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Abstract

This thesis is a study of minimal mathematics, i.e., mathematics on the basis
of minimal logic. We will explore different methods of working in mathematical
systems that are based on minimal logic. Special emphasis will be given to
finding out which results of and about intuitionistic mathematics still hold in the
context of minimal logic, and where the differences lie compared to intuitionistic
mathematics.





Contents

1 Introduction 1

2 Minimal Logic 7
2.1 Syntax and Derivation System . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Kripke Models and Completeness . . . . . . . . . . . . . . . . . . . . . 10
2.3 An Example of Ex Falso in Intuitionistic Analysis . . . . . . . . . . . . 11

3 Differences between Minimal and Intuitionistic Logic 15
3.1 Fundamental Differences . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Different Fragments of Minimal Logic . . . . . . . . . . . . . . . . . . 18
3.3 Superminimal Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Obtaining Minimal Theories from Intuitionistic Theories 31
4.1 From Axiomatisations to Theories . . . . . . . . . . . . . . . . . . . . 31
4.2 Properties of Tψ and MTψ . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Comparison of Intuitionistic and Minimal Theories . . . . . . . . . . . 35

5 First-Order Minimal Heyting Arithmetic 39
5.1 Heyting Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Metamathematical Properties of Minimal Arithmetic . . . . . . . . . . 41
5.3 Models of Minimal Arithmetic . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Representability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.5 Interpreting Falsum in Minimal Arithmetic . . . . . . . . . . . . . . . 50

6 Second-Order Minimal Heyting Arithmetic 53
6.1 Models of Second-Order Minimal Arithmetic . . . . . . . . . . . . . . 53
6.2 Principles of Second-Order Minimal Arithmetic . . . . . . . . . . . . . 55

7 A Minimal Theory of Equality and Apartness 61
7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 Conservativity Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 Conclusions and Further Research 71

Acknowledgements 73

Bibliography 75

i





Chapter 1

Introduction

Intuitionistic mathematics, as proposed by L.E.J. Brouwer, has been studied formally
on the basis of intuitionistic logic, that was developed in 1930 by Brouwer’s student
Arend Heyting. His logic results from removing the law of excluded middle from
classical logic. However, intuitionistic logic still contains the ex falso principle (also
called principle of explosion in the paraconsistent tradition) stating that any state-
ment follows from a contradiction. Starting with Brouwer himself and Kolmogorov,1
objections have been raised that this principle is unintuitive, or even non-constructive.
By removing the ex falso principle from intuitionistic logic, one obtains the system
of minimal logic as introduced by Ingebrigt Johansson in 1937.

In this thesis, we are going to study minimal mathematics, i.e., mathematics on
the basis of minimal logic. Other people have gone in a different direction and sug-
gest studying relevance logic. Mark van Atten remarks that relevance logic may be
closest to Brouwer’s attitude (see [Att09]), but we like to stay close to the established
formal systems. Another direction to consider is Griss’ negationless mathematics (see
[Gri44]), since without negation one has of course no contradictions. However, Griss
rejects hypothetical reasoning which we do not want to do. Moreover, we think—in
line with Brouwer (see [Bro48])—that negations give rise to intuitionistically inter-
esting distinctions.

With these thoughts in mind, we choose to consider well-known formal systems
but weaken the underlying logic from intuitionistic to minimal logic. A further dif-
ficulty of studying minimal mathematics is that there is no doctrine like the one of
intuitionistic mathematics that we can follow. This leaves us with different options
when deciding how to approach this subject. We will compare the following three
approaches in this thesis:

First of all, we should point out that the falsum f of minimal logic is—compared
to the falsum ⊥ of intuitionistic logic—meaningless, i.e., f behaves like an arbitrary
propositional variable, whereas ⊥ implies every formula due to the ex falso principle.
This gives rise to a very radical approach to minimal mathematics, in the sense that we
subscribe to minimal logic with a meaningless falsum as a basis for our investigations.

