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Abstract. A lattice P is transferable for a class of lattices K if whenever P can be em-
bedded into the ideal lattice IK of some K ∈ K, then P can be embedded into K. There
is a rich theory of transferability for lattices. Here we introduce the analogous notion of
MacNeille transferability, replacing the ideal lattice IK with the MacNeille completion K.
Basic properties of MacNeille transferability are developed. Particular attention is paid to
MacNeille transferability in the class of Heyting algebras where it relates to stables classes
of Heyting algebras, and hence to stable intermediate logics.

1. Introduction

A lattice P is transferable if whenever there is a lattice embedding ϕ ∶ P → IK of P into
the ideal lattice of a lattice K, then there is a lattice embedding ϕ′ ∶ P → K. It is sharply
transferable if ϕ′ can be chosen so that ϕ′(x) ∈ ϕ(y) iff x ≤ y. If we restrict K to belong
to some class of lattices K, we say P is transferable in K. The notion has a long history,
beginning with [16, 13], and remains a current area of research [25]. For a thorough account
of the subject, see [17], but as a quick account, among the primary results in the area are
the following.

Theorem 1.1. (see [17, pp. 502–503],[25]) A finite lattice is transferable for the class of all
lattices iff it is projective, and in this case it is sharply transferable.

Theorem 1.2. (see [13],[23]) Every finite distributive lattice is sharply transferable for the
class of all distributive lattices.

Our purpose here is to introduce, and make the first steps towards, an analogous study of
MacNeille transferability. Characterizations as in Theorems 1.1 and 1.2 are beyond our scope.
But we do provide a number of results, both positive and negative, that begin to frame the
problem. Among easy results are that no non-distributive lattices are MacNeille transferable
for any class that contains distributive lattices, and that every finite projective distributive
lattice is MacNeille transferable for the class of lattices whose MacNeille completions are
distributive.

Among further results, we show that the 7-element distributive lattice D, formed by
placing two 4-element Boolean lattices on top of one another and identifying the top of the
lower with the bottom of the upper (see Figure 2), is MacNeille transferable for the class
of distributive lattices, but not sharply transferable. We also give an example of a finite
distributive lattice that is not MacNeille transferable for even the class of lattices whose
MacNeille completions are distributive. If MacNeille transferability is extended to include
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bounds, we show that no finite distributive lattice with a complemented element is boundedly
MacNeille transferable for the class of Heyting algebras.

Positive results are also obtained by considering the class of Heyting algebras whose dual
spaces have finite width. Here we provide an infinite family of finite non-projective distribu-
tive lattices that are MacNeille transferable for the class. Stable classes of Heyting algebras
are roughly those obtained by omitting a chosen family of finite distributive lattices from
occurring within them. They correspond to stable intermediate logics [5, 6]. Our results
provide an infinite family of stable universal classes of Heyting algebras that are closed un-
der MacNeille completions. Due to the result of [15], this implies that these stable universal
classes are also closed under canonical extensions.

We obtain stronger positive results for bi-Heyting algebras. We prove that each finite
distributive lattice is MacNeille transferable for the class of bi-Heyting algebras. This is
established by showing that the MacNeille completion of a bi-Heyting algebra of finite width
is a bounded sublattice of its ideal lattice.

We also consider versions of MacNeille transferability where the maps preserve ∧,0,1. Here
our results have some overlap with those of [9], however the two approaches are different.
While our technique is mostly algebraic, that of [9] is of a syntactic nature and mainly focuses
on residuated lattices. Restricted to Heyting algebras, [9] shows that all universal clauses
in the {∧,0,1}-language of Heyting algebras are preserved by MacNeille completions. The
two approaches are related in the following way: for a finite distributive lattice P , there is a
universal clause ρ(P ) in the {∧,0,1}-language of Heyting algebras expressing the property of
not having a {∧,0,1}-subalgebra isomorphic to P . By [9], ρ(P ) is preserved under MacNeille
completions of Heyting algebras, and hence P is {∧,0,1}-MacNeille transferable for the class
of Heyting algebras. We note that neither the results here, nor those of [9], subsume the
results of the other.

2. Basic definitions and MacNeille transferability for lattices

For a lattice K, we use K for the MacNeille completion of K. This will be viewed either
as the set of normal ideals of K, or abstractly as a complete lattice that contains K as a
join and meet dense sublattice. We also consider lattices with one or both bounds as part
of their basic type. For τ ⊆ {∧,∨,0,1}, a τ -lattice is a lattice, or lattice with one or both
bounds, whose basic operations are of type τ . A τ -homomorphism is a homomorphism with
respect to this type, and a τ -embedding is a one-one τ -homomorphism.

Definition 2.1. Let τ ⊆ {∧,∨,0,1}, P be a τ -lattice, and K a class of τ -lattices. Then P
is τ -MacNeille transferable for K if for any τ -embedding ϕ ∶ P → K where K ∈ K, there is
a τ -embedding ϕ′ ∶ P → K. We say P is sharply τ -transferable for K if ϕ′ can be chosen
so that ϕ′(x) ≤ ϕ(y) iff x ≤ y for all x, y ∈ P . We use the terms transferable and sharply
transferable when τ = {∧,∨}.

There are obvious examples of lattices P that are MacNeille transferable for the class of
all lattices. Any finite chain, and the 4-element Boolean lattice provide examples. Infinite
chains can be problematic, as is seen by a simple cardinality argument for P the chain of
real numbers and K the chain of rational numbers. Such difficulties arise also with the
traditional study of transferability using ideal lattices. Here we restrict our attention to the
case where P is finite. Our first result follows immediately from [18] where it was shown
that any lattice can be embedded into the MacNeille completion of a distributive lattice.
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Theorem 2.2. A lattice that is MacNeille transferable for the class of all lattices is distribu-
tive.

For a bounded lattice K, let Kσ be the canonical completion of K [14]. For a lattice K,
we let K+ be the result of adding a bottom to K if it does not have one, and adding a top
to K if it does not have one. Note that for a finite lattice P , there is a lattice embedding of
P into K iff there is a lattice embedding of P into K+. Following the convention that ∅ is
not an element of the ideal lattice, but can be an element of the MacNeille completion when
viewed as normal ideals, it is easily seen that K+ =K and I(K+) = (IK)+.

