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Abstract

In this thesis, we construct and investigate a topos for Kreisel’s modified re-
alizability. The topos, like Kreisel’s modified realizability, is characterized by
the axiom of choice in all finite types and the principle of independence of
premise. The model is constructed by a general method known as the tripos-to-
topos construction. It is closely related to an existing topos, constructed for a
modification of modified realizability by Troelstra, usually also called modified
realizability.

We pay special attention to the subcategory of our topos on ¬¬-separated
objects, constructing it separately. This category is more accessible, and the
logical features we look for in our topos are already present in this smaller
category.
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Chapter 1

Introduction

1.1 Modified Realizability
1.1. Let us put on our constructivist hats for a moment and consider what it
means for the arithmetic sentence

∃y(y + 7 = 12)

to be true. As constructivists, we might not be satisfied by observing that 5
exists; we might prefer the existence of a program which outputs the number
5. We could subsequently worry about the constructive content of 5 + 7 = 12,
but let us just assume that we can always evaluate arithmetic expressions of
naturals, and that naturals have decidable equality. So, what is the content of
the statement

∀x∃y(y + 7 = x),

where x, y range over the naturals? Of course, this sentence ought to be false,
but what is the constructive content of that? Following our previous example,
the statement would be true if there was a program which, given input x, could
output a y such that y + 7 = x. Of course, such a program does not exist. So,
even constructively, this statement is false. On the other hand,

∀x(x ≥ 7→ ∃y(y + 7 = x))

ought to be true again. Inequalities of naturals, like equalities, are decidable, so
the constructive content of an inequality should be small: essentially, just true
or false. The sentence then states that there should be a program which given
an x, and some kind of witness that x ≥ 7 produces a y such that y + 7 = x.
And indeed, if a function is guaranteed that x ≥ 7 it can compute y = x− 7.

In fact, because x ≥ 7 is decidable, we could even replace this with

∀x∃y(x ≥ 7→ (y + 7 = x)).

That is, there is a program which, given an x, produces a y such that if x ≥ 7,
then y + 7 = x. Otherwise, it can just produce a dummy result. The fact
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that we can pull out the existential quantifier like this is called independence of
premise, something which will become important soon.

Now let us expand our scope a little bit. Instead of talking just about natural
numbers, we will also talk about functions of natural numbers. Let us write x0

for variables ranging over the natural numbers, and f1 for variables ranging over
functions. Then, we can state our discussion above internally in this language
as

∀x0∃y0(x ≥ 7→ (y + 7 = x))↔ ∃f1(∀x0(x ≥ 7→ (f(x) + 7 = x))).

Of course, as per our previous discussion, f ranges not over all functions N→ N,
but just the computable ones. This is just as well, as long as we are still being
constructivist.

The equivalence we have just written looks a lot like a sort of axiom of choice:
if for every x there is a y, then there is a function taking every x to such y. In
fact, this form of the axiom of choice will also be a central topic in this thesis.

1.2. The language in which the sentences in the previous example live is the
language HAω of Heyting arithmetic in finite types. The language of Heyting
arithmetic, by itself, has just the usual arithmetical function symbols: it has
symbols 0, s,+,×. The axioms for Heyting arithmetic are the axioms of Peano
arithmetic, but in the context of intuitionistic first order logic.

The logic HAω extends HA by adding different sorts, or types. These are
constructed inductively as follows: there is a sort called 0, which is the sort
ranging over numbers; in particular, the symbols 0, s,+,× all take and produce
terms of type 0. Then, if σ, τ are sorts, so are σ → τ and σ × τ . Thus, some
examples of types are 0→ (0→ 0) and ((0× 0)→ 0)→ (0→ (0→ (0→ 0))).
We adopt the convention that × binds more strongly than →, and that both
× and → associate to the right, so that 0 → 0 → 0 means 0 → (0 → 0).
Furthermore, each natural number names a type recursively by defining the
type n + 1 to be n → 0. For instance, the type 3 is ((0 → 0) → 0) → 0.
Intuitively, the terms of type σ → τ should be understood as functions from
objects of type σ to objects of type τ ; and the terms of type σ × τ should be
understood as pairs of terms, one of type σ and one of type τ .

To encode thinking of σ → τ as a function type, we have for each pair of
types σ, τ a special function symbol evσ,τ in the language for function evaluation;
that is, if f is a term of type σ → τ , and x is a term of type σ, then evσ,τ (f, x)
is a is a term of type σ. For convenience we will always write f(x) instead of
evσ,τ (f, x); the notation ev exists only to emphasize that the interpretation of
the higher types as function types is not a higher-order feature of our logic, but
something encoded in the first-order axioms of the theory. More generally, if f is
a term of type σ1 → · · · → σn → τ , and x1, . . . , xn are terms of type σ1, . . . , σn
respectively, we usually write f(x1, . . . , xn) instead of f(x1)(x2) · · · (xn).

Since σ × τ ought to be a product type, we have for each pair of types σ, τ
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three constants in the language:

Pσ,τ : σ → τ → σ × τ,
P 1
σ,τ : σ × τ → σ,

P 2
σ,τ : σ × τ → τ,

where the colon should be read as “of type”. We will always abbreviate Pσ,τ (x, y),
which is itself an abbreviation of ev(ev(Pσ,τ )(x))(y), as 〈x, y〉, and P iσ,τ (a) as ai.
Furthermore, we abbreviate 〈a1, · · · 〈an−1, an〉 · · · 〉 as 〈a1, . . . , an〉, and when a
is a term of σ1 × · · · × σn we give a1, . . . , an their obvious meaning as the
coordinates of a. To give these symbols their intended meanings, HAω has the
axioms

∀xσ∀yτ (〈x, y〉1 = x),

∀xσ∀yτ (〈x, y〉2 = y),

∀pσ×τ (〈p1, p2〉 = p).

We finally abbreviate f(〈x1, . . . , xn〉) also as f(x1, . . . , xn); it should be clear
from context when f is applied several arguments in order or to a tuple.

The evaluation function allows us to evaluate functions in the language. We
also want to be able to talk about simple functions: in fact, we want to be
able to use the (typed) lambda calculus. Rather than axiomatizing it from the
ground up, we add some combinators to the language. These are, for types
σ, τ, υ

Iσ : σ → σ,

Kσ,τ : σ → τ → σ,

Sσ,τ,υ : (υ → σ → τ)→ (υ → σ)→ υ → τ.

These correspond to the “ordinary” SKI combinators, which we enforce by
adding axioms for their behaviour as follows:

∀xσ(Iσ(x) = x),

∀xσ∀yτ (Kσ,τ (x, y) = x),

∀xσ∀yτ∀zυ(Sσ,τ,υ(x, y, z) = x(z, y(z))).

As is well known (see e.g. [2]), any well-typed lambda term can be translated
into a term using just these combinators and ev, and we thus have rudimentary
computation. Since we have natural numbers at our disposal, we additionally
want to be able to build functions recursively. To this end, we add for each type
σ another combinator Rσ of type σ → (σ → 0→ σ)→ 0→ σ, whose behaviour
is defined by the axioms

∀xσ∀fσ→0→σ(Rσ(x, f, 0) = x),

∀xσ∀fσ→0→σ∀n0(Rσ(x, f, sn) = f(R(x, f, n), n)).
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With the recursion scheme, we can in particular define and use all primitive
recursive functions in HAω.

For a much more detailed overview and analysis of HAω, see for example the
first chapter of [7].

1.3. We can interpret HAω in a variety of structures. One obvious choice is to
take a classical approach, and interpret the type 0 as the natural numbers, the
product of types as the Cartesian product, and σ → τ as the set of all functions
from the set interpreting σ to the set interpreting τ . The symbols all take on
their usual meanings.

Of course, this is not very constructive. In particular, it goes against our
computability interpretation of the sentences, since the objects of type 1 range
over more than just computable functions, which also means that the content of
the sentence ∀x0∃y0φ(x, y) can no longer be the existence of a program which
computes for each x a y such that φ(x, y) holds – for instance, just take the
formula f(x) = y. Thus, we aim for a more computational interpretation. To
this end, let us recall some basics of recursion theory.

1.4. We can encode all Turing machines as natural numbers, in such a way that
a fixed universal Turing machine can evaluate them, given the code. We fix
such a Gödel numbering for the rest of the thesis. Given natural numbers n,m
we write nm ∈ N for the output of the universal machine if it is run with code
n and argument m, if it terminates. If we want to specify that nm exists we
write nm↓. This operation associates to the left, so that nmk = (nm)k. If we
write an equation with this operation, unless otherwise specified we mean that
one side exists if and only if the other side does, and if so they are equal.

A few Turing machines come back often, so their codes get specific names.

• k, k̄ ∈ N are such that kab = a and k̄ab = b.

• p,p1,p2 ∈ N are such that p1(pab) = a, p2(pab) = b and p(p1a)(p2a) =
a.

• i is such that ia = a.

• s is such that sxyz = xz(yz).

• r is such that rxf0 = x, and rxf(n+ 1) = f(rxfn)n.

We can choose our coding in such a way that 0a = 0 and p00 = 0, and we choose
to do so. Also, we typically abbreviate pab as 〈a, b〉, and abbreviate p1a,p2a
as a1, a2 respectively.

If t is a closed term in the lambda calculus (for example, λn.pnn), there is
a Turing machine for the computation t represents, and we represent the code
for that machine by t itself. In particular, we have a code b = λnmk.n(mk) for
composition, and we usually represent it as an infix circle (so that bnm = n◦m).

1.5 Definition. For each finite type σ we define a set σHEO, the hereditarily
effective operations of type σ, together with a function ρσHEO

: σHEO → P(N).
For the type 0, we set 0HEO = N, and ρ0HEO

(n) = {n}.
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If f : σHEO → τHEO is a function and r is a natural number, we say that
r realizes f if for all x ∈ σHEO and all n ∈ ρσHEO(x) we have rn↓ and rn ∈
ρτHEO

(f(x)). Then (σ → τ)HEO consists of all functions f : σHEO → τHEO which
have a realizer, and ρ(σ→τ)HEO

(f) is the set of those realizers.
We set (σ× τ)HEO = σHEO× τHEO and define ρ(σ×τ)HEO

(x, y) = {pnm | n ∈
ρσHEO

(x),m ∈ ρ(τ)(y)}.

1.6. An interpretation of HAω in HEO sits closer to our intention. For each
type σ, we interpret it as σHEO. The successor, addition and multiplication all
keep their interpretation. The symbols S,K, I,R can also keep their original
interpretations, since the typed SKI combinators and bounded recursion can
only produce computable functions from computable functions.

A realizer of an element of a finite type should be thought of as a represen-
tative for that element, and operations on a finite type are typically defined on
realizers. This is consistent with how we defined function types in HEO: they
are computable functions of the realizers.

From now on, when we refer in the meta-language to a type as if it has
been interpreted without explicitly mentioning an interpretation, we mean its
interpretation in HEO. Furthermore, we drop the subscript, so that σ = σHEO

unless context suggests otherwise.

1.7. So far, we have skirted the subject of what it means for two elements of
a type other than 0 to be equal. Of course, equality of natural numbers is nice
and decidable. For higher types, this is slightly more complicated. If we take
the interpretation in 1.6, equality is no longer decidable; that would require
determining for two codes of computable total functions whether or not they
represent the same function.

However, in our interpretation in HEO, for terms t, t′ of the appropriate
type, we do have the equivalences

t =σ→τ t
′ ⇐⇒ ∀xσ(tx =τ t

′x),

t =σ×τ t
′ ⇐⇒ t1 =σ t

′
1 ∧ t′2 =τ t

′
2.

(1.1)

This means that with recursive translations, we can interpret equality in the
higher types in terms of equality for 0. Thus, we make the choice to allow only
equality of natural numbers as atomic formulas, and take the “higher equalities”
as defined by the above translation. This allows our atomic formulas to always
be decidable.

The equivalences 1.1 are not provable from HAω themselves. A similar
but different interpretation of the finite types, called the hereditarily recursive
operations or HRO, lets 0HRO = N and, recursively,

(σ → τ)HRO = {r ∈ N | ∀n ∈ σHRO(rn↓ ∧ rn ∈ τHRO)}
(σ × τ)HRO = {〈n,m〉 | n ∈ σHRO,m ∈ τHRO}.

This structure also has an interpretation of HAω, and there distinct elements of
σ → τ can be extensionally equal. In this structure, equality is clearly decidable
for all higher types, since it is just equality of natural numbers.
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Adding the equivalences 1.1 to HAω gives us the new theory E−HAω for
extensional Heyting arithmetic in all finite types. This is what we work with
from now on.

For a deeper analysis of HEO and HRO and their respective differences, see
[7], chapter 2 paragraph 4. For a more detailed overview of possible definitions
of equality, with their various advantages and problems, see [8].

1.8. Following the interpretation in 1.6, we will define what it means for an
element of a finite type in HEO to realize a sentence. Recall, when we refer to
an element of a higher type, we are referring to an element of that type in HEO.
For instance, saying that f is of type 1 means that it is a total computable
function of natural numbers.

First, we will assign to each formula φ in the language of HAω a finite type
τ(φ); if φ is a sentence, this will be the type from which realizers for φ may be
drawn. If φ is an atomic formula, then τ(φ) = 0. Now we define recursively

τ(φ ∧ ψ) = τ(φ)× τ(ψ),

τ(φ ∨ ψ) = 0× τ(φ)× τ(ψ),

τ(φ→ ψ) = τ(φ)→ τ(ψ),

τ(∀xσφ) = σ → τ(φ),

τ(∃xσφ) = σ × τ(φ).

The elements of a type τ(φ) are referred to as the potential realizers of φ.
Then, we define a relation mr between sentences 1 φ and elements a ∈ τ(φ),

where aτ(φ) mr φ is to be read as “a modifiedly realizes φ” or just “a realizes
φ”. More commonly, we say that a is an actual realizer of φ. If φ is an atomic
sentence, then we have a0 mr φ if and only if φ is true. This is fine, because
the truth of atomic sentences is decidable. Then we define recursively:

aτ(φ)×τ(ψ) mr φ ∧ ψ ⇐⇒ a1 mr φ and a2 mr ψ,

a0×τ(φ)×τ(ψ) mr φ ∨ ψ ⇐⇒ (a1 = 0 and a2 mr φ) or
(a1 6= 0 and a3 mr ψ),

aτ(φ)→τ(ψ) mr φ→ ψ ⇐⇒ for each k ∈ τ(φ), if k mr φ then ak mr ψ,

aσ→τ(φ) mr ∀xσφ ⇐⇒ for each k ∈ σ, we have ak mr ψ[k/x],

aσ×τ(φ) mr ∃xσφ ⇐⇒ a2 mr φ[a1/x].

Thus, when a mr φ, this should be understood as constructive evidence
that φ is true. For instance, constructive evidence for an existential statement
consists of a witness for the existential statement, together with a proof that
the statement actually holds for that witness. Not surprisingly, we have the
following theorem.

1To be very precise, the right element in the relation mr need not be a sentence of HAω ,
but a sentence of a language extending HAω with a finite number of constants, each of which
has an intended interpretation as an element of a finite type in HEO.
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1.9 Theorem. If φ is a sentence of HAω, and E−HAω ` φ, then there is an
a ∈ τ(φ), given by a closed term in the language of HAω, such that a mr φ.

Proof. Clearly if φ→ ψ and φ are both realized, then so is ψ by way of function
application. Furthermore, all logical axioms, as well as the axioms of E−HAω

are realized by closed terms in the language of HAω. By way of example,
equational axioms – the axioms about P, P 1, P 2, I,K, S – are all realized by 0,
and the recursion scheme

φ(0)→ ∀n(φ(n)→ φ(s(n)))→ ∀n(φ(n))

is realized by r.

1.10. The system we have just described is that of modified realizability. It
was first introduced by Kreisel in [5], and later in [6], in order to study HAω.
Modified realizability, as the name suggests, is a variant of an earlier system
which goes by the name of realizability.

This “original realizability” was invented by Kleene in [4] as a way of formal-
izing the constructive principle that mathematics should be effective: from a
proof about an object we ought to be able to effectively determine, or compute,
information about the object. Recall the way we considered formulas of the
form ∀x∃yφ(x, y) in the introduction.

In the original system, which was defined for HA, a realizer was always a
number. Where we use a pair, ordinary realizability used a primitive recurisve
bijection N2 → N, and where we use a function type, ordinary realizability
used a Gödel number for a recursive function. In particular, potential realizers
do not come into play. Other than that, the inductive definitions are quite
similar. Ordinary realizability will play a minor role in this thesis, mostly as a
contrasting example.

Realizability has many variants, most of which we will not go into in this
thesis. For an overview of “ordinary” realizability, modified realizability, and
many other variants see for example [7]. For a historical overview of realizability,
with a focus on categorical developments, see [10].

1.11. Unsurprisingly, the converse to theorem 1.9 does not hold. One example
we already discussed is the axiom of choice for finite types. For types σ, τ , with
a parameter type α, this axiom takes the form

ACσ,τ : ∀aα(∀xσ∃yτ (P (x, y, a))→ ∃fσ→τ∀xσ(P (x, f(x), a))).

There is a term realizing this: it is given by λdr.〈λx.(rx)1, λx.(rx)2〉. However, it
cannot be proved from the axioms of E−HAω themselves, something we happen
to prove along the way near the end of the next chapter.

Another example is the independence of premise. To make our discussion
from 1.1 more precise, we need to have formalize what property of x ≥ 7 allowed
us to move the existential quantifier past it. With our conventions from 1.4, that
00 = 0 and 〈0, 0〉 = 0, every finite type is inhabited by an element with code 0.
Inductively, 0 is obviously an element of N; if 0 is a code for an element of τ ,
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then the constant 0 function, which is coded by 0 itself, is an element of σ → τ ;
and if 0 is a code for elements from both σ, τ then the pair of those elements in
σ × τ will also have 0 for their code. By a small abuse of notation, we will use
0 to refer to the term of any type which has 0 for a code.

Thus, 0 occurs as a sort of special, shared potential realizer between all
types. We are looking for a family of formulas P (~x) for which, no matter the
values of the variables ~x, whenever P is realized, then 0 is an actual realizer of
P . Such formulas in particular have the property

0 mr ∀~x(¬¬P (~x)→ P (~x)),

so under modified realizability, such formulas are all equivalent to negated for-
mulas, namely, their own double negation.

In fact, negated formulas also all have this property: since ⊥ has no actual
realizers, this means ¬P = P → ⊥ only has actual realizers when P has no
actual realizers. In that case, 0 mr ¬P , and more generally any element of
τ(¬P ) realizes ¬P .

Hence, the general form of independence of premise is, for our purposes,

∀x((¬P (x)→ ∃y(R(x, y)))→ ∃y(¬P (x)→ R(x, y))),

and it is realized by λxr.〈(r0)1, λa.(r0)2〉. Just like the axiom of choice, it does
not follow from the axioms of E−HAω.