1In [Dal04], Dirk van Dalen explains that Kolmogorov rejected the ex falso principle as he argued
that it “does not have and cannot have any intuitive foundation since it asserts something about the
consequence of something impossible”. In this same article, van Dalen explains that Brouwer had
objections similar to Kolmogorov’s. See also Mark van Atten’s discussion in [Att09].
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1. Introduction

We will see that the deductive structure of minimal logic then automatically gives a
light, concrete meaning to falsum: ¬A ∧ ¬¬A for an arbitrary A.

The second, and again somewhat radical approach is trying to find an absurdity
that naturally gives rise to the ex falso principle, i.e., providing a sentence that
implies every formula over minimal logic. By proving that a certain formula has this
property over minimal logic, we show that it is a concrete absurdity satisfying the
ex falso principle. Interpreting falsum as this sentence justifies intuitionistic logic,
and we can reason as we are used to in intuitionistic mathematics. We are interested
in the circumstances for the existence of such a sentence. A perfect candidate for
such a sentence should express mathematical content in an attractive manner as, for
example, the sentence 0 = 1 does in the context of Heyting arithmetic HA. This
example also illustrates why this option is considered appealing to mathematicians
working in intuitionistic formal systems.

A third and less radical approach is to interpret the falsum f of minimal logic by a
sentence that we construe as a natural absurdity, i.e., a statement that we claim to be
naturally false in the context of the theory at hand. This sentence then conveys more
information than the meaningless falsum we use in the first approach, and therefore,
possibly allows us to draw more conclusions. As there may be different choices for
the absurdity, there may also be different minimal systems, each arising from one of
these absurdities.

Let us now discuss how negation is interpreted by intuitionistic mathematicians,
and how the ex falso principle is treated. Of course, everything starts with Brouwer,
who says:

The falling apart of moments of life into qualitatively different parts, to be
reunited only while remaining separated by time as the fundamental phe-
nomenon of the human intellect, passing by abstracting from its emotional
content into the fundamental phenomenon of mathematical thinking, the
intuition of bare two-oneness. This intuition of two-oneness, the basal
intuition of mathematics, creates not only the numbers one and two, but
also all finite ordinal numbers, inasmuch as one of the elements of two-
oneness may be thought of as a new two-oneness, which process may be
repeated indefinitely... ([Bro12, pp. 85–86]).

We can draw two insights from Brouwer’s thought. Firstly, one may conclude that
mathematics can work with unending totalities, such as the natural numbers. More
pertinently for our purposes, however, is the conclusion that the numbers 1 and 2 are
created by two moments falling apart into qualitatively different parts.2 Therefore, we
may construe 1 = 2 as a fundamental absurdity claiming the equality of two different
parts.

Indeed, Heyting interpreted contradictions in the following way:

I think that contradiction must be taken as a primitive notion. It seems
very difficult to reduce it to simpler notions, and it is always easy to
recognize a contradiction as such. In practically all cases it can be brought
into the form 1 = 2. ([Hey56, p. 102])

2The number 0 was only added later.
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We think that absurdity is a better expression here than contradiction. A contra-
diction seems to refer to two sentences where often only one is needed. This yields
the following infinite regress: If proving a negation always involves proving a con-
tradiction, and a contradiction consists of a sentence A and a sentence ¬A, then it
always involves proving a negation. So ultimately, this has to end in obviously false
statements: absurdities.

In a similar manner, Michael Dummett remarks in his “Elements of Intuitionism”
that “[u]nsurprisingly, negation is definable in intuitionistic arithmetic by ¬A ↔
(A→ 0 = 1)” ([DM77, p. 35]). Similarly, Anne Troelstra defines negation by stating
that “¬A is proved by giving a proof of something like A → 1 = 0” ([Tro69, p. 5]).
In particular this latter interpretation of negation can be seen as similar to how we
address this issue in this thesis: we consider different negations that are “something
like” the usual absurdity 0 = 1.

Later in this thesis, we will observe that in arithmetic and analysis, 0 = 1 proves
all formulas in a minimal context (see chapter 5). Let us note here that this is a
purely technical result, it does not give 0 = 1 a special philosophical status. The fact
that we can derive all formulas from 0 = 1 in arithmetic and analysis, does not make
0 = 1 sacred. Possibly, there are many other formulas from which everything else is
derivable, of course always depending on the system we work in (see also chapter 7).
Note that, whenever 0 = 1 is used in this thesis, it can always equivalently be replaced
by 1 = 2 and conceptually this may be the right choice.

