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Abstract. We study the differences between finite identifiability of re-
cursive languages with positive and with complete data. In finite families
the difference lies exactly in the fact that for positive identification the
families need to be anti-chains, while in in the infinite case it is less sim-
ple, being an anti-chain is no longer a sufficent condition. We also show
that with complete data there are no maximal learnable families whereas
with positive data there usually are, but there do exist positively identifi-
able familes without a maximal positively identifiable extension. We also
investigate a conjecture of ours, namely that each positively identifiable
family has either finitely many or continuously many maximal noneffec-
tively positively identifiable extensions. We verify this conjecture for the
restricted case of families of equinumerous finite languages.
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1 Introduction

The groundbreaking work of Gold [3] in 1967 started a new era for developing
mathematical and computational frameworks for studying the formal process of
learning. Gold’s model, identification in the limit, has been studied for learning
recursive functions, recursively enumerable languages, and recursive languages
with positive data and with complete data. The learning task consists of identi-
fying languages as members of a family of languages, the learning function can
output infinitely many conjectures but they need to stabilize in one permanent
one. In Gold’s model, a huge difference in power between learning with positive
data and with complete data is exposed. With positive data a family of languages
containing all finite languages and at least one infinite one can’t be learnable.
With complete data the learning task becomes almost trivial.
Based on Gold’s model and results, Angluin’s [1] work focuses on indexed families
of recursive languages, i.e., families of languages with a uniform decision pro-
cedure for membership. Such families naturally occur as the sets of languages
generated by types of grammars. In particular, Angluin [1] gave a characteri-
zation when Gold’s learning task can be executed. Her work shows that many
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non-trivial families of recursive languages can be learned by means of positive
data only.
A few years later, Mukouchi [7] (and simultaneously Lange and Zeugmann [5])
introduced the framework of finite identification “in Angluin’s style” for both
positive and complete data. The learning task is as in Gold’s model with the
difference that the learning function can only guess once. Mukouchi presents an
Angluin style characterization theorem for positive and complete finite identi-
fication. As expected, finite identification with complete data is more powerful
than with positive data only. However, the distinction is much less marked than
in Gold’s framework. His work didn’t draw much attention until recently, de
Jongh and Gierasimczuk[2] further developed the theory of finite identification.
It is often believed that children do not use negative data when they learn their
native language. In opposition to that, a large amount of theoretical and exper-
imental work in computational linguistics (see e.g. [6]) has been conducted to
analyze and test the intuition that there is a powerful contribution of “negative”
data for improving and speeding up children language acquisition (see e.g. [9, 4]).

In this work, we focus on a more fine-grained theoretical analysis of the dis-
tinction between finite identification with positive and with complete data in
Angluin-style. Our aim is to formally study the concrete difference: what can we
do more with complete information for families of recursive languages than with
only positive information.
After a section with preliminaries we start, in Section 3, with finite identification
of finite families. Here the distinction between positive and complete data comes
out very clearly: the difference is exactly described by the fact that with positive
data families can only be identified if they are anti-chains w.r.t. ⊂.
Then, in Section 4, we question whether any finitely identifiable family is con-
tained in a maximal finitely identifiable one. Maximal learnable families are of
special interest because a learner for a maximal learnable family is a learner for
all of its subfamilies. First, in Subsection 4.1, we address this in the positive data
setting. Simple examples of positively identifiable families are often maximal like
the set of all sets of exactly n elements. We provide a mildly positive result w.r.t.
the existence of a non-effectively finitely identifiable maximal extension for fam-
ilies concerning only finite languages and give some hints about the obstacles to
a more general result. Then we present a canonical family which does not have
an effective maximal finitely identifiable extension, i.e. answering the above
question negatively. Then, in subsection 4.2, we come to study the complete
data setting. Surprisingly, we provide a completely negative result concerning
maximal learnable families for effective or non-effective finite identification with
complete data: any finitely identifiable family can be extended to a larger one
which is also finitely identifiable, ergo maximal identifiable families do not exist
in the case of complete data.
After this, in Secion 4, we partially address the question of: how many maximal
extensions a positively identifiable family has. We study two particular cases:
subfamilies of the family of all pairs and subfamilies of the family of all triples.
These two cases allowed us to conclude general results for: subfamilies of the
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family of all n-tuples for a fixed n. Our conclusions on these cases cannot be
interpreted as answers for the more general -and much more complex- question,
but we hope this will bring light towards it. Finally, in Section 6, we fix our
attention on families which are anti-chains. We show that infinite anti-chains of
infinite languages exist which can be identified with complete information but
not with positive information only. For infinite anti-chains of finite languages
such an example cannot exist if the indexing of the languages is by canonical
indices because such families are always positively identifiable. The case of arbi-
trary indexing is investigated but not fully solved. We do exhibit an example of
an indexable family of finite sets that cannot be given a canonical indexing.

2 Preliminaries

We use standard notions from recursion theory and learning theory (see e.g.,
[8]), and for “Angluin’s style” identification in the limit (see [1], [7]).

Since we can represent strings of symbols by natural numbers, we will always
refer to N as our universal set. Thus languages are sets of natural numbers, i.e.
L ⊆ N. A family L = {Li|i ∈ N} will be an indexed family of recursive languages,
i.e. the two-place predicate y ∈ Li is recursive. In case all languages are finite
and there is a recursive function f such that for each i, f(i) is a canonical index1

for Li i.e. Li = Ff(i), then we call L a canonical family.
In finite identification a learner will be a total recursive function that takes

its values in N ∪ {↑} where ↑ stands for undefined.
A positive data presentation of a language L is an infinite sequence σ+ :=

x1, x2, . . . of elements of N such that {x1, x2, . . .} = L. A complete data presen-
tation of a language L is an infinite sequence of pairs σ := (x1, t1), (x2, t2), . . . of
N× {0, 1} such that {xn ∈ N : tn = 1, n ≥ 0} = L and {xm ∈ N : tm = 0,m ≥
0} = N \ L. An initial segment of length n of σ and σ+ is indicated by σ[n] and
σ+[n].

A family L of languages is said to be finitely identifiable from positive data
(pfi) (or finitely identifiable from complete data (cfi)) if there exists a recursive
learner ϕ which satisfies the following: for any language Li of L and for any
positive data sequence σ+ (or complete data sequence σ) of Li as input to ϕ, ϕ
produces on exactly one initial segment σ+[n] a guess ϕ(σ+[n]) = j such that
Lj = Li, and stops. We occasionally relax the condition of the recursivity of
the learner ϕ, in such cases ϕ is said to be a non-effective learner and L is said
to be non-effectively finitely identifiable from positive data (non-effectively pfi)
(or non-effectively finitely identifiable from complete data (non-effectively cfi)).
Clearly a family that is pfi it is also non-effectively pfi. Similarly for cfi. For
readability, we will use nepfi to refer to the notion of non-effectively pfi.

Let L be a family of languages, and let L be a language in L. A finite set
DL is a definite tell-tale set (DFTT) for L if DL ⊆ L and ∀L′ ∈ L, (DL ⊆ L′ →
L′ = L).

