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Abstract. This paper is part of an on-going programme in which we
provide a logical study of social network formations. In the proposed
setting, agent a will consider agent b as part of her network if the number
of features (properties) on which they differ is small enough, given the
constraints on the size of agent a’s ‘social space’. We import this idea
about a limit on one’s social space from the cognitive science literature.
In this context we study the creation of new networks and use the tools
of Dynamic Epistemic Logic to model the updates of the networks. By
providing a set of reduction axioms we are able to provide sound and
complete axiomatizations for the logics studied in this paper.

1 Introduction

While the study of social interactions has received a lot of attention in logic and
AI, the existence of a specific social group or network on which these studies are
based is typically taken for granted. So what is left mostly unexplored is the way
a social group is formed or the way in which a social network is created. This is
exactly the topic we address in this paper. As such, this proposal complements
our previous work in [1] which provides a threshold based approach to social
network formation. In the threshold setting, an agent a considers agent b as part
of her social network if and only if the number of features in which they differ is
smaller or equal than a given threshold θ. This paper follows a different approach
by using an idea that arises from the cognitive science literature: focus not on a
similarity threshold, but rather on the size of the agent’s ‘social space’. In real
life, agents may be willing to keep expanding their social network with people
who are decreasingly less similar from them, as long as there is still ‘enough
space’ in their social environment.1 This is famously known as the Dunbar’s
number : a suggested cognitive limit to the number of people with whom one can
maintain stable social relationships (see, e.g., [2]).

In the next section we first introduce the social network models as a context
in which we can specify a distance between agents in a network. This distance
is then used to create a layered structure of an agent’s possible social contacts,

1 Think, for example, how we establish conversations with relatively ‘distant’ acquain-
tances mostly only when our close friends are not around.
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which is an essential ingredient in the mechanism that allows agents to form a
new social network or to extend a given one when they are asked to take into
account the bound on their ‘social space’. We study a logical system that can
express such network creations, giving a sound and complete axiomatisation for
it. Finally we focus on the representation of more refined scenarios in which
not all features play the same important role in the network creation/formation
process. We conclude with a series of ideas for possible generalizations and/or
alternative settings that can be explored in future work.

2 Modelling Social Networks

Similar to [1], our starting point is the basic setting of [3] in which we work with a
relational ‘Kripke’ model in which the domain is interpreted as the set of agents,
the accessibility relation represents a social connection from one agent to another,
and the atomic valuation describes the features (behavior/opinions) that each
agent has. Let A denote a countable set of agents, and P (with A ∩ P = ∅) a
countable set of features that agents might or might not have:

Definition 2.1 (Social Network Model). A social network model (SNM) is
a tuple M = 〈A, S, V 〉 where S ⊆ A×A is the social relation (Sab indicates that
agent a is socially connected to agent b) and V : A→ ℘(P) is a feature function
(p ∈ V (a) indicates that agent a has feature p).

Note how the social relation S does not need to satisfy any specific property
(in particular, it is not required to be irreflexive, and neither symmetric), and
thus it differs from the friendship relation of other approaches (e.g., [4,5,3,6]).
Given a social network model, we define a notion of ‘distance’ between agents
based on the number of features in which they differ.

Definition 2.2 (Distance). Let M = 〈A, S, V 〉 be a SNM. Let msmtchM (a, b)
be the set of features distinguishing agents a, b ∈ A in M :

msmtchM (a, b) := P \ {p ∈ P : p ∈ V (a) iff p ∈ V (b)}

Then, the distance between a and b in M is given by

distM (a, b) := |msmtchM (a, b)|

As discussed in [1], dist is a mathematical distance: for any agents a, b ∈ A
and any SNM, (i) the distance from a to b is non-negative (non-negativity:
distM (a, b) ≥ 0), (ii) the distance from a to b is equal to that from b to a
(symmetry: distM (a, b) = distM (b, a)), and (iii) the distance from an agent to
herself is 0 (reflexivity: distM (a, a) = 0). Moreover, dist is a semi-metric, as
it also satisfies subadditivity: ‘going directly’ from a to c is ‘faster’ than ‘going’
via another agent (distM (a, c) ≤ distM (a, b) +distM (b, c)). Still, dist is not a
metric, as it does not satisfy identity of indiscernibles: distM (a, b) = 0 does not
imply a = b, as two different agents may have exactly the same features.2