Roy T. Cook and Jon Cogburn criticise taking 0 = 1 for the definition of negation
on the basis of a philosophical argument.

[D]efining negation in terms of any false arithmetical formula results in the
most vicious sort of circularity—the sort that immediately destroys the
epistemic and/or logical clarity and security associated with intuitionism
by its defender. ([CC00, p. 11])

They arrive at this conclusion via a model-theoretic argument where they show that
defining ⊥ as 0 = 1 yields a one-point model of arithmetic. Moreover, they claim, the
absurdity should be a statement that is in principle unprovable and not only, such
as 0 = 1, in the context of an axiom system. However, as van Atten also remarks in
[Att09, p. 134], the fact that defining negation in terms of 0 = 1 in, for instance, HA,
enables us to formally derive ex falso, does not depend on whether or not there exists
a proof of 0 = 1.

We would like to point out both worries of Cook and Cogburn are not relevant
in the case of minimal mathematics. It will be quite natural to work with models in
which f is at least partially true, i.e., models that are certainly not of the intended
form.3 Moreover, the minimal falsum f does not at all possess the strong proof-
theoretic properties that the intuitionistic falsum ⊥ has. Therefore, their proof-
theoretic worries do not transfer to the minimal case.

Let us now take a brief look at the intuitionist’s justification of the ex falso prin-
ciple. That one can derive everything from an absurdity, was criticised by Brouwer
and only added later by Heyting for practical reasons. Heyting’s justification of the
ex falso rule shows similarities with the justification of material implication:

3By this we mean, for example, models of minimal arithmetic that have finite domains. In these
cases, of course, falsum f has to be forced highlighting the absurdity of our situation.

3



1. Introduction

Axiom X [i.e., ex falso quodlibet in the form ¬p → (p → q)] may not
seem intuitively clear. As a matter of fact, it adds to the precision of the
definition of implication. You remember that p→ q can be asserted if and
only if we possess a construction which, joined to the construction p, would
prove q. Now suppose that ⊢ ¬p, that is, we have deduced a contradiction
from the supposition that p were carried out. Then, in a sense, this can
be considered as a construction, which, joined to a proof of p (which
cannot exist) leads to a proof of q. I shall interpret the implication in
this wider sense [compared to the narrower sense in Johansson’s minimal
logic]. ([Hey56, p. 106])

Van Atten (see [Att09, pp. 132–133]) critically remarks that this justification
neither fits in Heyting’s own nor in Kolmogorov’s interpretation of intuitionistic logic
along constructions.

Of course, our discussion is also connected to relevance logic (also called relevant
logic), but distinct from it. Relevance logics were developed to avoid, among other
implicational paradoxes, the ex falso principle. However, many relevantists still accept
the law of double negation elimination (intuitionistically equivalent to the law of
excluded middle) to be valid. Furthermore, negative ex falso (i.e., the principle if
‘A’ and ‘not A’, then ‘not B’) is valid in minimal logic but not in relevance logic.
Neil Tennant, as a relevantist, developed his so-called core logic (see [Ten17]), by
liberalising some of the deduction rules of intuitionistic logic. He concludes that
all intuitionistic mathematics can be done based on this system, thus, avoiding ex
falso. This work is distinct from our investigation, as we simply omit ex falso as a
rule and investigate different interpretations of negation, without altering the other
intuitionistic rules of inference.

Outline

In chapter 2, we will introduce the technical details needed for our analyses. Moreover,
we will show a first example of the shortcomings of minimal logic in intuitionistic
analysis.

Chapter 3 deals with the differences between minimal and intuitionistic proposi-
tional logic. We will restrict our language to different fragments and classify several
superminimal-subintuitionistic logics, i.e., logics of strength strictly between minimal
and intuitionistic propositional logic.

