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Abstract. In this paper we discus work in progress on interpretability
logics. We show how semantical considerations have allowed us to formu-
late non-trivial principles about formalized interpretability. In particular
we falsify the conjecture about the nature of the interpretability logic of
all reasonable arithmetical theories. We consider this an interesting ex-
ample of how purely semantical considerations give new non-trivial facts
about syntactical and arithmetical notions.
In addition we give some apparatus that allows us to push ‘global’ seman-
tical properties into more ‘local’ syntactical ones. With this apparatus,
the rather wild behavior of the different interpretability logics are nicely
formulated in a single notion that expresses their differences in a uniform
way.

This paper consists of three parts. We start of by giving a short introduction
to interpretability logics. In the second part we discuss how a careful analysis
of the modal semantical behaviour of interpretability logics lets us formulate
non-trivial interpretability principles. In the third part we present a semantical
bookkeeping tool which pushes ‘global’ semantical considerations into ‘local’
syntactical ones. The hope is that this machinery will provide a general and
uniform treatment of the bewildering field of modal interpretability logics.

1 Introduction

All techniques and results in this paper revolve around the notions of interpre-
tations between formal theories, and of formalized interpretability. We shall not
give a detailed definition here of interpretations and confer the reader to, e.g.,
[1].

Roughly, an interpretation j of one theory T into another theory S, we write
j : S�T , is a structure preserving map, mapping theorems ϕ of T to theorems ϕj

of S. Structure preserving means as much as commuting with proof constructions
and with logical connectives. Thus, for example, the map that sends any formula
in the language of T to a some tautology in the language of S does in general
not qualify as an interpretation.

If there exists an interpretation j : S �T , we say that S interprets T , or that
T is interpretable in S and write S � T . In a sense, if S � T we can say that the
theory S is at least as strong as the theory T . In a sense, interpretability can be



seen as a generalization of provability. Certainly, if S proves all theorems of T ,
then via the identity mapping we get that S � T .

Interpretations turn up time and again in any part of mathematics or meta-
mathematics. They have been used to establish undecidability of formal theories
[2], relative consistency results [3] [4], incompleteness results [5] and also are
used in foundational studies [6], [7], [8]. In this paper we shall only be dealing
with interpretations between first order theories in which some minimal part
of number theory “lives” in a natural way. One way to study the behaviour of
interpretability is by employing so-called interpretability logics.

1.1 Interpretability logics

With the ‘logics approach’ we can capture a large part of the structural behavior
of interpretations. Let us consider such a structural rule.

For any theories U , V and W we have that, if U � V and V � W , then also
U �W . It is not hard to catch this in a modal logic. But modal logics talk about
propositions and interpretability talks about theories.

It does not seem to be a good idea to directly translate propositional vari-
ables to theories. For what does the negation of a theory mean? And how to
read implication? And how to translate modal statements involving iterated
modalities?

The usual way to relate modal logics to interpretability is to translate propo-
sitional variables to arithmetical sentences that are added to some base theory
T . Of course, the meta-theory should be strong enough to allow for arithmetiza-
tion. By this approach we get quite an expressive formalism in which the logic
of provability is naturally embedded.

We shall work with a modal language containing two modalities, a unary
modality 2 and a binary modality �. As always, we shall use 3A as short for
¬2¬A. Apart from propositional variables we also have two constants > and ⊥
in our language.

In this paper we thus use the same symbol � both for formalized inter-
pretability and for our binary modal operator. The same holds for 2. But the
context will always decide on how to read the symbol.

In writing formulas we shall omit brackets that are superfluous according
to the following reading conventions. We say that the operators 3, 2 and ¬
bind equally strong. They bind stronger than the equally strong binding ∧ and
∨ which in turn bind stronger than �. The weakest (weaker than �) binding
connectives are → and ↔. We shall also omit outer brackets. Thus, we shall write
A � B → A∧2C � B ∧2C instead of ((A � B) → ((A∧ (2C)) � (B ∧ (2C)))).

Definition 1 (Arithmetical realization). An arithmetical T -realization is a
map ∗ sending propositional variables p to arithmetical sentences p∗. The real-
ization ∗ is extended to a map that is defined on all modal formulae as follows.