1 We write Fn for the finite set with canonical index n
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A language L′ is said to be consistent with a pair of finite sets (B,C) if
B ⊆ L′ and C ⊆ N \L′. A pair of finite sets DL, DL is a definite,co-definite pair
of tell-tale sets (DFTT, co-DFTT) for L if L is consistent with (DL, DL), and
∀L′ ∈ L, if L′ is consistent with (DL, DL) then, L′ = L.

Theorem 1. (Mukouchi’s Characterization Theorem [7][5])
A family L of languages is finitely identifiable with positive data (pfi) iff for
every L ∈ L there is a DFTT set DL in a uniformly computable way. That is,
there exists an effective procedure F that on input i, index of L, produces the
canonical index F (i) of some definite finite tell-tale of L.

A family L of languages is finitely identifiable with complete data (cfi) iff for
every L ∈ L there is a pair of DFTT,co-DFTT sets (DL,DL) in a uniformly
computable way.

Corollary 1 If a family L has two languages such that Li ⊂ Lj, then L is not
pfi.

Clearly if a family if pfi then it is cfi. A completely analogous theorem holds
for non-effective learners and non-effective procedures for pfi and cfi.

Theorem 2. If L is a canonical family where no Li ∈ L is a proper subset of
any other Lj ∈ L, then L is pfi.

Proof. For every Li ∈ L. Simply take Di = Li as the DFTT.

Similarly, if L is any family of finite languages that is an anti-chain then L
is non-effectively pfi.

3 Finite families of languages

This section is dedicated to finite families of languages. A pair of simple but strik-
ing results already provides a good insight in a feature underlying the difference
between finite identification on positive and on complete data.

Theorem 3. A finite family of languages L is finitely identifiable from positive
data iff no language L ∈ L is a proper subset of another L′ ∈ L.

Proof. From left to right follows straightforwardly by contraposition of corollary
1. From right to left take Li any language in L. Since Li * Lj for any j 6= i,
choose nij = µn{n ∈ Li \ Lj} and let Di = {nij |j 6= i}. Let us verify that Di is
a DFTT for Li: Clearly it is finite because the family is finite, so {nij |j 6= i} is
finite and Di ⊆ Li. By construction, if Di ⊆ Lk ∈ L then i = k. ut

Theorem 4. Any finite collection of languages L = {L1, . . . , Ln} is finitely
identifiable with complete data.
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Proof. Let L be any family of languages satisfying this condition and Li any
language in L. Take any j 6= i, then Li \ Lj 6= ∅ or Lj \ Li 6= ∅. If Li \ Lj 6= ∅,
take the first nij ∈ Li \ Lj to be in Di. If Lj \ Li 6= ∅, take mij ∈ Lj \ Li to be
in Di. This pair of sets is consistent with Li by construction, in fact they are
DFTT, co-DFTT sets for Li. Note that this pair cannot be consistent with any
other language Lk ∈ L such that Lk 6= Li simply by construction. Since i was
arbitrary, by Mukouchi’s characterization theorem for complete data we have
that L is cfi. ut

4 Looking for maximal learnable families

In this section we question whether any finitely identifiable family is contained
in a maximal finitely identifiable one. A positive answer to such question al-
lows an alternative classification of finitely learnable families. We first address
the question for maximal nepfi families and later for maximal pfi. We provide
positive result for maximal nepfi extensions of families with finite languages.
For families containing infinite languages this question remains open. For the
usual pfi families, maximal pfi extensions exist. But we do give an example of a
canonical family which does not have a maximal pfi extension. The case of cfi is
rather different, as we will show in Subsection 4.2 that maximal extensions for
cfi families never exist.

Theorem 5. Every indexed family of finite languages which is pfi is contained
in a maximal family of languages which is nepfi.

Proving theorem 5 is by a classical Zorn lemma construction. If infinite lan-
guages are present in the family, such a Zorn lemma construction cannot be
applied since not every family which is an anti-chain is nepfi .

4.1 The existence of maximal pfi families

In this subsection we address the above questions for pfi families.
The following example shows that not every pfi family can be extended into a

maximal pfi family. First we present the following known definition of recursively
inseparable sets.

Definition 1 We say that A,B ⊆ N, A ∩B = ∅, are recursively inseparable iff
there is no recursive set C ⊆ N such that (C ⊇ A and C ∩B = ∅).

It is well-known that r.e. sets A,B exist which are recursively inseparable
[10].

Theorem 6. Let A ⊆ N and B ⊂ N \ A be two recursively inseparable r.e sets.
Let L := {{a} : a ∈ A} ∪ {{b, c} : b, c ∈ B}. The family L is pfi and there is no
canonical maximal pfi extension of L.
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Proof. First note that since both A and B are r.e., L is a canonical indexed
family. It is easy to see that it is pfi since any language serves as its own DFTT.
Now by contradiction, suppose there is a maximal canonical pfi family extension
of L, say L′. Note that because of maximality and canonicity of L′, for each
finite set Y ⊆ N, we can decide whether Y ∈ L′ or Y 6∈ L′. This can be done
by checking for Y with each Li ∈ L whether Y = Li, Y ⊂ Li or Li ⊂ Y .
One of the three has to happen for some Li, otherwise Y can be added to L as
a new element without impairing positive identifiability. Thus L′ is decidable.
Therefore we can construct a set A′ ⊇ A of singletons in L′ that is recursive and
A′ ∩ B = ∅, so A′ separates A from B. This contradicts the inseparability of A
and B. ut

We can strengthen Theorem 6 to conclude that L has no maximal pfi exten-
sion at all.

Theorem 7. The family L of Theorem 6 has no maximal pfi extension at all.

Proof. Let L′ ⊇ L be a maximal pfi family. We define recursive A′, B′ such
that A ⊆ A′ and B ⊆ B′, A′ ∩ B′ = ∅, A′ ∪ B′ = N. Let L′ = {Ln : n ∈ N}.
For each i determine whether i ∈ A′ or i ∈ B′ as follows: Find the first n such
that i ∈ Ln. By maximality and indexicality such n exists. Now consider Dn the
DFTT of Ln. We distinguish two possibilities: (1) Dn = {i}, and (2) Dn 6= {i}.
In case (1) put i ∈ A′. Note that A ⊆ A′, because if i ∈ A then {i} ∈ L and thus
{i} ∈ L′. Note that {i} ⊂ Ln is impossible since L′ is pfi. Thus {i} = Ln and
so Dn = {i}. In case (2) put i ∈ B′. Note that B ⊆ B′, because if i ∈ B then
{i, j} ∈ L ⊆ L′ for some j 6= i. So Dn 6= {i} because L′ is pfi. Therefore A′, B′

have been constructed as required, contradiction. ut

This theorem applies not only to families with infinite members but also to
non-canonical families of only finite languages. In theorem 14 from section 6 we
show that such families exist.

4.2 Do maximal cfi families exist?

In this section we address the question whether every cfi family is contained
in a maximal one. Or in other words, if we can always find cfi extensions for
cfi families. Surprisingly, we show that the latter is indeed always possible, the
question whether maximal cfi families exist is answered negatively.

First observe the following. Let L be the complement family of any cfi family
L, i.e. L = {L : L ∈ L} where L = N \ L. Note that for every sequence σ of
complete data for a family L there is mirror image of σ, say sequence σ (presented
in exactly the same order), for the cfi family L with inverted values of 0’s and
1’s. So (k, 1)j ∈ σ iff (k, 0)j ∈ σ for any j ∈ N. We obtain the following result.