Theorem 2.3. If a finite lattice P is MacNeille transferable for a class K of lattices that is
closed under ultrapowers, then P is transferable for K.

Proof. Suppose that P is isomorphic to a sublattice of the ideal lattice IK of some K ∈ K.
Then P is isomorphic to a sublattice of I(K+). The ideal lattice I(K+) is isomorphic to
the sublattice of open elements of the canonical extension (K+)σ [14, Lem. 3.3]. In [15] it
was shown that the canonical extension (K+)σ is isomorphic to a sublattice of the MacNeille

completion (K+)∗ of an ultrapower (K+)∗ of K+. Clearly (K+)∗ = (K∗)+. So P is isomorphic

to a sublattice of (K∗)+ = K∗. Since K is closed under ultrapowers, K∗ ∈ K. Then as P is
MacNeille transferable for K, there is a sublattice of K∗ that is isomorphic to P . Therefore,
K∗ satisfies the diagram ∆P of the finite lattice P (see, e.g., [8, pp. 68–69]), hence K satisfies
∆P by  Lós’ Theorem. Thus, K has a sublattice that is isomorphic to P , and this shows that
P is transferable. �

Combining the above two results with Theorem 1.1, it follows that if a finite lattice is
MacNeille transferable for the class of all lattices, then it is projective in the class of all
lattices and distributive. Using the result of Kostinsky [21] that a finite lattice is projective
in the class of all lattices iff it is a sublattice of a free lattice, and the result of Galvin
and Jónsson [12] characterizing the finite sublattices of free lattices that are distributive as
exactly those that do not contain a doubly reducible element (one that is both a join and
meet), gives the following.

Corollary 2.4. If a finite lattice P is MacNeille transferable for the class of all lattices,
then it is distributive and has no doubly reducible elements.

Galvin and Jónsson [12] further characterize all (not just finite) distributive lattices that
have no doubly reducible elements. This will be of use in later considerations for us as well.

Theorem 2.5. [12] A distributive lattice has no doubly reducible elements iff it is a linear sum
of lattices each of which is isomorphic to an eight-element Boolean algebra, a one-element
lattice, or 2 ×C for a chain C.

Problem 1. Is each finite distributive lattice with no doubly reducible elements MacNeille
transferable for the class of all lattices?

If we move from the setting of MacNeille transferability with both lattice operations ∧,∨
involved, to a setting where at most one lattice operation is involved, the situation opens
considerably. The key result here relates to the projectivity of a semilattice in the class of
all semilattices. A consequence of [20] gives that if P is a semilattice that is the ∧-reduct
of a finite distributive lattice, then P is projective in semilattices. We will also need the
following slight extension of a result of Baker and Hales [1].
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Lemma 2.6. For a lattice K, there is a sublattice S of an ultrapower K∗ of K and an onto
lattice homomorphism µ ∶ S → IK. If K has a 0, then the 0 of K∗ belongs to S and is the
only element of S mapped by µ to 0. Similar comments hold if K has a 1.

Proof. We follow [1]. Let X be the set of all finite subsets of K partially ordered by set
inclusion. The principle upsets of X form a filter base. Let U be an ultrafilter extending this
filter base. Let M be the set of order preserving maps from X to K. Then M is a sublattice
of KX . Let S be the image of M in K∗ = KX/U . So the elements of S are equivalence
classes σ/U of order preserving functions σ ∶ X → K. Define µ ∶ S → IK by letting µ(σ/U)
be the ideal generated by the image of σ. In [1] it is shown that µ is a well defined onto
lattice homomorphism.

If K has a 0, then the constant map from X to K taking value 0 belongs to KX , and the
corresponding element of K∗ is its 0. Since µ is onto, it must preserve 0. If σ ∶ X → K is
order preserving and µ(σ/U) = 0, then the ideal generated by the image of σ is the zero ideal
{0}, and that implies that σ is the zero function. So the 0 of S is the only element mapped
to 0 in K. Similarly, if K has a 1, then the 1 of K∗ is the equivalence class of the constant
function 1, it belongs to S, and since µ is onto it preserves 1. Suppose µ(σ/U) = 1. Then 1
is in the ideal of K generated by the image of σ, and since σ is order preserving and X is a
lattice, 1 is in the image of σ. Then there is a finite subset A ⊆K with σ(A) = 1. Since σ is
order preserving, σ takes value 1 on the upset generated by A, hence σ is in the equivalence
class of the constant function 1. �

Theorem 2.7. Let P be a finite distributive lattice and τ ⊆ {∧,∨,0,1} that does not contain
both ∧,∨. Let Kτ be the class of all lattices if τ does not contain 0,1, the class of all lattices
with 0 if τ contains 0 and not 1, the class of all lattices with 1 if τ contains 1 and not 0,
and the class of all bounded lattices if τ contains 0,1. Then P is τ -MacNeille transferable
for Kτ .

Proof. Assume K ∈ Kτ and that ϕ ∶ P →K is a τ -embedding. By symmetry, we may assume
that τ does not contain ∨. We consider first the case that τ does not contain ∧. If K is
finite, then K = K and there is nothing to show. Otherwise, since P is finite, there is a
τ -embedding of P into K.

Assume that τ contains ∧. Viewing the MacNeille completion K as a set of normal
ideals, the identical embedding ι ∶ K → IK is a τ -embedding, hence so is the composite
ι ○ ϕ ∶ P → IK. Let S ≤ K∗ and µ ∶ S → IK be as in the proof of the previous lemma.
Since P is projective as a semilattice, there is a ∧-semilattice homomorphism γ ∶ P → S with
µ○γ = ι○ϕ. Since the composite is an embedding, so is γ. Since the composite preserves the
bounds belonging to τ , the result of the previous lemma about the uniqueness of elements of
S mapped to bounds of IK shows that γ preserves bounds in τ . Thus, S has a τ -subalgebra
isomorphic to P , and hence so does K∗. So K∗ satisfies the diagram of P in the τ -language,
and by  Lós’ Theorem, K satisfies this diagram, hence has a τ -subalgebra isomorphic to
P . �

We conclude this section with comments related to adding bounds to the type.

