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Abstract

This paper studies the logical features of social group creation. We focus
on the mechanisms which indicate when agents can form a team based on
the correspondence in their set of features (behavior, opinions, etc.). Our
basic approach uses a semi-metric on the set of agents, which is used to
construct a network topology. Then it is extended with epistemic features
to represent the agents’ epistemic states, allowing us to explore group-
creation alternatives where what matters is not only the agent’s differences
but also what they know about them. We use tools of dynamic epistemic
logic to study the properties of different strategies to network formations.

Keywords: social network; social network creation; similarity; middleman;
epistemic logic; dynamic epistemic logic.

1 Introduction

It is commonly accepted that our social contacts affect the way we form our
opinions about the world. Think, e.g., about socialization (inheriting and dis-
seminating norms, customs, values and ideologies), conformity (changing our
attitudes, beliefs and behaviors to match those of others), peer pressure and
obedience. These phenomena have been studied not only by empirical sci-
ences (e.g., sociology and social psychology: [10]) but also by theoretical com-
puter science and economy [15]. Within the logic community, epistemic social
phenomena have been studied with a diversity of logical tools. Since the
birth of dynamic epistemic logic in the late eighties and ninetees, models were
first designed to reason about agent’s epistemic states in multi-agent environ-
ments, and the social dimension has gradually received more attention. As
examples we mention the work on communication networks and protocols
[24; 13; 22; 2; 1], belief change in social networks [19], the analysis of peer pres-
sure [25], the study of informational cascades [5], priority-based peer influence
[17], reflective social influence in [9] and the study of diffusion and prediction
update in [6]. Still, while the structure of social groups plays an important role
in these logical studies, the way the groups are created has till now received
much less attention.
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This paper focusses on the logical structure behind the creation of social
networks, the basic mechanism focussing on agents who become socially con-
nected when the number of features in which they differ is small enough. In
line with this idea we propose several group-creation policies, exploring the
properties of the resulting networks. Section 2 introduces a similarity update
operation which generates new reflexive and symmetric social networks. Then
it discusses alternatives that produce irreflexive and not necessarily symmetric
variations. After this, we introduce a version that asks for the agents not only to
be ‘close enough’, but also for the existence of a middleman who can ‘connect’
them. Section 3 extends our setting with an epistemic dimension, as in real-life
what matters its not only the actual situation, but also what the agents know
about it. In this epistemic setting two new operations will be defined, both
extending the similarity and middleman similarity operations by asking for
the agents to have knowledge of the required condition. In both cases, the de
dicto and de re variations of the epistemic conditions are further explored. The
different logical settings in this paper make use of the techniques of dynamic
epistemic logic (DEL; [4; 12; 7]) to represent group-creation actions, to define new
languages to describe their effects, and to provide sound and complete axiom
systems. Section 4 concludes with a list of topics for future work.

2 Modelling Social Networks

We adopt the basic setting of [6], which is a relational ‘Kripke’ model in which
the domain is interpreted as the set of agents, the accessibility relation repre-
sents a social connection from one agent to another, and the atomic valuation
describes the features (behavior/opinions) each agent has. Let A denote a finite
non-empty set of agents, and P (with A∩P = ∅) a finite set of features that each
agent might or might not have:

Definition 2.1 (Social Network Model) A social network model (SNM) is a tuple
M = 〈A,S,V〉 where S ⊆ A × A is the social relation (Sab indicates that agent a is
socially connected to agent b) and V : A → ℘(P) is a feature function (p ∈ V(a)
indicates that agent a has feature p). J

Relation S is not required to satisfy any specific property (neither irreflexiv-
ity nor symmetry). Hence our social relation differs from the friendship relation
in e.g. [19; 6; 9]. Given a social network model, we define a notion of ‘distance’
between agents based on the number of features in which they differ.

Definition 2.2 (Distance) Let M = 〈A,S,V〉 be a SNM. Define the set of features
distinguishing agents a, b ∈ A in M as msmtchM(a, b) :=

(
V(a) \ V(b)

)
∪

(
V(b) \

V(a)
)
. Then, the distance between a and b in M is given by

distM(a, b) := |msmtchM(a, b)|

Proposition 2.1 Let M = 〈A,S,V〉 be a SNM and take a, b, c ∈ A. Then,

• Non-negativity: distM(a, b) ≥ 0.