2 See [7, Chapter 1] for more details on mathematical distances.



Static Language L. Following [3], social network models are described by a
propositional language L, with special atoms describing the agents’ features and
their social relationship:

Definition 2.3 (Language L). Formulas ϕ,ψ of the language L are given by

ϕ,ψ ::= pa | Sab | ¬ϕ | ϕ ∧ ψ
with p ∈ P and a, b ∈ A. We read pa as “agent a has feature p” and Sab as “agent
a is socially connected to b”. Boolean constants (>,⊥) and other Boolean opera-
tors (∨,→,↔,Y, the latter representing the exclusive disjunction) are defined as
usual. Given a SNM M = 〈A, S, V 〉, the semantic interpretation of L-formulas
in M is given by:

M  pa iffdef p ∈ V (a),

M  Sab iffdef Sab,

M  ¬ϕ iffdef M 6 ϕ,

M  ϕ ∧ ψ iffdef M  ϕ and M  ψ.

A formula ϕ ∈ L is valid (notation:  ϕ) when M  ϕ holds for all models M .

Since there are no restrictions on the social relation nor on the feature func-
tion, any axiom system of classical propositional logic is fit to characterize syn-
tactically the validities of L over the class of social network models.

3 Group-size-based social network creation

As mentioned before, [1] approaches social network creation by considering a
similarity threshold θ, then defining each agent’s new social space as all those
agents that differ from her in at most θ ∈ N features. This proposal follows a
different strategy. Borrowing an idea from cognitive science [2], it considers a
maximum group-size λ ∈ N, then defining each agent’s new social space as the
λ agents that are closer to her, according to the above defined distance.

This section implements this idea of agents having a size-bounded social
space; the following tools are used to make this idea precise.

Definition 3.1. Given a social network model M = 〈A, S, V 〉 and an agent
a ∈ A, the quantitative notion of distance dist induces a qualitative (total,
reflexive, transitive and well-founded) relation 4Ma ⊆ A× A of distance from a.
Such relation is given by

4Ma := {(b1, b2) ∈ A× A : distM (a, b1) ≤ distM (a, b2)},

and thus b1 4Ma b2 indicates that, in model M , agent b1 is at least as close
to agent a as agent b2. By defining the notion of 4Ma -minimum in the stan-
dard way (for B ⊆ A, take mina(B) := {b ∈ B : b 4Ma b′ for all b′ ∈ B}),
this relation induces a sequence of layers (i.e., an ordered list of subsets) on
A (Aa(−1),Aa(0), . . . ,Aa(n), . . ., for n ≥ 0), with each set containing agents
equally distant from a:

Aa(−1) := ∅, Aa(0) := mina(A), Aa(n+ 1) := mina(A \
n⋃

k=−1

Aa(k)).



Different agents might be ‘equally distant’ from a, and thus 4Ma is not an-
tisymmetric: layers might have more than one element.3 Moreover: while an
initial empty layer Aa(−1) has been defined (its usefulness will be clear below),
the layer Aa(0) always contains those agents that are feature-wise identical to
a (including a herself). Note also how the layers are collectively exhaustive and
pairwise disjoint: every agent appears in exactly one of them. Finally, when A
is finite, at some point a ‘first’ empty layer Aa(k) will appear (for some k > 0),
and from that moment on all layers will be empty too.

The layered structure of an agent’s social contacts will be a helpful tool to
model how agents can form a new social network or even extend a given one by
performing updates on their social relations. Such agents are asked to establish
new connections to agents that are close enough to them given the bound on
their ‘social space’. To model this we introduce the idea of a bounded similarity
update operation on models, using the tools of Dynamic Epistemic Logic on how
one can model such transformations on models [8,9,10].

