
Tool Auctions
Janosch Döcker

University of Tübingen
Germany

Britta Dorn
University of Tübingen

Germany

Ulle Endriss
ILLC, University of Amsterdam

The Netherlands

Ronald de Haan
ILLC, University of Amsterdam

The Netherlands

Sebastian Schneckenburger
University of Tübingen

Germany

Abstract

We introduce tool auctions, a novel market mechanism for
constructing a cost-efficient assembly line for producing a
desired set of products from a given set of goods and tools.
Such tools can be used to transform one type of good into a
different one. We then study the computational complexity of
tool auctions in detail, using methods from both classical and
parameterized complexity theory. While solving such auctions
is intractable in general, just as for the related frameworks
of combinatorial and mixed auctions, we are able to identify
several special cases of practical interest where designing
efficient algorithms is possible.

1 Introduction
“It looked to Sacharissa that the only tools a dwarf needed were his
axe and some means of making fire. That’d eventually get him a
forge, and with that he could make simple tools, and with those he
could make complex tools, and with complex tools a dwarf could
more or less make anything.”

—Terry Pratchett, The tRuth

Auctions, and combinatorial auctions in particular, are a pow-
erful family of market mechanisms for allocating resources,
which have been studied in depth in Economics, Operations
Research, and AI (Cramton, Shoham, and Steinberg 2006).
We propose a novel type of combinatorial auction that allows
the auctioneer to purchase a number of tools as well as other
goods. She can then use these tools to produce further such
tools and goods. Her objective is to pick a set of tools and
then to execute a suitable sequence of actions, each consisting
of an application of one of the tools she has access to, so as
to eventually obtain the set of goods she desires. A secondary
objective is to find a sequence that is as short as possible.

Our model may be interpreted as a restricted—and thus
computationally less demanding—instance of the model of
mixed multi-unit combinatorial auctions of Cerquides et
al. (2007), which has applications in the domain of industrial
supply-chain management. In a mixed auction, the auctioneer
can purchase transformations, from input goods to output
goods, to compose a sequence of such transformations to
obtain the goods she desires. Our tool auctions are mixed
auctions in which, for each transformation, there is only a

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

single good that occurs both in the input set and the output
set: the tool. For example, in the context of the transformation
mapping {mixer,melon} to {mixer, juice}, the mixer is the
tool, while melon and juice are ordinary goods. In addition
to limiting each transformation to just one tool, to control
the complexity of the problem faced by the auctioneer, we
also put certain restrictions on the number of non-tool goods
involved in a single transformation.

Fully expressive mixed auctions are highly complex. The
winner determination problem, i.e., the problem of finding
a sequence that produces the desired set of goods at a given
price, is NP-complete (Cerquides et al. 2007). Fionda and
Greco (2013) have analysed this problem, as well as the re-
lated feasibility problem, where we ignore prices and simply
want to find some sequence that does the job, in great detail.
They were able to identify a number of so-called tractability
islands, i.e., restrictions of the general setting where solving
an auction is possible in polynomial time. For example, they
were able to show that, when every transformation only ad-
mits a single input good and a single output good, then the
feasibility problem is polynomial. But even permitting two
output goods (and still just one input good) already turns the
problem NP-complete. In general, existing tractability results
only apply under very severe restrictions. The fundamental
intuition inspiring our new auction model is that introducing
constraints on the types of goods—tools vs. ordinary goods—
whilst at the same time relaxing constraints on the number of
goods involved in a transformation constitutes a promising
trade-off between tractability and expressivity.

The core of this paper is devoted to testing this intuition.
We provide a detailed complexity analysis of both the feasi-
bility and the winner determination problem for tool auctions.
While solving tool auctions, just like most other kinds of
combinatorial auctions, is intractable in general, we are able
to identify several special cases of practical interest where de-
signing efficient algorithms is possible. In particular, we show
that several relevant decision problems are either polynomial-
time solvable or fixed-parameter-tractable.

The remainder of the paper is organised as follows. Sec-
tion 2 defines the model of tool auctions we propose, explains
its relationship to the existing model of mixed auctions, and
elucidates on some of the design choices made. Section 3
presents our complexity results, while Section 4 discusses
related work. Finally, Section 5 concludes with a brief dis-



a

a

taa,b

b

a

a

B = b1 . . . bk

taa,B

b1 . . . bk

a

a

b

ta,ba,c

c

single-output tool multi-output tool tabac tool

Table 1: Tools

cussion of a number of variants of our model and an outlook
on possible directions for future work.

2 The Model
In this section we introduce our model of tool auctions.

2.1 Notation and Terminology
Fix a finite set G of goods. A bundle is a multiset of goods,
i.e., a function B : G→ N, which we also write as B ∈ NG,
mapping each good to the multiplicity with which it occurs
in the bundle (we use N to denote the natural numbers, to-
gether with 0). We use standard set-theoretic notation also for
multisets: x ∈ B is short for B(x) > 0; B ⊆ B′ for ∀x ∈
G : B(x) 6 B′(x); B ∪ B′ for x 7→ max{B(x), B′(x)}
(i.e., for the function mapping any x ∈ G to the maximum
of B(x) and B′(x)); B ∩ B′ for x 7→ min{B(x), B′(x)};
B \ B′ for x 7→ max{0, B(x)−B′(x)}; |B| = k for∑
x∈GB(x) = k; and B = ∅ for |B| = 0. We also

use ] to denote multiset addition, i.e., B ] B′ is short for
x 7→ [B(x) + B′(x)]. B is called a single-unit bundle if
|B(x)| 6 1 for all x ∈ G.