The preparation of a framework for our analysis is the central topic of chapter 4.
First of all, we will show how to interpret a theory in minimal and intuitionistic
contexts with different interpretations of negation. Moreover, we will observe several
properties of our general definitions.

In chapter 5, we will consider first-order arithmetic in a minimal context. In the
context of first-order arithmetic, we will mainly follow the first approach mentioned
above and explore minimal arithmetic with an uninterpreted falsum. This system of
minimal arithmetic is shown to be weaker than one would hope and to miss certain
essential properties. The second approach, interpreting f as 1 = 0, results in a
system which is essentially HA again. For the third approach, we will consider the
consequences of interpreting falsum differently, e.g., as 0 = 3.
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Chapter 6 deals with second-order arithmetic. Here, we will follow the third
approach mentioned above and do an analysis with an interpretation of falsum as
0 = 1, noting that not all formulas are derivable from 0 = 1 in this system and that
in this case it is not the strongest possibility of interpreting falsum.

We will treat theories of equality and apartness in chapter 7. Despite our result
that in these theories there exists an absurdity that naturally satisfies the ex falso
principle, we will work here with an uninterpreted falsum because the system that
arises turns out to behave perfectly well. In particular, we will exhibit several con-
servativity results for the minimal case that have been obtained for the intuitionistic
case by van Dalen, Statman, Smoryński and others, and add one of our own.

Because of our finding that the obvious approach to minimal arithmetic leads to
an unpleasantly weak system, we have hardly forayed into analysis except for noting
that at least for the parts formalised by Kleene, the same holds as for HA: interpreting
f as 0 = 1 leads in essence to the intuitionistic system.

We will close this thesis with a conclusion and directions for further research.

Note that the third chapter is not needed for reading chapters 4, 5, 6 and 7.
Chapters 5, 6 and 7 can be read independently of each other.
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Chapter 2

Minimal Logic

In this chapter, we will give a technical introduction into minimal logic. We will
start with the syntax of minimal logic and give a proof calculus. Afterwards, Kripke
semantics for minimal logic will be introduced. Along the way, we will also introduce
the syntax and semantics of intuitionistic logic. We conclude this chapter with a
discussion of the ex falso principle in intuitionistic analysis.

2.1 Syntax and Derivation System

The language L (MPC) of minimal propositional logic consists of the logical connec-
tives ∧,∨ and →. Additionally, it has a countable set of propositional variables P
and an extra propositional variable f . The formulas of L (MPC) are built recur-
sively in the usual way, where ¬p abbreviates p → f and where p ↔ q is short for
(p→ q) ∧ (q → p).

The language L (MQC) of minimal predicate logic consists of the logical connec-
tives ∧,∨,→,∃ and ∀. Additionally, it has a countable set Q of n-ary predicate sym-
bols and n-ary function symbols for every n, together with an extra nullary predicate
symbol f , and individual constants. The formulas of L (MPC) are built recursively
in the usual way, where, again, ¬A abbreviates A → f and A ↔ B is short for
(A → B) ∧ (B → A). An atomic formula is a formula without any logical connec-
tives. With this definition, f is an atomic formula. As usual, we refer to formulas
without free variables as sentences.

The languages L (IPC) for intuitionistic propositional logic and L (IQC) for intu-
itionistic predicate logic, are obtained from the languages L (MPC) and L (MQC) by
replacing f with the symbol ⊥, denoting the intuitionistic falsum. Hence, in these
languages, ¬A is an abbreviation for A → ⊥. Note that we choose the two different
symbols f and ⊥ to emphasise their difference in meaning.

Given a language L , we call any set of L -sentences an L -theory. When the
language is clear, we will just say theory.

