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Abstract. This paper is a light walk along interfaces between logic and
probability, triggered by a chance encounter with Ed Brinksma. It is not
a research paper, or a literature survey, but a pointer to issues. I discuss
both direct combinations of logic and probability and structured ways in
which logic can be seen as a qualitative version of probability theory. I
end by sketching a concrete program for classifying qualitative scenarios
that would lend themselves to simple logical reasoning methods, but I
also acknowledge a challenge: the ‘unreasonable effective of probability’.

1 Introduction

When I met Ed Brinksma recently in the “Glazen Zaal” in Den Haag, old mem-
ories came back of a very special student in Groningen, clearly ‘a cut above the
crowd’, who wrote a pioneering thesis on interpolation in dynamic logic (still a
live topic even today), and who turned my lecture notes on mathematical logic
into a highly effective didactic manual that attracted many students over the
years. I have followed Ed’s career ever since, and find traces of encounters in my
archive, such as our contributions printed side by side in a volume of the popular
magazine “De Automatiseringsgids” in 1993, when, to some, computer science
seemed to be in crisis, just as it was making a giant leap toward transforming
our world. And there is of course his blazing trajectory as a Rector at the Uni-
versity of Twente, which I followed in the press, with, I confess, a tinge of pride
in having contributed my bit to this higher flight.

But our conversation was about something else, namely, Ed’s ideas on ‘reso-
nance’ as a basis for communication, rather than elaborate logical models. This
struck me since I had been thinking on similar lines, inspired by an introduction
to cognitive science, [32], that made a distinction between two aspects of com-
munication: ‘transfer’ of message content, and ‘resonance’ between the actors.
The latter seems a precondition for the former to succeed.

I have thought a lot about this distinction, which seems real to me. I always
tell my students who get a job interview that now is not the time to do still more
transfer of information about how clever they are. It is not about touting their
latest papers, and their brilliant new projects, but rather, about establishing
resonance with a committee trying to decide whether this (perhaps too) clever
young person is someone they would like to have as a colleague.
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But how to model resonance, real as it is? I can list many topics in my environ-
ment of logics of agency and philosophy of action that go a bit in this direction,
such as common knowledge, opinion aggregation, or network dynamics, but they
never seem to jell into one coherent picture, so all I have are accumulated notes
in closed drawers. Now Ed seemed to think (it was a noisy reception, resonance
by eye contact was easier than transfer) that all this presented a challenge to
logic, and that we would need probabilistic models. So, here is my topic.

2 Logic and probability

These are days of tension, or armed neutrality, between logical and statistical
approaches to communication, language, and cognition. On the classical logical
model of deliberative agents that communicate or interact, reasoning plays an
important role, including complex ‘theory of mind’: what I believe about your
beliefs about my beliefs, and upward. Much of my own work has been in this
line, [34], [36], and the resulting logics of agency – also those by colleagues in
computer science – are ever more sophisticated, but also, I am unhappy to say:
ever more complex. It becomes a miracle that human interaction works at all. So,
here is an alternative approach. We look for simple statistical patterns in human
language and interaction, and explain observed behavior in terms of these. This
contrast is sometimes cast in terms of ‘high rationality’ versus ‘low rationality’,
[30]. Simple statistical models often explain emergent stable patterns in behavior
just as well as complex logical theories with highly baroque sets of notions.

This is not just the usual sniping between competing academic disciplines.
These issues are also potentially radical in their consequences for our daily lives.
Take ethics and how we should behave. Classical ethical theory is reason-based,
and the reasons why we engage in moral behavior toward others are cemented
by complex logical and game-theoretic scenarios, a form of high rationality in
the normative realm bequeathed to us by great minds like Immanuel Kant or
John Rawls. Of course, there are people who do not play by the rules: criminals,
or profiteers that play the system. But on the whole, society is in equilibrium.
Now consider a low-rationality alternative without deep reasoning. There just
happen to be two types of humans: predators (who do not follow the rules), and
prey (those who do). Then a simple biological model for their encounters leads
to an evolutionary game with probabilistic equilibria having stable percentages
of predators and prey in the long run. Thus, stability has been explained in much
simpler, and also less fragile, terms. And incidentally, those biological models do
work on simple resonance (whether positive or negative) in terms of what the
two types of beast do in their encounters.