We use triples t = 〈τ, I,O〉 ∈ G × NG × NG with τ 6∈
I ∪ O and I ∩ O = ∅ to describe available transformations,
with τ being the tool required to use the transformation, I
the input goods, and O the output goods. By a slight abuse
of terminology, we use the term ‘tool’ not only for τ but also
for t. In this paper, we focus on three types of transformations
that impose certain constraints on I and O: single-output
tools with I = ∅ and |O| = 1; multi-output tools with I = ∅;
and tabac tools with |I| = |O| = 1. These are visualised
in Table 1. In line with this visualisation, we sometimes use
tτ,Iτ,O as an alternative representation for 〈τ, I,O〉.

An auction instance is a triple 〈T ,Uin,Uout〉, where T
is the set of transformations available to the auctioneer to
choose from, Uin ∈ NG is the bundle she owns initially, and
Uout ∈ NG is the bundle she hopes to end up with.

To solve an auction instance, we now consider sequences
Σ = t1, t2, . . . , t` of applications of the available transfor-
mations in T . We refer to each such ti, which is of the form
〈τ i, Ii,Oi〉, as an action in the sequence. Importantly, two
different actions in Σ could be applications of the same trans-
formation (i.e., transformations can be reused). The length
of Σ is |Σ| = `. We use multisetsMi ∈ NG to keep track of
the goods held by the auctioneer after the ith action in Σ:

M0 := Uin ,

Mi := (Mi−1 \ Ii) ] Oi for i ∈ {1, . . . , `}.
We call a sequence Σ legal, if at any stage of the process the
auctioneer does in fact hold all the goods required to perform

Uin c1 d1

a b c3 tc3c3,d1d2 Uout

c2 d2

taa,b

ta,ba,c1

tbb,c2

tc1c1,d1

tc2c2,c3

tc2c2,d2

Figure 1: Visualisation of Example 1

the next action, including the relevant tool, i.e., if

Ii ⊆Mi−1 and τ i ∈Mi−1 for all i ∈ {1, . . . , `}.

We say that Σ achieves the desired output Uout if Uout ⊆M`.
In this case, we write Σ ; Uout.

We are now ready to define the two decision problems we
are going to analyse (see Table 2). FEASIBILITY asks whether
there is a way to achieve the desired outcome. WINNER
DETERMINATION (or WINDET for short) asks whether the
same is possible using a sequence of at most K actions,
for some K ∈ N. We may think of K as a bound on time
available to the auctioneer (if each action takes up one time
unit) or as a budget (if each action costs one currency unit).

Example 1. Consider the goods

G = {a, b, c1, c2, c3, d1, d2}

and the auction instance 〈T , {a}, {d1, d2}〉, where

T = {taa,b, ta,ba,c1 , t
c1
c1,d1

, tbb,c2 , t
c2
c2,d2

, tc2c2,c3 , t
c3
c3,d1d2

}.

So the auctioneer initially only holds the good a and wants
to end up with the bundle {d1, d2}. Figure 1 visualises this
scenario. Σ1 = taa,b, t

a,b
a,c1 , t

c1
c1,d1

is the shortest sequence to
achieve {d1}, and Σ2 = taa,b, t

b
b,c2

, tc2c2,d2 is the shortest one
to achieve {d2}. By combining the two, we obtain a first
legal solution: for Σ = taa,b, t

a,b
a,c1 , t

c1
c1,d1

, taa,b, t
b
b,c2

, tc2c2,d2 ,
which has length 6, we get Σ ; {d1, d2}. Notably some,
but not all, permutations of Σ are also legal solutions;
e.g., tbb,c2 only can be applied as action ti if b ∈ Mi.
For one permutation of Σ, one application of taa,b is un-
necessary, which leads to the improved solution Σ′ =
taa,b, t

b
b,c2

, tc2c2,d2 , t
a,b
a,c1 , t

c1
c1,d1

of length 5. But the best solu-
tion is Σ∗ = taa,b, t

b
b,c2

, tc2c2,c3 , t
c3
c3,d1d2

of length 4.

2.2 Design Choices
Next, we highlight some of the design choices made in setting
up our model and discuss possible alternatives. For all of
them, alternative choices are possible and worth investigating.

Free disposal. By only requiring Uout ⊆ M` rather than
Uout =M`, we are making the assumption that the auctioneer
can freely dispose of unwanted goods.

Uniform prices. By defining WINDET in terms of |Σ|, we
are making the implicit assumption that every action is



FEASIBILITY
Instance: an auction instance 〈T ,Uin,Uout〉.
Question: is there a legal sequence Σ s.t. Σ ; Uout?

WINNER DETERMINATION (WINDET)
Instance: an auction instance 〈T ,Uin,Uout〉 and a number K ∈ N.
Question: is there a legal sequence Σ s.t. |Σ| 6 K and Σ ; Uout?

Table 2: Decision Problems for Tool Auctions

equally expensive to execute. Alternatively, one could specify
a price for each transformation and ask for the sum of the
prices of the actions in Σ to not exceed K.1

Unlimited use of transformations. We assume that every
transformation can be used any number of times—although
the auctioneer has to ‘pay’ for every single application of
it. Alternatively, one could specify for each transforma-
tion how often it can be used at most. Going further, one
could define a bidding language to express constraints on
acceptable combinations of actions (Cerquides et al. 2007;
Nisan 2006), e.g., to say that the auctioneer has to either
purchase all or none of a given set of transformations.

