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Abstract

This paper combines two studies: a topological semantics for epistemic
notions and abstract argumentation theory. In our combined setting, we
use a topological semantics to represent the structure of an agent’s collection
of evidence, and we use argumentation theory to single out the relevant
sets of evidence through which a notion of beliefs grounded on arguments is
defined. We discuss the formal properties of this newly defined notion,
providing also a formal language with a matching modality together with
a sound and complete axiom system for it. Despite the fact that our agent
can combine her evidence in a ‘rational’ way (captured via the topological
structure), argument-based beliefs are not closed under conjunction. This
illustrates the difference between an agent’s reasoning abilities (i.e. the way
she is able to combine her available evidence) and the closure properties of
her beliefs. We use this point to argue for why the failure of closure under
conjunction of belief should not bear the burden of the failure of rationality.

1 Introduction

The concept of belief has been extensively studied in philosophy, logic and com-
puter science. The representations range from purely qualitative structures in-
cluding the relational models with serial, transitive and Euclidean relations (the
KD45 representation in doxastic logic; Hintikka 1962, Meyer and van Der Hoek
1995), plausibility models (Baltag and Smets 2008a, Board 2004) and topolog-
ical models (Baltag et al. 2013, 2015, 2016a) to quantitative structures includ-
ing ranking-based plausibility representations (Spohn 1988), Bayesian models
using subjective probability functions and conditional probabilistic spaces de-
signed to represent conditional belief (Baltag and Smets 2008b).

Despite the success of the early qualitative and quantitative approaches,
most of them have one important disadvantage: they represent only what the
agent believes, without dealing with the reasons, justifications or evidence on
which such beliefs are grounded.1 To remedy this shortcoming, the last decade
witnessed a number of different frameworks that can portray the evidence or

∗TARK_12-pp.tex. Published version in J. Lang, Ed, TARK 2017.
1An important exception are the so called truth maintenance systems (Doyle 1979, de Kleer 1986)

which, inspired by the typical forms of arguments in systems for inference in natural deduction,
keep track of syntactic justifications.
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justifications on which different epistemic attitudes are based. For instance, the
work in Baltag et al. (2014, 2012) combines dynamic epistemic logic with justifi-
cation logic in the tradition of Artemov (2008) and Artemov and Nogina (2005),
where justifications are syntactic terms. In van Benthem and Pacuit (2011)
and van Benthem et al. (2014), a semantic approach is adopted, representing
evidence as a set of possible worlds so beliefs are defined by the maximally
consistent ways in which evidence can be combined (so called evidence models).
The work in Baltag et al. (2016a) follows the latter direction, adding a topolog-
ical structure which represents the different ways in which the available pieces
of evidence can be combined, and then using topological notions to single out
relevant sets of combined pieces of evidence.

The present contribution follows the mentioned topological approach Baltag
et al. (2016a), where we view arguments as special types of evidence that an
agent possesses. By combining the topological approach to evidence logic with
the tools from abstract argumentation theory (Dung 1995), we can single out the
sets of pieces of evidence (or arguments) on which a new notion of belief grounded
on arguments can be defined. This new concept of grounded belief provides the
bridge between an agent’s doxastic attitude and the arguments she has at her
disposal. While argumentation theorists such as Dung (1995) informally talk
about the relation between beliefs and arguments, the formalization of the
details has only recently gained more attention (e.g., Schwarzentruber et al.
2012, Grossi and van der Hoek 2014). The approach in this paper is related
to works which study abstract argumentation theory by using the tools and
techniques of modal logic (Grossi 2013, Caminada and Gabbay 2009) and to
those that introduce a notion of justified belief by combining doxastic logic and
abstract argumentation theory (Grossi and van der Hoek 2014). Yet in contrast
to the work on relational models for modal logic, we do turn to the topological
semantics of Baltag et al. (2016a).

Due to its semantic nature, one might expect for this paper’s notion of
grounded belief to be very much like the notions of belief studied in relational
and evidence models, but actually this is not the case. Grounded beliefs turn
out to be not closed under conjunction, which makes them more similar to the
probabilistic notions of belief as studied in Lenzen (1980) and van Eijck and
Renne (2014). In the final part of this paper we come back to this analysis
and provide a comparison between our concept of grounded belief and its
quantitative counterpart. From a philosophical perspective, the lack of closure
raises a number of interesting issues. It shows how, in our framework, there is a
clear difference between the agent’s reasoning abilities (i.e., the way she is able
to combine her available evidence, represented by the topological structure)
and the closure properties of her beliefs (related to the strategy she uses to
select the sets of combined evidence on which her beliefs will be based). This
relates to a point which is raised by Foley (2009) in the context of the Lottery
paradox. Indeed, Foley (2009) describes a dividing line between processes of
deductive reasoning (which are closed under conjunction) and those which
involve beliefs and are not closed under conjunction. While we agree with
Foley that there are essential differences in such reasoning patterns, our paper
does show how the two can be made formally precise and can moreover be
united in a formal framework that defines grounded beliefs on the basis of
deductive reasoning processes for combining evidence.
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Outline. Section 2 recalls the work on evidence and belief that our proposal
is based on (van Benthem and Pacuit 2011, Baltag et al. 2016a). Section 3
introduces our framework, defining our notion of belief grounded on arguments
and comparing it with the topological notion of evidence-based belief in Baltag
et al. (2016a). Section 4 provides a sound and complete logic characterizing
the properties of our notion of belief. Section 5 compares our setting with the
probabilistic notion of belief, re-examining the criticism faced by notions of
belief which are not closed under conjunction. We conclude in Section 6, listing
several directions for future work.

