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Abstract
Algorithmic complexity, also called Kolmogorov complexity and Kolmogorov-Chaitin com-
plexity, motivates the use of techniques to approximate the complexity of objects and
measure similarity between them. This thesis explores the application of these methods to
patterns in textiles. A brief history of the relevance of textile production to computability
is given and it is shown that Turing Machines can be simulated by knitting. Approxima-
tions of algorithmic complexity indicate that there may be a way to distinguish meaningful
information from arbitrarily populated matrices. The Turkmen tribes were nomadic people
with a social structure that allowed woven ornaments to change independently of one an-
other over time. Turkmen textiles present a difficult classification puzzle. The Normalized
Compression Distance is a parameter-free, feature-free metric used to measure similarity
between objects given approximations of their algorithmic complexity. This technique gen-
erates an evolutionary tree consistent with historical information on Turkmen tribes. This
demonstrates how algorithmic complexity can be usefully employed in the areas of material
culture, archeology, and art history.



Acknowledgments
Special thanks are due to Leen Torenvliet for his encouragement, his good humor and
countless insightful comments. At times writing a thesis can make one feel lost, uncertain,
and full of doubt. Despite this, I consistently walked out of my meetings with Leen feeling
a renewed sense of confidence, enthusiasm and optimism. Thanks are also due to Peter van
Emde Boas for reading early drafts, taking the time to meet, and providing useful references.
Having comparatively few years’ experience in the field, it has been exceptionally handy
to have someone with a wealth of knowledge accumulated over decades willing to consider
my ideas. Thanks are also extended to Paul Vitányi, Jos Baeten, Hector Zenil, Antonio
Rueda-Toicen, Jouke Witteveen, Shahrad Jamshidi and Peter Bloem for their time, input
and advice.

Thanks are also due to Dave, Dean, Grzesiek, Jelle, Jonathan, Julia, Krsto, Kyah, Marlou,
Max, Mina, Morwenna, Mrinalini, Noor, Rachael, Robert, Robin, Saúl, and Silvan. Also
special thanks to Nachiket for sharing my enthusiasm for Winkel 43.

I am grateful to Everett Piper, Chetney Nelsen, Katy Jamshidi and Valentin Vogelmann
for their comments on the penultimate draft.

Finally I would like to extend my gratitude and thanks to my partner for emotional support,
spectacular cooking, and for moving to Europe to allow me to pursue this opportunity. I
feel as though I have an unfair advantage over my fellow students just by having you in my
life.



Contents

1 Introduction 3

2 The Mysteries of the Turkmen and their Textiles 6
2.1 History and Culture . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Controversy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Phylogenetic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Knitting and Computability 16
3.1 Complexity in Textile Patterns . . . . . . . . . . . . . . . . . . . . . 16
3.2 Simulating a Turing Machine by Knitting . . . . . . . . . . . . . . . . 17

4 Kolmogorov Complexity 22
4.1 Compression Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Coding Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Sophistication and Enduring Patterns 36
5.1 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Pseudo-Random Designs . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Algorithmic Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Measuring Similarity 42
6.1 Conditional Kolmogorov Complexity and Information Distance . . . . 43
6.2 Normalized Information Distance . . . . . . . . . . . . . . . . . . . . 43
6.3 Normalized Compression Distance . . . . . . . . . . . . . . . . . . . . 44
6.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.5 NCD with Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.6 Algorithmic Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1



7 Algorithmic Complexity and the Turkmen Textiles 48
7.1 Linearization of Gols . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8 Conclusion 56

Bibliography 56

2



1 | Introduction

What makes designs appealing? Given an n × n grid in which each cell can take
on one of two colors, there are 2n×n different possible ways of coloring in the grid.
When observing old patterns in textiles, wood carvings, pottery and stone reliefs we
do not sense a uniform distribution over all possible patterns: we see a small subset,
usually consisting of pictorial representations of things encountered in real life, such
as plants and animals, or abstract designs. The latter sort is the focus of this thesis.

Figure 1.1: Left: Detail from a Berber cloak, Atlas Mountains in Morocco, British
Museum. Right: Detail from Poqomam sut (cloth used for both ceremonial and
daily activities), Palín, Guatemala, Tropenmuseum.

Around the world one finds patterns that are distinct but share some features.
Compare the pictures in Figure 1.1, one fromMorocco and the other from Guatemala.

3



Although the patterns are different, similar features are present. Both patterns
contain triangles, symmetry, and alternating color work. Both pieces were also woven.
When designing and producing patterns certain features like symmetry and repetition
are preferred and evidently have been for a long time. They are also easily expressed
by short programs, making them compressible.

Clearly, there is a degree of similarity in the patterns cultures prefer to reproduce.
One example is that of meandering patterns. Liu and Toussaint [38] examined Roman
mosaic patterns found in a manor in England and pointed out similarities between
those and patterns found elsewhere in the world. These patterns can all be generated
by similar algorithms. One such algorithm involves meandering around evenly spaced
points. This will be discussed in Chapter 3 and an example will be given.

Why is it that people produce these patterns specifically? Perhaps there are
shapes that the eye likes to see and the mind likes to create, like the ear enjoying
syncopation in music. What might the qualities of these patterns be? Is there a
consistent degree of complexity to them? Researchers such as Koppel and Atlan
[35], Friedenberg and Liby [23], Gauvrit, Soler-Toscano, and Zenil [24], and Gauvrit,
Soler-Toscano, and Guida [25] have asked similar questions before. Perhaps there is
a range of complexity that is appealing, a sweet spot between blank space and white
noise-type chaos.

Figure 1.2: Simple to complex patterns. The far right pattern was generated using
Excel’s built-in pseudo-random number generator.

In order to examine complexity in textiles in a more precise way, there are some
concepts with which one needs to be familiar. First the history of the Turkmen tribes
and their textiles will be discussed. Then knitting will be used as an example of how
textile production involves language and computability. Information about algorith-
mic complexity, its approximations, and arguments for and against two methods of
approximating an object’s complexity will be given. Next, we will investigate the
matter of whether or not there might an appealing range of complexity using de-
signs from old textiles. Following this, a metric called the Normalized Compression
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Distance will be presented along with some of its applications. A recently proposed
alternative will also be introduced. Finally the methodology and results of an alter-
native analysis of Turkmen genealogy based on algorithmic complexity will be given
and discussed in the greater context of our understanding of Turkmen history thus
far.
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2 | The Mysteries of the Turkmen
and their Textiles

In carpet ornaments, in combinations of colors, that have come to us over
the threshold of centuries and millennia, there resound different melodic
echoes of artistic creativity of the past that have stood firm against the
pressure of inexorable all-destroying time. -N. Burdukov, 1904

2.1 History and Culture

Oghuz, the mythical great grandson of Japhet, to whom Noah had given the East,
had six sons. Each of them in turn had four sons. Each of these 24 descendants of
Oghuz was given a brand sign, the totem of a bird of prey, and a cut of meat to
receive at feasts [3]. The sons were the heads of their respective tribes, later known
as the Turkmen tribes. The tribes respected their totem birds and would not kill
or hunt them. The cut of meat a tribe was assigned was important: the best cuts
of meat were awarded to the highest ranked tribes for feasts and a social ordering
was implied. Around the early 10th century, the Turkic tribes spread out from the
Aral Steppe (today the Kazakh Steppe) and distributed themselves over modern-day
Uzbekistan, Turkmenistan, Iran, Afghanistan, Iraq, Syria, Turkey, and reached as
far west as the Balkans and as far south as India. The Uighurs of Tarim Basin, in
western China, and the Cossacks of Russia share these origins along with many other
groups.

Turkmen were pastoral nomads, meaning they inhabited different areas depending
on the time of year. Communities within the tribe would be split: some would
look after livestock and others would grow crops. Some tribesmen stayed put in
areas for extended periods of time. Those tribesmen that grew crops would plant
in early spring, head north to escape the heat and dangerous pests for the hottest
months of the year, and return to harvest their crops at the end of the summer.
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Tribesmen looking after livestock would travel to find water and grazing land for
their sheep, goats, camels, and other animals. Tribesmen lived in hardy tents called
yurts that would be rolled up for travel, although more settled people might have
had permanent sheds and fences surrounding their yurts for keeping animals. They
did not generally have dressers or cupboards and instead stored belongings in bags
hanging from lattice-like structures on the walls of the yurt [46, 3, 54, 43].

The most important written historical documents attesting to the movements
of the tribes and their genealogy are from the 11th, 14th, and 17th centuries [44].
Mahmud Kashgari recorded the names and brand signs of 22 tribes in Arabic during
the 11th century. Two more tribes had already separated and formed the Khalaj
people, some of whom traveled to what is today India. More information about the
Turkmen comes from the record of Rashid al-Din in the 14th century. He recorded
the names of 24 tribes, their brand signs, totem birds, and cuts of meat. When
comparing the names and brand signs from Mahmud Kashgari’s records and those
of Rashid al-Din, some similarities are observable but time shows itself through the
many changes in the list. A more extensive account is given by Abul Ghazi Bahadur,
the Khan of Khiva (a city that lies today in Uzbekistan). He declared war on the
Turkmen and killed many. In the years immediately preceding his death he wrote
a genealogy of the Turkic peoples using Rashid al-Din’s account and other written
sources available at the time, and drawing from Turkic oral traditions, see Tehrani
and Collard [54], Azadi [3]. From 1525 to 1535, the Salor, Saryk, Yomut, Ersari,
and Tekke tribes lived in the Khorassan area. One scholar reported a relationship
between the greater Salor tribe and a group of other tribes, making a Salor/Outer
Salor distinction. More probably it was the case that the places the other tribes
inhabited were referenced with respect to where the larger Salor tribe was because
the Salor tribe was so important at the time according to Azadi [3]. The Tekke and
Saryk tribes were recorded as being related to the Salor Toi-Tumas tribe. The Ersari
tribe was separate from these but almost as large as the Salor. This is consistent
with records of tribute: one fortieth of each tribe’s sheep were paid and records from
the 16th and 17th centuries reflect payments of 16,000 sheep each from the Salor and
Ersari, but the Tekke, Saryk, and Yomut only gave 8,000 each.