Proposition 1 If a family L is cfi then L is cfi as well.
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Proof. Let ϕ be a learner for L we can define a learner ϕ for L as follows:

ϕ(σ[n]) = L iff ϕ(σ[n]) = L

Clearly ϕ is a recursive learner for L. ut

Corollary 2 If either L or L is cfi then L and L are cfi.

This is not the case for pfi families, since for instance the family of all single-
tons Ls is pfi but its complement family, namely the family of all co-singletons,
is clearly not pfi.
Consider any language L, then a direct successor of L is L ∪ {n} with n not in
L. For every non-cofinite language Li ⊆ N let Suc(Li) be the set of all direct
successors of Li and SucL(Li) = Suc(Li) ∩ L.

Proposition 2 If L is cfi then SucL(Li) is finite for every Li in L.

Proof. Let L be a cfi family and L ∈ L. By contradiction suppose there are
infinitely many direct successors of L in L. Thus we assume that SucL(L) has
infinitely many elements.
Since L is cfi we have a DFTT and co-DFTT sets for L, namely DL and DL. First
note that DL ⊆ Li for any Li ∈ Suc(L). Since DL is finite, the contradiction will
follow by showing that DL only serves to disambiguate between a finite number
of direct successors of L in L. We prove the following: DL ∩ Lj 6= ∅ only for
finitely many Lj ∈ SucL(L).
First note that DL is finite and for all disjoint Lj , Li ∈ SucL(L), Lj = L∪{kj} 6=
L ∪ {ki} = Li for some kj , ki ∈ N. Since DL is co-DFTT of L, DL ∩ L = ∅.
Thus, if Lj ∈ SucL(L) and DL ∩ Lj 6= ∅ then DL ∩ Lj = {kj}. Since for each
Li, Lj ∈ SucL(L) we have that kj 6= ki and DL is finite, DL can only intersect
finitely many Lj ∈ SucL(L).

Continuing with the general proof. Take Li ∈ SucL(L) such that Li∩DL = ∅.
We can take such a language Li ∈ SucL(L) because of the previous claim and
our initial assumption that the set SucL(L) is infinite. Then Li is a witness
for showing that DL, DL are not co-DFTT and DFTT sets for L which is a
contradiction. This is because DL ⊆ Li and DL ∩ Li = ∅, so disambiguation
between L and Li is not possible.
Since the choice of DL was arbitrary as a co-DFTT for L it follows that SucL(L)
must be finite. ut

Next comes the crucial result, the non-existence of maximal cfi families.

Theorem 8. Let L be an indexed cfi family and L ∈ L. For any pair DFTT,
co-DFTT DL, DL of L, if DL∪{n} is such that n /∈ DL∪L then L∪{DL∪{n}}
is cfi.

Proof. The strategy is to extend L with DL ∪ {n} where DL is the DFTT of L
selected by the DFTT-function for the family L. W.l.o.g. we can assume that
L has a non cofinite language, and such language we fix as L. This is simply
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because of the following: if all languages in L are cofinite, then all languages in
the complement family L are finite. Thus we can find a cfi extension L′ for L by
applying the theorem to L. By proposition 1 we know that L′ is cfi. Note that
L′ is an extension of our original family L. Therefore, we can assume that L ∈ L
is not cofinite.

Let L be a countable family with a non cofinite language L ∈ L and DL

the co-DFTT for L obtained by the dftt/co-dftt function on L. Since L is not
cofinite we know that L has infinitely many direct successors. By Proposition
2 we have that L contains only finitely many direct successors of L. Note that
since DL is finite, we can choose infinitely many m ∈ N such that m /∈ DL and
m /∈ L′ ∈ SuccL(L). Take n ∈ N satisfying these characteristics and DL ∪ {n}
the respective direct successor for DL.

Claim: The family L′ = L ∪ {DL ∪ {n}} is cfi.

In fact we claim that the finite sets D′DL∪{n} = DL ∪ {n}, D
′
DL∪{n} = DL,

and D′L = DL, D
′
L = DL ∪ {n} are DFTT, co-DFTT sets for DL ∪ {n} and L

respectively in L′. If DL ∪ {n} = Dj ∪ {n′} happens to be the case for some

Lj ∈ L, then fix D′j = Dj and D
′
j = Dj ∪ {m ∈ DL ∪ {n} : m /∈ Lj}. For

the rest of the languages in L′ the DFTT’s and the co-DFTT’s will be exactly
the ones chosen by the function f initially for L, i.e, for all the rest of Li ∈ L′,
D′i = Di and D

′
i = Di.

Proof of claim: By construction of D′L, D
′
L, and DL ∪ {n}, the pair D′L,

D
′
L cannot be consistent with DL ∪ {n}. It cannot be consistent with any other

Lj ∈ L′ either because that will contradict that L is cfi. Now we need to show

that D′DL∪{n} and D
′
DL∪{n} are not consistent with any other Lj ∈ L′. By

contradiction, suppose D′DL∪{n} and D
′
DL∪{n} are consistent with a language

Lj ∈ L′ and Lj 6= DL ∪ {n} . Since Lj 6= DL ∪ {n} and by definition of L′ we
obtain Lj ∈ L. By definition of L and since L,Lj ∈ L we have Lj 6= L. Thus,

DL ⊆ D′DL∪{n} ⊆ Lj

and
D
′
DL∪{n} = DL ⊆ N \ Lj .

This implies that DL and DL were not DFTT, co-DFTT sets for L w.r.t. L,
contradicting that L is cfi. Similarly we cannot have any pair Di, Di chosen by
the function f consistent with any other Lj 6= Li ∈ L′. Therefore L∪{DL∪{n}}
is cfi. ut

Corollary 3 Maximal cfi extensions do not exist for any cfi family L.

There are other ways of extending a cfi family than the one described in
Theorem 8 as the following example shows.

Example 1 Take the family L = {{0}, {0, 1}, {0, 1, 2}, . . . , {0, 1, 2, 3, . . . , n}, . . .}.
This family is cfi. Note that for L = {0} we can extend L with L ∪ {2} and
preserve cfi even though a co-DFTT is {1, 2}. Moreover we can extend it with
L ∪ {3}, L ∪ {4} and so on, and preserve cfi.
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5 Counting maximal extensions

We are also interested in the follow-up question: How many maximal nepfi ex-
tensions can a pfi family have? It is our guess that every pfi family has finitely
many maximal nepfi extensions or continuously many. We ignore indexability
of the family in investigating this question, and, since we do not care in this
section whether we have a pfi or nepfi maximal extension because we are hert
after structural properties only we may be less careful about the distinction.

First consider the following example: Let Ls be the family of all singletons.
Clearly it is maximal with respect to pfi . However if we take out one of the
singletons, say {0}, we obtain a pfi subfamily Ls

0 which is no longer maximal
and its only pfi extension is Ls. If we remove {1} from Ls

0, we can maximally
extend this family in two different ways, either adding {0, 1} or adding {0}
and {1}. Thus we have two independent maximal pfi extensions for Ls

1. We
can repeat this effective deletion-procedure finitely many times and still obtain
finitely many extensions. For regaining maximality, we are indeed “restricted”
in the structural sense. The following lemma illustrates this.