2 Preliminaries

In this section we recall the basic concepts and definitions of the framework in
van Benthem and Pacuit (2011) designed to present evidence logic as well as
the further topological development presented in Baltag et al. (2016a).

Beliefs in Evidence Models The evidence an agent has for supporting her beliefs
can be represented in different ways. The proposal in van Benthem and Pacuit
(2011) takes a semantic perspective and uses neighborhood models (Scott 1970,
Montague 1970), a generalisation of relational models, in which a so-called
neighborhood function assigns a family of subsets of the domain to each possible
world.2 3

Definition 2.1 (Evidence model (van Benthem and Pacuit 2011)). An evidence
model is a tupleM = (X,E0,V) where X , ∅ is a set of possible worlds, E0 ⊆ 2X

− {∅}

is a family of non-empty sets called pieces of evidence, and V : Prop → 2W is a
valuation function for a given set Prop of atomic propositions. The family E0 is required
to include X (i.e. X ∈ E0).

Note that the above definition mentions two explicit constraints on evidence
models: X is always in the neighborhood (the whole domain is always a piece
of evidence) but ∅ is never there (evidence per se is never contradictory). As
these are the only possible constrains, it can happen that two pieces of evidence
in E0 are in conflict with each other (i.e., there might be e1, e2 ∈ E0 such that
e1 ∩ e2 = ∅). Moreover, in this setting E0 is not required to satisfy any closure
property, e.g. closure under finite/arbitrary unions and/or intersections. Still,
the lack of closure properties in the family of pieces of evidence does not imply
that the agent is not able to combine the evidence pieces in a meaningful way.
Following the terminology in Baltag et al. (2016b,a), we introduce the notion of
a body of evidence:

2For our purposes, we work only with the so-called uniform evidence models in van Benthem
and Pacuit (2011), in which the neighborhood function is world-invariant.

3As Definition 2.1 shows, the concept of evidence represented in evidence models is rather
abstract: a piece of evidence is understood as a (non-empty) set of possible worlds. As it will
be discussed, these pieces of evidence can be understood as information the agent receives from
external sources (observations, communication), and the closure properties the evidence set might
have can be understood as the different ways she can ‘extract’ further information from what she
gets. For an in-depth study about the different interpretations the term evidence and its ‘cousin’
justification might have, the reader is referred to Kelly (2016) (for the first) and Pappas (2014) (for
the second).
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Definition 2.2 (Body of evidence). Let M = (X,E0,V) be an evidence model. A
body of evidence F ⊆ E0 is a subfamily of E0 which has the finite intersection
property.4 A body of evidence is maximal if it cannot be properly extended to any other
body of evidence.

Next we indicate when a body of evidence supports a proposition P (Baltag
et al. 2016b,a):

Definition 2.3 (Support of a proposition). Let M = (X,E0,V) be an evidence
model. A body of evidence F ⊆ E0 supports a proposition P if and only if

⋂
F ⊆ P.

The notion of belief à la van Benthem and Pacuit is based on the agent’s body
of evidence. In van Benthem and Pacuit (2011), an agent believes a proposition
P ⊆ X if and only if every maximal body of evidence F ⊆ E0 supports P (i.e.,⋂

F ⊆ P). According to this definition in evidence logic, the agent is able to
combine her available evidence in a maximally consistent way. Yet as explicitly
indicated in Baltag et al. (2016a), this does not mean that all her beliefs will be
consistent. Indeed, while the mentioned concept of belief works well in the
finite case, it can yield inconsistent beliefs in the infinite case:

Example 2.1. Consider the evidence model (N,E0 = {[n,+∞) | n ∈N}, ∅). Note how
E0 itself is a body of evidence and, moreover, is the unique maximal one. But

⋂
E0 = ∅,

and thus the agent believes ∅.

Such examples have been the main motivation in Baltag et al. (2016a) to
provide an improved semantics for evidence-based beliefs which changes the
above given definition of van Benthem and Pacuit. Their revised concept of
belief is provided in the context of a topological semantics:

Topological Semantics for Beliefs The topological approach of Baltag et al. (2016a)
generalizes the setting of van Benthem and Pacuit (2011), as it introduces a con-
cept of belief which is always consistent. Moreover, the definitions it provides
for knowledge and other related epistemic notions have both epistemic and
topological significance. We limit ourselves here to the basic doxastic concept:

Definition 2.4 (Topological evidence model (Baltag et al. 2016a)). A topological
evidence modelM = (X,E0, τE0 ,V) extends an evidence model (X,E0,V) (Definition
2.1) with τE0 , the topology over X generated by E0.5 For simplicity, and when no
confusion arises, τE0 will be denoted simply by τ.

A topological evidence model extends an evidence model with a topology:
a structure describing the different ways in which the available pieces of ev-
idence can be combined. Note that pieces of evidence are modeled as opens
in the topology; since a topology is closed under finite intersection, this fits
our intuition about the agent’s limited ability for combining evidence. Further
reasons for modeling evidence as opens can be found in Vickers (1989, Chapter
2), Kelly (1996) and Baltag et al. (2016a). In this setting, Baltag et al. provide an
improved version of evidence-based belief:

4A family F ⊆ 2X has the finite intersection property when the intersection of every finite subset
of F is non-empty.

