol :: [Switch] -> [Switch] -> NetKATM -> Policy
successPol [] _ _ = Filter One
successPol (s:ws) x mo = PSeq [ Filter (TestAllSecrets "S" x s)

, successPol ws x mo ]

showOutput :: NetKATM -> [(String ,(Packet , StateVector))] -> IO ()
showOutput mo strpacst = putStrLn $ filteredOutput mo strpacst

Example 10. We will now demonstrate the code with a few examples. Let us
consider a gossip network with three agents, that initially starts like this:

a b c
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To translate this initial situation to Netkat, we need to start with three
initial packets who all have the same initial state vector resembling the initial
links between the agents in the network. To this end, there is the following code:

type Item = (Switch ,([ Switch],[Switch ]))
type GossipGraph = [Item]

transfer :: GossipGraph -> (Packet , StateVector)
transfer gg = ([("ag", S a),

("pt", P (Port 1)),
("S", LS []),
("N", LS [])],

statevector gg)

statevector :: GossipGraph -> StateVector
statevector [] = []
statevector ((x,(y,z)):xs) = (x, [("S", z) ,("N", y)])

: statevector xs

gossipToNetkat :: GossipGraph -> (String , (Packet , StateVector))
gossipToNetkat gg = ("", transfer gg)

The function gossipToNetkat transfers a gossip graph to the packets and state
vectors that encode it. As we wish to see the call sequences, the function also
adds an empty string to each packet/state vector pair (no calls have been made).

The gossip example we have is encoded into the following gossip graph:

gossipExample :: GossipGraph
gossipExample = [ (a,([a,b],[a]))

, (b,([b,c],[b]))
, (c,([c],[c])) ]

The result of the LNS protocol on this gossip graph is then:
Netcall > showOutput (netkatmGen [ Host 1, Host 2 , Host 3] [a,b,c]) [(

gossipToNetkat gossipExample)]
These are successful call sequences:

a calls b, b calls c, a calls c,
a calls b, a calls c, b calls c,

These are not successful call sequences:
b calls c, a calls b,

This is exactly as we expected from the LNS protocol. [6]

Two more examples will demonstrate a situation where every call sequence
leads to success (LNS is strongly successful) and a situation where no call
sequence will lead to success. The first initial gossip graph is:

a b c
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The output from the implementation is then:
Netcall > showOutput (netkatmGen [ Host 1, Host 2 , Host 3] [a,b,c]) [(

gossipToNetkat gossipExample2)]
These are successful call sequences:

c calls a, b calls c, a calls b,
c calls a, c calls b, a calls b,
a calls b, b calls c, a calls c,
b calls c, c calls a, b calls a,
a calls b, a calls c, b calls c,
a calls b, c calls a, b calls c,
b calls c, a calls b, c calls a,
b calls c, b calls a, c calls a,
c calls a, a calls b, c calls b,

These are not successful call sequences:

The last example is the initial gossip graph:

a b c

The implementation then gives:
Netcall > showOutput ( netkatmGen [ Host 1, Host 2 , Host 3] [a,b,c]) [(

gossipToNetkat gossipExample3)]
These are successful call sequences:

These are not successful call sequences:
b calls c, a calls c,

a calls c, b calls c,

79



7.5 Code Appendix

(!) :: Eq a => [(a,b)] -> a -> b
(!) rel x = fromJust $ lookup x rel

instance Show Switch where
show (Switch 0) = "a";
show (Switch 1) = "b";
show (Switch 2) = "c";
show (Switch n) = "Switch " ++ show n

showStatesIntermediate :: [Switch] -> String
showStatesIntermediate z = loop 1 (states z) where

loop:: Int -> [State] -> String
loop _ [] = []
loop n (x:xs) = "State " ++ show n ++ ": " ++ show x ++ "\n" ++ loop (n+1) xs

showStates :: [Switch] -> IO()
showStates z = putStrLn (showStatesIntermediate z)

import Data.GraphViz hiding (Star)
import Data.GraphViz.Types.Generalised
import Data.GraphViz.Types.Monadic

toGraph :: NetKATM -> Data.GraphViz.Types.Generalised.DotGraph String
toGraph (Mo hosts switches ports swlinks portlinks hostlinks) =