The tribes were in a constant state of warfare and conducted raids on sedentary
communities to obtain livestock and other goods, sometimes people. Not only did
the tribes move with the seasons, they travelled far in search of pasture, water, and
other resources. Multiple tribes might occupy a particular stretch of territory within
a few years [3]. Because of this little reliable historical information is available about
the movements of the tribes and few traces are left. The Turkmen remained chiefly
nomadic until their suppression by Russia in the late 19th century. After this, tribes
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became mostly sedentary.
Weaving was a well-established tradition among Turkmen and it took years to

become a decent weaver. The rugs covering the floors of the yurts, bags storing food
and utensils, and decorative items were all woven on portable looms. The sheep were
sheared in spring and autumn, supplying large quantities of wool. Different types of
wool from different seasons were required for the warp, weft, and pile. Each type of
fiber came from different parts of animals of different ages. Dyes were made from
plants and insects gathered from the Turkmen’s surroundings, see Spooner et al. [52]
for more information. After settling, some tribes also began to use synthetic dyes
in their wool. The wool would be hand spun with portable spindles. Especially
elaborate decorations would be constructed for wedding processions, when a bride
would be brought to her new home on a camel. The textiles were hand knotted
and tribes tied knots in symmetric or asymmetric ways as discussed in Tehrani and
Collard [54]. Density could be upwards of 3,000 knots per square decimeter. The
skill of the weaver determined how many knots could be tied in a day. According to
William Irons, an anthropologist, “one woman could weave roughly one square foot
in a day of heavy weaving, about twelve hours at the loom." Rugs could sometimes
take three or four women months to complete according to Spooner et al. [52].

Weaving was strictly done by women. Being a skilled weaver gave the craftswoman
standing in her tribe [52]. Skills and designs were passed from mother to daughter
and there was a great deal of time to weave, especially in winter. Women did not
have contact with women from other tribes and even marriage took place within a
single tribe. Endogamy is estimated to account for 90% of marriages in one particular
tribe observed by Irons [32]. A genetic study indicated that the genes of people from
separate tribes differed significantly from one another, corroborating this estimation
(see Turaeva et al. [58]).

Because patterns were not passed on in written form or with diagrams, any small
mutations that occurred in a pattern would be independent of changes that occurred
in patterns elsewhere. This gave rise to a unique set of designs reflected in rugs, bags,
and decorative ornaments. When entire tribes split, one part setting off in another
direction, the women carried the patterns with them. Because Turkic people share
a common origin, this process occurred repeatedly over a long period of time. One
of the initial recorded occurrences was the splitting off of two tribes recorded by
Mahmud Kashgari in the 11th century when two tribes left, forming the Khalaj
people.

Figure 2.1 shows a map of Turkic languages and the approximate locations of the
communities that speak them, illustrating the eventual widespread distribution of
the Turkmen tribes, courtesy of the World Atlas of Language Structures from Dryer
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Figure 2.1: A map showing areas where Turkic languages are spoken today, see Dryer
and Haspelmath [20].

and Haspelmath [20]. Language is used as a proxy for phylogenesis by Guglielmino,
Viganotti, Hewlett, and Cavalli-Sforza [27], an analysis of cultural traits of African
societies. This gives credence to the suggestion that culture follows language in this
case.

Turkmen women use a variety of beautiful geometric designs. Some of these
are believed to have originated from the totem birds of the original tribes. Other
ornaments clearly depict horses (see Azadi [3]). One octagonal design called a gol
is hypothesized by some to have a special tribal significance as an emblem. The
presence or absence of such ornaments is used to help classify textiles and determine
their origin. Other features used to do this are how the knots are tied (symmetrically
or asymmetrically), the type of dye used, and other structural features as shown in
Tehrani and Collard [54].

Turkic peoples were self-reliant before the Russian suppression that took place
during the late 18th century. After becoming sedentary, tribes joined markets and
began participating more strongly in established economies. European and American
collectors expressed a preference for Salor designs [54, 43, 22] and the purpose of rug
weaving likely shifted towards economic production from domestic production.
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2.2 Controversy

Mystery and disagreement surrounds the ornaments, their origins, and how they are
used. It could be the case that all symbols on the carpets are original, but this would
be strange - a group of people that happen to be genealogically related yet manage
to independently conceive of very similar ornaments, many of which are octagonal.
This seems far-fetched. It is more likely that the same ornaments were used by the
original tribes and that these ornaments travelled with the women who wove them,
creating a line of artifacts witnessing matrilineal descent in a patrilineal society.

The origins of the gol are disputed. Below are some of the main theories from
the literature.

• Moshkova [43] theorizes that there are living gols and dead gols and draws
a distinction between a gul and a gol, the former meaning flower and the
latter signifying a tribal ornament. Living gols are those actively used as tribal
symbols and occur as main motifs on the grandest rugs. Dead gols would
be those that belonged to tribes that are no longer established and, rather
than occurring as a main motif of a large rug, are relegated to smaller, less
conspicuous pieces like comb carriers or bags. See also Azadi [3].

• Mackie and Thompson [39] argued that one type of ornament on a particular
rug provided a missing link between tribal gols and palmettes in a Persian
design.

• Eiland Jr [22] put forth the idea that the gol has no tribal significance what-
soever and is descended from patterns in silks traded between China and the
West since approximately 300 AD.

• Baker [4] points out that the possibility of the design originating in a court and
filtering down to the tribes through urban carpet production is not explored.

Just because the above viewpoints are juxtaposed does not mean they are equally
likely. Like a well-read but poorly spoken academic publicly debating a charismatic
but ill-informed layman, placing these theories side by side gives too much weight to
the less likely among them.

Moshkova [43] claims, on one hand, that the women of a conquered tribe must give
up their own gol, begin producing the gols of the dominant tribe, and destroy textiles
containing the old gol. On the other hand, she also says that tribes conquering other
tribes might actually adopt the gol of a dominated tribe in some circumstances.
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Original Gol

a b

ataq bv

bvg bvraqyaqp

Figure 2.2: Possible evolution of tribal gols from an original. We may only have
access to a few nodes on the tree, such as aq and bvg. The tree is not necessarily
binary; one gol might have more than two descendants depending on the splitting of
the tribes.

Rugs, a long-traded commodity, would likely be too valuable for a conquering tribe
to destroy. Furthermore the two claims concerning a conquering tribe’s gol seem
inconsistent. There is no observational or other evidence given in her paper to
support these broad claims, and although it is a translation surely no conscientious
translator would omit such crucial information.

The comment of Baker [4] that the ornaments may have originated with a court
and then spread through urban production does not appear to be supported by
any facts and seems to be a critique of the eagerness with which rug scholars and
enthusiasts, so-called ‘Turkomaniacs’, jump to broad conclusions with little evidence.
She references a late 20th century anthropological field work account when claiming
tribes borrowed one another’s patterns. During the time period in question (10th

century to mid-19th century), tribes were often at war with one another and women
did not marry into other tribes. Because the tribes did have contact with sedentary
societies, this hypothesis cannot be ruled out.

Similar ornaments appear on textiles over a wide geographic region. Remaining
agnostic as to the origin of these symbols, let us simply suppose that there is one
that Turkic peoples came into contact with early on. Assuming the women of the
Turkmen tribes began long ago with some sort of octagonal ornament, mutations
would have occurred and resulted in different ornaments of the same general shape.
The process would resemble a tree that branches at points in time when tribes or
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parts of tribes separated. As discussed above, this occurrence in Turkmen tribes
is well-documented. Over time a sequence of designs has emerged. Each octagonal
ornament is a node on a larger tree where the original ornament sits at the root,
see Figure 2.2. Through generations of tribes separating and moving around, unique
ornaments were born and changed again, yielding a set of diversely ornamented
textiles. It is not safe to assume that we have all of the nodes on the tree. In fact,
we cannot be sure how large or diverse the tree has become. What we do have is a
small set of nodes, the ornaments used on the rugs, chuvals, and other textiles that
are in museums or collections shown publicly represented in Figure 2.2 by shaded
nodes.

Each distinct ornament is hypothesized to correspond to a tribe: it seems highly
unlikely that women of distinct tribes, separated by both geography and social segre-
gation, would independently develop the same ornaments. Ornaments should follow
matrilineal descent, and because there was not intermarriage between the tribes the
ornaments follow the tribes.

But which ornaments correspond to which tribes? Due to the lack of historical
records documenting the movements of tribes and the absence of dwellings or other
remnants of tribal inhabitation we do not know which tribes went where when (and
probably never will).

The ornaments of some tribes are discussed in the literature, for example Thomp-
son’s identification of the ‘S-group’ and subsequent identification of the textiles as
products of the Salor tribe. The gols of the Tekke, Ersari, and Yomut are also
established in the literature.

In information theory, one considers problems involving signals transmitted over
noisy channels. The repeated transmission of ornaments from mother to daughter
over generations is analogous but rather than a noisy channel mutations are intro-
duced through some combination of cognitive bias, subjective preference, and the
general propensity of people to doodle.

Rug attribution is complicated by these and other reasons. It is not uncommon
for experts to disagree about the origins of a carpet. For example, Moshkova and
Eiland disagree about the provenance of one particular piece shown in Figure 2.3:
Moshkova attributes the gol to the Yomut but Eiland believes it to be from the
Tekke, see the remarks in the translation of Moshkova [43].

There are issues further complicating accurate rug attribution. After their sup-
pression by Russia, the weaving practices of tribes likely changed. Now liable
for state taxes the tribes were required to participate more strongly in the estab-
lished economy. Westerners preferred Salor designs, giving an economic incentive
for tribeswomen to use certain ornaments over others. If tribes are identified on the
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Figure 2.3: A chuval (storage bag) identified by Moshkova as Yomut and Eiland as
Tekke.

basis of the ornaments they use, this muddies the water for anyone trying to infer
a textile’s origin. A rug woven by a rare or obscure tribe makes it more desired by
collectors, inflating the price. As a result the consumer side of the economy also
complicates the accuracy of the process by incentivizing inventive rug attribution.
As discussed by Baker [4] and David and Saunders [18], Westerners romanticize the
nomadic lives of Turkmen and value authenticity, a nebulous concept that makes
pieces woven in yurts by nomads worth more than finely crafted urban textiles. The
more ‘tribal-looking’ the piece, the more it might be worth.

Finally, the Turkic language has been written down using different alphabets:
first in modified Arabic, then in Russian Cyrillic, and then the Latin alphabet [46].
Multiple transliterations of the same word generate confusion: Moshkova’s distinc-
tion between ‘gul’ and ‘gol’ is seen as ridiculous by some other scholars and the
literature is rife with multiple spellings of the same tribes’ names.

As a result, Turkmen textiles present quite a classification puzzle.
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2.3 Phylogenetic Analysis

Creating evolutionary trees from information about data is common in biology, but
there is disagreement about the use of biological phylogenetic analysis as a tool of
inference in the field of material culture. These techniques perform best when tra-
ditional transmission is strong and cultural exchange is weaker according to Tëmkin
and Eldredge [55], allowing each culture to distinguish itself in a marked way. As
discussed above, endogamy is estimated to account for over 90% of marriages in a
well-studied Turkmen tribe, the Yomut [33]: women from other tribes sometimes
married into the Yomut tribe, but Yomut women did not marry outside their tribe.
There is reason to believe that this was the case for other tribes as well: in a ge-
netic study Turaeva, Ginter, Revazov, Garkavtseva, and Sotnikova [58] found that
the main tribes were highly isolated and the differences between gene frequencies in
tribes were significant. Given that weaving was an exclusively female activity, the
patterns of each tribe would not have been widely dispersed. Also, patterns and
technologies were passed on from mother to daughter without written instructions
or diagrams. This allowed each tribe to distinguish itself without interference from
others.

