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Abstract

We characterise the intermediate logics which admit a cut-free hypersequent calculus of the form
HLJ+ R, where HLJ is the hypersequent counterpart of the sequent calculus LJ for propositional
intuitionistic logic, and R is a set of so-called structural hypersequent rules, i.e., rules not involving
any logical connectives. The characterisation of this class of intermediate logics is presented both
in terms of the algebraic and the relational semantics for intermediate logics. We discuss various—
positive as well as negative—consequences of this characterisation.
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1 Introduction

Constructing cut-free proof calculi for intermediate logics can be notoriously difficult. In fact, we know
only of very few intermediate logics having a cut-free Gentzen-style sequent calculus obtained by adding a
finite number of sequent rules to the single-succedent1 sequent calculus LJ for IPC.2 On the other hand
few decisively negative results have been obtained in this respect. The few such results in the literature
are of a rather general nature ruling out sequent systems with rules of a particular syntactic shape for
certain (classes of) logics, see, e.g., [22, Cor. 7.2] and [40].3 However, by moving to the framework of
hypersequent calculi [45, 47, 3] it is possible to construct cut-free hypersequent calculi for many well-
known intermediate logics, see, e.g., [4, 21, 20, 26]. Hypersequents are nothing but finite multisets of
sequents. In general adding so-called structural hypersequent rules, viz., rules not involving the logical
connectives, usually behaves well with respect to the cut-elimination procedure. In fact, a systematic
approach to the problem of constructing cut-free proof calculi has been developed and a class of formulas,
called P3, has been singled out for which corresponding cut-free structural single-succedent hypersequent
calculi may be obtained in a uniform manner [22, 24]. However, negative results demarcating the class
of intermediate logics admitting cut-free structural hypersequent calculi are still to some extent lacking.
Considering substructural logics proper some meaningful necessary conditions for admitting a cut-free
structural hypersequent calculus have been provided [22, Cor. 7.3], [25, Thm. 6.8].

Our contribution consists in singling out a purely semantic criterion determining when an intermediate
logic can be captured by a cut-free structural single-succedent hypersequent calculus extending the basic
single-succedent hypersequent calculus HLJ for IPC. This is done by considering a subclass of the so-
called (0,∧,∨, 1)-stable logics studied in [7, 10, 13]. More precisely, we introduce a class of intermediate
logics, which we call (0,∧, 1)-stable, determined by classes of Heyting algebras closed under taking
(0,∧, 1)-subalgebras of subdirectly irreducible Heyting algebras. We are also able to show that all such
intermediate logics are elementarily determined and we obtain a characterisation of the first-order frame
conditions determining intermediate logics with a cut-free structural hypersequent calculus. These frame
conditions are analogous to the frame conditions introduced by Lahav [42] for constructing analytic
hypersequent calculi for modal logics. Finally, we compare the class of (0,∧, 1)-stable intermediate
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1Recall that a sequent is a single-succedent sequent if at most one formula occurs on the right-hand side of the sequent
arrow.

2In [29, 50] a sequent calculus for the intermediate logic LC is obtain by adding infinitely many rules to the multi-
succedent calculus LJ′ for IPC and [38] gives a Gentzen-like calculus for KC in terms of finitely many rules which are,
however, non-local. Finally, [2] gives examples of tableau calculi for the seven interpolable intermediate logics from which
corresponding sequent calculi may be obtained.

3See also [44, 39] for negative result about cut-free sequent systems for modal logics.
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logics to the class of (0,∧,∨, 1)-stable intermediate logics. We show that there are (0,∧,∨, 1)-stable
intermediate logics which are not (0,∧, 1)-stable. Furthermore, we show that the (0,∧,∨, 1)-stable logics
given by the so-called (0,∧,∨, 1)-stable rules [10, Sec. 5] determined by finite well-connected Heyting
algebras which are projective as objects in the category of distributive lattices will necessarily be (0,∧, 1)-
stable. Lastly, we show that the (0,∧, 1)-stable logics are precisely the cofinal subframe logics which are
also (0,∧,∨, 1)-stable.

The paper is structured as follows. Section 2 contains a short introduction to hypersequent calculi
and their algebraic interpretation. Section 3 contains the algebraic characterisation of intermediate logics
with a (cut-free) structural hypersequent calculus. In Section 4 the first-order frame conditions associated
with the class of intermediate logics admitting a cut-free structural hypersequent calculi are determined
and in Section 5 this class of intermediate logics is compared with the class of (0,∧,∨, 1)-stable logics.

2 Preliminaries on algebraic proof theory

In this section we will briefly review the necessary background on algebraic proof theory [22, 24, 25] on
which the findings of the present paper heavily relies.

2.1 Hypersequents

Let P be a set of propositional letters and let Form be the set of propositional formulas in the language
of intuitionistic logic given by the following grammar

ϕ ::= ⊥ | p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ, p ∈ P.

Note that in this language both the connective↔ and the constant > is definable, e.g., as (ϕ→ ψ)∧(ψ →
ϕ) and ⊥ → ⊥, respectively.

By a single-succedent sequent (in the language of propositional intuitionistic logic) we shall under-
stand a pair (Γ,Π), written Γ⇒ Π, where Γ is a finite multiset of formulas from Form and Π is a stoup,
i.e., either empty or a single formula in Form. The sequent system LJ, see, e.g., [32, Chap. 1.3], provides
a sequent calculus which is sound and complete with respect to propositional intuitionistic logic IPC.
However, when adding additional axioms to LJ the resulting system is no longer guaranteed to enjoy
the same proof-theoretic properties as LJ such as cut-elimination.

Nevertheless, many logics for which no cut-free Gentzen-style sequent calculus is available may be
captured nicely by the so-called hypersequent calculus formalism. A hypersequent is simply a finite
multiset of sequents H written as Γ1 ⇒ Π1 | . . . | Γn ⇒ Πn, where the sequents Γi ⇒ Πi are called
the components of the hypersequent H. One may think of a hypersequent as a “meta-disjunction” of
sequents. The hypersequent formalism can therefore be thought of as a proof-theoretic framework that
allows for the manipulation of sequents in parallel. In addition to the usual (internal) structural rules
such as contraction and weakening the hypersequent framework allows us to consider a wide variety of so-
called structural hypersequent rule [22, Sec. 3.1], i.e., hypersequent rules not involving any of the logical
connectives, which operates on multiple components at once. For example the structural hypersequent
rules

H | Γ1,Γ
′
2 ⇒ Π1 H | Γ2,Γ

′
1 ⇒ Π2

(com)
H | Γ1,Γ

′
1 ⇒ Π1 | Γ2,Γ

′
2 ⇒ Π2

H | Γ1,Γ2 ⇒
(lq)

H | Γ1 ⇒ | Γ2 ⇒
determines hypersequent calculi for the intermediate logics LC = IPC + (p → q) ∨ (q → p) and
KC := IPC +¬p∨¬¬p, respectively, when added to HLJ, viz., the hypersequent version of LJ, defined
below.

Definition 2.1. Let HLJ denote the hypersequent calculus consisting of the following rules.
Logical rules:

(inti)
H | ϕ⇒ ϕ

(⊥)
H | ⊥ ⇒

H | Γ⇒ ϕ H | Γ, ψ ⇒ Π
(L→)

H | Γ, ϕ→ ψ ⇒ Π

H | Γ, ϕ⇒ ψ
(R→)

H | Γ⇒ ϕ→ ψ
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H | Γ, ϕ, ψ ⇒ Π
(L∧)

H | Γ, ϕ ∧ ψ ⇒ Π

H | Γ⇒ ϕ H | Γ⇒ ψ
(R∧)

H | Γ⇒ ϕ ∧ ψ

H | Γ, ϕ⇒ Π H | Γ, ψ ⇒ Π
(L∨)

H | Γ, ϕ ∨ ψ ⇒ Π

H | Γ⇒ ϕ
(R∨1)

H | Γ⇒ ϕ ∨ ψ
H | Γ⇒ ψ

(R∨2)
H | Γ⇒ ϕ ∨ ψ

The internal structural rules

H | Γ⇒ Π
(LW )

H | Γ, ϕ⇒ Π

H | Γ⇒
(RW )

H | Γ⇒ ϕ

H | Γ, ϕ, ϕ⇒ Π
(LC)

H | Γ, ϕ⇒ Π

The external structural rules

H (EW )
H | G

H | G | G
(EC)

H | G

The cut-rule
H | Γ⇒ ϕ H | Σ, ϕ⇒ Π

(cut)
H | Γ,Σ⇒ Π

For what follows it will be convenient to have fixed a notion of hypersequent calculus.

Definition 2.2. An intermediate hypersequent calculus is a calculus of the form HLJ + R, for a set
R of hypersequent rules in the language of intuitionistic logic. Furthermore, if R is a set of structural
hypersequent rules in the language of intuitionistic logic we say that HLJ+R is a structural intermediate
hypersequent calculus. A hypersequent H is derivable in HLJ+R from a set of hypersequents H, written
H `HLJ+R H, if H can be obtained using the inference rules from HLJ+R possibly using hypersequents
in H as initial assumptions. In the case where H is empty we simply write `HLJ+R H. A hypersequent
rule (r) is derivable in a calculus HLJ + R if the conclusion of (r) is derivable in HLJ + R from the
premises of (r). Finally, we say that an intermediate hypersequent calculus HLJ + R is cut-free if any
hypersequent derivable in HLJ + R can be derived without using the cut-rule.

Remark 2.3. Note that HLJ consists of all the rules of the sequent calculus LJ with a hypersequent
context together with the two external structural rules. Consequently, all of the notions from Defini-
tion 2.2 also apply mutatis mutandis to sequent calculi. In particular, it is not difficult to see that HLJ
and LJ derive exactly the same sequents.

Remark 2.4. We are here identifying hypersequent calculi with extensions of the calculus HLJ, but
we could of course equally well have consider extensions of other cut-free hypersequent calculi for IPC.
However, for what follows it is essential that we consider single-succedent calculi as we will be relying on
results from [22, 25] which only consider the single-succedent case. In fact, it is not immediately clear if
the approach of [22, 25] can be successfully adapted to the multi-succedent setting.