5A topology over X , ∅ is a family τ ⊆ 2X containing both X and ∅, and closed under finite
intersections and arbitrary unions. The elements of a topology are called open sets. The topology
generated by E ⊆ X is the smallest topology τE over X such that E ⊆ τE.
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Definition 2.5 (Evidence-based belief (Baltag et al. 2016a)). LetM be a topological
evidence model (X,E0, τ,V). The agent believes a proposition P ⊆ X if and only if
every non-empty open set can be ‘strengthened’ into an open set supporting P (i.e., for
any t ∈ τ \ {∅} there is t′ ∈ τ \ {∅} such that t′ ⊆ t and t′ ⊆ P).

This notion of belief, which we call evidence-based belief (Bel), coincides with
the concept of belief à la van Benthem and Pacuit in evidence models when the
domain is finite. However, Bel does remain consistent in the infinite case (i.e.,
in topological evidence models, Bel ∅ = ∅).

Based on these ingredients, the next section will extend the topological
evidence models by adding tools from formal argumentation theory (Dung
1995).

3 Topological Argumentation Models

Recall how, in the above evidence models of van Benthem and Pacuit (2011),
pieces of evidence may be in conflict (i.e., there may be e1, e2 ∈ E0 such that
e1 ∩ e2 = ∅). This is a natural assumption, as an agent may collect different
pieces of evidence (from, e.g., different sources) supporting contradictory facts.
The crucial issue is then to find reasonable ways for combining these pieces of
evidence or, in other words, to single out meaningful subsets of E0 that can be
used to define a notion of belief. In the above mentioned approach, this role is
played by maximal bodies of evidence.

Something similar happens in the topological approach of Baltag et al.
(2016a): even though combined pieces of evidence may be in conflict (there
may be t1, t2 ∈ τ such that t1∩ t2 = ∅), the authors singled out those whose com-
plement is nowhere dense in order to define their topological notion of evidence-
based belief.6 This suggests that different doxastic concepts can be provided
by singling out alternative (but, of course, reasonable) combined pieces of evi-
dence.

Let us now focus on specific pieces of evidence that we can think of as
examples of an agent’s arguments. As readers familiar with the abstract argu-
mentation theory of Dung (1995) know, its framework and the various concepts
that are defined upon it, can be understood as a collection of tools that allow us
to single out acceptable arguments (in our context, amounting to ‘acceptable’
pieces of evidence) from all given arguments. In order to combine such tools
with the semantic setting of topological evidence models, one only needs to
provide a reasonable definition of what it means for a piece of evidence (or
‘argument’) to attack another, where a piece of evidence is represented as a set
of worlds. It is natural to say that two pieces of evidence attack each other
when they are in conflict, that is, when their intersection is empty. For example,
in a given topological evidence model,

for any t1, t2 ∈ τ \ {∅}: t1 and t2 attack each other iff t1 ∩ t2 = ∅.

Note that in this example the attack is mutual (i.e., the attack relation is sym-
metric), yet that does not always need to be the case.

6See Baltag et al. (2016a) for the definition of dense, nowhere dense and other topological notions,
and also for their epistemic interpretation.
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From Conflict to Attack In this paragraph we use an attack relation that is not
necessarily symmetric, but it is still related to the mentioned notion of conflict.

Definition 3.1 (Topological argumentation model). A topological argumenta-
tion modelM = (X,E0, τE0 ,�,V) extends a topological evidence model (X,E0, τ,V)
(Definition 2.4) with a relation� ⊆ (τ × τ), called the attack relation on τ (with
t1� t2 read as “t2 attacks t1”), which is required to satisfy the following conditions:

1. for any t1, t2 ∈ τ: t1 ∩ t2 = ∅ if and only if t1� t2 or t2� t1;

2. for any t, t1, t′1,∈ τ: if t1� t and t′1 ⊆ t1, then t′1� t;

3. for every t ∈ τ \ {∅}: ∅� t and t 6� ∅.

The first condition states that attack implies conflict (right to left), but also
that, while conflict implies attack, the implied attack does not need to be mutual
(left to right). The second condition asks that, if t attacks t1, then it should also
attack any stronger t′1. The last condition establishes that the empty set is
attacked by all non-empty opens, and that it does not attack any of them.7

3.1 Grounded Semantics for Argument-based Belief

The attack relation � defines, together with its domain τ, an attack graph
Aτ = (τ,�). Given such a structure, it is possible to use the tools from abstract
argumentation theory in order to single out ‘good’ families of combined evi-
dence (or arguments), which in turn will allow us to define a notion of belief
grounded in arguments. In order to do that, here is first a quick recollection of
the basic concepts of argumentation theory put forward in our framework:

Definition 3.2 (Characteristic (defense) function). Let M be a topological argu-
mentation model, and let Aτ = (τ,�) be the attack graph on τ. A subset T ⊆ τ is
said to defend t ∈ τ if and only if any open t′ attacking t (i.e, for all t′ ∈ τ such that
t� t′) is itself attacked by some open in T (i.e., there is t′′ ∈ T such that t′� t′′). The
characteristic function of Aτ, denoted by dτ and also called the defense function,
receives a set of opens T ⊆ τ and returns the set of opens that are defended by T:

dτ(T) := {t ∈ τ | t is defended by T}

When t ∈ dτ(T), it is said that t is acceptable with respect to T.