It is defined to commute with all boolean connectives. Moreover (A � B)∗ =
(T ∪{A∗})�(T ∪{B∗}) (we shall write A∗

�T B∗) and (2A)∗ = 2T A∗. Here �T



and 2T denote the formulas expressing formalized interpretability and formalized
provability respectively, over T .

We shall reserve the symbol ∗ to range over T -realizations. Moreover, we will
speak just of realizations if the T is clear from the context. In the literature real-
izations are also referred to as interpretations or translations. As these words are
already reserved for other notions in our paper, we prefer to talk of realizations.

Definition 2 (Interpretability principle, Interpretability logic). A modal
formula A is an interpretability principle of a theory T , if ∀∗T ` A∗. The inter-
pretability logic of a theory T , we write IL(T), is the set of all the interpretability
principles of T or a logic that generates it.

Definition 3 (IL). With IL we will refer to the logic axiomatized by classical
propositional logic, the following set of axiom schemata

L1 2(A → B) → (2A → 2B)
L2 2A → 22A
L3 2(2A → A) → 2A
J1 2(A → B) → A � B
J2 (A � B) ∧ (B � C) → A � C
J3 (A � C) ∧ (B � C) → A ∨ B � C
J4 (A � B) → (3A → 3B)
J5 3A � A

using necessitation (from A, conclude 2A) and modus ponens.

With ILX we denote the logic that arises by adding a principle X to the axiom
schemata of IL and likewise for adding more principles. In this paper we shall
discuss the following principles.

W := A � B → A � B ∧ 2¬A
M := A � B → A ∧ 2C � B ∧ 2C
P := A � B → 2(A � B)
M0 := A � B → 3A ∧ 2C � B ∧ 2C
R := A � B → ¬(A � ¬C) � B ∧ 2C

1.2 The quest for IL(All)

By a result of Shavrukov [9] and independently, Berarducci [10], it is known that
IL(T)=ILM whenever T is an essentially reflexive theory (a theory that proves
the consistency of all its finite subtheories).

By a result of Visser [11] it is known that IL(T)=ILP whenever T is a finitely
axiomatizable theory of some minimal strength.

We see here a phenomenon different from provability logics: different theories
can have different interpretability logics. We are interested in the collection of
modal formulae that are interpretability principles of any reasonable theory. Of
course, the term reasonable should be agreed upon. It is good to start out with



a very general notion, that is, putting very little constraints. As in [12] we just
demand that we can do basic syntactic operation.3

Definition 4. The interpretability logic of all reasonable arithmetical theories,
we write IL(All), is the set of formulas ϕ such that ∀T ∀ ∗ T ` ϕ∗. Here the T
ranges over all the reasonable arithmetical theories.

Throughout the previous decades many a conjecture has been made as to the
nature of IL(All), but up to the date of today the problem remains unsettled.

1.3 Logics, semantics and interactions

Interpretability logics come with a natural Kripke semantics. Below we define
this semantics. The logic IL is known to be complete with respect to this seman-
tics [1] and similar completeness results have been obtained for ILP, ILM, ILM0

and ILW [11][10][9][14][15].

Definition 5 (Veltman Frame). A Veltman frame, or just frame, is a triple
F = 〈W, R, S〉 where

1. 〈W, R〉 is a GL-frame (e.a. W is a set and R is a transitive, conversely
well-founded binary relation on W ).

2. S is a ternary relation on W . With Sw we designate the binary relation
{(a, b) | (w, a, b) ∈ S}. Additionally, we require for all a, b, c, w, t that the
following holds.
(a) aSwb ⇒ wRa & wRb
(b) wRaRb ⇒ aSwb
(c) aSwbSwc ⇒ aSwc
(d) wRa ⇒ aSwa

Definition 6 (Veltman model). A Veltman model, or simply model, is a
quadruple M = 〈W, R, S, 〉 where 〈W, R, S〉 is a Veltman frame and  is a
(forcing) relation between elements of W and IL-formulas satisfying the following
requirements.

1. w  A � B iff for each u such that wRu and u  A, there exists uSwv such
that v  B

2. w  2A iff for each u such that wRu we have u  A
3.  commutes with boolean connectives, e.g. w  A ∧ B iff w  A and w  B

As always, the modal semantics provide a good heuristics for finding modal
proofs. On the other hand, there also is a deep connection between modal models,
and models of arithmetic. For example, one can consider the class of models of
PA and define accessibility relations between these models in such a way that, in
a sense, Veltman semantics arises. Thus, nodes of a Veltman model correspond

3 This can be expressed by T � S
1

2 where S
1

2 is Buss’s theory of bounded arithmetic.
See, e.g., [13].