• Symmetry: distM(a, b) = distM(b, a).

2



• Reflexivity: distM(a, a) = 0.

• Subadditivity: distM(a, c) ≤ distM(a, b) + distM(b, c). �

Here distM(a, b) is a mathematical distance (satisfying non-negativity, sym-
metry and reflexivity) and also a semi-metric (a distance satisfying subadditiv-
ity).1 It is not a metric as it does not satisfy identity of indiscernibles: distM(a, b) = 0
does not imply a = b, as two different agents may have exactly the same features.
Static Language L. Following [6], social network models are described by a
propositional languageLwith special atoms describing the agents’ features and
their social relationship. More precisely, formulas in L are given by

ϕ,ψ ::= pa | Sab | ¬ϕ | ϕ ∧ ψ

with p ∈ P and a, b ∈ A. We read pa as “agent a has feature p” and Sab as “agent
a is socially connected to b”. Other Boolean operators (∨,→,↔,Y, the latter
representing the exclusive disjunction) are defined as usual. Given a SNM
M = 〈A,S,V〉, the semantic interpretation of L-formulas in M is given by:

M  pa iffdef p ∈ V(a),

M  Sab iffdef Sab,

M  ¬ϕ iffdef M 1 ϕ,

M  ϕ ∧ ψ iffdef M  ϕ and M  ψ.

A formula ϕ ∈ L is valid (notation:  ϕ) when M  ϕ holds for all models
M. Since there are no restrictions on the social relation nor on the feature
function, any axiom system for classical propositional logic is fit to characterize
syntactically the validities of L over the class of social network models.

The remainder of this section deals with the creation of new networks by
updating the network relation. In contrast to [6], which uses SNMs to study
how the fixed network structure leads to changes in features, here we keep the
agents’ features fixed, focussing instead on the changes in the social structure.

2.1 Similarity Update

There are several ways in which new social relations can be defined. A natural
option is to let two agents become friends when they are ‘similar’ enough. If
a threshold θ ∈ N is given, with θ < |P| (recall: P is finite), then we can define
a similarity update operation allowing agents to establish connections to others
who differ in at most θ features.

Definition 2.3 (Similarity Update) Let M = 〈A,S,V〉 be a SNM; take θ ∈ N.
The similarity update of M generates a new SNM M�θ = 〈A,S�θ ,V〉 which
differs from M only in its social relation, given by

S�θ := {(a, b) ∈ A × A : distM(a, b) ≤ θ}

Intuitively, each agent defines a circle of ratio θ with herself at the center,
and her social contacts will be those agents falling inside it. The social relation
of the updated model M�θ satisfies:

1See [11, Chapter 1] for more on mathematical distances.
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Proposition 2.2 Let M = 〈A,S,V〉 be a SNM, with M�θ = 〈A,S�θ ,V〉 as in Defini-
tion 2.3. Then, S�θ is reflexive and symmetric.

Proof. Each property follows from its namesake distance property (Proposition
2.1) and, in the case of reflexivity, from the fact that θ’s lower bound is 0. �

One can think of the social network that is generated by a similarity update
as representing friends that have mutual access to each others feature-database,
allowing every agent to access also her own database. Note that although
reflexivity implies that every agent will have at least one friend (i.e., S�θ is
serial), nothing guarantees an agent will have a friend other than herself (as the
threshold may be ‘too strict’).

If a ‘friendship’ (irreflexive and symmetric) network is required, the update
operation has to be adjusted to keep identity pairs out (e.g., S′�θ := {(a, b) ∈
A × A : a , b and distM(a, b) ≤ θ}). If, on the other hand, one requires a not
necessarily symmetric network of ‘informational access’ (as in [8]), we can use
a personal threshold for each agent a ∈ A (i.e., a function Θ : A → N). Then
each agent can choose ‘how different’ others may be in order to add them to
her social group, and the updated relation is given by S′�Θ

:= {(a, b) ∈ A × A :
distM(a, b) ≤ Θ(a)}. Note how, for example, the distance between a and b, say 2,
may be good enough for a to consider b a social contact (2 ≤ Θ(a)), but not for
b to consider a a social contact (Θ(b) < 2).

