
The Philosophical Motivation for Proof-Theoretic
Harmony

MSc Thesis (Afstudeerscriptie)

written by

Guido van der Knaap
(born 28 August, 1991 in Amsterdam)

under the supervision of Dr. Luca Incurvati, and submitted to the
Board of Examiners in partial fulfillment of the requirements for the degree

of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
21 March, 2017 Dr. Maria Aloni

Dr. Floris Roelofsen (chair)
Prof. Dr. Ing. Robert van Rooij
Dr. Luca Incurvati



Abstract

This thesis presents, discusses, and evaluates the philosophical motivations
for proof-theoretic harmony - one of the central concepts of logical infer-
entialism - and relates them to the corresponding formal notions. It will
be argued that the principle of innocence manages the objections against
the philosophical motivations for harmony in the most satisfying way. Since
the principle of innocence is formulated regarding the deductive system as a
whole, this strongly suggests that the formal harmony requirement needs to
be a global one. The considerations regarding the corresponding formal no-
tions endorse this view, in particular it will be shown how local constraints
fail to rule out constants such as quantum disjunction and bullet, the proof-
theoretic variant of the Liar sentence. The further aim of this thesis is to
emphasize the role of the structural rules and the context of a rule, both
made explicit by the sequent calculus, for the inferentialistic behaviour of a
logical constant.
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1 The Meaning of the Logical Constants

In the ideal world nations, friends, lovers, and music compositions are all in
harmony; should logic, or the logical constants, be added to this list? This
thesis is concerned with the just raised question, in particular it outlines and
discusses the possible philosophical motivations for proof-theoretic harmony
and their formal counterparts. The current chapter serves as a background
for the remaining chapters.

1.1 The Background

The demand for harmony has its meaning-theoretic roots in a use-theoretic
approach to meaning (Dummett 1973, 1991; Murzi and Steinberger 2015:
1). Contrary to referential, or truth based, approaches, the use-theoretic
approach gives the practice and regularities a central stage in the order of
explanation of semantic notions. Inferentialism is a specific interpretation of
such a use-theory of meaning; regarding the use of an expression it gives a
primary role to the inferences in which an expression can feature. Given this
meaning-theoretic background it is possible to offer a harmony constraint
for the language as a whole (see Brandom 1994, 2000). However, this thesis
is just concerned with the logical fragment of the language. According to
this view - logical inferentialism - the meaning of the logical constants is
determined by the inferences in which a constant can feature.

Quite often the logical inferentialist adopts the position that the
meaning of a logical constant λ is given by a specific set of inference rules:
its introduction and elimination rules. Consider for example conjunction.
According to the just sketched view its meaning is constituted by:

A B
I-∧

A ∧ B
A ∧B

E-∧
A

A ∧B
E-∧

B

Here A and B are arbitrary formulas. It is a delicate issue which inferences
of a logical constant λ are constitutive for the meaning of λ. For example
Gentzen adopted the view that solely the introduction rules are meaning
constitutive. What matters for now is that from an inferentialistic perspec-
tive the just presented rules for conjunction are self-justifying. This way, the
inferentialist tries to avoid the problem, famously raised by Lewis Carroll
(1895), to come up with a non-circular justification or explanation of the
fundamental rules of logic like modus ponens. Since the rules for λ are self-
justifying, they are not based upon some independent determined meaning
of λ.

In the case of conjunction it seems quite natural to base the just
presented inference rules upon the semantics of conjunction, given by, for
example, the corresponding truth tables or a truth function. Definitely, this
is not the strategy of the authors in the harmony debate; the inference rules
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for the constants are provided without an appeal to a prior semantic notion.
In other words, it is from the current perspective possible to put forward
any combination of rules to fix the meaning of a logical constant.

Traditionally, this is the stage where harmony enters the debate.
The self-justifying character of the rules leads to the introduction of prob-
lematic constants. The next section introduces the most famous example:
the connective tonk. Besides the association with tonk, the harmony require-
ment is often related to authors who have revisionary aims in logic. Among
others, Dummett (1973, 1991) is a prominent example of someone who at-
tacks classical logic in favour of intuitionistic logic by meaning-theoretic
considerations and, ultimately, the requirement of harmony. Despite the
prominence of the dispute between classical logic and intuitionistic logic, or
realism versus anti-realism, this thesis is not primarily concerned with such
revisionary issues.

1.1.1 The Problem: Tonk

Arthur Prior introduced in his The Runabout Inference Ticket (1960) the
just mentioned connective tonk. It has the following introduction rule:

A
I-tonk

A tonk B

In addition, the constant has the following elimination rule:

A tonk B
E-tonk

B

Together with the transitivity of the deducibility relation these rules lead to
the following situation:

A
I-tonk

A tonk B
E-tonk

B

In other words, once tonk and its corresponding rules are added to a lan-
guage, it is possible to deduce any B once some arbitrary A has been estab-
lished. Hence, the system to which tonk is added leads to triviality, since
every B becomes provable. Prior’s (implicit) suggestion is that it is a mis-
take to define the meaning of the connectives solely in terms of their rules;
the project of the logical inferentialist fails. Stevenson (1961) made this
suggestion explicit. He argued, in line of the traditional semantic approach,
that the meaning of a connective has to be defined by a truth function in
the meta-language.

Another approach is, contrary to Stevenson, to remain faithful to
the idea that the meaning of the logical constants is given by their rules.
This is where the harmony requirement comes in. The general idea is, first of
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all put forward by Belnap (1962), to come up with additional requirements
to rule out problematic connectives like tonk. The rules for the constants
which satisfy the harmony requirement are meaning conferring, whereas the
rules for the other constants are disharmonious and thereby do not confer
meaning.

1.1.2 The Motivation

Presented this way, the role of a formal harmony requirement is to select the
meaningful constants, and in particular to rule out problematic constants
like tonk. As just a cure for tonkitis, the demand for harmony seems quite ad
hoc. Hence, it is one of the main goals of this thesis to outline and discuss
the philosophical motivations for a harmony requirement, and to outline
how a particular motivation has implications for the corresponding formal
notion.

The formal notion of harmony is the most prominent aspect in
the current harmony debate; it offers a precise specification of harmony by
which it is possible to decide whether a constant or a deductive system is
harmonious or not. On the other hand, the philosophical motivation for
harmony is often just mentioned, and not widely discussed or defended.
This turns the question about the relevance for a harmony requirement into
a more urgent one. If it is not clear what the philosophical motivation is,
and whether this motivation is correct or not, then one easily doubts the
demand for harmony.

In order to start the presentation and discussion of the motivations
for harmony and their corresponding formal notions it is necessary to settle
some issues. The first section already indicated the main problem: which
set of inference rules determines the meaning of the logical constants. Tra-
ditionally, the harmony debate is only concerned with the operational rules.
These are the introduction and elimination rules which are specific for a
logical constant. On the other hand the structural rules are not specific for
a logical constant, but they are part of the deductive system as a whole.
Since these rules do influence the kind of inferences which are allowed - the
next section will discuss this at length - they seem to offer a threat to the
traditional focus of the harmony debate on the operational rules.

Regarding the distinction between operational and structural rules
the mode of representation seems, as Steinberger argues, to matter. In par-
ticular, one can distinguish between the setting offered by natural deduction
and the one offered by the sequent calculus. Therefore, the plan is to start
by presenting these proof systems. Once the mode of representation is made
clear, a further discussion of the interplay between operational and struc-
tural rules is possible.
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1.2 The Sequent Calculus

After Hilbert’s axiomatic system, Gerhard Gentzen invented both natural
deduction and the sequent calculus. These systems mark the beginning of
proof theory as it is known nowadays. It will be assumed that the reader
is familiar with natural deduction and the corresponding inference rules.
Of course the latter depends on the system which is chosen, but when this
choice matters the system or the inference rules which are used will be made
explicit. Furthermore, it will be assumed that the reader is aware of vacuous
discharge and multiple discharge in a natural deduction setting.

Since the sequent calculus is a more unusual setting an introduction
is useful. Like natural deduction, the proofs in the sequent calculus are
represented as trees, but contrary to the former system the sequent calculus
has at each node sequents instead of formulas. Sequents often look like
Γ ⇒ ∆. The antecedent of this sequent is Γ, the consequent is ∆, and ⇒
is just an arbitrary symbol to distinguish between the antecedent and the
consequent. Moreover, the antecedent and the consequent are multisets of
formulas, and not sets. Traditionally, the intuitive meaning of such a sequent
is that the conjunction of all the formulas in Γ implies the disjunction of all
the formulas in ∆ (Gentzen 1935/1964: 290).1 Both Γ and ∆ can be empty,
but usually they contain arbitrary sequences of formulas (idem).

For example, conjunction has the following operational rule to in-
troduce it in the antecedent (“left”) of a sequent:

Γ, A,B ⇒ ∆
L-∧

Γ, A ∧B ⇒ ∆

In addition, the following rule introduces conjunction on the right:

Γ⇒ A,∆ Γ⇒ B,∆
R-∧

Γ⇒ A ∧B,∆

In a similar vein, the sequent calculus offers for each logical constant op-
erational rules to introduce the constant on the left and on the right of a
sequent. However, and here the sequent calculus becomes relevant for the
present purposes, the sequent calculus contains some structural rules. The
most prominent one is the Cut rule. In general, the rule is as follows:

Γ⇒ A,∆ Γ, A⇒ ∆
Cut

Γ⇒ ∆

1Some authors, in particular Restall (2005), would disagree with such an interpretation.
According to him denial is prior to negation, so he offers the by Steinberger called denial
interpretation of a sequent (2011c: 350). According to this interpretation it is incoherent
to assert all the formulas in Γ while denying all the formulas in ∆.
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The Cut rule captures, compared to the setting of natural deduction, ex-
plicit the transitivity of the consequence relation. In addition to the Cut
rule, Gentzen (1935/1964) came up with three other structural rules for the
sequent calculus. Each of these rules has two similar versions, one for the
antecedent and one for the consequent of a sequent. The first rule is called
Thinning or Weakening, and allows one to add arbitrary formulas on the
right or the left of a sequent:

Γ⇒ ∆
L-Weakening

Γ, A⇒ ∆

Together with the version for the right hand side, Weakening corresponds to
vacuous discharge for natural deduction (Steinberger 2009a: 38; Hjortland
2010: 173). Multiple discharge corresponds to the structural rules called
Contraction:

Γ⇒ ∆, A,A
R-Contraction

Γ⇒ ∆, A

This is just the version for the right, the version for the left hand side is
similar. The final structural rule has as well two similar versions, this is
Interchange for the antecedent:

Γ, A,B ⇒ ∆
L-Interchange

Γ, B,A⇒ ∆

Besides the operational rules for the logical constants and the just presented
structural rules the sequent calculus contains axioms. The standard axiom
is Identity, which boils down to A ⇒ A and it mirrors the reflexivity of
the consequence relation. Identity is almost always the starting point of a
derivation in the sequent calculus.

So far so good. By providing independent structural rules, instead
of incorporating them into the discharge policies of, for example, implication,
the sequent calculus allows to distinguish more strictly between operational
and structural rules. Steinberger uses this observation to adopt the view that
the structural rules do not matter for the meaning of the logical constants
(2009a: 39-40). They are part of the broader deductive system and not,
as natural deduction suggests, part of the operational rules for the logical
constants.2

Before the issue of the structural rules can be discussed in full
detail, the so called “context” of a sequent should be taken into account.
Consider, for example, the just presented operational rule for conjunction on
the left. It introduced in the conclusion sequent the formula A∧B, which is

2Restrictions on the structural rules or the “context”, which is explained below, lead
to substructural logics. Two familiar examples are Anderson’s and Belnap’s Relevance
Logic (see, for example, 1962) and Girard’s Linear Logic (1987).

5



thereby defined as the principal formula (Dicher 2016a: 729). Furthermore,
the active formulas of an operational rule are the principal formula and
the formulas which are used to introduce the principal formula. The other
formulas are the passive formulas. In the case of conjunction on the left the
active formulas are A ∧ B, A, and B, whereas the formulas occurring in Γ
and ∆ constitute the passive formulas.

The latter are called the context of a rule, or simply the context.
Notice, first of all, that the context does matter. In particular, Gentzen
showed how one can obtain intuitionistic logic instead of classical logic by
the restriction that at most one formula is allowed to stand on the right
hand side of a sequent.3 For the present purpose the urgent question is
whether the context of a rule is as well part of the meaning of the considered
constant. Some authors (Paoli; Restall) adopt the view that issues regarding
the context are about the whole deductive system. Hence, according to such
a view the context does not (even partly) determine the meaning of the
connectives.

Quite recently, Dicher (2016a, 2016b) has put forward a more nu-
anced analysis of the interplay between the context, operational, and struc-
tural rules. He distinguishes, regarding the context, between minimal struc-
tural requirements which are needed to provide a proper meaning for the
considered connective, and supplementary structural properties to account
for the (potential) interaction with the other connectives of the deductive
system (2016a: 754). The former is an integral part of the meaning of a
connective, and thereby the connective imposes a constraint upon the way
the context of a deduction is defined. The latter kind of properties are
not intrinsic for a connective, so this part of the context is not meaning
constitutive.

Consider, for example, disjunction. According to Dicher’s analysis,
disjunction does not need an additional context to give it a proper meaning
(idem: 741). In other words, the following rules (called ×) capture the
intrinsic meaning of disjunction (Dicher 2016b: 596):

A⇒ B
R-×

A⇒ B × C
A⇒ C

R-×
A⇒ B × C

B ⇒ A C ⇒ A
L-×

B × C ⇒ A

These rules do not need a context, usually represented by Γ and/or ∆, to
capture the intrinsic meaning of the connective. Compare now the just
presented rules (×) with the standard (classical) rules for disjunction (∨) in
the sequent calculus:

Γ, A⇒ ∆ Γ, B ⇒ ∆
L-∨

Γ, A ∨B ⇒ ∆

Γ⇒ A,B,∆
R-∨

Γ⇒ A ∨B,∆
3Due to Hacking (1979) this observation is called a “seemingly magical fact”. For a

more recent discussion of this issue, see Milne (2002).
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These rules do indeed contain a context, so they allow more formulas on
both the left and right and side of the sequences. Thereby it is for example
possible to have just one rule to introduce disjunction on the right hand
side. Since, according to Dicher’s view, × captured already the intrinsic
meaning of disjunction, the occurrence of multiple formulas on the left and
right hand side of the sequent has for disjunction just an external, structural
function. The role of these formulas is to account for the way disjunction
can interact with the other constants in the deductive system.

Of course one can vary the structural context of the rules for a con-
nective. For example, one obtains the rules for quantum disjunction if the
left hand side rule for standard disjunction is restricted by not allowing col-
lateral assumptions in the minor premises; Γ needs to be empty (Steinberger
2011b: 278).4

1.2.1 Operational and Structural Meaning

Recall the core claim of logical inferentialism: the meaning of the logical
constants is given by the inference rules who govern their use. As already
encountered, Steinberger, and almost everyone in the harmony literature,
adopts the position that solely the operational rules are constitutive for the
meaning of the constants. However, the structural rules influence, beyond
doubt, the inferential use of a constant (Hjortland 2010: 177).

It is, for example, not possible to derive A → (B → A) without
vacuous discharge or Thinning. Another example is the distributivity of
conjunction over disjunction; one needs, even in a rich context, Weakening
and Contraction (Dicher 2016b: 597). Hence, the obvious question is why
the structural rules are not as well relevant for the meaning of the connec-
tives.

The immediate answer to the latter question is to appeal to Paoli’s
distinction between the operational meaning and the global meaning of a
logical constant λ (Paoli 2003: 537; Hjortland 2010: 168). The operational
meaning is given by the specific rules for λ: the introduction and elimination
rules. On the other hand the global meaning is given by the class of sequents
containing λ.

One can phrase the debate whether the global meaning is as well
relevant for the connectives in the standard meaning-theoretic terms of
atomism and holism5 (Steinberger 2009a: 219; Hjortland 2010: 159-160).
According to atomism operational meaning is all there is, whereas holism

4It will turn out that quantum disjunction has a pivotal rule in the current harmony
debate. However, it should be emphasized that it is just called quantum disjunction.
In other words, the discussions in this thesis have nothing to do with quantum logic or
quantum theory.

5Hjortland usus Gentzianism and Hilbertianism respectively; it boils down, in general,
to the same positions.
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states that all the rules of a deductive system contribute to the meaning of
the logical constants: a constant has an overall meaning which consists of
both the operational and the global meaning (Hjortland 2010: 160).