1.12. The above makes an attempt at characterizing which statements are re-
alizable. Of course, we would never be able to give a complete characterization:
since for any sentence φ, either φ or ¬φ is realized, in particular for any Turing
machine T , either Halts(T ) or ¬Halts(T ) is realized. No actual metatheory is
strong enough to determine that for every T .

Despite this, there is a sense in which E−HAω augmented with the axiom
of choice for finite types and independence of premise is as strong as modified
realizability: E−HAω itself thinks they are the same. Knowing this, it makes
sense to focus on AC and IP when considering a potential model for modified
realizability.

We will now make the above more precise.

1.13. Our definition of (modified) realizability lies in the metatheory, but there
is really no reason for that. For every sentence φ in the language, we can define
a formula aτ(φ) mr φ of one free variable aτ(φ) as follows. If φ is atomic, then
aτ(φ) mr φ is just φ. Otherwise, we define recursively

aτ(φ)×τ(ψ) mr φ ∧ ψ = (a1 mr φ) ∧ (a2 mr ψ),

a0×τ(φ)×τ(ψ) mr φ ∨ ψ = (a1 = 0 ∧ a2 mr φ) ∨ (a1 6= 0 ∧ a3 mr ψ),

aτ(φ)→τ(ψ) mr φ→ ψ = ∀kτ(φ)(k mr φ→ ak mr ψ),

aσ→τ(φ) mr ∀xσφ = ∀kσ(ak mr ψ[k/x]),

aσ×τ(φ) mr ∃xσφ = a2 mr φ[a1/x].
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Then, since the realizer from theorem 1.9 can be taken to be a closed term in the
language of HAω, it follows that E−HAω ` φ implies E−HAω ` ∃xτ(φ)(x mr φ).

1.14. As observed, the converse to this is not true. Both the axiom of choice
and independence of premise are realized by closed terms of HAω, so certainly
for each instance φ of ACσ,τ we have E−HAω ` ∃xτ(φ)(x mr φ), but E−HAω 6`
ACσ,τ . Thus there is the obvious question: how much stronger is modified
realizability than provability in E−HAω, and in what way?

The following theorem, whose proof can be found in [7] (theorem 3.4.8),
states that the axiom of choice and independence of premise are precisely what
we need.

1.15 Theorem. Writing IP for the axiom scheme consisting of all instances
of independence of premise, and AC for the axiom scheme consisting of all
instances of the axiom of choice for all finite types,

E−HAω + IP + AC ` φ ⇐⇒ E−HAω ` ∃xτ(φ)(x mr φ).

1.2 Heyting Categories and Toposes
1.16. Rather than restricting ourselves to just the finite types, we want to take
a wider view, not just of functions of natural numbers but of a wider scope of
mathematics. We want to be able to talk about more objects, but still keep the
flavour of modified realizability.

Logics can be interpreted in categories with sufficient structure for that par-
ticular logic. Then, any object in the category can serve as a sort in the logic.
Thus, we might be interested in finding a category which has enough struc-
ture to support an interpretation of HAω – that is, of first-order intuitionistic
logic, with product and function types and something like the natural numbers
– which also has a wealth of other objects to work with.

In order for a category to sensibly allow an interpretation of intuitionistic
logic, it needs to be a Heyting category. That is, for any object, its poset of
subobjects needs to be a Heyting algebra; and these Heyting algebras need
to interact well with pullback maps. Then the connectives in the logic get
interpreted as Heyting algebra operations, and quantifiers as adjoints to the
pullback.

A good candidate for a categorical interpretation of the natural numbers is
a so-called natural numbers object, which is essentially an object that allows
recursion.

A function type is most sensibly interpreted as an exponential in a category.
Hence, if a category has the right exponentials, we can interpret function sorts
in them. In particular, this works if the category is Cartesian closed, that is,
has all exponentials.

To sum up, we are interested in a Cartesian closed Heyting category with a
natural numbers object, whose internal logic reflects that of modified realizabil-
ity, particularly for the finite types. The first thing we do, once we move beyond
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the introductory chapter, will be to define and investigate such a category – this
will be the category of modified assemblies.

1.17. Although Heyting categories allow us to develop quite a bit of mathemat-
ics, from the point of view of a full foundation of mathematics they are lacking.
We are able to talk about functions, but we are generally not able to talk about
subsets, or predicates, on our objects. Classically, this is less of a problem: a
subset of a set A is the same as a function A→ 2. In constructive mathematics,
this typically no longer holds, and Heyting categories are not powerful enough
to be able to talk about subsets of or predicates on objects. This limits them
from developing a full scale mathematics.

For that, we move a step “further”, to toposes. Toposes distinguish them-
selves from Cartesian closed Heyting categories by having, internally, power
objects, which are objects which function like the power set in set theory. In
fact, toposes allow a minimalist definition as finitely complete categories with
power objects.

Where Heyting categories allow interpretation of first-order logic, toposes
allow interpretations of higher-order logics. When a variable P is meant to
range over the subobjects or predicates of a sort, it can instead range over the
“elements” of the power object of that sort.

If a topos furthermore has a natural numbers object, functioning somewhat
like the axiom of infinity in ZF set theory, this is enough to develop an entire
mathematics in its internal logic. Taking this point of view, most mathemati-
cians are investigating the internal structure of Set, but we might like a different
topos to work in.

In particular, we are interested in a topos with natural numbers object whose
internal logic corresponds to that of modified realizability. That will be the
terminal goal of this thesis: to define and investigate a category called MRT,
the modified realizability topos.

1.18. In fact, an object called “the modified realizability topos” already exists.
It was originally defined in an unpublished document by Grayson in 1981; an
accessible (and corrected) construction by Van Oosten can be found in [9]. To
distinguish it from the object we will define, we call it Gray, the “Grayson topos”,
but we emphasize that that is not standard terminology. However, because this
thesis is about the topos we will call MRT, giving it a longer but more descriptive
name (like “extensional modified realizability topos”) would be cumbersome.

The topos Gray exists to model something which is also called modified real-
izability. This variant was investigated by Troelstra in [7]. Using the terminol-
ogy of 1.7, we could informally explain the difference by saying that Troelstra’s
variant is based on HRO rather than HEO. The difference in construction be-
tween the two is sufficiently small, that we can for the most part follow the
construction of Gray to construct MRT, and in fact while constructing MRT we
also construct Gray “along the way”. Due to the similarities in construction, the
topos Gray is related MRT by an essential geometric functor. However, these
small differences are strong enough that the axiom of choice for finite types does
not hold in Gray, while it does in MRT.

12



What we called “ordinary realizability” earlier, in 1.10, also has an associated
topos: the so-called effective topos Eff. This topos is arguably the simplest and
most famous of the realizability toposes, and is often used as a contrast for
geometric toposes.

Similarly, there also already exist categories of assemblies and modified as-
semblies. The assemblies Asm are a Heyting subcategory of Eff, which has two
nice properties: it consists of the so-called ¬¬-separated objects, and further-
more Eff is the ex-reg completion of Asm, which more or less means that every
object of Eff is the well-behaved quotient of an assembly.

Our category MAss will share the first property of Asm (with respect to
MRT), but not the second; unfortunately, the two properties no longer coincide
in MRT. All realizability toposes – at least those constructed by way of triposes –
have a nice subcategory with the second property, and these are called categories
of assemblies in [11]; so our choice of terminology differs from that case.

Furthermore, a category called “modified assemblies” has been investigated
before, by Streicher, whose definition is quoted in [9]. It matches neither the
general definition from [11] nor our definition.

We will also, along the way, construct an analogue of MAss for Gray we will
call GrAss, or Grayson assemblies. While this category does not really have an
explicit existing name – in particular, it has never been called a category of
modified assemblies – it appears in [10] as the subcategory of Gray consisting of
the “sub-∇s”.

1.19. The remainder of this thesis consists roughly of three parts, divided into
three chapters. First, we introduce the category of modified assemblies, and,
while developing some general theory about Heyting categories, aim to show
that it is a viable candidate for a “category of modified realizability”.

In the second part, we generalize the notion of a Heyting category to that
of a hyperdoctrine. Certain hyperdoctrines have enough internal structure that
from them we can construct toposes: such hyperdoctrines are called triposes.
We develop basic theory about triposes, and how they give rise to toposes. In
particular, they give rise to the modified realizability topos MRT, as well as
Gray and other toposes.

In the third and final part, we investigate MRT in particular. We consider
the relation between MRT and the category of modified assemblies – in fact, the
latter is a subcategory of the former. In doing so we demonstrate that it is indeed
an appropriate category for a mathematics based on modified realizability.
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Chapter 2

Modified Assemblies

2.1 Modified Assemblies as a Heyting Category
2.1. In order to define the category of modified assemblies, we first introduce
some notation useful for realizability. If A,B are sets of natural numbers, and
r is a natural number, we write

r : A→ B

when for each a ∈ A, we have ra↓ and ra ∈ B. If furthermore A,B are equipped
with equivalence relations ∼A,∼B respectively, then we write

r : (A,∼A)→ (B,∼B)

if r : A→ B and whenever a ∼A a′, then also ra ∼B ra′. This last condition is
also called equivariance of r.

2.2 Definition. A modified assembly is a quadruple (X,PX ,∼, ρX) of a set
X, a set of natural numbers PX with 0 ∈ PX , called the potential realizers, an
equivalence relation ∼ on PX , and a mapping

ρX : X → P(PX)

such that for each x ∈ X, the set ρX(x) is not empty. The elements of ρX(x)
are called actual realizers for x. We refer to (X,PX ,∼, ρX) as X whenever this
does not cause confusion.

If X,Y are modified assemblies, a function f : X → Y of the underlying
sets is called a morphism of modified assemblies if there is an r ∈ N such that
r : (PX ,∼)→ (PY ,∼) and for each x ∈ X also r : ρX(x)→ ρY (f(x)). This r is
called a realizer for f .

Clearly, morphisms compose to give morphisms and the identity function is
a morphism, so we have a category MAss of modified assemblies and morphisms
of assemblies.
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2.3. If we drop the equivalence relation from 2.2, or equivalently, only consider
objects for which the equivalence relation is total, we obtain a similar but dis-
tinct category. This is the category GrAss, announced in 1.18, that will play a
role with respect to Gray similar to the role MAss plays with respect to MRT.
Everything we say in the first two sections of this chapter applies as much to
GrAss as it does to MAss, as long as we ignore everything to do with equivalence
relations and equivariance. The differences between the categories only become
apparent once we start investigating the internal logic of MAss.

If we drop the sets of potential realizers altogether, and keep only the sets
of actual realizers, we obtain the so-called category of assemblies Asm, playing
that same role with respect to Eff. This category is still similar to MAss and
GrAss in the sense that most of what is constructed in these two sections holds
for it; but its logic is further from that of GrAss and MAss than the logics of
those categories are from each other.

2.4. Consider the modified assembly N = (N,N,=, ρN), where ρN(n) = {n}. We
interpret the actual realizers of a point in a modified assembly as codes for that
point, that is, as information about which point of the structure it is. Hence,
this modified assembly seems to represent the natural numbers in the category.
If instead we had defined, for instance, ρ′N(n) = N, we would obtain an object in
which the points are “computationally indistinguishable”: from this object, we
would only be able to map the natural numbers into sets of points which share
an actual realizer.

The modified assembly (1,N,N × N, ∗ 7→ N) is a terminal object in MAss.
The function 0 : 1 → N is realized by the number 0. The successor function
s : N→ N is realized by any code for the successor function. Hence, we have a
diagram

1
0−→ N s−→ N,

and in fact this is a universal such diagram: for any morphisms 1
q−→ X

f−→ X
there is a unique u : N→ X such that

1
0 //

q

��

N s //

u

��

N

u

��
X

f // X

commutes. Since the choice u(n) = fn(q(∗)) is uniquely determined by the
underlying sets, we only need to give a realizer for it: if rf realizes f , and rq is
an actual realizer of q(∗), then rrq(λrxn.rfx) realizes u. This realizer is trivially
equivariant because the equivalence relation on PN is equality.

This property is what makes the modified assembly N (together with the
morphisms 0, s) a so-called natural numbers object in a Cartesian closed cate-
gory like MAss. (For categories which are not Cartesian closed, a parametrized
definition works better.) Natural number objects are essentially those objects
which allow an internal notion of recursion. Of course, in a category built on a
computable interpretation of arithmetic, this object is central.
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2.5. Consider the set G of (cleverly chosen representatives of isomorphism
classes of) finite graphs. A graph G ∈ G on n nodes is realized by any number
whose binary expansion has n2 +1 digits, the last n2 of which form an adjacency
matrix for the graph. We let ρG(G) be the set of these realizers, and

PG =
⋃
G∈G

ρG(G).

Then (G, PG ,=, ρG) is a good candidate for an “object of finite graphs”.
Classically, a (numerical) graph invariant is any mapping G → N. This set

contains many sensible graph properties, like the number of nodes, the number
of edges, the number of connected components, the treewidth, or the chromatic
number. However, this set also contains ill-behaved mappings, like the one
which sends an n node graph to 1 if n lies in the halting set, and to 0 otherwise.

Hence, if you are a practising constructivist – that is, a computer scientist –
you might prefer to talk about numerical graph invariants in MAss, rather than
in Set: the guarantee of a morphism G → N in MAss is precisely that it is a
computable property of the graph.

2.6. Our first goal will be to prove that MAss is a Heyting category, a category
in which we can interpret intuitionistic first-order logic. Following [3] book
A, we prove in order that MAss is Cartesian, regular, coherent, and finally
Heyting, while developing some basics about such categories along the way.
This staggered approach shows which properties of MAss allow us to interpret
which logical structure into the category: as we restrict ourselves to ever more
specific categories, the posets Sub(X) for objects X of MAss slowly show their
structure as Heyting algebras.

To be on our way, we first introduce some more notation.

2.7. Let A,B ⊆ N. We write

A×B = {〈a, b〉 ∈ N | a ∈ A, b ∈ B},
A+B = ({k} ×A) ∪ ({k̄} ×B),

A→ B = {r ∈ N | r : A→ B}.

In particular, r : A→ B and r ∈ A→ B are now synonymous.
If we furthermore have equivalence relations∼A,∼B onA andB respectively,

we can also define these operations on (A,∼A) and (B,∼B). Then (A,∼A
)×(B,∼B) = (A×B,∼A×B), where (a, b) ∼A×B (a′, b′) ⇐⇒ a ∼A a′∧b ∼B b′,
similarly (A,∼A) + (B,∼B) = (A+B,∼A+B) where

(x, y) ∼A+B (x′, y′) ⇐⇒ (x = x′ = k ∧ y ∼A y′) ∨ (x = x′ = k̄ ∧ y ∼B y′).

We set

(A,∼A)→ (B,∼B) = ({r ∈ A→ B | r equivariant.},∼A→B),

where
r ∼A→B r′ ⇐⇒ ∀a ∈ A(ra ∼B r′a).
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Note that, unlike for × and +, the underlying set of (A,∼A) → (B,∼B) may
actually be different from A→ B.

When we consider two sets (A,∼A) and (B,∼B) which naturally come with
equivalence relations, then A → B refers to the underlying set of (A,∼A) →
(B,∼B) unless specified otherwise. In particular, for a modified assembly X
this is true for (PX ,∼X).

2.8 Lemma. The category MAss is Cartesian; that is, it has all finite limits.

Proof. We encountered the terminal object before. If X,Y are modified assem-
blies, then their product is given by

(X × Y, (PX ,∼X)× (PY ,∼Y ), ρX × ρY );

the realizers for the projections are projections themselves. If f, g : X → Y are
morphisms of modified assemblies, and X ′ = {x ∈ X | f(x) = g(x)}, then the
equalizer of f, g is given by

(X ′, PX ,∼X , ρX |X′);

the realizer for the injection is the identity.

2.9 Lemma. In a Cartesian category, the posets Sub(A) have finite meets.

Proof. The identity A→ A gives a top element. If m1 : A1 → A,m2 : A2 → A
are subobjects, then the pullback of m1,m2 is their meet.

2.10 Lemma. If f : A→ B is a morphism of a Cartesian category C, we obtain
a mapping f∗ : Sub(B) → Sub(A), which takes a subobject m : X → B to the
pullback of f and m. Furthermore, f∗ preserves the finite meets in Sub(B), and
thus also the ordering.

Proof. The mapping f∗ trivially preserves the top element, which is the identity.
That f∗ preserves binary meets is a number of applications of the pullback
pasting lemma to a cube of pullbacks.

2.11 Lemma. The category MAss is regular. That is, any morphism f : X → Y
has a least subobject im(f) of Y through which f factors, and these images are
stable under pullback: if g : Z → Y is any morphism, then in pulling back the
image factorization of f by g,

X ×Y Z
πZ

**//

��

g∗(im(f)) //

��

Z

g

��
X

f

44// im(f) // Y

the top row is also an image factorization.
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Proof. The underlying set of im(f) is the set-theoretic image of f . Its potential
realizers are those of X, and the actual realizers of y ∈ im(f) are given by

ρim(f)(y) =
⋃

x:f(x)=y

ρX(x).

Then X → im(f) is realized by the identity, and the inclusion im(f) → Y
is realized by any realizer for f . This is clearly the minimal subobject of Y
through which f factors: if X → A → Y is another factorization through a
subobject, then the induced mapping im(f) → A is realized by the same code
as the mapping X → A.

If we have a pullback rectangle as above, then as a set g∗(im(f)) indeed
corresponds to the image of πZ , and the realizers of z ∈ g∗(im(f)) are precisely
those of (x, z) ∈ X×Z such that f(x) = g(z), which is the same as the realizers
it would get as the image of X ×Y Z.

2.12 Definition. A morphism f : X → Y in a regular category is called a
regular epimorphism if im(f)→ Y is an isomorphism.

2.13. Note that in a regular category, regular epimorphisms are stable under
pullback, since isomorphisms are stable under pullback.

2.14 Lemma. Let f : A → B a morphism in a regular category. Then the
mapping ∃f : Sub(A)→ Sub(B) which takes m : X → A to im(f ◦m) ∈ Sub(B)
is order-preserving, and a left adjoint to f∗.

Proof. That ∃f is order-preserving follows from the definition of the image.
To show that ∃f a f∗, first suppose A1 ≤ f∗(B1), where A1 ∈ Sub(A), B1 ∈
Sub(B). Then A1

m−→ A
f−→ B factorizes throughB1, hence so should im(f◦m) =

∃f (A1) → B by definition of the image. Conversely, if ∃f (A1) ≤ B1, then we
have a morphism A1 → B1, and the universal property of the pullback gives us
the desired morphism A1 → f∗(B1).

2.15 Proposition (Beck-Chevalley). If C is a regular category, and

A×C B
πA //

πB

��

A

f

��
B

g // C

is a pullback square, then

Sub(B)

∃g
��

π∗B // Sub(A×C B)

∃πA
��

Sub(C)
f∗ // Sub(A)

commutes.
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Proof. Fix B1 ∈ Sub(B). In the diagram

π∗B(B1) //

��

A×C B

πB

��

πA // A

f

��
B1

// B
g // C

both squares are pullbacks, hence so is the entire rectangle. Now replacing the
bottom row by an image factorization, we have that the top row of

π∗B(B1) //

��

f∗(∃g(B1))

��

// A

f

��
B1

// ∃g(B1) // C

is also an image factorization, as desired.