Lemma 1. Let L be a maximal pfi family and L′ is a maximal pfi extension of
L\{x} where {x} ∈ L. Then for all L ∈ L′ which are not in L\{x}, L is of the
form {x} ∪A for some A ⊆ Li ∈ L \ {x}.

Proof. Note first that in order to achieve pfi maximality in an extension L′ of
L \ {{x}}, any new language L ∈ L′ in the extension needs to have x as an
element. Thus any L ∈ L′ \ (L \ {{x}}) is such that x ∈ L. Let A = L \ {{x}}.
We will prove that A ⊂ Li for some i ∈ N. By maximality of L, A itself could
not be added to L and preserve pfi. Thus, either A ⊂ Li or Li ⊆ A for some
Li ∈ L. The latter cannot be since if Li ⊆ A then Li ⊆ A ∪ {x} and L′ should
be an anti-chain. Therefore A ⊂ Li. ut

In the following example we see that even when the languages are all finite,
we may still regain uncountably many maximal pfi extensions.

Example 2 Let L = {{0} ∪L′} where L′ = {{i, j, k} : i, j, k ∈ N \ {0}}. Clearly
L is maximal pfi family. Consider L′, by lemma 1 in order to regain maximality,
the languages to add must be of the form {0} ∪ A for some A ⊆ Li and some
Li ∈ L′. Therefore we have the following procedure for constructing continuously
many maximal pfi extensions of L′: For each B ⊆ N \ {0} add the triples of the
form {0, n,m} with n 6= m and n,m ∈ B and all the pairs of the form {0, c}
with c /∈ B. This construction is for all B ⊆ N \ {0}, thus L′ has continuously
many maximal pfi extensions.

5.1 Continuously many maximal pfi extensions

We dedicate this subsection to study cases in which we can recover uncount-
ably many maximal extensions of a given family. We first address some cases of
families with finite languages similar to example 2. After studying these cases,
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we exhibit some sufficient conditions for a family in order to have continuously
many maximal extensions.

Consider the following example.

Example 3 Let L be the family {0}, {1} ∪ {{i, n} : i, n ∈ N \ {0, 1}}. This
is clearly a pfi family because every language is mutually incomparable with any
other language in the family. Moreover it is maximal (w.r.t. pfi) precisely because
any other subset of N is either a subset or a superset of {{i, n}|i, n ∈ N\{0, 1}},
or a superset of {0}, {1}. Now consider the subfamily L′ = L \ {{0}, {1}}, L′
has continuously many maximal pfi extensions. Clearly L is one, and for every
B ⊆ N, the family L′ ∪ {{0, 1, b}|b ∈ B} ∪ {{0, c}, {1, c}|c /∈ B} is a maximal pfi
extension of L′. Since we have continuously many B ⊆ N, we have continuously
many maximal pfi extensions of L′.
However, if we take the similar maximal pfi family {0}∪{{i, n} : i, n ∈ N\{0}}
and consider the pfi subfamily {{i, n} : i, n ∈ N \ {0}} it turns out that it has
only two maximal pfi extensions, namely L2 and {0} ∪ {{i, n} : i, n ∈ N \ {0}}
itself.

By a similar combinatorial argument as in example 3, we straightforwardly
obtain the following result .

Proposition 3 For every finite set {0, 1, . . . ,m} with m > 0, the subfamily
L2
\{0,1,...,m} = {{i, n}|i, n ∈ N \ {0, 1, . . . ,m}}, of the family of all pairs L2, has

continuously many maximal pfi extensions.

Proof. Simply because L2
\{0,1,...,m} ⊂ L

2 \ {{0, a, }, {1, b} : a, b ∈ N} and, by
example 3, the latter has continuously many maximal pfi extensions. ut

By example 2 we know that the subfamily L3 \ {{0, a, b} : a, b ∈ N} al-
ready has continuously many maximal pfi extensions. Therefore any subfamily
L3
\{0,1,...,m} obtained by removing all triples of the form {i, a, b} with a, b ∈ N and

i ∈ {0, 1, . . . ,m} has continuously many maximal pfi extensions for any m ∈ N.
Since a similar combinatorial argument works for any subfamily of quadruples,
quintuples etc, we can generalize this result to all n ≥ 3 ∈ N.

Proposition 4 Let n ≥ 3 ∈ N and Ln be the class of all n-tuples. Any subfamily
Ln
\{0,1,...,m} obtained by removing all n-tuples of the form {i, x1, . . . , xn−1} with

xj ∈ N and i ∈ {0, 1, . . . ,m} has continuously many maximal pfi extensions for
any m ∈ N.

5.2 The class of all pairs L2

In this subsection we study subfamilies of the family of all pairs. This will also
bring some general insights for equinumerous families with more than two el-
ements. First we provide the following definition. In it and further on we will
write n-tuple for and unordered n-tuple, i.e. just a set of n elements.



11

Definition 2

– Let Y = {Y1, . . . Yn} be any set of pairs in L2, NUM(Y) to be the set of
all numbers which appear in the pairs Y1, . . . Yn, and PAIRS(Y) the set of
all pairs formed by elements in NUM(Y). Let LY to be the subfamily of all
pairs which are not in PAIRS(Y), i.e. LY = L2 \ PAIRS(Y).

– We can easily generalize the definition above to the family Ln of all n-tuples
for n ∈ N. We denote as nTUP (Y) the set of all n-tuples formed by elements
in NUM(Y) and LY = Ln \ nTUP (Y).

The combinatorial notion of Sperner familiy explains why for every finite
set of pairs Y = Y1, . . . Yn, the subfamily LY has finitely many maximal pfi
extensions.

Definition 3 A Sperner family (or Sperner system) is a family of subsets of
A in which none of the sets is contained in any other. Equivalently, a Sperner
family is an anti-chain in the inclusion lattice over the power set of A.

From here on we will refer to Sperner families as anti-chains. The number of
different anti-chains on a set of n elements is counted by the so-called Dedekind
numbers. Determining these numbers is known as the Dedekind problem. The
number amount of anti-chains on {0, 1, 2, . . . , n} for n ∈ N are 2, 3, 6, 20, 168, 7581, . . .
respectively.

Lemma 2. Let LY ⊆ L2 be the family corresponding to some finite set of pairs
Y = {Y1, . . . Yn}. For every maximal pfi extension L of LY and every L ∈
(L \ LY), L ⊆ NUM(Y).

Proof. To obtain a contradiction suppose there is a maximal pfi extension L 6= L2

of LY such that for some L ∈ (L \ LY), L 6⊆ NUM(Y). Thus, there is z ∈ L
such that z /∈ NUM(Y). Clearly L cannot be a singleton, thus a w 6= z exists
in L such that {w, z} /∈ PAIRS(Y). Therefore {w, z} ∈ LY simply by definition
of LY . But since {w, z} ⊆ L ∈ L, L cannot be a maximal pfi extension of LY
contradicting our initial assumption. ut

Proposition 5 For every finite set of pairs Y = {Y1, . . . Yn}, the number of
maximal pfi extensions of the subfamily LY is bounded by the Dedekind number
of the set NUM(Y) = {y1, . . . , ym} or in other words, by the number of anti-
chains in NUM(Y) = {y1, . . . , ym}. Moreover, the maximal pfi extensions of LY
correspond to the maximal singleton-free anti-chains on NUM(Y).