The mathematics of the low rationality approach is statistics, dynamical
systems, and evolutionary rather than classical game theory. And so a question
arises, at least for someone like me. Is there any place left for logic? Well, the
interface of logic and dynamical systems is an exciting new topic with old roots
that I have discussed elsewhere, [37], and we are only at the beginning, [20].
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But in this paper, I want to strike out in an even more general direction,
focusing on just one aspect of dynamical systems. The rest of this little piece
will try to paint a light picture of actual encounters between logic and probability,
not in hostile or plaintive mode, but as serious paradigms treated on a par.

3 A shared history

Qualitative deductive logic produces absolute certainty, but in a limited range,
with its greatest triumphs perhaps in mathematics or automated deduction. In
contrast, quantitative probability produces less certain conclusions, but it applies
to all of life around us. But this way of phrasing the divide may create a spurious
tension. It is important to realize that there is a good deal of harmony as well,
and this section provides a few pointers.

Clearly, in our ordinary reasoning, probabilistic and logical steps proceed in
tandem. One takes over where the other seems less appropriate. And indeed,
this harmony can also be observed in the history of logic. Great logicians of the
19th century did not make sharp distinctions here. John Stuart Mill’s highly
influential “System of Logic” presents both logical and probabilistic rules for
good reasoning, and it seems odd to say that he was confused between logic and
probability theory, or between logic and methodology. Bernard Bolzano’s “Wis-
senschaftslehre”, another classical gem, even says that the task of logic is to chart
all natural styles of human reasoning, which can be task-dependent, and he in-
cludes probabilistic reasoning among these. Similar views occur with Charles
Saunders Peirce on the entanglement of deduction, induction (more probabilis-
tic), and abduction (reasoning to the best explanation). And here is a title which
says it all: George Boole’s “An Investigation of the Laws of Thought on Which
are Founded the Mathematical Theories of Logic and Probabilities”. It is only
with the birth of modern mathematical logic in Frege’s “Begriffsschrift” that
probability drops out, presumably because probability spaces live somewhere
inside the set-theoretic universe, and thus have been ‘dealt with’ at the strato-
spheric abstraction level of the foundations of mathematics.

But even in a beginning modern logic course, numbers and probability come
in naturally on top of the base structure. We normally give binary judgments of
validity and non-validity for proposed inference patterns, say,

¬B,A→ B =⇒ ¬A (valid) versus ¬A,A→ B =⇒ ¬B (invalid)

But there is more: among the non-validities, some seem worse than others. For
instance, the inference ¬A,A → B =⇒ ¬B gets things wrong in half of the
cases, but the invalid A∨B =⇒ ¬(A∧B) only in one of three cases. This is not
yet probability, but it is natural numerical structure right inside logic.

This link continues into probability theory. A probabilistic axiom such as

P (A ∨B) = P (A) + P (B)− P (A ∧B)

looks very much like propositional logic ‘continued by other means’.
In fact, similar comments can be made about the simple almost propositional

reasoning leading toward something as ubiquitous as Bayes’ Rule:
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P (A | B) = (P (B | A) ∗ P (A))/P (B) if P (B) 6= 0

Not surprisingly then, one of my favorite textbooks as a student (not on the
official curriculum, but not on the Index either) was Suppes’ “Introduction to
Logic” from the 1950s which also included quantitative topics as a matter of
course. It offers not just Venn Diagrams for syllogisms, but also Venn diagrams
with numerical information about their regions – not just deductive logic, but
also probability. And the same combinations can be seen in the creative work
of major philosophical logicians. Carnap created ‘inductive logic’, [4], Hintikka
developed numerical confirmation theory, [15], and Lewis moved happily from
qualitative theories of conditionals to the principles of probabilistic update over
time, [25]. This combination of interests is just natural, it will not go away.

With this in mind, let’s now explore other encounters of logic and probability.