Definition 2.8. For a finite lattice P , let 0⊕ P be the result of adding a new bottom 0 to
P , P ⊕1 be the result of adding a new top 1 to P , and 0⊕P ⊕1 be the result of doing both.

For a lattice K and k ∈ K, we can consider the principal ideals (↓k)K and (↓k)K . Using
the abstract characterization of MacNeille completions (see, e.g., [2, p. 237]), it is easily seen
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that (↓k)K = (↓k)K . We say that a class K of lattices is closed under principal ideals if for
each K ∈ K and each k ∈ K, the lattice (↓k)K belongs to K. Similarly, K is closed under
principal filters if each (↑k)K belongs to K.

Proposition 2.9. Let P be a finite lattice, τ ⊆ {∧,∨,0}, and K be a class of τ ∪ {1}-lattices
that is closed under principal ideals. If P is τ -MacNeille transferable for K, then P ⊕ 1 is
(τ ∪ {1})-MacNeille transferable for K. Similar results hold for 0⊕P and τ ∪ {0} when K is
closed under principal filters, and 0⊕ P ⊕ 1 and τ ∪ {0,1} when K is closed under both.

Proof. We prove the result for τ ∪{1}, the result for τ ∪{0} is by symmetry, and the result for
τ∪{0,1} follows from these. SupposeK ∈ K and ϕ ∶ P⊕1→K is a τ∪{1}-embedding. Let ⊺ be
the top of P and 1 be the top of P⊕1. Then ϕ(⊺) = x for some x < 1 inK. Since the MacNeille

completion is meet dense, there is k ∈ K with x ≤ k < 1. Then ϕ∣P ∶ P → (↓k)K = (↓k)K
is a τ -embedding. Since (↓k)K ∈ K and P is τ -MacNeille transferable for K, there is a
τ -embedding ψ ∶ P → (↓k)K . Since k < 1, there is a (τ ∪{1})-embedding of P ⊕1 into K. �

Remark 2.10. We note that {∧,∨,0,1}-MacNeille transferability is an elusive concept when
lattices are not of the form 0 ⊕ P or P ⊕ 1. For the real unit interval [0,1], the bounded
lattice K = ([0,1] × [0,1]) ∖ {(1,0), (0,1)} has no complemented elements other than the
bounds, while its MacNeille completion K = [0,1]×[0,1] does. Thus, the 4-element bounded
lattice 2 × 2 is not {∧,∨,0,1}-MacNeille transferable for lattices. We return to this matter
in the section on Heyting algebras where it takes particular significance.

3. MacNeille transferability for distributive lattices

One can consider MacNeille transferability for the class of distributive lattices. However,
since distributive lattices are not closed under MacNeille completions, one would leave dis-
tributive lattices to do so. Instead, we consider MacNeille transferability for the class K of
lattices whose MacNeille completions are distributive. This class K includes such interesting
classes as (the lattice reducts of) Heyting algebras, co-Heyting algebras, and bi-Heyting alge-
bras. Since MacNeille transferability for K holds vacuously for any non-distributive lattice,
we consider only the case when a finite distributive lattice is MacNeille transferrable for K.
In contrast to Theorem 1.2, which says that every finite distributive lattice is transferrable
for all distributive lattices, we have the following.

Theorem 3.1. There is a finite distributive lattice P that is not MacNeille transferable for
the class K of lattices whose MacNeille completions are distributive.

Proof. Consider the lattices P , in Figure 1 at left, and K, in Figure 1 at right. Here the
shaded middle portion of K is ([0,1] × [0,1]) ∖ {(0,1), (1,0)}, the product of two copies of
the unit interval with the “corners” removed. The MacNeille completion K simply reinserts
the missing “corners”, and there is a lattice embedding of P into K. Using the fact that
[0,1]× [0,1] does not contain a sublattice isomorphic to the 8-element Boolean algebra and
([0,1] × [0,1]) ∖ {(0,1), (1,0)} does not have any complemented elements, it is easily seen
that P is not isomorphic to a sublattice of K. �

Before moving to some positive results, we note that a lattice being projective in the class
of distributive lattices is not the same as it being distributive and projective in the class
of all lattices. The finite lattices that are projective in the class of distributive lattices are
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KP

Figure 1

characterized in [3] as exactly those where the meet of two join irreducible elements is join
irreducible (and 0 is considered join irreducible).

Theorem 3.2. Every finite lattice that is projective in the class of distributive lattices is
MacNeille transferable, {∧,∨,0}-MacNeille transferable, and {∧,∨,1}-MacNeille transferable
for the class of lattices, resp. lattices with 0 or with 1, whose MacNeille completions are
distributive.

Proof. We begin with the result for MacNeille transferability. Let P be a finite distributive
lattice that is projective in the class of distributive lattices. Let K be a distributive lattice
whose MacNeille completion is distributive, and let ϕ ∶ P → K be a lattice embedding. By
Theorem 2.7, there is a ∧-embedding χ ∶ P →K. Since P is projective in distributive lattices,
the set of join irreducibles J in P forms a ∧-sub semilattice of P , and χ∣J ∶ J → K is a ∧-
embedding. Define χ′ ∶ P → K by setting χ′(x) = ⋁{χ(a) ∶ a ∈ J and a ≤ x}. It is shown in
[3, Thm. 4] that χ′ is a lattice homomorphism, and since χ is order preserving, χ′(x) ≤ χ(x)
for each x ∈ P . To see that χ′ is an embedding, suppose x, y ∈ P with χ′(x) ≤ χ′(y) and a ∈ J
with a ≤ x. Then χ(a) = χ′(a) ≤ χ′(x) ≤ χ′(y) ≤ χ(y), and as χ is an embedding a ≤ y. Since
x is the join of the members of J beneath it, x ≤ y. So χ′ ∶ P → K is a lattice embedding,
showing P is MacNeille transferable.