The characteristic function dτ is monotonic (Dung 1995, Lemma 19), and
therefore it has a least fixed point LFPτ (i.e., LFPτ is the smallest subset of τ
satisfying LFPτ = dτ(LFPτ)). Note, then, how this least fixed point is a set that
can defend all (⊆) and only (⊇) its members against any attack. Moreover, it
can be proved that the set is also conflict-free (i.e., there are no t, t′ ∈ LFPτ such
that t � t′). Due to these properties, LFPτ provides an excellent candidate
for the relevant family of open sets in τ over which beliefs can be defined.
(In abstract argumentation, LFPτ is called the grounded extension.) There are, of
course, other alternatives on which we can base beliefs: abstract argumentation
theory defines also, e.g., the notions of an admissible set (a set that is conflict-
free and all its arguments are acceptable with respect to it), a complete set (one

7In fact, as the first condition implies, it only attacks itself.
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that is admissible and contains every acceptable argument with respect to it),
a preferred set (a maximal admissible set) and a stable set (a conflict-free set that
attacks every argument not in it). One of the reasons why the grounded set
has been chosen is that, while the other alternatives provide more than one
set (there is, in general, more than one admissible/complete/preferred/stable
set), the grounded set is always unique; this guarantees that beliefs will be
consistent, a property that is typically desirable.8 One possible drawback of
the grounded extension is that, in general, it may be empty; however, this is
not the case in our framework, as X is never attacked (it is in conflict only with
the empty set, which does not attack anybody) and thus it is always in LFPτ.
Moreover, the grounded extension is closely related to the topological notion
of belief defined in Baltag et al. (2016a), as we will show later. Thus we propose
the following definition of belief grounded on arguments:

Definition 3.3 (Grounded Belief). LetM be the topological argumentation model
(X,E0, τE0 ,�,V). The agent believes a proposition P ⊆ X (notation: BP) if and
only if there is an open set in LFPτ supporting P, that is

BP if and only if ∃ f ∈ LFPτ : f ⊆ P

The definition says that the agent has grounded belief of P if and only if the
agent has a “good" argument for P which is a member of the least fixed point.

Properties of grounded beliefs From its definition (Definition 3.3) we observe that
grounded beliefs are upward-closed (BP and P ⊆ Q implyBQ). But a stronger
claim also holds: LFPτ itself is closed upwards.

Proposition 3.1. Given a topological argumentation model, if f ∈ LFPτ and f ′ ∈ τ
is such that f ⊆ f ′, then f ′ ∈ LFPτ.

However, grounded beliefs are not closed under conjunction. To illustrate
this fact, consider the topological argumentation model

M = ({1, 2, 3},E0 = {{1}, {2}, {3}, {1, 2}, {2, 3}}, τ = 2X,�,V) (1)

with� an attack relation in which singletons attack each other and {3}� {1, 2},
{1}� {2, 3}, {2}� {1, 3} and {1, 3}� {2}, and the empty set is attacked by any
sets in τ, as shown in Figure 1.9 Thus, according to the definition, LFPτ is
{{1, 2}, {2, 3}, {1, 2, 3}}, a set that is not closed under intersection.

To get a better grasp of the whole framework, consider the following sce-
nario which can be modeled by the above topological argumentation model.

Example 3.1. The zoo in Tom’s town bought a new animal and had it under exhibition.
Tom was curious about what the animal is, so he asked his colleagues. However, he got
different answers from them. Some told him that the animal was a penguin ({1}), some
told him that the animal was a pterosaur ({2}) and some told him that the animal was
a bat ({3}). Moreover, two other colleagues he really trusts told him that the animal
could fly ({2, 3}) and the animal was not a mammal ({1, 2}). After receiving all these
pieces of information, Tom was very puzzled. After all, it was very hard to imagine that

8Of course, consistency can be also achieved when some of the other mentioned sets are used,
but this would require the use of an external mechanism, and that might not be desirable for
simplicity reasons.

9Attack edges involving the empty set are not drawn.
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{1, 3}

{1, 2}

{2, 3}

Figure 1: Grounded beliefs are not closed under conjunction.

there could be a pterosaur (although genetic technology has developed fast). So in such
a situation, Tom believed that the animal could fly and the animal was not a mammal,
but he did not believe that the animal was a pterosaur.

The lack of closure under conjunction does not indicate that our agent lacks
formal reasoning abilities, as is usually the case in weaker epistemic notions. In-
deed, as the topology shows, our agent can put her pieces of evidence together
in a meaningful way. In section 5, we further elaborate on this distinction be-
tween the agent’s reasoning abilities and the closure properties of her grounded
beliefs. For now we focus first on the reasons behind the failure of this closure
property, by identifying additional conditions under which the property holds.

Proposition 3.2. LetM be a topological argumentation model and Aτ = (τ,�) its
attack graph.

• If� is transitive (i.e. for any t1, t2, t3 ∈ τ, t1� t2 and t2� t3 imply t1� t3),
then LFPτ is closed under intersections;

• If� is unambiguous (i.e. for any t1, t2, t3 ∈ τ, if t1 � t2 and t2 � t3, then
t1 6� t3 and t3 6� t1), then LFPτ is closed under intersections;

• If� is symmetric (i.e. for any t1, t2 ∈ τ, if t1� t2 then t2� t1), then LFPτ is
closed under intersections.

Note here how when� is symmetric, our notion of belief boils down to the
evidence-based belief in topological evidence models of Baltag et al. (2016a),
and thus it is closed under conjunction. We will elaborate on this point below.
With respect to transitivity, one may wonder whether closure under conjunction
still holds under a weaker requirement that asks for the transitivity of the attack
relation only when the involved sets are in conflict (i.e., for any t1, t2, t3 ∈ τ, if
t1 � t2, t2 � t3 and t1 ∩ t3 = ∅, then t1 � t3). We defer the answer to this
question till Section 5, where we compare our concept of grounded belief with
a probabilistic notion of belief.