Single-unit vs. multi-unit auctions. There are multiple iden-
tical copies of each good in G. In particular, Uin, Uout, and the
output bundles of multi-output tools are, in general, multisets.
However, we are sometimes going to focus on the special
case in which the specification of an auction instance only
involves single-unit bundles. We refer to this as the single-
unit restriction. Observe that, while also under the single-unit
restriction the auctioneer might obtain two identical copies
of the same good (e.g., by applying the same single-output
tool twice), she never needs to do so: under the single-unit
restriction, for any legal sequence Σ of length ` = |Σ| with
Σ ; Uout there exists a legal sequence Σ′ with |Σ′| 6 `
and Σ′ ; Uout for which the auctioneer never has to hold
multiple copies of the same good, i.e., for which allMi are
single-unit bundles as well.

No typing of goods. Tools and ordinary goods are all ele-
ments of G. We distinguish them by their use within a trans-
formation, not by their essence. Thus, some x ∈ G could play
the role of a tool for one transformation and the role of a good
being produced for another transformation. Alternatively, one
could have one set of tools and one set of ordinary goods,
and only use each for their special purpose. In particular, one
could forbid that tools are consumed by tabac tools and thus
are unavailable later on in Σ.

For some of our results, we are going to impose this latter
restriction, which we refer to as the nonconsumable-tool
restriction. Formally, it requires that G can be partitioned
into Ga and Gb such that (1) for all tabac tools tabac ∈ T it
holds that a ∈ Ga and b, c ∈ Gb, and (2) all single- and
multi-output tools in T only involve goods in Ga.

1Lifting this assumption does not affect the complexity results
reported later on in this paper: for WINDET, all hardness results
carry over immediately to the more general case (having a cost of 1
is a special case of having arbitrary costs). All membership results
can also be extended to the case of arbitrary costs of transformations.
In particular, the tractability results of Theorems 12 and 13 can be
extended to this case because we can encode arbitrary costs in the
reduction to the min-cost network flow problem.

Single tools. We restrict the number of tools required to
execute a transformation to 1. Alternatively, one could also
permit requiring multiple tools for a single transformation.
Tools only. We restrict attention to scenarios where the only
actions available to the auctioneer consist in applying a tool
to obtain certain goods. In practice, this should be combined
with the option to simply purchase a bundle of goods. By
including some default good ? in Uin and ensuring that ? is
never consumed by a tabac tool, we can simulate the option
of purchasing the bundle B via the multi-output tool t??B .
Hence, in fact this is not a restriction.

3 Complexity Results
In this section, we present our results on the computational
complexity of tool auctions.

These results show that FEASIBILITY is tractable for set-
tings with only single- or only multi-output tools, while
WINDET is not. For settings where tabac tools are allowed,
even FEASIBILITY is not tractable in general. In fact, it
is PSPACE-complete. For the complexity of WINDET in
the presence of tabac tools, the encoding of K is relevant.
When K is encoded as a binary number, then the prob-
lem is PSPACE-complete, while it is NP-complete when
K is encoded as a unary number. All of our intractability
results apply even under the single-unit restriction. Under the
nonconsumable-tool restriction, on the other hand, if only
tabac tools are allowed (i.e., if goods are typed), both FEASI-
BILITY and WINDET are tractable. Refer to Table 3 for an
overview of these results.

Transformations FEASIBILITY WINDET

single-output tools in P (Prop 1) NP-c (Thm 2)
multi-output tools in P (Prop 3) NP-c (Thm 4)

tabac tools

PSPACE-c (Thm 8)
PSPACE-c (K in binary)

(Prop 7) NP-c (Thm 9)
(K in unary)

tabac tools in P (Prop 11) in P (Thm 12)
with typed goods

Table 3: Overview of Complexity Results

For scenarios where finding a solution is intractable in gen-
eral, it is often worthwhile to explore whether better results
are achievable under the assumption that certain parameters
of the problem can be kept small (Downey and Fellows 1999;
2013; Flum and Grohe 2006; Niedermeier 2006; Cygan et
al. 2015). Regarding such fixed-parameter-tractability results,
the bad news is that the most obvious choice of a parameter,



namely the maximum length of the solution K > |Σ|, is
not a good choice. WINDET for multi-output tools param-
eterized by K is W[2]-hard and WINDET for tabac tools
parameterized by K is W[1]-hard. A better choice for a pa-
rameter is the sum of the solution length K and the maxi-
mum number of goods that appear in any multi-output tool
(max〈τ,I,O〉∈T |O|). Another good choice is the size |Uout|
of the desired output. For either one of these two parameters,
WINDET for multi-output tools is fixed-parameter tractable
(FPT). Finally, under the nonconsumable-tool restriction and
for the parameter that is the sum of the number of tools which
are used in a tabac tool and the number of tools appearing in
Uout, WINDET is FPT for any combination of our three types
of transformations. Table 4 summarises our FPT results.

Transformations Parameter Result

single-output tools |Σ| FPT (Cor 6)
multi-output tools |Σ| W[2]-h (Thm 5)
multi-output tools |Uout| FPT (Cor 6)
multi-output tools |Σ|+ max |O| FPT (Cor 6)
tabac tools |Σ| W[1]-h (Thm 10)

mixed tools under |{a | tabac ∈ T }|+ FPT (Thm 13)
noncons.-tool restr.