2.16 Lemma. The regular category MAss is coherent. That is, for each object
A of MAss, the poset Sub(A) has finite coproducts (joins), and these coproducts
are stable (preserved by pullback). In particular, f∗ is a morphism of bounded
lattices.

Proof. Clearly, it suffices to show that MAss has coproducts which are stable
under pullback; then the initial object of MAss is the initial object of Sub(A),
and for X,Y → A subobjects we have that

X ∨ Y = im(X t Y ).

The stability of coproducts in Sub(A) then follows from the stability of image
factorization.

The initial object is given by (∅,N, idN, ∅). If X,Y are modified assemblies,
then their coproduct is given by

(X t Y, (PX ,∼X) + (PY ,∼Y ), ρX + ρY ).

The inclusion X → X t Y is realized by pk, and Y → X t Y by pk̄.
Now suppose f : A → X t Y is a morphism realized by rf . The sets

f−1(X), f−1(Y ) ⊆ A partition A, and the identity A → f∗(X) t f∗(Y ) is
realized by

λn.〈(rfn)1, n, (rfn)2〉.

2.17 Lemma. The coherent category MAss is a Heyting category. That is, for
any f : X → Y , the functor f∗ : Sub(Y )→ Sub(X) has a right adjoint ∀f .

Proof. If A→ X is a subobject, then ∀f (A) has as its underlying set the points
y ∈ Y for which f−1(y) ⊆ A, and furthermore, treating f−1(y) as a modified
assembly whose realizers agree with those in X, the inclusion f−1(y) → A has
a realizer. The potential realizers of ∀f (A) are given by PY × (PX → PA). The
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actual realizers of y ∈ ∀f (A) are pairs consisting of an element of ρY (y) and a
realizer for f−1(y)→ A.

Now if B → Y is a subobject, whose inclusion is realized by rB , the equiva-
lence

f∗(B) ≤ A ⇐⇒ B ≤ ∀f (A)

follows. Both inequalities come down to the existence of a function which, given
a realizer for x ∈ X, f(x) ∈ B, can find a realizer for x ∈ A. Formally, if r
realizes f∗(B) ≤ A, then λn.〈rBn, λm.r〈m,n〉〉 realizes B ≤ ∀f (A), while if r
realizes B ≤ ∀f (A), then λ〈n,m〉.(rm)2n realizes f∗(B) ≤ A.

2.18. When we work with the logic, we will be especially interested in cases
where f = π : X × Y → Y is a projection, since then ∀π will be used to
interpret universal quantification over X. In this case, we can simplify the
definition somewhat. The construction from the proof above would give us, for
a subobject A→ X × Y , that

P∀π(A) = PY × (PX × PY → PA).

Any actual realizer must code in particular an element PY and a function PX ×
PY → PA such that the element of PY is always an appropriate input for the
function; hence, we can simplify without loss of generality to

P∀π(A) = PY × (PX → PA).

Then, we restrict the actual realizers similarly.

2.19 Proposition. If C is a Heyting category, and

A×C B
πA //

πB

��

A

f

��
B

g // C

is a pullback square, then

Sub(B)

∀g
��

π∗B // Sub(A×C B)

∀πA
��

Sub(C)
f∗ // Sub(A)

commutes.

Proof. Take the adjoint of the conclusion of 2.15.

2.20 Lemma. In a Heyting category, the lattice Sub(A) is a Heyting algebra.
For m1 : A1 → A,m2 : A2 → A,

A1 → A2 = ∀m1
(A1 ∧A2).

Furthermore, → is preserved by pullback.
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Proof. We need to show that in Sub(A) we have that

A3 ∧A1 ≤ A2 ⇐⇒ A3 ≤ ∀m1
(A1 ∧A2).

But this is just the adjunction m∗1 a ∀m1
. The fact that → is preserved by

pullback is just 2.19 applied to the pullback square of m1 : A1 → A and f :
B → A.

2.21. Let us briefly take a moment to consider what the Heyting implication
looks like in MAss. Consider X1, X2 subobjects of X, whose underlying sets are
subsets. Then, considering X1 ∧ X2 as a subobject of X2, it consists of those
elements which are also in X1, and has realizers of each subobject.

Hence, X1 → X2 = ∀m1(X1∧X2) consists, as a set, of all points in X1∧X2,
together with all points not in X1. Its potential realizers are given by PX ×
(PX1

→ PX1
× PX2

); for all points x not in X1, we have

ρX1→X2(x) = ρX(x)× (PX1 → PX1 × PX2)

while for the points x which lie in X1 ∩X2, we have

ρX1→X2
(x) = ρX(x)× ((ρX1

(x)→ ρX1
(x)× ρX2

(x)) ∩ (PX1
→ PX1

× PX2
)) .

Note that if the second component of a realizer of any point in X1 → X2 is
r 7→ 〈fr, gr〉, then we can create a new realizer by replacing f with the identity.
Hence, we can remove the PX1× component from all realizers, and obtain an
isomorphic object. For ease of use, this is the representation of X1 → X2 that
we will use.

2.22 Corollary. For each object A of MAss, the poset Sub(A) is a Heyting
algebra, and for each morphism f : A→ B the pullback mapping f∗ : Sub(B)→
Sub(A) is a Heyting algebra morphism. Furthermore, it admits adjoints ∃f a
f∗ a ∀f , which satisfy the Beck-Chevalley conditions in 2.15 and 2.19.

2.23. The relevance of this is that we have now shown all the categorical struc-
ture we need to interpret an intuitionistic first-order logic into MAss. However,
this is not by itself enough structure to interpret the language HAω into it. In
HAω, the various types are not unrelated: they are formed from other types, and
ultimately the type of natural numbers, by the operations ×,→. We already
have natural numbers in our category, and products of objects; types formed by
the → operation should be interpreted by an internal notion of function type.
That is, we want MAss to have the right exponentials. In fact, since currying is
perfectly computable, it has all of them.

2.24 Lemma. The category MAss is Cartesian closed.

Proof. If X,Y are objects of MAss, then Y X is given by

(HomMAss(X,Y ), PY X ,∼Y X , ρY X ),
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where
(PY X ,∼Y X ) = (PX ,∼X)→ (PY ,∼Y )

and

ρY X (f) =

( ⋂
x∈X

ρX(x)→ ρY (f(x))

)
∩ PY X .

The evaluation mapping X × Y X → Y is just function evaluation, which is
realized by recursive function application mapping N× (N→ N)→ N.

2.25. Recall that we made the choice to work with E−HAω, not just HAω.
In order for that to work, we need the internal notion of a function in our
categories, whose type is represented by the exponent, to be extensional as well.
Fortunately, it turns out that extensionality holds internally to any Cartesian
closed category. The following lemma sets the internal statement up for us.

2.26 Lemma. Let A,B be objects of a Cartesian closed Heyting category, and
consider the pullback diagram

S //

��

A

∆

��
AB ×AB ×B

ev1,3,ev2,3 // A×A.

Then for π : AB × AB × A → AB × AB the projection, the subobject ∀π(S) →
AB ×AB factorizes through the diagonal ∆ : AB → AB ×AB.
Proof. We aim to show that the two arrows

∀π(S)→ AB ×AB
π1

⇒
π2

AB

are equal. Let us call these two mappings t1, t2. It clearly suffices to show that
the transposes t̄1, t̄2 of these two mappings, given by

∀π(S)×B
(ti,idB) //

t̄i

))

AB ×B

ev

��
A

are equal. Now note that if we pull back Ππ(S) via π we just get Ππ(S) × B,
with inclusion mapping given by (t1, t2, idB). By the adjunction π∗ a ∀π it
follows that ∀π(S)×B factorizes through S. In a diagram,

∀π(S)×B //

t1,t2,idB

**

S //

��

A

∆

��
AB ×AB ×B

ev1,3,ev2,3 // A×A.

The bottom arrows compose to (t̄1, t̄2), and the top arrows factorize through
the diagonal.
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2.2 Logic in Heyting Categories
2.27. Before we continue with MAss specifically in the next section, we look at
how to interpret the logic of HAω into a category with sufficient structure. This
is standard, but spelling it out will prove convenient in the next chapter, when
discussing hyperdoctrines. First, we consider more generally how to interpret
intuitionistic first-order logic into a Heyting category. Then, the small extension
to Cartesian closed Heyting categories with a natural numbers object allows us
to interpret the finite types.

The development of the logical language, the proof calculus, and the inter-
pretation in Heyting categories is standard; our discussion mostly follows [3],
book D.

2.28. Our logical language L consists of a set of sorts or types SL ; a set of
relation symbols RL , with for each R ∈ RL an associated sequence of sorts
sg(R) in SL , called its signature; and a set of function symbols FL , with for
each f ∈ FL an associated sequence of sorts sg(f) in SL , called its signature,
and a specified sort tp(f) ∈ SL , called its type. For R ∈ RL , we often write
R ⊆ sg(R), and if f ∈ FL , we often write f : sg(f)→ tp(f), anticipating their
intended interpretations. The set RL contains at least for each sort X a symbol
=X ⊆ X ×X.

Given a language L , we construct the set Term(L ) of L -terms, each of
which has a type as well, as the least set containing at least:

• for any sort X, variables xX1 , xX2 , . . . of sort X;

• for each function symbol f and terms t1, . . . , tn such that

sg(f) = (tp(t1), . . . , tp(tn))

a term f(t1, . . . , tn) of type tp(f).

The set of L -formulas Form(L ) is now the least set containing

• the formulas ⊥ and >;

• for each relation symbol R and each collection of terms t1, . . . , tn such that
sg(R) = (tp(t1), . . . , tp(tn)), a formula R(t1, . . . , tn);

• for all formulas φ, ψ and variables x the formulas φ ∧ ψ, φ ∨ ψ, φ →
ψ,∀xφ,∃xφ.

Furthermore, we adopt the abbreviations ¬φ for φ → ⊥ and φ ↔ ψ for (φ →
ψ) ∧ (ψ → φ). Given any term t or formula φ with free variables x1, . . . , xn, we
write fv(t), fv(φ) respectively for the sequence of variables ~x = (x1, . . . , xn).

Generally, a finite sequence of distinct variables ~x = (x1, . . . , xn) is called a
context. A context ~x is called appropriate for a term t or a formula φ if all free
variables of t respectively φ appear in ~x, but none of the bound variables do.
(In particular, this means that there are no appropriate contexts for formulas
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in which a variable occurs both bound and free.) If ~x is appropriate for t or φ,
then the pairs ~x.t and ~x.φ are called a term in context and a formula in context
respectively.

If we use a formula φ which has no variables which occur both bound and
free, where the ambient mathematics suggest that we should be using a formula
with context, we always mean fv(φ).φ, and similarly for terms. In particular,
we usually omit the empty context for sentences. If there is a risk of confusion
we are always explicit with the context.

2.29. In any Heyting category C we can give an interpretation of this language.
This requires assigning to each sortX an object [X] of C; we extend this notation
to sequences of sorts, setting [(X1, . . . , Xn)] = [X1] × · · · × [Xn]. Then, we
assign each relation symbol R an subobject [R]→ [sg(R)], and to each function
symbol f a morphism [f ] : [sg(f)]→ [tp(f)]. This then allows us to inductively
define an interpretation for each formula in context ~x.φ, where we will have
[~x.φ]→ [tp(~x)] a subobject.

In particular, a sentence (in the empty context) will have an interpretation
in the Heyting algebra Sub(1), which we can think of as its truth value. We
write C |= φ if the interpretation [φ] of a sentence φ is equal to > ∈ Sub(1).

2.30 Definition. A term in context ~x.t will be interpreted by a morphism
[~x.t] : [tp(~x)] → [tp(t)]. We interpret an atomic term (that is, a variable) by a
projection [~x.xXii ] = π[Xi] : [tp(~x)]→ [Xi]. For a more complex term in context

~x.t = ~x.f(t1, . . . , tn),

we set
[~x.t] = [f ] ◦ ([~x.t1], . . . , [~x.tn]).

To interpret formulas in context ~x.φ, we need for each relation symbol R a
subobject [R] → [sg(R)]. We always interpret [=X ] as the diagonal ∆ : [X] →
[X]× [X]. Then we can interpret ~x.R(t1, . . . , tn) as follows:

[~x.R(t1, . . . , tn)] = ([~x.t1]× · · · × [~x.tn])∗([R]).

The two special atomic formulas in context ~x.>, ~x.⊥ are interpreted as the top
and bottom elements of Sub([tp(~x)]). Similarly, the propositional connectives
are defined by their counterparts in the Heyting algebra of subobjects: for
example, suppose we have φ = φ0 ∧ φ1. We define

[~x.φ] = [~x.φ0] ∧ [~x.φ1],

and similarly for φ0 ∨ φ1 and φ0 → φ1.
Then, consider ~x.φ = ~x.∃yY ψ. Recall that by definition ~x does not contain

the variable y. We have a projection π : [tp(~x)]× [Y ]→ [tp(~x)]. Then we define

[~x.φ] = ∃π[~x, y.ψ].

We do similarly for ∀yY ψ.
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2.31. We now have an interpretation of logical languages in our Heyting cate-
gories. In our specific case, the category of modified assemblies, we would like
this to already reflect something about modified realizability.

Indeed it does: for a formula in context ~x.φ and a (sequence of) elements
~a ∈ [tp(~x)], we think of P[~x.φ] as the set of potential realizers for the truth of
φ(a) in context ~x – that is, numbers which encode objects of the right type
to be realizers for it – and of ρ[~x.φ](~a) as the actual realizers for the truth of
φ(a). Then, the interpretation of φ = φ0 ∧ φ1, where a realizer for φ is a pair
of realizers, one for φ0 and one for φ1. This exactly mirrors the way we defined
realizability for conjunctions in 1.8 and 1.13. The same holds, mutatis mutandis,
for disjunction and implication.

The case of quantifiers is a little more subtle. In our strictly logical treatment
of modified realizability, we defined a realizer for an existential statement to
be a witness for the statement, together with a realizer for the statement at
the witness. In our category of modified assemblies, the set of realizers for an
existential statement is the union of realizers for the formula, where the realizers
range over possible interpretations of the quantified variable. Hence, we do not
encode explicitly for which value of the variable the formula is realized. Of
course, we only have natural numbers as codes, so what would it mean to “give”
a point from an arbitrary set?

We will come back to this point later.

2.32. In order for this logical language to have any use, it must act like actual
logic, and not just an arbitrary heap of symbols. That is, we want to be able to
reason with it logically: we need a type of soundness theorem of the form “if φ
is intuitionistically provable, then φ holds in any Heyting category”.

There is some subtlety here, which is the reason we have a treatment of
formulas that includes contexts. We would like to prove a type of soundness
theorem with regards to some intuitionistic logic, but it can not be completely
ordinary intuitionistic first-order logic. Proof calculi for ordinary first-order
logic (whether classical or constructive) are built with the assumption of in-
terpretation in a non-empty domain. However, this will not work in Heyting
categories: for instance, in MAss, we need to deal with formulas like ∀x∅x 6= x.
We have that MAss |= ∀x∅(x 6= x), but in fact in most ordinary proof calculuses
we would be able to prove ∃x∅(x = x). Hence, we work with sequents in context,
following [3].

2.33 Definition. If φ, ψ are L -formulas, and ~x is a context appropriate for
both, then the statement φ `~x ψ is called a sequent. The informal interpretation
of the statement φ `~x ψ is that whenever we choose values for each of the
variables in the context, if φ holds then ψ also holds.

2.34 Definition. We say that a sequent φ `~x ψ holds in a Heyting category C
if

[~x.φ] ≤ [~x.ψ]

as subobjects of [tp(~x)]. In particular, C |= φ means that > `fv(φ) φ holds in C.
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2.35. We describe a proof calculus for sequents. We give a collection of rules
for when we can derive a sequent φ `~x ψ from some finite (possibly empty) list
of sequents Γ; we denote this by

Γ
φ `~x ψ.

In each of the rules, the sequents are assumed to be well-formed – in particular,
each context is assumed to be appropriate for both formulas.

First, we have a set of structural rules. We have the identity axiom,

φ `~x φ;

the substitution rule

φ `~x ψ
φ[~s/~x] `~y ψ[~s/~x],

where ~y contains at least all variables that appear in the terms in ~s; and the
cut rule

φ `~x ψ ψ `~x χ
φ `~x χ.

Next, we have the rules for the propositional connectives. For >,⊥ we have

⊥ `~x φ, φ `~x >.

For conjunction we have the rules

φ ∧ ψ `~x φ, φ ∧ ψ `~x ψ,
φ `~x ψ φ `~x χ

φ `~x ψ ∧ χ,

and dually for disjunction

φ `~x φ ∨ ψ, ψ `~x φ ∨ ψ,
φ `~x χ ψ `~x χ

φ ∨ ψ `~x χ.

The two rules for implication are each others’ reverse:

φ ∧ ψ `~x χ
φ `~x ψ → χ,

φ `~x ψ → χ

φ ∧ ψ `~x χ.

We have dual pairs of reversible rules for quantification: for existential quantifi-
cation the rules

φ `~x,y ψ
∃yφ `~x ψ,

∃yφ `~x ψ
φ `~x,y ψ,

and for universal quantification the rules

φ `~x,y ψ
φ `~x ∀yψ,

φ `~x ∀yψ
φ `~x,y ψ.

Finally, we have two rules for equality:
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> `x x = x, x = y ∧ φ `~z φ[y/x].

Now, if Γ is a set of sequents, we call a sequent φ `~x ψ an immediate
consequence of Γ if there is a subset Γ′ ⊆ Γ such that

Γ′

φ `~x ψ,

and we say that a sequent is a consequence of Γ if it belongs to the smallest
superset of sequents of Γ which contains all its immediate consequences.

2.36. Note that these rules reflect “ordinary intuitionistic reasoning” – really
what is different about it is the presence of contexts which may be larger than
simply the free variables in the two formulas. Thus, informal constructive argu-
ments (avoiding the law of the excluded middle and reductio ad absurdum) will
typically translate into this system, and we will not be too difficult about this.

It is for this logical system that we will prove a soundness theorem for logic
interpreted in Heyting categories. Note that φ `x1,...,xn ψ is equivalent in our
proof calculus to > ` ∀x1 · · · ∀xn(φ→ ψ), so we could even restrict ourselves to
sequents of the form > ` φ without loss of generality, and identify these with
the sentence φ itself – but having the full notion of sequent in context available
makes the proof much more palatable.