The nomadic lifestyle and common ancestry of the tribes as well as their social
traditions make their woven patterns the ideal test case for phylogenetic analysis.
Phylogenetic analysis in textiles has been conducted with respect to specific features
of textiles, including physical features like type of dye and orientation of knots, and
design features like what characteristics the gol has [54].

Cultures evolve over time. But what is the nature of this evolution? Given two
cultures A and B, is a wholly new culture C formed over time through some mech-
anism, or do cultures A and B morph into C through contact with one another?
Ethnogenesis occurs when cultural evolution takes place through the exchange of
ideas and practice. Phylogenesis occurs when cultural evolution occurs as the popu-
lation divides. Tehrani and Collard [54] empirically investigated whether ethnogen-
esis or phylogenesis was taking place through a case study. Ethnogenesis is usually
represented by a reticulated graph resembling a lattice. Phylogenesis, on the other
hand, is represented by ‘family trees’, also known as dendrograms. Because a bifur-
cating tree model is simpler than a lattice, it was used as the null model in this paper
to assess whether or not phylogenesis or ethnogenesis was occurring in line with the
principle of parsimony.

60 woven artifacts from museums in the United Kingdom, Russia, Germany, and
the United States were used in the study. The analysis of the textiles took into
account structural features, like whether knots are tied symmetrically or asymmet-
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rically, as well as whether the wool was dyed with natural or synthetic dyes. The
presence or absence of decorative ornaments was also noted. A permutation tail
probability test determined that there was a phylogenetic signal by randomly per-
muting a subset of the data and comparing the length of the most parsimonious tree
found in the subset to the most parsimonious tree found for the unpermuted data.
A second analysis assessed how well the tree fit the data by examining how many
additional assumptions were required to construct the tree. The results suggested
that the Ersari and Saryk tribes are more closely related to one another than to other
tribes and that the Ersari, Salor, and Saryk are more closely related to one another
than to the Tekke, see Tehrani and Collard [54] for more specific information. These
results were interpreted as suggesting that phylogenesis was the dominant cultural
evolutionary process. After the Turkmen’s defeat by Tsarist Russia, ethnogenesis
contributed to change in Tekke weavings: they began to have Salor designs. As
noted above Salor textiles were the most-sought after Turkmen textiles in the West,
so there may have been strong economic reasons for Tekke weavers to emulate Salor
designs.

The work of Tehrani and Collard [54] demonstrated how phylogenetic analysis
could be conducted using these textiles, but the features used were not design-specific
and included structural features. Later on, we will build our own evolutionary tree
of Turkmen tribes using different features.

15



3 | Knitting and Computability

Computing has some of its origins in textile production. Joseph-Marie Jacquard
invented a loom that relied on punched cards to lift specific harnesses, each of which
held threads. The lifting of these threads allowed a shuttle to pass through a specific
path and over iterations of the process create complex designs. The loom served
as inspiration for Charles Babbage’s Analytical Engine, the theoretical precursor of
the modern computer, and Ada Byron is regarded as the first programmer due to an
algorithm written for the Analytical Engine to use to compute the Bernoulli numbers
in 1843. More details can be found in Park and Jayaraman [45] and Toole [57].

Belcastro [7] showed how knitting Klein bottles and other mathematical objects
can yield a better understanding of topological spaces and offered a proof of how
every topological space can be knit in Belcastro [6]. Patterns used to create textiles
using different methods, like knitting, crocheting, and tatting can help us to further
our understanding and sharpen our intuitions about what language can express in
terms of computability.

3.1 Complexity in Textile Patterns

The complexity of producing an object can vary across textile production methods.
For example, it might be trivially easy to produce the Sierpinski Triangle in tatting
and there may be a straightforward way to translate this pattern into one for crochet-
ing. There is also a schema for translating crochet patterns into knitting patterns
(and back) but we cannot assume this will be as clear because of the fundamental
differences between tatting and crocheting, on one hand, and knitting on the other.

This leads us to another question: when are two patterns the same? Suppose
we define a stitchomorphism to be a one-to-one function f of technique T to T′ that
preserves the stitches, compound stitches, and turns. In theory, the rote translation
of one technique’s pattern to another is possible, but in practice it could be the
case that adding an extra stitch, working one extra row, or otherwise permuting
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the pattern will yield a more accurate rendering of the shape being created than a
stitchomorphism.

3.2 Simulating a Turing Machine by Knitting

Each type of textile has its own language. The language of knitting is a finite alphabet
specified in each pattern, where some stitches are composed of other stitches. Two
fundamentally different atomic stitches are knit stitches, usually k in patterns, purl
stitches, represented p. There are also yarn overs, yo and others. In knitting, complex
patterns can easily be produced by a short program, see Figure 3.1. Many knitting
patterns signify that a sequence is to be repeated by placing it between asterisks.

Figure 3.1: Program: Row 1: *k*, Row 2:*p4, yo*, Row 3: *drop yo, yo, sl1, k3,
psso*, Row 4: *p*. From Alexis Layton, Ravelry, Waffle Blanket.

Analogies were given in a Computational Model of Knitting , see [1], and Howard
[31] pointed out that the elementary cellular automaton Rule 110 is Turing complete
(as proven by Cook [17]) and can be knit, thus knitting can be seen as Turing
complete. To take this a step further, we will discuss the simulation of a Turing
machine by knitting.

Following Hopcroft et al. [30], a Turing Machine is composed of a finite control, a
tape divided into cells, a finite input written on the tape in the finite input alphabet,
and those spaces that surround the finite input contain blanks. The tape extends as
far as necessary in either direction. A tape head is scanning one of the tape cells.
The tape head starts by scanning the leftmost input cell on the tape, then moves,
possibly changing states, writing a tape symbol on the cell scanned replacing the
current symbol, and moving one cell to the left or right.

In order to demonstrate that knitting can simulate a Turing Machine we define
the counterparts of the components of a Turing Machine for a Stitch Machine. Two
needles extend arbitrarily far in either direction with cast on, knit, or purled stitches.
A knit stitch is one where the yarn is brought forwards through the previous stitch,
creating a v-shape. A purl stitch is one where the yarn is brought backwards through
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Figure 3.2: The knit head of a simulated Turing machine. The first stitch on the
left needle is the one being scanned. All stitches on the right needle are cast on,
equivalent to the blanks on a Turing tape. The input stitches are placed on the left
needle and the knit head begins at the rightmost stitch of the input.

the previous stitch, creating a small bump. A yarn over loops the yarn over the
needle.

The points of these two needles serve as our tape head, called a knit head, see
Figure 3.2. The stitches are the counterpart of the tape. The input stitches are
a finite number of knit or purled stitches and cast on stitches surround the input
stitches (the counterparts of blanks on Turing tape) and extend arbitrarily far in
either direction. We might run out of yarn with which to cast on stitches on the left
side or the right side. If this happens, the human operator must locate another skein
and cast on more stitches. Pieces of wire of the proper gauge can be used to extend
the knitting needles if they are not long enough. The pieces of wire can be used as
storage for the tape and wound around spools if necessary. Let us assume that there
is as much yarn and needlespace as needed.

The stitches located closest to the points of the needles are to the immediate left
and right of the knit head and the further away the stitches are from the points of
the needles the further they are from the knit head. The knit head scans the stitch
immediately to the left of the gap between the stitches, the first stitch on the left
needle. The knit head starts by scanning the rightmost input stitch then moves,
possibly changing states, and knitting, purling, or yarning over the stitch, ensuring
it is the first stitch occurring on the left needle (slipping it back from the right after
knitting or purling it, if necessary) before moving one stitch to the left or right. The
knit head moves one stitch to the right by slipping the first stitch on the right needle
to the left needle and moves one stitch to the left by slipping the first stitch on the
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left needle to the right needle. Now that we have described the basic operations we
move on to the translation of the description of a Turing Machine.

A Turing Machine is described by a M = (Q,Σ,Γ, δ, q0, B, F ), where Q is a finite
set of states of the finite control, Σ is the finite set of input symbols, Γ is the set
of complete tape symbols, δ is the transition function, q0 is the start state, B is the
blank, and F is the set of accepting states where the machine halts. Σ is a subset
of Γ and F is a subset of Q. δ has arguments q and X, where q is a state and X a
tape symbol. δ(q,X), if defined, is a triple (p, Y,DM) where p is the next state, Y is
the tape symbol to be written, and DM is the direction the tape head moves on the
tape, either left (L) or right (R). a tuple S = (R,Θ,Λ, π, r0, C, A) to which we can
map M .

We map each tuple M to S = (R,Θ,Λ, π, r0, Y O,A), where R is a set of states
specifying the transition function π for each stitch in Λ, Θ is finite set of input
stitches, Λ is the finite set of complete stitch symbols, π has arguments r and Z
where r is a state and Z is an input stitch and π(r, Z), if defined, is a triple (t,W,DS)
where t is the next state, W is the stitch to be written, and DS is the direction to
move in, left (L) or right (R).

By convention let {0, 1, B} correspond to {K,P, Y O} where K is knit, P is purl,
and Y O is yarn over. When yarning over a stitch, the stitch being scanned is pulled
off of the end of the left needle and a loop is put in its place.
Q to R: For each element of Q create a corresponding unique element of R as qi = ri.
Σ to Θ: The input symbols {0, 1} are mapped to {K,P} where 0=K and 1=P .
Γ to Λ: The tape symbols {0, 1, B} are mapped to {K,P, Y O} where B = Y O.
δ to π: Define δ(q,X) = (p, Y,DM) as π(r, Z) = (t,W,DS) where DS is the inverse
of DM (L goes to R and L goes to R), W is the stitch to be made (defined by Γ to
Λ above), and t is the next state (defined by Q to R above).
q0 to r0: q0 = r0, see Q to R above.
B to Y O: B = Y O as defined by Γ to Λ above.
F to A: For each qi in F , let A contain the corresponding ri.

To illustrate this simulation, consider the proper subtraction function from Hopcroft
et al. [30]. Proper subtraction does not give negative numbers as output or accept
them as input, so if two numbers are equal or the larger of the two numbers is being
subtracted, the result will be 0 and otherwise it will be the natural number-valued
difference between two non-negative integers. Let the machine MPS take as input
two numbers, x and y, and let x− y be the number we want to compute. MPS takes
as input a tape with x 0’s and y 10’s. If we wanted to compute 4-2, for example, the
input tape would read 00001010 on MPS. Table 3.1 shows the proper subtraction
function for MPS and Table 3.2 shows the translation of the function to a Stitch
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Machine for SPS. Once the computation is finished, the result of the function is
printed on the tape of MPS: if x > y, then x − y 0’s are on the tape. If x ≤ y,
then the tape is completely blank. For SPS, if x > y, then x − y K stitches are on
the needle. If x ≤ y, then the needles only contain Y O stitches. See Figure 3.3 and
Figure 3.4 for examples of r0 and r6 for SPS, respectively.