∑
a∈Ga

Uout(a)

Table 4: Parameterized Complexity Results for WINDET

3.1 Results for Single-Output Tools
For auction instances that only involve single-output tools,
FEASIBILITY is easy, but WINDET is already hard.
Proposition 1. If all transformations are single-output tools,
then FEASIBILITY can be decided in polynomial time.

Proof. We describe a greedy algorithm to construct Σ. We
use a multiset M to keep track of the bundle held by the
auctioneer by the end of the prefix of Σ constructed so far. At
any given point, Uout \M is the bundle we still need to obtain.
InitialiseM with Uin, and Σ with the empty sequence. Then,
while there is some taab with a ∈ M and b 6∈ M, add taab to
the end of Σ, and add a copy of b toM. After termination,
report success if there is no g ∈ Uout with g 6∈ M and failure
otherwise. This algorithm is easily seen to be correct and to
run in polynomial time (for every element in G we have to
inspect every transformation in T at most once).

Theorem 2. If all transformations are single-output tools,
then WINDET is NP-complete, even under the single-unit
restriction.

Proof (sketch). To show membership in NP, it suffices to see
that if a feasible solution exists, there is also a be feasible
solution where any good is added at most once to the auc-
tioneer’s bundle. Thus only sequences Σ of length at most
|Σ| = |G \ Uin| have to be considered.

Next, we prove NP-hardness under the single-unit restric-
tion by reduction from 3SAT. Let ϕ = {c1, . . . , cm} be a
3CNF formula with variables x1, x2, . . . , xn. Without loss
of generality, we may assume that ϕ contains the clauses

(xi ∨ ¬xi) for all i ∈ {1, . . . , n}. We now construct an in-
stance of WINDET. We let G = {z}∪{xi,¬xi, cj | 1 6 i 6
n, 1 6 j 6 m}, Uin = {z}, Uout = {c1, c2, . . . , cm}, T =
Tlit ∪ Tcl where Tlit = {tzz,xi

, tzz,¬xi
| 1 6 i 6 n} and Tcl =

{txi
xi,cj | xi ∈ cj , cj ∈ ϕ} ∪ {t

¬xi
¬xi,cj | ¬xi ∈ cj , cj ∈ ϕ}.

Finally, we let K = n + m. It is straightforward to verify
that this reduction is correct.

3.2 Results for Multi-Output Tools
Next, we are going to see that, while the basic complexity
results for multi-output tools mirror those for single-output
tools, when considering the problem under the parameterized
lens, additional sources of complexity become apparent.

Proposition 3. If all transformations are multi-output tools,
then FEASIBILITY can be decided in polynomial time.

Proof (sketch). We can adapt the algorithm given in the proof
of Proposition 1. The only difference is that in each round we
have to look for a transformation taaB with a ∈M and either
B ∩ (Uout \M) 6= ∅ or B ∩ ({x ∈ G | txxy ∈ T } \M) 6= ∅
(and then add B toM).

Observe that every single-output tool is a special case of
a multi-output tool, so FEASIBILITY for combinations of
single- and multi-output tools is polynomial as well.

Theorem 4. If all transformations are multi-output tools,
then WINDET is NP-complete, even for the single-unit re-
striction.

Proof (sketch). NP-hardness follows from Theorem 2, as
single-output tools are also multi-output tools. NP-member-
ship can be shown by adapting the proof of Theorem 2.

While WINDET is FPT with respect to the length of Σ when
only single-output tools are used (see Corollary 6 below),
this is unlikely to be the case for multi-output tools.

Theorem 5. If all transformations are multi-output tools,
then WINDET is W[2]-hard when parameterized by |Σ|. This
remains true even under the single-unit restriction.

Proof (sketch). We describe an fpt-reduction from the W[2]-
complete problem SET COVER. For this problem, inputs con-
sist of triples (U,S, k), where U is a finite set, S ∈ P(P(U))
is a set of subsets Si ⊆ U of U , and k is a positive integer.
The question is whether there exists a set S ′ ⊆ S of size at
most k such that

⋃
S ′ = U .

Let (U,S, k) be an arbitrary instance of SET COVER. We
construct an instance of WINDET using only multi-output
tools. We let G = {?} ∪ U , Uin = {?}, Uout = G. For
each Si ∈ S, we introduce a multi-output tool t??,Si

.
The legal sequences Σ of length at most k such that Σ ;

Uout are in one-to-one correspondence with the subsets S ′ ⊆
S of size at most k such that

⋃
S ′ = U .

The following results follow directly from Theorem 13,
which we will establish in Section 3.4.



Corollary 6. If all transformations are single- or multi-
output tools, then WINDET is fixed-parameter tractable when
parameterized either (1) by |Uout|, or (2) by |Σ| plus the max-
imum number of goods that appear in any multi-output tool
(max〈τ,I,O〉∈T |O|).

3.3 Results for Tabac Tools
When using (only) tabac tools, solving a tool auction can
become highly intractable. This is true even under the single-
unit restriction.
Proposition 7. If all transformations are tabac tools, then
FEASIBILITY is PSPACE-complete, even under the single-
unit restriction.

Proof (sketch). Membership in PSPACE can be shown rou-
tinely, by giving a nondeterministic algorithm that solves the
problem in polynomial space. To show PSPACE-hardness,
we can use a reduction that has been used to show that propo-
sitional planning is PSPACE-hard (Bylander 1994, Thm 3.1),
reducing an arbitrary problem in PSPACE to the satisfiability
problem of propositional planning. The planning operators
used in this reduction correspond exactly to tabac tools. More-
over, the satisfiability problem for propositional planning
corresponds exactly to the FEASIBILITY problem. In this
reduction, all bundles involved are single-unit bundles.