Steinberger rejects holism, according to him it is implausible that
a constant has an overall meaning. His reason is that an overall meaning
implies that in order to grasp the meaning of a constant all the deductive
inferences in which the constant is involved should be taken into account
(2009a: 49). This sounds indeed as an exorbitant requirement. Steinberger
adopts the view that it is sufficient to grasp the “core inferential use” of a
constant, given by the operational rules. Accordingly, he rejects the holistic
position.

However, Steinberger concludes as well that there is no decisive
argument in favour of logical atomism (2009a: 226). The principle of sepa-
rability is the underlying idea of logical atomism. According to this principle
the inference rules governing the deductive behaviour of a connective should
only mention the considered connective, and no other connectives (Stein-
berger 2011a: 630). Hence, by the inferentialistic assumption the meaning
of a logical constant is purely local.

Interestingly, Steinberger does not adopt the principle of separa-
bility (2011a: 631). According to him molecularism, adopted by both Stein-
berger and Dummett, is not sufficient to argue in favour of separability.
Molecularism solely requires that the logical constants are together separa-
ble from the language such that they constitute a semantic cluster. Thereby
it does not imply that all the logical constants must be separable from each
other.

The problem of the just presented positions seems that they are
too extreme. Intuitively, contrary to atomism, the fact that A → (B → A)
is provable by vacuous discharge in classical logic - or by Weakening in
the sequent calculus - and not in relevance logic, seems relevant for the
meaning of classical implication. Contrary to holism, as it is presented
by Steinberger, the following derivation, which uses again Weakening, is
intuitively not relevant for the meaning of conjunction:

p ∧ q ⇒ q
L-Weakening

p ∧ q, r ⇒ q
L-∧

(p ∧ q) ∧ r ⇒ q

If the intuition just described is correct, then the obvious but difficult task
is to distinguish between the inferences which are relevant for the meaning
of a constant and the inferences which are irrelevant. Definitely, the atomist
would answer that the operational rules offer such a distinction: these rules
constitute the meaning of a connective.

On the other hand, the reasonable holist would state that there
is no such a strict distinction, but each constant has a scale of more and
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less relevant inferences. For example, on the scale for conjunction the usual
introduction rule is the most relevant inference for its meaning. In the
case of implication the most important rule seems to be modus ponens.
However, the inference of A→ (B → A) is relevant as well for the meaning
of implication in a classical setting, although it has not the same meaning-
constitutive status as implication elimination.

The advantage of this proposal is that still some inference rules
play an important, or decisive, role for the constitution of the meaning of
the connectives. On the other hand it uses the straightforward insight that
other rules, in particular the structural ones, do play a role in the inferential
behaviour of a connective, without being committed to the position that
every inference containing a constant λ is relevant for the meaning of λ. The
obvious disadvantage is that the distinction offered by the scale of a constant
is a vague one; it does not offer such a strict distinction as atomism.

Given the view of the reasonable holist, this thesis does not aim to
rule out atomism. It just aims to sketch a plausible alternative such that
there is even more pressure to include the role of the structural rules and
the context in the discussion of the harmony debate. Probably it turns out
that in the end atomism is the correct view. However, this cannot be simply
assumed, and it is not a settled issue. Although it is not yet settled, the
next section aims to make some distinctions more precise, in order to use
the terminology for the remaining chapters.

1.2.2 Global and Local Constraints

By the observation that structural rules determine partly the inferential
behaviour of a connective it seems plausible that they will play a role in
the remaining chapters. Given that the notion of harmony should be made
precise, it needs to be clear whether it is as well concerned with the structural
rules or not.

In order to do this the local-global distinction is adopted. A har-
mony requirement is called local if it is just a restriction on a pair of infer-
ence rules; the introduction and elimination rules for a particular constant.
On the other hand a harmony requirement is completely global if both the
structural rules and the rules for other constants are used in order to check
whether a constant is harmonious or not. Finally, to complicate the dis-
tinction, a harmony requirement is semi-global if it just contains structural
rules, and no rules for other constants are needed. The remaining chapters
offer examples of all these three versions. Moreover, they check, if necessary,
whether the philosophical motivation for harmony implies a global or a local
harmony constraint. Notice that global or semi-global requirements do not
intend to provide a criterion whether the structural rules are as such har-
monious or not. These requirements just indicate that the structural rules
are needed to check whether a constant is harmonious or not.
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1.3 Structure of the Thesis

The structure of the next three chapters is quite straightforward. Each chap-
ter presents a philosophical motivation for harmony, discusses, and evaluates
it. Subsequently, it is related to the corresponding formal notion. Moreover,
the strengths and weaknesses of the formal notions are outlined. The final,
fifth, chapter has a concluding character. It aims to bring the observations
of this project together and fit them into a corresponding analysis, discus-
sion, and final conclusion. The next chapter, on the principle of innocence,
is the first step towards it.
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2 The Principle of Innocence

The current chapter discusses the principle of innocence as a philosophical
motivation for harmony. First of all the principle is introduced and related
to Steinberger’s idea of harmony. The second section introduces the formal
notion of a conservative extension in order to evaluate Rumfitt’s objection
against Steinberger’s harmony. Furthermore, the astronomy and the truth
predicate argument, meant to reject the principle, are discussed as well.
Finally, the formal counterpart is presented, and its shortcomings are iden-
tified.

2.1 Innocence and General Harmony

The idea behind the principle of innocence is that logic should not affect the
non-logical regions of the language:

“it should not be possible, solely by engaging in deductive rea-
soning, to discover hitherto unknown (atomic) truths that we
would have been incapable of discovering independently of logic.”
(Steinberger 2011a: 619-620).

The principle should guarantee that the application of logical inference to
non-logical sentences does not lead to the assertion of unjustifiable non-
logical sentences. Hence, the principle guarantees according to Steinberger
the correct applicability of logic to non-logical expressions (idem: 620).

The harmony requirement is, as Steinberger argues, a natural way
to secure the innocence of logic. The idea is to guarantee innocence by fixing
the meanings of logical constants in the right way (idem: 620). To under-
stand Steinberger’s line of reasoning, it is necessary to sketch his meaning-
theoretic assumptions. He adopts both Dummett’s use-theoretic approach
and the corresponding two-sided model of meaning (idem: 617). According
to this model the meaning of a statement is given by its I- and E-principles
(idem: 618). The I-principles are based upon in a verificationist theory
of meaning, and offer the conditions to assert a sentence (Dummett 1973:
221). The E-principles are based upon a pragmatist theory of meaning and
indicate the consequences of a statement.

By these meaning-theoretic assumptions, one obtains, according to
Steinberger, the right meaning of a logical constant by providing an equilib-
rium between the introduction and elimination rule. The introduction (I)
rules represent the I-principles, whereas the elimination (E) rules capture
the E-principles of the two-sided model of meaning. Such an equilibrium
between rules contains two aspects. On the one hand the elimination rule
should not derive more than is allowed by the introduction rule, on the other
hand the elimination rule should be able to exploit all the inferences which
are allowed by the introduction rule. This idea of a balance between the
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introduction and elimination rule of a given constant is defined as general
harmony.

Since the goal is to obtain a balance, there are two ways to disturb
it, so a logical constant can be disharmonious for two reasons. If the elimi-
nation rule allows, compared to the introduction rule, too many inferences
then the rules are in E-strong disharmony (idem: 621). If the elimination
rule allows too few inferences, then the constant suffers from E-weak dishar-
mony.6

Notice that in order to guarantee the innocence of logic it seems
solely needed to rule out the E-strong disharmonious constants. By this
kind of disharmony, one is able, by logic, to discover more (atomic) truths
than one should be able to. Hence, Steinberger’s need to rule out E-weak
disharmony is, just by the principle of innocence, superfluous. On the other
hand, Steinberger argues that logic offers indirect grounds for the assertion
of non-logical sentences: by a correct deduction one can assert a non-logical
sentence from a set of premises (idem: 619). Once the elimination rules
are too restrictive, logic offers too few indirect grounds to assert non-logical
sentences. Or, to phrase it in terms of Steinberger’s meaning-theoretic as-
sumptions, an elimination rule which suffers from E-weak disharmony fails
to capture the pragmatist aspect of the two-sided model of meaning.

One might object, as Steinberger admits (idem: 621), that the as-
sertion can be made by other means than deductive inference. For example,
consider the connective ◦ with A,B ` A ◦ B as introduction rule, and as
elimination rule just A ◦B ` B.7 Clearly, this constant suffers from E-weak
disharmony; A is needed to introduce the connective, but it is not attainable
by the elimination rule. However, consider the following situation:

Π1

A

Π2

B
I◦

A ◦B
E◦

B Π1

A,B

By simple repeating the proof of A, which is Π1, one can still obtain, in a
purely deductive way, the grounds to introduce the connective. It should
just be allowed by the deductive system to repeat premises in a proof. Stein-
berger might object that the meaning of ◦ is still mistaken, since there is

6Strictly speaking there are four ways a constant can be disharmonious; the disharmony
can also be formulated in terms of the introduction rules. Steinberger does not give priority
to introduction rules or elimination rules so this thesis uses just E-strong and E-weak
disharmony, without taking a stance about the importance of elimination rules compared
to the introduction rules, unless indicated otherwise (Steinberger 2011a: 621-622).

7By the sign ` this thesis indicate that the right hand side is deducible from the left
hand side of it. It marks the deducibility relation. In this case, B is deducible from A◦B.
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not a balance between its I and E principles. From his two-sided model of
meaning perspective this sounds correct, but it should be emphasized that it
is solely by his meaning-theoretic assumption that the principle of innocence
should rule out E-weak disharmony as well.

Furthermore, Steinberger’s preference for a local harmony require-
ment strongly influences the way the principle of innocence is related to
general harmony. The latter is, by the requirement of a balance between
each pair of inference rules, a local requirement, whereas the principle of
innocence does not imply a local notion. The principle is formulated about
logic as a whole, so a global notion seems to be sufficient to guarantee it.

To conclude, if one adopts just the principle of innocence, and
not Steinberger’s meaning-theoretic assumptions, then it seems to be suffi-
cient to come up with a global requirement which just rules out E-strong
disharmony. In line of this observation, the next section presents the global
requirement of conservativeness.

2.2 Conservativeness

The role of conservativeness, or a conservative extension, goes back to Bel-
nap’s reply to Prior’s tonk challenge (Belnap 1962). Belnap argued that
tonk fails as a connective since it produces a non-conservative extension of
the original logical system. The notion of a conservative extension is made
precise as follows:

Systematic Conservativeness: Let L and L′ be languages
with I and I ′ being their corresponding deductive systems. More-
over, L′ = L ∪ {∗}, where ∗ is a new logical operator with cor-
responding deduction rules which are added to the deductive
system. The language L′ is then a conservative extension of L if
for a sequent Γ⇒ B in the language L it is the case that Γ `I′ B
only if Γ `I B.

The definition is due to Steinberger (2011a: 624), and it is distinguished
from other, slightly different definitions, since systematic conservativeness
is explicitly formulated for extending the logical system. More informally,
conservativeness requires that by adding a logical operator to the language,
nothing new about the old part of the language should become provable.

Clearly, conservativeness rules out tonk. In a standard deductive
system, take for example a standard deductive system for classical or in-
tuitionistic logic such as formalized by van Dalen (2008), it is definitely
not possible to prove for an arbitrary A and B that A ` B. Since this is
exactly what tonk allows, adding it to a standard system would lead to a
non-conservative extension of the existing language.

Belnap emphasizes that conservativeness is context dependent (1962:
133). Whether the addition of a connective to a language leads to a conser-
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vative extension depends on the logical system to which it is added. This
can lead to the situation that in one case a connective is conservative, and in
the other case it produces a non-conservative extension of the system. Such
a situation does not seem ideal, since it would depend upon the context
whether a constant confers meaning or not.

One obvious way to solve this issue is to come up with a standard
base system. This system would serve as the standard background to check
whether a particular constant leads to a conservative extension or not. Bel-
nap’s logical base system contained just the atomic sentences and structural
assumptions, an approach which is recently adopted by Dicher (Belnap 1962:
132; Dicher 2016a: 749).

Such an approach leads to a semi-global version of conservative-
ness which considers the constant in isolation, and not how it is related to
the other (operational) rules in the deductive system (Dicher 2016a: 748-
749). Belnap’s base system consists of the structural rules Cut, Identity,
Contraction, and Weaking, whereas Dicher just adopts Cut and Identity.
Contraction and Weakening are strongly related to the context of a rule,
which is, according to Dicher’s analysis as presented in the previous chap-
ter, not always purely part of the meaning of a connective. Hence, these
rules are not included in the base system which is used to check whether a
constant is conservative or not.8

Notice that such a localized and stabilized version of conserva-
tiveness should not be identified with systematic conservativeness. For ex-
ample, adding classical negation to the implicational fragment of classical
logic leads to a non-conservative extension (Steinberger 2009a: 57). On the
other hand, classical negation is perfectly compatible with the stabilized
version.9 Quantum and standard disjunction offer another example. Both
constants are conservative if just the semi-global version is used. On the
other hand, as will be explained later on, adding standard disjunction to a
system which contains both quantum disjunction and conjunction results in
a non-conservative extension.

Steinberger rejects the stabilized version of conservativeness be-
cause it does not guarantee the principle of separability (2009a: 57). The
example just provided illustrates this point. Adding standard disjunction
leads to a non-conservative extension: new logical theorems about the old
language become provable. Hence, the meanings of the old vocabulary have
been effected and this implies, according to Steinberger, that the meanings
of the original constants (in this case conjunction and quantum disjunction)

8Unfortunately, and as already mentioned in the first chapter, this thesis will not enter
the debate which structural rules are harmonious, and which(sub)set of them should be
included in the base system.

9Here this thesis can just guess, but this might be the reason why systematic conserva-
tiveness is more prominent in the harmony debate, since the authors have often strongly
revisionary aims.
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were not fully determined by their inference rules.
This rejection raises two objections. First of all, as the previous

chapter mentioned, Steinberger simply assumes the principle of separability
(idem: 58). Moreover, more recently he stated that a decisive argument for
separability is lacking (2011a: 631). Given these observations, it seems ex-
orbitant to reject conservativeness solely by separability. Secondly, it might
be questioned whether it is indeed the (intrinsic) meaning of the constants
which is affected by adding standard disjunction to the system. However,
this point will be discussed in the concluding chapter.

2.2.1 Rumfitt on Conservativeness

Rumfitt argues, contrary to Steinberger, that the conservativeness require-
ment is sufficient to guarantee the innocence of logic (Rumfitt 2016: 24).
As already mentioned, to guarantee just the innocence of logic it seems
sufficient to come up with a global requirement which rules out E-strong
disharmony. This is, in a nutshell, Rumfitt’s point. Since conservativeness
prevents against E-strong disharmony, no additional requirement is needed
to secure the innocence of logic.

On the other hand, Steinberger rejects the conservativeness require-
ment because it fails to rule out E-weak disharmony (2011a: 624). Consider
the connective ◦, presented in the section ‘Innocence and General Harmony’.
Adding it to a base system with just atomic sentences and structural rules it
clearly produces a conservative extension. However, the constant is E-weak
disharmonious so conservativeness alone cannot prevent against this type of
disharmony.

In addition, Steinberger opposes conservativeness as a harmony
requirement since it is a global requirement, whereas he is looking for a
local one (idem: 625). Steinberger states that harmony is a property which is
ascribed to a pair of inference rules of a connective, and the global character
of conservativeness fails to capture this idea. It seems that he simply assumes
that a purely local requirement is the right way to guarantee innocence:

“The best way to do this (at a local level) is by requiring that the
introduction and elimination rules that govern the meanings of
the logical constants be exactly commensurate in strength” (Stein-
berger 2011a: 620).

According to this quote the local level is not defended, but simply, by putting
it into brackets, assumed as the right level for harmony. Definitely, Stein-
berger is correct that conservativeness fails to rule out E-weak disharmony
and that it is a (semi) global requirement. However, these two criteria are
not implied by the principle of innocence, but only by Steinberger’s fur-
ther meaning-theoretic assumptions. Thereby Rumfitt’s observation that
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the principle of innocence as such is guaranteed by the conservativeness re-
quirement is correct. However, for the sake of the argument Steinberger’s
line of reasoning will be followed, so E-weak disharmony is still included in
the discussion.

2.3 Arguments against Innocence

The previous sections simply assumed that the principle of innocence as such
is correct. However, Steinberger is aware that the principle of innocence is
not beyond criticism, since he admits in a footnote that the innocence of logic
raises the question how the usefulness of logic should be explained if it does
not deliver new knowledge (2009a: 60). Unfortunately for the purpose of this
thesis, Steinberger does not discuss the question.10 Notice that Steinberger’s
remark that the principle of innocence implies that logic does not deliver
new knowledge is incorrect. The sole problem is that it cannot deliver new
knowledge which is (in principle) not attainable by non-logical means, but
this does not imply that logic cannot lead to new knowledge at all.