Showing that P is {∧,∨,0}-MacNeille transferable for the class of lattices with a 0 whose
MacNeille completion is distributive is nearly identical. One uses Theorem 2.7 to obtain a
{∧,0}-embedding χ ∶ P → K, and notes that 0 ∈ J . Since the lattice embedding χ′ ∶ P → K
produced agrees with χ on J , it follows that χ′ preserves 0. The result for {∧,∨,1}-MacNeille
transferability follows by symmetry. �

Remark 3.3. The above theorem can be obtained using the transferability of finite dis-
tributive lattices in the class of all distributive lattices rather than using Theorem 2.7.

We next provide notation and detail for the linear sums in Theorem 2.5 of Galvin and
Jónsson [12]. This theorem will be used to show that there are finite non-projective distribu-
tive lattices that are MacNeille transferable for distributive lattices.

Definition 3.4. Let A be a chain, and for each a ∈ A let (Ka,≤a) be a lattice. Then the
linear sum ⊕AKa is the disjoint union of the Ka with the ordering ≤ given by setting x ≤ y
iff x ∈Ka and y ∈Kb for some a < b, or x, y ∈Ka for some a and x ≤a y.
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Theorem 3.5. Let D be the seven-element distributive lattice that has a doubly reducible
element shown in Figure 2. Then D is MacNeille transferable for the class of distributive
lattices.

D

Figure 2

Proof. Suppose that K is a distributive lattice that does not contain D as a sublattice. We
must show that K does not contain D as a sublattice. By Theorem 2.5, K is a linear sum of
lattices ⊕AKa with each Ka isomorphic to either an 8-element Boolean algebra, a 1-element
lattice, or 2 ×C for a chain C. We describe the MacNeille completion of K.

For x ∈ A, let Mx =Kx if x ∈ A, and let Mx = {x} be a 1-element lattice otherwise. Let 0x
be the least element of Mx and 1x be the greatest element of Mx. Set M =⊕AMx.

If S ⊆ M , let S′ = {x ∈ A ∶ S ∩Mx ≠ ∅}, and let z = ⋁A S′. Then it is not difficult to
see that ⋁M S = ⋁Mz

(S ∩Mz) with it understood that the join of the emptyset in Mz is 0z.
Similar remarks hold for ⋀M S. Thus, M is complete and clearly K is a sublattice of M .

We consider the matter of K being join dense in M . Suppose p = 0z where z ∈ A is the join
of the elements of A strictly beneath it. This includes the case when p ∈Mz for any z ∈ A∖A
since then Mz is a singleton lattice. Suppose that p ∈Mz where z ∈ A. If ↓p ∩Kz ≠ ∅, then
p = ⋁M ↓p ∩Kz. If ↓p ∩Kp = ∅, then it must be that p = 0z and 0z /∈ Kz. The first case still
covers this situation if z is the join of the elements in A strictly beneath it. Otherwise z ∈ A
covers an element y ∈ A, p = 0z, and Kz has no least element. In this case, p is not the join
in M of the elements of K beneath it. Similar remarks apply to meet density.

Define a special covering pair in M to be an ordered pair formed from elements 1x,0y
where x, y ∈ A with x covered by y and either 1x /∈ Kx or 0y /∈ Ky. This implies that 1x is
join irreducible in M , or 0y is meet irreducible in M , or both. Let θ be the set of all special
covering pairs union the diagonal relation on M . It is easy to see that special covering pairs
cannot overlap, and hence θ is a congruence relation. The quotient M/θ is the MacNeille
completion K.

It remains to show that K = M/θ has no doubly reducible elements, and hence does
not have a sublattice that is isomorphic to D. Along the way, we will show that M/θ is
distributive. Let z ∈ A. Then Mz is either a 1-element lattice, the MacNeille completion
of an 8-element Boolean algebra, which is an 8-element Boolean algebra, or 2 ×C for some
chain C. The MacNeille completion 2 ×C depends on whether C is bounded. If it is, then
2 ×C = 2 ×C. If C has a top, but no bottom, then 2 ×C = (2 ×C) ∖ {(1,0C)}, and so forth.

But in any case 2 ×C is a sublattice of 2 ×C. Therefore, each summand Mz is distributive
and has no doubly reducible elements. Thus, M is distributive and has no doubly reducible
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elements. In forming the quotient M/θ we only collapse covering pairs where either the lower
half is not a proper join, or the upper half is not a proper meet, and hence introduce no
doubly reducible elements into the quotient. �

Problem 2. Classify the finite distributive lattices that are MacNeille transferable for the
class of lattices whose MacNeille completions are distributive.

4. MacNeille transferability for Heyting algebras

In this section we consider τ -MacNeille transferability for the class H of Heyting algebras.
Here we treat members of H as bounded lattices and note that the notion of MacNeille
transferability does not involve the Heyting implication. Since the MacNeille completion of
a Heyting algebra is distributive, results of the previous section give the following.

Theorem 4.1. If P is a finite distributive lattice that is projective in distributive lattices,
then P is MacNeille transferable for H, and the 7-element distributive lattice D of Figure 2
is MacNeille transferable for H.

We turn attention to {∧,∨,0,1}-MacNeille transferability for H. Using Theorem 3.2,
Proposition 2.9, and the fact that for a Heyting algebra K each principle ideal (↓k)K and
filter (↑k)K are Heyting algebras, gives the following.

Theorem 4.2. For a finite distributive lattice P that is projective in distributive lattices,
0 ⊕P , P ⊕1, and 0⊕P ⊕1 are {∧,∨,0,1}-MacNeille transferable for H, and for the 7-element
distributive lattice D of Figure 2, 0⊕D ⊕ 1 is {∧,∨,0,1}-MacNeille transferable for H.

We consider a closely related result, but one that to the best of our knowledge requires a
completely different approach.

Theorem 4.3. For the 7-element distributive lattice D with a doubly reducible element shown
in Figure 2, D ⊕ 1 is {∧,∨,0,1}-MacNeille transferable for H.