Each consistent hypersequent calculus HLJ + R determines an intermediate logic, namely,

Λ(HLJ + R) := {ϕ ∈ Form: `HLJ+R ⇒ ϕ}.

Definition 2.5. Given an intermediate logic L we say that a hypersequent calculus HLJ+R determines
L if Λ(HLJ + R) = L. Furthermore, given a property P we say that L admits a hypersequent calculus
with property P if L is determined by a hypersequent calculus HLJ + R with the property P .

Remark 2.6. Given a sequent S, say, Γ⇒ Π, there exists a formula ϕS , namely,
∧

Γ→
∨

Π, such that
S and ϕS determine the same super-intuitionistic logic. We make use of the convention that

∨
∅ = ⊥

and
∧
∅ = >. Similarly, given a hypersequent rule (r) there exists a finite set of multi-conclusion rules

Mr such that (r) and Mr determine the same super-intuitionistic logic, for details see, e.g., [16, Sec. 2].
Thus for the purpose of axiomatising intermediate logics the two formalisms are equally good. However,
when considering properties of formal derivations the hypersequent formalism is arguably more natural.
We will come back to multi-conclusion rules, in the form of stable universal clauses, in Section 3.
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We would like to know which intermediate logics can be determined by structural intermediate hy-
persequent calculi as defined in Definition 2.2. That is, we would like to know which intermediate logics
are of the form Λ(HLJ + R), for R a set of structural hypersequent rules. This is interesting to know
since such intermediate logics can also be captured by a structural hypersequent calculus without using
the cut-rule [22].4 Thus answering this question will help us better understand—from a semantical point
of view—which intermediate logics can be captured by cut-free proof calculi.

2.2 Structural hypersequent calculi and universal clauses

Let HA denote the variety of Heyting algebras. Then for any intermediate logic L ⊇ IPC there is a
variety V(L) ⊆ HA such that ϕ↔ ψ ∈ L if and only if V(L) |= ϕ ≈ ψ, for any pair of formulas ϕ and ψ
in the language of propositional intuitionistic logic, see, e.g., [18, Thm. 7.73(iv)]. Thus any intermediate
logic is sound and complete with respect to a variety, i.e., an equationally definable class, of Heyting
algebras.

Importantly we also have an analogous algebraic completeness theorem for hypersequent calculi.

Theorem 2.7. Let R be a set of hypersequent rules and let H ∪ {H} be a set of hypersequents. Then
the following are equivalent:

1. H `HLJ+R H;

2. H |=K(R) H,

where K(R) denotes the class of Heyting algebras validating all the rules belonging to R.

Proof. This is nothing but a modified version of the Lindenbaum-Tarski construction5, see, e.g., [41, 15,
16].

Thus in order to use the algebraic semantics to study structural hypersequent calculi we must identify
the classes of Heyting algebras of the form K(R) for R a collection of structural hypersequent rules.

Recall, e.g., [17, Def. V.2.19] that a first-order formula (in a language without relational symbols) in
prenex-normal form with all quantifiers universal is called a universal formula or universal clause. Thus,
any universal clause may be written6 as

∀~x(t1(~x) ≈ u1(~x) and . . . and tm(~x) ≈ um(~x) =⇒ tm+1(~x) ≈ um+1(~x) or . . . or tn(~x) ≈ un(~x)),

for terms tk(~x) and uk(~x), k ∈ {1, . . . , n}. In the presence of the lattice operation ∧ we will use t ≤ u
as an abbreviation of the equation t ≈ t ∧ u. Finally, if it is clear from the context we will drop the
universal quantifier, leaving it to be understood that the variables, which may or may not be displayed,
are all universally quantified. A class of models of a collection of universal formulas is called a universal
class.

The following two propositions show that the structural intermediate hypersequent calculi correspond
to certain kinds of universal classes of Heyting algebras. For details, see, [25, Sec. 3.3, Sec. 4.4].

Proposition 2.8 (cf. [25, Sec. 3.3]). For each structural hypersequent rule (r) there exists a universal
clause qr in the {0,∧, 1}-reduct of the language of Heyting algebras such that

A |= (r) ⇐⇒ A |= qr,

for all Heyting algebras A.

Proof. Given a structural rule (r), say

H | S1 . . . H | Sm
(r)

H | Sm+1 | . . . | Sn
4In fact this holds for a much wider class of substructural logics.
5Note, however, that unlike the original Lindenbaum-Tarski construction, this construction does not produce free alge-

bras for the universal class of Heyting algebras validating the corresponding rules.
6Following [23, 24, 25] we write and for conjunction and or for disjunction to avoid confusion with the lattice operations

∧ and ∨. For arbitrary finite conjunctions and disjunctions we use AND and OR, respectively. Similarly, we write =⇒ for
classical implication to avoid confusion with the Heyting algebra operation →.
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we associate a unique first-order variable x to each multiset variable Γ occurring in (r) and similarly
we associate a unique first-order variable y to each stoup variable Π occurring in (r). Then if Si is
Γi1, . . . ,Γik ⇒ Πi we define ti to be the term xi1∧. . .∧xik and ui to be the term yi. If Si is Γi1, . . . ,Γik ⇒
we define ti to be the term xi1 ∧ . . .∧ xik and ui to be the constant 0. Letting qr be the universal clause

t1 ≤ u1 and . . . and tm ≤ um =⇒ tm+1 ≤ um+1 or . . . or tn ≤ un,

it is then straightforward to verify that (r) and qr are equivalent.

Example 2.9. For example the structural hypersequent rules (com) and (lq) correspond to the universal
clauses

x1 ∧ x′2 ≤ y1 and x2 ∧ x′1 ≤ y2 =⇒ x1 ∧ x′1 ≤ y1 or x2 ∧ x′2 ≤ y2

and
x1 ∧ x2 ≤ 0 =⇒ x1 ≤ 0 or x2 ≤ 0,

respectively.

A converse to Proposition 2.8 may be given.

Proposition 2.10 (cf. [25, Sec. 4.4]). For any universal clause q in the {0,∧, 1}-reduct of the language
of Heyting algebras there is a structural hypersequent rule (rq) such that

A |= q ⇐⇒ A |= (rq),

for any Heyting algebra A.

Proof. Let q be a universal clause in the {0,∧, 1}-reduct of the language of Heyting algebras. Any such
universal clause will be equivalent to a finite set of clauses of the form

t1 ≤ u1 and . . . and tm ≤ um =⇒ tm+1 ≤ um+1 or . . . or tn ≤ un,

where for each i ∈ {1, . . . , n} the term ti is a meet of variables, say xi1 ∧ . . . ∧ xik, or the constant 1
and the term ui is either a variable, say yi, or the constant 0. Thus without loss of generality we may
assume that q is of this form. In fact we may assume that the variables occurring in the terms {ti}ni=1 are
disjoint from the variable occurring in the terms {ui}ni=1, [25, Thm. 4.15]. For each variable xi occurring
in the terms {ti}ni=1 we associate a multiset variable Γi and for each variable yi occurring among the
terms {ui}ni=1 we associate a stoup variable Πi. Finally, we let (rq) be the rule

H | S1 . . . H | Sm
(rq)

H | Sm+1 | . . . | Sn

where Si is Γi1, . . . ,Γik ⇒ Πi, with the left-hand (resp. right-hand) side empty if ti (resp. ui) is a
constant. Again, it is easy to verify that (rq) and (q) are indeed equivalent.

Thus Propositions 2.8 and 2.10 above establish that for R a collection of structural hypersequent
rules the class K(R) of Heyting algebras validating all the rules in R is a universal class of Heyting
algebras determined by universal clauses in the {0,∧, 1}-reduct of the language of Heyting algebras and
in fact any such class arises in this way.

This together with Theorem 2.13 below allows us to turn the proof-theoretic question of which
intermediate logics admit a cut-free structural intermediate hypersequent calculus into a purely model-
theoretic question regarding the first-order theory of Heyting algebras.

Given the correspondence between structural intermediate hypersequent calculi and universal clauses
in the {0,∧, 1}-reduct of the language of Heyting algebras we may provide the first algebraic char-
acterisation of the class of intermediate logics admitting structural intermediate hypersequent calculi.
This characterisation is, however, not very informative and in the following section we shall provide a
characterisation which we believe to be more enlightening.

Corollary 2.11. Let L be an intermediate logic. Then the following are equivalent:

1. The logic L admits a structural intermediate hypersequent calculus;
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2. The variety V(L) is generated by a universal class of Heyting algebras axiomatised by universal
clauses in the {0,∧, 1}-reduct of the language of Heyting algebras.

Proof. Suppose that L admits a structural intermediate hypersequent calculus, say HLJ + R with R
a set of structural hypersequent rules. Then we have that ϕ is a theorem of L iff the sequent ⇒ ϕ is
derivable in the hypersequent calculus HLJ + R. By Theorem 2.7 this is the case iff |=K(R)⇒ ϕ, which
in turn happens precisely when the equation 1 ≈ ϕ is valid on every algebra in the class K(R). From
this we may deduce that the variety V(L) is indeed generated by the class K(R) which by Proposition
2.8 is a universal class of Heyting algebras axiomatised by universal clauses in the {0,∧, 1}-reduct as R
is a collection of structural hypersequent rules.

Conversely, if the variety V(L) is generated by a universal class of Heyting algebras axiomtised by
universal clauses in the {0,∧, 1}-reduct, say U , then by Proposition 2.10 there exists a set RU of structural
hypersequent rules such that the class K(RU ) of Heyting algebras validating RU coincides with the class
U . Since by assumption U generates V(L) we have that ϕ is a theorem of L iff |=U 1 ≈ ϕ. Therefore,
we have that ϕ ∈ L precisely when |=K(RU ) 1 ≈ ϕ, which by Theorem 2.7 is the case exactly when
`HLJ+RU⇒ ϕ. Thus we may conclude that HLJ + RU is a structural hypersequent calculus for L.

We finish this section with presenting a syntactic characterisation of the intermediate logics admitting
a structural intermediate hypersequent calculus [22].