Regarding the status of the principle of innocence it is remarkable
that the principle is not widely discussed. For example Murzi and Carrara
just take it for granted, according to them it is a “common motivation” for
the harmony requirement (2014: 19). Another example of this approach is
Griffiths (2014). Contrary to this view, the current section discusses two
objections, raised by Rumfitt and Read, against the innocence of logic.

2.3.1 The Astronomy Argument

Rumfitt provides a counterexample which aims to show that logic can deduce
conclusions for which it is not possible to provide, even in principle, direct
evidence (2016: 23). For further reference the example provided is called
the astronomy argument, and the argument runs as follows:

P1: By astronomical theory and appropriate observations Rum-
fitt knows that a body B is either in region R of the Andromeda
Galaxy or it is in a black hole.

P2: By some further observations Rumfitt knows that B is not
in R.

C: It can be deduced that B is in a black hole (Rumfitt 2016:
23-24).

10The question whether logic is useful was addressed by Cohen and Nagel (1934). Ac-
cording to their paradox of inference a deductive inference cannot be both valid and useful
(idem: 173). Bar-Hillel and Carnap (1953) tried to solve this by their theory of (empir-
ical) semantic information. In Hintikka’s view they did not succeed, and he called this
the scandal of deduction (1973). Furthermore, the theory of semantic information led to
the Bar-Hillel-Carnap paradox. For more recent literature on these issues see for example
D’Agostino and Floridi (2009) and Duž́ı (2010).
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Since it is not possible to discover, even in principle, the conclusion by direct
observations the example shows, according to Rumfitt, that it is indeed
possible to discover by deduction hitherto unknown atomic truths (idem:
24). More importantly, there are no other ways to discover these truths
than by deductive reasoning. Rumfitt concludes solely from this example
that the principle of innocence is too strict and that it does not correspond
with the way logic is actually used.

First of all it should be noticed that the conclusion of the astronomy
argument is not reached “solely by engaging in deductive reasoning”. P1
is partly based upon empirical observations, and P2 is purely based upon
observations. It is correct that only by deduction it is possible to derive
‘C’, but the argument is more empirical than, for example, tonk. In the
latter case there is no specific observation needed; it is sufficient to pick
an arbitrary A in order to derive an arbitrary B. On the other hand, the
astronomy argument is based upon a specific empirical observation.

The core problem of the astronomy argument is that it is purely
the specific content of P1, in particular the notion of a black hole, on which
the strength of the argument is based. Because of some of the characteristics
of a black hole, it is by definition impossible to discover directly information
about what it might contain. Hence, the fact that knowledge of the conclu-
sion of the argument is, even in principle, not directly attainable is already
contained in one of the premisses.

The question is - without delving too much into astronomy theory,
which is clearly beyond the scope of this thesis - whether the knowledge
that a region R is in a black hole is indeed knowledge about the world. The
astronomy argument seems, to a certain degree, similar to a case in which
the premises are about fiction. If logical reasoning is applied to the latter
case the expected conclusion will be on fiction as well. Even in this case
deduction leads to a conclusion which cannot be discovered directly, without
logic, but it seems not justifiable to state that the deduction enlarges the
knowledge about the world.

More in general the question is whether a deduction which contains
one or more premises whose constituents are (in principle) not directly dis-
coverable is indeed a counterexample against the principle of innocence. In
particular in the case of deductive reasoning the content of the conclusion of
an argument is, by definition of logical consequence, so strongly based upon
the content of the premises. The main objection against this line of reason-
ing is some kind of dogmatism about the principle. In order to defend the
principle one can adopt the strategy that every supposed counterexample is
after all not about the world, hence not a counterexample against the prin-
ciple. This strategy would turn the principle of innocence into a dogmatic,
not falsifiable notion.

In addition, one might wonder how Rumfitt knows that P1 is indeed
the case. By P2 it is clear that Rumfitt cannot know that B is in region
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R of the Andromeda Galaxy. On the other hand it also quite unclear how
Rumfitt might be able to know that B is in black hole. Hence, it is not a
surprise that starting from non attainable knowledge leads to a conclusion
about non attainable knowledge as well. To conclude, the current section
aimed to show that the astronomy argument alone is not sufficient to reject
the principle of innocence.

2.3.2 The Truth Predicate Argument

The starting point of Read’s criticism is Prawitz’s observation that the ad-
dition of a harmonious pair of inference rules does not always lead to a
conservative extension of the system to which it is added (Read 2016: 411;
Prawitz 1994: 374). More specific, Prawitz provided the example of the
addition of the Tarskian truth predicate to Peano arithmetic. By Gödel’s
incompleteness theorem, the result is a non-conservative extension of the
original system. The thought behind this example is that logic can indeed
create new content, so in line with Rumfitt’s astronomy argument Read aims
to show that the principle of innocence is too strict.

As Steinberger points out, the strength of the example lies in the
rules governing the truth predicate (2011a: 635). The thought is that what-
ever formal (local) harmony requirement will be used, the rules for the truth
predicate will satisfy these requirements. The rules for the T-schema are
quite simple: A ` Tr(A) is the introduction rule and Tr(A) ` A is the
corresponding elimination rule. However, Steinberger criticizes Read and
Prawitz’s counterexample because it is, according to him, not the addition
of the truth predicate and the corresponding inference rules which results
in a non-conservative extension.

The result of just adding the truth predicate and its inference rules
is a conservative extension of Peano arithmetic (Ketland 1991: 76 and Hal-
bach and Leigh 201411). By the addition of the entire Tarskian theory the
consistency of Peano arithmetic becomes provable which is, by Gödel’s sec-
ond incompleteness theorem, definitely not provable in the original language
of just Peano arithmetic. The point is that the counterexample provided by
Prawitz and Read does not work, because the non-conservativeness is not
due to the introduction and elimination rule for the truth predicate (Stein-
berger 2011a: 635-636).

Although Read’s rejection of innocence is just based upon a mis-
taken counterexample, his final remark regarding the principle is worth men-
tioning. According to Read two ideas have dominated the views in philoso-
phy about logic in the twentieth century (2016: 412). The first one is that
logical consequence is just formal, and the second one is that logic is empty.
Both ideas are according to him connected to each other, since they share

11This is the most recent entry in the SEP, this is the reason why it is more recent than
Steinberger’s own article.
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the view that the non-logical terms contain all the content and that logic
has no content at all. This is, according to Read, the genuine, and mistaken,
basis of the principle of innocence.

These claims are, unfortunately, not further spelled out by Read.
Only the statement that logic is empty is accompanied by a quote from
Wittgenstein’s Tractatus. However, without delving too much into these is-
sues, it is clear that these broad statements cannot just be taken for granted.
First of all it should be mentioned that, although Wittgenstein was definitely
influential, there are other views on logic in twentieth century philosophy.
For example Quine’s view that logic is the most inner part of the holistic
web of belief (1951; 1960), and Putnam’s more extreme view that logic is
empirical (1969).

Furthermore, the statement that logic is formal is far too general,
for example Dutilh Novaes (2011) presents different ways in which logic can
be formal.12 More importantly, one might wonder whether the fact that logic
is formal implies indeed that logic has no content. Frege argued for example
that logic provides indeed content about the natural numbers (MacFarlane
2002: 29). However, as MacFarlane explains, logic is according to Frege not
purely formal in the Kantian sense of it, which means that logic is completely
abstracted from the semantic content (idem: 28). The latter means that the
semantic content of concepts is for logic completely indifferent such that
logic is “unrestrictedly formal” (idem: 29). The point is, as MacFarlane
(2000) outlines as well, that there are, besides the Kantian notion, several
ways in which logic can be formal. Hence, Read should make the claim
that logic is formal more precise in order to claim that the formality of logic
implies that it has no content.

Ultimately, Read does not seem to care that much about the mo-
tivation for the harmony requirement:

“What has to be accepted is that, although their ultimate aim is
the same, namely, an account of the meaning of logical constants
in purely proof-theoretical terms, different authors have different
conceptions of harmony” (2016: 412).

His rejection of the principle of innocence boils down to the by Steinberger
already disproved truth predicate argument. Therefore, Read does not suc-
ceed in his aim to reject the principle of innocence.

2.3.3 Evaluation

It might be useful to sum up some of the main elements of the two previous
sections. First of all the astronomy argument is too questionable to reject

12In addtion MacFarlane’s PhD thesis (2000) is the most natural starting point for an
overview of what is meant by the claim that logic is formal.
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the principle of innocence solely by this counterargument. The truth predi-
cate argument was simply incorrect. In other words, it seems that there is
not yet a decisive argument to reject the principle. Secondly, it has been
argued that the principle of innocence can be captured by a global harmony
requirement which prevents against E-strong disharmony. The notion of a
conservative extension satisfies these requirements, but Steinberger rejected
it by his additional meaning-theoretic assumptions. Therefore, the next sec-
tion delves further into this aspect; it explores what Steinberger actually
proposes as a formal harmony requirement.

2.4 Steinberger’s formal counterpart

Clearly, Steinberger’s formalization is a local one. Furthermore, it should
prevent against both E-weak and E-strong disharmony. Steinberger indi-
cates more explicit how a formal account of harmony should look like:

“Our discussion strongly suggests that ultimately an adequate
formulation of harmony will have to be a local constraint that
must incorporate an account of stability so as to entail normal-
izability” (2011a: 639).

In order to make this quote precise, and Steinberger’s formalization as well,
some conceptual clarification is needed.

2.4.1 Intrinsic Harmony and Normalization

Before normalization can be introduced some other formal notions need to
be defined. Steinberger follows Dummett’s formulation, so this will be done
here as well. First of all let λ be a logical constant. A local peak for λ is a part
of a deduction where the introduction rule for λ is followed immediately by
the elimination rule for λ (Dummett 1991: 248). If there is such a local peak
one tries to apply a levelling procedure. To level a local peak a deduction
should be provided in which the premises for the introduction rule of λ lead
to the conclusion of the elimination rule for λ, but without using the rules
for λ (idem: 248). More specific, the conclusion of the introduction rule and
the major premiss of the elimination rule is called a (λ-) maximum, and it
is this sentence which is eliminated by the levelling procedure (Steinberger
2011: 626). For example, this is the local peak for conjunction:

Π1

A

Π2

B
I∧

A ∧B
E∧

A

Obviously, the detour via conjunction introduction and elimination is super-
fluous, since A was already proved. Hence, the local peak for conjunction
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can be levelled or eliminated (of course B could be as well the conclusion
of the local peak). If it is possible to level a local peak for a constant, then
the constant satisfies Dummett’s requirement of intrinsic harmony (1991:
250). It is a local requirement since the levelling procedure for a local peak
is done in isolation, so it is not needed to take the rules for other constants
into account.

The thought behind the normalization theorem is quite similar to
the levelling procedure for local peaks. The goal of normalization is to show
that in a proof detours are avoidable such that there is a direct route from
the premisses to the conclusion (Steinberger 2011a: 627). More precise, a
proof is in normal form if no further reduction procedures can be applied
to it (idem: 627-628). The other reduction procedure, beside the levelling
procedure, is called a permutative reduction (idem: 627). By this procedure
it is possible to rearrange the order of the application of inference rules in the
proof such that a local peak can be created. Once there is such a local peak
the usual levelling procedure can be applied to it. Now a proof system is
normalizable if every proof of it can be turned into normal form (idem: 628).
Contrary to intrinsic harmony, normalizability is a global property since it
depends upon the combination of inference rules within a system. Therefore,
the normalization requirement alone is from Steinberger’s perspective not
the correct one for harmony.

However, Steinberger argues that normalizability would be the best
global requirement for harmony:

“It guarantees, therefore, that there can be no semantic spill-over
from the logical to the non-logical regions of language. In other
words, it guarantees the requirement of innocence” (idem: 632).

The reason is, as Steinberger briefly explains, that once a conclusion is
reached by a proof which contains an operator not occurring in the pre-
misses or in the conclusion, a normalizable system provides another deduc-
tion without this operator. The detours are avoidable, so this part of the
proof is after all innocent. By the levelling of local peaks the normaliza-
tion theorem guarantees that the premisses and the conclusion are directly
linked to each other. It is thereby not possible to influence by a normal-
izable system the non-logical sentences of the language. Unfortunately for
Steinberger, intrinsic harmony does not imply normalization.

2.4.2 E-weak disharmony

The example of quantum disjunction, which is originally due to Dummett
(1991), shows that the notion of intrinsic harmony faces some problems.
The introduction rule for quantum disjunction is similar to the one for stan-
dard disjunction, but the elimination rule is slightly different: no collateral
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hypotheses are allowed in the minor premises (Steinberger 2011a: 628).
Quantum disjunction is in this thesis denoted by ?.

First of all quantum disjunction shows that intrinsic harmony is not
a guarantee against E-weak disharmony. Quantum disjunction is intrinsi-
cally harmonious, but has a too weak elimination rule and leads therefore to
E-weak disharmony (idem: 629). This is due to Dummett’s observation that
once the standard disjunctive operator is added to a system which contains
just conjunction and quantum disjunction the latter constant collapses into
standard disjunction (idem: 628). Hence, according to Steinberger’s view,
quantum disjunction elimination fails to fully exploit the corresponding in-
troduction rule.

Secondly, the example shows that the addition of standard dis-
junction to a system of quantum disjunction and conjunction results in a
non-conservative extension of the original system (idem: 629). The reason is
that the law of distributivity for quantum disjunction, which is A∧(B?C) `
(A∧B)? (A∧C), becomes provable in the system once standard disjunction
is added to it. Since the law of distributivity contains just constants of the
system {∧, ?}, the result is a non-conservative extension.

Thirdly, the new system is not normalizable, whereas the original
system is. According to Steinberger, this is again due to the weakness of
the elimination rule for quantum disjunction: it fails to accommodate a
reduction procedure in order to create a local peak (Steinberger 2011a: 629).
The example he uses is the following:

A ? B

[A]1
I∨

A ∨B
[B]2

I∨
A ∨B

E?1, 2
A ∨B

Γ1,[A]3
C

Γ2,[B]4
C

E∨3, 4
C

In this proof the application of I-∨ and E-∨ is not yet a local peak because
of E-?. An application of the permutative reduction procedure in order to
create a local peak for disjunction leads to the following situation:

A ? B

[A]
I∨

A ∨B
Γ1,[A]

C

Γ2,[B]

C
E∨

C

[B]
I∨

A ∨B
Γ3,[A]

C

Γ4,[B]

C
E∨

C
E?

C

It is, however, not possible to apply the final step of the proof, E-?, because
this is only allowed if Γ1 − Γ4 are empty. Therefore, the permutative re-
duction procedure cannot be applied which means that the system is not
normalizable.

The final problem is that the normalizability of the system {?,∧}
shows that even the normalization requirement does not rule out constants
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which suffer, intuitively, from E-weak disharmony. In terms of a global
requirement an additional principle seems to be needed to rule out this
kind of disharmony as well. Steinberger admits the importance of E-weak
disharmony, it is according to him the fundamental problem of ?, so in
his view another local requirement is needed to prevent against E-weak
disharmony (2011a: 629).

Recently, Murzi and Steinberger have proposed a procedure to solve
the problem of E-weak disharmony (2015: 16). They propose an expansion
procedure to guarantee that the elimination rules are strong enough. An ex-
pansion procedure shows that the conclusion of the introduction rule can be
extended by an application of both the elimination rule and the introduction
rule of the same constant. The result of these applications should be the
conclusion of the introduction rule. An appropriate example is implication:

Π
A→ B [A]1

E→
B

I→, 1
A→ B

Originally, Π already proved A → B, and the above expansion shows that
A → B remains provable once the derivation is extended by the full use of
both I-→ and E-→. Now, according to this proposal, the inference rules for
a constant are harmonious if and only if there are both levelling procedures
and expansion procedures for the introduction and elimination rules. This
sounds promising, but Murzi and Steinberger do not extend it further and
just illustrate it with conjunction. In the light of this section it is worth
checking whether the expansion procedure enables to distinguish between ∨
and ?. This leads immediately to a problem, since Murzi and Steinberger
are not explicit whether it is necessary for a correct expansion procedure to
apply the E-rule before the I-rule. If this is not necessary, then the following
straightforward procedure works for both ∨ and ?:

Π
A ? B

[A]
I?

A ? B

[B]
I?

A ? B
E?