We illustrate briefly why other relational properties cannot be guaranteed.

Fact 2.1 The relation S�θ needs to be neither transitive nor Euclidean.

Proof. Transitivity can fail because, given agents a, b and c, what distinguishes
a and b may be only part of what distinguishes a and c (i.e., msmtchM(a, b) ⊂
msmtchM(a, c)). For example, let θ = 1 and consider the updated model below
on the right, in which S�θab and S�θbc, but not S�θac.

p, q
a

p
b c

�1
⇒

p, q
a

p
b c

The relation may not be Euclidean because what distinguishes a and b may
be different from what distinguishes a and c (i.e., msmtchM(a, b)∩msmtchM(a, c) =
∅). For example, take θ = 1: the updated model below on the right is such that
S�θab and S�θac, but neither S�θbc nor S�θcb.

p, q
a

p
b

q
c

�1
⇒

p, q
a

p
b

q
c

Dynamic LanguageL�θ . To express how a social network changes, we use the
languageL�θ which extends the languageLwith a ‘dynamic’ modality [�θ] to
build formulas of the form [�θ]ϕ (“after a similarity update, ϕ is the case”). The
semantic interpretation of this modality refers to the similarity-updated model
in Definition 2.3 as follows: Let M be a SNM, then
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M  [�θ]ϕ iffdef M�θ  ϕ.

Different from the well-known case of information updates under public
announcements [21; 16], no precondition is required for a similarity update of a
social network: the operation can take place in any situation. Because of this and
the functionality of the model operation, the dual modality 〈�θ〉ϕ := ¬ [�θ]¬ϕ
is such that  [�θ]ϕ↔ 〈�θ〉ϕ.

The following axiom system is build via the DEL technique of recursion
axioms. First, note that, as P is finite, the followingL-formula is true in a model
M if and only if agents a and b differ in exactly t ∈N features:

Distt
ab :=

∨
{Q⊆P : |Q|=t}

(∧
p∈Q(pa Y pb) ∧

∧
p∈P\Q(pa ↔ pb)

)
2

Then, the following L-formula is true in M if and only if a and b differ in at
most θ ∈N features:

Dist≤θab :=
∨θ

t=0 Distt
ab

Hence, the following L�θ -formula characterizes the social relation in the simi-
larity-updated model: a will consider b as a social contact if and only if, before
the operation, a and b differed in at most θ features;

 [�θ] Sab ↔ Dist≤θab

As only the social relation changes, the reduction axioms and the rules
in Table 1 form, together with a propositional system, a sound and strongly
complete axiom system characterizing the validities of L�θ . The here given
syntax adapts the work of [6] for threshold-limited influence to the case of
similarity update.

` [�θ] pa ↔ pa

` [�θ] Sab ↔ Dist≤θab

` [�θ]¬ϕ↔ ¬ [�θ]ϕ

` [�θ](ϕ ∧ ψ)↔ ([�θ]ϕ ∧ [�θ]ψ)

From ` ϕ infer ` [�θ]ϕ

From ` ψ1 ↔ ψ2 infer ` ϕ ↔ ϕ [ψ2/ψ1]
(with ϕ [ψ2/ψ1] any formula obtained
by replacing one or more occurrences
of ψ1 in ϕ with ψ2).

Table 1: Axiom system for L�θ over social network models (a, b ∈ A).