Table 3.1: Turing Machine MPS

State Symbol
0 1 B

q0 (q1,B,R) (q5,B,R) -
q1 (q1,0,R) (q2,1,R) -
q2 (q3,1,L) (q2,1,R) (q4,B,L)
q3 (q3,O,L) (q3,1,L) (q0,B,R)
q4 (q4,O,L) (q4,B,L) (q6,0,R)
q5 (q5,B,R) (q5,B,R) (q6,B,R)
q6 - - -

Table 3.2: Stitch Machine SPS

State Stitch
K P YO

r0 (r1,YO,R) (r5,YO,R) -
r1 (r1,K,R) (r2,P,R) -
r2 (r3,P,L) (r2,P,R) (r4,YO,L)
r3 (r3,K,L) (r3,P,L) (r0,YO,R)
r4 (r4,K,L) (r4,YO,L) (r6,K,R)
r5 (r5,YO,R) (r5,YO,R) (r6,YO,R)
r6 - - -
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Figure 3.3: Tape for SPS. The knitter can read the input stitches KKKKPKPK
from right to left on the left needle, allowing the knitter to compute 4-2.

Figure 3.4: The output of the computation of 4-2 by SPS. The two K stitches are
on the right needle. The output need not be aesthetically pleasing.
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4 | Kolmogorov Complexity

Imagine hearing a carpenter hammering in the distance. Generally one notes a
rhythm, an evenly spaced set of strikes, perhaps with occasional pauses in between.
It is difficult to imagine a person doling out uneven strikes with a hammer, like a
child playing Whack-A-Mole.

Regular sequences are easily produced by short programs. While hearing ham-
mering in the distance, one could adjust a metronome to produce ticks in concert
with the strikes of the hammer. If the strikes of the hammer were irregular it would
not be possible to do so. This may have to do with the human faculty responsible
for beat induction, be it a domain-specific or domain-general one (see Honing [29]
for more information). The human ability to compress information is what allows us
to learn.

A string’s Kolmogorov complexity K(x)1 is the length of the shortest program
that produces it. If a string is highly regular, as in the case of construction ham-
mering, we can write a short program to produce it. If a string has little regularity,
like the hammer strikes generated by a child playing Whack-A-Mole, then a longer
program will be needed in order to produce it. Consider the following examples of
strings with low Kolmogorov complexity.

010101010101010101010101010101010101010101010101

Rather than reproducing the whole string bit by bit, we could leverage the re-
dundancy in the string to write a short program that says print 01 24 times, or
for the following sequence, for n in N, print 1, print 0 n times.

10100100010000100000100000010000000100000000...
1Kolmogorov complexity is often written C(x) in the literature following Li and Vitányi [37] and

K(x) is used for prefix-free Kolmogorov complexity, but in this paper we reserve C(x) to refer to
the compressed length of x.
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The problem of assigning probabilities in accordance with the principle of parsi-
mony has intrigued researchers for a long time. A helpful summary of developments
in scientific thought is given in Kirchherr, Li, and Vitányi [34]. Epicurus, a Greek
philosopher who was alive around 300 B.C., stated ‘There are some phenomena to
which it is not enough to assign one cause. We must enumerate several, though in
fact there is only one.’ Occam’s Razor instructs us to choose the ‘simplest’ hypoth-
esis from among many, though the word simple can be difficult to pin down. Bayes’
Rule allows us to derive the likelihood of a hypothesis being correct given its prior
probability and its probability given some observed data. But how do we assign prior
probabilities to hypotheses in the first place?

In 1960 R. J. Solomonoff published a paper on inductive inference, see [51]. The
basic idea is to assign probabilities to strings based on the length of the shortest
programs that produce them (with no input). The same ideas were developed inde-
pendently by A.N. Kolmogorov and then G.J. Chaitin a few years later, see Li and
Vitányi [37], the classical textbook, for detailed information on the original papers
and the development of the field. Algorithmic complexity is also called Kolmogorov
complexity and Kolmogorov-Chaitin complexity. The more complex a string is, the
longer the shortest program that produces it will be. The strings with the highest
Kolmogorov complexity are called Kolmogorov random strings. There is no shorter
way to produce these strings than to simply list each bit of them. As a result the
shortest program that produces one of these strings is the length of the string itself
plus some constant, like the number 5 to account for the inclusion of the characters
in the word print. Because there is no shorter way to produce these strings than to
list each bit of them individually, they are incompressible.

There are several proofs of the existence of incompressible strings (see Li and
Vitányi [37]). One of these goes as follows:

There are 2n binary strings of length n. There are 2n − 1 binary programs
shorter than n. Each program only produces at most one string. Therefore at
least one string is incompressible.

Some strings can be produced with a shorter program in one language than
another. The Invariance Theorem states that given any descriptive or programming
language and a program that produces a string, the language that can produce the
string with the shortest program is only off by some constant. The constant does
not even depend on the string, only on the programming language. The proof shows
that a translation from one language to another can be expressed by some constant
number of characters (Li and Vitányi [37]). This gives a somewhat unsatisfying
upper bound.
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The notion of Kolmogorov complexity is useful for proving theorems using the
Incompressibility Method. The proofs involve selecting a random object, noting that
the object is incompressible, showing that the object has some property, and then
showing that if it does not have the property then the object is compressible, contra-
dicting the main premise of the proof. Kolmogorov complexity is uncomputable. One
proof of this claim involves a reduction of the Halting problem to computing Kol-
mogorov complexity. There are many other applications of Kolmogorov complexity,
for more information see Li and Vitányi [37].

Figure 4.1: Sketches of Tchkokwe sona drawings from Angola (left) and Tamil kolam
drawings from southern India (right). [26, 38]

Kolmogorov complexity has applications in the realm of two- and three-dimensional
patterns as well. For a fascinating take on origami-folding algorithms, see Duong
[21]. Liu and Toussaint [38] examined Roman mosaic patterns found in England and
pointed out similarities between those and patterns found elsewhere in the world, like
the Tchkokwe sona drawings from Angola and kolam art from Tamil, in southern
India, shown in Figure 4.1. These patterns are constructed by similar algorithms
where lines are drawn between regularly spaced points. An algorithm that might be
used to construct a meander pattern is described by Gerdes [26] and given in Liu
and Toussaint [38]:

‘First construct a square that encloses all the dots such that the distance be-
tween the square and the dots is half the distance between two horizontally
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adjacent dots. Now imagine that this square is either a billiard table, or made
up of mirrors. To construct the...curve start a billiard ball (or beam of light in
case of mirrors) rolling from a point directly on the square and above the upper
leftmost dot at an angle of 45 degrees. Then just follow the path of the ball
until it returns to the starting point, remembering that (like light) whenever
the ball hits an edge of the square it bounces (or reflects) at an angle of 45
degrees, thus turning by an angle of 90 degrees. To trace out the remaining
curves, repeat this procedure starting on all the points directly above the dots
contained in the top row of dots.’

The resulting pattern can be transformed easily into the patterns found in Roman
mosaics if one changes the diagonal lines into a combination of vertical and horizontal
ones, see Figure 4.2, and makes twists at the intersections. It may be the case that
people producing these drawings in various parts of the world are not thinking of
billiard tables, mirrors, or beams of light when constructing them, but the algorithms
are variations of one another and the ideas are the same.

Figure 4.2: How to transform a meander pattern into a design found in Roman
mosaics, as demonstrated by Liu and Toussaint [38].

The algorithms that produce these meander patterns are similar, thus we would
like a notion of complexity that captures this. Kolmogorov complexity is precisely
such a notion. Two-dimensional patterns can also be captured in a one-dimensional
string by linearizing them, but the pattern may be less apparent.

Because it is uncomputable, in practice algorithmic complexity is approximated
using different methods. One of these methods uses lossless data compression algo-
rithms. Another involves the estimation of Kolmogorov complexity by frequencies.
In the following subsections, I will explain both methods, some of their applications,
and objections to their use.
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4.1 Compression Algorithms

Data compression has its roots in communications: given a finite alphabet and some
messages that need to be transmitted, what is the most efficient way to encode
the messages? Morse and others developed a code for telegraph systems that used
the frequencies of letters to determine their codeword lengths. Later discoveries by
Shannon, Fano, Huffman, and Kraft advanced information theory. The advent of
computers necessitated the solving of some related problems. One of these was how
to store information. Due to limited storage availability, other ways of making data
smaller were needed. The general purpose of compression algorithms is to take some
quantity of data as input and give a smaller program that reproduces the data as
output. Lossy compression algorithms sacrifice some information so that the rest
of the data can be efficiently encoded. Lossless compression algorithms ensure the
integrity of the data while removing redundancies and conserving some amount of
space, like freeze dried food taken up into space for later reconstitution. When
‘zipping’ files to send them via email, one of these algorithms are used.

The basic idea of compression algorithms can be easily conveyed by an example.
Suppose you see 14 ducks swimming in a row. One of them is bright yellow and the
rest are brown. ‘The yellow duckling’ is a short way of picking out a particular duck
(assuming no visual impairment), as is ‘the second one behind the yellow duckling’,
‘the last duckling’ or ‘the fifth duckling from the front’.

An object like a binary string can be specified by the shortest program that
produces it (akin to picking out the yellow duckling) or by giving its length n and its
index in the set {0, 1}n to which it belongs. There are many sets an object can belong
to. For example, 256 is the 256th natural number. In the set of powers of 2, it is
8th. In the set of perfect squares, it is 16th. In the set of three-digit zenzizenzizenzic2

numbers it is the sole member.
There are three basic types of lossless compression algorithms: block-sorting,

sliding window (similar to dictionary), and statistic.

Block-Sorting Algorithms

The first sort of compression algorithm uses the Burrows-Wheeler transform, the
Move-to-Front transform, and a statistical compressor. An example of this type of
compression algorithm is bzip2. An example is given below to demonstrate how it
works.

2An outdated word meaning ‘to the eighth power’.
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Burrows-Wheeler Transform
Discovered by Wheeler in 1983 and published in a paper in 1994, this algorithm clev-
erly uses shifted permutations of a string to minimize the amount of space it takes
up. For example, consider the string ‘ALFALFA’.

Step 1 Create a matrix of shifted permutations of the word, moving the first letter
of the string to the last position each time.

ALFALFA
LFALFAA
FALFAAL
ALFAALF
LFAALFA
FAALFAL
AALFALF

Step 2 Sort the list lexicographically.

AALFALF
ALFAALF
ALFALFA
FAALFAL
FALFAAL
LFAALFA
LFALFAA

Step 3 Record the last column of letters and note the number of the row where the
string occurs

AALFAL F
ALFAAL F
ALFALF A
FAALFA L
FALFAA L
LFAALF A
LFALFA A

FFALLAA, 3

At this point, the Burrows-Wheeler Transform is complete. Note that the result
appears to be more easily compressible: there are three pairs of repeated characters
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in the string. The entropy of the sequence is approximately 1.56 bits.