Of course, our Heyting categories are set up precisely so that Sub(A) is a
Heyting algebra for each object A; so proving a soundness theorem for intuition-
istic logic should be easy, and indeed it mostly is. There is one annoying tech-
nicality about substitution that we get out of the way in the following lemma,
which states that arbitrary formulas behave similarly to atomic formulas under
substitution. To illustrate this, consider a formula xX .P (x). The interpretation
as a formula of [xX .P (x)] ∈ Sub([X]) is just the same as the interpretation
[P ] → [X] of the predicate symbol P . Now if ~y.t is a term in context of type
tp(x), then the interpretation [~y.P (t)] ∈ Sub([tp(~y)]) is equal to [~y.t]∗([P ]) by
definition. Thus, for the simplest atomic formulas, doing a substitution of a
variable for a term results in taking a pullback by the interpretation of the sub-
stituting term. Now if x.φ(x) is a formula of one free variable, one would like this
to act like a predicate symbol: we would hope that also [~y.φ(t)] = [~y.t]∗[x.φ(x)].
The following lemma shows this for general formulas.

2.37 Lemma. Let ~x.φ be a formula in context. Let ~y.~t be a sequence of terms in
context (that is, the context is appropriate for each term) of the same length as
~x such that tp(ti) = tp(xi) for each i. Then, writing [~y.~t] = ([~y.t1], . . . , [~y.tn]),

[~y.φ(~t/~x)] = [~y.~t]∗[~x.φ].

Proof. We prove this by induction on the complexity of φ. If φ is an atomic
formula, say φ = R(~s), then, writing also [~x.~s] = ([~x.s1], . . . , [~x.sm]), we need to
prove the equality

([~y.~s[~t/~x]])∗[R] = ([~y.~t])∗([~x.~s])∗[R].
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That is, it comes down to the commutativity of the diagram

[tp(~y)]
[~y.~t] //

[~y.~s[~t/~x]] $$

[tp(~x)]

[~x.~s]

��
[tp(R)],

which is hopefully obvious. The cases φ = ⊥ and φ = > are clear.
The induction step over propositional connectives are similar and simple; let

us do the case φ = φ0 ∧ φ1 for illustration. We have

[~y.φ(~t/~x)] = [~y.φ0(~t/~x)] ∧ [~y.φ1(~t/~x)]

= [~y.~t]∗[~x.φ0] ∧ [~y.~t]∗[~x.φ1]

= [~y.~t]∗([~x.φ0] ∧ [~x.φ1])

= [~y.~t]∗[~x.φ].

Now suppose φ = ∃wWψ. Note first that we have a pullback square

[tp(~y)]× [W ]
[~y.~t]×idW //

πY

��

[tp(~x)]× [W ]

πX

��
[tp(~y)]

[~y.~t] // [tp(~x)],

so we have

[~y.φ(~t/~x)] = [~y.∃w(ψ(~t/~x))]

= ∃πY [~y, w.ψ(~t/~x)]

= ∃πY ([~y.~t]× idW )∗[~x,w.ψ]

= [~y.~t]∗∃πX [~x,w.ψ]

= [~y.~t]∗[~x.∃wψ],

where we apply the Beck-Chevalley condition for the pullback square above in
the fourth step. The case for φ = ∀wWψ is exactly similar.

2.38 Theorem (Soundness Theorem). Let C be a Heyting category, and Γ a
set of sequents. If each sequent in Γ holds, then so does each consequence of
Γ. In particular, if > ` φ is a consequence of the empty set of sequents, then
C |= φ.

Proof. We prove this, as always, by induction on the length of the derivation.
Thus, we simply have to check that “truth in C” is preserved by each of our rules.
This is trivial for the identity and cut rules, as they correspond to reflexivity
and transitivity of the order in a Heyting algebra. For the substitution rule,
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this is precisely lemma 2.37. It is also trivial for each of the propositional con-
nectives, as these correspond precisely to defining properties of the operations
in a Heyting algebra.

Then consider the rules for quantifiers. Note that extending a context, which
is a special case of substitution, is done by pullback. Write πX : [tp(~x)] ×
[tp(y)]→ [tp(~x)] for the projection. We have for a formula in context ~x.ψ that

[~x, y.ψ] = π∗X [~x.ψ].

Then, the two rules for the existential quantifier demand that

[~x, y.φ] ≤ π∗X [~x.ψ] ⇐⇒ ∃πX [~x.φ] ≤ [~x.ψ],

which is simply the adjunction ∃πX a π∗X . The rules for universal quantification
are treated exactly the same.

The first rule for equality demands that ∆∗([=X ]) is the top element of
Sub([X]), and indeed pulling a monomorphism like ∆ back along itself gives
the identity. For the second equality rule, write the context as (x, y, ~z), and
X = tp(x) = tp(y), Z = tp(~z), so that we have to show

[x, y, ~z.x = y] ∧ [x, y, ~z.φ] ≤ [x, y, ~z.φ[y/x]] (2.1)

as subobjects of X × X × Z. The interpretation of the very left term is an
“extended diagonal” X × Z → X ×X × Z, which is to say that the morphism
representing the entire left hand side into X × X × Z agrees on its first two
coordinates. That is, the diagram

[x, y, ~z.x = y] ∧ [x, y, ~z.φ] //

))
π2

��

X ×X × Z

(π2,π2,π3)

��
[x, y, ~z.φ] // X ×X × Z

commutes. But now note that, by lemma 2.37, the right hand side of equation
2.1 is equal to

([x, y, ~z.y], [x, y, ~z.y], [x, y, ~z.~z])∗([x, y, ~z.φ]),

which is just the pullback of the right and bottom arrow in our diagram.

2.39. In short, our interpretation of sorted first-order constructive logic into
Heyting categories makes sense. As announced, we now turn our attention to
the other structure necessary to interpret the language of HAω faithfully, in full.

From now on, we assume that our language L extends the language of HAω.
That is, we now assume that there is a specified sort symbol 0. Furthermore,
we assume that the set of sort symbols comes equipped with operations ×,→
– and in fact that it is freely generated by these operations from some set of
atomic sorts, including 0.
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We then postulate that, in assigning sorts to sort symbols, we always have
that

[X × Y ] = [X]× [Y ] and [X → Y ] = [Y ][X].

Furthermore, we always set [0] = N, the natural numbers object.
We also assume, recalling from 1.2, that our set of function symbols con-

tains the symbol evσ,τ , which gets interpreted as the evalutation mapping
[τ ][σ] × [σ] → [τ ]. We similarly assume that it contains for sorts σ, τ the sym-
bols Pσ,τ , P 1

σ,τ , P
2
σ,τ , which are interpreted as the transposes of respectively the

identity [σ]×[τ ]→ [σ]×[τ ] and the projections [σ]×[τ ]→ [σ] and [σ]×[τ ]→ [τ ].
Now to interpret E−HAω, we in particular need function extensionality. As

we remarked in 2.25, function extensionality always holds in a Cartesian closed
Heyting category C. Namely, it means that for any types A,B we have

C |= ∀fA
B

∀f ′A
B

(∀bB(f(b) = f ′(b))→ f = f ′).

That is, the subobject [∀bB(f(b) = f ′(b))] of AB×AB needs to factorize through
the subobject [f = f ′] of AB×AB ; now the first object is precisely S from 2.26,
and the second object is precisely the diagonal.

The language also contains, for sorts σ, τ, ν the symbols Iσ,Kσ,τ , Sσ,τ,ν , and
these are interpreted, respectively, as the (repeated) transpose of the identity
[σ]→ [σ], the projection [σ]× [τ ]→ [σ], and

ev[τ ],[ν] ◦(ev[σ],[τ→ν], ev[σ],[τ ]) ◦ α,

where α is “the” mapping

[σ → τ → ν]× [σ → τ ]× [σ]→ [σ → τ → ν]× [σ]× [σ → τ ]× [σ].

It seems that we are encoding a lot of redundancy: why do we need multiple
ways to interpret projections, identities, and evaluations? The reason is that
we are being precise with syntax, but doing category theory “informally” up to
isomorphism. For instance, we casually identify

[σ][τ ]×[ν] ∼=
(

[σ][τ ]
)[ν]

.

This becomes a clear issue only when we want to actually prove that this is an
interpretation of the type system of HAω, that is, to verify that all the axioms
from 1.2 actually hold in C. This is an exercise we gratefully leave to the reader.

Finally, our language has a symbol Rσ. Intepreting this will take some more
work. Consider the morphism

(ev[σ×0],[σ], π2, s ◦ π3) : [σ]× [σ][σ]×N × N→ [σ]× [σ][σ]×N × N,

where s : N→ N is the successor, and write

gσ : N→ ([σ]× [σ][σ]×N × N)([σ]×[σ][σ]×N)
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for its transpose. Then, write

qσ : 1→ ([σ]× [σ][σ]×N × N)([σ]×[σ][σ]×N)

for the transpose of the morphism (π1, π2, 0) : X×XX×N×1→ X×XX×N×N.
The universal property of the natural numbers object gives us a morphism

uσ such that

1
0 //

qσ

))

N s //

uσ
��

N

uσ
��

([σ]× [σ][σ]×N × N)([σ]×[σ][σ]×N) gσ // ([σ]× [σ][σ]×N × N)([σ]×[σ][σ]×N)

commutes. The transpose of uσ is a morphism

ûσ : [σ]× [σ][σ]×N × N× [σ]× [σ][σ]×N × N,

and finally the interpretation of Rσ is the repeated transpose of the composition
of this morphism with the projection [σ]× [σ][σ]×N × N→ [σ]. Again, we leave
checking that this interpretation of Rσ satisfies the axioms for Rσ to the reader
if she so wishes.

2.3 The Mathematics of Modified Assemblies
2.40. With our logic for MAss set up, we want to investigate whether or not it
indeed reflects modified realizability. First, note that the finite types in MAss are
the finite types of HEO: the natural numbers object (from 2.4), the construction
of the product (from 2.8) and the construction of the exponent (from 2.24)
mirror precisely the definitions from 1.5.

A natural first class of formulas to consider is that of those in the language of
HAω, with types limited to the finite types, as these are the formulas for which
we initially defined realizability. Fortunately, we indeed find that the formulas
which hold in MAss are precisely the realized ones.

2.41 Theorem. Let φ be a sentence in the language of HAω. Then

MAss |= φ ⇐⇒ there is an r ∈ τ(φ) such that r mr φ.

Here, τ(φ) refers to the HEO-realization of the type τ(φ).

Proof. In order to allow a proof by induction, we will prove something stronger.
Let ~x.φ(~x,~a) be a formula in context in the language of HAω extended with
finitely many constants ~a, each of which is a name for an element of a finite
type in HEO, their intended interpretation. Let ~b be a sequence of elements of
HEO with the same type as ~x. Then we claim that the sets

ρ[~x.φ(~x,~a)](~b) and {r ∈ τ(φ[~b/~x,~a]) | r mr φ[~b/~x,~a]} (2.2)
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are computably equivalent. That is, there is a single function, which given a
syntactical encoding of φ, and (codes for) the elements of ~a,~b, computes from
elements from the left set codes for elements from the right, and a function which
does the same from right to left; in such a way that the function is equivariant
with respect to the equivalence relation on P[~x.φ(~x,~a)] and equality on the right
set. Note that this requires canonical choices for the objects [~x.φ(~x,~a)], which
are really only given up to isomorphism: we assume the choice is given by the
constructions in the first section of this chapter.

We prove this, of course, by induction on the complexity of φ – we construct
the functions as we go along. Thus, suppose first that φ is an atomic formula. In
other words, disregarding the trivial cases φ ∈ {>,⊥}, an equation of natural
numbers. In this case, our function computes the numbers on either side of
the equation. If they are distinct, both sets are empty, and there is nothing to
compute. If the numbers agree, then the right hand side is N; the left hand side
consists of (codes for) the vector ~b together with the number to which each side
of the equation evaluates. The functions we use are clear.

If φ = φ0 ∧ φ1, then both sets in 2.2 are products of the corresponding sets
for φ0, φ1. If φ = φ0 ∨ φ1, then both sets are disjoint unions, coded in almost
the same way.

If φ = φ0 → φ1, then the right set of 2.2 is equal to

{r ∈ τ(φ[~b/~x,~a]) | ∀k(k mr φ0[~b/~x,~a]→ rk mr φ1[~b/~x,~a]}

while the left set is given by

ρ[tp(~x)](~b)× (ρ[~x.φ0(~x,~a)](~b)→ ρ[~x.φ1(~x,~a)](~b)).

The difference comes down to the factor ρ[tp(~x)](~b), but this is actually just a
sequence of codes for ~b, which the function also takes as input.

If φ = ∃yσφ0(y, ~x,~a), then the right set of 2.2 equals

{r ∈ τ(φ[~b/~x,~a]) | r2 mr φ0[r1, ~x,~a]},

while the left set equals ⋃
c∈σ

ρ[~x.φ0(c/y,~x,~a)](~b); (2.3)

that is, in the first case the element c is explicitly given, while in the second
case it is not. We remarked this earlier in 2.31. However, this is no problem:
a code for c can be found from the realizer for the inclusion [y, ~x.φ0(y, ~x,~a)]→
[σ × tp(x)], which in turn can be computed using just the structure of φ, since
a realizer from 2.3 is the same as one from [y, ~x.φ0(y, ~x,~a)].

Finally, suppose φ = ∀yσ(φ0(y, ~x,~a)). Then the left set of 2.2 equals

ρ[tp(~x)](~b)×
⋂
c∈σ

(
ρ[σ](c)→ ρ[~x.φ0(y,~x,~a)](c,~b)

)
,

while the right set equals

{r : σ → τ(φ0(y, ~x,~a)) | c ∈ σ =⇒ rc mr φ0(c/y, ~x,~a)};
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again, the difference is basically just the factor ρ[tp(~x)](~b), which is an input to
the algorithm.

2.42. In particular, this theorem tells us that the forms of the axiom of choice
and independence of premise, as they appeared in 1.11, hold in our category
MAss. This was a first goal in constructing the category. However, it turns out
some generalization is possible: in fact the principle of independence of premise
is a logical principle that holds for many more types than just the finite types;
and while the axiom of choice in our category is limited to finite types, the
parameter a in

∀aα∀xσ∃yτ (P (x, y, a))→ ∃fσ→τ∀xσ(P (x, f(x), a))

can take any type in MAss. Furthermore, it will be interesting to see why the
axiom of choice holds only for finite types, a fact into which the general theorem
does not directly give us insight.

2.43 Theorem. Let X be any type, and let Y be a type such that for any
n ∈ PY , there is a y ∈ Y such that n ∈ ρY (y). Let P,R predicates on X,X × Y
respectively. Then

MAss |= ∀xX((¬P (x)→ ∃yYR(x, y))→ ∃y(¬P (x)→ R(x, y))).

Proof. For convenience, abbreviate the sentence by ∀xX(φ(x)→ ψ(x)). We aim
to give a section from X to its subobject [φ(x)→ ψ(x)]. That is, we construct
an equivariant function which, given an n ∈ ρX(x̄), produces a function which,
given an actual realizer of φ(x), gives an actual realizer of ψ(x); and furthermore
this function also maps PX → (P[φ(x)] → P[ψ(x)]). First, let ry be a realizer for
the mapping R→ X × Y π−→ Y .

We claim that the function λnrk.〈n, ry(r0), r0〉 does the trick; note that the
function is trivially equivariant. First, suppose that n ∈ PX , r ∈ P[φ(x)]. We
need to show that λk.〈n, ry(r0), r0〉 ∈ P[ψ(x)]. By definition,

P[ψ(x)] = P[¬P (x)→R(x,y)] = PX×Y × P
P[¬P (x)]

[R(x,y)] .

Now, by assumption n ∈ PX . Furthermore,

r ∈ P[φ(x)] = P
P[¬P (x)]

[∃y(R(x,y))],

hence r0 ∈ P[∃y(R(x,y))] – but this is the same set as P[R(x,y)]. In particular then,
ry(r0) ∈ PY .

It remains to be shown that our realizer also works on actual realizers. To
this end, suppose that r ∈ ρ[φ(x)](x̄) for any x̄ ∈ X; we have to show that
λk.〈n, ry(r0), r0〉 ∈ ρ[ψ(x)](x̄). Now, by definition, since Y is inhabited,

ρ[ψ(x)](x̄) =
⋃
ȳ∈Y

ρ[¬P (x)→R(x,y)](x̄, ȳ).
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We consider two cases: either x̄ ∈ [¬P (x)], or x̄ /∈ [¬P (x)]. In the first case, we
in particular have 0 ∈ ρ[x,y.¬P (x)](x̄, ȳ), and thus

r0 ∈ ρ[∃y(R(x,y))](x̄) =
⋃
ȳ∈Y

ρ[R(x,y)](x̄, ȳ);

in particular, also ry(r0) ∈ ρY (ȳ) for that same ȳ, as we wanted. If x̄ /∈ [¬P (x)],
then also for any ȳ, we have (x̄, ȳ) /∈ ρ[x,y.¬P (x)](x̄, ȳ), so that

ρ[ψ(x)](x̄) =
⋃
ȳ∈Y

ρ[¬P (x)→R(x,y)](x̄, ȳ) =
⋃
ȳ∈Y

ρX(x̄)× ρY (ȳ)× PP[¬P (x)]

[R(x,y)] ;

and now λk.〈n, ry(r0), r0〉 lies in this set for the ȳ for which ry(r0) is an actual
realizer, which exists by assumption on Y .

2.44. Note, in particular, that the proof above makes no use of equivariance
anywhere. We could apply the exact same argument to the category GrAss we
defined in 2.3. Thus, independence of premise holds regardless of whether we
require extensionality.

However, independence of premise does not hold in Asm. To see this, let
P (x0) be the statement “the machine coded by x does not halt”, which we can
formulate in the language of HAω, and let R(x, y) be the statement “the machine
coded by x halts within y steps”. Then the antecedent holds in Asm: the realizer
for ¬P (x) → ∃y0R(x, y), given a realizer of P (x), just runs the machine given
by x until it halts, producing the value y. However, the consequent does not
hold: producing for any x a value y such that if x halts, then it halts within y
steps obviously solves the halting problem.

Modified realizability – that is, the logic of MAss and GrAss – does not suffer
from this problem, since a realizer for the antecedent must always terminate on
potential realizers, which at least includes 0. This is also visible in the proof,
where the realizer is given, essentially, by evaluation at 0.

2.45. To approach this contrast from the other side, we consider another plau-
sible constructive arithemtical statement: Markov’s principle. Formally, it is
given by

∀x(∀y0(R(x, y) ∨ ¬R(x, y)) ∧ ¬∀y0(¬R(x, y))→ ∃y0(R(x, y)).

That is – fixing the parameter x – if R(x, y) is a decidable formula, and it is
not true that R(x, y) is always false, then we can find a y so that it is true. The
computable interpretation of this is that with the antecedents, we can start an
unbounded search on the natural numbers, checking for each of them y whether
R(x, y) holds; and this process must terminate by the second assumption.

We can turn this into a realizer for Markov’s principle in Asm: it is precisely
a function which searches for the first y such that R(x, y) holds. However, by
much the same argument as above, we cannot do that within MAss (or GrAss);

34



let R be the same relation as in 2.44. Clearly R is decidable, so let us focus on
the reduced formula

∀y(¬∀x(¬R(x, y))→ ∃x(R(x, y))).