4 Logical foundations of probability

Here is an obvious first encounter that still may still need stating. One place
where logic and probability can meet without conflict is at a meta-level, in the
foundations of probability. Theorems in probability theory have standard math-
ematical proofs, and so there is a deductive logic to the theory of non-deductive
reasoning. In this sense, Frege and the other founding fathers of mathematical
logic were right. But there are also more intimate foundational contacts.

Consider our national classic, Johan De Witt’s “Waerdije”, [7], the founding
document of modern insurance mathematics. At the start, the author gives an
explanation of the laws of probability – which he may have learnt from a pam-
phlet by Christiaan Huygens – in terms of rational betting behavior. The betting
connection is standard by now, and a famous version is the Dutch Book The-
orem, [19]. This says that obeying the standard laws of probability is the only
guarantee against having a ‘Dutch book’ made against you: that is, a system of
bets that is systematically unfavorable to you. (This link between probability
theory and financial gain is a pioneering instance of the ‘valorization’ so prized
by our university leaders today.) There is more to be found in this line, witness
[18] on justifications for qualitative probability. Indeed, I believe that one can
also profitably give Dutch Book theorems for laws of logic, in terms of avoiding
unsuccessful planning, but this theme would take me too far here.

And there is a deeper connection with logic as well. Pioneers of modern
probability, such as De Finetti, [6], believed that probability rests on a qualitative
notion, namely, a comparative binary connective between propositions:

A ≤ B B is more probable (more likely to be true) than A

De Finetti then proceeded to give axioms for this notion that allow for qualitative
reasoning. In addition to obvious properties of a reflexive transitive order, these
include intuitive laws of probability such as (with − for set complement)

A ≤ B if and only if (A−B) ≤ (B −A)
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From these, other natural principles follow, such as the propositional monotonic-
ity law saying that A ≤ B implies A ∧D ≤ B ∨ C.

The aim of this approach was a set of intuitive qualitative laws of reasoning that
would force the existence of a standard probability measure P such that

A ≤ B iff P (A) ≤ P (B), for all propositions A,B

Eventually, de Finetti’s set of principles did not work out, as was shown in a
famous technical counterexample in [21], a paper which also proposed necessary
and sufficient qualitative principles for probabilistic representation. An accessible
modern explanation of these matters can be found in [16].

Later on, Dana Scott gave a better-known streamlined version of necessary
and sufficient logical principles for probability, [29], but still, their very complex-
ity suggested by and large that this approach was a dead end. Much better to
just calculate with probability values directly, and drop logical purism!

However, De Finetti’s paradigm is not a closed chapter at the interface of
logic and probability, and we will return to it in Sections 6 and 7 below.

5 Probabilistic patterns in logic

Instead of looking for logical foundations for probability, we can also turn the
tables, and look for probabilistic patterns in the foundations of logic. Here are
a few strands that belong to this direction.

By the 1960s, the properties of first-order predicate logic, the logician’s tool
par excellence, had pretty much been discovered – and in 1969, Lindström’s
Theorem, [26], even stated a precise sense in which we had found a complete set
that captured the essence of this system. History seemed at its end.

But in the 1970s, a striking discovery was the Zero-One Law, [9], and inde-
pendently a Soviet team, which says the following. Take any first-order formula
A, and compute the probability Pn(A) of its being true on finite models of size
n (there are only finitely many such models up to isomorphism). As n goes to
infinity, the probability of Pn(A) will go toward either 1 or 0. It is even decidable
from the shape of the assertion A which of the two cases obtains. Many further
such results have been discovered. In other words, underneath qualitative logical
model theory, deep global statistical regularities have come to light – and in that
sense, we probably do not know the meta-theory of classical logic at all yet.

Other examples of significant statistical behavior have been discovered as
theorem provers started producing logs and outputs, making a vast store of ex-
perience available in how logical systems actually perform. One striking discovery
were physical ‘phase transitions’ in computation time for propositional satisfi-
ability problems, [27]: the average time toward an answer “satisfiable” or “not
satisfiability” first increases with input size qua number of formulas, eventually
it decreases, but the change is sharp for certain input sizes. These experiments
have been replicated, also with other measures of input complexity, and the
phenomenon seems robust: complexity of performance of logical systems has
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significant cliffs. Much progress has been made with analytical or logical expla-
nations, but I am not aware of any definitive theory. Even so, we may conclude
that the bulk behavior of proof systems, too, seems to hide important statistical
structure for whose study we need to combine logic and probability.