Modal
Models

Models
   of
Arithmetic

Arithmetic
Proof
Theory

Modal
Proof
Theory

IL(All)

Fig. 1. Many disciplines interacting

to models of PA and the forcing relation  is just first order model theoretical
satisfaction |=. (See Appendix D from [16].)

Although there are some indications4 as how to generalize these results to
models of reasonable arithmetic, this project remains open. Nevertheless, the
intuitions on the arithmetical models and the correspondence to Veltman models,
are still usable and yield good heuristics for work on modal models. We shall see
in the next section how the modal models contribute in a very fruitful way to
finding new principles in IL(All).

Of course, also direct arithmetic consideration of proof theoretic nature can
yield new insights and possibly new principles for IL(All). The latest progress
however comes primarily from semantical, i.e., modal considerations. In Figure 1
we schematically represent the various fields and interactions that come together
when studying the logic IL(All).

2 Veltman semantics and the road to IL(All)

As already mentioned above, most principles about interpretability for frag-
ments of arithmetic are direct consequences of proof theoretic facts about these
fragments. For example the Orey-Hájek characterization of interpretability for
essentially reflexive theories directly translates to the M scheme:

M : A � B → A ∧ 2C � B ∧ 2C.

Roughly, the Orey-Hájek characterization for reflexive theories gives us that if
A � B, then we can make for any model M of A an internally definable model

4 A model theoretic characterization of interpretability along the lines of [12], Section
2.3 is certainly relevant here.



M ′ of B which is an end extension of M . Clearly, 2C, being a Σ1-formula, is
preserved under the end extension. This is a nice illustration of how reasoning
in terms of models provides a good heuristics.

If we consider the notion of interpretability for finitely axiomatizable frag-
ments of arithmetic, it is not hard to see that interpretability is actually for-
malizable by a Σ1-formula. And thus we immediately get, by provable Σ1-
completeness, the P scheme:

P : A � B → 2(A � B).

Moving along such proof theoretic lines, one can justify W and M0 as well.
There is another way to come up with valid principles that isn’t fully justified

in itself (it is more of a heuristic rather than a method). But this has nevertheless
given some good results and is much lighter than the heavy proof theoretic
machinery mentioned above.

2.1 Arithmetical Principles from Modal Semantics

Like with other modal logics, for interpretability logics there exists a well un-
derstood frame correspondence theory. It is not hard to see that the scheme M

holds on any frame F (that is, holds on any model with underlying frame F ) if
and only if uSxvRw → uRw. Likewise we can formulate a frame condition for P

being xRyRuSxv → uSyv.
A principle in IL(All) must certainly be an interpretability principle for es-

sentially reflexive theories and also for finitely axiomatizable theories. Thus, the
principle should hold on any ILM-frame and also on any ILP-frame. Hence,
modal semantics severely confines the search space for new principles. We can
just look for ‘natural’ semantic conditions that hold both on ILM and on ILP

frames, and then look for the corresponding principle. Heuristics for the ‘natu-
rality’ are provided by the earlier described relations with arithmetical models,
arithmetical proof theory, modal logics and syntactical form.

2.2 From M0 to P0, and from P0 to R

The scheme M0 corresponds to the frame condition

wRxRySwy′Rz implies xRz.

Stagnation in attempts to prove modal completeness of ILM0 led in [17] to
proposing a stronger scheme

wRxRySwy′Rz implies xRz ∧ ySxz,

and the corresponding principle P0

A � 3B → 2(A � B),



which is easily seen to be valid under this stronger frame condition. Using meth-
ods from [18] one easily shows that this principle is arithmetically valid. However,
careful analysis of what is needed to show modal completeness of ILP0 revealed
(see5 [14]) the scheme R

A � B → ¬(A � C) � B ∧ 2¬C.

In what follows we show that R does not follow from P0. In fact we show that
ILP0M0W is incomplete. Let us first calculate the frame condition of R. It turns
out to be the same frame condition as for P0 (see [17]).