Definition 3.2 (Bounded similarity update). Let M = 〈A, R, V 〉 be a SNM;
take λ ∈ N. Denote by `a(λ) the ‘last’ layer of contacts an agent a ∈ A can add
to her network without going above the maximum group size λ, i.e.,

`a(λ) := max{n ∈ N ∪ {−1} : |
n⋃

k=−1

Aa(k)| ≤ λ}

The bounded similarity update on M produces the SNM Monλ = 〈A, Sonλ , V 〉,
with its social relation given by

Sonλ := {(a, b) ∈ A× A : b ∈
`a(λ)⋃
k=−1

Aa(k)}

Since layers might have more than one element, each agent could reach a point
where she should decide whether to add the next layer of friends and go above the
limit λ, or stop and stay strictly below it. The definition provided above chooses
the second possibility: agents will always stay below the limit, even if that means
leaving some ‘memory slots’ empty. The extra empty layer Aa(−1) makes this
definition work in cases in which the first layer Aa(0) contains already too many

agents. In such situations, `(λ) = −1 and hence
⋃`(λ)
k=−1 Aa(k) = Aa(−1) = ∅;

thus, after the bounded similarity update operation, the agent will be friendless.

Properties and variations. The social network created by the threshold ap-
proach of [1] is reflexive (hence serial) and symmetric, though it might not be
neither transitive nor Euclidean. In contrast, a social network created by the
group-size bounded similarity update does not guarantee any of such properties.
First, for reflexivity,

3 In such case, and if no additional criteria is used to distinguish agents in the same
layer, all of them should ‘stand together’: the decision of whether they will become
part of a’s social network should be of a ‘either all or else none’ nature.



Proposition 3.1. Let M = 〈A, S, V 〉 be a SNM and a ∈ A be an agent; take
Monλ = 〈A, Sonλ , V 〉 (Definition 3.2). Then, a considers herself as part of her new
social network (Sonλaa) if and only if the amount of people that are feature-wise
identical to her is at most the limit λ (|Aa(0)| ≤ λ).

Note how |Aa(0)| > λ implies not only that Sonλaa will fail, but also that
Sonλ [a] = ∅ (so a will be friendless after the operation).

For symmetry, transitivity and Euclideanity,

Fact 3.1. Let M = 〈A, S, V 〉 be a SNM; take Monλ = 〈A, Sonλ , V 〉. Then, Sonλ
might not be neither symmetric, nor transitive nor Euclidean.

Proof. Here are counterexamples to each one of these properties.

• Symmetry fails for a and b if, despite a having ‘enough space’ for b, there is
some c that is both closer to b than a (distM (b, c) ≤ distM (b, a), so b would
pick c over a), and farther away from a than b (distM (a, b) ≤ distM (a, c),
so a would chose b over c). By taking λ = 2, the SNM below on the left shows
such situation, with the SNM on the right being the result of the update.4
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More generally, symmetry fails if a high occurrence of similar agents produces
a fully connected cluster, leaving dissimilar ones with asymmetric edges.

• The failure of transitivity also relies on b being close enough to a (so Sonλab
holds) and c being both close enough to b (so Sonλbc holds) and further away
from a ‘in b’s direction’ (so Sonλac fails). The models above showing the
failure of symmetry also show how transitivity might fail.

• Finally, the relation is not Euclidean if, even though b1 and b2 are both close
enough to a for the latter to call them her friends, they are different enough
from each other to allow somebody else to take their supposed place by being
more similar to each one of them (while also being very different from a).
Such slightly convoluted situations are described better graphically, and the
SNM below on the left is an example (take λ = 3).
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4 Numbers over edges indicate distance. Edges in black are actual pairs in the social
network relation, and dotted grey edges are shown only for distance information.



Characterising those situations in which the group-size approach produces
symmetric, transitive or Euclidean social networks is not straightforward. Obvi-
ously, a λ larger or equal than |A| will produce fully connected (hence symmetric,
transitive and Euclidean) relations; still, these properties might be achieved un-
der other circumstances. For example, symmetry can be achieved also when
the agents are ‘similarly dissimilar’ (i.e., their differences are ‘uniformly dis-
tributed’), as the update might yield ring-like structures with symmetric edges
(see the above ‘Euclideanity’ counterexample).

These results might suggest that the networks created by Definition 3.2 are
relatively ‘arbitrary’: compared with the threshold approach of [1], which guar-
antees reflexivity and symmetry, the group-size approach might seem to produce
random social networks. This is actually not the case. In the threshold approach,
what matters for deciding whether b will become part of a’s social network (be-
sides the threshold itself) is only the distance between a and b. However, in the
group-size approach, what matters for deciding whether b will become part of
a’s social network (besides the group-size itself) is the distance between a and
all agents. Indeed, the distance between a and b is, by itself, not enough: it is
possible for a and b to be extremely similar (say, distM (a, b) = 1), and still b
will not be in a’s social network if the number of agents feature-wise identical to
a is high. Even more: a and b might be feature-wise identical, and yet they will
not be socially connected if the number of agents feature-wise identical to them
is larger than the group-size.