A ? B

If the just presented expansion procedure is allowed, then it clearly does not
succeed in distinguishing quantum disjunction from standard disjunction.
The other option - that it is necessary to have the introduction rule as final
step of the expansion procedure - faces another problem. According to the
latter interpretation an expansion procedure for disjunction would look like
this:

Π
A ∨B

Π,[A]

A

Π,[B]

A
E∨

A
I∨

A ∨B
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This expansion procedure is not possible for quantum disjunction because
collateral hypotheses are used in the minor premisses of the elimination rule.
However, the above proof assumes that Π proves one of the two disjuncts, in
this case A, such that Π can derive A∨B. This assumption is in general un-
justified, and only plausible in specific circumstances. Clearly, a procedure
which is questionable, or simply implausible, is not the right requirement
for harmony. Hence, the situation for ∨ and ? is that either the expansion
procedure works for both constants, or the procedure becomes implausible,
even for standard disjunction. After all, the expansion procedure fails to
distinguish between ∨ and ?.

To conclude, Steinberger’s preference for a local harmony require-
ment and his claim that normalization is the best global notion to guarantee
the innocence of logic leads to his demand for a local stability requirement.
Stability should prevent against E-weak disharmony and, in addition with
the local notion of intrinsic harmony, imply normalization. A local stability
requirement was for Steinberger not on the market, and it just turned out
that the proposed expansion procedure cannot rule out intuitively E-weak
disharmonious constants. Since it was already concluded that the principle
of innocence does not imply a local harmony requirement, it seems wise to
check whether it is possible to guarantee innocence by global notions.

2.4.3 Going Global?

The obvious starting point for a purely global notion is normalization. The
previous section showed by the example of quantum disjunction that intrin-
sic harmony faces some problems. Furthermore, it highlights two impor-
tant points for the normalization requirement. Firstly it raises the question
whether it is in principle problematic that a requirement is to a certain de-
gree context dependent. Secondly, the fundamental problem does not seem
to be context dependency, but to specify the logical operator that causes
the non-normalizability of the system. If the latter is possible then the
constant identified as the cause of the problems can be regarded as dishar-
monious. The already familiar example of conjunction, standard disjunction
and quantum disjunction illustrates this problem.

Clearly, the system {∧,∨} is normalizable, and, as Steinberger
states, the system {∧, ?} is normalizable as well (2011a: 629). Hence, the
fact that the system {∧, ?,∨} is not normalizable cannot be immediately
explained by appealing to a system with less logical constants. It is indeed
the interplay between quantum disjunction and standard disjunction that
causes the troubles. At first sight the failure of the permutative reduction is
due to the elimination rule for quantum disjunction: because of the specific
requirement for this rule the final step cannot be applied. However, the
question is why it is not the application of standard disjunction elimination
which causes the problem. It is because of this application that the quan-
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tum elimination rule cannot be applied. In other words, it does not seem
possible to decide justifiably which elimination rule is incorrect.

Another option is to bite the bullet and adopt the position that
harmony is identified with normalization. Hence, harmony would be a prop-
erty of the deductive system as a whole. On this account the systems {∧,∨}
and {∧, ?} are harmonious, whereas {∧, ?,∨} is disharmonious.

The obvious disadvantage of the harmony equals normalization ac-
count is that harmony cannot be directly ascribed to logical constants. In
order to check whether a constant is harmonious or not it is needed to check
whether it is part of a harmonious system. It seems even more problematic
that a constant can be both harmonious and disharmonious. Both quan-
tum and standard disjunction are part of normalizable and non-normalizable
systems, so they are both harmonious and disharmonious.13

Systematic conservativeness, or global conservativeness, faces the
same problems as just identified for normalization. In particular, it faces the
major problem that a constant can be both harmonious and disharmonious.
If standard disjunction is added to the system of {∧, ?} then it leads to a
non-conservative extension, hence it would be disharmonious. On the other
hand, it is harmonious if it is added to a system which contains, for example,
just conjunction and implication. Given this major problem the best option
for the conservativeness requirement seems to be to adopt its semi-global
version. Each constant is tested in isolation by a base system which solely
contains atomic sentences and (a subset) of the structural rules.

2.5 Conclusion

The conclusion of the current chapter is threefold. First of all the chapter
argued that the principle of innocence does not strictly imply Steinberger’s
general harmony, a (semi)global requirement can secure the innocence of
logic as well. Moreover, the principle of innocence as such does not imply
the need to rule out E-weak disharmony as well. Secondly, two arguments
against the principle of innocence were evaluated and it turned out that both
of them do not succeed in their goal to reject the principle. The astronomy
argument was too specific, and, more importantly, too questionable to serve
as a rejection of the innocence of logic. The truth predicate argument was
already discussed and rejected by Steinberger (2011a). Thirdly, the chapter
considered several ways to guarantee the innocence of logic by a formal
harmony requirement. In line with the first conclusion both local and global
requirements were discussed.

It turned out that, both on a local and a global level, it is quite

13A way to solve this is to require that a constant is only harmonious if the addition of
it to a normalizable system leads to a normalizable system as well. However, this faces
the problem that standard and quantum disjunction would be disharmonious. In other
words, this requirement is too strong.
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hard to rule out E-weak disharmony. Although the principle of innocence
does not imply it as such, the formal parts of the remaining chapters will
still, for the sake of the argument, check whether a further requirement
solves the challenge raised by E-weak disharmony. In addition, the next two
chapter offer two other motivations for the harmony requirement.
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3 The Inversion Principle

The version of the harmony thesis which is based upon the inversion prin-
ciple is the most traditional one. It relies strongly upon Gentzen’s remark,
already mentioned in the first chapter, that the meaning of each connective
is given by the introduction rule(s) (Rumfitt 2016: 3). The current chap-
ter contains three main sections. The first section presents the inversion
principle and the idea that the introduction rules capture the meaning of
the connectives. The second section discusses these two ideas. Thirdly, the
chapter presents the formal notion of harmony which makes the informal
notions of the first section precise.

3.1 Introduction Rules and Inversion

“The introduction rules represent, as it were, the “definitions”
of the symbols concerned, and the eliminations are no more, in
the final analysis, than the consequences of these definitions”
(Gentzen 1934/1964: 295).

This is Gentzen’s famous remark on which the idea is based that purely
the introduction rules determine the meaning of the logical constants. The
introduction rules are according to this view self-justifying (Dummett 1991:
251). Therefore, the elimination rules are justified by their reference to the
corresponding introduction rule (idem: 252).

In terms of the broader meaning-theoretic assumptions, Gentzen’s
idea is based upon a verificationist theory of meaning (idem: 252). This is
due to the idea that for a constant λ the introduction rules of λ specify the
direct or “canonical” grounds for the assertion or truth of a sentence with
λ as main connective (Rumfitt 2016: 5). Thereby this view, by its focus
upon the introduction rules, opposes the two-sided model of meaning which
includes both the I-rules and the E-rules. Originally, Prawitz (1974) and
Dummett (1991) have further worked out Gentzen’s idea.

As always, conjunction is an easy illustration of the role Prawitz
and Dummett have in mind for the introduction rules. Suppose that G1 and
G2 are direct grounds for respectively the formulas A and B. Accordingly,
the introduction rule for conjunction provides direct grounds for the formula
A ∧ B by combining G1 and G2 (Rumfitt 2016: 5). Contrary to direct
grounds, a formula can as well be established by indirect grounds (Dummett
1991: 252). For example one can conclude A ∧ B by the formulas C, C →
(A ∧B), and the usual elimination rule for implication (Rumfitt 2016: 5).

The point of harmony in this context is that the elimination rule
of λ must be faithful to the meaning of λ, which is given by the introduction
rule. Rumfitt uses Negri and von Plato’s inversion principle to make this
more precise:
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“Whatever follows from the direct grounds for deriving a formula
must follow from that formula” (Negri and von Plato 2001: 6;
Rumfitt 2016: 6).

This sounds quite abstract, but the example of the previous paragraph il-
lustrates it clearly. The direct grounds for A ∧ B were G1 and G2, and A
followed from G1 and B from G2. Hence, the inversion principle requires
that both A and B follow from the conjunction, which leads to the usual
elimination rules for conjunction: A ∧B ` A and A ∧B ` B.

In other words, a constant is harmonious if the corresponding in-
troduction and elimination rules satisfy the inversion principle. Obviously,
conjunction is according to this account a harmonious constant. More gen-
erally, the introduction rule of λ is given and thereby justified, and it has
to be shown that the elimination rule of λ is in harmony with the intro-
duction rule (Dummett 1991: 253). Later on, this chapter outlines how
Read makes this informal notion precise by his General-Elimination Har-
mony (GE-Harmony). However, the justification of inversion and the cor-
responding meaning-theoretic primacy of the introduction rules are firstly
discussed in the next section.

3.2 The Justification of Inversion

Rumfitt identifies one argument in favour of the inversion principle (2016:
8). Suppose, for the sake of the argument, that C is a formula which follows
from any of the direct grounds for the assertion of a formulaD. Furthermore,
suppose that D is asserted. If the assertion of D is correct, then it seems
that one of the direct grounds for D must obtain. By the first supposition
C follows from any of these grounds, so the formula C must obtain if D is
correctly asserted. Hence, it seems in line with the inversion principle to
conclude that C must follow from D.

This argument faces according to Rumfitt two serious problems.
First of all it assumes implicitly that logical consequence is about the preser-
vation of correct assertibility, so it rejects the standard view that conse-
quence is concerned with the preservation of truth (idem: 8-9). If logical
consequence is about the preservation of truth then the assumption that D
is asserted changes into the assumption that D is true (idem: 9). However,
from the latter assumption it does not follow that one of the direct grounds
for D must obtain. Since D might be true but still unassertible the argument
needs to suppose that consequence is about the preservation of assertibility.

The second problem is that in order to conclude that C follows
from the correct assertion of D, which is assumed, it must be argued that
by correctly asserting D also one of its direct grounds obtains (idem: 9).
By the supposition that D is correctly asserted it just follows that a ground
for D obtains, and not necessarily a direct ground. In other words, the
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underlying problem is to find the right notion of a direct ground.

3.2.1 Direct and Indirect Grounds

The distinction between direct and indirect grounds is as well relevant for
the first problem raised by Rumfitt. Once it is assumed that consequence
is about the preservation of assertibility, this notion must provide a new
way to distinguish between correct and incorrect ways of reasoning; without
appealing to the notion of truth (idem: 11). Prawitz’s and Dummett’s
account of logical consequence is, according to Rumffit, the only one which
aims to do this, and this one is strongly based upon the distinction between
direct and indirect grounds for assertion.14

Logic provides, according to the Dummett/Prawitz account, indi-
rect grounds for atomic assertions. These indirect grounds must be faithful
to the direct grounds for the assertion of the atomic statements. It is, for
example, possible to assert by logic indirectly B on the basis of the premises
A→ B and A. However, the application of implication elimination must be
faithful to the direct grounds for the assertion of B. Therefore, logical con-
sequence is about the transformation of any direct grounds for the premises
into a direct ground for the conclusion (idem: 12).

Dummett elaborates further on such a notion of consequence:

“an argument or proof convinces us because we construe it as
showing that, given that the premisses hold according to our or-
dinary criteria, the conclusion must also hold according to the
criteria we already have for its holding” (1991: 219).

He illustrates this account by Euler’s proof concerning the Seven Bridges
of Koningsberg problem. The proof shows that someone who is observed
to cross every bridge in Konigsberg crosses at least one bridge twice. Such
an observation is made “by the criteria we already possessed for crossing
a bridge twice” (1991: 219).15 In other words, the conclusion - that the
person crosses at least on bridge twice - holds according to the criteria that
are already provided for crossing a bridge twice. Rumfitt criticizes this
account of logical consequence, and the corresponding illustration, for two
reasons.

Firstly, he argues that Euler’s proof does not imply that the criteria
for crossing a bridge twice are actually applied (2016: 12). It implies the
counterfactual that if there is an observer on each bridge, then at least one

14According to Rumfitt Prawitz’s and Dummett’s account are essentially the same, so
they are here discussed together (2016: 11-12).

15There is an intimate connection between the just developed line of reasoning and the
principle of innocence. Steinberger uses these arguments to construct the principle of
innocence, and Dummett’s statement that the meaning of logical sentences should not
affect the meaning of the other regions of the language is also due to this section.
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observer will observe twice the person who aims to cross every bridge. Since
it is a counterfactual claim, Dummett’s account of the validity of the proof
is inconsistent with some metaphysical possibilities (idem: 12-13). Rumfitt
offers the example of a neurological condition which leads to a catatonic
state for every observer before any observation of a person who aims to
cross a bridge twice (idem: 13). In such a world, the counterfactual is false,
but it is, by Euler’s proof, still true that the promenader crossed one bridge
twice if he crossed every bridge.16

Secondly, Rumfitt questions the exact notion of a direct ground
(idem: 13). On the one hand the notion needs to be broad enough to capture
the idea that only if a direct ground for a formula could have obtained a
ground for the assertion of a formula should obtain. On the other hand
the introduction rules, by which it is possible to assert complex sentences,
constrain the notion of direct grounds. This leads to the requirement that
there can be no ground for the assertion of a complex sentence unless this
assertion could be justified by the introduction rule for the main connective
of the considered sentence.

The latter requirement is what Dummett calls the fundamental
assumption:

“if we have a valid argument for a complex statement, we can
construct a valid argument for it which finishes with an appli-
cation of one of the introduction rules governing its principal
operator” (1991: 254).

Dummett and Rumfitt agree that the argument in favour of the inversion
principle is purely based upon the fundamental assumption, so it is worth
to check whether the assumption is actually plausible.

3.2.2 The Fundamental Assumption

Since the assumption is in particular concerned with the introduction rules
and the possible main connectives of a formula, a case distinction is made
to discuss its plausibility.

The first case is easy, since Rumfitt admits that the assumption
holds for conjunction (2016: 13). It seems quite plausible that the assertion
of A ∧B is as well a commitment to the assertion of A and the assertion of
B. Hence, the introduction rule for conjunction could have been applied as
the final step of the argument.

In the case of disjunction, Rumfitt doubts whether the assumption
is plausible. Dummett uses the distinction between individual and collective

16Ironically, even in the actual world Euler’s proof is not observable, since the infrastruc-
ture of the bridges in Kaliningrad, as Koningsberg is nowadays called, differs significantly
from the situation when Euler gave his proof.
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possession to rule out some obvious counterexamples (1991: 266). Accord-
ing to Dummett the assumption is only plausible in the case of collective
possession of information. In particular for statements about the past this
is relevant, so according to the assumption originally one of the members of
the community could have asserted the disjunction by an application of the
introduction rule.

Despite of this, Rumfitt still presents a counterexample against
the fundamental assumption. The example is the following one: “At the
moment when Brutus first stabbed Caesar in Pompey’s Theatre, there was
either an odd or an even number of people in the Agora in Athens” (2016:
14). To assert correctly such a statement about the past it is sufficient that
someone at the relevant time could have turned appropriate observations
into a verification of the asserted statement (1991: 268). The fundamental
assumption turns this, as Rumfitt states, into the necessary condition that
someone at the relevant time could have made observations to justify the
statement (2016: 14).

However, in the case of this disjunctive statement the latter, neces-
sary, condition cannot be fulfilled. Recall that the fundamental assumption
requires that either a direct ground for the statement “At the moment when
Brutus first stabbed Caesar in Pompey’s Theatre an odd number of people
were in the Agora” must obtain, or a direct ground for the claim that “at
that moment an even number of people were in the Agora”. At the relevant
time it was impossible to observe one of these two statements (idem: 15).
Due to distance between Pompey’s Theatre and the Agora, two observers
are needed. Moreover, the observer at the Theatre needs to communicate
with the observer in the Agora to tell the latter when to count the number
of people.

Such a fast communication was, of course, not possible at the rel-
evant time, so Rumfitt concludes that it is not possible to obtain a direct
ground for the assertion of the disjunctive statement. Hence, he concludes
that the fundamental assumption excludes the assertion of this kind of state-
ments, whereas it seems, according to him, a plausible assertion. The upshot
is that the assumption excludes too much assertions, and therefore Rumfitt
concludes that the assumption is false for disjunctions (idem: 15).

The question is whether Rumfitt’s counterexample is satisfying.
One objection is that it seems solely by our current standards a plausible
assertion to make. At the relevant time everyone was aware of the fact
that it is impossible to check such a statement, and one might even wonder
who would consider the number of people in the Agora at the time Brutus
first stabbed Caesar. However, discussing this in full detail is not necessary,
since the conclusion will be that the fundamental assumption is actually
false. This conclusion is due to other constants.