Lemma 7. F |= R ⇔ [xRyRzSxuRv → zSyv]

Proof. “⇐” Suppose that at some world x  A � B. We are to show x 

¬(A � ¬C) � B ∧ 2C. Thus, if xRy  ¬(A � ¬C) we need to go via an Sx to a
u with u ` B ∧ 2C.

As y  ¬(A � ¬C), we can find z with yRz  A. Now, by x  A � B, we
can find u with ySxu  B. We shall now see that u  B ∧2C. For, if uRv, then
by our assumption, zSyv, and by y  ¬(A � ¬C), we must have v ` C. Thus,
u  B ∧ 2C and clearly ySxu.

“⇒” We suppose that R holds. Now we consider arbitrary a, b, c, d and e with
aRbRcSadRe. For propositional variables p, q and r we define a valuation  as
follows.

x  p :⇔ x = c
x  q :⇔ x = d
x  r :⇔ cSbx

Clearly, a  p � q and b  ¬(p �¬r). By R we conclude a  ¬(p �¬r) � q ∧2r.
Thus, d  q ∧ 2r which implies cSbe.

Theorem 8. ILP0M0W 0 R

Proof. We consider the model M from Figure 2 and shall see that M |= ILP0M0W

but M, a 6 R. Since forcing of formulas in a model is preserved under modal
derivability, we conclude that ILP0M0W 0 R.

As M satisfies the frame condition for M0W, it is clear that M |= M0W. We
shall now see that M |= A � 3B → 2(A � B) for any formulas A and B.

A formula 2(A � B) can only be false at some world with at least two
successors. Thus, in M , we only need to consider the point a. So, suppose A�3B.
For which x with aRx can we have x  A?

As we have to be able to go via an Sx-transition to a world where 3B holds,
the only candidates for x are b, c and d. But clearly, c and f make true the same
modal formulas. From f it is impossible to go to a world where 3B holds.

Thus, if a  A�3B, the A can only hold at b or at d. But this automatically
implies that a  2(A � B) and M |= P0.

It is not hard to see that a 6 R. Clearly, a  p � q and b  ¬(p � ¬r).
However, d 6 q ∧ 2r and thus a 6 ¬(p � ¬r) � q ∧ 2r.

5 In this reference a slightly different principle was formulated. In [19] the principle R

was first published.
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The following lemma tells us that ILR is a proper extension of ILM0P0.

Lemma 9. ILR ` M0, P0

Proof. As IL ` 3A∧2C → ¬(A�¬C) we get that A�B → 3A∧2C�¬(A�¬C)
and M0 follows from R. The principle P0 follows directly from R by taking C =
¬B.

2.3 From R to, who knows

By systematically searching the “natural” frame conditions that live in the in-
tersection of ILP and ILM one can find new candidate principles. The authors
claim to recently have found a new whole “hierarchy” of principles in IL(All).

3 Full Labels

In this section we address difficulties found in modal completeness proofs not by
formulating new principles, but by a book keeping apparatus which allows us to
‘localize’ certain ‘global’ desirable properties of models. It has been put to work
successfully in [19] where a considerable simplification of the modal completeness
proof of ILW (as given in [15]) is given. Here we shall give some basic theory.

As is in general the case with model constructions, maximal consistent sets
of formulas play an important role. In addition, in model constructions for in-
terpretability logics, a central notion in these constructions is the notion of a
critical successor [20].

Definition 10 (Critical successor). Let Γ and ∆ be maximal consistent sets
of formulas and let B be a formula. We say that ∆ is a B-critical successor of



Γ , and write Γ ≺B ∆ when if A � B ∈ Γ , then ¬A, 2¬A ∈ ∆. Moreover, for
some 2C we have 2C ∈ ∆ but 2C 6∈ Γ .

In this section we will expose a generalization of critical successor and show
how it can be used to solve, in a uniform way certain problematic aspects of
modal completeness proofs.

Definition 11 (Assuring successor). Let S be a set of formulas. We define
Γ≺S∆, and say that ∆ is an S-assuring successor of Γ , if for any finite S′ ⊆ S
we have A �

∨
Sj∈S′ ¬Sj ∈ Γ ⇒ ¬A, 2¬A ∈ ∆ and for some 2C ∈ ∆ we have

2C 6∈ Γ .

Lemma 12. For the relation ≺S we have the following observations.