graph ’ $ do
let nodes = map show hosts ++ map show switches ++ map show ports
mapM_ (\nid -> node nid [toLabel nid]) nodes
mapM_ (\(sw,ps) -> mapM_ (\p -> edge (show sw) (show p) []) ps) swlinks
mapM_ (\((_sw1 ,p1),(_sw2 ,p2)) -> edge (show p1) (show p2) []) portlinks
mapM_ (\(h,p) -> edge (show p) (show h) []) hostlinks

writeToImage :: NetKATM -> IO ()
writeToImage x = do

resultpath <- runGraphvizCommand Dot (toGraph x) Pdf "themodel.pdf"
putStrLn $ "A picture of the model was saved as: " ++ resultpath

states :: [Switch] -> [State]
states [] = error "No agents"
states (x:xs) = nub (statesFin (x:xs) (x:xs)) where

statesFin _ [] = error "No agents"
statesFin [] _ = []
statesFin (z:zs) y = genStates z y ++ statesFin zs y

genStates :: Switch -> [Switch] -> [State]
genStates _ [] = error "No list"
genStates x y = loop (subsetsEl x y) where

loop = foldr (\z -> (++) (genState z y)) []

genState :: [Switch] -> [Switch] -> [State]
genState x y = loop (subsetOfSets x y) where

loop:: [[ Switch ]] -> [State]
loop = map (\z -> [("S", x), ("N", z)])

subsets :: (Eq a) => [a] -> [[a]]
subsets [] = [[]]
subsets (x:xs) = subsets xs ++ map (x:) (subsets xs)

subsetsEl :: (Eq a) => a -> [a] -> [[a]]
subsetsEl el set = filter (elem el) (subsets set)

subsetOf :: (Eq a) => [a] -> [a] -> Bool
subsetOf _ [] = False
subsetOf [] _ = True
subsetOf (x:xs) y | x ‘elem ‘ y = subsetOf xs y

| otherwise = False
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subsetOfSets :: (Eq a) => [a] -> [a] -> [[a]]
subsetOfSets [] x = subsets x
subsetOfSets _ [] = []
subsetOfSets x y = filter (subsetOf x) (subsets y)

-- | simplifying policies
simplify :: Policy -> Policy
simplify f = if simStep f == f then f else simplify (simStep f)

simStep :: Policy -> Policy
simStep (Filter predicate) = Filter predicate
simStep (Mod field value) = Mod field value
simStep (PSeq []) = Filter One
simStep (PSeq [f]) = simStep f
simStep (PSeq fs) | Filter Zero ‘elem ‘ fs = Filter Zero

| otherwise = PSeq (nub $ map simStep (filter (
Filter One /=) fs))

simStep (PCup []) = Filter Zero
simStep (PCup [f]) = simStep f
simStep (PCup fs) | Filter One ‘elem ‘ fs = Filter One

| otherwise = PCup (nub $ map simStep (filter (
Filter Zero /=) fs))

simStep (Star f) = Star (simStep f)
simStep (StateMod s p) = StateMod s p
simStep (Merge f s) = Merge f s
simStep (Call s w) = Call s w

examplePacket4 :: Packet
examplePacket4 = [("ag", S a) ,("pt", P (Port 4)) ,("S" , LS []), ("N", LS [])]

exampleStateVec2 :: StateVector
exampleStateVec2 = [(a, [("S", [a]) ,("N", [a,b])]), (b, [("S", [b]) ,("N", [b])

])]

example7 :: (String ,(Packet , StateVector))
example7 = ("", example8)

example8 :: (Packet ,StateVector)
example8 = (examplePacket4 , exampleStateVec2)

gossipExample2 :: GossipGraph
gossipExample2 = [ (a,([a,b],[a]))

, (b,([b,c],[b]))
, (c,([a,c],[c])) ]

gossipExample3 :: GossipGraph
gossipExample3 = [ (a,([a,c],[a]))

, (b,([b,c],[b]))
, (c,([c],[c])) ]
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Chapter 8

Conclusion

To conclude, we will summarise the main results of this thesis and we will discuss
ideas for future work.

8.1 Summary of Results

The goal of this thesis was to explore the language of Netkat and apply it to
a new field of study: dynamic gossip. To that end, we have summarised and
extended the literature in the following ways.