My final example goes further, but is also more speculative. The great meta-
theorems of classical logic all have a limitative character. Basic problems are
undefinable, non-axiomatizable, or undecidable. But how bad is this news really?
The undecidability of first-order logic says that no single effective algorithm can
decide validity correctly for arbitrary first-order formulas. But maybe there are
methods that decide most first-order formulas, or even almost all of them except
for a set of measure zero. Indeed, some results like this circulated in 2013, when
a Bay Area-based group of computer scientists proposed a truth definition for
arithmetic in a probabilistic first-order logic, [5], something that cannot be done
classically by Tarski’s Theorem. Of course, there is an all-important issue what
sort of probability measure we are talking about, and I doubt that there is a
consensus on the viability of these approaches. But there are versions which
seem bona fide, witness the earlier paper [13] on the decidability of the Halting
Problem on a set of asymptotic probability one. What I take from these results
is that probability might make sense as a means of enriching results even in the
heartland of mathematical logic. Even so, just in case: for a non-speculative and
authoritative survey of established uses of probability in logic, cf. [23].

There are many further serious contacts between logic and probability than
those enumerated here, starting from the 1960s until right today, in seminal work
by Haim Gaifman, Jens Erik Fenstad, Jeff Paris, Michiel van Lambalgen, and
many others. It would be tedious to bore the reader (and even worse, Ed) with
huge bibliographies containing all of this work, so instead, I continue with just
a few recent strands that I would like to highlight.

6 Mixed practices in language and reasoning

Leaving polemics aside, there are good reasons for connecting up numerical prob-
abilities and qualitative notions. In fact, this can be done in different ways.

One approach is modest, showing merely how logic and probability are not
at odds, but can co-exist fruitfully in systems combining virtues of both. One
such system is the ‘probabilistic dynamic-epistemic logic’ of [38], which has a
logical component dealing with update of agents’ knowledge and beliefs, and a
probabilistic component providing fine-structure to the logical part. This is not
just a case of living apart together. In the process of combining, perspectives
enter from both sides, and in this particular combined system, the logic suggests
new rules for update with new information, which distinguish three intuitively
different sorts of probability: prior probabilities representing the agents’ expe-
rience so far, occurrence probability representing what agents believe about the
current process they are observing, and observation probabilities recording the
quality, or the trust agents place in the new observation just made.
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A more ambitious approach to our interface would establish some deeper
functional connection between logical and probabilistic components in reasoning
and problem solving. Perhaps the most obvious way of thinking about this is a
division of labor: the logic is a qualitative counterpart for the probabilistic part,
to which it stands in some precise definable relation.

This is not just a theorist’s concern, there are indications that actual rea-
soning works in exactly this way. One such case rests on the fact that we use
natural language all the time in phrasing our daily decisions, arguing for them,
and even as academics, for explaining complex mathematical results, say quan-
titative insights about probability in more intelligible general terms.

Now the vocabulary of natural language has many notions that seem related
to probability. The most striking examples are words like “probable” or “likely”,
though it would be naive, at least in my view, to suppose that these ordinary
words stand directly for probabilistic notions. But even words that do not sound
like this have been construed as having probabilistic content.

One famous example is that of natural language conditional statements

“if A, then B”

The influential book [1] proposed that these can be read as saying that the prob-
ability of the conditional equals the conditional probability P (B | A), provided
that P (A) 6= 0. There has been a spate of work on refining this intuition and res-
cuing it from counterexamples, and this perspective on natural language is very
much alive, witness the relevant entry in the Stanford On-Line Encyclopedia
of Philosophy: https://plato.stanford.edu/entries/logic-conditionals/. (Inciden-
tally, the latter is also a great source for many other topics in this article.)
Further probabilistic semantics have been given for so-called ‘epistemic modals’,
such as the above words “probable” and “likely”, or even “must” and “may” – cf.
[17] for a modern take. Thinking in this way, many common expressions in nat-
ural language are surface manifestations of an underlying probabilistic reality,
or probabilistic view of reality.