The complexity of WINDET depends on how we encode K,
the upper bound on the length of permissible solutions.
Theorem 8. If all transformations are tabac tools, then
WINDET is PSPACE-complete when K is encoded in binary.
This remains true even under the single-unit restriction.

Proof (sketch). Encoding K in binary allows us to express
an exponential bound on the length of solutions. Therefore,
the PSPACE-hardness proof of Proposition 7 also works for
WINDET. Membership in PSPACE can be shown entirely
analogously to the case of FEASIBILITY.

Theorem 9. If all transformations are tabac tools, then
WINDET is NP-complete when K is encoded in unary. This
remains true even under the single-unit restriction.

Proof (sketch). Membership in NP follows from the fact that
when K is encoded in unary, we can guess a sequence Σ in
polynomial time.

To show NP-hardness, we describe a reduction from
WINDET for the case where all transformations are single-
output tools (cf. Theorem 2). Let (G, T ,Uin,Uout,K) be
an arbitrary instance of WINDET where all t ∈ T are
single-output tools. To G we add K new goods h1, . . . , hK .
Each transformation taab ∈ T we replace by K tabac
tools tah1

ab , . . . , t
ahK

ab . To Uin, we add the goods h1, . . . , hK ,
and Uout, and K we leave unchanged.

We omit a detailed proof of the fact that there exists a
sequence Σ of length at most K such that Σ ; Uout for the
original instance if and only if such a sequence exists for the
newly constructed instance.

Theorem 10. If all transformations are tabac tools, then
WINDET is W[1]-hard when parameterized byK, even under
the single-unit restriction with |Uout| = 1.

Proof (sketch). We describe an fpt-reduction from the W[1]-
complete MULTICOLOURED CLIQUE (Fellows et al. 2009),
which asks, given an undirected graph G = (V,E) the ver-
tices of which are coloured with k colours, whether there is a
clique in G containing one vertex from each colour class (a
multi-coloured clique). The parameter for this problem is k.

Given an instance of MULTICOLOURED CLIQUE with
G = (V,E) where the vertex set V is a disjoint union of k
colour classes V1 ∪̇ · · · ∪̇ Vk, and k ∈ N, we construct an
instance of WINDET as follows (we assume k > 3, otherwise
an easier construction is possible). The set of goods is

G := {?} ∪ {xe | e ∈ E} ∪ {ze | e ∈ E} ∪ Y

with

Y := {yi,j,` | 1 6 i 6 k, 1 6 j < ` 6 k, i 6= j, i 6= `},

Uin = {?}, and Uout = Y . The number of goods in the output
is |Y | = k

(
k−1
2

)
. For each e ∈ E, we introduce transforma-

tions t?? xe
and txe

xe ze , where the first transformation allows
production of goods xe and the second one allows production
of goods ze using xe as a tool. Note that these transforma-
tions are single-output tools, but they can be transformed into
tabac tools as done in the proof of Theorem 9. For each pair
e1 = {vi, vj}, e2 = {vi, v`} ∈ E, with e1 6= e2, vj ∈ Vj ,
and v` ∈ V`, we create a tabac tool txe1ze2

xe1
yi,j,` . To put it into

words, the tabac tool txe1ze2
xe1yi,j,`

allows transforming ze2 into
a good yi,j,`, using xe1 as a tool, where e1 and e2 share a
vertex in color class i, and have differing vertices in color
classes j and `, respectively. We let K =

(
k
2

)
+ 2k

(
k−1
2

)
.

The only way to produce all goods yi,j,` within the budget K
is to first produce the goods xe for all edges e in a multi-
coloured clique, and then to use them as tools to produce the
goods yi,j,` (with goods ze as intermediate step).

If G has a multicoloured clique of size k, we produce those
goods corresponding to the

(
k
2

)
edges of the clique by the

single-output tools, i.e., we apply the transformation t?? xe

for each edge e of the clique. Since there is only one vertex
of each colour class in the clique, we can produce in turn all
output goods Y with the tabac tools given that we produce
the good consumed in each step prior to the application of
the tabac tool (which is possible since we have produced
all necessary tools before). Hence, we end up with a legal
sequence Σ of length

(
k
2

)
+ 2k

(
k−1
2

)
achieving Uout.

Conversely, it can be checked easily that it is impossible to
produce the entire set Y as an output in

(
k
2

)
+ 2k

(
k−1
2

)
steps

if there is no multicoloured clique of size k in G.
To achieve an output of size 1, let k′ :=

(
k−1
2

)
k and re-

name the elements of Y as y1, . . . , yk′ ; we create k′ − 1 ad-
ditional goods y(1,2), . . . , y(1,...,k′) and the k′− 1 tabac tools
t
y(1,...,i)yi+1
y(1,...,i)y(1,...,i+1)

, where y(1) := y1. Then the new output
set Uout consists of the single element y(1,...,k′). To account
for this modification of the instance, we have to adapt the
parameter to K =

(
k
2

)
+ 2k

(
k−1
2

)
+ k′ − 1.

Also note that converting the single-output tools into
tabac tools introduces new elements in Uin. In the same no-
tation as in the proof of Theorem 9 this introduces input
goods h1, . . . , hk′′ , i.e., Uin = {?, h1, . . . , hk′′}. Here, we



have k′′ =
(
k
2

)
+ k
(
k−1
2

)
since we need one such good for

each application of a single-output tool.