Definition 2.12 (cf. [26]). Let P0 = N0 be a (countable) set of propositional variables and define sets
of formulas Pn,Nn in the language of intuitionistic logic by the following grammar

Pn+1 ::= > | ⊥ | Nn | Pn+1 ∧ Pn+1 | Pn+1 ∨ Pn+1

Nn+1 ::= > | ⊥ | Pn | Nn+1 ∧Nn+1 | Pn+1 → Nn+1

The key insight is that using the invertible rules of HLJ, i.e., rules the premises of which are derivable
whenever the conclusion is, any P3-formula can be transformed into a structural hypersequent rule which
preserves the redundancy of the cut-rule when added to HLJ. Thus any intermediate logic axiomatisable
by P3-formulas, i.e., any logic of the form IPC + {ϕi}i∈I with ϕi ∈ P3 for all i ∈ I, admits a structural
hypersequent calculus in which the cut-rule is redundant.

Theorem 2.13 ([22]). Let L be an intermediate logic. Then the following are equivalent:

1. The logic L admits a structural intermediate hypersequent calculus;

2. The logic L admits a cut-free structural intermediate hypersequent calculus;

3. The logic L is axiomatisable by P3-formulas.

Proof. That items (1) and (2) are equivalent is established in [22], just as the fact that item (3) entails
item (1). That item (1) entails item (3) may be seen via an argument analogous to the one used to
prove [24, Prop. 7.5]. We supply the details. Given a structural hypersequent rule (r), as in the proof of
Proposition 2.8, there is a finite set of equivalent universal clauses

t1(~x) ≤ u1(~y) and . . . and tm(~x) ≤ um(~y) =⇒ tm+1(~x) ≤ um+1(~y) or . . . or tn(~x) ≤ un(~y), (qr)

such that the variables ~x and ~y are disjoint and the terms t are (possible empty) meets of variables (i.e.,
the constant 1) and the terms u are either a single variable or the constant 0. In fact, we may assume
that none of the terms ti are the constant 1 for i ∈ {1, . . . ,m}. Let ϕr be the formula

n∨
j=m+1

((
m∧
i=1

(ti(~x)→ ui(~y))

)
→ (tj(~x)→ uj(~y))

)
.

It is straightforward to verify that ϕr belongs to P3.
We claim that qr and ϕr are equivalent on any Heyting algebra with a second greatest element.

Therefore, suppose that A is such a Heyting algebra. If A |= ϕr then for any valuation ν on A we have
that A, ν |= (

∧m
i=1(ti(~x) → ui(~y))) → (tj0(~x) → uj0(~y)) for some j0 ∈ {m + 1, . . . , n}, since A has a

second greatest element. Consequently, if A, ν |= ti ≤ ui for all i ∈ {1, . . . ,m} then we must have that
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A, ν |=
∧m
i=1(ti(~x) → ui(~y)) and so A, ν |= tj0(~x) → uj0(~y), i.e., A, ν |= tj0(~x) ≤ uj0(~y), showing that

A, ν |= qr.
Conversely, if A |= qr then A also validates any substitution instance of qr. We construct a substitu-

tion σ such that A |= σ(ti) ≤ σ(ui) for all i ∈ {1, . . . ,m} and such that σ(tj) ≥ tj ∧
∧m
i=1(ti → ui) and

σ(uj) = uj , for all j ∈ {m+ 1, . . . , n}. From the existence of such a substitution we may conclude that
for any valuation ν on A there exists j0 ∈ {m + 1, . . . , n} such that A, ν |= tj0 ∧

∧m
i=1(ti → ui) ≤ uj0 ,

and hence that A |=
∧m
i=1(ti → ui) ≤ tj0 → uj0 , showing that A, ν |= ϕr.

To construct the substitution σ we let σ(x) := x∧
∧m
i=1(ti → ui) for each variable x ∈ ~x and σ(y) := y,

for each variable y ∈ ~y. Note that since ~x and ~y are disjoint this is well-defined. It is now easy to verify
that this substitution has the desired properties and therefore that A |= ϕr. This shows that in fact any
Heyting algebra validating the clause qr also validates the formula ϕr.

Thus, being equivalent on Heyting algebras with a second greatest element, viz., subdirectly irre-
ducible Heyting algebras [5, Thm. IX.4.5], it follows that (r) and ϕr determine the same intermediate
logic.

Remark 2.14. Note that the proof of Theorem 2.13 presented in [22] is semantic in nature and so does
not directly yield an explicit procedure for transforming a derivation using the cut-rule into a cut-free
derivation. However, in concrete cases an explicit cut-elimination procedure may be given, see, e.g.,
[20, 21]. We also want to emphasise that it is not the case that the cut-rule is redundant in every
structural intermediate hypersequent calculus but only that any such calculus is effectively equivalent a
structural intermediate hypersequent calculus in which the cut-rule is redundant.

Example 2.15. For n ≥ 1 let BTWn,BWn and BCn, be the intermediate logics determined by
intuitionistic Kripke frames of top width at most n, of width at most n, and of cardinality at most n,
respectively. All of these intermediate logics have axiomatisations given by formulas which are ostensibly
P3, see, e.g., [18, Chap. 2], and so by Theorem 2.13 all of these logics admit a hypersequent calculus of
the form HLJ + R, with R a set of structural hypersequent rules, for which the cut-rule is redundant.
Concretely, the rules, (com) and (lq) yields cut-free structural intermediate hypersequent calculi for the
intermediate logics LC and KC, respectively, when added to HLJ.

For more examples of structural hypersequent rules see [22] and [20].

Theorem 2.13 thus gives a very nice syntactic description of the class of intermediate logics which
admit cut-free structural intermediate hypersequent calculi. Our aim is then to supply criteria describing
this class of intermediate logics in terms of the algebraic and the relational semantics for intermediate
logics. Among other things this will allow us to derive negative results showing that certain well-known
intermediate logics do not admit such calculi.

3 Algebraic characterisation

In this section we provide a semantic characterisation of the intermediate logics admitting a structural—
and therefore also a cut-free—intermediate hypersequent calculus in terms of the algebraic semantics.
This section builds on the theory of (0,∧,∨, 1)-stable intermediate logics as developed in [7, 10] where
these logics are simply called stable intermediate logics.

Notation 3.1. Given Σ ⊆ {0,∧,∨,→, 1} we will let Σc denote the set Σ∩ {0, 1} and Σo denote the set
Σ ∩ {∧,∨,→}. Moreover, if K is a class of Heyting algebras we let Ksi denote the class of subdirectly
irreducible Heyting algebras belonging to K.

Definition 3.2. Let Σ ⊆ {0,∧,∨,→, 1} and let A and B be Heyting algebras. We say that a function
h : A → B is a Σ-homomorphism if h commutes with the operations in Σ. If h : A → B is a Σ-
homomorphism we write A →Σ B. A Σ-homomorphism h : A →Σ B is called a Σ-embedding if the
the function h : A → B is injective. In this case we write A ↪→Σ B, and say that the algebra A is a
Σ-subalgebra of the algebra B.

Definition 3.3. Let Σ ⊆ {0,∧,∨,→, 1}.

1. We say that a class K of Heyting algebras is (finitely) Σ-stable provided that whenever B ∈ K and
A ↪→Σ B then A ∈ K for all (finite) Heyting algebras A;
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2. We say that an intermediate logic L is (finitely) Σ-stable provided that whenever B ∈ V(L)si and
A ↪→Σ B then A ∈ V(L) for all (finite) Heyting algebras A.

Remark 3.4. As will become evident below, in item (2) of Definition 3.3 we could just as well have chosen
the larger class V(L)wc of well-connected V(L)-algebras, viz., Heyting algebras with a join-irreducible top
element, instead of the class V(L)si of subdirectly irreducible V(L)-algebras. However, we have chosen
the definition which aligns best with [7, 10].

Remark 3.5. Note that if Σ ⊆ Σ′ ⊆ {0,∧,∨,→, 1} then any Σ-stable intermediate logic L must
necessarily also be Σ′-stable. In particular, for Σ ⊆ {0,∧,∨, 1}, any Σ-stable logic will be (0,∧,∨, 1)-
stable and so by [7, Thm. 6.8] must enjoy the finite model property. Furthermore, by similar reasoning
any (0,∧, 1)-stable intermediate logic will also be a cofinal stable logic [10].

Finally, it follows from the characterisation of (0,∧, 1)-stable logics given in Section 4 that any
(0,∧, 1)-stable logic will be characterised by a class of intuitionistic Kripke frames closed under taking
(locally) cofinal subframes. Thus any (0,∧, 1)-stable logic must also be a cofinal subframe logic [52, 53]
and as such these logics will be both canonical and elementary [53, Thm. 6.8].

Definition 3.6. Let Σ ⊆ {0,∧,∨,→, 1}, let A be a finite Heyting algebra and introduce for each element
a ∈ A a distinct first-order variable xa. By the Σ-stable (universal) clause qΣ(A) associated with A we
shall understand the universal clause ∀~x (P (~x) =⇒ C(~x)) where

P (~x) = AND{xa ≈ a : a ∈ Σc} and AND{xa • xa′ ≈ xa•a′ : a, a′ ∈ A, • ∈ Σo}
C(~x) = OR{xa ≈ xa′ : a, a′ ∈ A, a 6= a′}.

Remark 3.7. Stable universal clauses may be seen as a propositional version of diagrams as known from
classic Robinson-style model theory, see, e.g., [36, Chap. 1.4]. Variants of the Σ-stable clauses defined
above have been studied before under the names stable and canonical multi-conclusion rules [41, 8, 10, 9].

The following lemma shows that the Σ-stable clause associated with a finite algebra A encodes the
property of not containing A as a Σ-subalgebra.

Lemma 3.8 (cf. [10, Prop. 4.2]). Let Σ ⊆ {0,∧,∨,→, 1} and let A,B be Heyting algebras with A finite.
Then the following are equivalent:

1. B 6|= qΣ(A);

2. There exists a Σ-embedding h : A ↪→Σ B.

Proof. Given a valuation ν on B such that (B, ν) 6|= qΣ(A) then we obtain a Σ-embedding hν : A ↪→Σ B
by letting hν(a) := ν(xa). Conversely, given a Σ-embedding h : A ↪→Σ B we obtain a valuation νh on B
such that (B, νh) 6|= qΣ(A) by letting νh(xa) := h(a).