First of all we have presented an overview of automata theory, including
regular expressions and automata and their relation (Kleene’s theorem), Kleene
algebras and a coalgebraic perspective on automata. Then we have combined all
this knowledge to give an explanation of Netkat and its coalgebraic decision
procedure. This specific collection of information can hopefully contribute to
the spreading of knowledge in the study of Netkat.

Second, we have discussed a different perspective on Netkat which demon-
strated that Netkat can be applied to the field of dynamic gossip. By adding a
notion of state to the semantics, we got a handle on the configurations of the
switches in the network, without losing the local perspective that Netkat pro-
vides and its soundness and completeness with respect to the packet-processing
model. In Netkat with state each packet comes with a state vector representing
the state of the network according to the history of that packet. Even though
the idea of Netkat with state existed already, it was never formalised in the way
presented here. This thesis shows that Netkat can be used to express informa-
tion about the state of switches, and we have provided a first introduction into
this concept. Besides dynamic gossip, this could perhaps be applied to other
fields such as the spreading of infections while some agents are/become immune.

Lastly we showed that Netkat can capture gossip protocols and theorems
from dynamic gossip. We showed that Netkat with state is capable of simulating
the Learn New Secrets Protocol and we have translated a variety of notions of
dynamic gossip into Netkat. We have translated the notions of weakly successful
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and strongly successful and have given a characterisation in Netkat of when the
gossip graph is a sun graph. We have shown that the theorem from dynamic
gossip characterising when the LNS protocol is strongly successful is also a
theorem of Netkat. As dynamic gossip is a field without a sound and complete
logic to describe it, applying Netkat as a formal framework to dynamic gossip
is a first exploration of an entirely new perspective that perhaps can capture
dynamic gossip in a satisfactory way. We have presented an implementation,
which is fun and can also be a reasoning tool for future research.

8.2 Future Work

This thesis points the way to a lot of potential future research. First of all, Netkat
is a field of study that has only recently gained attention. The applications
of Netkat are far from being exhausted. A very interesting future direction
would be to describe multiple packets and their interactions in Netkat. When
describing real-life networks, it seems necessary to model multiple packets and
how they would interact.

A concrete example of a network with multiple packets where one needs a
handle on concurrency would be a firewall that allows packets to be sent from
host 2 to host 1 only if host 1 has already sent a packet to host 2. This example
actually resembles a method for externally opening ports on a firewall that
happens in real life: port knocking. Firewall rules can be dynamically modified
in response to specific connection attempts, thereby allowing a host to connect
over previously closed ports. Port knocking is a method to prevent an attacker
from getting useful results out of a port scan, because unless the attacker sends
the correct sequence of connection attempts (knock sequence), the protected
ports will appear closed.

Currently, the semantics of Netkat does not allow for multiple packets and
their interactions. A possibility might be to use Concurrent Kleene Algebra
(CKA) [9], [10], but as the free model of CKA has not been developed yet this
was not explored in this thesis. Perhaps the state perspective presented in this
thesis could be of use in researching what such interactions between packets
should look like.

Second, we have only created a beginning in applying Netkat to the field
of dynamic gossip. Other features of dynamic gossip that could be captured by
Netkat are different protocols and more validities that would be desired. The
theorem from dynamic gossip characterising when the LNS protocol is strongly
successful could be proven inside Netkat and the theorem characterising when
the LNS protocol is weakly successful could be both formulated and proven inside
Netkat. One could also go into the nature of what is exchanged by making
use of Netkat’s histories. Netkat’s decision procedure could be used to answer
questions like when did an agent get a secret and where did it come from.

A last interesting point would be to actually apply the coalgebraic decision
procedure to decide for instance whether the LNS protocol is weakly successful on
a given graph and compare the results to existing gossip tools for deciding whether
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the LNS protocol is weakly successful. The coalgebraic decision procedure is
exponential in the worst case as deciding Netkat equivalences is a pspace-
complete problem, but in most real-life scenarios it performs rather well. The
coalgebraic decision procedure could also be used to verify existing results in
dynamic gossip and the translations given in this thesis. To use the coalgebraic
decision procedure it is needed that the policies used in gossip such as polgossip
are translated into automata using the Brzozowski derivative for Netkat and to
use the existing Netkat decision tools on gossip.
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