If this statement had an actual realizer in MAss (or GrAss), then in particular
that actual realizer would have to be a potential realizer; thus, given the code 0,
it would have to terminate. Now if ¬∀x(¬R(x, y)) were realized, then 0 would in
particular be an actual realizer. From this actual realizer we could then extract
the realizer for an instance of x such that R(x, y) holds. In other words, this
would give us a computable function which, given a natural y number, gives us
an upper bound on the number of steps the machine coded by y takes to halt.
This would solve the halting problem.

2.46 Theorem. For all finite types σ, τ , all sorts α, and all interpretations of
R,

MAss |= ∀aα(∀xσ∃yτ (R(x, y, a))→ ∃fσ→τ∀xσ(R(x, f(x), a))).

Proof. We have to give a section from the object [α] to its subobject

[∀xσ∃yτ (R(x, y, a))→ ∃fσ→τ∀xσ(R(x, f(x), a))], (2.4)

so we give a realizer for this statement uniformly in the element ā ∈ A. Before
we do this, let us consider the realizers of [R(x, f(x), a)]. That object is the
pullback of [R] by the “evaluation”

[σ]× [σ → τ ]× [α]→ [σ]× [τ ]× [α].

Hence, we could take a realizer of a point (x̄, f̄ , ā) ∈ [R(x, f(x), a)] to be se-
quence of realizers for x̄, f̄ , ā ∈ [σ] × [σ → τ ] × [α] and one for (x̄, f̄(x̄), ā) ∈
[R] ⊆ [σ]× [τ ]× [α]. Of course, using the realizer for [R]→ [σ]× [τ ]× [α] we can
compute the actual realizers for x̄, ā ∈ [σ]× [α] from those for (x̄, f̄(x̄), ā) ∈ R;
thus, we decide that P[R(x,f(x),a] = P[σ→τ ] × P[R], and

ρ[R(x,f(x),a)](x̄, f̄ , ā) = ρ[σ→τ ](f̄)× ρ[R](x̄, f̄(x̄), ā).

Now let us move on to the proof.
The monomorphism [R] → [σ]× [τ ]× [α] composes with a projection to an

arrow [R]→ [τ ], a realizer for which we call ry. Then we claim an actual realizer
for 2.4 is given by

λ〈ra, rR〉.〈ry ◦ rR, ra, λrx.〈ry ◦ rR, rRrx〉〉.

To prove this, first note that the potential realizers of the antecedent, using the
convention from 2.18, are given by

P[∀x∃yR(x,y,a)] = P[α] × (P[σ] → P∃yR(x,y,a)) = P[α] × (P[σ] → P[R]),

so that an element of this is indeed a pair. Thus, suppose that 〈ra, rR〉 is a
potential realizer of the antecedent.
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We have rR : P[σ] → P[R]. Composing this with the realizer ry : P[R] → P[τ ]

gives a code for an equivariant function ry ◦ rR : P[σ] → P[τ ]. In particular, it is
a realizer for a function f̂ ∈ σ → τ . Now we have

P[∃f∀xR(x,f(x),a)] = P[∀xR(x,f(x),a)] = P[σ→τ ]×[α] × (P[σ] → (Pσ→τ × P[R])),

and indeed ry ◦ rR ∈ P[σ→τ ], ra ∈ P[α] and

λrx.〈ry ◦ rR, rRrx〉 ∈ P[σ] → (P[σ→τ ] × P[R]).

Now suppose furthermore that 〈ra, rR〉 is an actual realizer at the point ā of the
antecedent. Recall that

ρ[∃f∀xR(x,f(x),a)](ā) =
⋃

f̄∈σ→τ

ρ[∀xR(x,f(x),a)](ā, f̄),

and we claim that

〈ry ◦ rR, ra, λrx.〈ry ◦ rR, rRrx〉〉 ∈ ρ[∀xR(x,f(x),a)](f̂ , ā).

An element of this set of actual realizers consists of a pair of actual realizers for
f̄ , a – which the first two elements of our triple are – together with a realizer for
a function which, when given an actual realizer of an x ∈ X, gives an element
of

ρ[R(x,f(x),a)](x̄, f̂ , ā) = ρ[σ→τ ](f̂)× ρ[R](x̄, f̂(x̄), ā),

and the third element of our triple does precisely this.

2.47. Although it may not appear immediately obvious, the usage of equivari-
ance in the proof was crucial. By equivariance, the function P[σ] → P[τ ] that
we found was in fact a code for an element σ → τ , which became the witness
of the existential statement. This means that the proof does not go through for
the analogous category GrAss. In fact, the analogous theorem for GrAss is false.

Recall that GrAss has the same construction as MAss without the equiva-
lence relations, and thus without the equivariance condition on realizers. Since
the equivariance of realizers of finite types is still forced by the fact that the
equivalence classes of realizers are precisely the actual realizers of a single func-
tion, the finite types in GrAss have the same underlying sets, and the same
sets of realizers, but without equivalence relations on them. Let R(x1, y0) get
interpreted in MAss as the subobject of [0]× [1] whose underlying set is

{(x, y) ∈ 1× 0 | y is a code for the function x},

where the realizers for (x, y) are just a realizer for x and one for y. Then

GrAss |= ∀x1∃y0(R(x, y));

namely, an actual realizer for this statement is a function which takes a realizer
of x (that is, a code for x) to itself. However,

GrAss 6|= ∃f2∀x1(R(x, f(x))),
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since a witness f for this statement would be an actual computable function
1 → 0, which assigns codes to computable functions; but this would imply
decidability of function equality for codes of total functions.

Thus, the axiom of choice for finite types provides the contrast between the
logic of MAss and that of GrAss, where they are otherwise very similar.

In fact, we can carry out the above argument within
MAss as well: if we equip two objects 0′, 1′ with the same underlying sets
and sets of realizers as [0], [1], but give the set of potential realizers the total
equivalence relation, then the same argument works for these objects in MAss.
Of course, these objects are not finite types in MAss; but it shows that the
axiom of choice does not hold for all objects of MAss, which is why we limit
ourselves to finite types in the axiom of choice.

2.48. Now that we know that the axiom of choice does not hold for all types,
we are interested in investigating to what types beyond the finite types we can
extend it. If we focus on the “domain type” in the axiom of choice, which is
[σ] in the version above, we arrive at a type of object well-studied in category
theory: the projective objects.

2.49 Definition. An object P of a regular category C is called internally pro-
jective if the functor (−)P : C→ C preserves regular epimorphisms. The object
P is called externally projective if Hom(P,−) : C → Set preserves regular epi-
morphisms.

2.50 Lemma. In MAss (or any category where the object 1 is externally pro-
jective) all internally projective objects are externally projective.

Proof. Note that 1 is indeed externally projective in MAss: if f : 1→ A is any
morphism, and B → A a regular epimorphism, then we can define a realized
mapping 1→ B sending the unique element ∗ of 1 to any element over f(∗).

Now, suppose that P is internally projective, and let e : A → B be an
epimorphism. Then Hom(P, e) is epic if and only if Hom(1, eP ) is epic, which
by internal projectiveness of P and external projectiveness of 1 it is.

2.51. The converse also holds in MAss, but for this it is easier to first charac-
terize externally projective objects in MAss.

2.52 Lemma. In MAss, the following are equivalent for an object P :

1. P is externally projective;

2. any regular epimorphism onto P splits;

3. P is isomorphic to an object P ′ such that for every p ∈ P ′, ρP ′(p) is a
singleton.

Proof. (1) =⇒ (2): Suppose e : X → P is a regular epimorphism. Then,
Hom(P, e) : Hom(P,X) → Hom(P, P ) is a regular epimorphism, so let s be a
point in the preimage of idP . Then s is a section of e.
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(2) =⇒ (1): Suppose e : B → A is a regular epimorphism, and consider
f ∈ Hom(P,A). Then we have a pullback

P ×A B //

��

B

e

��
P

f // A

where the right arrow is a regular epimorphism because e is. Then we obtain a
section P → P ×A B, and by composition a lift P → B. This arrow is mapped
by Hom(P, e) to f , so Hom(P, e) is surjective.

(2) =⇒ (3) Define a new modified assembly P̂ by

P̂ = (P × PP , PP ,∼P , (p, r) 7→ {r}).

That is, P̂ contains for every realizer r of every point p a copy of that point.
Now, let P̂ → P be the projection, which is realized by the identity. This is
clearly a regular epimorphism; its image is exactly P . Hence, this morphism
has a section f : P → P̂ . But now P is isomorphic to the set-theoretic image of
f with the realizers of P̂ , which are all singleton sets.

(3) =⇒ (2) Suppose that e : X → P is a regular epimorphism. This means
that there is an isomorphism P → im(e). A realizer rs for this isomorphism
computes, for each p ∈ P for the unique element of ρP (p), a realizer of some
x ∈ X such that e(x) = p. Now choose for each p ∈ P any such x, and assemble
these into a function s : P → X which is realized by rs. By construction, s is a
section for e.

2.53. The construction in the proof of (2) =⇒ (3) can be done for any object,
not just projective objects. This tells us that every object admits a regular
epimorphism from a projective objects. This is usually summarized as saying
that MAss “has enough projectives”. Furthermore, note that the product of
two projective objects is still projective: by definition the actual realizer of an
element of a product is a pair of actual realizers for each of its coordinates.

2.54 Lemma. If an object P of MAss is externally projective, then it is inter-
nally projective.

Proof. Let e : B → A be a regular epimorphism, and let φ : P ′ → AP be a
regular epimorphism from a projective object. Then the object P ′×P is also a
projective object, so composition P ′ × P → AP × P ev−→ A admits a lift

B

e

��
P ′ × P

--

φ×idP // AP × P ev // A.
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Transposing this diagram,
BP

eP

��
P ′

44

φ // AP ,

gives a factorization of eP through φ. But φ is a regular epimorphism by as-
sumption, hence so must eP be.

2.55. Thus, when it comes to MAss, we drop the words “externally” and “in-
ternally” and speak only of projective objects. With our characterizations, we
are now able to see how these projective objects relate to the axiom of choice.
First, we give the obvious logical characterization of regular epimorphisms.

2.56 Lemma. Let C be a Heyting category. A morphism e : A → B of C is a
regular epimorphism if and only if

C |= ∀bB∃aA(e(a) = b).

Proof. Note that the formula comes down to the existence of a section B →
[∃a(e(a) = b)]. We have a pullback diagram of an image factorization

[e(a) = b]

��

// ∆∗(im(e)×B)

��

// [=B ]

∆

��
A×B // im(e)×B // B ×B;

the top row is the same mapping as [e(a) = b] → A × B
π−→ B, so that the

top middle object is equal to [∃a(e(a) = b)]. Hence, a section B → im(e) is
equivalent to a section B → [∃a(e(a) = b].

2.57 Proposition. Let P be an object of MAss. Then P is projective if and
only if for all objects X of MAss, the statements ACP,X hold. That is, for all
objects A of MAss and all subobjects R→ P ×X ×A,

MAss |= ∀aA(∀pP∃xX(R(p, x, a))→ ∃fP→X∀pP (R(p, f(p), a))).

Proof. Suppose first that ACP,X holds, and suppose that f : D → E is a regular
epimorphism. Then consider the instance of ACP,X

∀gP→D(∀pP∃eE(f(g(p)) = e)→ ∃sP→E∀pP (f(g(p)) = s(p)));

the antecedent holds since f is a regular epimorphism, and

∀pP (f(g(p)) = s) ⇐⇒ f ◦ g = s

in the internal logic, which means we obtain

∀gP→D∃sP→E(f ◦ g = s),
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which states that fP is a regular epimorphism.
Now suppose that P is projective, so we can without loss of generality assume

that its sets of actual realizers are singletons. Then we claim that our proof of
the axiom of choice for finite types, 2.46, goes through for ACP,X with very
small changes. The only difference is the way we justify the existence of what
is there called f̂ : now, if rR is an actual realizer, the function coded by ry ◦ rR
must map for each p ∈ P its unique actual realizer to a realizer of some point of
X; and choosing any one of these points as a function image gives us a function
f̂ realized by ry ◦ rR; and this function forms a point in XP .

2.58. Note that each modified assembly X admits a monomorphism (a realized
injective function) into a projective object: equipping the underlying set of
X with the potential realizers PX0 = {0} and ρX0(x) = {0} has the identity
X → X0 trivially realized by 0. It turns out that this, in combination with the
existence of enough projectives, is sufficient to reconstruct the category MAss
from the full subcategory on the projective objects; this is known as the reg/lex
completion. See for instance [1] for details.

2.59. Given that projective objects are a good angle from which to consider the
axiom of choice, and that we are especially interested in the axiom of choice for
finite types, it becomes a natural question to wonder whether or not there is a
nice subcategory of MAss in which the finite types are projective. Note that the
finite types (apart from 0, and powers of 0) are not projective in MAss, as by
the characterization in 2.52, this would mean that we could compute from the
set of realizers for a computable function a single canonical code – that would
mean computing equality of computable functions.

2.60 Definition. A modified assembly X is called modest if, for all x, x′ ∈ X,
if n ∈ ρX(x), n′ ∈ ρX(x′), and n ∼ n′, then x = x′.

2.61. Note that the full subcategory of MAss of modest modified assemblies is
still a regular category: the image of a morphism from a modest assembly is
naturally modest as well, as are the terminal object and the pullback of two
modest assemblies. Thus, it makes sense to consider the notion of externally
projective in this category. Furthermore, the finite types are all modest: hence,
we can ask whether or not they are (externally) projective in this category.

2.62 Proposition. A modest modified assembly X is externally projective (in
the category of modest modified assemblies) if and only if for each x ∈ X, if
n, n′ ∈ ρX(x) then n ∼ n′.

Proof. Suppose that X,Y are modest modified assemblies, that Y has the de-
scribed property, and that g : X → Y is a regular epimorphism; or, equivalently,
that im(g) ∼= Y . This means that we have a realizer rf : PY → PX , such that
for each y ∈ Y and n ∈ ρY (y), there is an x ∈ X such that g(x) = y and
rn ∈ ρX(x). Since for pair n, n′ ∈ ρY (y) we must have n ∼ n′, and r is equiv-
ariant, it follows that rn ∼ rn′, and thus that the x we found above is unique.
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Now let f : Y → X be the function which assigns to each y this unique x; it is
trivially realized by rf .

Conversely, suppose that Y is projective, and consider the modest modified
assembly

Ŷ = (Y × PY / ∼Y , PY ,∼Y , (y, r) 7→ r).

Then the projection Ŷ → Y is realized by the identity, and a section Y → Ŷ
makes Y isomorphic to its set-theoretic image in Ŷ with the realizers of Ŷ .
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Chapter 3

Realizability Triposes and
Toposes

3.1 Hyperdoctrines
3.1. Before we look at the main subject of this chapter, which is triposes, we
generalize the notion of Heyting category to that of a hyperdoctrine. Where
the predicates of an object in a Heyting category are restricted to being the
categorical subobjects, a hyperdoctrine allows us to consider other notions of
predicate. Triposes are then hyperdoctrines with an extra property that allows
us to construct a topos from them.

3.2 Definition. Let C be a finitely complete category, and P : Cop → Heyt, a
functor from C to the category of Heyting algebras. We call P a hyperdoctrine
if for each f : X → Y of C, the morphism P(f) : P(Y )→ P(X) has both a left
adjoint ∃f : P(X) → P(Y ) and a right adjoint ∀f : P(X) → P(Y ) (which are
order-preserving but not necessarily Heyting algebra morphisms) and further-
more, these morphisms satisfy the Beck-Chevalley condition: if

X

g

��

f // Y

h
��

Z
k // W

is a pullback square in C, then the squares

P(Z)
P(g) //

∃k
��

P(X)

∃f
��

P(W )
P(h) // P(Y )

P(Z)
P(g) //

∀k
��

P(X)

∀f
��

P(W )
P(h) // P(Y )

both (or equivalently: either) commute.
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3.3. The motivating example of a hyperdoctrine is the case where C is a Heyting
category, and Sub : C → Heyt is the subobject functor, which sends an object
X of C to its poset of subobjects, and a morphism f : X → Y to the pullback
functor f∗ : Sub(Y ) → Sub(X). Recall that we proved the Beck-Chevalley
condition in 2.15 and 2.19.

Since we generally want to think of the elements of P(X) as generalized
subobjects of X, we will continue to write write f∗ for P(f), even when P is a
different functor.

Before we move on to other examples for which this generalization was made,
note that almost all of our discussion in section 2.2 about Heyting categories
carries over to a category equipped with a hyperdoctrine. Substituting “element
of P(X)” for “subobject of X” allows everything from the introduction of the
logic to the proof of the soundness theorem to go through unchanged, with one
exception: equality. Where we interpreted equality in a Heyting category as the
diagonal subobject X → X ×X, it might not be immediately obvious what the
“equality element” in P(X×X) should be. We will come back to this after some
examples.

3.4. Hyperdoctrines are often defined instead as functors to HeytPre, the cate-
gory of Heyting pre-algebras, which are preordered sets whose poset reflections
are Heyting algebras (or, equivalently, small thin Cartesian closed finitely co-
complete categories). Many of the important examples – such as 3.10 – naturally
give rise to these Heyting prealgebras, rather than Heyting algebras.

In order to work with these examples seamlessly, we will not make too much
of a problem of working with Heyting prealgebras rather than algebras, and
checking e.g. the commutativity of the Beck-Chevalley square only up to iso-
morphism rather than strictly.

3.5. LetH be any complete Heyting algebra. For a setX we obtain a new Heyt-
ing algebra HX by ordering pointwise (or, equivalently, applying the Heyting
algebra operations pointwise). For a function f : X → Y we set f∗(ψ) = ψ ◦ f .
Because the operations on HX , HY are given pointwise, f∗ is a Heyting algebra
morphism.

For f : X → Y we define

∃f (φ)(y) =
∨

x:f(x)=y

φ(x)

and
∀f (φ)(y) =

∧
x:f(x)=y

φ(x).

Note that ∃f ,∀f are order-preserving, and recall that we did not require these
to be Heyting algebra morphisms. The requirement that ∃f a f∗ states that
that for all φ ∈ HX , ψ ∈ HY , x ∈ X, y ∈ Y ,

φ(x) ≤
∨

x′:f(x′)=f(x)

φ(x′) and
∨

x:f(x)=y

ψ(f(x)) ≤ ψ(y),
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which clearly hold. The case for f∗ a ∀f is similar.
Now consider a pullback square in Set,

X ×Z Y
πX //

πY

��

X

f

��
Y

g // Z.

Then the Beck-Chevalley condition is that

HY

∀g
��

π∗Y // HX×ZY

∀πX
��

HZ f∗ // HX

commutes. Fixing ψ ∈ HY and x ∈ X, we have that

∀πX (π∗Y (ψ))(x) =
∧

(x,y)∈X×ZY :
πX(x,y)=x

ψ(π∗Y (x, y))

=
∧

y:g(y)=f(x)

ψ(y)

= f∗(∀g(ψ))(x).

We conclude that H− : Setop → Heyt is an example of a hyperdoctrine.

3.6. Before we move on to the more crucial examples, it will help to have some
more notation available for operations on sets of natural numbers. Recall the
notation in 2.7.