3.4 Results for the Nonconsumable Tools
Next, we consider auction scenarios that satisfy the non-
consumable-tool restriction (see Section 2.2). As we shall
see, under this restriction we can achieve particularly posi-
tive results. Intuitively, the nonconsumable-tool restriction
makes both FEASIBILITY and WINDET easier to solve, be-
cause we can separate the application of tabac tools from the
application of other transformations.

Indeed, as we shall see next, in such cases we can often
solve auctions by reduction to a minimum-cost network flow
problem (Ahuja, Magnanti, and Orlin 1993). Inputs for this
problem consist of a directed graph G = (V,E) together with
a positive integer r ∈ N. The graph G has a dedicated source
node s ∈ V (with only outgoing edges) and a dedicated
target node t ∈ V (with only incoming edges). Moreover,
each edge e ∈ E is associated with a cost ce ∈ N and a
capacity ue ∈ N. A network flow for G is a mapping µ : E →
N such that for each e ∈ E it holds that µ(e) 6 ue and
for each v ∈ V \ {s, t} it holds that

∑
e=(u,v)∈E µ(e) =∑

e=(v,u)∈E µ(e). We say that the value of a network flow µ

is
∑
e=(u,t)∈E µ(e), and the cost of µ is

∑
e∈E ceµ(e). The

problem consists of finding a network flow of G of value r
that has minimum cost.

Recall that Gb is the set of goods consumed and produced
by tabac tools, and Ga is the set of all other goods.

Proposition 11. Under the nonconsumable-tool restriction,
if all transformations are single-output, multi-output, or
tabac tools, FEASIBILITY can be decided in polynomial time.

Proof (sketch). First, we compute the maximum set G′a ⊆
Ga of goods among Ga that we can obtain from Uin using
transformations that are single- or multi-output tools, simi-
larly to the algorithm described in the proof of Proposition 3.
Then, we discard all tabac tools tabac for which a 6∈ G′a. We
then decide whether we can produce the desired quantity of
goods in Gb (according to Uout) from the quantities of goods
in Gb that are available in Uin. We do so by reducing the
problem to an instance of the network flow problem.

We create a network containing a dedicated source node s,
a dedicated target node t, and a node b for each good b ∈ Gb.
For each b ∈ Gb, we add an arc from s to b with capac-
ity Uin(b), and an arc from b to t with capacity Uout(b). More-
over, for each undiscarded tabac tool tabac ∈ T , we add an arc
from b to c with unlimited capacity. There is a network flow
from s to t of value

∑
b∈Gb

Uout(b) in this network if and
only if there is a legal sequence Σ such that Σ ; Uout. Since
network flow is solvable in polynomial time (see, e.g., Ahuja,
Magnanti, and Orlin 1993), we know that FEASIBILITY is as
well. Existence of an integral solution is guaranteed as well,
since all capacities are integral.

For WINDET, we cannot hope for a similarly positive
result, given that it already is NP-complete for single-
output tools alone (cf. Theorem 2), a scenario in which the

nonconsumable-tool restriction does not add any further con-
straints. However, when only tabac tools are used, we can still
achieve a significant improvement over Theorems 9 and 10.

Theorem 12. Under the nonconsumable-tool restriction, if
all transformations are tabac tools, WINDET can be decided
in polynomial time.

Proof (sketch). We can use a similar construction as for the
second part of the proof of Proposition 11. Now, to reduce
the problem to the minimum-cost network flow problem, we
simply assign unit cost to all arcs in the network (except
for the arcs from s and the arcs to t, to which we assign
cost 0).

As argued earlier, if we combine all three types of tools,
WINDET is intractable, even under the nonconsumable-tool
restriction. However, if we restrict the size of the problem
appropriately, then we can construct an efficient algorithm
even for this combined setting.

Theorem 13. Under the nonconsumable-tool restriction, if
all transformations are single-output, multi-output, or tabac
tools, WINDET is fixed-parameter tractable when parameter-
ized by (the sum of) the number k1 of different goods in Ga
that appear in some tabac tool, and the total number k2 of
goods in Ga that appear in Uout, i.e., k1 = |Ga,tabac|, where
Ga,tabac = {a | tabac ∈ T }, and k2 =

∑
a∈Ga

Uout(a).

Proof. Take an arbitrary instance of WINDET that satisfies
the condition from the statement above. Let Uout,a denote
the multiset Uout restricted to goods in Ga, i.e., Uout,a(ga) =
Uout(ga) for all ga ∈ Ga and Uout,a(gb) = 0 for all gb ∈ Gb.
Moreover, let Ttabac denote the set of all tabac tools tabac ∈ T .
The algorithm proceeds in several stages.

In the first stage, we use dynamic programming to com-
pute a table with entries D(s,G1, G2,m), for each s ∈ Ga,
each G1 ⊆ Uout,a, each G2 ⊆ Ga,tabac, and each 1 6 m 6
|Ga|. Each such table entry will contain ‘yes’ or ‘no’, de-
pending on whether there exists a sequence Σ of length at
most m that is legal for the bundle Uin,s = {s} and achieves
(from Uin,s) some bundleM with G1 ⊆ M and G2 ⊆ M.
One could additionally store a witnessing sequence Σ for
each entry containing ‘yes.’ The size of this table is bounded
by 2k1+k2 · poly(n) (where n denotes the input size), and we
can fill its entries, by induction on m, in time polynomial in
the size of the table and in the input size n, using a dynamic
programming approach.