We then show that a universal class of Heyting algebras is Σ-stable precisely if it is axiomatisable by
Σ-stable clauses.

Lemma 3.9 (cf. [10, Prop. 4.5]). Let Σ ⊆ {0,∧,∨, 1} be given and let U be a universal class of Heyting
algebras. Then the following are equivalent:

1. The universal class U is Σ-stable;

2. The universal class U is finitely Σ-stable;

3. The universal class U is axiomatised by Σ-stable clauses.

Proof. If U is a (universal) class axiomatised by Σ-stable clauses then U must be Σ-stable, since universal
clauses in the Σ-reduct of the language of Heyting algebras are preserved by Σ-subalgebras. Moreover,
any Σ-stable universal class is evidently finitely Σ-stable.

Thus it remains to be shown that if U is finitely Σ-stable then U is axiomatised by Σ-stable clauses.
Therefore, let U be a finitely Σ-stable universal class and let Q = {qΣ(A) : |A| < ℵ0,A 6∈ U}. We claim
that for any Heyting algebra B we have that B ∈ U iff B |= Q. To see this let Th∀HA(U) be the universal
theory, in the language of Heyting algebras, of U . If B 6∈ U then, by the assumption that U is a universal
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class of Heyting algebras, there exist a universal clause q ∈ Th∀HA(U) such that B 6|= q. Thus, by [10,
Lem. 4.3] we must have a finite (0,∧,∨, 1)-subalgebra, in particular a Σ-subalgebra, C of B such that
C 6|= q, i.e., C 6∈ U whence qΣ(C) ∈ Q. By Lemma 3.8 we must have that B 6|= qΣ(C) and so B 6|= Q.

Conversely, if B 6|= Q then for some finite Heyting algebra A 6∈ U we have B 6|= qΣ(A). By Lemma 3.8
it follows that A is a Σ-subalgebra of B. Since U is assumed to be finitely Σ-stable we must conclude
that B 6∈ U since otherwise A ∈ U .

We then obtain the first necessary and sufficient conditions in terms of V(L) for an intermediate logic
L to admit a structural intermediate hypersequent calculus.

Proposition 3.10. Let L be an intermediate logic. Then the following are equivalent:

1. The logic L admits a cut-free structural intermediate hypersequent calculus;

2. The logic L admits a structural intermediate hypersequent calculus;

3. The variety V(L) is generated by a (0,∧, 1)-stable universal class of Heyting algebras.

Proof. The equivalence between items (1) and (2) is contained in Theorem 2.13. That items (2) and (3)
are equivalent follows from Corollary 2.11 and Lemma 3.9.

In principle Proposition 3.10 gives an algebraic characterisation of the intermediate logics L which
admit structural intermediate hypersequent calculi in the sense of Definition 2.2. However, we wish to
obtain a characterisation which is local in the sense that it pertains to properties of—individual—algebras
in the variety V(L) and not the variety V(L) taken as a whole. We will obtain such a characterisation by
showing that the varieties of Heyting algebras generated by (0,∧, 1)-stable universal classes are precisely
the varieties corresponding to (0,∧, 1)-stable logics.

3.1 (0,∧, 1)-stable logics

In this subsection we characterise the (0,∧, 1)-stable logics in terms of properties of the subdirectly-
irreducible algebras in the corresponding variety V(L). As discussed above this will yield a characterisa-
tion of the intermediate logics admitting cut-free structural intermediate hypersequent calculi.

Definition 3.11. Let Σ ⊆ {0,∧,∨,→, 1}, let A be a finite Heyting algebra and introduce for each
element a ∈ A a distinct variable xa. By the Σ-stable equation εΣ(A) associated with A we shall
understand the equation 1 ≈

∧
Γ→

∨
∆ where

Γ = {xa ↔ a : a ∈ Σc} ∪ {xa • xa′ ↔ xa•a′ : a, a′ ∈ A, • ∈ Σo}
∆ = {xa → xa′ : a, a′ ∈ A, a 6≤ a′}.

The Σ-stable equations encode information about finite Heyting algebras in almost the same way as
the Σ-stable clauses. However, a version of Lemma 3.8 only obtains for so-called well-connected Heyting
algebras, that is, Heyting algebras validating the universal clause ∀x∀y(1 ≤ x ∨ y =⇒ 1 ≤ x or 1 ≤ y).
Note that every subdirectly irreducible Heyting algebra will be well-connected and that every finite well-
connected Heyting algebra will be subdirectly irreducible, see, e.g., [12, Thm. 2.3.14] and the references
therein.

We will need the following lemma showing that homomorphic images of a finite Heyting algebra A
must also be (0,∧, 1)-subalgebras of A.

Lemma 3.12. Let A and B be finite Heyting algebras. If B is a homomorphic image of A, then B is
a (0,∧, 1)-subalgebra of A.

Proof. If h : A � B is a surjective Heyting algebra homomorphism then B is isomorphic to A/F , as a
Heyting algebra, for some filter F on A. As A is finite the filter F must be a principal filter, say F = ↑a
for some a ∈ A, and therefore B ∼= [0, a]. Evidently, we have a (0,∧, 1)-embedding f from [0, a] into A,
given by

f(x) =

{
x x < a,
1 x = a,

showing that B ↪→0,∧,1 A.
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We may then establish a version of Lemma 3.8 for (0,∧, 1)-stable equations.

Lemma 3.13 (cf. [7, Thm. 6.3]). Let A, B be Heyting algebras with A finite.

1. If B 6|= ε0,∧,1(A) then A ↪→0,∧,1 B;

2. If B is well-connected and A ↪→0,∧,1 B then B 6|= ε0,∧,1(A).

Proof. If B 6|= ε0,∧,1(A) then by [7, Lem. 3.6] we must have a finite Heyting algebra C which is a
(0,∧,∨, 1)-subalgebra of B, and so in particular a (0,∧, 1)-subalgebra of B, such that C 6|= ε0,∧,1(A).
This means that there is a valuation ν on C such that ν(

∧
Γ →

∨
∆) < 1, where Γ and ∆ are as in

Definition 3.11. By Wronski’s Lemma [51, Lem. 1] there exists a subdirectly irreducible Heyting algebra
D together with a Heyting algebra homomorphism π : C � D such that π(ν(

∧
Γ→

∨
∆)) = cD, where

cD denotes the unique co-atom of D. By Lemma 3.12 we have that D is a (0,∧, 1)-subalgebra of C and
therefore also a (0,∧, 1)-subalgebra of B. We claim that A is a (0,∧, 1)-subalgebra of D and therefore
also a (0,∧, 1)-subalgebra of B. We obtain a valuation µ on D such that µ(

∧
Γ→

∨
∆) = cD by letting

µ(xa) = π(ν(xa)). From this it follows that µ(
∧

Γ) = 1 and µ(
∨

∆) = cD and hence we may conclude
that hµ : A→ D given by hµ(a) = µ(xa) is an (0,∧, 1)-embedding of A into D.

Conversely, if there is a (0,∧, 1)-embedding h : A ↪→0,∧,1 B then defining a valuation νh on B by
νh(xa) = h(a) we obtain that νh(

∧
Γ) = 1 by the fact that h is a (0,∧, 1)-homomorphism. Moreover,

by the fact that h is also a (0,∧, 1)-embedding we must have that 1 6≤ νh(xa → xa′) for all xa → xa′

in ∆. Thus, assuming B to be well-connected we may conclude that 1 6≤ νh(
∨

∆) and therefore that
1 6≤ ν(

∧
Γ→

∨
∆). Thus, νh witnesses that B 6|= ε0,∧,1(A).

The following lemma shows that the varieties of Heyting algebras generated by (0,∧, 1)-stable uni-
versal classes are in fact axiomatised by (0,∧, 1)-stable equations. Thus a variety can be axiomatised by
(0,∧, 1)-stable equations precisely when it can be axiomatised by (0,∧, 1)-stable universal clauses.

Lemma 3.14. Let U be a universal class axiomatised by a collection {q0,∧,1(Ai)}i∈I of (0,∧, 1)-stable
universal clauses. Then the variety generated by the class U is axiomatised by the (0,∧, 1)-stable equations
{ε0,∧,1(Ai)}i∈I .

Proof. Let V be the variety determined by the (0,∧, 1)-stable equations {ε0,∧,1(Ai)}i∈I . Lemma 3.8
together with item (1) of Lemma 3.13 implies that U ⊆ V. Furthermore, from item (2) of Lemma 3.13
we may conclude that any subdirectly irreducible V-algebra belongs to U . Consequently, being a subclass
of the variety V containing all subdirectly irreducible V-algebras, the class U must necessarily generate
the variety V.

Lemma 3.15. Let Σ ⊆ {0,∧,∨, 1} be given. If K is a Σ-stable class then so is the universal class
generated by K.

Proof. By [17, Thm. V.2.20] we know that the universal class generated by the class K is given by
ISPU (K). Therefore, let {Bi}i∈I be a collection of K-algebras, U an ultrafilter on I and A a finite
Heyting algebra. If A 6↪→Σ Bi for all i ∈ I then by Lemma 3.8 we have that Bi |= qΣ(A) for all i ∈ I and
hence by  Los’ Theorem we obtain that

∏
i∈I Bi/U |= qΣ(A) and so A 6↪→Σ

∏
i∈I Bi/U . Consequently, if

A ↪→Σ

∏
i∈I Bi/U then, again by Lemma 3.8, A ↪→Σ Bi for some i ∈ I. Moreover, if B ∈ ISPU (K) and

A is a finite algebra such that A ↪→Σ B then necessarily A ↪→Σ B′ for some B′ ∈ PU (K) whence by the
above we have that A ∈ K. We have thus shown that ISPU (K) is a finitely Σ-stable universal class and
as such it must be Σ-stable by Lemma 3.9.

Theorem 3.16. Let L be an intermediate logic. Then the following are equivalent:

1. The logic L is (0,∧, 1)-stable;

2. The variety V(L) is generated by a (0,∧, 1)-stable class of finite Heyting algebras;

3. The variety V(L) is generated by a (0,∧, 1)-stable universal class of Heyting algebras.
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Proof. It follows from Lemma 3.15 that item (2) entails item (3). Furthermore, it follows from [7,
Lem. 3.6] that if V(L) is generated by a (0,∧, 1)-stable universal class of Heyting algebras, say U , then
V(L) is also generated by the (0,∧, 1)-stable class of the finite Heyting algebras belonging to U .