If the mentioned ‘irreflexive’ version of similarity update is used, the axiom
characterizing the new social relation should be restricted to cases with a , b,
with a new axiom for the missing case:

` [�θ] Sab ↔ Dist≤θab for a , b, ` [�θ] Saa ↔ ⊥

If the ‘personal threshold’ option is chosen, then the axiom should state that,
after the operation, a includes b as her social contact if and only if they differ in
at most Θ(a) features:

` [�Θ] Sab ↔ Dist≤Θ(a)
ab

2The formula states that there is at least one set of features Q, of size t, such that a and b differ
in all features in Q and coincide in all features in P \Q. There can be a most one such set, therefore
the formula is true exactly when a and b differ in exactly t features.
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2.2 Middleman Similarity Update

The network generated via a similarity update does not depend on the topology
of the original network but only on the agent’s current ‘distance’, regardless
of whether they were earlier socially connected or not. Yet in most social
scenarios, we see that the past network does play a role and that it takes a
common acquaintance to introduce new friends to each other who are similar
enough.

Definition 2.4 (Middleman Similarity Update) Let M = 〈A,S,V〉 be a SNM;
take θ ∈ N. The middleman similarity updated model SNM M

�̂θ
= 〈A,S

�̂θ
,V〉

differs from M only in its social relation, which is given by

S
�̂θ

:= {(a, b) ∈ A × A : distM(a, b) ≤ θ and ∃ c ∈ A with Sac and Scb}

In the new network, agent a will include agent b as a social contact if and
only if they are similar enough and there is an agent c who belongs to a’s social
network and who includes b as one of her social contacts. Of course, the social
requirements for the middleman c might vary. In some cases, a symmetric social
relation between him and the two involved agents a and b might be required;
while in other cases, an agent who has both a and b in her social network might
be enough. Thanks to the formulae describing the social relation S in the syntax,
our logical system is capable of dealing with all these cases, and other similar
variations. Note also that, in line with our definition, the role of the middleman
can be played by agent a or b themselves if they were already friends. Still,
requiring a middleman changes the properties of the resulting network:

Fact 2.2 If M = 〈A,S,V〉 is a SNM, then S
�̂θ

needs to be neither reflexive nor symmet-
ric. As the diagrams below show, a middleman who can establish new relations might
not exist (no reflexivity on the left, no symmetry on the right):

a
�̂θ

⇒

a a b
�̂θ

⇒

a b

Just as there might be no middlemen for establishing new relations, there
might be no middlemen for preserving old ones; thus, the middleman similarity
update is not a monotone operation. To illustrate this, take a model with
S = {(a, b)}. The middleman similarity update yields S

�̂θ
= { } regardless of a

and b’s similarities: neither Saa nor Sbb holds, hence neither a nor b can play
the role of the middleman. Of course, one can always enforce monotonicity by
defining the new social relation in an ‘accumulative’ way (S

�̂θ
:= S∪· · · ), yet this

is not always appropriate: in real scenarios, social connections can be created,
but unfortunately (and in some cases, fortunately) they can also be lost. One
advantage of not enforcing monotonicity is that it is possible to identify those
situations that lead to it in a natural way. In our setting, a reflexive S guarantees
that old social contacts will be preserved (modulo the agents’ distance). In
other words, for the agent to preserve her social connections, she should first
consider herself ‘worthwhile’ as a friend.

The middleman similarity update operation preserves symmetry and more-
over, if the initial M is fully symmetric and the update adds an edge from
some a to some b, then it also adds its converse. Of course these preservation
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properties does not guarantee that S
�̂θ

will always be symmetric, as even when
c plays the role of the middleman ‘from left to right’, lack of symmetry in the
original M may make her unable to play the role ‘from right to left’.3

Dynamic Language L
�̂θ

. We extend the above language L with a modality
[�̂θ] for describing the effect of the middleman similarity update. Thus, the
resulting languageL

�̂θ
includes formulas of the form [�̂θ]ϕ (“after a middleman

similarity update, ϕ is the case”). Its semantics is as follows: let M = 〈A,S,V〉 be
a SNM, then

M  [�̂θ]ϕ iffdef M
�̂θ
 ϕ.

Since both A and P are finite, the axioms and rules in Table 2 (plus a proposi-
tional axiom system) characterize the validities ofL

�̂θ
in SNMs. The difference

w.r.t. Table 1 is the axiom characterizing the new social relation, asking now
for the required middleman. Axiom systems for the variations mentioned be-
fore (keeping identity pairs out, personal thresholds) can be obtained as in the
‘non-middleman’ similarity update case (Page 5).