1. Γ≺∅∆ ⇔ Γ ≺ ∆
2. ∆ is a B-critical successor of Γ ⇔ Γ≺{¬B}∆
3. S ⊆ T & Γ≺T ∆ ⇒ Γ≺S∆
4. Γ≺S∆ ≺ ∆′ ⇒ Γ≺S∆′

5. Γ≺S∆ ⇒ S, 2S ⊆ ∆, 3S ⊆ Γ and for all A, 3A /∈ S

Theorem 13. Let Γ be a MCS and S a set of formulas. If for any choice of
Si ∈ S we have that ¬(B �

∨
¬Si) ∈ Γ , then6 there exists a MCS ∆ such that

Γ≺S∆ 3 B, 2¬B.

Proof. Suppose for a contradiction there is no such ∆. Then there is a formula7

A such that for some Si ∈ S, (A �
∨
¬Si) ∈ Γ and 2¬B, B,2¬A,¬A ` ⊥.

Then ` 2¬B ∧ B � A ∨ 3A and we get ` B � A. As (A �
∨
¬Si) ∈ Γ , also

(B �
∨
¬Si) ∈ Γ . A contradiction.

Lemma 14. Let Γ be a MCS such that ¬(B � C) ∈ Γ . Then there is a MCS
∆ such that Γ≺{¬C}∆ and B, 2¬B ∈ ∆.

Proof. Taking S = {¬C} in Theorem 13.

Lemma 15. Let Γ and ∆ be MCS’s such that A�B ∈ Γ≺S∆ 3 A. Then there
is a MCS ∆′ such that Γ≺S∆′ 3 B, 2¬B.

Proof. First we see that for any choice of Si, ¬(B �
∨
¬Si) ∈ Γ . Suppose not.

Then for some Si, (B�
∨
¬Si) ∈ Γ because Γ is a MCS. But then (A�

∨
¬Si) ∈

Γ and by Γ≺S∆ we have ¬A ∈ ∆. A contradiction. So ¬(B �
∨
¬Si) ∈ Γ for

any choice of Si and we can apply Theorem 13.

Lemmata 14, 15 are the obvious generalizations of the corresponding lemmata
involving criticality instead of assuringness. To clarify the benefits of assuringness
over criticality let us roughly identify the three main points when building a
counter model 〈W, R, S, V 〉 for some unprovable formula (in some extension of
IL). We take W a multi set of MCS’s and build the model in a step by step
fashion.
6 It is easy to see that we actually have iff.
7 By compactness there are finitely many Aj with for some S

j
i , (Aj �

�
¬S

j
i ) ∈ Γ and

2¬B, B¬Aj , 2¬Aj ` ⊥. We can take A to be
�

j
Aj .



1. For each Γ ∈ W with ¬(A�B) ∈ Γ we should add some B-critical successor
(equivalently {¬B}-assuring successor) ∆ to W for which A ∈ ∆.

2. For each Γ, ∆ ∈ W with C � D ∈ ΓR∆ 3 C we should add a ∆′ to W for
which Γ ≺ ∆′ 3 D. Moreover if ∆ is a B-critical successor of Γ then then
we should be able to choose ∆′ a B-critical successor of Γ as well.

3. We should take care of the frame conditions.

C � D∈Γ

Λ

C∈∆ ∆′3D

Ω

{¬B}

{¬F}

SΓ

SΛ

C′
� D′∈Γ

Λ

∆
∆′3C′

∆′′3D′

{¬B}

{¬F}

SΓ SΓ

SΛ

Fig. 3. R frame condition

When working in IL, Lemma 14 handles Item 1 and Lemma 15 handles
Item 2. Making sure that the frame conditions are satisfied does not impose any
problems [1]. With extensions of IL the situation regarding the frame conditions
becomes more complicated [20][14]. Let us clarify this by looking at ILR. The
additional frame condition is as follows [14]8.

wRxRySwy′Rz ⇒ ySxz

This is depicted in the leftmost picture in Figure 3. Let us use the notation as
in Item 2: ∆′ was added to the model since C � D ∈ ΓR∆ 3 C. Since ∆ lies
F -critical (equivalently {¬F}-assuring) above Λ, we should not only make sure
that ∆′ lies B critical above Γ , but also that for any successor Ω of ∆′ lies F
critical above Λ.