Here is another such line, this time not linguistic, but going back to philosoph-
ical epistemology in the 18th century. When we think about beliefs of humans
(clearly, “know” and “believe” are typical natural language expressions that we
use constantly to describe epistemic states of ourselves and others), probabilis-
tic versions make sense, as these even allow for finer numerical degrees of belief.
But at the same time, just speaking in terms of qualitative belief has never gone
away, since it represents a stable and useful way of describing agents and their
actions. But what is the connection with quantitative probability?

It has been proposed early on by Locke and Hume that belief in a proposition
A would have an underlying probabilistic meaning

P (A) ≥ k, where k is some threshold in the interval (0, 1)

But there are well-known counterexamples to this view, which seems in conflict
with the fact, usually assumed by philosophers, that beliefs of ideal agents are
closed under conjunction. Now the recent study [24] has proposed an entirely
new way to proceed here, by showing how each finite discrete probability space
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has a unique set of stable propositions whose probability remains above the given
threshold when we get new consistent information. These propositions are a good
candidate for our qualitative beliefs, as a stable core inside the probabilistic facts.
At the same time, Leitgeb’s analysis also provides an entirely new solution to
the well-known Lottery Paradox, which I cannot go into here.

Finally, let us return to the foundations of probability. The discussion about
De Finetti-style qualitative laws of reasoning with ordinary language expressions
underpinning probability has been reopened recently in [16], whose authors show
how a modified natural definition of qualitative comparative probability fits quite
elegantly with representation in terms of sets of probability measures. The re-
sulting logic is a subsystem of the original Scott-style qualitative probabilistic
logic with independent interest as a means of drawing qualitative conclusions
from qualitative premises that admit of probabilistic interpretation. Interest-
ingly, this new analysis makes essential use of logics of qualitative probability in
philosophy, [10] and in theories of agency in computer science, [40].

These recent connections also suggest a more refined picture. We are not
just investigating whether qualitative reasoning in logic fits with probabilistic
reasoning by the precise canons of probability theory. One can look for a whole
spectrum of numerical representations. Basic logical laws for comparative prob-
ability A ≤ B are valid if we just assume that propositions have numerical
‘scores’ that can be added and subtracted, cf. [31]. Other modes of reasoning,
however, assume the probabilistic modus of normalizing everything to values in
the interval [0, 1] and allowing further numerical operations such as multiplica-
tion and division. We do not have to choose, but can see what fits the intended
applications best. We will return to theses issues briefly in Section 7 below.

So, we live in exciting times. Old debates about the interface of qualitative
reasoning and probability are being reopened, and boundaries seem less sharp
and more flowing than before. I could add many more examples of this new phase
of research, such as connections between probability and qualitative ‘plausibility
orders’ for the semantics of belief, a popular tool in my own logical community,
[39]. Also, a new wave of topological models for belief, evidence and learning
is entering the fray, [2]. For a survey of the literature up to around 2000, and
striking innovations far beyond my own community and including such powerful
mixed probabilistic-qualitative calculi as Dempster-Shafer theory or Bayesian
nets, I recommend Halpern’s monograph “Reasoning with Uncertainty”, [12].

I conclude with stating my own view on the matter. To me, it is a basic fact
about cognition that we can approach language and reasoning at various levels of
detail. Logical and mathematical languages ‘zoom in’, providing deep detail, and
this has great virtues for utmost precision and computation. Natural language,
on the other hand, ‘zooms out’, providing high-level qualitative descriptions that
we can use to summarize our decisions and actions, and argue for or against
them. Of course, traditional logicians tended to distrust natural language, as a
cesspool of bad reasoning habits and naive or sloppy formulations. But I myself
think in terms of harmony: both high zoom and low zoom seem important, and
the real scientific task ahead is getting to grips with their constant interplay.
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7 A Concrete Encounter

Finally, to complement the general picture painted in this paper, here is a con-
crete case for interfacing logic and probability. My starting point is a psycholog-
ical study of patterns in natural language use, but I will also raise issues coming
from other directions as we go along.