` [�̂θ] pa ↔ pa

` [�̂θ] Sab ↔
(

Dist≤θab ∧
∨

c∈A(Sac ∧ Scb)
)

` [�̂θ]¬ϕ↔ ¬ [�̂θ]ϕ

` [�̂θ](ϕ ∧ ψ)↔ ([�̂θ]ϕ ∧ [�̂θ]ψ)

From ` ϕ infer ` [�̂θ]ϕ

From ` ψ1 ↔ ψ2 infer ` ϕ↔ ϕ [ψ2/ψ1]

Table 2: Axiom system for L
�̂θ

over social network models (a, b, c ∈ A).

3 Epistemic Social Networks

The described approach for creating social networks connects agents that are
similar enough. However, in real life, two ‘identical souls’ may never relate to
each other, as they may not know about their similarities. Thus, a more realistic
representation of social network creation should take into account not only the
agents’ similarities, but also the knowledge they have about them.

Definition 3.1 (Epistemic Social Network Model) An epistemic social network
model (ESNM) is a tuple M = 〈W,A,∼,S,V〉with a set W , ∅ of possible worlds, a
set of agents A, an epistemic equivalence relation ∼: A→ (W×W) for each a ∈ A,
and at each world the social relation S : W → ℘(A × A) and feature function
V : W → (A→ ℘(P)). J

An ESNM is a standard possible worlds model [18] in which each possible
world represents a SNM (Definition 2.1) and the epistemic relation is an equiv-
alence relation. Derived concepts, such as msmtchM(·, ·) and distM(·, ·), can be
defined as before for each possible world w ∈W.

3Note that several further constraints can be imposed, for instance one can require that any agent
c playing the middleman for a and b should be fully connected to the agents she will ‘introduce’
(Sac,Sca,Scb,Sbc).

7



Additional constrains can be imposed in the model. For instance, one can
ask for the agents to know themselves (in this setting with equivalence epistemic
relations, agent a knows herself at world w if and only if w ∼a u implies
Vw(a) ⊆ Vu(a)) or to know who are her contacts (a knows who are her contacts
at w if and only if w ∼a u implies Sw[a] ⊆ Su[a]). For the sake of generality, here
no such assumptions will be made.
Epistemic Language LK. We follow [6] in designing an epistemic language LK

with special atoms to describe the agents’ features and social relationship. The
formulas ϕ,ψ of LK are given by

ϕ,ψ ::= pa | Sab | ¬ϕ | ϕ ∧ ψ | Ka ϕ

with p ∈ P and a, b ∈ A. Formulas of the form Ka ϕ are read as “agent a knows
ϕ”. Given a ESNM model M = 〈W,A,∼,S,V〉, the semantic interpretation of
L

K-formulas is standard for Boolean operators and the epistemic modalities,
with atoms pa and Sab interpreted relative to the point of evaluation.

(M,w)  pa iffdef p ∈ Vw(a), (M,w)  Sab iffdef Swab.

The definition of (modal) validity () is as usual. We adopt here the well-known
multi-agent S5 axiom system, as no extra restrictions are imposed in the model.

3.1 Knowledge-based Social Network Creation

Definition 3.2 (Knowledge-based Similarity Update) Let M = 〈W,A,∼,S,V〉
be an ESNM; take θ ∈ N. The knowledge-based similarity update operation
generates the ESNM M�K

θ
= 〈W,A,∼,S�K

θ
,V〉, differing from M only in the social

relation at every w ∈W, which is given by

(S�K
θ
)w := {(a, b) ∈ A × A : ∀u ∼a w , distM

u (a, b) ≤ θ}

This update operation is based on the operation in Definition 2.3 but asks
for an additional epistemic requirement: in world w agent a will add b to her
social network if and only if in this world a knows that b is similar enough (i.e.,
b is similar enough in all a’s epistemic alternatives from w).

Note how, after this update, the social network at each possible world will
be reflexive, even in those cases in which the agent ‘does not know herself’.4

On the other hand, social relations do not need to be symmetric, as the agents’
knowledge might not have such property: at w agent a may know that she and
b are similar enough (so (S�K

θ
)wab will hold), but b may not know this (and thus

(S�K
θ
)wba will fail).