We proceed to show that the items (1) and (3) are equivalent.
For that purpose, assume that the logic L is (0,∧, 1)-stable and define

K′ = {A ∈ HA : ∃B ∈ V(L)si(A ↪→0,∧,1 B)},

and let K be the collection of finite Heyting algebras not belonging to K′. Then for any subdirectly
irreducible Heyting algebra B we may observe the following: If B ∈ V(L) and A ∈ K then we must
have that B |= ε0,∧,1(A), since otherwise A ↪→0,∧,1 B by Lemma 3.13 entailing that A ∈ K′, in direct
contradiction with the assumption that A ∈ K. Conversely, if B 6∈ V(L) then by [7, Lem. 3.6] we have
a finite (0,∧,∨, 1)-subalgebra A of B such that A 6∈ V(L). In particular A is a (0,∧, 1)-subalgebra
of B and hence by Lemma 3.13 B 6|= ε0,∧,1(A), as B, being subdirectly irreducible, is well-connected.
Moreover, we must have that A ∈ K since otherwise, as A is finite, we would have A ∈ K′ and hence
A ∈ V(L) by the assumption that L is (0,∧, 1)-stable. We have thus shown that for any subdirectly
irreducible Heyting algebra B we have

B ∈ V(L) ⇐⇒ B |= {ε0,∧,1(A) : A ∈ K}.

Consequently, the variety V(L) is axiomatised by the collection of (0,∧, 1)-stable equations {ε0,∧,1(A)}A∈K.
From Lemma 3.14 we may then conclude that V(L) is identical to the variety generated by the universal
class of Heyting algebras determined by the collection of universal (0,∧, 1)-stable clauses {q0,∧,1(A)}A∈K.

Lastly, assume that V(L) is generated by a (0,∧, 1)-stable universal class say U . By Lemma 3.9
we have that U is determined by a collection of (0,∧, 1)-stable universal clauses, say {q0,∧,1(Ai)}i∈I .
By Lemma 3.14 it then follows that V(L) is determined by the collection of (0,∧, 1)-stable equations
{ε0,∧,1(Ai)}i∈I . Consequently, if B is a subdirectly irreducible V(L)-algebra and A is a (0,∧, 1)-
subalgebra of B, then from A 6∈ V(L) we can conclude that A 6|= ε0,∧,1(Ai) for some i ∈ I and so
by item (1) of Lemma 3.13 it follows that Ai ↪→0,∧,1 A and hence that Ai ↪→0,∧,1 B whence from item
(2) of Lemma 3.13 we obtain that B 6|= ε0,∧,1(Ai) in direct contradiction with the assumption that B is
a V(L)-algebra.

We may then obtain the following algebraic characterisation of the intermediate logics admitting a
structural intermediate hypersequent calculus and therefore by Theorem 2.13 also a cut-free structural
intermediate hypersequent calculus.

Corollary 3.17. Let L be an intermediate logic. Then the following are equivalent:

1. The logic L admits a structural intermediate hypersequent calculus;

2. The logic L is (0,∧, 1)-stable.

Proof. This follows directly from Theorem 3.16 and Proposition 3.10.

Remark 3.18. Note that if L is a finitely axiomatisable (0,∧, 1)-stable intermediate logic then L admits
a structural intermediate hypersequent calculus given by only finitely many structural hypersequent rules.
To see this simply note that being (0,∧, 1)-stable V(L) is axiomatised by a collection of (0,∧, 1)-equations
and and since L is finitely axiomatisable we may conclude that only finitely many of the (0,∧, 1)-stable
equations are needed to axiomatise V(L). Hence by Lemma 3.14 V(L) is determined by a finite number
of (0,∧, 1)-stable clauses. Thus from the correspondence between (0,∧, 1)-stable clauses and structural
hypersequent rules we obtain that L indeed admits a structural intermediate hypersequent calculus given
by only finitely many structural hypersequent rules.

Remark 3.19. We observe that by Theorem 3.16 we have that in order to check whether or not an
intermediate logic is (0,∧, 1)-stable it suffices to consider the collection of finite subdirectly irreducible
V(L)-algebras. In particular, it is possible to use duality to translate the questions of whether or not an
intermediate logic L is (0,∧, 1)-stable into a question about the finite rooted intuitionistic Kripke frames
for L, see Section 4. Compare this with the necessary condition for admitting a cut-free structural
hypersequent calculus [25, Thm. 6.8] which requires checking closure under certain type of completions
of algebras. Of course [25, Thm. 6.8] applies in a much more general setting than Corollary 3.17.
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3.2 Applications

We here present some consequences of Corollary 3.17.

Proposition 3.20. Any intermediate logic admitting a structural intermediate hypersequent calculus has
the finite model property.

Proof. By Corollary 3.17 any intermediate logic admitting a structural intermediate hypersequent cal-
culus will be (0,∧, 1)-stable, hence also (0,∧,∨, 1)-stable, and as such enjoys the finite model property
[7, Thm. 6.8].

Remark 3.21. Note that Proposition 3.20 gives an alternative way of seeing that every finitely axioma-
tisable intermediate logic admitting a structural hypersequent calculus is decidable. This of course also
already follows from the fact that such logics admit a cut-free intermediate hypersequent calculus given
by finitely many rules.

Proposition 3.22. Any (0,∧, 1)-stable logic is canonical. Thus admitting a structural intermediate
hypersequent calculus entails canonicity.

Proof. By [23, Thm. 4.1] we know that if (r) is a structural hypersequent rule then the class of Heyting
algebras validating (r) is closed under (upper) MacNeille completion. Thus if L is a (0,∧, 1)-stable logic
then by Corollary 3.17 there is a collection of structural hypersequent rules R such that the variety
V(L) is generated by the class K(R) of Heyting algebras validating all the rules in R. Evidently, K(R)
is a universal class and being closed under (upper) MacNeille completions we may conclude from [34,
Thm. 3.6] that the class K(R) is also closed under (upper) canonical extensions. Finally, since any
variety generated by a universal class of Heyting algebras closed under canonical extensions must be
canonical [33, Thm. 6.8] we may conclude that V(L) is indeed canonical.

Remark 3.23. As we will see in Section 4 any (0,∧, 1)-stable logic is in fact elementary from which the
canonicity of such logics may also be inferred by Fine’s Theorem, see, e.g., [18, Thm. 10.22]. Furthermore,
every (0,∧, 1)-stable logic must also be a (locally) cofinal subframe logic. This can be seen either by
considering the frame characterisation presented in Section 4 or by an argument similar to the one
presented in Section 3.1. From this fact it can also be inferred that (0,∧, 1)-stable logics must be both
canonical and elementary [53].

We conclude this section by drawing attention to some negative consequence of Corollary 3.17.

Proposition 3.24. Let n ≥ 2 be given. The logic BDn, of intuitionistic Kripke frames of depth at most
n, does not admit a structural intermediate hypersequent calculus.

Proof. We know that for n ≥ 2 the intermediate logic BDn is not (0,∧,∨, 1)-stable [7, Thm. 7.4(2)] and
so in particular it cannot be (0,∧, 1)-stable. Knowing this the proposition is an immediate consequence
of Corollary 3.17.

Remark 3.25. That this was the case had been expected in the literature, see., e.g., [26, 27]. However,
we have not been able to find any proof of this fact before. The logic BD2 does, however, admit
an analytic hypersequent calculus obtained by adding an additional logical hypersequent rule for the
introduction of the implication to the multi-succedent hypersequent calculus HLJ′ [26]. Furthermore,
the logics BDn, for n ≥ 2, do admit analytic display calculi [27], analytic labelled sequent calculi [31] as
well as so-called path-hypertableau and path-hypersequent calculi [19].

As a final application of the algebraic characterisation of the intermediate logics admitting structural
intermediate hypersequent calculi we give a semantic proof of [22, Cor. 7.2].

Proposition 3.26. Let (r) be a structural sequent rule. Then either the calculus LJ+(r) is inconsistent
or the rule (r) is derivable in LJ.

Proof. Let (r) be a structural sequent rule, i.e., a structural hypersequent rule the premises and conclusion
of which only consists of single component hypersequents. Let K(r) be the class of Heyting algebras
validating (r). If LJ + (r) is consistent then the class K(r) is non-trivial. In particular the two element
Boolean algebra 2 will belong to K(r), as K(r) is closed under subalgebras and 2 is a subalgebra of every
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non-trivial Heyting algebra. Because (r) is a sequent rule the class K(r) will not only be a universal class
but in fact a quasi-variety and as such closed under the formation of direct products. Since any bounded
distributive lattice can be realised as a subdirect product of the lattice 2 [5, Thm. II.10.1] it follows that
any Heyting algebra A will be a (0,∧,∨, 1)-subalgebra of some member of K(r). Therefore, since (r) is
structural and so the class K(r) is (0,∧, 1)-stable, we may conclude that A ∈ K(r), showing that every
Heyting algebra validates the rule (r). Given this the proposition then follows from Theorem 2.7.

Remark 3.27. Note that the proof of Proposition 3.26 shows the stronger claim that any structural
multi-succedent sequent rule is either derivable in LJ′ or derives every formula in LJ′, where LJ′ is the
multi-succedent version of LJ.

4 Frame based characterisation

In this section we identify the first-order frame conditions which determine (0,∧, 1)-stable logics. This
is done using the duality theory for (0,∧, 1)-homomorphism between Heyting algebras developed in [11].

Given a Heyting algebra A we let A+ denote the underlying intuitionistic Kripke frame of the Esakia
space A∗ dual to A, i.e., the Kripke frames consisting of the set of prime filters of A ordered by set-
theoretic inclusion. Similarly, given an intuitionistic Kripke frame F (Esakia space X) we let F+ (X∗)
denote the Heyting algebra of (clopen) upsets of F (X∗). In the following we will use that A ∼= (A+)+

for every finite Heyting algebra A, see, e.g., [12, Thm. 2.2.21].