Whereas the fundamental assumption holds for conjunction, it fails
for both universal statements and “if, then” statements, of course captured
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by the universal quantifier and implication. Dummett himself admitted that
the assumption is false due to these two constants (1991: 278). It is remark-
able that Rumfitt argues at length against the fundamental assumption, and
shows that it fails as well for negation, while Dummett has already concluded
that the assumption is implausible. Dummett’s rejection of the assumption
turns an exhaustive evaluation of Rumfitt’s counterexamples into a quite
superfluous activity. It is, however, still interesting to explore the reason
why the assumption fails in particular for these constants, which will be
done in the next section.

Given the rejection of the fundamental assumption the only option
for the proponents of the inversion principle seems to be to develop another
notion of consequence which does not rely upon it. However, the main prob-
lem of the inversion principle is not, as the next section aims to argue, the
fundamental assumption, but the underlying meaning-theoretic assumption.
In order to see this it is time to turn to the well-known counterpart of the
introduction rules; the elimination rules.

3.2.3 Elimination Rules

As Steinberger notices, Gentzen’s remark is often mentioned, but the posi-
tion is hardly supported by some well-developed arguments (2011a: 622).
Contrary to Gentzen’s idea, it has been claimed that for some constants the
elimination rule is more important for the meaning of the constant than the
introduction rule. In other words, it boils down, at least in Dummett’s case,
to the question when, for example, it is plausible to assert “if A then B”.
According to the view based upon Gentzen’s remark this is most plausible
once there is an effective method to transform any proof of A into a proof
of B (Dummett 1991: 273).17 The opposite view holds that “if A then B”
is assertible once there are grounds that in any case when A is assertible B
is assertible as well.

Regarding implication, Dummett adopts the position that the lat-
ter happens far more often than the former (idem: 273). Hence, the elimina-
tion rule has meaning-theoretic primacy in the case of implication, a position
which is adopted by Rumfitt as well (2000: 790). Dummett’s reason is that
indicative conditionals are - except the conditionals which express an inten-
tion - outside mathematics asserted based upon experience, which favours
the elimination rule (1991: 273).

The relevant point for the plausibility of the inversion principle is
whether a statement which is asserted on the basis of the meaning-theoretic
primacy of the elimination rule could be derived by a deduction with as final
step the introduction rule for the considered connective. The problematic
case for implication is according to Dummett the one with a disjunctive

17Dummett does not presume bivalence, hence implication is not considered truth-
functionally by the truth or falsity of the antecedent and the consequent (1991: 272).
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consequent (1991: 273). He offers the following example: “If you ask him
for a loan, he will either refuse or make an outright gift to you” (idem).
Although the statement is based upon experience, it is unknown on which
principle the decision to refuse or make an outright gift was made. Hence,
it is not possible to make a specific prediction which disjunct will hold in
the specific case. Therefore, Dummett sticks to the view that implications,
based upon experience, are asserted on the basis of a generalized version of it
(idem: 274). This leads immediately to the case of the universal quantifier.

In the case of the universal quantifier Dummett adopts as well the
view that its meaning is not purely captured by the introduction rule; the
elimination rule is also meaning-constitutive (idem: 275). The reason is that
there are, in general, two kinds of ground to assert a universal statement:
(i) by a logical derivation which ends in a free variable statement (with
the usual restrictions on the variables), and (ii) by an empirical induction.
Obviously, the former procedure is adequately captured by the introduction
rule, but the latter procedure is, by its non-logical and more pragmatic
character, better captured by the elimination rule. The main characteristic
of a universal statement, based upon an inductive generalization, is that it
allows to assert that for every object in the relevant domain the considered
property holds. Definitely, this is better captured by the elimination rule.

The final problem arises once it is tried to construe, in case (ii), a
deduction with as final step the introduction rule for the universal quantifier.
Since the original assertion was based upon empirical induction, some non-
logical principles are as well needed in the new (sub)derivation in order to be
able to apply the introduction rule (idem: 275-277).18 This means that in
order to adopt the fundamental assumption in its narrow sense - that the last
step in a derivation of the universal quantifier can be an application of the
introduction rule - one implies that the universal quantifier is, by the appeal
to non-deductive principles, not a purely logical constant (idem: 278). Since
this is not acceptable, Dummett rejects the fundamental assumption.

A way to capture the just outlined difference between the impor-
tance of the introduction and elimination rules is by Peacocke’s notion of
an obvious rule (1987: 154). This notion is a primitive one, so it is quite
difficult to make it more precise and develop it in full detail. Although
a well-developed account is missing, intuitively, in the case of implication
and the universal quantifier the elimination rule is the obvious one. On the
other hand, disjunction provides an example of a constant for which the
introduction rule is obvious.

Hjortland’s formal explanation of the latter observation is that it is

18Dummett does not discuss in full detail the complicating issues concerning empirical
induction. It is beyond the scope of this thesis to add such a discussion here. The
option that induction can be regarded as deductive reasoning, by for example the use of
probabilities, is also not taken into account. See for example Strawson (1952) as a starting
point for a criticism of such an approach to inductive reasoning.
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due to the discharge of assumptions in the case of implication introduction
and disjunction elimination (2010: 159). These so-called hypothetical rules
are thereby less obvious than the other, categorical, rules. This seems a
plausible explanation, but it does not contribute to a notion of harmony
which is purely based upon either introduction or elimination rules. Since
it is for each constant different which rule has the most meaning-theoretic
power it is quite hard to put forward a general motivation for prioritizing
one of the two for all the constants.

Regarding the question whether the introduction or the elimina-
tion rules should be the starting point, it is useful to distinguish between a
philosophical and a formal perspective. From a formal perspective it seems
a quite natural option to prioritize either the introduction or the elimination
rules and to develop an account which leads to harmonious counterparts of
these rules. Although the choice between introduction and elimination rules
is, given the considerations of the current section, quite arbitrary, the next
sections offers such a formal notion of harmony.

From a philosophical perspective it seems that two options are
left. First of all it might depend upon the constant which rule has meaning-
theoretic primacy. For example Edwards suggests that in the case of the
universal quantifier its meaning is captured by the elimination rule, whereas
the existential quantifier is captured by its introduction rule (1995: 97).

The second option is that both the introduction and elimination
rule have meaning-theoretic importance; they need to be taken into account
together. This does not rule out the possibility that for some constants one
kind of rule is more important than the corresponding I- or E-rule. Such an
approach corresponds with the view suggested in the first chapter according
to which there is a scale of rules that determine the meaning of a constant.
However, the other, less important, rule has still some meaning-theoretic
power.

Despite of the shortcomings of the current notion of harmony it is
still interesting to present a formal notion of harmony which aims to capture
the inversion principle. This will be done by Read’s account of harmony.
Probably it turns out that, although GE-Harmony does not have a satisfying
motivation, it offers a formal advantage which can be used to improve the
other accounts of harmony.

3.3 General-Elimination Harmony

Read claims that his account of harmony is the one which is indeed based
upon Gentzen’s famous remark (Read 2000: 129; Read 2010: 562). Philo-
sophically, Read’s motivation for his account of harmony is rather weak.
The just mentioned claim that his account is the best analysis of Gentzen’s
remark might turn out to be correct, but the problem is that Read uses it
as a motivation for his notion of harmony. Since Gentzen did not provide
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a further, well motivated, reason for his claim, Read’s motivation is, by his
appeal to Gentzen, just an argument based upon authority.

The other motivation appeals to the autonomy of the logical con-
stants. Once the meaning of the constants is purely given by the introduction
rules these constants are self-justifying and autonomous (Read 2000: 131).
The reason for this claim is the familiar one that no more and no less can
be inferred from a formula than is provided by the grounds for the intro-
duction of the formula (idem). Since the meaning is fully captured by the
introduction rule the constant is self-justifying and autonomous.

The main objection against this way of reasoning is that it seems
perfectly possible to substitute “introduction rules” by “elimination rules”,
and the logical constants are still self-justifying and autonomous. As the pre-
vious section argued there is no principal reason to give meaning-theoretic
primacy to the introduction rules, so Read’s argument seems to fail. Fur-
thermore, it is possible to argue that the logical constants are still self-
justifying and autonomous once both the introduction and elimination rules
are equally meaning-constitutive. Only an appeal to non-logical principles
for the justification of the logical constants seems to threaten the autonomy
of logic. The self-justifying character of a constant is threatened by a more
global account of harmony, because in such a case other constants or logical
rules need to be taken into account as well. However, this is still no reason
to suppose that only the introduction rules guarantee the autonomy of the
constants.

From a more formal perspective Read’s account offers the advan-
tage that it is sufficient to come up with the introduction rules, since the
elimination rules are just consequences of these rules. More importantly, the
formal procedure to derive the elimination rule for a logical constant leads
to an harmonious pair of inference rules. Dicher offers a quite accurate de-
scription of the algorithm to determine harmonious elimination rules (2016b:
589). The major premise of the E-rule is the conclusion of the introduction
rule, and in addition the number of subderivations in the E-rule equals the
number of introduction rules. Furthermore, each subderivation assumes the
premisses of the I-rule, and concludes an arbitrary formula C. Finally, the
application of the E-rule discharges the assumptions and concludes that C
is the case. For a more formal description, suppose that the introduction
rules for a constant λ schematically look like this:

Π1
I-λ

A
Πn

I-λ
A

According to this schema Π1 - Πn denote the grounds for the assertion of a
formula A in which λ is the main connective (Read 2000: 130). Given such
an introduction rule the harmonious elimination rule for λ is the following:
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A

[Π1]

C

[Πn]

C
Eλ

C

The application of E-λ discharges the assumptions {Π1 - Πn}.19 This pro-
cedure constitutes Read’s account of a harmonious pair of inference rules,
called General-Elimination (GE) Harmony by Francez and Dyckhoff (2012).
As the name strongly suggests, these schema’s define a general version of
the usual elimination rules of the logical constants. For example, the general
elimination rules for conjunction are, given the usual introduction rule, the
following:

A ∧B

[A]

Π
C

GE∧
C

A ∧B

[B]

Π
C

GE∧
C

By reflexivity, or the allowance to repeat assumptions, these general elim-
ination rules can be simplified to the usual ones where C is substituted
for A and B respectively (Read 2010: 565). This results in the standard
elimination rules for conjunction: A ∧ B ` A and A ∧ B ` B. The main
characteristic of Read’s GE-Harmony is, besides the algorithmic character
of the E-rules, that derivations can be inverted (idem: 564). In other words,
once the introduction rule for λ is immediately followed by an application
of the elimination rule such a detour is superfluous:

Π1−n
Iλ

A

[Π1]

C

[Πn]

C
Eλ

C

In Dummett’s terminology this local peak for λ can be levelled, since Π1−n
already proved C. Hence, the formula A, in which λ is the main connective,
can be eliminated. The above procedure suggests an intimate connection
between GE-Harmony, intrinsic harmony and normalization.

Interestingly, Read’s GE-Harmony does not imply normalization,
and even some other important properties are not guaranteed by it. The
main reason for this is the connective bullet: •. It has the following intro-
duction rule:

19There are some slightly different, merely notational, templates for inducing elimi-
nation rules given the introduction rule(s). The main difference is that in the case of
introduction rules where the discharge of assumption is involved higher-order rules are
needed (Schroeder-Heister 1984; Hjortland 2010: 110; Dicher 2016b: 590). However, for
the present purpose the just outlined algorithm is sufficient.
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[•]
∆
⊥

I••

Here, ‘∆’ indicates that ⊥ is a derivation from • (Read 2010: 571). The cor-
responding, harmonious, elimination rule for • is according to the algorithm
the following one:

• •

[⊥]

∆
C

E•
C

Consider now the case when C = ⊥ (Hjortland 2010: 114). This case leads,
together with the supposition that ⊥ ⇒ ⊥ is by reflexivity trivial, to a
special version of the elimination rule:

• •
E’•⊥

By contraction, again a structural rule, this can be simplified to a rule with
just one instance of •. Hjortland shows, in a far more easy way than Read
originally did, how the rules for • lead to a situation in which Γ ` A for any
A and any Γ, even when Γ is empty (2010: 114-115):

[•]1
E’•⊥
I•[1]•
E’•⊥
EFSQ

A

In other words, • leads to triviality since it is possible to derive any A.
Furthermore, as Read shows, bullet is equivalent to its own negation, and
together with the above proof and the standard rules for negation it is possi-
ble to show for any A that it is equivalent to ¬A (2010: 572). Since Prawitz
(1965: 44) showed that normalization entails that ⊥ is not derivable, GE-
Harmony does not imply normalization, and it produces a non-conservative
extension (Read 2010: 572). Hence, Read concludes that harmony should be
clearly distinguished from normalization and conservativeness (idem: 574).

This is quite worrying. If GE-Harmony is the correct notion of
harmony then it does not prevent against inconsistency or triviality. In the
light of tonk this is quite ironic. Since tonk shows that once there is an A
established it becomes possible to derive any B, bullet is a more problematic
constant than tonk.

However, Read’s claim that his account is most faithful to Gentzen’s
remark is correct. It is indeed the case that the introduction rules serve as
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a definition for the logical constants; the elimination rules are just a con-
sequence of them. Moreover, GE-Harmony captures the inversion principle
since it guarantees that the elimination rules infer solely what may be in-
ferred given the grounds for the assertion of the introduction rule (Read
2010: 562). The algorithm accomplishes the former, whereas the reduction
procedure guarantees the latter.

The constants who satisfy Read’s GE-Harmony are according to
him coherent, and the meaning of these rules can be read off transparently
(idem: 561). So even • is a coherent and harmonious constant, although
it is still inconsistent and the introduction rule is self-contradictory (idem:
574). Hence, coherent rules can be inconsistent, and consistent rules can
be incoherent (idem: 571). Moreover, it should be mentioned that the
inconsistency of the rules for • is in Read’s view not problematic or a reason
to revise his notion of harmony (2000: 142). The constant is just the proof-
theoretic variant of the Liar paradox, and it should not be excluded by a
harmony constraint (Read 2010: 574).

Read’s motivation to bite, in this case both literally and metaphor-
ically, the bullet is that his notion of harmony is a useful way to analyse the
inconsistency of • (2000: 142). The Belnapian strategy to rule out constants
like • by harmony is according to Read just one way to deal with Liar-like
paradoxes. Read’s attitude towards such paradoxes is to represent sentences
like “this sentence is false” by • and the corresponding harmonious rules,
and to study them subsequently in more detail (2008: 20). In the end, the
result of the analysis can still be that the rules for • are mistaken (Read
2000: 142).

Such a view raises a number of questions, in particular for the
usefulness of Read’s harmony requirement. Clearly, GE-Harmony cannot
prevent against inconsistency and a trivial deducibility relation. Read’s
supposition that Belnap’s strategy is just an option, and that his variant to
deal with the paradoxes is equally reasonable is questionable as well. Unfor-
tunately, Read’s claim is not further illustrated by other examples of such a
strategy, which would have been helpful since the general strategy in philos-
ophy is to come up with solutions that avoid or rule out paradoxes. Finally,
the consequences of Read’s argumentation for his distinction between rules
that confer and do not confer meaning questions even more the usefulness
of GE-Harmony.

The problem is, as Read admits, that inharmonious rules can still
confer meaning. This leads to a situation with three kind of rules: (i) rules
who are, according to GE-Harmony, harmonious and are thereby guaranteed
to confer meaning, (ii) inharmonious rules who confer a coherent meaning,
and (iii) inharmonious rules who lack such a coherent meaning. As already
outlined, the first class of rules, the harmonious ones, faces the serious prob-
lem that it contains inconsistent rules.

Read’s favourite example are the rules for the modal operators �
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and � (2008). The traditional rules, to which he refers as the Curry-Prawitz
rules, provide the correct meaning for the modal operators, but they do not
satisfy the constraint provided by GE-Harmony (idem: 20). However, it
remains unclear what this implies for the status of the modal operators.
Read admits that inharmonious inference rules are not as such a source of
incoherence; these rules can still define the meaning of the given connec-
tives (idem: 12). On the other hand Read proposes harmonious rules for
the modal operators, hence these rules are autonomous and coherent (idem:
14). The latter seems to be the sole point of Read’s account: a constant
is autonomous/harmonious if and only if the introduction rule provides the
necessary and sufficient conditions for the assertion of the constant (idem:
12). Despite of this, it remains unclear how Read is able to distinguish be-
tween rules that confer meaning and rules that do not confer meaning, since
GE-Harmony allows only to distinguish between coherent and incoherent
rules.

In other words, it remains quite unclear what harmony is good for
in Read’s view. Neither does it rule out inconsistent constants like bullet,
nor does it select the constants that confer meaning. If this is the correct
idea of harmony, then one wonders why one should even consider to adopt
the principle of harmony. Compared to the discussion of the previous chap-
ter, GE-Harmony is not able to prevent against E-weak disharmony which
is Steinberger’s reason to reject it (2009a: 133). In particular, Read’s pro-
cedure to read off the elimination rule for a constant cannot distinguish
between the quantum elimination rule and the standard elimination rule for
disjunction.