Proof. Let Y = {Y1, . . . Yn} be any finite set of pairs and LY ⊆ L2 the corre-
sponding family. By lemma 2 we know that for every L maximal pfi extension
of LY , if L ∈ (L \ LY) then L ⊆ NUM(Y) = {y1, . . . , ym}. Therefore, for every
L maximal pfi extension of LY we have that (L \ LY) ⊆ P(NUM(Y)) which
is finite. By Mukouchi’s corollary (corollary 1) we know that (L \ LY) must be
an anti-chain in P(NUM(Y)). Therefore every L maximal pfi extension of LY
corresponds to some anti-chain in P(NUM(Y)) without singletons. Moreover
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since L ⊇ LY is maximal pfi then (L \ LY) is precisely a maximal singleton-
free anti-chain in P(NUM(Y)). For the other direction, if we extend LY with
any maximal singleton-free anti-chain in P(NUM(Y)) then clearly the resulting
family L is a maximal pfi extension. Simply because any L ∈ (L \ LY) has L
itself as a DFTT set. ut

We can straightforwardly generalize Proposition 5 for a subfamily of the
family of all n-tuples, Ln, for every n ∈ N.

Proposition 6 For every finite set of n-tuples Y = {Y1, . . . Yn}, the number of
maximal pfi extensions of the subfamily LY is bounded by the number of anti-
chains in the finite set NUM(Y). Moreover, the maximal pfi extensions of LY
correspond to the maximal anti-chains in NUM(Y) and such anti-chains contain
no k-cardinality sets for any k ≤ n− 1 .

So far we know the following about subfamilies of L2: (1) By proposition 5,
any subfamily of L2 obtained by removing finitely many pairs from L2 has only
finitely many maximal pfi extensions; (2) by Example 3 and proposition 3 we
know that any subfamily of L2 obtained by removing all pairs of the form {i, n}
with n ∈ N and i ∈ {0, 1, . . . ,m} (of which there are infinitely many) has either
2 maximal pfi extensions (when 0 = m) or continuously many (when 0 < m ).
But what happens when we consider subfamilies obtained by removing finitely
or infinitely many arbitrary pairs? The answer to this question will also clarify
what happens to subfamilies of all n-tuples Ln for any n ∈ N. In this section we
will first study what happens when we remove from L2 any finite group of pairs.
Then we will study the case of removing infinitely many pairs. We provide a
complete overview of our investigation on the number of maximal pfi extensions
of subfamilies of L2 and will be able to conclude that every subfamily of L2 has
either finitely or continuously many maximal pfi extensions.

Definition 4 We say that G ⊆ L2 is a cluster in L2 if PAIRS(G) = G (see
Definition 2) and ‖G‖ > 1.

Clearly for every Y ⊆ L2, PAIRS(Y) is a cluster in L2. The minimal-in-size
clusters of L2 are the ones that contain three pairs.

Lemma 3. For any finite set Y ⊆ L2, Y ⊆ PAIRS(Y) and this is the minimal
cluster that contains Y.

To illustrate the lemma above, let Y = {{1, 2}, {2, 3}}. Then the minimal
cluster that contains Y is PAIRS(Y) = {{1, 2}, {1, 3}, {2, 3}}. We have many
finite clusters that contain PAIRS(Y) and therefore Y. For instance the cluster
G = {{1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}}.

Proposition 7 Let G1, . . . ,Gn be a finite set of clusters. Then the family

L2 \ (G1 ∪ . . . ∪ Gn)

has finitely many maximal pfi extensions.
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Proof. Take G ⊇ G1 ∪ . . . ∪ Gn the minimal cluster that contains all G1, . . . ,Gn,
which exists by lemma 3. By Proposition 5, LG has finitely many maximal pfi
extensions, and L2 \ (G1 ∪ . . .∪ Gn) as well, since L2 \ (G1 ∪ . . .∪ Gn) ⊇ LG . ut

Definition 5 We say that {G1, . . . ,Gn} is a maximal set of clusters in L2 out-
side L, if they are pairwise disjoint, G1 ∪ . . . ∪ Gn ⊆ L2 \ L and for any cluster
G ⊆ L2 \ L, G ⊆ Gi for some i ∈ {1, . . . , n}.

Theorem 9. Let L ⊆ L2.

1. If there are only finitely many clusters G1, . . . ,Gn such that (
⋃n

i=1 Gi) ⊆
(L2 \ L) and for at most one k ∈ N {{k,m} : m ∈ N \ {k}} ∩ L = ∅, then L
has finitely many maximal pfi extensions.

2. If {Gi}i∈N is a countable sequence of disjoint clusters such that
⋃∞

i=1 Gi ⊆
(L2 \ L), or if for more than one k ∈ N we have that {{k,m} : m ∈ N \
{k}} ∩ L = ∅, then L has continuously many maximal pfi extensions.

Proof. 1. Let G1, . . . ,Gn be the maximal finite sequence of disjoint clusters such
that (

⋃n
i=1 Gi) ⊆ (L2 \ L) and for at most one k ∈ N, {{k,m} : m ∈ N \

{k}}∩L = ∅. By treating the following cases we exhaust all the possibilities.

(a) There are no clusters contained in (L2 \ L) and for exactly one k ∈ N,
{{k,m} : m ∈ N \ {k}} ∩ L = ∅.

(b) There are no clusters contained in (L2 \ L) and for no k ∈ N, {{k,m} :
m ∈ N\{k}}∩L = ∅, i.e. there are no clusters contained in (L2 \L) and
for all k ∈ N, {{k,m} : m ∈ N \ {k}} ∩ L 6= ∅.

(c) There is a non-empty finite sequence of clusters G1, . . . ,Gn such that
(
⋃n

i=1 Gi) ⊆ (L2 \ L) and for at most one k ∈ N, {{k,m} : m ∈ N \
{k}} ∩ L = ∅.

Note that the case (a) when there are no clusters contained in (L2 \ L) and
for exactly one k ∈ N, {{k,m} : m ∈ N\{k}}∩L = ∅ then each pair {a, b} ∈
(L2 \ L) is of the form {k,m} for some m ∈ N. This is because otherwise,
the pairs {a, b}, {k, a}, {k, b} would form a cluster contained in (L2 \ L).
Therefore the only possibility is that (L2 \ L) = {{k,m} : m ∈ N \ {k}} and
we already discussed this case in example 3. So in this case L has only two
possible maximal extensions.
Now we will prove case (b). Note that since there are no clusters contained
in the complement of L, we cannot add any language larger than a pair. To
see this, take any triple of elements in N, {a, b, c}. By our assumption, the
cluster G = {{a, b}, {b, c}, {a, c}} is not contained in L2 \ L. Therefore one
of these pairs is already in L. Thus we cannot add the language {a, b, c} to
extend L. The same reasoning applies to any set larger than a triple. Since
for all k ∈ N, {{k,m} : m ∈ N\{k}}∩L 6= ∅, we cannot add singletons either:
for every i ∈ N there is a language Li := {i,m} ∈ L such that {i} ⊆ {i,m}
which prevents pfi. Therefore the only maximal pfi extension is L2.
Now we will prove case (c). Let G = G1, . . . ,Gm be the maximal set of
clusters outside L, i.e. (