Here is an interesting psychological experiment, simplified a bit from [11].

Three Faces People are shown three faces, one with a hat and glasses (1), one
with glasses only (2), and one with neither (3). Now someone says: “My friend
wears glasses.” When asked who is that friend, most people say it is 2. Why?

Here is an explanation in terms of pragmatics using Grice’s well-known max-
ims for conversation: “The friend must be 1 or 2. But if she were 1, there would
be a more informative way of communicating this fact: namely, by saying “My
friend has a hat”. Therefore, the friend is 2.” However, this style of analysis
assumes that people are always maximally cooperative, so that the statement
identifies the unique possibility of ‘glasses only’. But this need not be the case
in ordinary discourse, and we are merely talking tendencies, not certainty.

Accordingly, the analysis in the cited paper was probabilistic. To demonstrate
this way of thinking, assume that all three possibilities are equally likely at
the start. Now, qua empirical content the assertion “My friend wears glasses”
rules out Case 3, leaving only Cases 1 and 2. But crucially, more information
is available, viz. the fact that this particular assertion was used. We get at this
surplus by assigning probabilities for two possible assertions to occur in Case 1.
With any non-zero probability for “My friend has a hat”, the sequence (Case 1,
“Wears glasses”) is less probable than (Case 2, “Wears glasses”) (just compute
the product of the prior probability of the case and the occurrence probability
of the assertion), and this explains why we are more likely to be in Case 2.

Of course, there is freedom here in setting the occurrence probabilities for
the two assertions in case 1. In fact, we can choose them so as to match the
precise observed percentages of people choosing the ‘correct’ answer. But we can
also view them as subjective probabilities that people have concerning linguistic
behavior in the relevant community: the computation does not say.

Now for a logician’s qualitative perspective. The probabilistic analysis given
here seems overly specific. Agents do not have precise values for the probabili-
ties of either statement in Case 1, and frankly, I am also somewhat suspicious
of the statistics about respondents presented in these experiments, for various
reasons that I will not go into here. In any case, the practical question at issue is
qualitative about who is the friend, no finer measure is called for. Indeed, there
seems to be a simple pattern at work here. The person hears that the friend
wears glasses, which is still compatible with two faces: of persons 1 and 2. But
she thinks it is more plausible that it is the face of person 2. Many decisions in
daily life are driven by such simple judgments of comparative plausibility. How
do these work, and can they be made to work simply and qualitatively?
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There are two issues here. What, in fact, is the abstract underlying pattern of
the Faces, and what sort of reasoning is appropriate to practical scenarios whose
specifications are qualitative and so are the issues that need to be resolved?

Classifying the structure of problems The above is not just one particular puzzle.
Consider the much-discussed Monty Hall problem, [28]:

“A car has been placed behind one of three doors. The car will be mine if
I guess correctly where it is. Say, Door 1 is my guess. Now the quizmaster
opens a door different from the one I chose and reveals there is no car
behind it: say, he opens Door 3. He then asks if I want to switch my
guess from Door 1 to Door 2. Should I?”

Many people, including professionals, have said I need not, since after the open-
ing, the remaining two doors have equal probability. But again the point is that
the quizmaster’s opening Door 3 has surplus information: it is more likely that
he did this with the car behind Door 2, where it was his only option, than with
the car behind Door 1, where he had two options. And once more, the final issue
is a qualitative ”Yes/No”: should I switch? Finally, I may not know the exact
protocol followed by the quizmaster in opening doors when he has a choice. So,
the core for this practical decision seems qualitative once more.

In fact, the key reasoning point of the Monty Hall scenario is exactly that of
the Three Faces, as can be seen by drawing a diagram of the decision tree. This
similarity can be made precise, and it raises an important general issue.