De dicto vs de re. The knowledge-based similarity update uses a de dicto
approach: after the operation, a includes b in her network when a knows that b
is close enough, even if she does not know exactly which are the features that
she shares with b. Indeed, consider the ESNM below on the left:

�K
1
⇒

p, q
a

p
b

p, q
a

q
b

a
p, q
a

p
b

p, q
a

q
b

a

4In any possible world, the distance between any agent and herself is 0.
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Even though a does not know which features b has, she knows the ‘distance’
between them is just 1. Thus, after a knowledge-based similarity update with
any θ ≥ 1, she will add b to her network (the ESNM on the right).

On the other hand, a de re approach would ask not for a to know that the
number of differences between her and b is ‘small enough’, but rather for her
to point out a ‘large enough’ set of features on which she and b coincide:

(S′�K
θ
)w := {(a, b) ∈ A × A : ∃ Q ⊆ P s.t.

(i) |Q| ≥ |P| − θ and (ii) ∀u ∼a w , Vu(a) ∩Q = Vu(b) ∩Q }

Thus, a will include b in her social network if and only if there is a set of features
she knows she and b share, and this set is large enough for their number of
differences to be smaller than θ.5 This variation also highlights an alternative
to the basic idea of this proposal: we have related agents when their differences
are small enough, but a (perhaps more ‘human’) alternative is to relate them
when their similarities are large enough.

Note also how the de dicto version asks for the agents to be ‘close enough’ in
all epistemic possibilities, regardless of which are the features that distinguish
them. This emphasizes that, for the agents, all features are equally important.
But one can imagine a more realistic scenario in which certain features are more
important than others: take an agent with features {p, q, r} choosing an agent
with {p} over an agent with {q, r} because, for her, p is more important than q
and r together. Such a setting would require a de re approach.
Dynamic Epistemic Language LK

�K
θ

. In order to express the way a knowledge-

based similarity update affects a social network, a dynamic modality [�K
θ ] is

added to LK to yield language LK
�K
θ

. This allows us to express that “after a

knowledge-based similarity update, ϕ is the case”, [�K
θ ]ϕ. For its semantic interpre-

tation, let M be an ESNM. Then,

(M,w)  [�K
θ ]ϕ iffdef (M�K

θ
,w)  ϕ.

The axiom system is presented in Table 3. Note first the axiom describing
the way the agents’ knowledge changes: each epistemic modality Ka simply
commutes with the dynamic modality, as the epistemic relation is not affected
by the update operation. More importantly, the crucial reduction axiom states
how, in order for a to ‘add’ b to her network, it is not enough for a and b
to be ‘similar enough’: a should also know this. The unfolding of Dist≤θab in
such an axiom makes explicit the de dicto approach: a only needs to know that
|msmtch(a, b)| is smaller than θ.

` [�K
θ ] Sab ↔ Ka

∨θ
t=0

∨
{Q⊆P : |Q|=t}

(∧
p∈Q(pa Y pb) ∧

∧
p∈P\Q(pa ↔ pb)

)
If the de re variation proposed above is chosen, the axiom becomes

` [�K
θ ] Sab ↔

∨
|P|
t=|P|−θ

∨
{Q⊆P : |Q|=t}Ka

∧
p∈Q(pa ↔ pb)

5Both P and θ are commonly known, so a knows Q is enough to make her differences with b
smaller than θ.
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` [�K
θ ] pa ↔ pa

` [�K
θ ] Sab ↔ Ka Dist≤θab

` [�K
θ ]¬ϕ↔ ¬ [�K

θ ]ϕ

` [�K
θ ](ϕ ∧ ψ)↔ ([�K

θ ]ϕ ∧ [�K
θ ]ψ)

` [�K
θ ] Ka ϕ↔ Ka [�K

θ ]ϕ

From ` ϕ infer ` [�K
θ ]ϕ

From ` ψ1 ↔ ψ2 infer ` ϕ↔ ϕ [ψ2/ψ1]

Table 3: Axiom system for LK
�K
θ

over social network models (a, b ∈ A).