Move-to-Front
Step 4 Create a lexicographically ordered list of all symbols that occur in the string.

[A,F,L]

For each character in the string, record its index in the list and move the character
to the front of the list. In computer science it is customary to begin indexing at 0.

Letter Index in String Output List

[A,F,L]
F 1 1 [F,A,L]
F 0 10 [F,A,L]
A 1 101 [A,F,L]
L 2 1012 [L,A,F]
L 0 10120 [L,A,F]
A 1 101201 [A,L,F]
A 0 1012010 [A,L,F]

The resulting output is a string with a probability distribution that has less entropy,
about 1.45 bits. While this may not seem like a big difference, keep in mind that
the alphabet alone has 26 characters. When processing a block of text that includes
punctuation and special characters the difference can be more pronounced.

Huffman Coding
Step 5 Encode the sequence by calculating the probability distribution of each char-
acter. Create a binary tree for the probability distribution by repeatedly merging
the smallest probabilities together until they total 1.

1

3
7

3
7

= 0

4
7

3
7

= 1

1
7

= 2
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Label each pair of branches with 0 and 1.

1

3
7

3
7

= 0

1

4
7

3
7

= 1

1

1
7

= 20

0

The codeword for each character is the concatenation of the binary characters leading
to it.

Symbol Probability Codeword

0 3
7

1
1 3

7
01

2 1
7

00

The resulting code is uniquely decodable, prefix-free, and as short as possible given
the probability distribution and these two constraints.

Original string: ALFALFA
Encoded string: 10010110100

A, L, and F are ASCII characters and each ASCII character takes up 8 bits when
being stored. 0 and 1 only take up 1 bit each. bzip2 has a default block size of 900
KB. If a string is larger than this, then it will be compressed in multiple blocks. In
our example if the block size were 4 bytes then ‘ALFA’ and ‘LFA’ would have been
compressed separately.

Sliding Window Algorithms

The next sort of compression algorithm splits a string into sections and searches for
substrings occurring in the earlier string, also called the sliding window, to efficiently
encode strings occurring in the lookahead window. After this encoding, statistical
compression is performed. Again, we compress the string ‘ALFALFA’ to demonstrate
the algorithm.
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Step 1 Initialize the sliding window as empty and the lookahead as the entire string
to be compressed. For each character k in the lookahed window, see if it occurred
in the sliding window. If it does not, output the character 0 and the subscript 1
to indicate that the original character must be stored. If it does, find the longest
substring in the sliding window that matches the characters “k, k+1, k+2,..., k+n”
and output the number of characters before k that it occurs and the length n of the
substring.

Word Sliding Window Lookahead Window Output

ALFALFA ALFALFA 01

ALFALFA A LFALFA 01 01

ALFALFA AL FALFA 01 01 01

ALFALFA ALF ALFA 01 01 01 34

Substrings may overlap with the lookahead window, like in the last step of processing
the string ‘ALFALFA’: when the second ‘A’ is reached the substring ‘ALFA’ is found
and the lookahead and sliding windows overlap by one character.

Step 2 Huffman coding is applied following the last step of the Block-Sorting Algo-
rithm example.

An example of this type of compression algorithm is gzip. The sliding window
size is 32 KB [13].

Statistic Algorithms

The final type of compression algorithm uses changes in the probability distributions
of symbols, bigrams, trigrams, and other substrings occurring in a data stream to
construct a code that is easily compressed using entropy coding, like Huffman or
arithmetic coding. When starting to compress a file, it would be useful to know
the probability distribution of each character in advance so codeword lengths could
be chosen optimally. Furthermore, if one is compressing a specific data type, like a
text written in the English language, then it is possible to simply pass the decoder
an appropriate distribution (with “u” occurring after “q” with high probability, for
example). Another option is to assume a uniform distribution over all characters at
the outset and update their probabilities as the algorithm processes the stream.

Brilliantly, this one-pass algorithm requires no such knowledge or commitment in
advance. The order of a Prediction by Partial Matching (PPM) algorithm specifies
how many characters before the character that is being considered are used to search
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for substrings ending in that letter. If a higher order match is not found, the algo-
rithm searches for lower order substrings. For example, an order 3 PPM algorithm
would search for trigrams and bigrams ending in the current character. Each time
a new symbol is encountered in a given context, an escape symbol is given, followed
by the symbol’s seven-digit ASCII representation. This lets the decoder know to
add the symbol to the alphabet it is using to reconstruct the string. Then, the new
symbol is assigned a new probability in the relevant table. A useful feature of this
algorithm is that the probabilities in the tables are changed incrementally in concert
with the number of times a substring occurs.

The PPMZ algorithm, a specific implementation of this type, does not use a
single-order model but performs a computation to estimate which higher-order con-
texts to use [48]. This type of algorithm performs well in practice. It also does not
have a block size or sliding window that limits pattern recognition.

Objections

Specifications (like block size) play a large role in how efficiently data can be com-
pressed. This is a problem for block-sorting and sliding window compression algo-
rithms: if the length of a pattern exceeds the size of the window, then compression
will not take place. To illustrate this point, consider the case in which the sliding
window size is only two characters long and the word ‘ALFALFA’ is being com-
pressed.

Word Sliding Window Lookahead Window Output

ALFALFA ALFALFA 01

ALFALFA A LFALFA 01 01

ALFALFA AL FALFA 01 01 01

ALFALFA LF ALFA 01 01 01 01

ALFALFA FA LFA 01 01 01 01 01

ALFALFA AL FA 01 01 01 01 01 01

ALFALFA LF A 01 01 01 01 01 01 01

In this extreme case, compression does not take place at all because no character
occurs twice within three places of itself.

Compression algorithms do not pick up all types of structure. When new regular-
ities are found new compression algorithms can be created (personal communication,
P. Vitányi, May 22 2018). Current compression algorithms concentrate on the re-
currence of substrings, for example, and do not detect arbitrarily large patterns.
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4.2 Coding Theorem

In 1974 Leonid A. Levin proved a theorem relating the frequency of a string’s pro-
duction with its Kolmogorov complexity, see Li and Vitányi [37].

m(x) = 2−K(x)+O(1)

− log2m(x) = K(x) +O(1)

According to the theorem, the probability of a string being produced is equal
to 2−K(x). This means that if a string has low Kolmogorov complexity then it has
a high probability. If a string has high Kolmogorov complexity then it has a low
probability. This also connects the Kolmogorov complexity of a string to the Uni-
versal Distribution, a probability distribution that dominates all others, as discussed
in Kirchherr, Li, and Vitányi [34]. This motivates the idea of approximating Kol-
mogorov complexity from below by seeing which strings are produced when running
all possible computations.

Coding Theorem Method

Soler-Toscano et al. [50] ran a large number of 5-state, 2-symbol Turing machines un-
til they had halted or run for more than 500 steps. The Turing machines were selected
in such a way that those that were likely to halt were not included and machines
that were redundant were not included. If a Turing machine halted, its output string
was recorded. The frequencies of the production of strings were tracked. The strings
that were produced most frequently included ‘0000000’, ‘1111111’, and ‘1010101’.
Strings produced less frequently included ‘1110100’ and ‘0010111’. Running Turing
machines one by one for a certain number of steps, recording the output strings
of machines that stop, and estimating the Kolmogorov complexity of the strings
based on this probability distribution is called the Coding Theorem Method (CTM).
Soler-Toscano et al. [50] tout the method as providing an alternative to the use of
compression algorithms to approximate Kolmogorov complexity. This is particularly
useful for short strings because compression algorithms do not work very well.

In Zenil et al. [62], the data from this experiment was used to check if strings
that were predicted to have low Kolmogorov complexity by the CTM would be
more compressible by compression algorithms than those that were predicted to have
higher Kolmogorov complexity. Files were created by concatenating 100 strings of a
specific length and range of predicted Kolmogorov complexity. Because the original
strings were binary, an alphabet using pairs of letters from ‘a’ to ‘p’ was constructed
(aa, ab, ac,...,ap,ba,bb,...,op,pp). This step was taken to minimize the compressor’s
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detection of coincidental patterns occurring in the file and instead compressing the
strings themselves in turn. For example, if the following string was put into a file,
a compression algorithm would try to compress 0’s and 1’s across the boundaries of
the individual strings.

String 1: 0101100101
String 2: 1001101101
String 3: 1110010010

Concatenation: 010110010110011011011110010010

Encoding the strings with different characters, while it may not prevent this effect
altogether, should help keep the compressor in check.

String 1 (0 = ap, 1 = ck): apckapckckapapckapck
String 2 (0 = el, 1 = fn): fnelelfnfnelfnfnelfn
String 3 (0 = jm, 1 = go: gogogojmjmgojmjmgojm

Concatenation: apckapckckapapckapckfnelelfnfnelfnfnelfngogogojmjmgojmjmgojm

100 strings of a particular range of predicted Kolmogorov complexity were put to-
gether in a file using this encoding procedure. 100 files of this type were made for each
of the 10 partitioned frequency spaces. This procedure was performed separately for
strings of length 10, 11, 12, 13, 14, and 15, yielding 6,000 files. The files were com-
pressed using an implementation of DEFLATE (also called zlib) from Mathematica.
DEFLATE uses sliding window compression discussed in the last section. They also
used the block-sorting compression algorithm bzip2 to see if the results would be
different; they were not. The results indicated that generally, those files contain-
ing frequently produced strings were more compressible and infrequently produced
strings were less compressible. This indicates that the Coding Theorem Method gen-
erates approximations of Kolmogorov complexity that are consistent with the same
approximations by compression algorithms.

Block Decomposition Method

Zenil et al. [62] ran a similar experiment in two dimensions. Langton’s Ant is a
Turmite, or two-dimensional Turing machine, that has been shown to be capable of
universal computation, see Figure 4.3.

Using a large sample of Turmites, roughly the same procedure as Soler-Toscano
et al. [50] was performed. Machines were given a runtime of 1,500 steps and redun-
dant machines were excluded. The output matrices of those machines that halted
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Figure 4.3: Langton’s Ant after 10,647 steps, see Weisstein [60]

were used to construct a probability distribution over grids. Zenil et al. [62] use this
probability distribution to estimate the Kolmogorov complexity of two-dimensional
objects.

It could be the case that estimating Kolmogorov complexity in two-dimensions
somehow does not work, so the results were checked in the following way. The set
of all 4-state, 2-symbol Turing machines operating in one dimension is a subset of
the set of all 4-state, 2-symbol Turing machines operating in two dimensions. A
previous experiment produced data about the output strings of the former type of
machine. This was compared with the data from the 4-state, 2-symbol experiment.
The complexity of the strings from the two experiments was very strongly correlated.
This lends weight to the results of the second experiment involving Turmites.