In the second stage, we use the table we computed in
the first stage to fill a table with entries D(G1, G2,m), for
each G1 ⊆ Uout,a, and each G2 ⊆ Ga,tabac. Each such
entry D(G1, G2,m) indicates whether there exists a se-
quence Σ of length at mostm that is legal for Uin and achieves
some bundleM with G1 ⊆ M and G2 ⊆ M. Again, one
could additionally store a witness for each entry containing
‘yes’ and filling the entries can be done in polynomial time,
using a dynamic programming approach.

Then, in the third stage, we nondeterministically guess a
subset G′a,tabac ⊆ Ga,tabac of goods in Ga that will occur in
the tabac tools tabac appearing in sequence Σ achieving Uout.
(Since there are at most 2k1 such sets G′a,tabac, we can make



the algorithm deterministic by simply iterating over all possi-
bilities.) Let T ′tabac ⊆ Ttabac denote the set of tabac tools tabac
such that a ∈ G′a,tabac. We then find the minimum length `
such that the table entry D(Uout,a, G

′
a,tabac, `) contains ‘yes’.

In the fourth, and final, stage of the algorithm, we deter-
mine whether we can extend the sequence Σ0 of length `
that achieves a bundle including both Uout,a and G′a,tabac to a
sequence Σ of length at most K that achieves Uout. We only
need to consider (multiple applications of) transformations
in T ′tabac to append to Σ0 in order to obtain Σ. We encode the
question whether we can obtain a suitable Σ by appending
at most K − ` transformations to Σ0 as an instance of the
minimum-cost network flow problem.

This encoding is exactly the encoding used in the proof of
Theorem 12. For this encoding, we use Uin +Uout,a+G′a,tabac
as input state. Moreover, we discard all single- and multi-
output tools, as well as all tabac tools tabac for which a 6∈
G′a,tabac. Finally, as upper bound on the length of the se-
quence Σ1 such that Σ = Σ0Σ1, we useK−`. This encoding
can easily be done in polynomial time, and the constructed
instance of minimum-cost network flow can be solved in poly-
nomial time (see, e.g., Ahuja, Magnanti, and Orlin 1993).

We can straightforwardly modify this algorithm to return
a legal sequence Σ such that Σ ; Uout, if it exists.

4 Related Work
Our model of tool auctions follows prior work on market
mechanisms for enabling automatic supply chain formation
(Walsh, Wellman, and Ygge 2000; Walsh and Wellman 2003;
Babaioff and Nisan 2004; Cerquides et al. 2007), even if the
distinction between tools and ordinary goods has been absent
from those earlier contributions. The model of Walsh and
Wellman (2003), in particular, is similar to ours in that they
also impose strong qualitative constraints on transformations.
Their transformations have either exactly one output good
(so-called ‘producers’) or no output goods at all (so-called
‘consumers’). Unlike us, they however also impose a strong
structural constraint and require the graph defined by the set
of transformations to be acyclic. Walsh and Wellman do not
analyse the complexity of their model.

Cerquides et al. (2007) show that WINDET is NP-complete
for mixed auctions. Tool auctions are a restricted form of
mixed auctions—except for the fact that we permit unlimited
use of transformations (see Section 2.2). This difference is
crucial: Proposition 7, establishing PSPACE-completeness,
holds only because a solution sequence could be exponen-
tially long relative to the number of transformations avail-
able. In particular, this result does not contradict the NP-
membership result of Cerquides et al. (2007).

Fionda and Greco (2013) analyse the complexity of mixed
auctions in great depth. Part of their work focuses on struc-
tural restrictions, such as acyclicity, which we have not con-
sidered here. Structural restrictions are of interest when there
is empirical evidence that they may be satisfied for typical
real-world problem instances. OInstead, our focus has been
on qualitative restrictions, which can be imposed on each
transformation in isolation and thus can simply be enforced
in practice, by appropriately restricting the protocol used

for communicating bids. Fionda and Greco also establish
important results on qualitative restrictions, which however
are largely negative. In essence, they show that transforma-
tions with a single input and a single output good give rise to
tractable problems, while even only allowing a second good
at either the input or the output side makes things intractable.
Our results show that better results are achievable by intro-
ducing the notion of ‘tool’ and using it to impose qualitative
constraints between input and output goods.

The idea of trying to identify ‘tractability islands’ for
solving combinatorial auctions, i.e., restrictions to the gen-
eral setting that are both of practical interest for modelling
application scenarios and that allow for optimal solutions
that can be computed efficiently, goes back to the work of
Rothkopf, Pekeč, and Harstad (1998) and has been explored
by several other authors since then (Conitzer, Derryberry,
and Sandholm 2004; Müller 2006; Gottlob and Greco 2007;
Döcker et al. 2016).

Finally, there is a large body of work on other kinds of
combinatorial auctions (Cramton, Shoham, and Steinberg
2006), which we do not review here. We emphasise, how-
ever, that combinatorial exchanges (Sandholm et al. 2002)
differ from both tool auctions and the other auction models
discussed here in that they do not require feasible solutions
to correspond to a sequence of transformations. Instead, they
only require the totality of all output goods to subsume the
totality of all input goods.