Proof. Let K be a Heyting algebra and suppose there is a bounded sublattice of K isomorphic
to D⊕1. Then there are normal ideals P,Q,R,S of K situated as in Figure 3. We will show
that K has a bounded sublattice isomorphic to D ⊕ 1.

P Q

R S

0

1

Figure 3
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If there are 0 < p1 < p ∈ P and 0 < q1 < q ∈ Q, then since P ∧Q = 0 implies that p ∧ q = 0, it
follows from applications of the distributive law that {0, p1, q1, p1 ∨ q1, p∨ q1, q ∨ p1, p∨ q,1} is
a bounded sublattice of K isomorphic to D ⊕ 1. So one of P,Q must be an atom of K and
hence an atom of K. We assume P = ↓p where p is an atom of K.

Choose r ∈ R ∖ S and s ∈ S ∖R with p ≤ r, s. Since K is a Heyting subalgebra of K (see,
e.g., [19, Sec. 2]), the pseudocomplement p∗ of p in K is the pseudocomplement of p in K.
Therefore, p∗ ≥ Q, giving p∨ p∗ ≥ P ∨Q = R ∧S ≥ r ∧ s. It follows that p∨ (r ∧ s∧ p∗) = r ∧ s.
Thus, {0, p, r∧s∧p∗, r∧s, r, s, r∨s,1} is a bounded sublattice of K isomorphic to D⊕1. �

To make further progress with positive results, we consider more restrictive classes of
Heyting algebras. We assume the reader is familiar with Esakia duality for Heyting algebras
[11, 4].

Definition 4.4. Let K be a Heyting algebra, X the Esakia space of K, and n ≥ 1 a natural
number. We say that K and X have width n if n is the maximal cardinality of an antichain
in X and that K and X have top width n if n is the cardinality of the maximum of X. Let
Hw be the class of Heyting algebras of finite width, and Ht the class of Heyting algebras of
finite top width.

Let K be a Heyting algebra. We call S ⊆K orthogonal if x∧y = 0 for any distinct x, y ∈ S.
An element x of K is regular if x = x∗∗ where x∗ is the pseudocomplement of x. It is well
known (see, e.g., [24, Sec. IV.6]) that the regular elements form a Boolean algebra B that is
a {∧,0}-subalgebra of K. So an orthogonal set in B is an orthogonal set in K. The following
lemmas are easily proved.

Lemma 4.5. Let K be a Heyting algebra and n ≥ 1 a natural number. Then K has width at
most n iff 2n+1 is not isomorphic to a sublattice of K.

Lemma 4.6. Let K be a Heyting algebra, B the Boolean algebra of regular elements of K,
and n ≥ 1 a natural number. The following are equivalent.

(1) K has top width at most n.
(2) 2n+1 ⊕ 1 is not isomorphic to a bounded sublattice of K.
(3) The maximal cardinality of an orthogonal set in K is at most n.
(4) ∣B∣ ≤ 2n.

If a finite distributive lattice P is MacNeille transferable for H, then by definition it is
MacNeille transferable for Hw. The converse holds as well, since P is a sublattice of finite
Boolean algebra, hence of any Heyting algebra that is not of finite width. Similar reasoning
shows that P ⊕ 1 is MacNeille transferable for Ht iff P ⊕ 1 is MacNeille transferable for H.
However, the notion of {∧,∨,0,1}-MacNeille transferability for Hw and Ht differs from that
of H. We begin with the following.

Lemma 4.7. If K is a Heyting algebra of finite top width, then the complemented elements
of the MacNeille completion K belong to K.

Proof. Let x be a complemented element of K. For any z ∈K we have z = (z ∧x)∨ (z ∧x∗).
Since K is a Heyting subalgebra of K, for a ∈K, we have that a∗ is the pseudocomplement
of a in both K and K. Suppose a ≤ x. Then a ≤ a∗∗ ≤ x∗∗ = x. So the normal ideal
N = {a ∈ K ∶ a ≤ x} is generated by regular elements of K, and for regular elements a, b ∈ N
we have a⊔ b = (a∨ b)∗∗ ∈ N . Since K has finite top width, by Lemma 4.6, there are finitely
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many regular elements of K. Therefore, there is a largest regular element in N , so N is a
principal ideal of K. Since K is join dense in K, we have x = ⋁N , hence x ∈K. �

Remark 4.8. Lemma 4.7 may be false without the assumption of finite top width as is seen
by considering the MacNeille completion of an incomplete Boolean algebra.

Theorem 4.9. The class of finite lattices that are {∧,∨,0,1}-MacNeille transferable for the
class Ht of Heyting algebras of finite top width is closed under finite products, as is the
class of finite lattices that are {∧,∨,0,1}-MacNeille transferable for the class Hw of Heyting
algebras of finite width.

Proof. Let P,Q be finite lattices that are {∧,∨,0,1}-MacNeille transferable for Ht. Suppose
that K ∈ Ht and ϕ ∶ P × Q → K is a bounded lattice embedding. Let ϕ(1,0) = x and
ϕ(0,1) = y. Then x, y are complemented elements of K, and since K is of finite top width,
Lemma 4.7 implies x, y ∈K.

The restrictions ϕ ∣ ↓(1,0) ∶ ↓(1,0) → (↓x)K and ϕ ∣ ↓(0,1) ∶ ↓(0,1) → (↓y)K are bounded
lattice embeddings. But ↓(1,0) and ↓(0,1) are isomorphic to P and Q respectively, while

(↓x)K and (↓y)K are isomorphic to (↓x)K and (↓y)K respectively. Since P and Q are
{∧,∨,0,1}-MacNeille transferable for Ht and the Heyting algebras (↓x)K and (↓y)K belong
to Ht, there are bounded sublattices of (↓x)K and (↓y)K isomorphic to P and Q respectively.
Since K is isomorphic to (↓x)K × (↓y)K , K has a bounded sublattice isomorphic to P ×Q.
The argument for Hw is identical, using that Hw ⊆ Ht. �

As we will see below, the class of finite lattices that are {∧,∨,0,1}-MacNeille transferable
for H is not closed under binary products. In fact, Theorem 4.12 shows that the product
of any two finite distributive lattices is not {∧,∨,0,1}-MacNeille transferable for H. Thus,
the results of Theorem 4.9 fail if we replace Ht or Hw by H. To establish this we require a
preliminary definition and lemma.