Definition 4.1 (cf. [11, Def. 6.2]). Let X and Y be Priestley spaces. We say that a relation R ⊆ X ×Y
is a generalised Priestley morphism iff

1. If ¬(xRy) then there exists U ∈ ClpUp(Y) such that y 6∈ U and R[x] ⊆ U ;

2. If U ∈ ClpUp(Y) then 2R(U) ∈ ClpUp(X),

where ClpUp(X) denotes the clopen upset of X and 2R(U) := {x ∈ X : R[x] ⊆ U}.
Moreover if R−1[Y ] = X we say that R is total and if for every y ∈ Y there is x ∈ X such that

R[x] = ↑y then we say that R is onto.

Remark 4.2. Finite intuitionistic Kripke frames may be identified with finite Priestley spaces and
so, forgetting the topology, we will also speak about generalised Priestley morphisms between finite
intuitionistic Kripke frames.

Remark 4.3. Note that if R ⊆ X × Y is a generalised Priestley morphism between Priestley spaces
X := (X,≤X , τX) and Y := (Y,≤Y , τY ) then it is straightforward to verify that R[x′] ⊆ R[x] for all
x, x′ ∈ X such x ≤X x′. This observation will be useful when proving Proposition 4.8 and Lemmas 5.5
and 5.6 below.

We are interested in total generalised Priestley morphisms because they are the duals of (0,∧, 1)-
homomorphisms. To be precise we have the following theorem.

Theorem 4.4 ([11]). The category of Heyting algebras and (0,∧, 1)-homomorphisms is dually equivalent
to the category of Esakia spaces and total generalised Priestley morphisms. Moreover, under this duality
(0,∧, 1)-embeddings corresponds to total onto generalised Priestley morphisms.

This allows us to translate questions about (0,∧, 1)-homomorphisms between Heyting algebras into
questions about total generalised Priestley morphism between their dual spaces.

Recall [46] that a geometric axiom is a first-order sentence of the form

∀~w (ϕ(~w) =⇒ ∃v ORmj=1ψj(~w, v)),

with ϕ,ψ1, . . . , ψm conjunctions of atomic formulas and the variable v not occurring free in ϕ. A geometric
implication is then taken to be a finite conjunction of geometric axioms.

Definition 4.5 (cf. [42]). We say that a geometric axiom ∀~w (ϕ(~w) =⇒ ∃v ORmj=1ψj(~w, v)) is simple if

1. There exists w0 ∈ ~w such that ϕ(~w) is the conjunction of the atomic formulas {w0 ≤ w}w∈~w;
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2. Every atomic subformula of ψj(~w, v) is of the form w ≤ w′ or w ≤ v for w,w′ ∈ ~w.

A simple geometric implication is then a conjunction of simple geometric axioms.

Example 4.6. The intermediate logics BTWn,BWn,BCn, for n ≥ 1, are all complete with respect
to an elementary class of intuitionistic Kripke frames determined by simple geometric implications. Fur-
thermore the logics BDn, for n ≥ 2, are all complete with respect to an elementary class of intuitionistic
Kripke frames determined by geometric implications, namely ∀w1 . . . wn+1(ANDni=1(wi ≤ wi+1) =⇒
ORi 6=j(wi = wj)), which are ostensibly not simple.

Remark 4.7. Intermediate (and modal) logics determined by a class of Kripke frame defined by geo-
metric implications have been shown to admit so-called labelled sequent calculi [49, 46, 31]. Thus as a
consequence of Proposition 4.13 below we obtain that any (0,∧, 1)-stable logic admits a cut-free labelled
sequent calculus. This is consistent with the existence of a translation of hypersequents into labelled
sequents, see, e.g., [48] for an overview.

Finally, a variant of the simple geometric implications appears in the work of Lahav [42] where these
are used to construct analytic hypersequent calculi for modal logics which are sound and complete with
respect to a class of Kripke frames determined by such simple geometric implications.

Proposition 4.8. Let θ be a simple geometric implication. Then for any pair of Priestley spaces X :=
(X,≤X , τX) and Y := (Y,≤Y , τY ), with X rooted, and any total and onto generalised Priestley morphism
R ⊆ X × Y we have that

(X,≤X) |= θ =⇒ (Y,≤Y ) |= θ. (†)

Proof. It suffices to show that (†) holds for an arbitrary simple geometric axiom θ, say, ∀~w (ϕ(~w) =⇒
∃~v ORmj=1ψj(~w,~v)).

Therefore, assume that (X,≤X) |= θ. Suppose that y0, . . . , yk−1 ∈ Y are such that ϕ(y0, . . . , yk−1)
holds in (Y,≤Y ), then by the assumption that R is an onto generalised Priestley morphism there are
x0, . . . , xk−1 ∈ X such that R[xi] = ↑yi for each i ∈ {1, . . . , k − 1}. Because (X,≤X) is rooted there is
x0 ∈ X such that ϕ(x0, x1, . . . , xk−1) and so since (X,≤X) |= θ there is z ∈ X such that ψl(~x, z) holds
in (X,≤X) for some l ∈ {1, . . . ,m}. Furthermore, since R is total we have z′ ∈ Y such that zRz′. We
claim that ψl(~y, z

′) holds in (Y,≤Y ). If xt ≤X xt′ in (X,≤X) for some t, t′ ∈ {0, . . . , k− 1} then we have
that ↑yt′ = R[xt′ ] ⊆ R[xt] = ↑yt and thus yt ≤Y yt′ . Similarly if xt ≤X z for some t ∈ {0, . . . , k − 1},
then we have that z′ ∈ R[z] ⊆ R[xt] = ↑yt and hence that yt ≤ z′. This shows that (Y,≤Y ) satisfies
θ.

Definition 4.9. Recall that a variety V of Heyting algebras is elementarily determined if there exists
an elementary class of intuitionistic Kripke frames F such that the variety is generated by the class of
complex algebras F+ := {F+ : F ∈ F}, with F+ denoting the Heyting algebra of upsets of F.

Remark 4.10. Note that for a given intermediate logic L the corresponding variety V(L) is elementarily
determined iff the logic L is elementary, i.e., sound and complete with respect to an elementary class of
intuitionistic Kripke frames.

Corollary 4.11. Any intermediate logic characterised by a class of intuitionistic Kripke frames defined
by simple geometric implications is (0,∧, 1)-stable.

Proof. Let L be an intermediate logic characterised by a class of intuitionistic Kripke frames, say F ,
defined by simple geometric implications. Note that if ϕ is a formula in the language of propositional
intuitionistic logic such that F+ 6|= ϕ then there exists some point-generated subframe G of F such that
G+ 6|= ϕ. Therefore, since simple geometric implications are evidently preserved by taking generated
subframes, we obtain that V(L) is in fact determined by the class of rooted intuitionistic Kripke frames
belonging to F . Furthermore, any filtration F′ of an intuitionistic Kripke frame F induces an order
preserving surjection f : F � F′. Therefore, since on rooted frames any (simple) geometric implication
is equivalent to a positive first-order formulas and such formulas are preserved by order-preserving
surjections we see that simple geometric implications will be preserved under taking filtrations of rooted
intuitionistic Kripke frames. Consequently, we obtain that V(L) is in fact determined by the finite rooted
members of F . In particular V(L) will be generated by the class of complex algebras obtain from the
set G := {F ∈ F : |F| < ℵ0,F rooted}. Finally, letting K := {A : ∃B ∈ G+(A ↪→0,∧,1 B)} it follows
from Proposition 4.8 together with Theorem 4.4 that K is a (0,∧, 1)-stable class of Heyting algebras
generating V(L) and therefore by Theorem 3.16 that the logic L is (0,∧, 1)-stable.
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To establish the converse of Corollary 4.11 we need the following lemma.

Lemma 4.12. For any universal (0,∧, 1)-clause q there exists a simple geometric implication θq such
that

F |= θq ⇐⇒ F+ |= q,

for every rooted intuitionistic Kripke frame F.

Proof. Let a universal (0,∧, 1)-clause q be given. As before q is equivalent to a finite conjunction of
universal clauses of the form

t1(~x) ≤ u1(~y) and . . . and tm(~x) ≤ um(~y) =⇒ tm+1(~x) ≤ um+1(~y) or . . . or tn(~x) ≤ un(~y), (q′)

such that every term tk is a {∧, 1}-term and every term uk is either 0 or a single variable. Thus, by [25,
Thm. 4.15] we may without loss of generality assume that (i) ~x and ~y are disjoint, (ii) every variable in
q′ occurs exactly once on the right-hand side of q′.

First we will show that for every such clause q′ there exists a simple geometric axiom θq′ such that
for every rooted intuitionistic Kripke frame F = (W,≤) we have that F |= θq′ iff F+ |= q′. From which
we obtain a simple geometric implication θq such that for every rooted intuitionistic Kripke frame F we
have that F |= θq iff F+ |= q.

In the following we write P (~x, ~y) for the left-hand side of the clause q′, and for k ∈ {1, . . . , n} we
let xk1 , . . . , xkmk

denote the variables occurring in term tk(~x), if any, and let yk0 denote the variable
occurring in the term uk(~y), if any. Thus we then have that

F+ 6|= q′ ⇐⇒ ∃~U, ~V ∈ Up(F) (P (~U, ~V ) and ANDnj=m+1(tj(~U) 6⊆ uj(~V )))

⇐⇒ ∃~U, ~V ∈ Up(F) ∃~w ∈W (P (~U, ~V ) and ANDnj=m+1(wj ∈ tj(~U)) and wj 6∈ uj(~V ))

⇐⇒ ∃~U, ~V ∈ Up(F) ∃~w ∈W (P (~U, ~V ) and ANDnj=m+1(↑wj ⊆ tj(~U)) and uj(~V ) ⊆ (↓wj)c)

⇐⇒ ∃~U, ~V ∈ Up(F) ∃~w ∈W (P (~U, ~V ) and ANDnj=m+1(AND
mj

k=1(↑wj ⊆ Ujk) and Vj0 ⊆ (↓wj)c).