The group-size approach is context-sensitive: the new social networks are
built not in terms of how fit is each candidate individually, but rather on how
fit is each candidate compared with the rest. In other words, it is not about
similarity, but rather about relative similarity. A detailed study of the group-
conditions that guarantee the social network will have specific properties is left
for future work.

Still, the operation might be defined in slightly alternative ways. As men-
tioned before, in some cases the agent will have empty ‘memory slots’ because
the next layer would have put her social network above the size limit. One could
make it possible for an agent to take on exactly λ contacts by asking for addi-
tional criteria to distinguish agents in the same layer (e.g., in an appropriate set-
ting, considering not only the agents’ features but also their preferences/beliefs).
Still, one can also assume that λ is a loose limit, allowing the agent to go above
it when she cannot tell the members of a group apart. For this, a small change
in the definition of the upper limit `a (Definition 3.2) is enough:

`a(λ) := max{n+ 1 ∈ N : |
n⋃

k=−1

Aa(k)| ≤ λ}.

Readers interested in irreflexive friendship relations (as those in [4,5,3,6]) can
achieve this property by defining agent a’s sequence of layers not in terms of the
full set of agents A, but rather in terms of A−a := A \ {a}.



Finally, a further variation is to allow for each agent to have a personal group-
size [11,12]. This can be represented by a function Λ : A → N indicating how
many friends each agent can handle, which can be then used to define the new

updated relation as Sonλ := {(a, b) ∈ A × A : b ∈
⋃`a(Λ(a))
k=−1 Aa(k)}, the only

difference being the use of Λ(a) instead of λ when defining the agents who will
join a’s social group.

Dynamic Language Lonλ . To express how the bounded update changes a social
network, we define the language Lonλ .

Definition 3.3 (Language Lonλ). The language Lonλ extends L with a modal-
ity [onλ] to build formulas of the form [onλ]ϕ ( “after a bounded similarity update,
ϕ is the case”). The semantic interpretation of this modality refers to the bounded
similarity updated model of Definition 3.2 as follows. Let M be a SNM; then,

M  [onλ]ϕ iffdef Monλ  ϕ.

Note that no precondition is required for a bounded similarity update. Be-
cause of this and the functionality of the model operation, the dual modality
〈onλ〉ϕ := ¬ [onλ]¬ϕ is such that  [onλ]ϕ↔ 〈onλ〉ϕ.

The axiom system characterising validities of Lonλ in SNM is built via the
DEL technique of recursion axioms. As such, it makes crucial use of the fact
that the basic ‘static’ language L is already expressive enough to characterise
the changes that the bounded similarity update operation brings about. The
crucial axiom, the one characterising the way in which the social network relation
changes, will be built up step by step.

First, note that, when P is finite, the following L-formula is true in a model
M if and only if agents a and b differ in exactly t ∈ N features:

Distta·b :=
∨

{P′⊆P:|P′|=t}

( ∧
p∈P′

(pa Y pb) ∧
∧

p∈P\P′

(pa ↔ pb)
)

5

The second step consists in defining the L-formula Closera·b1·b2 , which is true
in a model M if and only if agent b2 is at most as close to agent a as agent b1
(i.e., distM (a, b1) ≤ distM (a, b2)):

Closera·b1·b2 :=

|P|∨
j1=0

|P|∨
j2=j1

(
Distj1a·b1 ∧Distj2a·b2

)
6

5 More precisely, the formula states that there is at least one set of features P′, of size
t, such that a and b differ in all features in P′ and coincide in all features in P \ P′.
There can be a most one such set; therefore the formula is true exactly when a and
b differ in exactly t features.

6 More precisely, the formula states that there are j1, j2 ∈ {0, . . . , |P|}, with j1 ≤ j2,
such that j1 is the distance from a to b1, and j2 is the distance from a to b2.