3.4 Conclusion

The verdict of both the philosophical motivation and the corresponding for-
mal account, GE-Harmony, is negative. It turned out that the fundamental
assumption, upon which the philosophical motivation relies, was mistaken.
The ultimate reason for the failure of the assumption is due to the meaning-
theoretic assumption, based upon Gentzen’s remark, that the introduction
rules determine the meaning of the logical constants. For some constants
it seems more natural to give meaning-theoretic primacy to the elimination
rule, or to include both rules, and indeed for those constants the fundamental
assumption failed.

Read’s GE-Harmony succeeded in the goal to capture Gentzen’s re-
mark and make it precise. However, it has, beside the lack of a proper philo-
sophical motivation, some shortcomings. Most importantly, GE-Harmony
fails to exclude the problematic constant bullet, and thereby it leads to triv-
iality and inconsistency. Furthermore, it is not clear how GE-Harmony is
able to distinguish between constants with a correct and an incorrect mean-
ing. This questions the general project of GE-Harmony, since it seems that
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it just captures Gentzen’s (problematic) remark, and nothing more. Notice
that, since GE-Harmony is closely related to the philosophical motivation,
even in the case one disagrees with the way this chapter rejected the latter,
an adoption of Gentzen’s remark still leads to serious problems by the corre-
sponding formal account. The next chapter checks whether Tennant offers
a more promising motivation, and whether his formal notion can solve the
problems so far encountered.
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4 Tennant’s Harmony: Deductive Equilibrium

Tennant’s notion of harmony and the corresponding philosophical motiva-
tions is the final account which is discussed in this thesis. A complicating
aspect in the presentation of Tennant’s account is, as Steinberger notices
as well, its long history (2009a: 115). It goes back to Tennant’s Natural
Logic (1978), and has undergone some major and minor revisions over the
years. Tennant’s major argument for harmony is due to his Anti-Realism
and Logic, and the argument is concerned with the entrenchment of the
logical connectives into the language.

In addition to Tennant’s Aetiology of Entrenchment, Tennant of-
fers in The Taming of the True (1997) another motivation for harmony.
Very briefly, the argument is that harmony needs to secure that the logical
constants in the empirical sciences are the same constants in mathematics
(idem: 23-24). However, the argument is based upon a number of highly
questionable, implausible and naive assumptions about in particular the em-
pirical sciences and partly about mathematics. For example Tennant does
not take seriously the problems raised by the Duhem-Quine thesis how to
respond in a reasonable way to the rejection of a statement or a theory.
Moreover, in a recent article (2014) on harmony even Tennant himself does
not mention his Taming of the True as a motivation for harmony. Because
of this it has been decided not to present and discuss this argument, since
it would just result in a, probably disappointing, discussion and after all a
rejection of the argument. Therefore, the next section focuses on Tennant’s
story about the entrenchment of the connectives.

4.1 The Aetiology of Entrenchment

Tennant motivates the requirement of harmony by a story about the intro-
duction of the logical constants into the language (1987: 77). The method
examines the preconditions to introduce successful new (logical) expressions
into the language. His method is one of “logical reconstruction” in which
each innovation (i.e. the introduction of a new logical constant) has an
“evolutionary endorsed point” (idem: 91). He offers a “speculative recon-
struction”, which is not about the actual evolution of any natural language.
The philosophical goal of Tennant story is just to provide a “possibility
proof” of the entrenchment of the connectives. These methodological char-
acteristics will raise some questions, but the next section starts by, for the
sake of the argument, just a description of Tennant’s story.

4.1.1 The Entrenchment of the Connectives

The starting point of the story is a community whose members speak a
language which contains only atomic sentences (idem: 77). In addition, the
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speakers of the language have inference rules in which just atomic sentences
are involved (idem: 77-78). Tennant continues the story by showing how
each logical constant is, one at a time, added to the existing language.

The first constant which is added to the language is, as one might
expect, conjunction. Suppose that someone, a “linguistic innovator”, makes
the utterance “A und B” (idem: 78). Definitely, just such an utterance
does not turn “und” into a significant part of the existing language. In
order to achieve this one should provide the assertion conditions of the new
utterance. Since the language contains at this stage just atomic sentences the
assertibility conditions of A und B have to be constituted by the assertibility
conditions of its constituents (idem: 79). This leads, according to Tennant,
to the conclusion that A und B is assertible when A is assertible and B is
assertible, which implies the familiar introduction rule for conjunction.

In Tennant’s view there are, given the situation, “no other possi-
bilities” for the assertibility conditions of A und B (idem: 79). In addi-
tion, Tennant admits that it might be difficult to explain the usefulness of
the emergence of conjunction as the sole logical operator of the language
(idem: 82). His motivation to start with conjunction is that it illustrates
his harmony principle so well (idem: 80). Subsequently, the corresponding
elimination rules for conjunction are justified by the idea that there must
be an effective method to turn warrants for asserting the premises into war-
rants for the assertion of the conclusion (idem: 81). This boils down to the
already familiar reduction procedure (see Dummett’s intrinsic harmony in
the chapter on the principle of innocence) which is therefore, at this stage,
Tennant’s formal notion of harmony.

The second constant which is introduced into the language is nega-
tion. Strictly speaking, this is not entirely true since Tennant regards the
absurdity constant, which is in his view “a punctuation mark”, as primitive
and develops subsequently an account for negation (idem: 82-83). It is, in
particular in the case of negation, good to be aware that Tennant is driven
by revisionary aims.20 However, these revisionary aims are not prominent
in Tennant’s story about the entrenchment of negation. He just introduces
negation by the notion of absurdity - which leads to the standard intro-
duction rule for negation - and he does not show how the corresponding
elimination rule should look like. Tennant appeals, again, to the well-known
reduction procedure to derive the correct elimination rule (idem: 90).

Disjunction is introduced and entrenched as the final propositional
constant. This allows Tennant to introduce it in terms of the elimination
rule. In order to introduce disjunction suppose that the language, which

20More specific, he wants to argue in favour of intuitionistic relevant logic, which means
that, in addition to classical negation, he wants to drop the Ex Falso rule. For a more
formal discussion see for example Tennant 1994; a philosophical discussion of the status of
⊥ and the corresponding implications for Ex Falso and negation can be found in Tennant
2004.
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already contains implication, negation, and conjunction, offers two hypo-
thetical proofs of C from the assumptions A and B respectively (idem: 91).
In other words, the sentence (A→ C) ∧ (B → C) is asserted. Now suppose
that someone wants to turn this sentence into a conditional with C as the
consequent. A new expression is introduced to bring the two antecedents
of the former sentence together: (A ∨B)→ C. Recall that the grounds for
the assertion of the latter statement remain the same, a hypothetical proof
of C from A respectively B. In addition, suppose that there is a proof of
the new expression A ∨ B as well (idem: 92). By modus ponens, which is
already entrenched in the language, it becomes possible to conclude C. In
other words, this is, in a slightly different way, the usual elimination rule
for disjunction. Subsequently, the usual introduction rules for disjunction
follow immediately.

The reason why Tennant offers this story about the introduction
of disjunction into the language is that he does not want to be committed
to the view that just the introduction rules fix the meaning of the logical
constants (idem: 93). According to him even the elimination rule might fix
the meaning of a constant, and subsequently the corresponding harmonious
introduction rule has to be acknowledged. Obviously, this is important for
the kind of formal harmony requirement Tennant is looking for.

4.1.2 The Plausibility of the Entrenchment

The previous section just presented Tennant’s story of the entrenchment of
the connectives in a descriptive way. However, the story raises a number
of questions. First of all Rumfitt criticizes the account of negation which
follows from the story. In addition, one might question the way Tennant
introduces conjunction. Moreover, the way disjunction is introduced seems
even more questionable. Finally, the status of Tennant’s story raises the
fundamental question whether a plausibility story implies a harmony re-
quirement at all.

According to Rumfitt, Tennant’s account does not explain how the
connectives have obtained their actual meaning (2016: 29). The introduc-
tion and entrenchment of negation illustrates the criticism since it does not,
according to Rumfitt, correspond to the way negation is actually used (idem:
29-30). Rumfitt argues that nowadays “not” has a classical meaning, so Ten-
nant fails to explain how negation, which was entrenched in the language in
a non-classical way, became an operator with a classical meaning. Without
discussing Tennant’s account of negation in full detail, this objection does
not seem to undermine Tennant’s story as such.

Tennant simply does not claim that his story explains how the
connectives have obtained their actual meaning. He is explicit that his
story is just a logical or speculative reconstruction, and not an explanation
of the actual meanings of the connectives. Rumfitt’s claim that the actual
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meaning of the connectives is different than the ones in Tennant’s story
seems correct, but it is not a rejection of Tennant’s account of entrenchment.
It just shows that the connectives might have been entrenched in another
way, but Tennant simply does not claim that his story necessarily provides
the correct way the connectives are entrenched into the language.

The second potential problem has to do with the way Tennant in-
troduces conjunction into the language. Tennant claims that the assertibility
conditions of A und B have to be constituted by the assertibility conditions
of its constituents, hence he concludes that this boils down to the standard
introduction rule for conjunction. However, it does not follow immediately
that the utterance A und B is made because the so called “linguistic inno-
vator” knows both the assertibility conditions of A and B. An alternative
is that the linguistic innovator knows that either A must be assertible or
B must be assertible, but that he is unsure which one is assertible. Hence,
he utters A und B (or A oder B) with different assertibility conditions. In
other words, the assertibilty conditions of A und B are, contrary to Ten-
nant’s suggestion, not straightforward.

Moreover, it is regarding conjunction remarkable that Tennant ad-
mits that it is difficult to explain the usefulness of it in a language with
only atomic sentences. This seems to be a problem for Tennant’s story since
he claimed that the introduction of each constant has an “evolutionary en-
dorsed point”. The previous section explained that Tennant’s reason to start
with conjunction was that it explained his harmony principle so well. Sub-
sequently, Tennant appeals to the notion of a reduction procedure to make
his account of harmony precise. The problem is that Tennant’s final notion
of harmony, which is discussed in the next section, is not a reduction pro-
cedure. Thereby Tennant rejects his own claim that conjunction illustrates
his harmony principle so well. After all, there does not seem to be a reason
to start the story of entrenchment by conjunction.

The third problem arises by Tennant’s introduction of disjunction.
Recall that Tennant introduces it via its elimination rule, and that the need
to introduce a disjunction operator was based upon the need to turn a
sentence with conjunction as the main connective into one with implication
as the main connective. However, in the case of disjunction it is quite
plausible to imagine that disjunction was introduced into the language by
a situation as sketched in one of the previous paragraphs: a person knows
that A or B must be the case, but not which one. Hence, the disjunction
A ∨B is introduced.

It is remarkable that Tennant admits that the just sketched view
offers an (even more) plausible story about the introduction of disjunction
(1987: 92-93). Strangely enough Tennant is, partly, aware of the short-
comings of his story about disjunction but he sticks to his own original
story. The reason is that, although he admits that the pressure to introduce
disjunction might come from the introduction rule, he just wants to take
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into account the possibility that the elimination rule fixes the meaning of a
logical constant. Given the considerations in the chapter on the inversion
principle this seems to be a fruitful approach, but it is questionable whether
disjunction is the correct constant to illustrate such an approach.

Recall that in the chapter on the inversion principle implication
and the universal quantifier were used to illustrate the view that even the
elimination rule might fix (partly) the meaning of a constant. Disjunction
was considered as a constant for which the introduction rule is obvious and
meaning constitutive. Of course Tennant can challenge this view by arguing
that for disjunction the elimination rule is meaning constitutive. However,
the problem is the plausibility of Tennant’s story about the entrenchment
of disjunction. Intuitively, it seems highly implausible that the need for
disjunction was pushed by the demand to turn a conjunction into an impli-
cation. Tennant does not support his example by further arguments, thereby
this is left to the reader. He claimed that the introduction of each logical
constant served an “evolutionary endorsed point”, but in this case Tennant
does not make explicit why it is useful or needed to turn a conjunction
into an implication. The alternative, sketched by the introduction rule for
disjunction, seems far more useful and plausible.

Finally, the fundamental question is raised whether just a possible
story implies the need for a harmony constraint. Since Tennant admits that
he provides a speculative story and that his aim is to give a possibility proof,
the argument for harmony seems rather weak. The sole reason for harmony
he provides is that a constant which is not in harmony does not have a stable
meaning and can therefore not be “entrenched” into the language (Tennant
1987: 94; Rumfitt 2016: 28). Unfortunately, Tennant does not argue in
more detail in favour of this claim, and he does not even provide further
meaning-theoretic requirements, at least not in this section, by which he is
able to support and justify the demand for harmony by the Aetiology of
Entrenchment.

In addition, one might question whether Tennant’s possibility proof
is at all a serious possibility. The current section criticises in particular the
way Tennant introduces disjunction, and even the entrenchment of conjunc-
tion raised some questions. Moreover, Tennant did not succeed in making his
claim explicit that the introduction of each constant served an evolutionary
endorsed point. It is unclear why Tennant still sticks to his particular story
of the entrenchment of the connectives. The most probable guess is that he
is strongly driven by revisionary aims and that he wants to come up with
a formal account of harmony which deviates from the work of Prawitz and
Dummett. Regarding the former it is illustrative that both in the beginning
and in the end of the considered chapter Tennant strongly opposes classical
logic and the need to revise it. The aim to oppose Prawitz and Dummett
was illustrated by Tennant’s, implausible, introduction of disjunction via its
elimination rule. To conclude, both by its questionable and its “possible”
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character Tennant’s motivation for harmony is rejected.
Regarding Tennant’s formal notion of harmony it is not quite clear,

given the Entrenchment argument and the corresponding analysis, how to
proceed. However, since the current section rejects Tennant’s argument as a
proper motivation for harmony, his formal account is in particular presented
because it is interesting in its own right.

4.2 Deductive Equilibrium

Tennant’s formal notion has undergone some changes during the years, so
this thesis follows Steinberger’s approach by just presenting the most recent
one. Despite the shortcomings of Tennant’s motivations for harmony it is
still useful to discuss the corresponding formal notion. In particular it is
relevant to check whether it can solve the still open problem of E-weak
disharmony, illustrated by standard disjunction and quantum disjunction.
It will be shown how Tennant tries to accomplish this, and how this leads,
both for him and Steinberger, to some serious problems.

4.2.1 The Equilibrium

In order to introduce Tennant’s formal approach some terminology is needed.
The strongest proposition21 with property P is the proposition A if any other
proposition with property P is deducible from A (Tennant 2014: 19). Along
the same lines, the weakest proposition with property P is the proposition
B if any other proposition with property P can deduce B. By these notions
Tennant presents the first part of his harmony principle. If λ is an arbitrary
(binary) logical constant then λ is harmonious if it satisfies the following
two conditions:

(S) AλB is the strongest conclusion possible under the conditions put for-
ward by I-λ.
(W) AλB is the weakest major premise possible under the condition put
forward by E-λ (Tennant 2014: 25).

In addition to these two conditions Tennant offers some constraints to show
(S) and (W) respectively. To show that (S) is fulfilled one needs to:

(i) exploit all the conditions described by I-λ.
(ii) make full use of E-λ, but one may not make any use of I-λ (Tennant
2014: 25).

By substituting E-λ for I-λ and vice versa one obtains the constraints to
show that (W) is the case. Disjunction (∨) and quantum disjunction (?)
will be used to illustrate and criticize the first part of Tennant’s harmony.

21By ‘proposition’ Tennant means the logical equivalence class of sentences. In other
words, if A is a sentence then ‘proposition’ A means the logical equivalence class of which
A is a member (2014: 19).
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Consider standard disjunction. Suppose that X is an arbitrary formula
which satisfies the conditions put forward by I-∨ with A and B as premises.
This implies that A entails X and B entails X (Rumfitt 2016: 27). Hence,
by E-∨ it follows that A∨B entails X, so A∨B satisfies (S). Now suppose, to
show (W), that X is an arbitrary formula which can function as the major
premise of E-∨. It follows that whenever A entails C and B entails C, then
X entails C as well. By I-∨ it follows immediately that both A and B entail
A ∨B, so X entails A ∨B and thereby the latter formula satisfies (W).

A similar way of reasoning shows how ? satisfies both (S) and (W).
Again, suppose that X is an arbitrary formula which satisfies the conditions
of I-? with A and B as premises. This leads to the following inference rules
(†) (Steinberger 2009a: 118-119):

Π
A †
X

Π
B †
X

Where Π is a derivation of A and B respectively. Now it needs to be shown
that A ? B ` X by making full use of E-? and not using I-?. This is
accomplished by the following derivation (Steinberger 2009a: 119):

A ∨B
[A]

†
X

[B]
†

X
E-?