Many puzzles with probability seem to have the same structure, or at least,
there are recurring general genres. This is seldom discussed in detail, but one
often has a suspicion that different publications and communities discuss the
same problem in different guises. This does not mean that there might not be
differences in emphasis in such cases, say, in setting up the right probability space
versus reasoning from a given probability space. But still, what would be very
helpful here, for both theoretical and practical reasons, is having a classification
from a higher standpoint. I believe that a good way to proceed here uses a known
notion from the world of logic and computing, viz. bisimulation, of course in a
version that fits a probabilistic setting, [22], [38]. This could be the basis for a
more systematic classification of probabilistic reasoning problems.

What sort of reasoning fits qualitative problems? How can we do the reasoning in
the Three Faces, or Monty Hall, qualitatively? One obvious candidate, in terms of
our earlier discussion, are the earlier-mentioned logics for qualitative probability
by Harrison-Trainor, Holiday & Icard. The most perspicuous formulation of this
approach for our purposes in what follows may be that in [14].

There are three relevant histories of events: (friend is Person 1,“wears a
hat”), (friend is Person 1, “wears glasses”), (friend is Person 2,“wears
glasses”). We know from the problem specification that the sets {(friend
is Person 1,“wears a hat”), (friend is Person 1, “wears glasses”)} and
{(friend is Person 2,“wears glasses”)} are equiprobable. We also know,
or rather assume, that {(friend is Person 1,“wears a hat”)} has non-zero
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probability, i.e., it is not equiprobable with the empty set. But then it
follows, for instance in the probabilistic base logic of [16], that {(friend
is Person 1, “wears glasses”)} < {(friend is Person 2,“wears glasses”)}.

Simple though this looks, there is an interesting problem here. In general, a
qualitative specification of a probabilistic problem need not settle a comparative
question. This is easy to see by varying on the Faces.

If we allow two assertions, say e, f , both if the friend is Person 1 (Case
1) and if she is Person 2 (Case 2), where we assume the two cases are
equiprobable, and we observe event e, then it all depends on what we
know about the relative plausibility of the events. Say, if {(1, e)} >
{(1, f)} and {(2, e) > {(2, f)}, then we cannot conclusively compare
the histories (1, e) and (2, e) unless we have more precise quantitative
information. However, things are subtle. If we have {(1, e)} > {(1, f)}
and {(2, e)} < {(2, f)}, it follows necessarily that {(1, e)} > {(2, e)}.

A numerical calculus I believe there is a simple numerical calculus behind the
preceding observations, which acts as an intermediate level between full-fledged
probabilistic computation and purely qualitative reasoning with binary compar-
ative propositions. I will only sketch the idea, details are left to later work.

We merely need to assign variables to the relevant histories in some system-
atic way, and then use sums of such variables to describe relevant coherent sets
of histories such as the ones that occurred in Monty Hall or the Faces. Then
the available qualitative information in the problem at hand comes in the form
of equalities and inequalities between terms that are sums of variables, with a
constant 1 added for proper inequalities. And what we are asking is whether a
particular inequality between relevant variables follows from the given informa-
tion. I will not give concrete numerical examples here, but is easy to formulate
the earlier problems and similar ones in this way.

Using standard ways of replacing inequalities by equations with additional
variables as needed, this becomes an exercise in a small fragment of Presburger
Arithmetic, namely, a satisfaction problem for algebraic terms, solvable by Gaus-
sian elimination. The above examples represent very simple cases of such prob-
lems, driven by obvious properties such as monotonicity of addition, plus some
slightly less obvious arithmetical inferences.

This numerical perspective on qualitative probability may be no more than
an alternative notation for the more laborious formulations in [14] involving
multisets, and it also seems related to the approach taken in [29], [8]. Even so,
I believe that analyzing the equational solution algorithm in the above manner
might throw additional light on existing qualitative axiomatizations. Moreover,
and much more ambitiously, I believe that we should look for such very simple
(and often, simplistic) methods as the basis for a calculus of real practical use.