We will now introduce minimal and intuitionistic logic by their Prawitz style
natural deduction system, following [TS00, Definition 2.1.1]. Minimal propositional
logic, MPC, is the theory generated by the following natural deduction system, i.e.,
by the following introduction and elimination rules:
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2. Minimal Logic

A B ∧I
A ∧B

A ∧B ∧ERA

A ∨IRA ∨B

A ∨B

[A]n

...
C

[B]n

...
C ∨E, n

C

A→ B A →E
B

A ∧B ∧ELB

B ∨ILA ∨B

[A]n

...
B →I, n

A→ B

Minimal predicate logic, MQC, is obtained by adding to the above rules the fol-
lowing inference rules:

A[x/y]
∀I∀xA

A[x/t]
∃I∃xA

∀xA ∀E
A[x/t]

∃xA

[A[x/y]]n

...
C ∃E, n

C

Note that in ∀I, y cannot be free in A nor in any open assumption. In ∃E, y can
neither be free in A,C or in any open assumption except [A[x/y]].

From the natural deduction systems of MPC and MQC we obtain the systems for
intuitionistic propositional logic, IPC, and intuitionistic predicate logic, IQC, respec-
tively, by adding the ex falso rule:

⊥
A

Note that the following is a derivation in minimal logic, where we use the →I-rule
without any assumptions:

f

A→ f

Since we construe ¬A as an abbreviation for A → f , this observation shows that
the ex falso rule is valid in minimal logic for negated formulas. With this in mind,
we can easily derive the following equivalence in our derivation systems for minimal
propositional and minimal predicate logic:

f ↔ ¬A ∧ ¬¬A.

8



2.1. Syntax and Derivation System

Therefore, we can interpret falsum f as this particular kind of contradiction. This
contradiction is stable in the sense that the derivation holds for any formula A.

Definition 2.1.1. For a logic S ∈ {MPC, IPC,MQC, IQC} we define Γ ⊢S A if and only
if the formula A is derivable from the set of assumptions Γ in the natural deduction
system for S. We write ⊢S A if A is derivable in the natural deduction system for S
from an empty set of assumptions. In that case, we call A a theorem of S.

An example of a helpful derivation in MQC, which will also be useful later on, is
proven in the following lemma.

Lemma 2.1.2. ⊢MQC (∃xA(x) → B) ↔ ∀x(A(x) → B).

Proof. We will prove this by giving derivations of the two implications in MQC:

[A(t)]1

∃xA(x) [∃xA(x) → B]2

B
1

A(t) → B

∀x(A(x) → B)
2

(∃xA(x) → B) → ∀x(A(x) → B)

The second implication can be derived as follows:

[∀x(A(x) → B)]3

A(t) → B [A(t)]1

B [∃xA(x)]2
1

B
2

∃xA(x) → B
3

∀x(A(x) → B) → (∃xA(x) → B)

This finishes the proof of the lemma.

So far, we have only defined and discussed pure logical systems. Later, we will
extend these definitions by adding non-logical axioms and rules and may then refer
to these extensions as formal systems, or just systems. For such an enriched system
S, we denote its language by L (S).

A desirable property of a system S is the disjunction property.

Definition 2.1.3. A system S has the disjunction property if whenever ⊢S A∨B for
some formulas A and B, then also ⊢S A or ⊢S B.

The disjunction property is a very distinctive property of intuitionistic logic. Clas-
sically, p∨¬p is an immediate counterexample. That also minimal propositional logic
has the disjunction property, was already proven by Johansson in [Joh37].

Moreover, Johansson already gave a translation of intuitionistic logic into minimal
logic, as was found in the Johansson-Heyting correspondence (see [Mol16] for an

9



2. Minimal Logic

analysis of this correspondence). This translation is defined by induction on the
structure of the formula A as follows:

phj := p

⊥hj := f

(A ∧B)hj := Ahj ∧Bhj

(A ∨B)hj := Ahj ∨Bhj

(A→ B)hj := Ahj → (Bhj ∨ f)
(∃xA)hj := ∃xAhj

(∀xA)hj := ∀x(Ahj ∨ f)

The crucial property of this translation is proved in the following proposition.

Proposition 2.1.4. ⊢IQC A ⇔ ⊢MQC A
hj

Proof. The direction from right to left is clear, since ⊢IQC (A∨⊥) ↔ A for all formulas
A. In order to prove the other direction, we have to check all the derivation rules.
The only interesting rules are →E and ∀E, for which we use that minimal logic has
the disjunction property to conclude from ⊢MQC B

hj ∨ f and ⊢MQC A
hj [x/t] ∨ f that

⊢MQC B
hj and ⊢MQC A

hj [x/t], because ⊬MQC f .