One way to guarantee this is to actually require that 2¬H ∈ ∆′ whenever
H � F ∈ Λ. As one easily checks, it is quite easy to prove such a Lemma in

8 In [14] the modal principle A � B → ¬(A � ¬C) ∧ (D � C) � B ∧ 2C was called
R. This principle and the one called R in this paper are easily seen to be equivalent
over IL.



ILR but we have oversimplified9 the situation. Consider the rightmost picture in
Figure 3. That is, after having added ∆′ to the model we are required to add
some ∆′′ with D′ ∈ ∆′ to the model since C′

� D′ ∈ Γ and C′ ∈ ∆′. By the
transitivity of SΓ we require that 2¬H ∈ ∆′′ whenever H � F ∈ Λ. In this
situation it is not so clear what to do.

Although for ILM0 [14] and ILW [15] there where add hoc solutions to similar
problems, criticality seemed too weak a notion for a more uniform solution. As
the lemmata below will show, assuringness does give us a uniform method for
handling these kind of situations.

In what follows put, for any set of formulas T ,

∆2

T = {2¬A | T ′ ⊆ T finite , A �

∨

Ti∈T ′

¬Ti ∈ ∆},

∆�

T = {2¬A,¬A | T ′ ⊆ T finite , A �

∨

Ti∈T ′

¬Ti ∈ ∆}.

Lemma 16. For any logic (i.e. extension of IL) we have Γ≺S∆ ⇒ Γ≺S∪Γ �
S

∆.

Proof. Suppose Γ≺S∆ and C�
∨
¬Si∨

∨
Aj∨3Aj ∈ Γ . Then C�

∨
¬Si∨

∨
Aj ∈

Γ and thus C �
∨
¬Si ∨

∨
¬Sj

k ∈ Γ which implies ¬C, 2¬C ∈ ∆.

Lemma 17. For logics containing M we have Γ≺S∆ ⇒ Γ≺S∪∆2

∅
∆.

Proof. Note that ∆2

∅ = {2C | 2C ∈ ∆}. We consider A such that for some Si ∈
S and 2Cj ∈ ∆2

∅ , (A�
∨

¬Si ∨
∨

¬2Cj) ∈ Γ . By M, (A∧
∧

2Cj �
∨
¬Si) ∈ Γ ,

whence �¬(A ∧
∧

2Cj) ∈ ∆. As
∧

2Cj ∈ ∆, we conclude ¬A, 2¬A ∈ ∆.

Lemma 18. For logics containing P we have Γ≺SΛ≺T ∆ ⇒ Γ≺S∪Λ�
T
∆.

Proof. Suppose C �
∨
¬Si ∨

∨
Aj ∨ 3Aj ∈ Γ , where 2¬Aj ,¬Aj ∈ ∆�

T . Then
C �

∨
¬Si ∨

∨
Aj ∈ Γ and thus by P we obtain C �

∨
¬Si ∨

∨
Aj ∈ Λ. Since

Γ≺SΛ we have 2
∧

Si ∈ Λ so we obtain C �
∨

Aj ∈ Λ. But for each Aj we
have Aj �

∨
¬Tjk ∈ Λ and thus C �

∨
Tjk ∈ Λ. Since Λ ≺T ∆ we conclude

¬C, 2¬C ∈ ∆.

Lemma 19. For logics containing M0 we have Γ≺S∆ ≺ ∆′ ⇒ Γ≺S∪∆2

∅
∆′.

Proof. Suppose C �
∨

Si ∨
∨

3Aj ∈ Γ , where 2¬Aj ∈ ∆2

∅ . By M0 we obtain
3C∧

∧
2¬Aj�

∨
Si ∈ Γ . So, since Γ≺S∆ and

∧
2¬Aj ∈ ∆ we obtain 2¬C ∈ ∆

and thus 2¬C,¬C ∈ ∆′.

Lemma 20. For logics containing R we have Γ≺S∆≺T ∆′ ⇒ Γ≺S∪∆2

T
∆′.

9 The reader should note that we do not give a completeness proof for ILR here.
We only indicate a few problems one will encounter and indicate the usefulness
of assuringness by overcoming these. In general assuringness does not yet give the
answer to all problems encountered in modal completeness proofs. However, in the
special case of ILRW assuringness can be put to use to give a completeness proof.