Definition 4.10. For a natural number n ≥ 1 let Sn be the finite connected poset shown in
Figure 4.

. . .

y1 y2 yn−1 yn

x1 x2 xnxn−1

Sn

Figure 4

Lemma 4.11. For each finite connected poset F , there is a natural number n ≥ 1 and an
order preserving map from Sn onto F .

Proof. Let T1, . . . , Tk be trees with respective roots r1, . . . , rk. Suppose for each Ti there
are two distinct maximal nodes tli and tri such that for 2 ≤ i ≤ k we have tri−1 = tli and
Ti−1 ∩ Ti = {tri−1}, and Ti ∩ Tj = ∅ for j ∉ {i − 1, i, i + 1}, as shown in Figure 5.
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. . .

tr1 tr2 trk−2 trk−1

r1 r2 rk−1 rk

Figure 5

Let T be the union of the Ti. By [7, Lem. 16], for every finite connected poset F there is a
T as above such that F is a p-morphic image of T . Since p-morphisms are order preserving
maps, without loss of generality we may assume that F is T = ⋃ki=1 Ti. We then define
recursively

n1 = ∣T1∣ − 1

ni = ni−1 + ∣Ti∣ − 2 for 2 ≤ i ≤ k.
Let n = nk and define a map h ∶ Sn → F as follows. Let h map y1, . . . , yn1−1 bijectively onto

T1 ∖ {r1, tr1}. The exact nature of this bijection is irrelevant. Let h map x1, . . . , xn1 to r1 and
yn1 to tr1. For each 2 ≤ i < k let h map yni−1+1, . . . , yni−1 bijectively onto Ti ∖ {ri, tli, tri}, map
xni−1+1, . . . , xni

to ri, and map yni
to tri . Finally, let h map ynk−1+1, . . . , yn bijectively onto

Tk ∖ {rk, tlk} and map xnk−1+1, . . . , xn to rk. Then h is the desired map. �

Theorem 4.12. If P is a finite distributive lattice with a complemented element a ≠ 0,1,
then P is not {∧,∨,0,1}-MacNeille transferable for H.

Proof. Let X be the Esakia space whose domain is {xi, yi,wi, zi ∣ i ≥ 1} ∪ {∞} and that is
topologized by the one-point compactification of the discrete topology on {xi, yi,wi, zi ∣ i ≥ 1}
with compactification point ∞ and whose ordering is as shown in Figure 6.

. . . . . .

y1 y2

x1 x2

z1z2

w1w2

∞

X

Figure 6

Let K be the Heyting algebra of clopen upsets of X. Since ∅,X are the only clopen upsets
of X that are also downsets, the only complemented elements of K are 0,1.

For an Esakia space Y , we let Y be the Esakia space of the MacNeille completion of
the Heyting algebra corresponding to Y . Since K is in fact a bi-Heyting algebra, by [19,
Thm. 3.8], the elements of the MacNeille completion of K are the regular open upsets of
X. Therefore, {xi, yi ∣ i ≥ 1} and {wi, zi ∣ i ≥ 1} are the new complemented elements of K.
Thus, X has domain {xi, yi,wi, zi ∣ i ≥ 1} ∪ {∞1,∞2} that is topologized by the two-point
compactification of {xi, yi,wi, zi ∣ i ≥ 1}. Consequently, X is the disjoint union of two Esakia
spaces X1 and X2, each of which carries the topology of the one-point compactification of
the discrete topology on {xi, yi ∣ i ≥ 1} and {wi, zi ∣ i ≥ 1}, respectively; see Figure 7.
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. . . . . .

y1 y2

x1 x2

z1z2

w1w2

∞1 ∞2

X

Figure 7

To show that P is not {∧,∨,0,1}-MacNeille transferable for H, by Esakia duality, it is
sufficient to construct an Esakia space Y such that the Esakia dual E of P is a continuous
order preserving image of Y but not of Y . Since P has a complemented element a ≠ 0,1,
the finite poset E is disconnected. Let E = F1 ∪ ⋅ ⋅ ⋅ ∪ Fm be the decomposition of E into
connected components.

First suppose that m = 2, so E = F1 ∪ F2. If there were a continuous order preserving
onto map f ∶ X → E, then the inverse image of the upset of E corresponding to a would be
a complemented element of K different from 0,1. Since this is a contradiction, there is no
continuous order preserving map from X onto E.

We show that there is a continuous order preserving map from X onto E. By Lemma 4.11,
there are n1 and n2 and order preserving onto maps h1 ∶ Sn1 → F1 and h2 ∶ Sn2 → F2. We
have that X is the disjoint union of X1 and X2 and we can regard Sn1 as a subposet of X1

and Sn2 as a subposet of X2 in the obvious way. Let m1 be a minimal element of F1 that is
below h1(yn1) and let m2 be a minimal element of F2 that is below h2(yn2). Define

h(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

h1(s) if s ∈ Sn1 ,

h2(s) if s ∈ Sn2 ,

m1 if s ∈X1 ∖ Sn1 ,

m2 if s ∈X2 ∖ Sn2 .

Then h is the desired continuous order preserving onto map.
If m > 2, then define Y to be the disjoint union of X and F3, . . . , Fm. Then Y is the disjoint

union of X and F3, . . . , Fm. Since E has m components and Y has m − 1 components, there
is no continuous order preserving map from Y onto E. But an obvious modification of the
above argument provides a continuous order preserving map from Y onto E. �

To conclude this section, we give an example to show that even in the setting of Heyting
algebras, sharp MacNeille transferability is not the norm.

Proposition 4.13. The lattice D of Figure 2 is not sharply MacNeille transferable for H.