Of course, a more general issue remains, related to our earlier point about
classification. Which kinds of qualitative problem can be solved in this way,
and what makes them different from more complex scenarios where there is no
alternative to biting the bullet, and doing the full probabilistic math?
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Further logical features There are also other logical perspectives on the exam-
ples discussed here. For instance, [35] analyzes the Faces in terms of information
update and model-checking rather than inference. We have an initial probabil-
ity space with equiprobable alternatives, events can occur which have different
occurrence probabilities, and we want to know the relative probabilities of the
resulting histories, perhaps after observing some particular event. This dynamics
of constructing probability spaces seems important in clarifying puzzles in prob-
abilistic reasoning, and [38] provides a mechanism for systematic construction.

But then, the issue of making qualitative comparisons in the final space
becomes one of finding the right ‘order merge’ between prior plausibility order
and plausibility order among events. And one difficulty for most current rules
of order merge is the relevance of the eliminated history: in the Faces scenario,
event (1, f) did not occur, but it still influences our judgment of the relative
plausibility of the case (1, e) and (2, e). As far as I know, no definitive update
mechanism for qualitative probability has been found along these lines.

There are many further aspects to making probabilistic reasoning qualita-
tive. What also seems relevant is the difference between plausibility, where we
go for most prominent alternatives, an elitist epistemic perspective, versus prob-
ability, where many implausible possibilities may add up to one high-probability
zone, a more democratic perspective. These are two valid styles of representing
information in human reasoning. To see this co-existence in natural language, a
sentence like “the candidate got most votes” can mean that she got more than
half (the probabilistic view) but also that among the candidates, she received
the largest vote (the plausibilistic view). Thus, we also need to disentangle the
varieties of qualitative reasoning that are around in our daily practice.

The conclusion of my discussion is that natural qualitative viewpoints can
be found on probabilistic reasoning toward qualitative conclusions, and that
these may even have some chance of being practical, once we truly understand
the mechanisms at work. I have made some concrete proposals to this effect,
continuing on some recent literature, and pointing out further ways to go.

These concerns are not just a matter of purism but of practical importance.
It is often said that ‘people are bad at probabilistic reasoning’. Maybe this is
just because they are performing other, more qualitative kinds of reasoning?
This point is of course well-known, cf. [33], but I may have added some fuel.

Coda Still, most of this is programmatic intentions, not proven achievements.
Sometimes, one also has an opposite feeling. What we encounter in many sce-
narios is the ‘unreasonable effectiveness of probability’. The numbers in one and
the same probabilistic formula play distressingly different roles from a logician’s
point of view. A prior probability may record our accumulated experience in
situations of similar kinds, or the strength of our prejudices unaffected by expe-
rience, while other probabilities measure features of an ongoing process such as
likelihood of occurrence of events in certain states, there may also be numbers
measuring the quality of our new observations, and so on. All these numbers,
despite their different origins and meanings, are squashed together by numerical
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weights, and we freely apply arithmetical operations such as multiplication and
division, even when these make little sense if we were to translate back to the
intuitive meaning of the diversity notions involved. And yet it works!

8 Conclusion

I hope to have shown that the logic probability interface is very much alive. Even
so, I have only scratched the surface. Innovative mixtures of probabilistic meth-
ods and more qualitative ones are everywhere today once you open your eyes,
with some of them bubbling up right inside my own Amsterdam institute, such
as the paradigm of data-oriented parsing, [3]. More generally, I think that, even
in the current world of big data and deep learning, logic interfaces remain essen-
tial – and much more needs to be understood in general terms about productive
mixtures of logic with probability and their general properties.

As for logic proper, I find it undeniable that my discipline has its place in
the meta-theory of every scientific endeavor, including probability theory. But
I would go further than this safe abstract sphere. Logic also has its place at
object-level, so to speak, in our daily practices of deliberating, giving reasons,
arguing, and making decisions. However, all this practice of our conscious minds
takes place in a thin zone of rationality under our conscious control, hemmed
in by sometimes turbulent seas of statistics on each side. There is the statistical
behavior of society around us, and the statistical behavior of the neurons inside
us. Logic finds itself surrounded by probability, but it holds it own. How?

I am not sure that the topics discussed in this light essay are anything like
what Ed Brinksma had in mind in de Glazen Zaal. But I am sure that he will
have interesting things to say about all of them once we meet again.

Acknowledgment I thank Thomas Icard and two referees for helpful comments.
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