5 Conclusion
We have introduced tool auctions and provided a detailed
complexity analysis of both the feasibility and the winner
determination problem of such auctions. With the excep-
tion of the feasibility problem for single- and multi-output
tools, these problems are intractable in general. However, for
the case of tabac tools, we have identified a special case of
practical interest where they are polynomial-time solvable. In
addition, we have analysed the winner determination problem
from a parameterized complexity perspective and identified
both tractable and intractable scenarios.

A first direction for future work concerns the devel-
opment of practical algorithms for solving tool auctions.
Our (fixed-parameter) tractability results point the way for
the design of efficient algorithms for certain special cases.
For cases that are intractable, techniques such as combi-
natorial optimisation and heuristic-guided search should
be explored. A natural starting point is prior work on
such methods for mixed auctions (Giovannucci et al. 2008;
Ottens and Endriss 2008) and other generalisations of the
basic combinatorial auction model (Sandholm et al. 2002).

A second direction concerns the analysis of real-world
instances of our general model to get a clearer picture of
what parameters can be assumed to typically take small val-
ues in practice. Besides industrial supply-chain management,
possible applications include online freelancing platforms.

Acknowledgments. This work was partly supported by
COST Action IC1205 on Computational Social Choice. RdH
was furthermore supported by the Austrian Science Fund
(FWF), project J4047.



References
Ahuja, R. K.; Magnanti, T. L.; and Orlin, J. B. 1993. Network
Flows: Theory, Algorithms, and Applications. Prentice Hall.
Babaioff, M., and Nisan, N. 2004. Concurrent auctions
across the supply chain. Journal of Artificial Intelligence
Research (JAIR) 21:595–629.
Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. Artificial Intelligence 69(1):165–
204.
Cerquides, J.; Endriss, U.; Giovannucci, A.; and Rodrı́guez-
Aguilar, J. A. 2007. Bidding languages and winner determi-
nation for mixed multi-unit combinatorial auctions. In Proc.
20th International Joint Conference on Artificial Intelligence
(IJCAI).
Conitzer, V.; Derryberry, J.; and Sandholm, T. W. 2004.
Combinatorial auctions with structured item graphs. In Proc.
19th National Conference on Artificial Intelligence (AAAI).
Cramton, P.; Shoham, Y.; and Steinberg, R., eds. 2006. Com-
binatorial Auctions. MIT Press.
Cygan, M.; Fomin, F. V.; Kowalik, L.; Lokshtanov, D.; Marx,
D.; Pilipczuk, M.; Pilipczuk, M.; and Saurabh, S. 2015.
Parameterized Algorithms. Springer.
Döcker, J.; Dorn, B.; Endriss, U.; and Krüger, D. 2016. Com-
plexity and tractability islands for combinatorial auctions
on discrete intervals with gaps. In Proc. 22nd European
Conference on Artificial Intelligence (ECAI). IOS Press.
Downey, R. G., and Fellows, M. R. 1999. Parameterized
Complexity. Springer.
Downey, R. G., and Fellows, M. R. 2013. Fundamentals
of Parameterized Complexity. Texts in Computer Science.
Springer.
Fellows, M. R.; Hermelin, D.; Rosamond, F. A.; and Vialette,
S. 2009. On the parameterized complexity of multiple-
interval graph problems. Theoretical Computer Science
410(1):53–61.
Fionda, V., and Greco, G. 2013. The complexity of mixed
multi-unit combinatorial auctions: Tractability under struc-
tural and qualitative restrictions. Artificial Intelligence 196:1–
25.

Flum, J., and Grohe, M. 2006. Parameterized Complexity
Theory. Texts in Theoretical Computer Science. Springer.
Giovannucci, A.; Vinyals, M.; Rodrı́guez-Aguilar, J. A.; and
Cerquides, J. 2008. Computationally-efficient winner de-
termination for mixed multi-unit combinatorial auctions. In
Proc. 7th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS).
Gottlob, G., and Greco, G. 2007. On the complexity of
combinatorial auctions: Structured item graphs and hypertree
decomposition. In Proc. 8th ACM Conference on Electronic
Commerce (EC). ACM.
Müller, R. 2006. Tractable cases of the winner determination
problem. In Cramton, P.; Shoham, Y.; and Steinberg, R., eds.,
Combinatorial Auctions. MIT Press.
Niedermeier, R. 2006. Invitation to Fixed-Parameter Algo-
rithms. Oxford University Press.
Nisan, N. 2006. Bidding languages for combinatorial auc-
tions. In Cramton, P.; Shoham, Y.; and Steinberg, R., eds.,
Combinatorial Auctions. MIT Press.
Ottens, B., and Endriss, U. 2008. Comparing winner deter-
mination algorithms for mixed multi-unit combinatorial auc-
tions. In Proc. 7th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS).
Rothkopf, M. H.; Pekeč, A.; and Harstad, R. M. 1998. Com-
putationally manageable combinational auctions. Manage-
ment Science 44(8):1131–1147.
Sandholm, T. W.; Suri, S.; Gilpin, A.; and Levine, D. 2002.
Winner determination in combinatorial auction generaliza-
tions. In Proc. 1st International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS).
Walsh, W. E., and Wellman, M. P. 2003. Decentralized supply
chain formation: A market protocol and competitive equilib-
rium analysis. Journal of Artificial Intelligence Research
(JAIR) 19:513–567.
Walsh, W. E.; Wellman, M. P.; and Ygge, F. 2000. Combi-
natorial auctions for supply chain formation. In Proc. 2nd
ACM Conference on Electronic Commerce (EC). ACM.