The special syntactic shape of the clause q′ ensures that that the second-order variables among ~U
only occur negatively in P (~U, ~V ) and that the second-order variables among ~V only occur positively in

P (~U, ~V ). Moreover, every second-order variable among ~U, ~V occurs exactly once somewhere on the right-
hand side. This allows us to eliminate all the second-order variables via a standard and straightforward
application of the Ackermann Lemma [1], see, e.g., [28, Lem. 0.1], to obtain that

F+ 6|= q′ ⇐⇒ F |= ∃~w ANDmi=1

(
mi⋂
k=1

↑wik ⊆ (↓wi0)c

)
,

for some collection ~w of first-order variables. Thus we see that

F+ |= q′ ⇐⇒ F |= ∀~w∃v ORmi=1(ANDmi

k=1(wik ≤ v) and (v ≤ wi0)).

This shows that q′ is equivalent to a formula in the first-order language of intuitionistic Kripke frames.
To see that q′ is equivalent to a simple geometric implication on rooted intuitionistic Kripke frames

simply note that if for some i ≤ m we have that the variable wi0 occurs as one of the variables wik ,
say wik′ , then it must be the case that ANDmi

k=1(wik ≤ v) and (v ≤ wi0) is equivalent to ANDmi

k=1(wik ≤
wi0) and (wi0 ≤ wik′ ). On the other hand if for some i ≤ m we have that the variable wi0 does not
occur as one of the variables wik then we must have that ANDmi

k=1(wik ≤ v) and (v ≤ wi0) is equivalent
to ANDmi

k=1(wik ≤ v and wik ≤ wi0). Thus we obtain a formula ψ(~w, v), which is a disjunction of
conjunctions of atomic formulas of the form w ≤ w′ and w ≤ v, such that

F+ |= q′ ⇐⇒ F |= ∀~w∃vψ(~w, v).

Finally, letting θq′ be the formula ∀w0∀~w(ANDw∈~w(w0 ≤ w) =⇒ ∃vψ(~w, v)), for w0 some fresh
first-order variable, we obtain a simple geometric axiom such that θq′ is equivalent to q′ on rooted
intuitionistic Kripke frames.
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Proposition 4.13. Any variety of Heyting algebras generated by a (0,∧, 1)-stable universal class of
Heyting algebras is elementarily determined by a class of intuitionistic Kripke frames defined by simple
geometric implications.

Proof. Given a variety V of Heyting algebras generated by a (0,∧, 1)-stable universal class, say U ,
axiomatised by (0,∧, 1)-stable clauses, say {qi}i∈I , we see, by an argument completely similar to the one
found in the proof of Corollary 4.11, that V will be generated by the class F+ := {F+ : ∀i ∈ I (F |= θqi)},
where θi is the simply geometric implication corresponding to qi obtain from Lemma 4.12.

We summarise our findings by amending Theorem 2.13 with two additional items.

Theorem 4.14. Let L be an intermediate logic. Then the following are equivalent

1. The logic L admits a structural intermediate hypersequent calculus;

2. The logic L admits a cut-free structural intermediate hypersequent calculus;

3. The logic L is axiomatisable by P3-formulas;

4. The logic L is (0,∧, 1)-stable;

5. The logic L is characterised by a class of intuitionistic Kripke frames defined by simple geometric
implications.

5 Comparison with (0,∧,∨, 1)-stable logics

The class of (0,∧,∨, 1)-stable intermediate logics was first introduced and studied in [7] under the name
of stable logics. In [10] a characterisation of (0,∧,∨, 1)-stable intermediate logics were given of which
Theorem 3.16 may be seen as an analogue. We here compare the class of (0,∧, 1)-stable intermediate
logics to the class of (0,∧,∨, 1)-stable intermediate logics.

Proposition 5.1. The set of (0,∧, 1)-stable logics is a proper subset of the set of (0,∧,∨, 1)-stable logics.

Proof. Evidently each (0,∧, 1)-stable logic is also a (0,∧,∨, 1)-stable logic. To show that there exists
(0,∧,∨, 1)-stable logics which are not (0,∧, 1)-stable, consider the following pair of Heyting algebras:

A B

We easily see that A is a (0,∧, 1)-subalgebra of B but not a (0,∧,∨, 1)-subalgebra of B. Let V be
the variety axiomatised by the (0,∧,∨, 1)-stable equation ε0,∧,∨,1(A) associated with A. Then the
intermediate logic L corresponding to this variety is (0,∧,∨, 1)-stable [10, Prop. 5.3]. Since B is well-
connected and A 6↪→0,∧,∨,1 B, we may conclude that B belongs to V [10, Prop. 5.1]. Consequently,
assuming that L is (0,∧, 1)-stable A must also belong to V. But then A |= ε0,∧,∨,1(A) which, since
any finite well-connected Heyting algebra refutes its own (0,∧,∨, 1)-stable equation [10, Prop. 5.1], is
absurd.
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Despite the fact that there are (0,∧,∨, 1)-stable logics which are not (0,∧, 1)-stable all the examples
of (0,∧,∨, 1)-stable logics considered so far [7, Sec. 7] are in fact (0,∧, 1)-stable. The following theorem
may be seen as explaining why this indeed the case. Furthermore, this also provide us with examples of
(0,∧,∨, 1)-stable logics which are not (0,∧, 1)-stable.

Theorem 5.2. For A a finite well-connected Heyting algebra the following are equivalent:

1. The (0,∧,∨, 1)-stable clause q0,∧,∨,1(A) associated with A is equivalent to a collection of universal
(0,∧, 1)-clauses;

2. The (0,∧,∨, 1)-stable clause q0,∧,∨,1(A) associated with A is equivalent to the (0,∧, 1)-stable clause
q0,∧,1(A) associated with A;

3. The Heyting algebra A is weakly projective as an object in the category DL of distributive lattices
and lattice homomorphism.

Proof. Evidently item 2 entails item 1. Conversely, to see that item 1 entails item 2, it suffices, due to
Lemma 3.8, to show for any Heyting algebra B that

A ↪→0,∧,1 B ⇐⇒ A ↪→0,∧,∨,1 B.

Since {0,∧, 1} ⊆ {0,∧,∨, 1} the implication A ↪→0,∧,∨,1 B =⇒ A ↪→0,∧,1 B evidently obtains. To estab-
lish the converse let B be given and suppose that A ↪→0,∧,1 B, say via h : A ↪→ B. If A 6↪→0,∧,∨1 B then
B |= q0,∧,∨,1(A) and so since, by assumption, q0,∧,∨,1(A) is equivalent to collection of universal (0,∧, 1)-
clauses and such clauses are preserved by (0,∧, 1)-embeddings we must have that A |= q0,∧,∨,1(A) which
is absurd as every Heyting algebra refutes all of the stable clauses associated with it.

To see that item 3 entails item 2 suppose that A is weakly projective as an object in the category DL.
We claim that the (0,∧,∨, 1)-stable clause q0,∧,∨,1(A) associated with A is equivalent to the (0,∧, 1)-
stable clause q0,∧,1(A) associated with A. As before it suffices to show that A ↪→0,∧,1 B =⇒ A ↪→0,∧,∨,1
B. Therefore, suppose that A ↪→0,∧,1 B, say via h : A ↪→ B. Since A is assumed to be weakly projective
as an object in the category DL it follows from a well-known result [6] that the poset J0(A) of join-
irreducibles7 of A including the element 0 is a (0,∧)-subalgebra of A. Moreover, by the assumption
that A is well-connected J0(A) will in fact be a (0,∧, 1)-subalgebra of A. Consequently, restricting h
to J0(A) we obtain a (0,∧, 1)-homomorphism h0 : J0(A) ↪→0,∧,1 B. Because A is weakly projective we

have by [6, Thm. 4] that h0 has a unique extension to a (0,∧,∨)-homomorphism ĥ0 : A →0,∧,∨ B. In

fact, since ĥ0 is an extension of h0 and 1 ∈ J0(A) we obtain that ĥ0(1) = h0(1) = h(1) = 1. Thus,

ĥ0 : A →0,∧,∨,1 B leaving us with the task of proving that ĥ0 is injective. By direct inspection of the

construction of the map ĥ0 it may easily be verified that ĥ0(a) ≤ h(a) for all a ∈ A. As a consequence

of this we see that if ĥ0(a1) = ĥ0(a2) for some a1, a2 ∈ A then for each a′1 ∈ J0(A) ∩ ↓a1 we must have

h(a′1) = h0(a′1) = ĥ0(a′1) ≤ ĥ0(a1) = ĥ0(a2) ≤ h(a2).

From this and the fact that h is a (0,∧, 1)-embedding we may conclude that a′1 ≤ a2 for all a′1 ∈
J0(A)∩↓a1. By a completely analogous argument we may deduce that a′2 ≤ a1 for all a′2 ∈ J0(A)∩↓a2.
Since A is finite every element is uniquely determined by the set of join-irreducible elements below it
and so we must have that a1 = a2 and therefore that h : A ↪→0,∧,∨,1 B, as desired.

Conversely, to see that item 2 entails item 3 suppose that A is not weakly projective as an object in the
category DL. We exhibit a (finite) Heyting algebra B such that A ↪→0,∧,1 B but A 6↪→0,∧,∨,1 B, showing
that the universal clauses q0,∧,1(A) and q0,∧,∨,1(A) are not equivalent. To this effect let P := J(A)∂ ,
be the order dual of J(A). Note that the Heyting algebra Up(P ) of upsets of P is isomorphic to A,
as A is finite. Again, by the characterisation of finite weakly projective distributive lattices [6], A not
being weakly projective entails the existence of a1, a2 ∈ J(A) such that a1 ∧ a2 6∈ J0(A), in particular
a1 and a2 must be incomparable. Let b1, . . . , bn be the set of join-irreducibles which are below a1 ∧ a2

in A. Necessarily, n ≥ 2. Given this, let P ′ be the poset obtained from P by adding a new element a0

covering a1, a2 and covered by b1, . . . , bn. Thus |P ′| = |P |+1. Evidently there can be no order-preserving
surjection from P ′ onto P , since this would entail that a1 and a2 are comparable. Consequently, letting

7That is, non-zero elements a ∈ A such that a = b ∨ c entails a = b or a = c, for all b, c ∈ A.
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B denote the dual Heyting algebra Up(P ′) of P ′, this shows that A 6↪→0,∧,∨,1 B. We claim, however, that
A ↪→0,∧,1 B. To establish this it suffice by Theorem 4.4 to exhibit a total and onto generalised Priestley
morphism R ⊆ P ′ × P . We claim that letting R ⊆ P ′ × P be given by

R[a] :=

{
↑a if a 6= a0

↑{a1, a2} if a = a0,

is such a generalised Priestley morphism. It may readily be verified that R is a generalised Priestley
morphisms. Moreover, that R is total and onto is evident from the definition.