Note the differences with the de dicto axiom. The fundamental one is the position
of the knowledge modality Ka, now under the scope of the disjuctions asking
for the existence of the ‘large enough’ set of features Q (“there is Q of size at least
|P| − θ such that agent a knows that . . . ”). The other difference is that a does not
need to know that Q is exactly what distinguishes her and b; it is enough for
her to know that features in Q are common for them. (Note, again how the fact
that P and θ are common knowledge implies that a knows Q is large enough.)

3.2 Middleman Knowledge-based Social Network Creation

In the epistemic setting one can ask for a middleman requirement. This again
leads to a de dicto vs de re choice: either a knows there is someone who can link
her with the ‘similar enough’ b (but she might not know who), or else there is
someone a knows can link her with b. The definition below follows the de re
alternative as, intuitively, a should know who this middleman is.

Definition 3.3 (Middleman Knowledge-based Similarity Update) Take M to
be an ESNM 〈W,A,∼,S,V〉; takeθ ∈N. The middleman knowledge-based similarity
update generates the ESNM M

�̂
K
θ

= 〈W,A,∼,S
�̂

K
θ
,V〉, which differs from M in its

social relation at every w ∈W. The new relation is given as follows:

(S
�̂

K
θ
)w := {(a, b) ∈ A × A : ∃ c ∈ A s.t. ∀u ∼a w ,

(i) distM
u (a, b) ≤ θ and (ii) Suac and Sucb }

Of course, this is not the only possibility. Besides the alternatives for the
social requirements of the middleman discussed above, another possibility
(suggested by a reviewer) is to shift the epistemic burden to the middleman: a
will add agent b to her social network if and only if they are ‘close enough’ and
the middleman knows this (syntactically,

∨
c∈A Kc(Dist≤θab )).

The new relation will be reflexive for an agent a in a world w when the
original relation for a was reflexive in all worlds accessible from w, but also when
somebody else plays the middleman role in all a’s epistemic possibilities from
w. Moreover, if the original relation is reflexive in all possible worlds, then the
operation preserves it (modulo the agents’ distance). Finally, the new relation-
ships may not be symmetric, as the agents’ knowledge could be asymmetric.

A weaker de dicto requirement on the middleman condition, gives us:

(S′
�̂

K
θ
)w := {(a, b) ∈ A × A : ∀ u ∼a w ,

(i) distM
u (a, b) ≤ θ and (ii) ∃ c ∈ A s.t. Suac and Sucb }
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` [�̂
K
θ ] pa ↔ pa

` [�̂
K
θ ] Sab ↔

∨
c∈A Ka(Dist≤θab ∧ Sac ∧ Scb)

` [�̂
K
θ ]¬ϕ↔ ¬ [�̂

K
θ ]ϕ

` [�̂
K
θ ](ϕ ∧ ψ)↔ ([�̂

K
θ ]ϕ ∧ [�̂

K
θ ]ψ)

` [�̂
K
θ ] Ka ϕ↔ Ka [�̂

K
θ ]ϕ

From ` ϕ infer ` [�̂θ]ϕ

From ` ψ1 ↔ ψ2 infer ` ϕ↔ ϕ[ψ2/ψ1]

Table 4: Axiom system for LK
�̂

K
θ

over social network models (a, b, c ∈ A).

In this variation, it is enough for a to know there is someone linking her with b,
even if she does not know exactly who this middleman is.

A dynamic epistemic language. The language LK
�̂

K
θ

adds a modality [�̂
K
θ ] to

L
K in order to talk about what happens after a middleman knowledge-based

similarity update. For its semantic interpretation, let M be an ESNM; then,

(M,w)  [�̂
K
θ ]ϕ iffdef (M

�̂
K
θ
,w)  ϕ.