⋃n
i=1 Gi) ⊆ (L2 \ L), and let k ∈ N be such that

{{k,m} : m ∈ N \ {k}} ∩ L = ∅. The strategy of the proof is to show that
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each maximal extension of L is uniquely characterized by some maximal
anti-chain in NUM(

⋃m
i=1 Gi)∪ {k}, and the number of maximal anti-chains

is bounded by the Dedekind number of NUM(
⋃m

i=1 Gi)∪{k}, which is finite.
In order to achieve this we need to prove the following: For any maximal pfi
extension Lm of L and any A ∈ Lm\L′ we have that either A ⊆ NUM(

⋃
G)∪

{k} or A = {m,n} for some {m,n} /∈ L.
We prove this by contradiction. Suppose there is Lm ⊇ L such that Lm 6= L2

and A ∈ Lm is such that A 6⊆ NUM(
⋃
G) ∪ {k} and A 6= {m,n} for any

m,n ∈ N. Since A 6⊆ NUM(
⋃
G) ∪ {k}, there is y ∈ A such that y /∈

NUM(
⋃
G) ∪ {k}. Therefore y 6= k. Note that A cannot be a singleton, say

{y}, simply because {y} ⊆ {y,m+1} ∈ L where m = max{NUM(G)∪{k}}.
Thus, there is z 6= y such that {z, y} ⊆ A. Note that A 6= {z, y} since
we are supposing A 6= {m,n} for any {m,n} /∈ L. Thus we have that
x ∈ A exists with x 6= z, y. Note that if PAIRS({x, z, y}) ⊆ (L2 \ L) then
PAIRS({x, z, y}) ⊆ Gi for some i ∈ {1, . . . ,m}, but this cannot be since
y /∈ NUM(

⋃
G) ∪ {k}. Therefore PAIRS({x, z, y}) ∩ L 6= ∅, i.e. there is a

pair {a, b} ⊆ {x, z, y} ⊆ A such that {a, b} ∈ L, but this contradicts that
A ∈ Lm \ L where Lm is a maximal pfi extension of L.

Continuing with the proof of this case we obtain that each maximal pfi exten-
sion of L which is not L2 is characterised by some anti-chain of NUM(

⋃
G)∪

{k} of which are just finitely many. This means that Lm = L∪P ∪Q where
Q is an anti-chain of NUM(

⋃
G) ∪ {k}.

2. First we will study the case when for more than one k ∈ N we have that
{{k,m} : m ∈ N} ∩ L = ∅. Note that we already proved in example 3 that
the family L′ = {{i, n} : i, n ∈ N \ {0, 1}} subfamily of L2 has continuously
many maximal pfi extensions. Therefore any subfamily of L′ has continu-
ously many as well. Clearly every L satisfying the condition just mentioned
will be a subfamily of L′. Therefore L has continuously many maximal pfi
extensions. Finally, we prove the remaining case. Let G1, . . . ,Gn, . . . be a
countable sequence of clusters such that

⋃∞
i=1 Gi ⊆ (L2 \L). w.l.o.g. suppose

each cluster is finite (this case is enough since every family L in which an
infinite cluster Hi was ”left out” of L, is contained in a family L′′ in which
every ”left-out” cluster is finite), and suppose the clusters are pair-wise dis-
joint. For each Gi consider NUM(Gi), the set of all numbers that appear in
each pair of the cluster Gi, then we can extend L in two different ways: (1) by
adding the cluster PAIRS(Gi) = Gi, and (2) by adding the set NUM(Gi).
Note that these two ways of extending L are mutually exclusive. Therefore
and since we have countably many clusters Gi, by a well-known combina-
torial argument, we have continuously many maximal pfi extensions for L.

ut

By Proposition 7 and Theorem 9 we have the following result.

Theorem 10. Any subfamily L of L2 has either finitely many maximal pfi ex-
tensions or continuously many.
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Trivially, every L ⊆ L2 has an indexable maximal effective pfi extension,
namely L2 itself, but one can also see that, if there are finitely many maximal
extensions all of them are indexable maximal effective pfi extensions and if there
are continuously many, countably many of those are.

Theorem 9 for L2 allows us to obtain rather straightforwardly a similar gen-
eral result for subclasses of the family of all n-tuples Ln for any n ∈ N. But there
are some subtle details so that we need to tread carefully. Therefore we dedicate
the following section to the class of all subfamilies of Ln.

5.3 The class of all n-tuples Ln

Here we generalize all the notions and results we obtained for L2.

Definition 6 We say that G ⊆ Ln is an n-cluster in Ln if the set nTUP (G) of
all n-tuples formed by numbers in NUM(G) (see Definition 2) is exactly G, i.e.,
if nTUP (G) = G.

Clearly for every Y ⊆ Ln, nTUP (Y) is an n-cluster in Ln.

Lemma 4. For any finite set Y ⊆ Ln, Y ⊆ nTUP (Y), and this is the minimal
n-cluster that contains Y.

Proposition 8 Let G1, . . . ,Gm be a finite set of n-clusters. Then the family
Ln \ (G1 ∪ . . . ∪ Gm) has finitely many maximal pfi extensions.

Proof. The proof goes as in the case for L2, taking the minimal n-cluster that
contains all G1, . . . ,Gn, which by lemma 4 we know exists. By Proposition 6 we
know that LG has finitely many maximal pfi extensions, and Ln\(G1∪. . .∪Gm) ⊇
LG , so Ln \ (G1 ∪ . . . ∪ Gm) has finitely many as well. ut

In what follows we will consider the subclasses of L3. This clarifies straight-
forwardly what happens in the general case for every n > 3.

What is different in L3 \ {{0, a, b} : a, b ∈ N} that it allows for continuously
many maximal pfi extensions, whereas L3 \ {{0, 1, b} : b ∈ N} does not? The
difference lies in the elements that are fixed and the ones that remain ”free” in
the triples that are discarded from the families. Whenever we fix two elements in
the triples we are preventing the combinatorics to act, since with only one ”free”
element in the triple, there is not much that combinatorics can do. However, with
two non-fixed entries we can build continuously many pfi extensions as in case
(4) of example 2.

The following result generalizes what is expressed in this idea.

Proposition 9 The family L3 \
⋃n

1{{ki,mi, a} : a ∈ N \ {ki,mi}} for a finite
number of pairs {ki,mi} ∈ L2 has finitely many maximal extensions.
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Proof. Let L := L3 \
⋃n

1{{ki,mi, a} : a ∈ N \ {ki,mi}}. Consider n families
of the form {{ki,mi, a} : a ∈ N \ {ki,mi}} such that for any i ∈ {1, 2, . . . , n},
L ∩ {{ki,mi, a} : a ∈ N \ {ki,mi}} = ∅. First we will prove that we cannot add
any other N -tuple with N ≥ 5 to L, for this it suffices to see that we can only
add finitely many quadruples, namely {ki,mi, kj ,mj} for any i, j ∈ {1, 2, . . . , n}.
This is because if we could add an N -tuple for N ≥ 5, then we could add any
quadruple of elements in the tuple. Let us prove it then by contradiction, suppose
there is a quadruple {a, b, c, d} 6= {ki,mi, kj ,mj} for any i, j ∈ {1, 2, . . . , n}
and such quadruple can extend L and preserve pfi. It is sufficient to verify the
worst case scenario in which it differs in one element from all the admissible
quadruples {ki,mi, kj ,mj}. Suppose a 6= k1, k2, . . . , kn. It suffices to verify the
case for a 6= k1 because the others follows similarly. Note that {a, b, c, d} =
{a,m1, k2,m2}. Thus the triple {a,m1, k2} ∈ L because otherwise the 3-cluster
TRI({{a,m1, k2}, {k1,m1, k2, }}) ⊆ L3 \L which contradicts our assumption on
L. Thus since {a,m1, k2} ∈ L, we cannot use {a,m1, k2,m2} to extend L and
remain pfi. ut

The result above does not apply when we consider infinitely many distinctive
pairs {ki,mi} ∈ L2. We prove this in the following theorem where we cover all
possible cases of subfamilies of L3. As we mentioned before, the proof for the
generalization of Theorem 9 needs to be treated carefully since there are cases
that do not correspond exactly to the ones for n = 2. For instance in the proof of
the following theorem for n = 3, there are more cases of a similar kind in which
the subfamily has continuously many maximal extensions. The general proof for
n ≥ 3 is basically the same as for n = 3.