We conclude this section with a comparison between our concept of grounded
beliefs and the evidence-based beliefs under the topological semantics of Baltag
et al. (2016a). Recall that, in the latter, the agent believes P (denoted by Bel P)
if and only if for any t ∈ τ \ {∅} there is t′ ∈ τ \ {∅} such that t′ ⊆ t and t′ ⊆ P
(Definition 2.5). Moreover,
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Definition 3.4 (Family of Bodies of evidence, Combined Evidence). Following
Baltag et al. (2016a),

• let F denote the family of all bodies of evidence (see Definition 2.2);

• let F finite denote the family of all finite bodies of evidence;

• define E as the family of the combined evidence given by finite bodies of evidence:

E := {
⋂

F ⊆ X | F ∈ F finite
}.

According to Baltag et al. (2016a, Proposition 2), evidence-based beliefs can
be equivalently defined as Bel P if and only if there is an open that supports
P and is also consistent with any combined evidence given by finite bodies of
evidence (i.e., iff there is t ∈ τ such that t ⊆ P and t ∩ e , ∅ for any e ∈ E).

Now, given a topological argumentation modelM, let JM denote the set of
opens that are consistent with any combined evidence given by finite bodies:

JM := {t ∈ τ | ∀e ∈ E : e ∩ t , ∅} 10

Note that if� in the topological argumentation modelM is symmetric, then
LFPτ = JM.

The following result shows that the notion of grounded belief is weaker
than the evidence-based belief of Baltag et al. (2016a).

Proposition 3.3. Given any topological argumentation modelM, JM ⊆ dτ(∅).

It follows from this proposition that JM ⊆ LFPτ, and thus Bel P implies BP
in any given topological argumentation model. Therefore, grounded beliefs are
weaker in the sense of being less restrictive and therefore allow more formulas
to be believed by the agent. In the next section we study the logic of beliefs
grounded on arguments.

4 The Logic of Beliefs Grounded on Arguments (ABBL)

This section studies the logic of the notion of belief grounded on arguments. In
order to provide a complete axiomatic characterization of the logic of grounded
belief, we work for now with a language that extends the propositional part
with a belief operator.

Definition 4.1 (Language). The language L of ABBL is generated by the following
grammar, where p ∈ Prop.

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Bϕ

Definition 4.2 (Semantics). Given a topological argumentation modelM = (X,E0, τE0 ,�
,V) and a possible world x ∈ X, the truth condition of formulas inL is defined as usual
for atomic propositions and Boolean operators. For the grounded belief modality,

M, x |= Bϕ iff there exists f ∈ LFPτ such that f ⊆ ~ϕ�M
with ~ϕ�M := {x ∈ X | M, x |= ϕ} the set of ϕ-worlds inM.

Axiom System Table 1 shows the axiom system ABBS, which below (Theorem
4.1) will be shown to be sound and complete for the language ABBL with
respect to topological argumentation models.

10In Baltag et al. (2016a), the elements of JM are called justifications.
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Table 1: Axiom system ABBS for ABBL

Propositional Tautologies and Modus Ponens
4: Bϕ→ BBϕ 5: ¬Bϕ→ B¬Bϕ

RE: from ϕ↔ ψ infer Bϕ↔ Bψ D: Bϕ→ ¬B¬ϕ
M: B(ϕ ∧ ψ)→ Bϕ ∧ Bψ N: B>

The axiom system ABBS extends the well-known axiom system EMN (the
propositional fragment, the RE rule and axioms M and N) with axioms 4, 5
and D. It is known that EMN is sound and complete with respect to the class
of neighborhood models that are supplemented (i.e., closed under conjunction
elimination or, equivalently, closed under supersets) and contain the unit (i.e.,
the domain is in the neighborhood) Chellas (1980). This suggest a detour
for proving the completeness result for our logic with respect to topological
argumentation models.

Theorem 4.1. For any ϕ ∈ L and Φ ⊆ L,

Φ `ABBS ϕ if and only if Φ |= ϕ

where Φ `ABBS ϕ indicates that ϕ is derivable from Φ in the axiom system ABBS and
Φ |= ϕ indicates that, for any topological argumentation modelM and any x ∈ X, if
M, x |= Φ (i.e. M, x |= φ for all φ ∈ Φ) thenM, x |= ϕ.

Proof sketch. Soundness is straightforward; for completeness, the proof uses a
modal equivalence result. First, define a belief neighborhood model M as a uniform
neighborhood model (X,NB,V) where the neighborhood function NB ⊆ 2X

satisfies the following conditions:

• X ∈ NB (NB contains the unit);

• if b ∈ NB, then b′ ∈ NB for any b′ such that b ⊆ b′ (NB is closed under
supersets);

• if b ∈ NB, then X \ b < NB (NB does not contain the complement of any of
its elements).

In such structures, the semantic interpretation of a modality for this neighborhood-
based belief is given by

M, x |= Bϕ iff ~ϕ�M ∈ NB

The following lemma states that every topological argumentation model
gives raise to a modally equivalent belief neighborhood model, and vice-versa.
Since the axiom system ABBS is sound and complete with respect to belief
neighborhood models (see, e.g., Chellas 1980), it follows that the system is also
sound and complete with respect to topological argumentation models.

Lemma 4.1. For any topological argumentation modelM = (X,E0, τ,�,V) there is a
belief neighborhood model M = (X,NB,V) with the same domain and atomic valuation
such thatM and M are point-wise modally equivalent with respect to the language L
(i.e. for any ϕ ∈ L and any x ∈ X,M, x |= ϕ if and only if M, x |= ϕ.) And vice versa.