Using this chain of reasoning and the compressibility of the strings from the
5-state, 2-symbol experiment, Zenil et al. [62] motivate the use of the Block Decom-
position Method (BDM). Counting the frequency of the occurrence of all 3× 3 and
4× 4 submatrices of the output of the Turmites, a probability distribution was cal-
culated. This resulting probability distribution is used to estimate the Kolmogorov
complexity of matrices. The Kolmogorov complexity of a larger matrix (greater than
4 × 4) is estimated to be the sum of the complexities of its subarrays plus some
constant to join the subarrays. While it would be ideal to have these probability
distributions over arbitrarily large n × n arrays, generating and analyzing the data
is too computationally expensive at this point in time.
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Objections

The excluding of redundant machines, filtering out of machines that will not halt, and
discarding machines after a certain number of steps has an effect on the resulting
probability distribution. Because the probability distribution is used to estimate
Kolmogorov complexity, our confidence in this measure might be limited. In Soler-
Toscano et al. [50], over 40% of 5-state, 2-symbol Turing machines are excluded. On
the other hand, Calude and Stay [12] showed that if a program has not halted in a
certain number of steps then the probability that it will is small and the researchers
set a well-motivated runtime. Another issue is that neither 5-state, 2-symbol nor 4-
state, 2-symbol two-dimensional Turing machines are universal. Without a universal
Turing machine, Levin’s proof of the Coding Theorem does not go through and it
could be the case that the machines used do not approximate the correct distribution.
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5 | Sophistication and Enduring Pat-
terns

Textile producers struggle to come up with new patterns that are sufficiently appeal-
ing to grab a consumer’s attention. Mathematics and computer science are employed
in this pursuit. While exploring problems in number theory using the construction
of stunted trees, Miller [41] created appealing tapestry designs. Ding and Shao [19]
discussed the use of cellular automata in pattern design generation for knitting ma-
chines. One of the reasons for doing so was because designing satisfactory patterns
is very time consuming. Marfo and Martey [40] used polar, ellipse and trigono-
metric functions in MATLAB to generate beautiful designs for use in embroidery,
knitting, and fabric printing. The fact that researchers and manufacturers employ
these methods to come up with new designs indicates that it is challenging.

Researchers have also attempted to pin down that which makes designs appeal-
ing. Schmidhuber [49] defined low-complexity art as art that can be defined by a
computer program and obeys certain subjective constraints. The author illustrated
his point with cartoons composed from sections of circles. He also commented on the
subjectivity of taste and the possibility of human artistic taste being governed by an
algorithm. Those aspects that Schmidhuber does not specify are precisely those that
are most challenging to capture: subjective appeal. How can we tell when a pattern
is appealing and when it has no order, and is it possible to write an algorithm that
captures this?

There are also notions related to computability. Adriaans [2] gave an extensive
list of proposed formal measures of meaningful information. Sophistication, from
Koppel and Atlan [35] and others, is a measurement of complexity that can theo-
retically be used to discern random objects from ordered ones by quantifying only
meaningful information. The more sophisticated an object is, the longer the shortest
program that sufficiently describes it will need to be, where ‘sufficiently describes’
takes the form of a two-part code: a model, or representation of an object’s struc-
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tural properties, and noise that is in the object but not a part of its structure. This
is an elegant concept because strings or objects that are incompressible are captured
by short programs, for example a program that returns whatever object it is given.
In essence the most random objects are filtered out, leaving an ordering of objects
that should otherwise line up with our intuitions about what is simple and what is
sophisticated, or perhaps complex in an appealing way.

Bloem, de Rooij, and Adriaans [10] gave two objections to theories of sophistica-
tion. The first is the problem of over-fitting and under-fitting. Finding the proper
representation of an object is not a trivial matter. An approachable example given
was the painting Impressions of a Sunrise: should it be viewed as an image? A
painting? A series of pixel values? And are there any strokes in the painting that are
not fundamental to its structure and instead constitute noise? The other problem
concerns the length of a model of sophistication. An analog of the Invariance The-
orem is hypothesized to hold for sophistication but Bloem, de Rooij, and Adriaans
[10] illustrate that there is no reason to believe this is the case. On these grounds
the authors propose that there is no such thing as sophistication, see Bloem et al.
[10, page 4].

These considerations are important but they should not restrain us from empir-
ically looking for a measure of meaningful information or something similar, even
if it does not have such pleasing properties. Using compressors we may be able to
find likely candidates. It might also be useful to see where compressors go wrong,
confounding our expectations of what ought to be sophisticated and what ought to
be random. We know that we do not have all possible compressors and it might shed
light on types of regularity that are not yet captured by compression algorithms.

Others have investigated this question with a different strategy. Friedenberg and
Liby [23] conducted a study where participants were shown screens containing differ-
ent black and white pixel images. The images varied in complexity, amount of black
space versus white space, and the placement of white squares. Two different condi-
tions were used: images were sized as 10×10 pixels and as 15×15 pixels. Complexity
was estimated using GIF compression as an approximation of Kolmogorov complex-
ity. The results were interpreted as showing a correlation between complexity and
beauty. As we have seen above, some approximations of Kolmogorov complexity may
be better than others. While Friedenberg and Liby [23] used GIF compression, using
PNG or other algorithms to estimate an image’s complexity may yield different re-
sults. Gauvrit, Soler-Toscano, and Guida [25] analyzed the method and data from the
same study and argued that the notions of entropy and complexity were not correctly
interpreted in the data analysis. A wholly different measure of algorithmic complex-
ity was used: instead of GIF, BDM from the previous section was used. Entropy was
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interpreted as classical Shannon binary entropy, H = −p log2(p)− (1− p) log2(1− p)
(because there were only two colors used), which corresponds to the overall density
of the color in the image. A reinterpretation of the results suggests participants
displayed a preference for high entropy and low algorithmic complexity.

Here, we will take a further step. Where Friedenberg and Liby [23] examined
random patterns, we will examine rough approximations of a small set of old and
geographically diverse patterns. Taking these patterns in as simple a form as is
reasonable, we will compress them using compression algorithms and measure them
with BDM. We will also generate pseudo-random matrices to simulate white noise
and compare their compressed lengths and BDM values while holding entropy con-
stant. Can approximations of algorithmic complexity distinguish order from chaos
in two dimensions in line with our intuitions?

Figure 5.1: A pair of pants likely worn for horse riding found in the Tarim Basin
dated to the late 2nd millennium BC. Note the patterned band midway down the leg.
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5.1 Patterns

Designs that have withstood the test of time are those that still look appealing.
There may be a complex design in some textiles unearthed by archaeologists that we
no longer have the capacity to recognize, but the author finds it unlikely that the
human brain would have evolved so quickly in a few thousand years. We confine our
attention to recognizable patterns.

The first pattern is found on a pair of pants that were discovered in an ancient
cemetery in the Tarim Basin, today in western China, by Beck et al. [5], see Figure
5.1. The next is from the border of the Pazyryk rug, the oldest known carpet found
so far, from the Altai region in southern Siberia, dated to the 5th Century BC (see
Harris [28]). A sock from around 1,000 AD found in Egypt is also included from
Bush [11], as is a simplification of the Selburose pattern from Norway that began to
be used there in the mid-19th century. The basics of the patterns were put into a 17
× 17 matrices as shown in Figure 5.2, binarized, and put into CSV files.

Figure 5.2: From the left, designs from Yanghai Pants, Pazyryk Rug, Egyptian Sock,
and Selburose.

5.2 Pseudo-Random Designs

Using Excel’s RAND() function, matrices were generated that have approximately
the same entropy as the patterned matrices, see Figure 5.3.
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Figure 5.3: From the left, RNG1, RNG2, RNG3, and RNG4.

5.3 Algorithmic Complexity

All matrices were compressed using LZMA, ZSTD, BZIP, and ZLIB. The matri-
ces were also measured using BDM, using both 3 × 3 and 4 × 4 methods from
the R implementation developed by and discussed in Zenil, Soler-Toscano, Kiani,
Hernández-Orozco, and Rueda-Toicen [63]. PNG is a compression algorithm as well
as a storage format, so these values are also included. The results are shown in the
table below.

Pattern Entropy Compressed Lengths BDM PNG Size
LZMA ZSTD BZIP ZLIB 4 × 4 3 × 3

Yanghai Pants 1 136 127 101 101 232.6 258 4.2 KB
Pazyryk Rug 1 148 172 102 95 441.4 396.2 4.44 KB
Egyptian Sock 0.89 136 149 99 88 397.5 320.2 4.49 KB
Selburose 0.89 140 158 95 88 381.9 324.9 4.6 KB

RNG 1 1 172 144 114 118 482.8 396.3 4.46 KB
RNG 2 1 172 161 115 125 492.9 422.9 4.65 KB
RNG 3 1 180 161 116 126 494.2 425.4 4.56 KB
RNG 4 .89 164 155 111 114 455.3 368.5 4.03 KB
RNG 5 .88 164 151 111 118 478.7 370.7 4.71 KB

The two sample Kolmogorov-Smirnov (K-S) test is a non-parametric test that uses
an empirical distribution function to check whether two different samples were taken
from the same distribution. The test makes no assumptions about the distribution(s)
from which the samples were drawn. For each compression algorithm and both BDM
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options, let the first sample be the values of the patterns from textiles and let the
second sample be the RNG values. The null hypothesis is that the samples were
drawn from the same distribution. The alternative hypothesis is that the samples
were drawn from different distributions. Because this is an exploratory investigation,
let us set the α level, the chance of rejecting the null hypothesis incorrectly, to 2.5%.
1

A middle line has been inserted into the results, shown in Table 5.3 to help the
reader distinguish patterns from arbitrary matrices. The reader can observe some
differences in the values above and below the separating line in the cases of LZMA,
BZIP, and ZLIB compression algorithms in particular. The K-S test indicated that
there was a difference in the distributions from which the samples were drawn for the
LZMA, BZIP, and ZLIB compression algorithms as well as the 4 × 4 BDM values
of patterns and RNG matrices. ZSTD, PNG, and BDM values do not distinguish
well between the arbitrary and well-ordered matrices according to the K-S test at
the 2.5% α level.

Entropy alone is insufficient to account for our judgments of beauty, order, or
appeal. If it were sufficient then the leftmost images in Figure 5.2 and Figure 5.3
should be equally beautiful, orderly, or appealing. Algorithmic complexity appears to
capture something more. The exploratory investigation here is not meant to conclu-
sively demonstrate that sophistication exists, only to sow doubts about the assertion
that it does not. While we may not have a model that distinguishes perfectly be-
tween patterns and arbitrary matrices, these results suggest we should not abandon
our search for an algorithmic model of meaningful information. The next step might
be to try holding both entropy and algorithmic complexity constant while varying
meaningful information. If this can be done then perhaps there is no reasonable
measure.