Theorem 11. Let L ⊆ L3.

1. If there are only finitely many maximal 3-clusters G1, . . . ,Gn such that
(
⋃n

i=1 Gi) ⊆ (L3\L), for all k ∈ N {(k, a, b) : a, b ∈ N\{k}}∩L 6= ∅ and there
are at most finitely many families of the form {{ki,mi, a} : a ∈ N\{ki,mi}}
such that

⋃n
1{{ki,mi, a} : a ∈ N \ {ki,mi}} ⊆ L3 \ L, then L has finitely

many maximal pfi extensions.
2. If {Gi}i∈N is a countable sequence of maximal 3-clusters such that

⋃∞
i=1 Gi ⊆

(L2 \L), or if for at least one k ∈ N we have that {(k, a, b) : a, b ∈ N\{k}}∩
L = ∅, or if there are infinitely many families of the form {{ki,mi, a} : a ∈
N \ {ki,mi}} such that

⋃ω
1 {{ki,mi, a} : a ∈ N \ {ki,mi}} ⊆ L3 \ L, then L

has continuously many maximal pfi extensions.

Proof. 1. Let G1, . . . ,GN be the finite sequence of all the maximal disjoint 3-
clusters contained in L3 \ L and let L ⊆ L3 as described for this case.
We want to show that there are only finitely many maximal pfi extensions
of L. W.l.o.g. it is sufficient to show it for when there are two families
{{k1,m1, a} : a ∈ N \ {k1,m1}}, {{k2,m2, a} : a ∈ N \ {k2,m2}} such
that {{ki,mi, a} : a ∈ N \ {k,m}} ⊆ L3 \ L for i ∈ {1, 2}. The general
case follows the same reasoning. First we will prove that we cannot add any
n-tuple with n ≥ 5 to L, for this it suffices to see that we can only add
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finitely many quadruples different from {k1,m1, k2,m2}. This is because if
we could add an n-tuple for n ≥ 5, then we could add any quadruple of ele-
ments in the tuple. Let us prove it then by contradiction, suppose there are
infinitely many quadruples {ai, bi, ci, di} 6= {k1,m1, k2,m2} for i ∈ N which
can extend L and preserve pfi. It is sufficient to check the case in which they
differ from {k1,m1, k2,m2} on one element only. W.l.o.g. suppose ai 6= k1
for every i ∈ N and so {ai, bi, ci, di} = {ai,m1, k2,m2}. Then the triple
{ai,m1, k2} ∈ L or {ai,m1, k2} /∈ L. The former cannot be the case since
then {ai,m1, k2,m2} cannot extend L. So the latter is the case, then there
is a 3-cluster TRI({{ai,m1, k2}, {k1,m1, k2, }}) ⊆ L3 \ L so for every i ∈ N,
TRI({{a,m1, k2}, {k1,m1, k2, }}) ⊆ Gj for some j ∈ {1, . . . , N} which is a
contradiction since from NUM(

⋃
(G1, . . . ,GN )) we can obtain only finitely

many triples. Thus we can only add finitely many triples, i.e. finitely many
quadruples, i.e finitely many n-tuples. We can only add finitely many pairs,
namely formed by some elements inNUM(

⋃
(G1, . . . ,GN ))∪{k1,m2, k2,m2}.

We cannot add any singleton because of our initial assumption. As in the case
of L2, for any maximal pfi extension Lm of L and any A ∈ Lm \ L′ we have
that either A ⊆ NUM(

⋃
(G1, . . . ,GN ))∪{k1,m2, k2,m2} or A = {a, b, c} for

some {a, b, c} /∈ L.
The proof is by contradiction as for L2.

2. If {Gi}i∈N is a countable sequence of maximal 3-clusters such that
⋃∞

i=1 Gi ⊆
(L2 \L), or if for at least one k ∈ N we have that {(k, a, b) : a, b ∈ N \ {k}}∩
L = ∅ the proof goes exactly as for L2. We will just prove the remaining case.
There are infinitely many families of the form {{ki,mi, a} : a ∈ N\{ki,mi}}
such that

⋃ω
1 {{ki,mi, a} : a ∈ N\{ki,mi}} ⊆ L3 \L. Note that we can then

have an infinite set of the form {k1,m1, k2,m2, . . . , kn,mn, . . .}. Note that
there is no difference between ki and mi, but we distinguish them since they
are paired together and this will be relevant for our proof.
For each quadruple {ki,mi, kj ,mj} ⊆ {k1,m1, k2,m2, . . . , kn,mn, . . .}, we
can maximally extend L with either the pairs {ki,mi}, {kj ,mj} or with
{ki,mi, kj ,mj} itself.The rest of the pairs can be extended as
{kl,ml} ⊆ {k1,m1, k2,m2, . . . , kn,mn, . . .}. Since there are countably many
quadruples of this form, by a straightforward combinatorial argument we
obtain continuously many maximal extensions. Note that if the families
{{ki,mi, a} : a ∈ N \ {ki,mi}} are disjoint or not does not matter for the
argument of the proof. For the worst case scenario, suppose they all share
the element {0} i.e. 0 = ki for every i ∈ N. Then there will still be infinitely
many m’s which are different from each other. Therefore we will have that for
every triple {0,m1,m2} we can add either {0,m1,m2} or {0,m1}, {0,m2}.
Since we have countably many of these triples, by combinatorics we obtain
continuously many maximal pfi extensions.

The following proposition generalizes what happens in example 2 for n ≥ 3.

Proposition 10 Let n ≥ 3 and {a0, a1, . . . , ak} a fixed k-tuple of elements in
N for some k ≤ n− 2.
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1. If k ≤ n − 3, the family Ln \ {{a0, a1, . . . , ak, xk+1, . . . , xn−1} ∈ Ln : xi ∈
N \ {a1, . . . , ak}} has continuously many maximal pfi extensions.

2. The family Ln\
⋃m

i=1{{ai,0, ai,1, . . . , ai,n−2, b} ∈ Lm : b ∈ N\{ai,0, ai,1, . . . , ai,n−2}}
for finitely many (n − 2)-tuples {ai,0, ai,1, . . . , ai,n−2} in Ln−2 (note that
k = n− 2 ) has finitely many maximal pfi extensions.

The following is a straightforward generalization of Theorem 11.