3.7. Let A = (Aa, Ap,∼A) and B = (Ba, Bp,∼B) pairs of sets of natural num-
bers with equivalence relations. That is, Aa ⊆ Ap ⊆ N, and ∼A is an equivalence
relation on Ap, and similarly for B. We have

A×B = (Aa ×Ba, (Ap,∼A)× (Bp,∼B)),

A+B = (Aa +Ba, (Ap,∼A) + (Bp,∼B)),

A→ B = ((Aa → Ba) ∩ ((Ap,∼A)→ (Bp,∼B)), (Ap,∼A)→ (Bp,∼B)).

Like before, if r ∈ A→ B, we also write this as r : A→ B.

3.8. If we have a collection of sets with equivalence relations {(Ai,∼)}i∈I , then

A =
⋂
i∈I

Ai

naturally comes with the equivalence relation which is the intersection of the
equivalence relations on each of the Ai; it is the greatest relation such that all
inclusions A→ Ai are equivariant. Similarly,

A′ =
⋃
i∈I

Ai
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naturally comes with the equivalence generated by the union of the equivalence
relations on each of the Ai; it is the least equivalence relation such that each
inclusion Ai → A′ is equivariant. In particular, if the Ai all lie in some ambient
set (say N), then the empty union and intersection take on a natural meaning
as (∅, ∅) and (N,N× N) respectively.

Thus, we can take unions and intersections of collections of sets of naturals
with equivalence relations, and by extension of pairs like (Aa, Ap,∼).

3.9. Now follow the most important examples of hyperdoctrines – and in fact
they will all turn out to be triposes. These can all rightfully be called realizability
triposes, and one in particular will be our modified realizability tripos, the one
from which we will construct the modified realizability topos. In the following
example and lemmas, Σ refers to one of the following three sets:

Σ = P(N);

Σ = {(Aa, Ap) | Aa ⊆ Ap ⊆ N, 0 ∈ Ap};
Σ = {(Aa, Ap,∼) | Aa ⊆ Ap ⊆ N, 0 ∈ Ap,∼ equivalence relation on Ap}.

The definitions and proofs work almost exactly the same for all three definitions.

3.10 Definition. For any set X, we define a preorder on ΣX by reduction:
that is, for φ, ψ we define

φ ≤ ψ ⇐⇒ ∃r ∈ N∀x ∈ X(r : φ(x)→ ψ(x)).

(We also abbreviate ∀x(r : φ(x) → ψ(x)) as r : φ → ψ, and call r a realizer
for φ ≤ ψ.) We claim that ΣX is a Heyting prealgebra. For φ, ψ ∈ ΣX we set,
recalling the definitions in 2.7 and 3.7,

(φ ∧ ψ)(x) = φ(x)× ψ(x)

(φ ∨ ψ)(x) = φ(x) + ψ(x)

(φ→ ψ)(x) = φ(x)→ ψ(x).

Note that what exactly this notation means depends on which of the three sets
Σ is.

3.11 Lemma. For any set X, the pair (ΣX ,≤) is a Heyting prealgebra, and
Σf is a morphism of Heyting prealgebras.

Proof. The reflexivity of the preorder on ΣX is given by the identity realizer i,
and its transitivity is given by composition of realizers.

We define ⊥ ∈ ΣX by

⊥(x) = ∅,
⊥(x) = (∅, {0}),
⊥(x) = (∅, {0},=),
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depending on which set Σ refers to. Similarly, we define > ∈ ΣX by

>(x) = N,
>(x) = (N,N),

>(x) = (N,N,N× N),

Clearly, for any χ ∈ ΣX , we have 0 : ⊥ → χ and 0 : χ→ >, so these are indeed
top and bottom elements of ΣX . For convenience, also use >,⊥ ∈ Σ refer to
the unique value these functions take.

Fix φ, ψ ∈ ΣX . We define

(φ ∧ ψ)(x) = φ(x)× ψ(x),

so that p1 : φ∧ψ → φ and p2 : φ∧ψ → ψ. If for any χ ∈ ΣX we have r1 : χ→ φ
and r2 : χ→ ψ, then λn.((r1n), (r2n)) : χ→ φ ∧ ψ.

We define
(φ ∨ ψ)(x) = φ(x) + ψ(x),

so λn.(k, n) : φ → φ ∨ ψ, and λn.(k̄, n) : ψ → φ ∨ ψ. If χ ∈ ΣX is such that
r1 : φ→ χ and r2 : ψ → χ then

λn : (p1n)(r1(p2n))(r2(p2n)) : φ ∨ ψ → χ.

Finally, we define
(φ→ ψ)(x) = φ(x)→ ψ(x).

Now, for any χ, if r : χ ∧ φ → ψ, then λnm.r〈n,m〉 : χ → (φ → ψ), while if
r : χ→ (φ→ ψ) then λn.r(p1n)(p2n) : χ ∧ φ→ ψ.

In the case that Σ consists of pairs with equivalence relations, verifying
that each of these realizers is equivariant is nothing but unfolding the defini-
tions, so we have shown that ΣX is a Heyting prealgebra. Since our oper-
ations 0, 1,∧,∨,→ are defined pointwise, if f : X → Y is a function, then
f∗ : ΣY → ΣX preserves these operations and is thus a morphism of Heyting
prealgebras.

3.12 Lemma. If f : X → Y is a mapping of sets, then f∗ : ΣY → ΣX taken
as a mapping of posets has a left and right adjoint,

∃f a f∗ a ∀f .

Proof. We define ∀f : ΣX → ΣY by

∀f (φ)(y) =
⋂

x:f(x)=y

> → φ(x).

(In particular, if y is not in the image of f , then ∀f (φ)(y) = >.) Note that
∀f (φ)(y) is indeed an element of ΣY .

We see that ∀f is order-preserving: if r : φ→ ψ is a realizer, then

λnk.r(nk) : ∀f (φ)→ ∀f (ψ)
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is a realizer. In particular, in case Σ is the set of pairs with an equivalence
relation, and if n ∼ n′ as elements of ∀f (φ)p, then for each k ∈ N we have that
nk ∼ n′k, and thus r(nk) ∼ r(n′k). Hence λk.r(nk) ∼ λk.r(n′k), so our realizer
is equivariant.

Now that we have established that it is a monotone map, let us move on to
the adjunction relations idΣY ≤ ∀f ◦ f∗ and f∗ ◦ ∀f ≤ idΣX . If ψ ∈ ΣY and
y ∈ Y , then

(∀f ◦ f∗)(ψ)(y) =
⋂

x:f(x)=y

> → ψ(f(x)),

so a realizer r : ψ → (∀f ◦ f∗)(ψ) is given by r = λn.kn.
Similarly, for φ ∈ ΣX and x ∈ X we have

(f∗ ◦ ∀f )(φ)(x) =
⋂

x′:f(x′)=f(x)

> → φ(x′)

so that in fact λn.n0 : (f∗ ◦ ∀f )(φ)→ φ.
Let s ∈ Σ refer to {i}, ({i}, {0, i}), or ({i}, {0, i},=), depending on the set

denoted by the letter Σ. We define ∃f by

∃f (φ)(y) =


⋃

x:f(x)=y

s× φ(x) if y ∈ im(f),

⊥ else.

If r : φ→ ψ, then

λ〈m,n〉.m(r(n2)) : ∃f (φ)→ ∃f (ψ),

so that ∃f is monotone. The two adjunction relations for ∃f are idΣX ≤ f∗ ◦ ∃f
and ∃f ◦ f∗ ≤ idΣY . Fixing φ ∈ ΣX and x ∈ X, we see that

(f∗ ◦ ∃f )(φ)(x) =
⋃

x′:f(x′)=f(x)

s× φ(x′),

so that λn.(i, n) : φ→ (f∗ ◦ ∃f )(φ). Then, fixing ψ ∈ ΣY and y ∈ Y , we have

(∃f ◦ f∗)(ψ)(y) =


⋃

x:f(x)=y

s× ψ(y) if y ∈ im(f),

(∅, {0}) else,

so that p2 : (∃f ◦ f∗)(ψ)→ ψ.

3.13. Later on, we will almost exclusively care about ∃f and ∀f when f is a
surjection. In that case, it is clear that we have isomorphisms

∀f (φ)(y) =
⋂

x:f(x)=y

φ(x),

∃f (φ)(y) =
⋃

x:f(x)=y

φ(x).
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The symmetry in this definition is more apparent, and it is somewhat less cum-
bersome to work with.

3.14 Proposition. The functor P : Set → Heyt which extends the assignment
X 7→ ΣX and f 7→ f∗ is a hyperdoctrine.

Proof. In light of lemmas 3.11 and 3.12, we only need to show that the adjoints
satisfy the Beck-Chevalley condition.

Consider a pullback square

X ×Z Y
πX //

πY

��

X

f

��
Y

g // Z

in Set. Then the Beck-Chevalley condition for left adjoints states that

P(Y )

∃g
��

π∗Y // P(X ×Z Y )

∃πX
��

P(Z)
f∗ // P(X)

commutes. Now, for ψ ∈ P(Y ) and x ∈ X we have that both (f∗ ◦ ∃g)(ψ)(x)
and (∃πX ◦ π∗Y )(ψ)(x) are equal to

⋃
y:g(y)=f(x)

s× ψ(y) if f(x) ∈ im(g),

⊥ else,

so that this holds even strictly.

3.15. Thus, each of our definitions of Σ corresponds to a hyperdoctrine. In
fact, as well shall see shortly, all three are triposes. The most important case is

Σ = {(Aa, Ap,∼) | Aa ⊆ Ap ⊆ N, 0 ∈ Ap,∼ equivalence relation on Ap}.

This is the tripos which corresponds to modified realizability, and will lead us
to the modified realizability topos, the central object of study in this thesis.
Accordingly, we call this tripos M, the modified realizability tripos.

The definition

Σ = {(Aa, Ap) | Aa ⊆ Ap ⊆ N, 0 ∈ Ap}

gives rise to the tripos we call G, the Grayson tripos or non-equivariant modified
realizability tripos – which we give this name as it gives rise to what we call Gray,
the Grayson topos, which is the modified realizability topos as it exists in the
literature. Its behaviour is very similar to that of M.
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Finally, we call the hyperdoctrine corresponding to

Σ = P(N)

E, the effective tripos. We call it this because it will give rise to the famous
effective topos.

3.16. Recall that the only thing in the way of translating the proof of the sound-
ness theorem for Heyting algebras to hyperdoctrines outright is the treatment
of equality. The definition of equality does not even (immediately) make sense,
since it is the only relation symbol we define as a specific subobject, rather than
a generic element of Sub(X).

Writing ∆ : X → X × X for the diagonal in a Heyting category, a way of
writing ∆ in the language of hyperdoctrines is

∃∆(>Sub(X)).

This is redundant for a Heyting category, but it is a notation that makes sense
in a general hyperdoctrine: > ∈ P(X) always exists, and we always have the
mapping ∃∆ : P(X) → P(X ×X). Thus, we take this as our interpretation of
equality. To transfer the soundness theorem to hyperdoctrines, we still have to
show that this definition of equality works to show that the rules for equality
from 2.35 continue to work in a hyperdoctrine. First, a small lemma.

3.17 Lemma. If f : X → Y is a morphism in C, and ψ ∈ P(X), φ ∈ P(Y ),
then

∃f (ψ ∧ f∗(φ)) = ∃i(ψ) ∧ φ.

Proof. By the adjunction ∃f a f∗, we have ψ ≤ f∗∃f (ψ). Hence,

ψ ∧ f∗(φ) ≤ f∗∃f (ψ) ∧ f∗(φ) = f∗(∃fψ ∧ φ),

so that, using the adjunction again,

∃f (ψ ∧ f(φ)) ≤ ∃ff∗(∃fψ ∧ φ) ≤ ∃fψ ∧ φ.

For the other inequality, note that the adjunction gives us that

ψ ∧ f∗(φ) ≤ f∗∃f (ψ ∧ f∗(φ)).

Now we can use the adjunction between ∧ and →, to see that this is equivalent
to

ψ ≤ f∗(φ→ ∃f (ψ ∧ f∗(φ))).

Using, again, the adjunction ∃f a f∗, and the adjunction between ∧ and →, we
obtain

∃f (ψ) ∧ φ ≤ ∃f (ψ ∧ f∗(φ)),

which completes the equality.
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3.18 Proposition. For any category C with tripos P,

[x.x = x] = > ∈ P(X)

and
[~z.x = y ∧ φ] ≤ [~z.φ[y/x]] ∈ P(Z).

Proof. The first equation says that

> = ∆∗∃∆>,

which follows from the adjunction ∃∆ a ∆∗. The second equation states that

(π1, π2)∗(∃∆>) ∧ [x, y, ~z.φ] ≤ (π2, π2, π3)∗([x, y, ~z.φ]), (3.1)

where π1, π2, π3 are the projections of X×X×Z. Applying the Beck-Chevalley
condition to the square

X × Z

��

∆̄ // X ×X × Z

(π1,π2)

��
X

∆ // X ×X

shows that
(π1, π2)∗(∃∆>) = ∃∆̄(>P(X×Z))

Now, by 3.17, we have

(π1, π2)∗(∃∆>) ∧ [x, y, ~z.φ] = ∃∆̄(>P(X×Z)) ∧ [x, y, ~z.φ]

= ∃∆̄(∆̄∗[x, y, ~z.φ])

Hence, by the adjunction ∃∆̄ a ∆̄∗, we can restate 3.1 as

∆̄∗[x, y, ~z.φ] ≤ ∆̄∗(π2, π2, π3)∗[x, y, ~z.φ],

and
∆̄∗(π2, π2, π3)∗ = ((π2, π2, π3) ◦ ∆̄)∗ = ∆̄∗.

3.19. With this, we have our soundness theorem for hyperdoctrines. The two
clauses of proposition 3.18 are precisely the two facts we need to show that
the rules for equality in our proof calculus preserve truth in the logic of a
hyperdoctrine. If P is a C-hyperdoctrine, and Γ a set of sequents, then if each
element of Γ holds in P, so does each consequence of P.

This logical language is the most fundamental part of the hyperdoctrine:
from now on we will use it constantly. The informal interpretation of an element
R ∈ P(X × X) is that it represents a binary relation on the object X. If we
want to express, for example, that this relation is transitive, we can write

P |= ∀xX∀yX∀zX(R(x, y) ∧R(y, z)→ R(x, z)).
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We no longer have to express this much less legibly by giving projections πi,j :
X ×X ×X → X ×X onto the ith and jth factor, and then writing that

π∗1,2R ∧ π∗2,3R ≤ π∗1,3R

holds in P(X × X × X). Similarly, suppose we want to define a predicate P
on P(X) in terms of, say, a relation R ∈ P(X × Y ) and a function (morphism)
f : X → Y . Writing

P (x) ⇐⇒ R(x, f(x))

is now a formal definition of P , instead of having to write

P = (id, f)∗R

to make it precise.

3.2 The Category of Partial Equivalence Rela-
tions

3.20. From any hyperdoctrine, we can build a so-called category of partial equiv-
alence relations, or PERs. This category will in fact be a Heyting category, and
its internal logic generalizes the logic of the hyperdoctrine: it adds quotient
objects to the objects available in the tripos.

3.21 Definition. Let P be a hyperdoctrine on a category C. We define a
category C[P] of partial equivalence relations over P as follows. The objects of
C[P] are pairs (X,≈) where ≈ ∈ P(X ×X), such that

P |= ∀xX∀yX(x ≈ y → y ≈ x),

P |= ∀xX∀yX∀zX(x ≈ y ∧ y ≈ z → x ≈ z).

(We use the same notation for the logical symbol ≈ and its interpretation. In
fact, from now on we will do that often, to various elements of sets P(X).) The
relation ≈ should be thought of as a kind of equality. If x ≈ y, then everything
that holds for x must also hold for y. In the setting of realizability this means:
there is a uniform way of computing, from realizers for φ(x), realizers for φ(y).

A morphism F : (X,≈) → (Y,≈) is an element F ∈ P(X × Y ) which is a
functional relation. That is, F satisfies the following four conditions:

P |= ∀xX∀yY (F (x, y)→ x ≈ x ∧ y ≈ y),

P |= ∀xX∀x′X∀yY ∀y′Y (F (x, y) ∧ x ≈ x′ ∧ y ≈ y′ → F (x′, y′)),

P |= ∀xX∀yY ∀y′Y (F (x, y) ∧ F (x, y′)→ y ≈ y′),
P |= ∀xX(x ≈ x→ ∃yY (F (x, y))).

In turn, these requirements express that F is strict, relational, single-valued and
total. If F : (X,≈) → (Y,≈) and G : (Y,≈) → (Z,≈) are morphisms, then we
define

G ◦ F = [∃y(F (x, y) ∧G(y, z))].
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Showing that this is again a functional relation is easy using the logic in the
tripos. We can put the comments in 3.19 into practice. For instance, to show
the single-valuedness of G ◦ F we reason as follows. Suppose we have GF (x, z)
and GF (x, z′). Then there are y, y′ such that F (x, y), G(y, z), F (x, y′), G(y′, z′).
From the single-valuedness of F it follows that y ≈ y′, so that from the rela-
tionality of G it follows that G(y, z′), and then from the single-valuedness of G
it follows that z ≈ z′.

Associativity of composition comes down to the equivalence

∃z(∃y(F (x, y) ∧G(y, z)) ∧H(z, w)) ⇐⇒ ∃y(F (x, y) ∧ ∃z(G(y, z) ∧H(z, w))).

The identity morphism on (X,≈) is just the relation ≈ ∈ P(X ×X).
By abuse of notation we refer to an object (X,≈) of C[P] as just X. If it

adds to clarity, we may refer to ≈ as ≈X .

3.22. Let us once more use the logical language of the tripos to show that the
functional relations in P(X×Y ) form an antichain. That is, if F,G ∈ P(X×Y )
are functional relations, and F ≤ G, then F = G. Or, in other words, if

P |= ∀xX∀yY (F (x, y)→ G(x, y)),

then F = G. The proof proceeds the way one would prove for ordinary functions
f, g : X → Y that if f ⊆ g then f = g. Namely, fix arbitrary x, y such that
G(x, y). Then by strictness we have x ≈ x, and thus by totality of F we have
that there is some y′ such that F (x, y′). By our assumption, it follows that
G(x, y′) holds, so that by single-valuedness of G, we obtain y ≈ y′. Finally,
from the relationality of F we then obtain F (x, y) as desired.

Note, again, that it does not a priori even make sense to say that G(x, y)
“holds”, especially if the underlying category C is not concrete. But thanks to
the soundness theorem, because the above argument can be rendered in our
proof calculus, the proof is valid.