15% is the α level frequently used in studies but is not a stringent standard in the opinion of
the author. The debate over statistical significance is ongoing but including statistical test results
is customary, insufficient as they may be.
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6 | Measuring Similarity

Techniques used in data mining and artificial intelligence often rely on statistics.
Statistics are found by using a function (like averaging) on measurements taken from
data in a sample that is assumed to represent a larger population. The fundamental
assumption underlying statistical inference is the Law of Large Numbers. Thus
in order for these methods to work, a great deal of data is required to reveal the
underlying central tendency. However, there are other measures to be considered.

Given two objects, one way to consider what they have in common is by thinking
about what changes would have to be made to one to turn it into the other.

(a) 0101010101010101
(b) 0110010101010101

For example, given string (a), one only has to switch the third and fourth digits
of the sequence to get string (b). String (a) is easily transformed into string (b)
and vice versa, thus we can say that strings (a) and (b) are similar. This is the
fundamental idea motivating Normalized Compression Distance (NCD): the length
of a program that produces x given y (or y given x) is a fair measurement of their
similarity. In practice, compression algorithms are used to estimate this distance.
To motivate the use of this measure, first the concepts of conditional Kolmogorov
complexity, Information Distance, and Normalized Information Distance will be dis-
cussed. Another way of quantifying change is through Algorithmic Calculus. This is
another parameter-free way of measuring change using the Coding Theorem Method
or Block Decomposition Method. This technique and some of its applications will
also be discussed.
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6.1 Conditional Kolmogorov Complexity and Infor-
mation Distance

As explained above, the Kolmogorov complexity of a string x is the shortest program
that produces it. This is usually written C(x). K(x) is the prefix-free version of
Kolmogorov complexity and is often discussed because of its useful properties, thus
we will employ it here. The shortest program that produces one string when given
some other string as input is called the conditional Kolmogorov complexity of x given
y and is writtenK(x|y). Above, we would signify the shortest program that produces
string (a) given string (b) as K(a|b).

We call the longer of K(x|y) and K(y|x) the information distance between x and
y. The larger one is used because the two are not necessarily the same. Consider
K(ε|x) where ε is the empty string. For any string x, this is small: just produce the
empty string, regardless of the input. But for most x, K(x|ε) should be a good deal
longer, see Bennett et al. [8] for details.

6.2 Normalized Information Distance

Suppose two strings (c) and (d) that you are comparing are quite long, say 1,000,000,000
bits, but their only difference is the transposition of two digits at the very beginning
of the string.

(c) 101010101010...
(d) 011010101010...

CompareK(c|d) withK(a|b). Although both pairs are only slightly different from
one another, strings (c) and (d) are a lot longer than strings (a) and (b). Because of
this, strings (c) and (d) are more similar than strings (a) and (b) even though they
have about the same information distance.

In order to put the similarities into context, we normalize them by dividing by
the larger of the Kolmogorov complexities of the strings being compared.

NID(x, y) = max{K(x|y),K(y|x)}
max{K(x),K(y)} = max{K(x,y)−K(x),K(x,y)−K(y)}

max{K(x),K(y)}

where K(x, y) is the shortest program that produces x and y together. The Kol-
mogorov complexity of a string, as stated in the previous section, is uncomputable.
The conditional Kolmogorov complexity of one string with respect to a different string
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is similarly uncomputable. The Normalized Information Distance between two dif-
ferent strings is not even semi-computable, see Terwijn, Torenvliet, and Vitanyi [56].
Thus we calculate something different.

6.3 Normalized Compression Distance

Using compression to approximate Kolmogorov complexity, there is a way to ap-
proximate the Normalized Information Distance between two strings. Let C(x) be
the compressed length of the string x with respect to some reference compressor
(similarly for the concatenation C(x, y) of two strings).

NCD(x, y) = min{C(x,y),C(y,x)}−min{C(x),C(y)}
max{C(x),C(y)}

Due to the current imperfect nature of compressors, it is often the case that
C(x, y) 6= C(y, x). In order to avoid overestimating the compression distance the
smaller of the two is used. Cilibrasi and Vitányi [15] shows that if the compressor used
satisfies the properties of idempotency, monotonicity, symmetry, and distributivity
up to an additive term, then NCD is a similarity metric.

Unlike neural networks and other models that require large amounts of data,
training and additional assumptions about the data, NCD is a parameter-free, feature-
free, and alignment-free way of measuring all types of similarity. Intuitively the NCD
metric should be able to capture any sort of similarity a compressor can.

6.4 Applications

This technique has been used to construct phylogeny trees, structures that reveal
relationships among objects in a class. Cilibrasi and Vitányi [15] used mammalian
genetic material, the Universal Declaration of Human Rights written in 52 different
languages, Russian literature, music, handwritten digits and other data sets to show
the robustness of the method.

An interesting and approachable application was done by Bennett, Li, and Ma
[9]. Chain letters attempt to convince a recipient to copy the letter’s contents and
send it onwards to other recipients. While many chain letters nowadays might be
sent via email, they used to be sent by post. Transmission of a chain letter is similar
to a game of ‘Telephone’, where small mutations that happen through iterated noisy
transmissions might yield quite a different result at the end of the chain. A chain
letter might be photocopied several times and then become illegible, necessitating a
retyping of the letter and giving the typist an opportunity to introduce mutations.
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A collection of 33 chain letters were typed into text files and compressed. A tree
was built using a likely candidate as a root node. Some interesting phenomena were
observed through the mutations of the letters over time. Place names, amounts of
money, and even the title of the letter were changed through repeated transmissions.

When using NCD, it is important that an appropriate reference compressor is
used. Some compressors perform better than others on particular types of data
because of differences in regularities. For example, DNA sequences tend to have long
runs of a single letter, like ‘AAAAA’ and reverse complement structures (see Figure
6.1), where the nucleotides adenine and thymine pair together and so do guanine
and cytosine. Strands of DNA twist together and when they are looked at in a single
strand, the probability of the occurrence of some sequences is higher after others.

Figure 6.1: The reverse complement structure in DNA. A pairs with G and C pairs
with T. If the letters on one side were changed into their complement nucleotides,
the sequences would be symmetric.

Using one of the types of compressors we have looked at so far might not work
as well on DNA. GenCompress, an algorithm specifically designed for use with DNA
sequences, is a one-pass algorithm that searches for prefixes of a string that can be
changed slightly to form a substring that occurs later as explained in Chen, Kwong,
and Li [14]. While this might seem like a minor change, it makes a substantial
difference when compressing large amounts of data.

Testing a compressor for use with a particular data type is an assessment of its
idempotency. One useful way to test a reference compressor is to take a large set of
data and compress it with itself or with two copies of itself. NID(x, x) should be
0 (plus some constant) for all x and between 0 and 1 for all x and y. NCD(x, y)
in practice is between 0 and 1.1 because compressors do not work perfectly. Testing
several types of compression algorithms for compatibility with a data type is an
important step to take before measuring the NCD between objects of a given type.

A legitimate concern when choosing a compressor is block size or sliding window
size. As illustrated in Section 3.1, using too small of a sliding window size will
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prevent compression from taking place. In an empirical investigation Cebrián Ramos,
Alfonseca, and Ortega [13] demonstrated how NCD goes awry when objects are
compressed that do not fit inside compression blocks or sliding windows. In order to
use these types of algorithms, the concatenation of the two objects being compressed
must fit inside of the block or sliding window.

6.5 NCD with Images

In this paper we apply NCD to images of patterns found in textiles. Images are often
large files and one must exercise caution when selecting a compressor.

Images are stored compressed, like in Portable Network Graphics (PNG) or JPEG
files, or uncompressed, as in bitmap files. Storing uncompressed images takes up a
great deal more space because the value of each pixel is stored separately. Image
data is also stored, generally speaking, with a Row Major read-in. Starting from the
top right pixel, data is read into a file all the way to the leftmost pixel, then the
reader starts from the second pixel down on the right and continues left, and so forth
like reading an English language book.

When using NCD on images, the method of linearization matters in at least some
cases. A study was conducted where images were compressed with transformations
of themselves. The translations were vertical and horizontal shifts, rotations, and
vertical and horizontal flips. Methods of linearization used included Row-Major,
Column-Major, and the Hilbert-Peano curve. Mortensen et al. [42] showed that
the Row-Major linearization compressed the horizontally shifted images better and
similarly for Column-Major and vertically shifted images. Several compressors were
tested and the results were consistent. This demonstrates that NCD is sensitive
to the method of linearization in images, regardless of the compressor used. When
using NCD to measure image similarity, one needs to take care that the method of
linearization does not unduly influence the results.

Vázquez and Marco [59] tested the performance of various compression algorithms
when calculating NCD for image data. A variety of images were compressed with
respect to themselves to check the idempotency of compressors. Both uncompressed
and compressed image formats were used in the experiment. Results indicate that
bitmap format was suitable and that Prediction by Partial Matching compressors,
of the statistical compressor family, performed best as compressors. Block-based
algorithms performed reasonably well when the image was small.
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6.6 Algorithmic Calculus

Zenil et al. [64] show how the Coding Theorem Method and the Block Decomposi-
tion Method can be used to infer an underlying generating mechanism from changes
towards and away from randomness. The general idea is to estimate the algorithmic
complexity in a system at different points using CDT or BDM methods (mentioned
above) and calculate the differences between them, checking to see if the system is
becoming more or less random. Basically, one takes a set of observations, calculates
the change in estimated algorithmic complexity over time, and finds the derivative
of the function. An example involving an elementary cellular automaton is used.
Starting from a scrambled set of observations, the observations are ordered by their
complexity. Changes from one step to another are mapped to possible cellular au-
tomaton rules, showing how the generating mechanism can be inferred by the process
of elimination. While elementary cellular automata are simple, this motivates how
changes in more complex systems can be measured to reveal their generating mech-
anisms from a disorganized set. More complex applications were discussed, see Zenil
et al. [64] for more information. BDM is also being assessed as a texture descriptor
in imaging studies focused on brain tumors in the forthcoming paper Rueda-Toicen,
Kiani, and Zenil [47].

Now that we have explored the concept of algorithmic complexity, ways of ap-
proximating it, and how these approximations can be used to calculate similarity, we
will apply these methods to an interesting data set.
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7 | Algorithmic Complexity and the
Turkmen Textiles

Suppose we collected patterns from all over the world and used NCD to measure
similarity among them. We can anticipate that patterns from geographically diverse
places will be related: recall the similar designs from Morocco and Guatemala in Fig-
ure 1.1 and the meander algorithms used to generate designs by the Tamil, Tchkokwe,
Romans, and others like the examples shown in Figure 4.1. These similarities, while
interesting, may not necessarily indicate culture exchange or common ancestry. As
indicated earlier people find a particular range of complexity appealing and this is
indicated through the designs being carried forward by people who choose to repro-
duce them. Perhaps people since the dawn of humanity have carried the same notion
of appealing designs and observing textile patterns from everywhere could give us
clues about how people traveled over time and how they are related. This question
is outside the scope of this thesis.