X

Hence, ? satisfies (S). Moreover, Steinberger (2009a: 119) shows that ?
satisfies (W) as well. In other words, the current requirements are satis-
fied by both standard disjunction and quantum disjunction. To avoid this
shortcoming Tennant introduces an additional requirement. The I and E
rules for λ are harmonious (with a small ‘h’) if they satisfy (S) and (W)
(Rumfitt 2016: 27). According to the further requirement a pair of rules
is Harmonious (with a capital ‘H’) if the introduction rule is the strongest
rule which is in harmony with the elimination rule, and the elimination rule
is the strongest rule which is in harmony with the introduction rule (Ten-
nant 2014: 22). Together with (S) and (W) this maximality requirement
constitutes Tennant’s formal notion of harmony.

Clearly, the additional requirement succeeds in the aim to exclude
quantum disjunction and to keep standard disjunction. Both constants sat-
isfy (S) and (W), but the elimination rule of standard disjunction is stronger,
so quantum disjunction is ruled out by the additional requirement. How-
ever, Tennant’s account of harmony still faces a further problem which is
pointed out by Steinberger. The problem has to do with the rules for the,
so far almost neglected, quantifiers.
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4.2.2 The Quantifiers

The standard rules for both the existential and the universal quantifier offer
some additional restrictions on the use of the parameters. For example in
the case of existential elimination the rule is as follows:

∃xA(x)

Γ, [A[a/x]]

∆
ψ

E-∃
ψ

The usual restriction for this rule is that the parameter ‘a’ may not occur
in Γ, ∃xA(x) or ψ. As Steinberger outlines the just presented standard
elimination rule satisfies, together with the standard I-rule22 for ∃, the re-
quirements of Tennant’s (S) and (W); hence it is harmonious with a lower ‘h’
(Steinberger 2009b: 658-659). The problem is, as Steinberger subsequently
points out, that E-∃ is not the strongest rule which is in harmony with I-∃
(idem: 659-660). He introduces the rule E’-∃, which is the same as E-∃ only
without any restrictions on the parameters. The new rule E’-∃ is stronger
than the standard one, so the pair I-∃ and E’-∃ is Harmonious with a capital
‘H’, contrary to the standard rules for the existential quantifier.

This is certainly problematic since the new, Harmonious, elimina-
tion rule has some unwelcome consequences. In particular it allows one to
prove that F (a) ` F (b) for any individual ‘b’ (Steinberger 2009b: 660). In
other words, once it is proved for one atomic sentence that the predicate
‘F ’ holds, then the new E-rule for the existential quantifier allows to prove
that ‘F ’ holds for any atomic sentence. This way the new rule serves as
a kind of first-order tonk rule which is clearly something that needs to be
avoided. Hence, Tennant’s maximality condition fails to select the correct
pair of rules for the quantifiers.23

However, Tennant (2010) provides an argument against Steinberger’s
criticism of the maximality principle in the case of the quantifiers. Tennant’s
argument appeals to the sequent calculus setting, and it is in essence that in
order to show that the new pair of rules I-∃ and E’-∃ satisfies (S) and (W)
one needs to use the structural rule cut (idem: 465). Even in the case of
the traditional rules for the existential quantifier cut is needed to show that
(S) and (W) hold (idem: 463). The point is, according to Tennant, that
in the latter case the application of cut is justified, whereas it lacks such a
justification in the former case (idem: 465-466). In Tennant’s view it is a
mistake to presuppose the availability of cut; it is not a primitive structural
rule but an admissible rule (idem: 465).

22To be complete, this rule is as follows: A[t/x] ` ∃xA(x), and it has no significant
additional restrictions.

23A similar argument is available for the universal quantifier. See Steinberger (2009a:
125-126) for the corresponding proofs.
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In order to show the admissibility of cut one needs to use a reduc-
tion procedure for the rules of the logical constants (idem: 466; Tennant
2012). The reduction procedure was already presented in the chapter on the
principle of innocence: it shows that the rules for a constant are - in Dum-
mett’s terminology - intrinsically harmonious. The point is that a reduction
procedure is available for the traditional rules of the existential quantifier,
but not for the new rules without any restrictions on the parameter (Ten-
nant 2010: 466-467). Hence, the theorem which establishes the admissibility
of cut is not provable for the language which contains the new quantifier;
therefore the rules of the new quantifier do not satisfy (S) and (W) since
cut cannot be used to show this.

Steinberger is not convinced by Tennant’s response. He argues that
the appeal to the admissibility of cut is both superfluous and problematic.
It is superfluous because the admissibility of cut uses a reduction procedure,
and therefore it appeals to Dummett’s intrinsic harmony. Since intrinsic
harmony already rules out E-strong disharmony the appeal to the admissi-
bility of cut to block the problematic, E-strong disharmonious, quantifiers,
is superfluous (Steinberger 2011b: 275-277). Intrinsic harmony is sufficient
to block E-strong-disharmony; the admissibility of cut and (S) and (W) are
not needed.

The second objection put forward by Steinberger is that the ad-
missibility of cut is a global property and not a local one (idem: 277). Stein-
berger provides, again, the example of quantum disjunction: in the systems
{∨,∧} and {?,∧} cut is admissible, but not in the system {∨, ?,∧} (idem:
278). If cut would be admissible in the latter system then ? would collapse
into ∨, and the law of distributivity would become provable for quantum
disjunction. In other words, it depends upon the deductive system and the
interplay between the rules of the system whether cut is admissible or not.
Thereby it is a global requirement which Steinberger strongly opposes.

By these two objections Steinberger rejects the admissibility of
cut as a formal harmony requirement (idem: 279). Instead of Tennant’s
(S) and (W) requirements Steinberger proposes intrinsic harmony together
with the maximality principle as the correct notion of harmony. The former
prevents against strong disharmony and the latter against weak disharmony,
so together they would constitute a satisfying notion of harmony. However,
Steinberger’s proposed modification of Tennant’s account still faces some
problems.

First of all the chapter on the inversion principle showed that even
the problematic constant • is intrinsically harmonious, which means that
Steinberger’s modification cannot exclude • as a disharmonious constant.
Secondly, there is the worry - as the next section will argue - that the maxi-
mality condition is, contrary to Steinberger’s demand, not a local constraint.

49



4.2.3 Intrinsic Harmony and Maximality

The maximality conditioned stated that given a (intrinsic) harmonious pair
of rules for a constant λ one selects the strongest E-rule which is in harmony
with the I-rule, and subsequently one selects the strongest I-rule which is
in harmony with the E-rule. The problem is, as Steinberger already stated
(2009a: 121-122), what is meant exactly by the strength of a rule. In the
case of quantum and standard disjunction it seems clear at face value that
the elimination rule of standard disjunction is the stronger one, since it offers
no restrictions on the use of collateral assumptions in the minor premises.
Although this is quite intuitive, for a formal notion a more precise criterion
is needed. The first candidate for such a criterion seems to be the derivation
that ? collapses into ∨ once standard disjunction is added to a language
which contains quantum disjunction:

A ? B

[A]
I-∨

A ∨B
[B]

I-∨
A ∨B

E-?
A ∨B

However, there is a similar derivation which shows that standard disjunc-
tion collapses into quantum disjunction. Just replace ? by ∨ and ∨ by ?
in the above derivation and one obtains the same result. Hence, this crite-
rion cannot capture the intuition that standard disjunction is stronger than
quantum disjunction.

The second, and probably most natural, candidate is to come
up with a formula ϕ which is provable in the language L which contains
standard disjunction, and unprovable in the language L′ which contains
quantum disjunction. The standard example is the law of distributivity:
A ∧ (B ∨C) ` (A ∧B) ∨ (A ∧C) whereas A ∧ (B ? C) 0 (A ∧B) ? (A ∧C).
However, to derive this formula one needs the rules for conjunction as well.
In other words, if this procedure is adopted to show that E-∨ is stronger
than E-?, then the maximality condition is turned into a global constraint.

Until Steinberger provides a local alternative to show in a precise
way that one rule is stronger than another rule he is committed to the
position that the maximality constraint is after all a global one. This is at
odds with Steinberger’s demand of locality. Of course this is, in general, not
a reason to reject the maximality principle, but for Steinberger the situation
is different. He clearly rules out any global harmony requirement, so by
the argument of this section he can plainly not, without violating his own
requirements, adopt the maximality principle as a harmony requirement.

The second problem has to do with the already discussed constant
bullet. Recall that bullet is by definition intrinsic harmonious, so it can just
be ruled out by the maximality condition. Given the E-• rule this is almost
impossible, since the E-rule allows one to derive Γ ` A for any A and any Γ,
even when Γ is empty. It seems quite hard to come up with an elimination
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rule for • which is stronger - and even if this can be done bullet would still
be a highly problematic constant. Hence, bullet satisfies the requirements of
intrinsic harmony and maximality and is therefore, according to the current
proposal, a harmonious constant. In the article in which Steinberger finishes
his discussion of Tennant’s account he just mentions bullet in a footnote
(2011: 277).24 In this footnote Steinberger states that he is not convinced
that Read’s bullet operator refutes intrinsic harmony. According to him
it just shows that the logical inferentialist needs an account of permissible
introduction rules, which is not yet available.

Tennant rejects the Ex Falso rule, so he would presumably respond
to the problems raised by • in a different manner. Since the derivation Γ ` A
involves a crucial application of Ex Falso (see the derivation in the chapter on
the inversion principle), he can block the problematic consequences of • by
arguing that it uses invalid inference rules. However, such a response is not
uncontroversial because one needs to adopt Tennant’s (unusual) analysis of
both ⊥ and the Ex Falso rule. For example Steinberger adopts to a certain
extent Tennant’s analysis of ⊥, but he regards Ex Falso as a structural
rule. Given Steinberger’s demand for a local harmony constraint he cannot
solve the problematic consequences of • by harmony. This is a more general
problem of this type of response; whether or not the analysis of Tennant is
correct, even he does not exclude • by the formal harmony notion.

4.3 Conclusion

This chapter presented and discussed Tennant’s motivation for harmony and
the corresponding formal notion. The Aetiology of Entrenchment argument
faced two major problems. First of all Tennant’s story about the entrench-
ment of the connectives was just a possible story, and not necessarily the
correct one. This made it quite difficult to adopt it as a motivation for
harmony, since a speculative story does not seem to be a convincing justifi-
cation. Secondly, the story led to a number of objections, which undermine
its possible character as well.

Tennant’s formal notion offered as main advantage that the intro-
duced maximality condition can distinguish between the elimination rules
for standard and quantum disjunction. However, it has been argued that in
order to show this in a strictly formal way one needs to turn the maximality
condition into a global constraint. Another problem for Tennant’s formal
notion is that it cannot rule out the problematic constant bullet.

24In his PhD thesis Steinberger does not mention bullet and the corresponding problems
at all.
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5 Analysis and Conclusion

The final chapter aims to summarize the main observations and conclusions
of the previous chapters, and to offer a final analysis of them. The first
two sections summarize respectively the philosophical motivations and the
corresponding formal requirements. The third section tries to bring these
two together. The fourth section is an intermediate one: it offers some
shortcomings, open problems, and suggestions for further research. Finally,
the chapter provides the main conclusion of this project.

5.1 The Motivations

Three motivations for harmony were presented: the principle of innocence,
the inversion principle, and the entrenchment of the connectives. The prin-
ciple of innocence stated that it should not be possible to discover, solely
by logic, (atomic) truths about the world which are not discoverable inde-
pendently of logic. The inversion principle was based upon the idea that
only the introduction rules provide the meaning of the logical constants. Fi-
nally, the entrenchment of the connectives was a possibility story offered by
Tennant. Of all these justifications for harmony, the principle of innocence
turned out to be the most satisfying one.

The idea that it is the introduction rule which is (primarily) meaning-
constitutive for all the constants, based upon a remark made by Gentzen,
turned out to be mistaken. In particular in the case of implication and
the universal quantifier there seemed to be good reasons to give meaning-
theoretic primacy to the elimination rule, instead of the introduction rule.
Therefore, the inversion principle as a motivation for harmony was rejected.
In addition, the previous chapter rejected Tennant’s story about the en-
trenchment of the connectives as a motivation for harmony. Tennant admit-
ted that the story offered just a “possibility proof”, which is a rather weak
motivation to impose a harmony requirement. Moreover, his story about the
entrenchment of the connectives raised a number of questions, which led to
the conclusion that after all even its possible character was highly doubtful.
Hence, Tennant’s motivation for harmony was rejected as well.

The principle of innocence faced two main objections: the astron-
omy argument and the truth predicate argument. The latter argument was
already disproved in a correct way by Steinberger. The former argument,
offered by Rumfitt, was too specific and questionable to reject the principle
of innocence just on the basis of this argument. It aimed to disprove the
main claim of the principle, but it has been shown that this was mainly due
to the content of one of the premises which was about the notion of a black
hole. Since this was the sole and after all unconvincing argument against
the principle of innocence, the innocence of logic is adopted as the most
promising motivation for harmony.
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Steinberger combined the principle of innocence with his further
meaning-theoretic assumptions, namely the two-sided model of meaning and
the aim to offer a local harmony requirement for the logical constants. Both
aspects strongly influenced his quest for a formal harmony requirement to
capture the innocence of logic. By his meaning-theoretic assumptions the
formal notion of harmony should be a local one which prevented against
both E-weak and E-strong disharmony. However, it has been argued that
the principle of innocence as such just implies a (semi) global harmony
requirement which prevents against E-strong disharmony. The next section
provides an overview of the formal requirements such that the principle of
innocence (and Steinberger’s meaning-theoretic assumptions) can be related
to these formal notions in the correct way.

5.2 The Formal Notions

In order to remain faithful to Steinberger’s quest, the starting point is to
relate the local accounts to the problem of E-weak disharmony. Intrinsic har-
mony, GE-Harmony, and Deductive Equilibrium (Tennant’s harmony with
a small ‘h’) were all local notions.25 All these local notions failed to rule
out E-weak disharmony; in particular they could not distinguish between
quantum and standard disjunction.

Hence, the expansion procedure and the maximality principle were
put forward to rule out E-weak disharmony by a local constraint. Unfortu-
nately, the expansion procedure was not yet applied to the case of standard
and quantum disjunction. It turned out that it failed to distinguish between
these two constants in a proper way. The maximality principle succeeded
in the aim to rule out quantum disjunction, but it has been shown that it
was after a global constraint, and not a local one. In other words, all the
local accounts failed to prevent against E-weak disharmony. It might be
suggested that this conclusion is a coincidence; a yet unknown local con-
straint can after all rule out quantum disjunction. However, in the light of
the first chapter this does not seem to be a coincidence, but due to some
fundamental reasons.

First of all, suppose that a purely local requirement is indeed only
concerned with the meaning of the particular constant to which it is ap-
plied. Now recall, from the first chapter, how the sequent calculus presents
standard disjunction and, accordingly, quantum disjunction:

Γ, A⇒ ∆ Γ, B ⇒ ∆
L-∨

Γ, A ∨B ⇒ ∆

25One might object that in order to derive the standard rules for the connectives from
the rules as obtained by the procedure of GE-Harmony that one needs additional structural
rules which might threaten its strictly local character. However, GE-Harmony faces more
serious problems, so there is no need to discuss this point in more detail.
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This is the standard rule to introduce disjunction in the antecedent, and
one obtains quantum disjunction by the restriction that Γ should be empty.
This means that the distinction between the two disjuncts is purely due to
the different contexts of the rules. According to the analysis as presented by
Dicher, the context can be intrinsic for the meaning of a constant or it can
provide a (potential) way to interact with other constants. In the case of
disjunction Dicher argued that the context just played the latter role. Hence,
the distinction between standard and quantum disjunction is a structural one
which effects the structure of derivations and the way (quantum) disjunction
can interact with other constants (Dicher 2016b: 592).

By this observation it is, as Dicher emphasizes as well, no surprise
that purely local accounts fail to identify the problems of quantum disjunc-
tion.26 Local accounts are, by definition, just concerned with restrictions
on a pair of inference rules, and not with the way constants interact with
other constants in the deductive system. To capture the latter by a harmony
requirement, one needs a global requirement which contains both structural
rules and the rules of the other constants in the deductive system.

In other words, if one wants to distinguish between standard and
quantum disjunction, and to prevent E-weak disharmony, it is wise to go
global. Beside the just presented maximality principle, this thesis presented
two other global requirements: conservativeness and normalization. As the
connective ◦ showed, the former does not prevent against E-weak dishar-
mony. The normalization requirement was also not able to capture the
difference between quantum and standard disjunction. The systems {∧, ?},
{∧,∨} are normalizable, whereas the system {∧, ?,∨} is not normalizable.
However, it is not possible to decide justifiably which elimination rule causes
the non-normalizability.