Theorem 12. Let L ⊆ Ln. In what follows we exhaust all the possible cases for
subfamilies of Ln:

1. If L satisfies the following,
– there are at most finitely many n-clusters G1, . . . ,GN such that (

⋃N
i=1 Gi) ⊆

Ln \ L, and
– for at most finitely many tuples {a0, a1, . . . , an−2} ∈ Ln−2 is that
{{a0, a1, . . . , an−2, x} ∈ Ln : x ∈ N \ {a0, . . . , an−2}} ∩ L = ∅, and

– for all m ≤ n− 3 and tuples {a0, a1, . . . , am} ∈ Lm is that
{{a0, a1, . . . , ak, xm+1, . . . , xn−1} ∈ Ln : x ∈ N\{a0, . . . , an−2}}∩L 6= ∅,

then L has finitely many maximal pfi extensions.
2. If L satisfies one of the following cases:

– there is an infinite sequence of n-clusters {Gi}i∈N such that (
⋃∞

i=1 Gi) ⊆
Ln \ L, or

– for infinitely many tuples {a0, a1, . . . , an−2} ∈ Ln−2 is that
{{a0, a1, . . . , an−2, x} ∈ Ln : x ∈ N \ {a0, . . . , an−2}} ∩ L = ∅, or

– for some m ≤ n − 3 and some tuple {a0, a1, . . . , am} ∈ Lm is that
{{a0, a1, . . . , ak, xm+1, . . . , xn−1} ∈ Ln : x ∈ N\{a0, . . . , an−2}}∩L = ∅,

then L has continuously many maximal pfi extensions.

Therefore we obtain the following result.

Theorem 13. Let n ∈ N. Any subfamily L of the family of all n-tuples Ln has
either finitely many maximal pfi extensions or continuously many.

6 Infinite anti-chains

Contrary to the results of Section 3, cfi identification is more powerful on infinite
anti-chains of infinite languages than pfi identification. This is exposed in the
following result.

Proposition 1. The family of all co-singletons, {N\{i}|i ∈ N}, is an anti-chain
which is cfi but not pfi.

The family of co-singletons is not even nepfi, because no DFTT’s exist.
The case of infinite anti-chains of finite languages is less clear. It is a trivial fact
that canonical families which are anti-chains are always pfi . Families of finite
sets which are not canonical already occur in [2] (a simple example is the family
L = {Li : Li = {i}∪{y : Tiiy}} where T is Kleene’s T -predicate). By following
a diagonalization strategy, we can construct a non-canonical family (but still
indexable) of finite languages which is an anti-chain but is not pfi .
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Theorem 14. There is an indexed anti-chain L of finite languages for which
there is no canonically indexed family {Df(n) : n ∈ ω} such that Df(i) ⊆ Li for
all i ∈ N and Df(i) * Lj for all j 6= i, i.e. this anti-chain is not pfi.

Proof. The strategy of the construction is by diagonalization. We diagonalize
against all r.e. families of canonical finite sets, that is, families of the form {Fe :
e ∈ B} with B r.e. Note that this includes all the families of the form {Ff(n) :
n ∈ ω} with f computable simply by definition of computable languages and r.e.
languages. We will abuse our notation a bit and refer to the canonical families
as {De : e ∈ B} instead. Thus, we construct a uniformly computable family of
finite languages {Li : i ∈ ω} such that the following requirement is satisfied for
each e:

(Re): If {Dn : n ∈We} is an anti-chain

then the following does not hold

Di ⊆ Li for all i ∈ N, and Di * Lj for all j 6= i.

where, as usual, We denotes the e-th r.e. set. The strategy for meeting the
requirement (Re) is as follows: First let A be a strictly increasing countable
sequence of indices of the empty set. The procedure is different in case e ∈ A
or not. If e /∈ A then let Le = {e} until, if ever, we see a canonical code n with
Dn = {e} appear in We. In that stage s we change Le to be {e, a2s} where a2s
is the 2s-th element of A. Moreover, we force La2s to be {a2s, a2s+1} and La2s+1

to be {a2s+1, e} in order to satisfy the anti-chain condition. We also ensure that
Li = {e} only if i = e and that for every stage s′ < s, all La2s′ , La2s′+1

have been
already established for i ≤ a2s. We say that (Re) requires attention at stage s
if the requirement (Re) threatens to be violated because there exists n ∈ We,s

such that Dn = {e}. In this case, we will modify Le in the way described above
such that Dn ⊂ Le and Dn ⊂ La2s+1 , for a2s+1 ∈ A. Thus (Re) is guaranteed
since in later stages we will not change Le again.

Now the explicit construction. Let A = {ak}k∈ω be a strictly increasing
sequence of indices of the empty set. At stage s, we have already determined
whether x ∈ Li for every i < a2s and x < a2s. Let e < a2s be the least number
such that (Re) requires attention. We put e, a2s ∈ Le, a2s, a2s+1 ∈ La2s and
a2s+1, e ∈ La2s+1 and nothing else. In this case we can be sure (Re) will be
satisfied. For all other j < a2s we put only j ∈ Lj . For all s′ < a2s, La2s′ , La2s′+1

have already been established and for all i < a2s with i 6= e we have a2s, a2s+1 /∈
Li. If there is no e < a2s such that (Re) requires attention then we do the
latter for all i < a2s+1. Indeed, we have now determined whether x ∈ Li for all
x, i ≤ a2(s+1). This construction defines a uniformly computable anti-chain of
finite languages, since at every stage s, whether x ∈ Li is effectively determined
for all x, i ≤ a2s+1 and every Le is either {e} or {e, a2s}. Clearly it is an anti-chain
because whenever Le is a singleton, it has an empty intersection with the rest
of the languages. And, whenever Le is a pair, say {e, a2s}, by construction there
are only two other languages La2s , La2s+1 such that Le ∩La2s 6= ∅ 6= Le ∩La2s+1 ,
but these intersections are singletons.
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To verify that our construction satisfies all requirements we follow a case-by-case
procedure:
Case 1: If there is no n ∈ N such that Dn = {e} and n ∈ We, then (Re) will
never require attention. Then Le = {e}, but there exists no n ∈ We such that
Dn = {e}. Thus (1) is satisfied.
Case 2: If there is n ∈We for which (Re) requires attention, (i.e, exists n ∈We

such that Dn = {e}), then there are n, s′ ∈ N such that Dn = {e} and n ∈We,s′ .
Note that there are only finitely many (Ri) with i < e and each time (Ri) receives
attention, it receives attention at most once (precisely for i). It follows that there
is a stage s > s′ at which (Re) receives attention. We then have Le = {e, a2s},
Dn = {e} for some n ∈ We but also e ∈ La2s+1

, a2s ∈ La2s
. This ensures that

(Re) gets satisfied for Le because Dn = {e} ⊆ Le, Dn = {e} ⊆ La2s+1
and

Le 6= La2s+1
. Thus we have that (Re) is satisfied. Note that the only possible

DFTTs for Le are Dn = {e} or Le itself. But by construction Le cannot be
canonically represented, i.e. it cannot be a DFTT (by definition of DFTT).
Therefore L is an anti-chain of finite languages which is not pfi. ut

This particular example happens to be not cfi either. The question remains
open whether there exists such a family which is cfi and not pfi .
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