Proof. Let L =K⊕22, where K is the sublattice of R2 with domain

{(x, y) ∣ 0 ≤ x < 1,0 ≤ y ≤ x} ∪ {(x, y) ∣ 1 < x ≤ 2,0 ≤ y ≤ 1}.
It is routine to verify that K and L are Heyting algebras. The MacNeille completion L of
L inserts the “missing” line {(1, y) ∈ R2 ∣ 0 ≤ y ≤ 1}. We can visualize L and L as follows in
Figure 8. The black circles in the picture of L̄ define a lattice embedding ϕ from D into L.

Suppose there is a lattice embedding ϕ′ ∶D → L that is sharp, meaning that ϕ′(x) ≤ ϕ(y)
iff x ≤ y. Recall that D = 22⊕22 is built from two 4-element Boolean algebras. Since ϕ′ is
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1 2

L

1 2

L

Figure 8

sharp, ϕ and ϕ′ must agree on the upper copy of 22 comprising D. So ϕ′ maps the doubly
reducible element of D to (2,1). Since ϕ maps the bottom element of D to (1,0), ϕ′ must
map the bottom element of D to some (a,0) with a < 1. But there do not exist elements in
L whose meet is (a,0) where a < 1 and whose join is (2,1). �

Among many open problems in this area, the following seems to us the most pressing. We
expect the answer is negative, but that a counterexample is quite involved.

Problem 3. Is every finite distributive lattice P MacNeille transferable for H?

5. Bi-Heyting algebras

Restricting attention to the class of bi-Heyting algebras, stronger results of a positive
nature are possible. Recall that a Heyting algebra A is a bi-Heyting algebra if the order
dual of A is also a Heyting algebra. Note that the property of being a bi-Heyting algebra is
preserved under MacNeille completions (see, e.g., [19]).

Lemma 5.1. Let A be a Heyting algebra of finite width and X the Esakia space of A. If
U,V are regular open upsets of X, then so is U ∪ V .

Proof. Suppose the width of A is n. Then the width of X is n, and by [10, p. 3], X can be
covered by n maximal chains C1, . . . ,Cn. By [11, Lem. III.2.8], each of these maximal chains
is closed in X. To show that U∪V is regular open, it is enough to show that IC(U∪V ) ⊆ U∪V
where I and C are the interior and closure operators.

Let x ∈ IC(U ∪ V ). Then there is a clopen set K with x ∈ K ⊆ C(U ∪ V ) = C(U) ∪ C(V ).
Let S = {i ∶ x ∈ Ci} and T = {i ∶ x /∈ Ci}. Consider the following statement

(A) U ∩Ci ⊆ C(V ) for each i ∈ S.
Suppose (A) holds. Then since D ∶= ⋃{Ci ∶ i ∈ T} is closed and x /∈ D, there is clopen K ′

with x ∈K ′ ⊆K ⊆ C(U)∪C(V ) and K ′ disjoint from D. Therefore, K ′ ⊆ (K ′∩C(U))∪C(V ).
Since C1∪⋯∪Cn covers X and K ′ is disjoint from D, and hence disjoint from each Ci = C(Ci)
for i ∈ T , we have K ′ ∩ C(U) = ⋃{K ′ ∩ C(U ∩ Ci) ∶ i ∈ S}. Then condition (A) gives that
K ′ ∩ C(U) ⊆ C(V ), hence K ′ ⊆ C(V ). Thus, x ∈ IC(V ) = V .

Suppose that (A) does not hold. Then there is i with x ∈ Ci and U ∩ Ci /⊆ C(V ). Let
y ∈ U ∩Ci with y /∈ C(V ). Note that if x ∈ U , then there is nothing in showing that x ∈ U ∪V ,
and if x /∈ U , then since x, y belong to the chain Ci and U is an upset, we must have x < y.
Since y /∈ C(V ), there is clopen G with y ∈ G and G disjoint from V . So G is disjoint from
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C(V ). Since X is an Esakia space and V is an upset, C(V ) is an upset. Therefore, G
disjoint from C(V ) implies that the clopen set ↓G is disjoint from C(V ). Thus, K ′ =K ∩ ↓G
is a clopen neighborhood of x disjoint from C(V ). Since K ′ ⊆ K ⊆ C(U) ∪ C(V ), we have
K ′ ⊆ C(U). Consequently, x ∈ IC(U) = U . �

Proposition 5.2. If A is a bi-Heyting algebra of finite width, then A is a bounded sublattice
of IA.

Proof. Let X be the Esakia space of A. It is well known that IA is isomorphic to the open
upsets of X, and since A is a bi-Heyting algebra, by [19, Thm. 3.8], A is isomorphic to
the regular open upsets of X. By Lemma 5.1, regular open upsets of X form a bounded
sublattice of open upsets of X. The result follows. �

As a consequence, we obtain the following.

Theorem 5.3. Every finite distributive lattice is sharply MacNeille transferable for the class
of bi-Heyting algebras of finite width, and MacNeille transferable for the class of all bi-Heyting
algebras.

Proof. Let P be a finite distributive lattice. If A is a bi-Heyting algebra of finite width
and ϕ ∶ P → A is a lattice embedding, then since A is a sublattice of IA, we may consider
ϕ ∶ P → IA. Then sharp MacNeille transferability follows from Theorem 1.2. That P is
MacNeille transferable for the class of all bi-Heyting algebras follows since P is a sublattice
of a finite Boolean algebra, and hence of any bi-Heyting algebra that is not of finite width. �

6. Stable universal classes and stable intermediate logics

In this section we show how to produce stable universal classes of Heyting algebras [5, 6]
closed under MacNeille completions and draw implications for stable intermediate logics.
This was the original motivation for this study.

Definition 6.1. A class K of Heyting algebras is stable if whenever A,B are Heyting algebras
with A ∈ K and B isomorphic to a bounded sublattice of A, we have B ∈ K.

It is known [5, 6] that a universal class K of Heyting algebras is stable iff there is a set P
of finite distributive lattices such that K consists of those Heyting algebras K such that no
member of P is isomorphic to a bounded sublattice of K. It is convenient to introduce the
following notation

H(P) = {K ∈ H ∶K has no bounded sublattice isomorphic to any P ∈ P}.
The definition of τ -MacNeille transferability for τ = {∧,∨,0,1} gives the following.