For showing modal equivalence, the key is the following lemma:
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Lemma 4.2. LFPτ = NB

Hence, M andM are modally equivalent. �

Thus, our notion of grounded belief can be completely characterized by the
axiom system ABBS.

5 Failure of Closure and Rational Belief

One of the distinctive features of our notion of grounded belief is its lack of
closure under conjunction. This feature is also a distinctive mark of the well-
known probabilistic notion of belief, where belief is interpreted as high enough
probability (typically, above threshold 1

2 ). It is thus worthwhile to compare the
two approaches.

Definition 5.1 (Probabilistic Belief Model (Lenzen 1980, van Eijck and Renne
2014)). A probabilistic belief model is a tuple M = (X, µ,V) where X is a countable
space and µ : 2X

→ [0, 1] is a probability function satisfying Kolmogorov’s Axioms:
(1) µ(Q) ≥ 0 for any Q ⊆ X, (2) µ(X) = 1, and (3) for any countable sequence of
disjoint sets S1,S2, . . ., µ(

⋃
∞

i=1 Si) = Σ∞i=1µ(Si).

In this probabilistic belief model, µ is interpreted as agent’s credence func-
tion which measures the agent’s credence in each proposition. Hence credible
enough propositions can be taken to represent the agent’s beliefs, where “cred-
ible enough" means “above some threshold". In order to illustrate the relation
between our concept of grounded belief and this quantitative counterpart, we
consider the threshold to be 0.5. Thus, the concept of probabilistic belief that we
consider in this paper is defined as

M, x |= Bϕ iff µ(~ϕ�M) > 0.5

It is important to note that the axiom system ABBS is sound with respect to
the probabilistic belief model. Moreover, for any probabilistic belief model we
can construct a modally equivalent belief neighborhood model (see the proof
of Theorem 4.1): it is enough to put in the neighbourhood NB all subsets of
the domain whose probability is greater than 0.5, i.e. NB = {S ⊆ X | µ(S) >
0.5}. Given Kolmogorov’s axioms, the resulting structure indeed satisfies the
belief neighborhood requirements. Even more: by Lemma 4.1, we can build a
topological argumentation model from the belief neighborhood model, which
is modally equivalent to the belief neighborhood model and thus modally
equivalent to the probabilistic belief model. However, not every topological
argumentation model has a modally equivalent probabilistic belief model. This
is because the axiom system ABBS is sound but not complete with respect to
the probabilistic belief model (c.f. Klein et al. 2015, Section 3.1, Lenzen 1980
and van Eijck and Renne 2014).

Thus, probabilistic belief can be seen as a special form of grounded belief,
in the sense that the former can be defined through a special attack relation on
2X: for any e, e′ ∈ 2X, define e�µ e′ if and only if e∩ e′ = ∅ and µ(e) 6 µ(e′). This
attack relation satisfies extra conditions, for example, for any e1, e2, e3 ∈ 2X, if
e1 � e2, e2 � e3 and e1 ∩ e3 = ∅, then e1 � e3. Since the probabilistic notion of
belief is not closed under conjunction either, this extra condition does not save
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the failure of closure under conjunction, which answers the question we posed
in Section 2.

Philosophical Debate. Let us re-examine one of the most important criticisms
faced by probabilistic beliefs from the perspective of our topological argumen-
tation models. The criticism is based on the conjunction rule which states that if
it is ‘rational’ for an agent to believe ϕ and it is ‘rational’ to believe ψ, then it is
‘rational’ to believe ϕ and ψ. As stated in Foley (2009),

there are [. . . ] prima facie worries associated with rejecting the rule,
the most fundamental of which is that if we are not required on pains
of irrationality to believe the conjunction of propositions that we ra-
tionally believe, we might seem to lose some of our most powerful
argumentative and deliberative tools. (p.42)

Thus, according to this (which Foley 2009 actually criticizes), a rational agent
should follow the conjunction rule. Since probabilistic beliefs violate the rule,
philosophers have debated whether probabilistic beliefs are good candidates
for representing a rational concept of belief. In this discussion it is essential to
note that if “rational" is viewed as the willingness and capability of following
logical rules, it implicitly burdens belief with a requirement about the agent’s
ability of deductive reasoning.11 In Foley (2009), the author argues not only
that this worry is misplaced, but also that beliefs should not be burdened with
the agents’ deductive reasoning abilities. Note that Foley proposes a clear
distinction between two reasoning processes, one involving an agent’s beliefs
(not closed under conjunction) and deductive processes (which are closed under
conjunction). What our proposal shows is that the two processes are distinct
but can be united in one formal framework.

The topological argumentation model shows how the notion of grounded
belief is based on the agents’ topology of evidence and the attack relation
on the topology. So on the one hand, the agent modelled by a topological
argumentation model is a powerful logician: she can generate a full topology
from her collections of pieces of evidence. On the other hand, this logician’
grounded belief does not follow the conjunction rule. So even if the agent has
a good argument/reason to believe ϕ and a good argument/reason to believe ψ,
she may not have a good argument/reason to believe ϕ∧ψ. In contrast to many
probabilistic belief models where these parts are hidden, our setting makes the
different processes explicit.

6 Conclusion and Future Work

This paper studies a notion of grounded belief. It does so by applying ideas
from both abstract argumentation theory and the topological semantics for
evidence.