3.23 Lemma. C[P] has finite limits.

Proof. First we construct the terminal object in C[P]. Let 1 be a terminal
object in C, and consider the object (1,>1×1). For any object X of C[P] define
F (x, ∗) ∈ P(X × I) to be [x ≈ x]. Then, F is a morphism (X,≈)→ (1,>). For
instance, to see that F is total, consider the unique morphism f : X → 1 in C.
Then

P |= ∀xX(x ≈ x→ F (x, f(x))),

from which totality follows.
Next, let us construct the pullback. Suppose that we have functional rela-

tions F ∈ P(X×Z), G ∈ P(Y ×Z). We define the pullback as (X×Y,≈) where
≈ ∈ P(X × Y ×X × Y ) is given by

(x, y) ≈ (x′, y′) ⇐⇒ x ≈ x′ ∧ y ≈ y′ ∧ ∃z(F (x, z) ∧G(y, z)).

Showing that this is a partial equivalence relation is straightforward using the
logic of the tripos, using the relationality of F and G for the symmetry.
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We give a projection πX : X ×Z Y → X by

πX((x, y), x′) ⇐⇒ x ≈ x′ ∧ ∃z(F (x, z) ∧G(y, z)).

Showing that this is a functional relation is, again, straightforward. Note that
we can prove y ≈ y (as part of the strictness of πX) by using the strictness of
G. The projection πY ∈ P(X × Y × Y ) is similar.

To see that the pullback diagram commutes, we can prove the implication

∃x′X(x ≈ x′ ∧ ∃z′(F (x, z′) ∧G(y, z′)) ∧ F (x′, z))

=⇒ ∃y′Y (y ≈ y′ ∧ ∃z′(F (x, z′) ∧G(y, z′)) ∧G(y′, z)),

which is obvious by taking y′ = y.
Finally, let us see that this morphism is universal. Suppose that we have

A ∈ P(W ×X), B ∈ P(W × Y ) functional relations, such that F ◦ A = G ◦ B.
Then, we define (A,B) ∈ P(W ×X × Y ) by

(A,B)(w, (x, y)) ⇐⇒ A(w, x) ∧B(w, y).

Note that indeed πX ◦ (A,B) = A, for trivially

∃(x′, y′)(A(w, x′) ∧B(w, y′) ∧ x′ ≈ x ∧ ∃z(F (x, z) ∧G(y, z))) =⇒ A(w, x),

and similarly πY ◦ (A,B) = B. Finally, it is clear why (A,B) is unique with
this property; if H also has the property that

A(w, x) =⇒ ∃(x′, y′)(H(w, (x′, y′)) ∧ πX((x′, y′), x),

and similarly for B, then (A,B)(w, (x, y)) =⇒ H(w, (x, y)) quickly follows.
Since C[P] has pullbacks and a terminal object, it has all finite limits.

3.24. Since we are interested in interpreting logic in C[P], we should characterize
subobjects.

3.25 Lemma. Let F ∈ P(X ×Y ) be a functional relation. Then F : X → Y is
a monomorphism if and only if

P |= ∀xXx′XyY (F (x, y) ∧ F (x′, y)→ x ≈ x′).

Proof. Suppose first that the formula above holds for F , and that G,H : Z → X
are such that F ◦G = F ◦H – that is, such that

P |= ∀zZ∀yY (∃xX(G(z, x) ∧ F (x, y))→ ∃x′X(H(z, x) ∧ F (x′, y))).

Then, we can conclude that x ≈ x′, and thus that

P |= ∀zZ∃xX(G(z, x) ∧H(z, x)),

from which it quickly follows that the two are equal.
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Conversely, suppose F : X → Y is a monomorphism. It follows that in the
diagram

X idX

""

idX

%%

(idX ,idX)

$$
X ×Y X

��

// X

F

��
X

F // Y

the outer square is a pullback, so that the diagonal mapping X → X×Y X is an
isomorphism. Note that if F is an isomorphism with inverse F−1, then trivially
we have

F (x, y) ⇐⇒ F−1(y, x).

Thus, the totality of this inverse gives us that

P |= ∀(x, x′)X×YX((x, x′) ≈ (x, x′) =⇒ ∃x′′X(x′′ ≈ x ∧ x′′ ≈ x′)).

Since by definition,

(x, x′) ≈ (x, x′) ⇐⇒ x ≈ x ∧ x′ ≈ x′ ∧ ∃y(F (x, y) ∧ F (x′, y)),

clearly F (x, y) ∧ F (x′, y) =⇒ (x, x′) ≈ (x, x′), and the result follows.

3.26 Definition. Let X be an object of C[P]. An element P ∈ P(X) is a strict
relation for (X,≈) if

P |= P (x)→ x ≈ x and P |= P (x) ∧ x ≈ x′ → P (x′).

3.27. Given a morphism F : Y → X, the element PF = [∃xF (x, y)] ∈ P(Y )
defines a strict relation. Conversely, if P is a strict relation on X, then we can
make an object (X,≈P ) where

x ≈P x′ ⇐⇒ x ≈ x′ ∧ P (x);

and ≈P additionally is a morphism (X,≈P ) → (X,≈). With the characteriza-
tion from 3.25, it is immediate that this morphism is mono, so that this gives a
subobject of X.

3.28 Lemma. These constructions give a one-to-one correspondences between
subobjects of (X,≈) and strict relations on it. These correspondences respect
the orderings of Sub((X,≈)) and P(X).

Proof. Suppose that P is a strict relation on (X,≈). From this we construct the
monomorphism ≈P , from which we construct the new strict relation [∃x′(x ≈P
x′)], which is equivalent to

∃x′(x ≈ x′ ∧ P (x)),
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which is trivially equivalent (i.e., equal) to P (x). If Q,P are strict relations,
and Q ≤ P , then ≈Q also represents a monomorphism (X,≈Q)→ (X,≈P ).

Conversely, suppose that F : Y → X is a monomorphism. We obtain the
relation ≈′ on X given bx x ≈′ x′ ⇐⇒ x ≈ x′ ∧ ∃yY (F (y, x)), which gives
a subobject (X,≈′). Then F ∈ P(X × Y ) itself is also a morphism F : Y →
(X,≈′). In fact, it is an isomorphism, which is to say that the relation F−1

defined by F−1(y, x) ⇐⇒ F (x, y) is also functional (or, single-valued and
total). Checking this is a matter of unfolding definitions.

If we have two composable monomorphisms F,G, then of course

∃z∃y(G(z, y) ∧ F (y, x)) =⇒ ∃y(F (y, x)),

which is to say that PG◦F ≤ PF in P(Y ).

3.29. Summarizing, the subobjects of (X,≈) are given by the strict relations
on (X,≈), with the same ordering. From now on, we will identify the two
whenever notationally convenient, and write Sub(X) ⊆ P(X). Note, however,
that Sub(X) does not inherit the Heyting algebra structure from P(X). For
instance, the top element of Sub(X) is [x ≈ x], which is generally not equal to >.
However, ⊥ ∈ P(X) is strict, and joints and meets of strict relations are trivially
strict. And while, for φ, ψ strict, φ → ψ need not be strict, (φ → ψ) ∧ [x = x]
is. Thus, Sub(X) becomes a Heyting algebra with operations

⊥Sub(X) = ⊥P(X),

>Sub(X) = [x ≈ x],

φ ∧Sub(X) ψ = φ ∧P(X) ψ,

φ ∨Sub(X) ψ = φ ∨P(X) ψ,

φ→Sub(X) ψ = [x ≈ x] ∧P(X) (φ→P(X) ψ).

This gives us a good hint that C[P] is itself a Heyting category, and in fact it
is. To show that C[P] is regular, it is helpful to have another representation of
pullbacks of subobjects.

3.30 Lemma. Let F : X → Y be a morphism of C[P], and let A → Y be a
subobject defined by the strict relation PA. Then the pullback of A by F is the
subobject of X defined by the strict relation

PF∗(A)(x) ⇐⇒ ∃yY (F (x, y) ∧ PA(y)).

Proof. Note that our construction of the pullback in 3.23 gives X ×Y A as a
subobject of the product X×A given by the strict relation [∃y′Y (F (x, y)∧y′ ≈A
y)], which is equivalent to [∃yY (F (x, y)∧PA(y))]. This looks like the exact same
relation as PF∗(A), but one is defined on X, and one on X ×A. Fortunately, it
is easily seen that G : F ∗(A)→ X ×Y A defined by

G(x, x′, y) ⇐⇒ x ≈ x′ ∧ PA(y) ∧ F (x, y)

is an isomorphism.
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3.31 Proposition. The category C[P] is regular. If F : X → Y is a morphism,
im(F ) is the subobject of Y given by the strict relation [∃x(F (x, y))].

Proof. It is easy to see that F factorizes through a subobject given by strict
relation P if and only if

P |= ∀x∀y(F (x, y)→ P (y)).

Now if G : Z → Y is another morphism, the pullback of im(F ) by G is given by
the strict relation

[∃y(G(z, y) ∧ ∃x(F (x, y)))];

and the image of the projection X ×Y Z → Z is given by the strict relation

[∃x∃z(z ≈ z′ ∧ ∃y(F (x, y) ∧G(z, y)))],

which are logically equivalent.

3.32. Now that C[P] is regular, it is also easily seen to be coherent: with
our characterization of pullbacks of subobjects in C[P] it comes down to the
equivalence

∃y(F (x, y) ∧ (P (y) ∨Q(y))) ⇐⇒ ∃y(F (x, y) ∧ P (y)) ∨ ∃y(F (x, y) ∧Q(y)),

which follows from the single-valuedness of F . Hence, it just remains to be
shown that the pullback mappings also have right adjoints.

3.33 Lemma. C[P] is a Heyting category.

Proof. If PB is a strict relation on Y , and F : Y → X a morphism, then we
define

P∀F (B)(y) ⇐⇒ y ≈ y ∧ ∀x(F (x, y)→ PB(x)).

Then, the adjunction comes down to, for PA any strict relation on X, the
equivalence

∃y(F (x, y) ∧ PA(y))→ PB(x) ⇐⇒ PA(y)→ ∀x(F (x, y)→ PB(x)).

3.34. As a result, we can yet again interpret logic in C[P], and have a soundness
theorem for this. In particular, equality on (X,≈) gets interpreted as ≈ ∈
P(X × X), in other words, as ∃∆(>Sub(X)). Note that if ≈ = ∃∆>P(X), then
by our discussion in 3.29, all relations are strict for X. This means that, in
particular, the logic of P embeds into the logic of C[P]: what P proves about X,
C[P] proves about (X,∃∆(>P(X))). However, in C[P], a possibly wider notion of
equality is available.

Note that if we are talking about C[P], the interpretation brackets [x.φ(x)]
take up a double meaning: they are both used for the interpretation in P(tp(x)),
and for the interpretation as a subobject of tp(x) as an object of C. From context
it should be clear which one we mean.
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3.3 Triposes and Toposes
3.35. In this section, we finally define and consider triposes, which are hyper-
doctrines with extra structure. This extra structure allows us to show that C[P]
is not just a Heyting category, it is in fact also a topos. In fact, the name tripos
stands for Topos-Representing Indexed Pre-Ordered Set: its definition exists to
package together sufficient information to build a topos with a particular logic.

3.36 Definition. Let T be a finitely complete category, and X an object of T.
An object P(X) together with a subobject µ → X × P(X) is called a power
object of X if for each object Y and each monomorphism P → X × Y there is
a morphism χP : Y → P(X) with an arrow P → µ such that

P

��

// µ

��
X × Y

idX ×χP // X × P(X)

is a pullback square. If every object of T has a power object, we call T a topos.

3.37. With this definition in mind, it will be fairly clear how a tripos adds the
structure needed to define a topos: it adds a sort of proto-power objects. The
only difficulty then lies in showing that these proto-power objects also gives rise
to actual power objects in C[P].

3.38 Definition. Let P be a hyperdoctrine over a Cartesian category C. Sup-
pose that we have for each object X of C an object π(X) of C with an element
∈X ∈ P(X×π(X)). Then, if for each element φ ∈ P(X×Y ) there is a morphism
{φ} : Y → π(X) such that φ = (idX ×{φ})∗(∈X), we call P a tripos.

3.39. In the case where C is Cartesian closed, which covers most interesting
cases as far as we are concerned, we could have simplified this definition to
require instead an object Σ with an element σ ∈ P(Σ) such that if φ ∈ P(X),
there is a {φ} : X → Σ such that φ = {φ}∗(σ). The object Σ (together with σ)
is called a generic object.

This mirrors two possible definitions of a topos: as a Cartesian closed cat-
egory with a subobject classifier, or as a finitely complete category with power
objects. Once the underlying category is Cartesian complete, the tripos “only”
needs a proto-subobject classifier.

3.40. If the motivating example for a hyperdoctrine is a Heyting category with
its subobject functor, then the motivating example for a tripos is a topos with
its subobject functor: the role of π(X) is played by the power object P(X)
in the topos, the morphism {φ} is unique, and ∈X is the usual membership
predicate associated to such a power object.

The hyperdoctrines defined in 3.10 are all triposes. The underlying category
of the hyperdoctrines is Set, so we may use the characterization of 3.39: the sets
Σ from 3.9 are the objects Σ, and σ ∈ P(Σ) is given by the element represented
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by the identity Σ → Σ. Similarly, the hyperdoctrines of 3.5 are also triposes:
there, the generic object is given by H, together with idH ∈ HH .

Not all hyperdoctrines are triposes. For example, subobject functors on
Heyting categories which are not toposes generally will not be. As a very simple
example, you can consider a Heyting algebra, which in particular is a Heyting
category.

3.41 Proposition. If P is a tripos, then C[P] has power objects.

Proof. Let X be any object of C[P]. The underlying object of P(X) will be
π(X). To define ≈P(X) ∈ P(π(X)× π(X)), we first define E ∈ P (π(X)), using
a variable Q of type π(X), and using the abbreviation Q(x) for x ∈X Q, as
follows:

E(Q) ⇐⇒ ∀xX(Q(x)→ x ≈ x) ∧ ∀xX∀x′X(Q(x) ∧ x ≈ x′ → Q(x′))

Then, we define for Q,Q′

Q ≈P(X) Q
′ ⇐⇒ E(Q) ∧ ∀xX(Q(x)↔ Q′(x)).

The membership relation µ, a subobject of X×P(X), is then given by the strict
relation Pµ defined by

Pµ(x,Q) ⇐⇒ Q(x) ∧ E(Q).

Now let Y be any object, and P (x, y) a strict relation on X×Y . Then we define
χP : Y → P(X) by

χP (y,Q) ⇐⇒ ∀xX(Q(x)↔ P (x, y)) ∧ y ≈ y.

(Note that the notation P (x) just means P (x), while Q(x) is an abbreviation
for x ∈X Q.) The most difficult part of proving that χP is a morphism is the
totality, i.e.

P |= ∀yY (y ≈ y → ∃QP(X)(χP (y,Q))),

but now let {P} : Y → π(X) be such that (idX ×{P})∗(∈X) = P , then we find
that

P |= ∀yY (y ≈ y → χP (y, {P}(y))),

because in fact {P}(y)(x), an abbreviation for x ∈X {P}(y), evaluates by defi-
nition to P ∈ P(X × Y ).

Pulling back µ → X × P(X) by idX ×χP : X × Y → X × P(X) gives, by
3.30, the subobject of X × Y defined by the strict relation

∃QP(X)(∀x′X(Q(x′)↔ P (x′, y)) ∧Q(x)).

That this implies P (x, y) is obvious; and that P (x, y) also implies this follows
by taking the Q whose existence is guaranteed by the totality of χP . Hence χP
is a characteristic morphism for the subobject defined by P .
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Now, suppose that ψP : Y → P(X) is another characteristic function of P .
Then, again by 3.30, we know that

P (x, y) ⇐⇒ ∃QP(X)(ψP (y,Q) ∧Q(x)).

We want to show that ψP = χP – that is, that

ψP (y,Q) =⇒ ∀xX(Q(x)↔ P (x, y)).

Substituting P (x, y) with the above equivalence, and noting the single-valuedness
of ψP (y,Q), makes this implication trivial.

3.42. The object of primary interest to us is Set[M], the topos built out of
the modified realizability tripos. We call it, of course, the modified realizability
topos, or MRT for short. Let us reflect for a second what an object of the
modified realizability tripos actually looks like.

An object (X,≈) consists of a set X, together with an equivalence class of
functions ≈. If f is a representing function, then we have f : X × X → Σ
– that is, it takes elements x, x′ to a pair of sets of natural numbers, with an
equivalence relation. That is, we have two sets of naturals f(x, x′)a ⊆ f(x, x′)p,
and an equivalence relation ∼ on f(x, x′)p. Recall, we always have 0 ∈ f(x, x′)p.
Furthermore, we have that

M |= ∀x∀x′(x ≈ x′ → x′ ≈ x),

M |= ∀x∀x′∀x′′(x ≈ x′ ∧ x′ ≈ x′′ → x ≈ x′′).

In our particular case, this comes down to the existence of particular functions;
for symmetry, we have a realizer (a natural number) rs, such that for each x, x′, if
n ∈ f(x, x′)p then rsn ∈ f(x′, x)p, and furthermore this operation is equivariant,
and if n ∈ f(x, x′)a then also rsn ∈ f(x′, x)a. For short, we wrote this as
rs : f(x, x′) → f(x′, x). Similarly, we have a realizer rt : f(x, x′)× f(x′, x′′) →
f(x, x′′) for transitivity.

This is quite a mouthful, and all we have done is specify some abstract
object. We will want to avoid working with MRT directly as much as possi-
ble. Fortunately, it will turn out in 4.2 that MAss, a category we are already
comfortable with, appears inside MRT as a particularly nice subcategory.

As announced, we call the object Set[G] the Grayson topos, Gray, or non-
equivariant modified realizability topos. This is the topos which is studied and
investigated in [9]. Its objects are the same as those of MRT, but without the
equivalence relations.

Finally, as mentioned before, the category Set[E] is also called Eff, the ef-
fective topos.

If C is a topos, then C ∼= C[Sub]. The equivalence takes X to (X,∆), and a
morphism f : X → Y to [f(x) = y]. Unsurprisingly, a topos by itself does not
contain enough information to construct another topos.

3.43. All toposes are in fact also Heyting categories. This is not something we
will aim to prove here; however, we did see that it is true for our toposes built
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from triposes. Toposes have even more structure: the power objects allow us to
interpret higher-order logic. If we mean a variable R to range, say, over relations
on X × Y , then we can let R range over P(X × Y ). We interpret R(x, y) using
the membership predicate. In similar vein, toposes are Cartesian closed: we can
find the exponential Y X as a special subobject of P(X × Y ), namely as those
relations R for which ∀xX∃yY (R(x, y) ∧ ∀y′Y (R(x, y′)→ y = y′)) holds.

As a result, toposes are powerful enough to support an internal mathematics.
For a simple example, we are now able to define things like algebraic or relational
structure internally (second order logic), or reason about topologies (third order
logic). However, the logic still has the flavour of the tripos we started with.
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Chapter 4

The Modified Realizability
Topos

4.1 ¬¬-separated objects
4.1. In this chapter we will investigate the modified realizability topos. Much
like we looked at MAss in section 2.3, we want to investigate what mathematics
looks like in MRT, and in particular which constructive principles hold in MRT.
There will be no big surprises: again, we will find that independence of premise
and the axiom of choice for finite types hold.