Remark 5.3. We note that the use of generalised Priestley morphisms in the proof of Theorem 5.2 can
be avoided. To see this observe, with the notation of the proof of Theorem 5.2, that P is, in fact, a
subposet of P ′, whence by Priestley duality we have a surjective map h : B �0,∧,∨,1 A. Moreover, we
may easily verify that h−1(0) = {0} and h−1(1) = {1}. From [37, Cor. 5.4] we know that A, being a
finite distributive lattice, is projective as a meet-semilattice and therefore we obtain a map h : A→∧ B
such that h◦h is the identity on A. In particular, h must be injective and as h(h(0)) = 0 and h(h(1)) = 1
it follows that h(0) = 0 and h(1) = 1. Thus we have h : A ↪→0,∧,1 B.

Remark 5.4. Theorem 5.2 can be seen as explaining why all of the examples of (0,∧,∨, 1)-stable
logics considered in [7, Sec. 7] are in fact (0,∧, 1)-stable logics, as all of these logics are axiomatised
by (0,∧,∨, 1)-stable equations associated with finite well-connected Heyting algebras which are weakly
projective as objects in the category DL.

We conclude this section by showing that the (0,∧, 1)-stable logics are precisely the intermediate
logics which are both cofinal subframe logics and (0,∧,∨, 1)-stable. Recall [18, Chap. 11.3] that an
intermediate logic is a cofinal subframe logic if it can be axiomatised by cofinal subframe formulas or
alternatively if it is sound and complete with respect to a class of Kripke frames closed under taking
cofinal subframes [18, Thm. 11.25].

For this we need two simple lemmas.

Lemma 5.5. Let S ⊆W1 ×W2 be a generalised Priestley morphism between finite intuitionistic Kripke
frames F1 := (W1,≤1) and F2 := (W2,≤2). Then F2 is the image under an order-preserving map of a
cofinal subframe of F1.

Proof. Let W ′1 = {w1 ∈ W1 : ∃w2 ∈ W2 S[w1] = ↑w2}. Then we see that mapping each w1 ∈ W ′1 to the
necessarily unique element w2 ∈W2 such that S[w1] = ↑w2 determines a map f : W ′1 →W2 which must
be surjective as S is onto. Furthermore, because S is a generalised Priestley morphism we have that
w1 ≤1 v1 implies S[v1] ⊆ S[w1] and consequently that f is order-preserving when considering W ′1 as a
subframe of W1.

We then note that for any w1 ∈ max(W1) since S is total we have w2 ∈ W2 such that w1Sw2.
Moreover, if for some v1 ∈ W ′1 we have v1 ≤1 w1 then S[w1] ⊆ S[v1] = ↑f(v1) as S is a generalised
Priestley morphism. Thus we may define g : W ′1 ∪max(W1)→W2 by letting g(w1) = f(w1) if w1 ∈W ′1
and letting g(w1) be some element of S[w1] if w1 ∈ max(W1)\W ′1. Since S is total this is a well-defined
order-preserving map. Evidently W ′1 ∪max(W1) is a cofinal subframe of W1 and so F2 is the image of a
cofinal subframe of F1 under an order-preserving map.

Lemma 5.6. Let S ⊆W1 ×W2 be a generalised Priestley morphism between finite intuitionistic Kripke
frames F1 := (W1,≤1) and F2 := (W2,≤2), with F1 rooted. Then F2 is a cofinal subframe of an image
of a rooted cofinal subframe of F1 under an order-preserving map.

Proof. From Lemma 5.5 we know that F2 is the image of a cofinal subframe F′1 := (W ′1,≤′1) of F1, under
an order-preserving map, say f : W ′1 → W2. Let w0 be the root of F1. If w0 ∈ W ′1 then there is nothing
to show. If w0 is not in W ′1 then letting W ′′1 := W ′1 ∪ {w0} we obtain a rooted cofinal subframe F′′1 of
F1. Similarly, by adjoining a new root w′0 to W2 we obtain a rooted frame F′2 of which F2 is a cofinal
subframe. Finally, the map f extends to a surjective order-preserving map from F′′1 to F′1 by mapping
w0 to w′0.

Proposition 5.7. Let L be an intermediate logic. Then the following are equivalent.

1. L is (0,∧, 1)-stable;
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2. L is a (0,∧,∨, 1)-stable, cofinal subframe logic.

Proof. Every (0,∧, 1)-stable logic is evidently (0,∧,∨, 1)-stable. Furthermore, by Proposition 4.13 every
(0,∧, 1)-stable logic is sound and complete with respect to a class of intuitionistic Kripke frames deter-
mined by simple geometric implications. It is straightforward to verify that such first-order formulas are
preserved by taking cofinal subframes. Consequently, being generated by a class of Kripke frames closed
under cofinal subframes it follows that any (0,∧, 1)-stable logic is indeed a cofinal subframe logic.

Conversely, suppose that L is a cofinal subframe logic which is (0,∧,∨, 1)-stable. We show that if A
and B are finite Heyting algebras with B subdirectly irreducible such that B ∈ V(L) and A ↪→0,∧,1 B
then A ∈ V(L). Therefore, let F = (W,≤) be the dual intuitionistic Kripke frame of B and let F′ =
(W ′,≤′) be the dual intuitionistic Kripke frame of A. By the assumption that A ↪→0,∧,1 B we have a
total and onto generalised Priestley morphism S ⊆W ×W ′. Moreover, since B is subdirectly irreducible
we have that F is rooted and hence by Lemma 5.6 that F′ is a cofinal subframe of an image G′ under an
order-preserving map of a rooted cofinal subframe G of F. Since by assumption L is a cofinal subframe
logic we must have that G is also an L-frame. Moreover, since G is rooted and L is (0,∧,∨, 1)-stable we
obtain that G′ is an L-frame [7, Thm. 6.7], and so, again using the fact that L is a cofinal subframe logic,
we see that F′ is an L-frame. We may therefore conclude that A ∈ V(L) as desired. It follows that V(L)
is generated by a (0,∧, 1)-stable class of Heyting algebras and therefore that L is (0,∧, 1)-stable.

Remark 5.8. It is known that there are continuum-many (0,∧,∨, 1)-stable logics [7, Thm. 6.13] just
as it is known that there are continuum-many cofinal subframe logics [18, Thm. 11.19]; however, we
have not been able to determine how many (0,∧, 1)-stable logics there are. The problem is that, using
duality, we cannot work with order-preserving surjections which are the duals of (0,∧,∨, 1)-embeddings,
but we must work with total and onto generalised Priestley morphism which are more complicated. In
this context it is no longer clear if an argument similar to the one presented in [7] will work.

6 Future work

We conclude by mentioning a number of open questions arising in the context of the present work.
It is not clear if the property of being (0,∧, 1)-stable can be effectively verified for finitely axiomati-

sable intermediate logics. Thus it is left open whether or not it is decidable if a finitely axiomatisable
intermediate logic admits a (cut-free) structural intermediate hypersequent calculus.8

Much of the original work on algebraic proof theory has been done in the context of substructural logic.
Consequently, we find it worth investigating if a similar characterisation of substructural logics admitting
structural hypersequent calculi can be given. However, since the subdirectly irreducible residuated
lattices are more complicated than their Heyting algebra counterparts it is not immediately clear if all
the necessary results transfer to the setting of substructural logic. Here the work of Bezhanishvili et. al.
[14], investigating canonical formulas in the context of certain substructural logics might be helpful.

Finally, it is our hope that the findings in Section 4 will help to bridge the gap between the different
approaches to systematic proof theory regarding substructural, intermediate and modal logics. Some of
these approaches are primarily based on the algebraic semantics [22, 24, 25, 35], while others primarily
make use of the relational semantics [31, 42, 43].
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[41] E. Jeřábek. Canonical rules. Journal of Symbolic Logic, 74(4):1171–1205, 2009.

[42] O. Lahav. From frame properties to hypersequent rules in modal logics. In Proc. 28th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, pages 408–417. IEEE Computer
Society, 2013.

[43] B. Lellmann. Hypersequent rules with restricted contexts for propositional modal logics. Theoretical
Computer Science, 656:76–105, 2016.

21



[44] B. Lellmann and D. Pattinson. Correspondence between modal Hilbert axioms and sequent rules
with an application to S5. In D. Galmiche et al. [30], pages 219–233.

[45] G. E. Minc. On some calculi of modal logic. In V.P. Orevkov, editor, The Calculi of Symbolic Logic
I, volume 98 of Proceedings of the Steklov Institute of Mathematics, pages 97–124, 1971. AMS.

[46] S. Negri. Contraction-free sequent calculi for geometric theories with an application to Barr’s
theorem. Archive for Mathematical Logic, 42(4):389–401, 2003.

[47] G. Pottinger. Uniform, cut-free formulations of T, S4, S5, (abstract). Journal of Symbolic Logic,
48:900, 1983.

[48] R. Rothenberg. On the Relationship Between Hypersequent Calculi and Labelled Sequent Calculi for
Intermediate Logics with Geometric Kripke Semantics. PhD thesis, University of St Andrews, 2010.

[49] A. K. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis, Uni-
versity of Edinburgh, 1994.

[50] O. Sonobe. A Gentzen-type formulation of some intermediate logics. Journal of Tsuda College,
7:7–14, 1975.

[51] A. Wronski. Intermediate logics and the disjunction property. Reports on Mathematical Logic,
1:39–51, 1973.

[52] M. Zakharyaschev. Syntax and semantics of superintuitionistic logics. Algebra and Logic, 28(4):262–
282, 1989.

[53] M. Zakharyaschev. Canonical formulas for K4, part II: cofinal subframe logics. Journal of Symbolic
Logic, 61(2):421–449, 1996.

22