From the perspective of abstract argumentation theory, our work can be
seen as an attempt of giving structure to the otherwise abstract arguments in

11Our discussion does not exclude the possibility that ‘rationality’ may well require more than
simply reasoning in a logical way. But if extra constraints are imposed the formal setting is bound
to change as well.
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an attack graph. Here arguments are instantiated as sets of possible worlds,
and thus we can use logical tools to define not only which propositions they
support, but also when one of them attacks another. From the perspective
of the topological semantics for evidence, our work provides a generalization
of the conflict relation between pieces of evidence. The integration of these
ingredients from two different fields brings to fruition a notion of belief grounded
on arguments whose logical behavior is proved to be characterized by the axiom
system ABBS. This notion is compared with other forms of belief, including
the evidence-based belief of Baltag et al. (2016a) and the probabilistic notion of
belief in Lenzen (1980) and van Eijck and Renne (2014).

One of the most intriguing features of the introduced concept of grounded
belief is its failure of closure under conjunction. In the philosophical literature,
this failure is widely taken as a failure of rationality, especially when it comes
down to the agent’s beliefs. However, as our setting shows, even if the con-
junction rule is adopted by the agent on the level of reasoning about evidence
or arguments, it does not need to be adopted to form new beliefs.

In future work we extend our formal language to include operators that
address the agent’s arguments explicitly. While our current restricted language
allows us to characterize the behavior of our notion of belief, it does lack
the expressive power to talk about the relationship between beliefs and the
arguments supporting it. Another dimension worthwhile to explore further
is the understanding of argumentation not as a single agent’s inner reasoning
mechanism, but rather as a social process that involves several agents. There
exists work in argumentation theory dedicated to this dimension, as the study
of methods for merging different attack graphs Coste-Marquis et al. (2007)
shows. This line of work can further be related to the recent developments in
social choice theory Endriss and Grandi (2017). In our context, the question
of merging different agent’s attack graphs can shed new light at group-related
notions, in particular, distributed belief, which can then be understood from
the perspective of abstract argumentation theory.

Finally, while we have restricted our attention to the concept of ground-
ed belief, epistemologists will be interested to see a connection to the seminal
studies of knowledge, belief, justifications and their relation (e.g., Lehrer 1990,
where knowledge is understood as belief with a correct justification that cannot
be defeated by any further true justification). There exist new proposals in this
direction (e.g., Baltag et al. 2016a), which, with the help of argumentation theory
can shed more light on different epistemic theories and, in particular, on the
different notions of knowledge.
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Appendix

Proof of Proposition 3.1 Take any f ∈ LFPτ and any f ′ ∈ τ such that f ⊆ f ′.
Suppose no one attacks f ′; then we are done as, by LFPτ’s definition, every
non-attacked element of τ should be in LFPτ. Suppose otherwise, and let t be
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one of such opens attacking f ′; it is enough to find a f ′′ ∈ LFPτ attacking t,
as then f ′ would be defended by someone in LFPτ and thus, by definition, f ′

would be in LFPτ. Now, since t attacks f ′, it should also attack the stronger f (as
required by�’s definition); but then, since f is in LFPτ, it should be defended
by someone in LFPτ, that is, there is a f ′′ in LFPτ attacking t. This completes
the proof.

Proof of Proposition 3.2 The following lemma will be useful.

Lemma .1. LetM = (X,E0, τE0 ,�,V) be a topological argumentation model. Then,
for any f1, f2 ∈ LFPτ , f1, f2 ∈ LFPτ implies f1 ∩ f2 ∈ LFPτ if and only if for any
t ∈ τ, if f1 ∩ f2� t, then t ∩ f = ∅ for some f ∈ LFPτ.

Proof. (⇒) From left to right, take arbitrary f1, f2 ∈ LFPτ. Suppose there is an
open t ∈ τ such that t attacks f1 ∩ f2 but is not in conflict with anybody in LFPτ.
From the latter it follows that nobody in LFPτ attacks t, and thus the attacked
f1 ∩ f2 is not defended by LFPτ; therefore, f1 ∩ f2 is not in LFPτ. (⇐) From right
to left, take arbitrary f1, f2 ∈ LFPτ. If there is no t ∈ τ such that f1 ∩ f2� t, then
we are done. Otherwise, take arbitrary t ∈ τ such that f1 ∩ f2 � t. It implies
that there is f ′ ∈ LFPτ such that t ∩ f ′ = ∅. Thus either f ′ attacks t or else t
attacks f ′. The former case implies that there is f ′′ ∈ LFPτ such that t � f ′′

by virtue of f ′’s membership in LFPτ; together with the latter case, i.e. t� f ′,
we can conclude that there is f ∈ LFPτ such that t � f . Hence for any t ∈ τ
such that f1 ∩ f2 � t, there is f ∈ LFPτ such that t � f , which implies that
f1 ∩ f2 ∈ LFPτ. �

Now, for proposition 3.2. The proof for transitivity and the relation being
unambiguous, proceeds by contraposition, so take any f1, f2 ∈ LFPτ such that
f1 ∩ f2 is not in LFPτ. Then, by Lemma .1, there is an open t ∈ τ who attacks
f1 ∩ f2 (i.e., f1 ∩ f2 � t) and who is not in conflict with elements of LFPτ (i.e.,
f ∈ LFPτ implies t ∩ f , ∅). The goal is to show that� is not transitive.

Define t1, t2 and t3 as

t1 := f1 ∩ t, t2 := f2 ∩ t, t3 := f1 ∩ f2,

and note that none of them are empty. Note also that due to the fact that t
attacks f1 ∩ f2 ( f1 ∩ f2 � t), t must be in conflict with f∩ f2 (( f1 ∩ f2) ∩ t = ∅);
hence, t1 ∩ t2 = t2 ∩ t3 = t3 ∩ t1 = ∅.