By using the Closera·b1·b2 formula, and in those cases in which A is finite, it
is possible to provide further L-formulas characterising the agents in each one of
the layers induced by the qualitative ‘distance from a’ relation 4Ma : for n ≥ 0,

InLaya,−1(b) := ⊥, InLaya,0(b) :=
∧
p∈P

(pa ↔ pb),

InLaya,n+1(b) :=

n∧
k=0

¬ InLaya,k(b) ∧
∧
c∈A

(
n∧
k=0

¬ InLaya,k(c) → Closera·b·c

)
.

It is not hard to see that each formula InLaya,k(b) indeed characterises each
layer Aa(k), i.e., for every SNM M , a ∈ A and k ∈ N ∪ {−1},

Aa(k) = {b ∈ A : M  InLaya,k(b)}

The cases for k = −1 and k = 0 are straightforward: Aa(−1) is always empty, and
Aa(0) always contains those agents that are feature-wise identical to agent a. The
remaining (inductive) case is also straightforward, as a given agent b is in Aa(n+
1) (formula: InLaya,n+1(b)) if and only if it is not in any ‘lower’ layer (formula:∧n
k=0 ¬ InLaya,k(b)) and every agent that is not in a ‘lower’ layer is at most as

close to a than b herself (formula:
∧
c∈A

(∧n
k=0 ¬ InLaya,k(c) → Closera·b·c

)
).

Finally, given Definition 3.2, it follows that the following Lonλ -validity char-
acterizes the way the social relation changes:

 [onλ] Sab ↔
`a(λ)∨
k=0

InLaya,k(b)

In words, after a bounded similarity update agent a will have agent b in her
social network, [onλ] Sab, if and only if, before the update, agent b was in some

of the layers whose agents will be part of a’s social network,
∨`a(λ)
k=0 InLaya,k(b).

As only the social relation changes in the new model, we have the following.

Theorem 3.1. The reduction axioms and the rule on Table 1 provide, together
with a propositional axiom system schema, a sound and strongly complete axiom
system characterising the validities of the dynamic language Lonλ (for a finite
set of features and a finite set of agents).

If the relation Sonλ is forced to be irreflexive following the suggestion above,
it is enough to restrict the current axiom characterizing the new social relation
to cases in which a and b are different agents, and then add an additional axiom
expressing that Saa is never the case after the update operation.

` [onλ] Sab ↔
∨`a(λ)
k=0 InLaya,k(b) for a 6= b, ` [onλ] Saa ↔ ⊥

For the variation in which the new social relation relies on personal group-
size restrictions, the only needed change is the upper limit of the social network
axiom: instead of the ‘general’ `a(λ), the ‘personal’ `a(Λ(a)) should be used.



Table 1. Axiom system for Lonλ over social network models.

` [onλ] pa ↔ pa for a ∈ A

` [onλ] Sab ↔
∨`a(λ)
k=0 InLaya,k(b) for a, b ∈ A

` [onλ]¬ϕ↔ ¬ [onλ]ϕ

` [onλ](ϕ ∧ ψ)↔ ([onλ]ϕ ∧ [onλ]ψ)

From ` ϕ infer ` [onλ]ϕ

From ` ψ1 ↔ ψ2 infer ` ϕ↔ ϕ [ψ2/ψ1]
(with ϕ [ψ2/ψ1] any formula obtained
by replacing one or more occurrences
of ψ1 in ϕ with ψ2).

4 A restriction to relevant features

Any social-network-creation operation, such as the threshold update of [1] or the
bounded update of Definition 3.2, can be seen as a ‘public conversation’ where
all agents ‘discuss’ their features. Then, as the ‘conversation’ continues, agents
will form subgroups of people sharing prior common interests.

When looking at social network creation from this perspective, it becomes
clear that not all features can be ‘discussed’ at once: just some of them will be
relevant at each stage of the discussion. This is not a novel idea; in [13], the
authors use a game theoretic setting to define the agreement and disagreement
of agents on a specific feature (or issue), which yields a way for them to update
the social relation of agents with respect to one specific feature at a time.

This section explores this idea within the bounded update operation of the
previous section: only a subset of all features will be relevant for each update.
The resulting setting will allow us to describe more realistic scenarios, such as
the step-by-step interaction in real dialogues (when personal features are slowly
revealed as the conversation goes on), or cases in which agents control when
one of their features becomes visible to other agents (e.g. when agents choose to
expose some ‘private’ information only in specific circumstances).