Rather than quantify over all textiles, we can examine a particular subset of
designs through the lens of algorithmic complexity. The woven ornaments of the
Turkmen are the ideal case for NCD analysis to tackle. We can also experiment with
the algorithmic calculus from Zenil, Kiani, Marabita, Deng, Elias, Schmidt, Ball, and
Tegner [64]. As explained in the previous chapter, anthropologists, art historians,
and collectors struggle to understand the relationships between ornaments found in
Turkmen textiles. This is part of a wider mystery about the genealogy of the Turkmen
tribes, their movements, and their cultural evolution. Phylogenetic analysis of these
textiles has already been done by Tehrani and Collard [54]. Looking at similarities
among tribal ornaments can provide information about the genealogy of the tribes.

Historical records establish that the Turkmen have a common origin. Weaving
is a cultural tradition among tribeswomen and is central to domestic life. In place
of furniture, Turkmen use woven bags hung from the walls of their yurts. The
main carpet of the room supposedly displays important tribal emblems (although the
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author finds this point contentious). The door coverings, saddle bags, and traditional
wedding decorations for camels are all woven. Women from different tribes are
culturally segregated from one another. Weaving skills are passed from mother to
daughter and intermarriage between tribes is not common. Some theories of the
evolution of Turkmen ornaments posits an original gol. As tribes spread out from
the Aral Steppe and wandered in different directions, the women kept their skills
and patterns, and passing them on through generations. The small permutations
that occurred through the transmission of these designs resulted in the independent
evolution of ornaments. By measuring the similarity between the ornaments using
NCD, a parameter-free metric, we can trace the evolution of the gol and derive a
genealogy of Turkmen tribes.

The gols of the Salor, Tekke, Saryk, and Ersari are relatively well accepted in
the literature (see Figure 7.1). Using these gols as a starting point, we can derive
a genealogy based on NCD and see if it is consistent with other information about
Turkmen history. After this, gols of uncertain provenance can be added to the
analysis. While the names of the tribes may remain unknown, relationships can still
be found.

7.1 Linearization of Gols

Gols found on rugs, bags, and other items appear in a multitude of vibrant colors,
but their shape is consistent. Azadi [3] claims these ornaments are best analyzed
through three parts:

• The geometry of the outline,

• The design of the interior, and

• The shape of the center.

The third feature is hypothesized to indicate the subdivision of a tribe. We will
leave it out of our consideration and focus on the first two features.

Sketches are commonly used in the literature to display the main features of
gols. These are generated by observing photographs of textiles or the woven items
themselves. The sketches of tribal gols used in Tehrani and Collard [54] are used as
a starting point along with an Arabatchi gol sketched from a chuval featured at the
Metropolitan Museum of Art as shown in Figure 7.2.

As discussed in Mortensen et al. [42] the method of linearization matters when
measuring NCD for image data. Keeping this in mind, the gols were oriented in
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Figure 7.1: Sketches of Guls commonly used in phylogenetic analysis.

the same direction, centered in a square area and resized to 256 × 256 pixels using
Python image processing. Using binary thresholding, the pixel values of the image
were changed into 1’s and 0’s and put into CSV format. These CSV files were edited
in Excel to ensure that noise (in the form of stray black or white pixels) was removed.
The CSVs were then read into text files using a Row Major scan.
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Figure 7.2: An Arabatchi chuval from the Metropolitan Museum of Art.

7.2 Implementation

After checking several compressors for idempotency using a large binary file, the files
were compressed using LZMA, a modified sliding window algorithm. The sizes of the
file were less than 135 KB each. The dictionary storing substrings for the algorithm
is up to 4 GB, well over twice the size of any two files put together. This is crucial: if
the concatenation of any two files were larger than this, the algorithm would not be
able to compress the files properly. NCD was measured using a modified version of
Landman [36] and Python code from a creator of CompLearn (R. Cilibrasi, personal
communication, May 2, 2018) and a phylogenetic tree was built using BioPython’s
Phylo module, see Talevich et al. [53] and Cock et al. [16].

The algorithmic complexity of the matrices was also estimated using the 4 × 4
BDM method using the R implementation from Zenil et al. [63].
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7.3 Results

The results of the NCD analysis show the Tekke and Saryk tribes as being related,
the Ersari and Arabatchi tribes being related, and the Salor as sharing a common
ancestor with all four, see Figure 7.3.

Tekke

Saryk

Ersari

Arabatchi

Salor

Figure 7.3: Phylogenetic tree based on NCD metric.

The BDM values are below in Table 7.1. They are consistent with the theory that
the Ersari and Arabatchi tribes are related and the Tekke and Saryk are related.

Gol BDM, 4 × 4

Arabatchi 8294.35
Ersari 9120.63
Saryk 9675.015
Tekke 10256.4
Salor 12256.81

Table 7.1: BDM Values for gols.
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7.4 Discussion

A phylogenetic analysis was carried out using five ornaments from Turkmen textiles
to find genealogical relations between the tribes. The analysis indicates that the
Saryk and Tekke tribes are related and the Arabatchi and Ersari tribes are related.

Abul Ghazi Bahadur indicated that the Tekke and Saryk tribes were descendants
of the Salor Toi-Tumas. This tree is consistent with the Tekke and Saryk tribes
being related, but their connection to the Salor is less clear. Perhaps the Salor that
used the gol rendered in this paper were not the Toi-Tumas, but another branch of
the Salor tribe. In the English translation of Moskova’s work, Franses and Eiland
explain how some have speculated that the Arabatchi are a branch or subgroup of
the Ersari [43]. This analysis provides support for that hypothesis.

Another phylogenetic analysis by Tehrani and Collard [54] (shown in Figure 7.4)
suggested that the Ersari and Salor were related and that the Saryk were the most
closely related to these two tribes. This conflicts with our analysis. However, separate
nomenclature data is consistent with the tree from Tehrani and Collard [54], as is
the geographic distribution of the tribes. This leads the researchers to question
the accuracy of Abul Ghazi Bahadur’s genealogy and recommend disregarding it
altogether.

Ersari

Salor

Saryk

Tekke

Figure 7.4: The results of the analysis from Tehrani and Collard [54].

Let us more closely examine the evidence supporting the analysis of Tehrani and
Collard [54]. The first reason given is nomenclature data: according to an essay by
Wood [61], individual names of clans within the Salor, Ersari, and Saryk tribes are
claimed to be from the Oghuz lexicon but the Yomut and Tekke tribes have clan
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names with Persian influences. This seems like shaky ground on which to stake a
claim.

Another reason given is the geographic distribution of the tribes because the
Ersari, Salor, and Saryk lived closer to Bokhara and Sarakhs while the Yomut and
Tekke lived in Khorassan. Maps indicate these areas coincide. Furthermore the
tribes were nomadic and their current geographic distribution does not necessarily
serve as an indication of where they have lived or travelled.

Finally, Tehrani and Collard [54] conclude that the genealogy of Abul Ghazi Ba-
hadur is flawed and should be disregarded because Turkmen tribes use their common
origins to solidify cooperation and as a result the genealogical relationships related to
Abul Ghazi Bahadur in Turkic oral traditions may have been overstated. The records
of tribute indicate that the Saryk and Tekke may have had an incentive to exaggerate
their relationship with the Salor because the Salor would have been the dominant
tribe. Irons [32] indicated that groups depending on better established, larger tribes
(tribes that would incorporate the smaller groups into their lineage) would empha-
size genealogical ties for social or economic reasons. However, the tribute payments
indicate that the Tekke and Saryk tribes were independent and sizeable, making it
highly doubtful that they were a group dependent on a larger tribe. The fact that
the Tekke and Saryk tribes were still distinct centuries later makes it clear that they
were not being incorporated into the Salor and thus would not have had an incentive
to fictionalize their ties. It is not reasonable to disqualify one of the few historical
records attesting to the genealogy of the Turkmen on these grounds.

The analysis based on the algorithmic complexity of the textiles supports the his-
torical genealogy of Abul Ghaza Bahadur, but let us consider the worst case scenario:
suppose the gols of the tribes are not accurate attributed. The assumption that the
gols are representative of the Salor, Ersari, Tekke, and other tribes is disposable. If
we later discover that one or more of these ornaments is mistakenly attributed, this
approach will still show a measure of similarity between whichever tribes produced
these gols and any mysterious gols that may be unearthed in the future. As discussed
in the previous section, much remains unknown about the movements and history of
the Turkmen. Using parameter-free methods like calculating the algorithmic com-
plexity of objects, whether they are actually emblems of the tribes or not, can show
relationships that are otherwise invisible. Tribes might later be attached to gols
through such analyses. The gols depicted in this paper are not the only ones: there
are also temirjin, qaradashli, erre, ertmen, kepse, and ayna gols referenced in the
literature and depicted in such books as Mackie and Thompson [39] and Pinner and
Eiland [46]. Future analyses might use a wider variety of gols to investigate tribal
genealogy. Rugs in Iran, Turkey, and other places also have octagonal ornaments.
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Including these could indicate points of contact and help settle the debate surround-
ing the origins of the gol and generate a larger genealogy of peoples of Turkic origin.
While these analyses may not be provide conclusive proof of relationships, their tight
correspondence with scientific consensus in other fields such as biology shows they
are robust.

NCD analysis can be used more broadly in art history, especially when few taxa
are available. While neural networks and other tools may prove useful when there
are very large numbers of taxa, NCD is sufficiently robust to deal with very few as
well. Applying these techniques to images found on fragments of pottery and stone
carvings could provide clues about the past.
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8 | Conclusion

Algorithmic complexity is a useful tool for quantifying patterns in two dimensions.
It is usually discussed with respect to binary strings but textile production methods
provide a useful space in which to explore these concepts. We have also seen how
knitting can simulate a Turing machine.

Attempts to capture only meaningful information have been made by Koppel and
Atlan [35], Adriaans [2] and others and debated by Bloem, de Rooij, and Adriaans
[10]. Gauvrit, Soler-Toscano, and Guida [25], Gauvrit, Soler-Toscano, and Zenil
[24], and Friedenberg and Liby [23] conducted studies to examine how algorithmic
complexity, entropy, and human judgments of beauty correlate. Using pieces of old
textiles we have checked to see if the methods we have to estimate Kolmogorov
complexity distinguish between arbitrary matrices and well-ordered ones with the
same entropy. Even though the sample is quite small, the results are intriguing and
we should not dismiss the notion of a computable measure of meaningful information
so quickly.

Finally the potential of NCD and other estimations of Kolmogorov complexity
to answer questions about genealogical relationships in the field of material culture,
a branch of anthropology, was demonstrated. By investigating the genealogy of the
Turkmen tribes using only superficial features of the ornaments used we built a
phylogenetic tree that supports historical accounts of the Turkmen genealogy and
suspicions of rug scholars.

Whether motivating archaeologists and art historians to use feature-free tools
such as NCD for analysis or inspiring knitters to find shorter programs, algorithmic
complexity provides interesting tools and ideas for two-dimensional pursuits.
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