For transitivity, consider now the following two mutually exclusive and
collectively exhaustive cases: (1) t1 � t3 or t2 � t3, (2) t1 6� t3 and t2 6� t3. In
the first, assume the leftmost disjunct t1� t3; that, together with t3� t (recall:
t3 = f1 ∩ f2) and t1 6� t (as t1 ∩ t = f1 ∩ t , ∅) shows that� is not transitive.
If the rightmost disjunct t2 � t3 is assumed, a similar reasoning yields t3 � t
and t2 6� t, and thus lack of transitivity again.

Now the second case, which implies t3 � t1 and t3 � t2, as the ti are
all in conflict. Since t1 and f2 are in conflict, at least one of them should
attack the other. If t1 � f2, then this together with t3 � t1 and t3 6� f2 (as
t3 ∩ t = f1 ∩ f2 , ∅, and thus they are not in conflict shows that � is not
transitive. Otherwise, f2 � t1 should be the case; hence, since f2 is in LFPτ,
it should be defended from t1 by some f ∈ LFPτ, that is, t1 � f . But then we
have f2 � t1, t1 � f and f2 6� f (since LFPτ) is conflict-free. Thus, again,�
is not transitive.

14



For the relation being unambiguous, consider two cases, t1� t2 or t2� t1.
In the case of t1 � t2, if t2 � t3, then no matter t1 � t3 or t3 � t1, it is
not unambiguous. If t3 � t2, then no matter t1 � t3 or t3 � t1, � is not
unambiguous. The proof for the case of t2 � t1 follows a similar argument.
Therefore, we reach the conclusion that� cannot be unambiguous.

For symmetry, assume that� is symmetric. Observe that LFPτ = {t ∈ τ |
∀e ∈ E : e ∩ t , ∅}, which is closed under conjunction.

Proof of Proposition 3.3 Take any t in JM. Since t is consistent with any e ∈ E,
it is also consistent with any open t′ ∈ τ, that is, for any such t′we have t∩t′ , ∅.
But then t is not attacked at all, and thus it is defended by the empty set, i.e.
t ∈ dτ(∅). Therefore, JM ⊆ dτ(∅).

Proof of Lemma 4.1 Given a topological argumentation model, it is easy to
build a point-wise modally equivalent belief neighborhood model: it is enough
to define the neighborhood function NB as LFPτ plus all its element’s supersets
(NB := {b ∈ 2X

| f ⊆ b for some f ∈ LFPτ}). For the other direction, given
a belief neighborhood model M = (X,NB,V), let MM = (X,E0, τ,�NB ,V) be
the topological argumentation model that shares domain and atomic valuation
with M, and in which the family of pieces of evidence is given by the singletons
in X (E0 := {{x} ∈ 2X

| x ∈ X}) and therefore the generated topology is the power
set of the domain (τ = 2X). Moreover, define the attack relation�NB as

t�NB t′ iff
{

t ∩ t′ = ∅ and t < NB when t′ , ∅
t = ∅ when t′ = ∅

for every t, t′ ∈ τ, so a non-empty t′ attacks a non-empty t if and only if they are
in conflict and t is not in NB, and while the empty set does not attack non-empty
sets, it is attacked by everybody (including itself). It is easy to verify that this
model is a topological argumentation model.

Proof of Lemma 4.2 (⊇) Take any b ∈ NB. By�NB ’s definition, no element of τ
who is in conflict with b attacks it (i.e., there is no t ∈ τ such that b ∩ t = ∅ and
b�NB t); therefore, no one attacks b and hence b ∈ LFPτ.

(⊆) Take an arbitrary t ∈ τ such that t < NB. If t is not in conflict with any
open in τ, then t must be X, so X < NB, contradicting the fact that NB contains
the unit. Hence, t should have a conflict with some open, that is, there is at
least one t′ ∈ τ such that t ∩ t′ = ∅. From this and�NB ’s definition it follows
that t′ attacks t, t�NB t′.

If at least one of such t′ is in NB, then it is also in LFPτ (the (⊇) case above),
and thus the fact that t′ attacks t implies that t < LFPτ, as this set is conflict-free.
Then we are done. Otherwise no such t′ is in NB, that is, every open in conflict
with t is outside NB; in other words, no element of NB is in conflict with t (b ∈ NB
implies t ∩ b , ∅).

Define now the set s as the union of the non-t parts of every element of NB,
that is, s :=

⋃
b∈NB

(b \ t). Since τ is the full power set, s is in τ. This s is in conflict
with t (s∩ t = ∅, by construction), but it is consistent with all b ∈ NB (b∩ s , ∅ for
all such b, as otherwise the b′ ∈ NB in conflict with s would have been a subset
of t, and thus closure under supersets of NB would imply t ∈ NB, contradicting
our initial assumption). These two facts tells us that we have found an open
s ∈ τ that attacks t (t�NB s, from the first fact, t < NB and�NB ’s definition) but
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it is not attacked by anyone in NB (b ∈ NB implies s 6�NB b, from the second fact
and�NB ’s definition). Moreover, it attacks every open not in NB with whom
it has conflict (x < NB implies x ∩ s = ∅, again from�NB ’s definition). Thus, s
(1) attacks everybody in τ that is not in NB, and (2) is not attacked by anybody in
NB; hence no one outside NB can be protected by NB against s, which means that
dτ(NB) = NB. Together with the fact that NB ⊆ LFPτ, it implies that NB = LFPτ.
In particular, since t < NB, we get the required t < LFPτ.
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