Recall from 3.42 that working with objects and morphisms of MRT directly
typically requires tending to a large number of details. In order to make the
topos easier the work with, we first show that MAss embeds in MRT as a nice
subcategory. Then, a lot of our arguments translate (partially) to arguments
about MAss, where they are easier to answer.

4.2. We exhibit MAss as a subcategory of MRT. Given a modified assembly
(X,PX ,∼, ρX), we define an object (X,≈) of MRT. The relation ≈ is defined
by

[x ≈ y](x̄, x̄) = (ρX(x̄), PX ,∼),

[x ≈ y](x̄, ȳ) = (∅, PX ,∼) if x̄ 6= ȳ.

If f : X → Y is a morphism of assemblies with realizer rf , we define a functional
relation F ∈ P(X × Y ) by

F (x̄, ȳ) =

{
[x ≈ x](x̄)× [y ≈ y](ȳ) if f(x̄) = ȳ,

(∅, (P,∼)× (Q,∼)) else.

Showing that F is relational, single-valued and strict is trivial. To show that it
is total, that is,

M |= ∀x(x ≈ x→ ∃y(F (x, y))),
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we use rf to map a realizer for x ≈ x to one for f(x) ≈ f(x), which gives us a
realizer for x = x ∧ f(x) = f(x), which is the same as a realizer for F (x, f(x)).

Together, this gives a functor MAss→ MRT.

4.3. To avoid cumbersome notation, we will occasionally use the same letter for
a variable and a point in the underlying set; for instance, we will say “realizer
for x ≈ x”, when what we really mean is “realizer in [≈](x)”. When this could
cause confusion, we stick to the more formal notation.

4.4 Proposition. The functor MAss→ MRT is full and faithful.

Proof. Suppose the modified assemblies X and Y give rise to (X,≈) and (Y,≈)
respectively. Suppose F : (X,≈) → (Y,≈) is a functional relation. Then we
claim that for each x ∈ X, there is a unique y ∈ Y such that F (x, y) has an
actual realizer. Since X is a modified assembly, [x = x] always has an actual
realizer, and from the totality of F we obtain some y such that F (x, y) has an
actual realizer; if F (x, y′) also has an actual realizer, then the single-valuedness
of F gives us an actual realizer of y ≈ y′. Because Y comes from a modified
assembly, this means that y = y′.

Thus we define a function f : X → Y by letting f(x) be the unique y ∈ Y
such that F (x, y) has an actual realizer. This function obtains a realizer by
composing the realizer for the totality of F (which turns a realizer for [x = x]
into one for F (x, y) for some y) with the realizer for the strictness of F (which
turns this into a realizer for [x = x]∧ [y = y]) and a projection (to get a realizer
for [y = y]). Thus, f is a morphism of assemblies. In particular, it gives rise to
F̂ : (X,≈) → (Y,≈). And now the realizer for the strictness of F is the same
as a realizer for F (x, y)→ F̂ (x, y), so F = F̂ . We see that the functor is full.

Now suppose that f, g : X → Y are morphisms of assemblies which give
rise to F,G respectively. If f and g are distinct, there is an x ∈ X such that
f(x) 6= g(x), and thus F (x, f(x)) has an actual realizer while G(x, f(x)) does
not. This precludes us from giving a realizer for F (x, f(x)) → G(x, f(x)), so
that F 6= G. Hence, our functor is faithful.

4.5 Definition. Let X be an object of a topos. If

∀xX∀yX(¬¬(x ≈ y)→ x ≈ y)

holds in the topos, then X is called ¬¬-separated.

4.6 Proposition. If (X,≈) lies in the (essential) image of the functor MAss→
MRT, then (X,≈) is ¬¬-separated.

Proof. Recalling our translation in 3.29 and lemma 3.33, rendering the definition
of ¬¬-separated in the logic of M we have to show that

M |= ∀xX∀yX(x ≈ x ∧ y ≈ y ∧ ¬¬(x ≈ y)→ x ≈ y)

holds, given that (X,≈) comes from a modified assembly. That is, we have to
give a realizer for

x ≈ x ∧ y ≈ y ∧ ¬¬(x ≈ y)→ x ≈ y.
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We claim that the projection onto the first of the three coordinates suffices. Since
(X,≈) comes from a modified assembly, the potential realizers for [x ≈ x] and
[x ≈ y] are identical. If we have an actual realizer for x ≈ x∧y ≈ y∧¬¬(x ≈ y),
then in fact x ≈ y must also have an actual realizer, and thus since X comes
from a modified assembly, we must have x = y, and then their actual realizers
are also identical. Finally, projections are always equivariant.

4.7 Proposition. If an object (X,≈) of MRT is ¬¬-separated, then it lies in
the essential image of the functor MAss→ MRT.

Proof. Let Y be the set of equivalence classes of (X,≈), where equivalence of x
and y means [x ≈ y]a 6= ∅. Furthermore, recalling 3.8, define

(PY ,∼) =
⋃

x,x′∈X
[x ≈ x′]p,

and define for each y ∈ Y

ρY (y) =
⋃

x,x′∈y
[x ≈ x′]a.

Then (Y, PY ,∼, ρY ) is a modified assembly, giving rise to an object (Y,≈) of
MRT. Now define F ∈ M(X × Y ) by

F (x, y) =

{
[x ≈ x]× [y ≈ y] if x ∈ y,
(∅, [x ≈ x]p × [y ≈ y]p) else.

We claim that this is an invertible functional relation; that is, that F and F−1

defined by F−1(y, x) = F (x, y) are functional relations.
Strictness of F and F−1 is realized by the identity; relationality of F and

F−1 follows by some applications the realizers for transitivity for both objects.
Single-valuedness of F is also trivial, since Y comes from a modified assembly.
For single-valuedness of F−1, we have to give a realizer for

F (x, y) ∧ F (x′, y)→ x = x′.

The ¬¬-separation of X gives us a realizer r¬¬ for x = x ∧ x′ = x′ ∧ ¬¬(x =
x′) → x = x′. Applying it to the triple consisting of the first projection of
F (x, y), the first projection of F (x′, y) and the number 0 gives us the realizer
for x = x′ we want.

The totality of F is realized by the diagonal. The totality of F−1 is realized
by taking a realizer for y = y, which is a realizer for x = x′ for some x, x′ ∈ y; and
using symmetry and transitivity to produce a realizer for x = x from that.

4.8. Thus, the modified assemblies are precisely the ¬¬-separated objects. This
is convenient, since the ¬¬-separated objects form a very nice class. For in-
stance, it is closed under subobjects: if F : (X,≈) → (Y,≈) is a monomor-
phism, and Y is ¬¬-separated, then from ¬¬(xX = x′X) we can conclude
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∃yY , y′Y (F (x, y)∧F (x′, y′)∧¬¬(y ≈ y′)), so that we can conclude that y ≈ y′,
and thus that x ≈ x′ by our characterization of monomorphisms from 3.25.
(In particular, although we already know, the category MAss is automatically a
Heyting category because MRT is.) This in turn means that we can interpret
our logical language in MAss instead of MRT whenever we are working with
¬¬-separated objects.

Furthermore, it is closed under the exponents of MRT. For, suppose X,Y
are objects, with Y a ¬¬-separated object, and let us reason in the internal
logic about f, f ′ : X → Y . If ¬¬(f = f ′), then for each x ∈ X we have
¬¬(f(x) = f ′(x)), and by ¬¬-separation of Y , it follows that f(x) = f ′(x). As
we noted in 2.39, the internal logic of any Cartesian closed Heyting category
has function extensionality, so it follows that f = f ′.

4.2 Independence of Premise
4.9. We know that independence of premise holds for the appropriate types
in MAss; unsurprisingly, the same is true for MRT. In fact, the condition on
the object Y is almost exactly the same as in the statement of the theorem for
MAss.

4.10 Theorem. Let X,Y be objects of MRT, where Y has the property that if
n ∈ [y ≈ y]p, then there is y′ with n ∈ [y′ ≈ y′]a. Then for any predicates P of
type X and R of type (X,Y ) we have

MRT |= ∀xX((¬P (x)→ ∃yYR(x, y))→ ∃yY (¬P (x)→ R(x, y))).

Proof. Recalling the translation of the logic of MRT into that of M from 3.29
and lemma 3.33, we can equivalently prove that

M |= ∀xX(x ≈ x ∧ (¬P (x)→ ∃yYR(x, y))→ ∃yY (y ≈ y ∧ (¬P (x)→ R(x, y))))

for any sets X,Y , symmetric and transitive relations ≈X ,≈Y where ≈Y has the
property described above, and strict relations P,R. That is, we have to give a
realizer showing that in M(X),

[x ≈ x] ∧ [¬P (x)→ ∃y(R(x, y))] ≤ [∃y(y ≈ y ∧ (¬P (x)→ R(x, y)))]. (4.1)

Now, the strictness of R gives us a realizer for R(x, y) → y ≈ y; we call this
realizer ry. We claim that the code

λera.〈ry(ra0), λk.ra0〉

realizes 4.1. To this end, suppose that e, ra are potential realizers for the left
hand side at a point x̄ ∈ X. Note that because y is inhabited, we can use the
characterization of 3.13, so that

[∃y(y ≈ y ∧ (¬P (x)→ R(x, y)))](x̄) =⋃
ȳ∈Y

[y ≈ y](x̄, ȳ) ∧ [¬P (x)→ R(x, y)](x̄, ȳ).
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Then, since 0 is always a potential realizer in [¬P (x)](x̄), indeed ra0 is a poten-
tial realizer for

[∃y(R(x, y))](x̄) =
⋃
ȳ∈Y

[R](x̄, ȳ);

we call some ȳ for which it is in there ȳ0. Then, ry(ra0) also lies in [y ≈ y](ȳ0)p,
and λk.ra0 also lies in [¬P (x)→ R(x, y)](x̄, ȳ0)p, showing that this is indeed a
potential realizer. Now, it remains to be shown that it is also an actual realizer.

Now suppose that ra is an actual realizer. There are two possibilities: either
[¬P ](x̄) has an actual realizer, or it does not. If it does, then [¬P (x)](x̄) in
particular always has 0 as an actual realizer, and the proof goes through exactly
as for potential realizers.

If it does not, then

[∃y(y ≈ y ∧ (¬P (x)→ R(x, y)))](x̄)a

=
⋃
ȳ∈Y

[x, y.y ≈ y](x̄, ȳ)a × ([x, y.¬P (x)](x̄, ȳ)p → [R(x, y)](x̄, ȳ)p).

Now, we already know that λk.ra0 is a potential realizer for [¬P (x)→ R(x, y)](x̄, ȳ)
for any ȳ; and, by our assumption on Y , since ry(ra0) is a potential realizer of
some ȳ ∈ Y , it must also be the actual realizer of some ȳ ∈ Y .

4.11. The above construction does not anywhere use equivariance, so in partic-
ular the same argument works for Gray, in which independence of premise also
holds, under the same conditions. However, IP does not hold in Eff; we already
saw that it does not hold in Asm, which form the ¬¬-separated objects in Eff.

4.3 The Axiom of Choice for Finite Types
4.12. In order to talk about the axiom of choice for finite types in MRT we need
to know what the finite types are. As luck would have it, it will turn out that
the natural numbers object in MRT is ¬¬-separated – in fact, it is the natural
numbers object of MAss. Since we already know that ¬¬-separated objects are
closed under exponentiation in MRT, it follows that the finite types in MRT
are just those of MAss. These have a simple description as the types of HEO,
while the construction of exponents in MRT invites a lot of technical overhead.
Even just checking that the natural numbers object of MAss is indeed a natural
numbers object of MRT gets into so much technical detail, that we prefer to
just construct the morphism.

4.13 Lemma. The image under the functor MAss→ MRT of the natural num-
bers object N in MAss, which we also denote N, is the natural numbers object of
MRT.

Proof. Concretely, let 1 be given by the set {∗}, with [∗ ≈ ∗] = (N,N,N × N).
Now suppose we have morphisms Q : 1 → X and F : X → X of MRT. Then
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we define U ∈ M(N×X) by

U(0, x) = ({1}, {0, 1},=)×Q(∗, x),

U(n+ 1, x) = ({n+ 2}, {0, n+ 2},=)×
⋃
y∈X

U(n, y)× F (y, x).

Note that any program using a realizer of U(n, x) can recognise whether or not
it is an actual or a potential realizer: if the first projection is 0, it is necessarily
a potential realizer, and can thus always be sent to 0. If it is non-zero, it is
always an actual realizer, and furthermore by subtracting 1 the program can
use the value n.

Hence, strictness, relationality, and single-valuedness of U are all trivial using
the fact that Q and F are. Totality is realized as follows: 0 is sent to a pre-
determined realizer of U(0, x), while n+ 1 recursively finds a realizer of U(n, y)
and then uses totality of F to find a realizer for F (y, x) allowing us to build a
realizer for U(n+ 1, x).

By construction, U is precisely the unique arrow making the diagram

1
0 //

Q

��

N s //

U
��

N

U
��

X
F // X

commute.

4.14 Theorem. In MRT, the axiom of choice holds for all finite types. That
is, for σ, τ finite types, and α any type,

MRT |= ∀aα(∀xτ∃yσP (x, y, a)→ ∃fσ→τ∀xσP (x, f(x), a)).

4.15. Since the only thing we have changed from our statement of the axiom
of choice in MAss is that the parameter type A is now possibly no longer ¬¬-
separated, but the parameter did not figure into the proof in any way, the proof
should be very similar to that of 2.46, and indeed it is.

Proof. Translated into the logic of the tripos, we want to demonstrate the exis-
tence of an actual realizer, uniformly in A, of

M |= ∀xτ (x ≈ x→ ∃yσP (x, y, a))→
∃fσ→τ∀xσ(x ≈ x→ ∃yσ(ev(x, f, y) ∧ P (x, y, a))

whenever P is a strict relation. In particular, the strictness of P gives us an
actual realizer rs for P (x, y, a)→ y ≈ y.

Since the underlying sets of σ, τ, σ → τ are always non-empty, we can use
the quantifier definitions from 3.13. Thus, realizers of the antecedent are just
realizers for x ≈ x → ∃yσ(P (x, y, a)) which hold for all x. Now, if ra is a
potential realizer of the antecedent, we claim that rs ◦ ra is a (code for an)
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element of σ → τ . This function takes potential realizers for x ≈ x – that is,
codes for elements of type σ – as an argument, and it outputs potential realizers
for y ≈ y – that is, codes for elements of type τ . Because rs, ra have to be
equivariant, codes for the same element of σ have to be sent to codes for the
same element of τ , which gives a well-defined function f̄ : σ → τ , which is of
course realized by rf = rs ◦ ra.

Let us use this to build a potential realizer for the consequent. Recall that
ev, the evaluation morphism τ × στ → σ in MRT, comes from MAss, and thus
has the potential realizers of [x ≈ x] ∧ [f ≈ f ] ∧ [y ≈ y]. The actual realizers
agree with those as well as long as f(x) = y; otherwise, ev(x, f, y) has no actual
realizers. Thus, from ra a potential realizer of the antecedent, and rx a potential
realizer for x ≈ x, we can build a potential realizer for ev(x, f, y) as

〈rx, rf , rfrx〉.

Hence, our realizer for the axiom of choice becomes

λrarx.〈〈rx, rs ◦ ra, rs(rarx)〉, rfrx〉.

Since the potential realizers for ev(x, f, y) are global, this always works for
potential realizers. Furthermore, this realizer is equivariant, since it is just a
composition of pairing operators and realizers, all of which must be equivariant.

Finally, let us see that our realizer is an actual realizer. Thus, for every x an
element of type τ , if ra and rx are actual realizers of the antecedent and x ≈ x,
then rs ◦ ra needs to be the actual realizer of a function f̄ such that rs(rarx)
is a code of f(x), and rfrx is an actual realizer of P at (x, f̄(x), a). But this is
immediate from the definition of f̄ .

4.16. Since the axiom of choice for finite types does not hold in GrAss, it does
not hold in Gray either. Thus, like with MAss and GrAss, the axiom of choice for
finite types distinguishes the two toposes. Also, since the axiom of choice does
not even hold for all types in MAss, it certainly will not for all types of MRT
either.

4.17. Before we conclude, let us look at how MRT and Gray relate geometri-
cally. Recall that Gray is essentially “MRT without equivalence relations”; this
immediately gives us a forgetful functor MRT→ Gray, which simply removes the
equivalence relation on each set of potential realizers. The other way around,
we can equip an object or a morphism of Gray with either the total equivalence
relation on each set of potential realizers, or with the equality relation; this gives
two functors Gray→ MRT.

It is not difficult to check that the functor adding the equality relation is left
adjoint to the forgetful functor, while the functor adding the total relation is
its right adjoint. Hence, the three functors assemble into an essential geometric
morphism Gray → MRT. However, these functors are not logical functors, so
from the point of logic this does not tell us something particularly interesting.
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Conclusion

In this thesis, we have defined a topos MRT whose internal logic is meant to
reflect Kreisel’s modified realizability for arithmetic in all finite types. We seem
to have succeeded: a sentence in the language of HAω is realized (in modified re-
alizability) if and only if its interpretation in the topos is true. Furthermore, we
find that independence of premise, one of the characterizing features of modified
realizability, holds in the topos more widely that for the finite types.

The construction of MRT is closely analogous to the construction of another
topos, also called the “modified realizability topos”, which we have named Gray
in this thesis after the first person to define it. The topos Gray models a different
kind of modified realizability; the crucial logical difference is that the axiom of
choice does for finite types does not hold in Gray. Conversely, Church’s thesis
does not hold (internally) for MRT.

In MRT we have singled out the category MAss based on the ¬¬-separated
objects, objects for which the equivalence (x = y) ↔ ¬¬(x = y) holds. This
category turns out to be closed under subobjects and exponents, and includes
many of the interesting objects of MRT, most notably all finite types. Further-
more, this category allows a much simpler description – which in fact we have
given and investigated first.

There are some avenues unexplored with regards to MRT in this thesis:

• We build MRT on the computational model of natural numbers with recur-
sive function application. More generally, it seems that the construction
would go through on the basis of any PCA. The toposes this creates could
have interesting distinct logical properties.

• We have focused on statements in the “first-order” language of Heyting
arithmetic in all finite types. Of course, much more mathematics can be
developed within an elementary topos like MRT. In particular, we have
not considered the real numbers. If we accept the premise that MRT is the
“right” topos for Kreisel’s modified realizability, then the analysis of MRT
is the (as of yet unexplored) analysis of Kreisel’s modified realizability.

• While we characterized the projective objects in MAss, we did not yet do
so in MRT.

• The objects Y for which the principle of independence of premise holds in
MRT seem to be objects from a category analogous to Eff, but where the
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union of the sets of actual realizers has an equivalence relation on it. This
might be an interesting subcategory of MRT.

• The modest modified assemblies, as described in 2.60, are analogous to a
type of object called a “modest set” in the effective topos. These modest
sets have been studied relatively extensively; perhaps the study of modest
modified assemblies could be an interesting look into MRT.

Each of these could be an avenue for further investigation into the topos MRT
and its internal mathematics.
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