The crucial step in this generalisation is the definition of a notion of distance
that is relative only to a subset of features Q ⊆ P.

Definition 4.1 (Q-Distance). Let M = 〈A, S, V 〉 be a SNM, and let Q ⊆ P be
a set of features. The Q-distance between a and b in M (that is, the distance
between a and b in M relative to features in Q) is given by

distQ
M (a, b) := |msmtchM (a, b) ∩ Q|

Thus, distQ
M (a, b) returns the number of atoms in Q on which a and b differ.

Then, while some agent b1 might be strictly closer to agent a than another agent
b2 with respect to all features, agent b2 might be strictly closer to a than b1 with
respect to some strict subset of them.7

7 For an example, take a model with V (a) = {p, q, r}, V (b1) = {q, r} and

V (b2) = {p}. Then, dist
{p,q,r}
M (a, b1) = 1 < 2 = dist

{p,q,r}
M (a, b2), but neverthe-

less dist
{p}
M (a, b2) = 0 < 1 = dist

{p}
M (a, b1).



With this notion of Q-distance (still a semi-metric, as it satisfies non-nega-
tivity, symmetry, reflexivity and subadditivity, but not a metric, as it fails to
satisfy the identity of indiscernibles), one can define ‘relative to Q’ variants of
the qualitative ‘distance from a’ relation and the sequence of layers it induces.

Definition 4.2. Given a social network model M = 〈A, S, V 〉, an agent a ∈ A
and a subset of features Q ⊆ P, the quantitative notion of Q-distance distQ in-
duces a qualitative (total, reflexive, transitive and well-founded) relation 4Q,M

a ⊆
A× A of Q-distance from a. Such a relation is given by

4Q,M
a := {(b1, b2) ∈ A× A : distQ

M (a, b1) ≤ distQ
M (a, b2)}

and thus b1 4Q,M
a b2 indicates that, with respect to the features in Q, agent b1

is at least as close to agent a as agent b2 in model M . By defining the notion
of 4Q,M

a -minimum in the standard way (for B ⊆ A, take minQ
a (B) := {b ∈ B :

b 4Q,M
a b′ for all b′ ∈ B}), this relation induces the following sequence of layers

on A, each one containing agents equally distant from a:

AQ
−1(a) := ∅, AQ

0 (a) := minQ
a (A), AQ

n+1(a) := minQ
a (A \

n⋃
k=−1

AQ
k (a)).

Similarly we now restrict the definition of the bounded similarity update to
a version that is set to be relative to a given subset of features Q.

Definition 4.3 (Bounded Q-similarity update). Let M = 〈A, R, V 〉 be a
SNM and Q ⊆ P a subset of features; take λ ∈ N. Denote by `Qa (λ) the ‘last’
layer of contacts an agent a ∈ A can add to her network without going above the
maximum group size λ, i.e.,

`Qa (λ) := max{n ∈ N ∪ {−1} : |
n⋃

k=−1

AQ
k (a)| ≤ λ}

The bounded Q-similarity update on M produces the SNM MonQ
λ

= 〈A, SonQ
λ
, V 〉,

with its social relation given by

SonQ
λ

:= {(a, b) ∈ A× A : b ∈
`Qa(λ)⋃
k=−1

AQ
k (a)}

Example 4.1. Consider the SNM models of the counterexample for Euclideanity
(Fact 3.1 on page 5), drawn again below.
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The SNM above on the left shows the resulting social network when all fea-
tures {p, q, r, s} are ‘put on the table’. But suppose that this is not the case; then,
the operation produces different social networks. For example, if the agents only
‘talk’ about features in {p, q}, then the distances are as shown in the model be-
low on the left (underlined numbers emphasising distances that differ from the
original ‘fully open’ situation):
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The resulting SNM is shown above on the right. As expected, the social network
relation is different. Note, in particular, how while the relation is still reflexive,
it is not symmetric anymore; however, it is now transitive. Also interesting is
the fact that, although c1 is considered ‘a friend’ by everybody, she is the only
member of her own social network: all other agents are at a distance of 1, and
thus adding all of them would have taken her above the limit λ = 3. In fact,
by restricting the conversation to the issues in {p, q}, the resulting network can
be seen as three fully connected clusters, {a, b1}, {b2, c2} and {c1}, with the
members of the firsts pointing asymmetrically to the lone member of the last.