Proposition 6.2. Let P be a set of finite lattices where each P ∈ P is {∧,∨,0,1}-MacNeille
transferable for H. Then the stable class H(P) is closed under MacNeille completions.

Theorems 4.2 and 4.3 entail:

Theorem 6.3. Let P be a finite distributive lattice that is projective in distributive lattices.

(1) The stable classes H(0⊕P ), H(P ⊕1), and H(0⊕P ⊕1) are closed under MacNeille
completions.

(2) The stable classes H(0 ⊕D ⊕ 1) and H(D ⊕ 1), with D as in Figure 2, are closed
under MacNeille completions.
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Remark 6.4. Theorem 6.3(1) is based on Theorem 2.7, which says that the class of lat-
tices that do not contain a {∧,0,1}-subalgebra isomorphic to P is closed under MacNeille
completions. Using syntactic methods, an analogous result for residuated lattices was given
in [9]. These results overlap in the setting of Heyting algebras (see [22]), and can be used
to provide examples of stable classes that are closed under MacNeille completions based on
omitting finite projective distributive lattices. However, since the lattices D⊕1 and 0⊕D⊕1
are not projective in distributive lattices, the results of Theorem 6.3(2) do not fall in the
scope of the results of [9].

There is a related method to create stable classes of Heyting algebras that are closed under
MacNeille completions. Note that for a finite lattice P and bounded lattice K, that P is
isomorphic to a sublattice of K iff at least one of P,0 ⊕ P,P ⊕ 1,0 ⊕ P ⊕ 1 is a bounded
sublattice of K. The following result for a finite lattice P that is MacNeille transferable for
H is immediate, and has obvious generalization to a set of such MacNeille transferable P .

Theorem 6.5. Let P be a finite lattice that is MacNeille transferable for H. Then for
P = {P,0⊕P,P ⊕1,0⊕P ⊕1}, the stable class H(P) is closed under MacNeille completions.

Recall from Section 4 that by Ht and Hw we denote the classes of Heyting algebras of
finite top-width and of finite width, respectively.

Theorem 6.6. Let P be a set of finite lattices that are {∧,∨,0,1}-MacNeille transferable
for Ht and let n ≥ 1 be a natural number. Then for P ′ = P ∪ {2n ⊕ 1}, the stable class H(P ′)
is closed under MacNeille completions. Similarly, if P is a set of finite lattices that are
{∧,∨,0,1}-MacNeille transferable for Hw, then for P ′′ = P ∪ {2n,0 ⊕ 2n,2n ⊕ 1,0 ⊕ 2n ⊕ 1},
the stable class H(P ′′) is closed under MacNeille completions.

Proof. Suppose K ∈ H(P ′). Then K has no bounded sublattice isomorphic to 2n ⊕ 1, so by
Lemma 4.6, K has finite top width, hence belongs to Ht. Since every finite Boolean algebra is
projective in distributive lattices [3], Theorem 6.3 provides that 2n⊕1 is {∧,∨,0,1}-MacNeille
transferable for H. Thus, K has no bounded sublattice isomorphic to 2n ⊕ 1. Also, since
each P ∈ P is {∧,∨,0,1}-MacNeille transferable for Ht and K ∈ Ht, we have that K contains
no bounded sublattice isomorphic to any P ∈ P. So K ∈ H(P ′). The result for Hw is similar,
using that each 2n is MacNeille transferable for H, Lemma 4.5, and Theorem 6.5. �

Remark 6.7. Our primary examples of finite distributive lattices that are {∧,∨,0,1}-
MacNeille transferable for H are those of the shape 0 ⊕ P , P ⊕ 1, and 0 ⊕ P ⊕ 1 for some
finite projective distributive lattice P , and the lattices 0 ⊕D ⊕ 1 and D ⊕ 1. We can make
stable classes that are closed under MacNeille completions directly from these lattices as in
Theorems 6.3 and 6.5.

Since {∧,∨,0,1}-MacNeille transferability for H implies that for Ht and Hw, by Theo-
rem 4.9, we can take finite products of these lattices, and then use Theorem 6.6 to produce
stable classes that are closed under MacNeille completions. This provides a range of ex-
amples of stable universal classes that are closed under MacNeille completions that are not
within the scope of [9].

Finally, we discuss the impact of our results on the stable intermediate logics from [5, 6].
Recall that an intermediate logic is stable if its corresponding variety is generated by a stable
universal class of Heyting algebras. Thus, the above results produce stable intermediate logics
generated by stable universal classes that are closed under MacNeille completions. Due to
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[15] such logics are always canonical. Two stable universal classes may generate the same
variety and hence give rise to the same stable intermediate logic while one of them is closed
under MacNeille completions and the other is not. For instance, H(22) and H(0⊕ 22) both
generate the variety of all Heyting algebras H, but by Theorems 6.3 and 4.12, respectively,
H(0⊕ 22) is closed under MacNeille completions while H(22) is not. The following is open.

Problem 4. Is every stable intermediate logic generated by a stable universal class that is
closed under MacNeille completions?

The following provides an infinite family of stable intermediate logics each of which is
determined by a stable universal class closed under MacNeille completions. None of these
logics is covered by the results of [9].

Proposition 6.8. For a natural number n ≥ 1, let Ln be the logic of the stable universal
class Hn ∶= H({D⊕1, 2n, 0⊕2n, 2n⊕1, 0⊕2n⊕1}). Then {Ln ∣ n ≥ 1} is an infinite family of
stable intermediate logics each of which is determined by a stable universal class of Heyting
algebras closed under MacNeille completions.

Proof. By Theorem 6.6, Hn is closed under MacNeille completions. Therefore, each Ln is
a stable intermediate logic determined by a stable universal class closed under MacNeille
completions. By [6], a subdirectly irreducible Heyting algebra K validates Ln iff none of the
algebras D ⊕ 1, 2n, 0⊕ 2n, 2n ⊕ 1, or 0⊕ 2n ⊕ 1 is isomorphic to a bounded sublattice of K.
If m > n, then 0⊕ 2n ⊕ 1 validates Lm but refutes Ln, so Lm ≠ Ln. �
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