Proof. We consider A such that for some Si ∈ S and some 2¬Aj ∈ ∆2

T , we have
(A �

∨
¬Si ∨

∨
3Aj) ∈ Γ . By R we obtain (¬(A �

∨
Aj) �

∨
¬Si) ∈ Γ , thus by

Γ≺S∆ we get (A �
∨

Aj) ∈ ∆. As (Aj �
∨
¬Tkj) ∈ ∆, also (A �

∨
¬Tkj) ∈ ∆.

By ∆≺T ∆′ we conclude �¬A ∈ ∆′.

Γ

∆

U

S

T

U ∪ Γ 2

S ∪ ∆2

T

U ∪ Γ 2

S Γ

∆

U

S

T

U ∪ Γ 2

S∪∆2

T

S ∪ ∆2

T

Fig. 4. Two ways for computing the transitive closure in ILR.

What lemmata 18, 19 and 20 actually tell us is how to label R relations when
we take R transitive while working in the lemma’s respective logic. However,
there is an easily identifiable problem here. Suppose we are working in ILR.
Consider the two pictures in Figure 4. If we compute the label between the lower
world and the upper world it does make a difference whether we first compute
the label between the lower world and ∆ (left picture) or the label between Γ
and the upper world (right picture). We will show in Lemma 21 below that in
the situation as given in Figure 4 we have

U ∪ Γ 2

S∪∆2

T
⊆ U ∪ Γ 2

S ∪ ∆2

T .

And we should thus opt for the strategy as depicted in the leftmost picture when
computing the transitive closure of R.

Lemma 21. For logics containing10
R we have Γ≺S∆ ⇒ Γ 2

S∪∆2

T
⊆ ∆2

T .

Proof. Consider 2¬A ∈ Γ 2

S∪∆2

T
, that is, for some Si ∈ S and 2¬Bj ∈ ∆2

T ,

A�
∨

¬Si ∨
∨

¬2¬Bj ∈ Γ . By R, ¬(A�
∨

Bj)�
∨

¬Si ∈ Γ , whence by Γ≺S∆,
we get A �

∨
Bj ∈ ∆. But for each Bj there is Tjk ∈ T with Bj �

∨
¬Tjk ∈ ∆,

whence A �
∨
¬Tjk ∈ ∆ and 2¬A ∈ ∆2

T .

10 For the other logics we get similar lemmata.



Lemmata as Lemma 17, 19 and 20 are what we call labelling lemma. We
propose the following slogan.

Slogan: Every complete logic with a first order frame condition has its
own labeling lemma.

Let us state two lemmata for ILW, a logic without a first order frame prop-
erty. As predicted by our slogan, these do not fit in very nicely with the previous
ones.

Lemma 22. Suppose ¬(A�B) ∈ Γ . There exists some ∆ with Γ ≺{2¬A,¬B} ∆
and A ∈ ∆.

Proof. Suppose for a contradiction that there is no such ∆. Then there is a
formula E with (E � 3A ∨ B) ∈ Γ such that A,¬E, 2¬E ` ⊥ and so ` A � E.
Then (A � 3A ∨ B) ∈ Γ and by the principle W we have A � B ∈ Γ . The
contradiction.

Lemma 23. For logics containing W we have that if B � C ∈ Γ≺S∆ 3 B then
there exists ∆ with Γ≺S∪{2¬B}∆ 3 C, 2¬C.

Proof. Suppose for a contradiction that no such ∆ exists. Then for some formula
A with (A �

∨
¬Si ∨3B) ∈ Γ , we get C, 2¬C,¬A, 2¬A ` ⊥, whence ` C � A.

Thus B � C � A �
∨
¬Si ∨ 3B ∈ Γ . By W, B �

∨
¬Si ∈ Γ which contradicts

Γ≺S∆ 3 B.

4 Conclusion

In this paper two steps were taken.
The first one, presented in Section 2, involves the interpretability logic of

all reasonable arithmentical theories. A new principle was formulated and the
authors have the hope (and evidence) that proceeding along similar lines, much
more can be achieved.

The second step involves a uniform treatment of different interpretability
logics. Although much is know about the modal behavior of these logics, a rel-
ativelly clear and complete treatment (something that approaches a canonical
model construction [1], Gentzen-style proof system [21]) is only given for the
base logic IL. We hope that the machinery of Section 3 are the first steps to a
uniform treatment of different modal interpretability logics.
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