The axiom characterizing the way the social network changes (see Table 4)
reflects both the de dicto approach for the knowledge about the distance and the
de re approach for the knowledge about the middle man. For the alternative de
dicto-de dicto proposed above (i.e., only knowledge of the existence for both the
distance and the middle man), this axiom becomes

` [�̂
K
θ ] Sab ↔ Ka

(
Dist≤θab ∧

∨
c∈A(Sac ∧ Scb)

)

4 Conclusions

The present proposal explores a threshold approach to social network creation
based on the agents’ similarities, the key idea being that an agent will add
someone to her social network if and only if the distance between them is
smaller or equal than the given threshold. In this paper we have studied this
idea as well as the middleman and knowledge-based variations; in each case, the
properties of the resulting networks have been explored, and a sound a com-
plete axiom system for the corresponding modality has been presented. The
exploration can go deeper: for example, one can look for conditions guaran-
teeing that the resulting social network will have certain properties (reflexivity,
seriality, symmetry, transitivity, Euclideanity). In the middleman case, one can
also try to identify those situations in which the update operation will become
idempotent, and thus further applications of it will not make a difference.

While this work is an initial exploration of the logical structure behind
social group creation, our setting suggests several interesting alternatives. For
example, as shown by the de dicto understanding of the knowledge requirement
about the agent’s distances, all features are equally important for all agents:
what matters is the number of differences, and not what these differences are.
In an alternative setting, we can treat certain features as more important than
others, and we can let this ‘priority ordering’ among features differ from agent
to agent. In a similar line, one can imagine situations in which not all features
are relevant. Indeed, in [23] the authors use a game theoretic setting to define
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the agreement and disagreement of agents on a specific feature (or issue), which
yields a way for them to update the social relation of agents with respect to
one specific feature at a time. A similar idea can be worked out in our setting,
which would require that only a subset of all features is relevant for each update
operation. Such a structure can be useful when we want agents to control which
one of their features becomes visible to other agents. A related alternative is to
use an issue-dependent update to define different types of networks or social
groups related to agent’s different issues; after all, the network of football fans
will be rather different from Lady Gaga’s fan club.

There are also alternatives to the threshold similarity approach of this pro-
posal. An interesting idea, arising from the cognitive science literature, is to
take into account the size of the agent’s ‘social space’. In real life, agents may
be willing to keep expanding their social network (even including people who
are very different from them) as long as there is still enough space in their social
environment. This is famously known as the Dunbar’s number: a suggested
cognitive limit to the number of people with whom one can maintain stable
social relationships (see, e.g., [14]). Such a ‘group-size’ similarity approach
produces different social relations, one example being the lack of symmetry: in
situations in which most agents are ‘closer’ (i.e., more similar) to agent b than
to agent a, while a may have ‘enough space’ to include b in her social group,
b may be ‘out of space’ before she even considers a. This group-size approach
can be used in combination not only with the presented epistemic models, but
also with the above ideas requiring ‘some features to be more important than
others’ or ‘not all features to be visible’.

Both the threshold and the mentioned group-size approaches relate agents
when they are similar enough, with this similarity based on a distance mea-
sure taken to be the standard Hamming distance between two sets of atomic
formulae. It would be interesting to compare our obtained results to settings in
which other notions of distances between sets are used (such as e.g. the Jaccard
distance). An even bigger change is to consider the dual situation in which
agents connect when they complement each other. In order to deal formally with
this complementary idea, a more fine-grained setting is needed that takes into
account not only the agents’ features/behaviors, as in this paper, but also their
doxastic state and their preferences (e.g., [3; 17]).

In our epistemic setting, an obvious next step is to study also ‘knowledge
changing operations’ within the presented models (e.g., public and private
announcements), focussing not only on the changes of the agents’ knowledge
about each other’s features and social connections, but also on the interplay with
knowledge-based social network changing operations. There are interesting
situations in which agents can learn new facts about each other’s features and
about each other’s social relations from both the knowledge they have about
the group-formation rules and the way a network has changed.

Finally, an important topic is the interplay between the feature-based social-
network-changing operations of this proposal, and the social-network-based
feature-changing operations mentioned in the introduction. Both ideas deserve
to be studied in tandem: the dynamics of one can affect the dynamics of the
other, and our logical setting might be able to capture interesting properties
about the interplay of these dynamic mechanisms.6

6In fact, one can see our proposal in this paper as a necessary first step towards that goal, as the
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