The latter observation seems to emphasize that it is indeed the in-
terplay between quantum and standard disjunction which causes the trou-
bles. If there would be something wrong with either quantum or standard
disjunction then one might expect that one can show in a precise way which
elimination rule is incorrect. Since normalization cannot show this, the
most plausible explanation of the non-normalizability is that quantum and
standard disjunction are put together in the same deductive system.

On the other hand, both conservativeness and normalization of-
fered the advantage that they both rule out bullet, the other problematic
constant. Bullet was created by Read’s GE-Harmony, and therefore it can
also not, by definition, be ruled out by intrinsic harmony. Another advan-
tage is that both conservativeness and normalization seem to capture the
innocence of logic. Rumfitt argued in favour of conservativeness, whereas

26It does surprise Dicher that this observation played almost no role in the harmony
debate. He speculates that it is due to the natural deduction setting and in particular
Dummett’s revisionary aims to reject classical logic in favour of intuitionistic logic (2016b:
592-593).
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Steinberger stated that normalization was the best global requirement to
guarantee the innocence of logic. Given these considerations, the final task
is to relate the principle of innocence, and probably Steinberger’s additional
meaning-theoretic assumptions, to the just presented formal accounts and
their corresponding problems.

5.3 Innocence and the Meaning of the Logical Constants

It is time to combine the observations and put them together into one anal-
ysis. However, it is tricky to relate the principle of innocence to just one
formal requirement, since further meaning-theoretic assumptions might play
a role as well. Hence, a strict case distinction will be made.

The first case (a) is easy; suppose that the inferentialist adopts the
principle of innocence and no additional meaning-theoretic assumptions. As
already mentioned, a natural candidate to guarantee innocence is conserva-
tiveness. Definitely, if the role of harmony is to select the constants that
confer meaning, the identification of harmony with conservativeness would
lead to the conclusion that the meaning of the constants is a global one.
Given this unusual conclusion in proof-theoretic semantics, a promising al-
ternative is the stabilized (semi-global) version of conservativeness. More-
over, the latter offers the advantage that a constant is simply harmonious
or not, whereas the former case has the disadvantage that a constant can
be both harmonious and disharmonious. The other, even more local candi-
date, to guarantee innocence is intrinsic harmony. However, it fails to rule
out bullet; a constant which is not innocent. Hence, in the first case the
stabilized version of conservativeness is the best way to go.

Conservativeness does not rule out improper balanced rules such
as ◦, so the more ambitious inferentialist might not be satisfied with the
proposal as suggested in the previous paragraph. He wants, beside the prin-
ciple of innocence, to include the two-sided model of meaning in his quest
for harmony: a formal account of harmony should prevent against both E-
strong and E-weak disharmony. Let this be the second case (b). Since the
inferentialist is, at least in the current harmony debate, almost always (im-
plicitly) looking for a local harmony requirement, he faces a serious dilemma
in the second case.

By the analysis of the previous section, the inferentialist cannot
have both of the following two demands at the same time: (i) a local har-
mony requirement, and (ii) rule out E-weak disharmony and therefore re-
main faithful to the two-sided model of meaning. This combination is not
possible since it has been argued that one cannot distinguish between stan-
dard and quantum disjunction by a purely local constraint. Hence, one of
these two needs to go. Giving up (ii) leads to the situation as described by
the first case. The consequences of giving up (i) are less straightforward, so
this can be explored in more detail. Let this be the global version of the
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second case (b-global).
At first sight, to give up (i) and to be forced to adopt the view that

the meaning of the logical constants is after all a global one, might seem like
a high price to pay. Recall, however, that in the first chapter it has been
argued that the distinction between a local and a global meaning is not as
strict as it is often suggested. A global meaning, as the reasonable holist
would state, is not an immediate commitment to the view that all inferences
are relevant for the meaning of a connective. One just extends the meaning-
constitutive inferences by, for example, the laws of distributivity. Suppose,
for the sake of the argument, that the inferentialist is willing to go global to
rule out E-weak disharmony; which options are still on the table?

Clearly, (global) conservativeness and normalization are ruled out.
Conservativeness is not able to prevent against E-weak disharmony, and nor-
malization cannot identify whether standard or quantum disjunction causes
the failure of the reduction procedure. The sole option which is left over
is Tennant’s maximality requirement. Given the discussion in the corre-
sponding chapter it needs to be accompanied by a requirement to avert
disastrous consequences for the quantifiers. Adding a more local require-
ment to accomplish this does not seem to be a fundamental problem; hence
Steinberger’s proposal to guarantee harmony by both intrinsic harmony and
the maximality requirement seems the best option in the case of b-global.

Whereas Steinberger presents it as a local harmony requirement,
this thesis disproved the claim; the maximality requirement is a global one.
So far so good. Intrinsic harmony and the maximality requirement prevent
against E-weak disharmony and seem to guarantee the innocence of logic.
However, this option faces two major objections.

The first objection is that intrinsic harmony and the maximality
condition cannot rule out bullet as a disharmonious constant. Intrinsic har-
mony cannot, by definition, rule out bullet and the maximality condition
is not the kind of requirement to be able to exclude bullet. Moreover, to
keep logic innocent one cannot appeal to the notion of conservativeness,
since it clashes with the maximality condition. According to the former,
one should not add standard disjunction to a system with conjunction and
quantum disjunction since it leads to a non-conservative extension. On the
other hand, the maximality condition prefers standard disjunction above
quantum disjunction. A possible solution for this problem is that one starts
by applying the stabilized version of conservativeness - this rules out bullet
- and accordingly the maximality condition is used to select the strongest
set of rules.

The second, and more fundamental, objection is that the option
to go global, in particular by adopting the maximality condition, misses the
point. The maximality condition strongly suggests that there is something
wrong with quantum disjunction. According to the condition quantum dis-
junction is the weaker constant, and standard disjunction is the stronger one.
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Hence, the former should be rejected and the latter constant is the prefer-
able option. However, another analysis implies that the rules for quantum
disjunction do not cause the problems of, for example, non-normalizability.
The mistake has to be found in the interplay between quantum and standard
disjunction. Dicher answers to the, rhetorical, question “What is wrong with
quantum disjunction?” as follows:

“Not much, it would seem. Plenty can go wrong in its presence,
but this has less to do with it, and more with the management of
the deducibility context.” (Dicher 2016b: 595)

In line of this quote Dicher shows, in the sequent calculus, how
the law of distributivity for quantum disjunction is proved in the system
{∧,∨, ?}.27 He highlights the fact that it is the applicability of cut in the
derivation which forces quantum disjunction into a problematic structural
context such that it becomes possible to derive the law of distributivity
(idem: 593). In other words, the problem is not to be found in the rules for
the two disjuncts, but in the way they are forced - although their contexts are
incompatible - to interact with each other by the structural rule of cut. The
lesson is simply that one should not force constants with different contexts
into the same deductive system. In the case that such a situation arises, one
should not blame the constants but the cross framework application of cut.

The suggested solution in the case of b-global is after all not con-
vincing. It does not guarantee the innocence of logic, due to bullet, and,
more importantly, it does not analyse quantum and standard disjunction
and their corresponding problems in the right way. Since the principle of
innocence does not imply the need to rule out E-weak disharmony it is,
after all, the stabilized version of conservativeness which is the most satis-
fying harmony requirement. It prevents against constants such as tonk and
bullet; these constants are clearly not innocent. Moreover, it is, since it is
a stabilized version, not possible that a constant is both harmonious and
disharmonious.

5.4 Shortcomings, Suggestions, Open Problems

It is, as it seems, unavoidable that the just presented thesis contains some
shortcomings and raises some open problems. This section mentions, among
others, some of them.

5.4.1 Introduction Rules

First of all it might be suggested, following Steinberger, that in addition
to a harmony requirement an account of permissible introduction rules is
needed. Although such a theory is not yet available, this thesis completely

27See Dicher 2016b, page 594 for a full exposition of this proof.
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neglected the issue how a proper introduction rule should look. For example,
one might adopt the constraint that an introduction rule should, in Dum-
mett’s terminology, be pure (1991: 257). This imposes a rule to let just
one logical constant figure in it.28 Definitely, this raises further questions
about the motivation to adopt such a requirement. In any case, further work
needs to be done to offer an account of permissible introduction rules in a
comprehensive, well motivated, way.

5.4.2 The Two-Sided Model of Meaning

It turned out that the two-sided model of meaning played a crucial role in
the debate which kind of formal requirement should be adopted. Only by
the two-sided model the need to balance the introduction and elimination
rules was given a prominent place. As a consequence of this, it was needed
to take E-weak disharmony into account as well. Unfortunately, mainly due
to reasons of space and the way this thesis was set up, the two-sided model
of meaning is not discussed at all. In particular, it might be questioned
whether the inferentialist is indeed forced to adopt it, or whether he can set
it aside.

For example: Brandom adopts, from a strongly inferentialistic per-
spective, the view that the logical constants must satisfy the conservative-
ness requirement (Brandom 2000: 68-69; Rumfitt 2016: 25). This suggests
that Brandom is not concerned with E-weak disharmony, so it would be
interesting to check how his inferentialistic assumptions are related or can
threaten the two-sided model of meaning. Moreover, given the observation
that in order to prevent E-weak disharmony one needs to go global, it would
be interesting to explore whether such a global strategy is compatible with
the two-sided model of meaning. Finally, the reader might object that in-
ferentialism was as well not discussed or defended. Definitely this is correct,
but the inferentialistic assumption does not influence the question which
kind of harmony requirement is the correct one. Thereby it serves as a
background assumption of this thesis - a defence of it was beyond the scope
of this project.

5.4.3 The Threat from Circularity

An even more fundamental objection seems to be the following one. The
major goal of this thesis was to discuss the question whether logic, or the
logical constants, should be in harmony. Hence, in order to be able to
answer this question it was needed to separate the logical fragment from the
remaining part of the language. This view was called logical inferentialism.

28Notice that a pure rule seems a straightforward requirement once a strictly local
meaning for the connectives is the goal. Otherwise, other constants might be involved in
the meaning-constitutive rules.
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Now one can reason as follows. In order to be able to distinguish the logical
fragment from the non-logical part of the language, it is needed that these
two aspects of the language are not intertwined. Otherwise, it would not be
possible to separate the logical fragment in a proper way from the non-logical
fragment. Since this assumption separates these two parts of the language in
a proper way, it seems that the principle of innocence is already contained
in one of the main assumptions of this thesis. If this is correct, then it
seems that one should not question the principle itself, but the background
assumption of logical inferentialism.

One way to approach this issue is from a general meaning-theoretic
perspective. The assumption of the logical inferentialist is that the logical
fragment of the language can be separated from the remaining language, by
Steinberger called minimal molecularism (2009a: 34). The holist, about the
language as a whole, might challenge this view and argue in favour of a view
which is, for example, similar to the one put forward by Quine in his Two
Dogma’s of Empiricism (1951).

An approach which fits probably better in the current debate, and
might be more fruitful as well, is to focus specific upon the role of logic. The
section which discussed the truth predicate argument already mentioned
Read’s statements that logic is formal and that it has no content. In ad-
dition, the section indicates that the statement that logic is formal needs
further specification. Moreover, one can think of other roles of logic, for ex-
ample its supposed normative force. It is likely that a further investigation
of the precise role of logic in the (linguistic) practice might help to evaluate
whether the assumption of logical inferentialism is plausible.

5.4.4 Uniqueness

Definitely, the conservativeness requirement played a crucial role in the pre-
vious section: it captured the principle of innocence in the best way. His-
torically, the role of conservativeness in the harmony debate goes back to
the first serious reply to Prior’s tonk challenge, namely the one provided by
Belnap. However, Belnap added a further requirement: Uniqueness. For-
mally, uniqueness states that two constants which share the same rules but
are notated differently should be interderivable (Belnap 1962: 133).

Suppose, for example, that und has the same introduction and
elimination rules as and (∧).29 Then, in order to satisfy uniqueness, it
should be possible to derive A und B ` A ∧B, and conversely (idem: 134).
This condition might be useful; the constant ◦, which was not ruled out
by conservativeness, can be excluded by it. In order to see this, suppose
that ÷ is a notational variant of ◦. However, it is not possible to prove

29In addition, suppose that the deductive context is fixed, for example by the base
system of the conservativeness requirement.
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A ◦ B ` A ÷ B. By A ◦ B it is solely possible to conclude B, whereas in
order to introduce A÷B both A and B are needed.

Although it might be a promising criterion, until this section unique-
ness was not mentioned at all. Thereby the thesis simply followed the de-
velopment in the harmony debate: uniqueness is, according to Dicher, con-
servativeness’ “forgotten twin” (2016b: 598). In any case, it is in line of
the approach of this thesis to not simply adopt uniqueness as an additional
requirement. Belnap’s motivation to adopt uniqueness as an additional crite-
rion was based upon his analogy with the way definitions are put forward in
mathematics (1962: 133). Dicher mentions that a further defence of unique-
ness might be needed, but Belnap already indicated how such a defence
would look like.

5.4.5 Structural Rules and the Context

Finally, the so-called structural aspect of the context of a rule raises a num-
ber of questions. An interesting question is how issues regarding the com-
municative context and the structural rules need to be settled. For example,
in the case of the (problematic) interplay between quantum disjunction and
standard disjunction it has been suggested that the cross framework appli-
cation of cut needs to be banned. On the other hand, in the case of tonk the
moral is that there is something wrong with the connective, and not with
the application of cut. This case might be quite straightforward, but one
can probably imagine more problematic situations.30

More in general, there is the issue how disputes at the structural
level should be solved or decided. Sometimes there is the tension to move
things up to the structural level, for example by Steinberger’s statement that
Ex Falso should be regarded as a structural rule, but it does not settle the
disputes regarding these constants or rules. Dicher’s analysis complicates
this issue, because according to him the operational rules carry, by their
context, some structural information.

If Dicher’s analysis is indeed correct, then the latter observation
carries some irony. Recall from the first chapter that Steinberger appealed
to the sequent calculus to distinguish more strictly between the structural
and operational rules; vacuous discharge and multiple discharge are not -
contrary to the suggestion made by natural deduction - part of the meaning
of implication, but a characteristic feature of the deductive system. However,
in the end the sequent calculus blurred the distinction even more. By the
presence of the context of an operational rule, every constant carries some
structural information.

30However, even the case of cut and tonk is, due to Ripley, not that straightforward. He
argues that cut is no longer admissible once the rules for tonk are added to the deductive
system (2015: 31).
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It is, unfortunately, not possible to outline and discuss the ques-
tions raised in this section in more detail. Hopefully, this thesis contributes
to the aim to analyse them extensively; both in a formal and a philosophical
way.

5.5 Final Conclusion

The thesis is almost finished: it is time to put the main observations to-
gether. The conclusion is definitely that a harmony constraint contains, at
least partly, a global character. This conclusion is supported by both formal
and philosophical considerations. In terms of the latter, it turned out that
the most satisfying motivation for harmony, the principle of innocence, does
not imply a local harmony constraint.

The formal observations emphasized even more the need to go
global. Purely local harmony constraints were not able to rule out bullet and
to prevent against E-weak disharmony; illustrated by quantum and standard
disjunction. The principle of innocence implied that bullet needs to be ruled
out as a meaningful constant. On the other hand, E-weak disharmony is not
a problem for the principle of innocence. Moreover, the analysis of this chap-
ter strongly suggested that the aim to rule out quantum disjunction by the
maximality condition misses the point. The problem is not quantum dis-
junction per se, but the way it is put together with standard disjunction in
a problematic deductive context that causes the troubles.

Hence, the best option is to adopt the conservativeness constraint
as the formal counterpart for harmony. It excludes tonk, bullet, and guar-
antees the principle of innocence. In order to stabilize conservativeness it
seems wise to adopt the semi-global version of conservativeness. This means
that a base system is adopted which contains just atomic sentences and (a
subset) of the structural rules. Accordingly, it is checked for each constant
in isolation whether it leads to a conservative extension or not.

By this harmony constraint the meaning of the logical constants
contains some global character, but is not as fully global as in the case of,
for example, the maximality condition. In addition to the stabilized version
of conservativeness, one might add, as the previous section suggested, the
requirement of uniqueness. If a further defence of uniqueness is successful,
then the harmony requirement mirrors exactly Belnap’s original reply to
Prior’s tonk challenge. Metaphorically, the current situation in the quest
for proof-theoretic harmony corresponds to harmony in love: we are finally
able to stop the quest because we realise that what we were looking for is
already there. It just needs to be explored further.
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