Dynamic Language LonQ
λ
. The language LonQ

λ
is similar to Lonλ ; the only dif-

ference lies in the semantic interpretation of its ‘dynamic’ operator, onQ
λ .

Definition 4.4 (Language Lonλ). The language LonQ
λ

extends L with a modal-

ity [onQ
λ ] to build formulas of the form [onQ

λ ]ϕ ( “after a bounded Q-similarity
update, ϕ is the case”). The semantic interpretation of this modality refers to
the relativised bounded updated model of Definition 4.3 as follows. Let M be a
SNM; then,

M  [onQ
λ ]ϕ iffdef MonQ

λ
 ϕ.

With respect to an axiom system, the system presented in Table 1 can be
used almost verbatim. The only change refers to the axiom characterising the
new social network relation, which should now be relativised to the subset of
features Q; for this, it is enough to replace P with Q in the definitions for formulas
Distta·b and Closera·b1·b2 (page 7), thus obtaining formulas DistQ,ta·b , CloserQa·b1·b2
and InLayQ

a,k(b).



5 Conclusions and future work

Following the cognitive science literature (in particular, [2]), we have examined
social networks (Section 2) by studying a group-size approach to social network
creation based on the initial idea (see Section 3) in which “agent a will consider
agent b to be part of her social network if and only if b is within the λ closest
agents to a”. This proposal can be seen as an alternative to the approach of
[1], which uses a threshold to establish how similar an agent should be to be
incorporated to someone’s social environment (i.e. “agent a will consider agent
b to be part of her social network if and only if b’s distance from a is at most
θ”). Moreover, the relativised version studied in Section 4 allows for the repre-
sentation of more refined scenarios where not all features play a role during the
agents’ interaction.

The work presented here and in [1] form the initial steps in the study of
the logical structure behind social network creation, and they already suggest
interesting alternatives. While both the threshold and the group-size approaches
relate agents when they are similar enough in their features, behavior, etc, one
can think of an alternative scenario in which one considers the dual situation so
that agents connect when they complement each other. In order to deal formally
with this complementary idea, a more fine-grained setting is needed that takes
into account not only the agents’ features/behaviors, as in this paper, but also
their doxastic state and their preferences (e.g., [14,15]).

Another straightforward generalization would be to consider not a single
social network, but rather a collection of them. A slightly more realistic approach
in this direction is to understand each feature not as a simple choice between
“yes“ and “no”, but rather as a choice among a finite range of values. Then the
model can support a social network for each feature p ∈ P, and agents can be
grouped according to the value they assign to each such p. After all, someone who
chooses football as her favourite sport and Lady Gaga as her favourite musician
is bound to have different social environments in each one of these contexts.

A further route will lead us into a combined social network and epistemic
study. This is another natural next step, as what matters most when establishing
friendship is maybe not the agents’ features and differences, but rather what
one knows about them. Our work in [1] provides an initial exploration in this
direction, using the threshold update approach.

In a related track, one can explore cases in which certain features are taken
to be more important than others in such a way that this ‘priority ordering’
among features differs from agent to agent. This allows for the representation of
interesting situations: the number of differences between agents a and b1 might be
very large, and yet they may agree on the feature a cares about the most. Then,
a might consider that b1 is ‘closer to her’ than some b2 with whom she shares all
but this most important feature. The combination of this (the explored setting
in which the update is relative to only a subset of features) and an epistemic
setting would allow us to describe situations where strategic behaviour plays an
important role. For example, if agent a knows that she and agent b differ in some
feature p ∈ P, and she also knows that p is the most important feature for b, then



she (a) might want to keep this topic out of the conversation, at least until it
has been commonly established (i.e., it is common knowledge between a and b)
that they are similar with respect to several other features. The setting becomes
even more interesting when the new social network is defined not only in terms
of the agents’ similarities, but also in terms of existing social connections (cf. the
middleman cases in [1]). In such cases, the features discussed at the beginning
will define the social connections that will be available in further stages.

Finally, we observe the importance of the interplay between the social net-
work changing operations of this proposal, and the operations that change the
features (or behaviour/beliefs) in [3]. Both ideas deserve to be studied in tan-
dem, as indeed the dynamics studied in one can affect the dynamics studied in
the other.
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