2.2 Kripke Models and Completeness

In this section, we will introduce Kripke semantics for minimal logic. Let us start
with the semantics for propositional logic.

Definition 2.2.1 (Kripke Frames for MPC). A Kripke frame for MPC is a triple
F = (W,≤, F ), where W is a non-empty set of nodes, ≤ a partial order on W and F
an upwards closed subset of W .

A Kripke model for MPC is a pair M = (F , V ), where F is a Kripke frame for
MPC and V a valuation, mapping the set of propositional variables to the set of
upwards closed subsets of W .

The Kripke models for minimal predicate logic are defined as follows.

Definition 2.2.2 (Kripke Frames for MQC). A Kripke frame for MQC is a quadruple
F = (W,≤, F,D), where W is a non-empty set of nodes, ≤ a partial order on W , F
an upwards closed subset of W and D = {Dw | w ∈W} a non-empty set of domains
Dw for every node w ∈W such that Dw ⊆ Dv whenever w ≤ v.

A Kripke model for MQC is a pair M = (F , V ), where F is a Kripke frame
for MQC and V a valuation, mapping the set of atomic sentences to the set of up-
ward closed subsets of W , such that for any atomic sentence P (d1, . . . , dn), we have
V (P (d1, . . . , dn)) ⊆ {w ∈W | d1, . . . , dn ∈ Dw}.

We can now define the forcing relation on our Kripke models.

10



2.3. An Example of Ex Falso in Intuitionistic Analysis

Definition 2.2.3 (Forcing on Kripke Models). Given an MPC-Kripke model M =

(W,≤, F, V ), a node w ∈W and some formula A, we define the forcing relation w ⊩ A

inductively as follows:

w ⊩ f ⇔ w ∈ F,

w ⊩ A ∧B ⇔ w ⊩ A and w ⊩ B,

w ⊩ A ∨B ⇔ w ⊩ A or w ⊩ B,

w ⊩ A→ B ⇔ for all v ≥ w : if v ⊩ A, then v ⊩ B,

w ⊩ ¬A ⇔ for all v ≥ w : if v ⊩ A, then v ⊩ f.

For an MQC-Kripke model M = (W,≤, F,D, V ) we add the following clauses:

w ⊩ P (d1, . . . , dn) ⇔ w ∈ V (P (d1, . . . , dn)),

w ⊩ ∃xA(x) ⇔ w ⊩ A(d) for some d ∈ Dw,

w ⊩ ∀xA(x) ⇔ for all v ≥ w : v ⊩ A(d) for all d ∈ Dv.

The well-known Kripke semantics for intuitionistic logic can be obtained from ours
by replacing f with ⊥ and setting F = ∅, i.e., the definition of the forcing relation is
modified in the sense that ⊥ is never forced at any node of any Kripke model. Due
to this observation, every Kripke model for intuitionistic logic is also a Kripke model
for minimal logic. The following soundness and completeness results hold.

Theorem 2.2.4 (see e.g. [Col16]). MPC is sound and complete with respect to the
class of finite, rooted Kripke models for MPC.

Theorem 2.2.5. MQC is sound and complete with respect to the class of rooted
Kripke models for MQC.

By a positive formula, we denote a formula that does not contain negation, ⊥
or f . By the positive fragment of a logic or system, we mean all positive formulas.
MPC and MQC can always be equated to the positive fragments of IPC and IQC,
respectively. That this is so, is clear from the fact that in minimal propositional and
in minimal predicate logic, falsum, f , behaves as an ordinary propositional variable
or nullary predicate.

Lemma 2.2.6 (see e.g. [JZ15]). For any formula A in the positive fragment of IQC
we have:

⊢MQC A ⇔ ⊢IQC A

Finally, we say that a theory is a consistent theory if it has a model. Note that
the single-noded model forcing all propositional variables, including f , is a model of
MPC. Similarly, the single-noded model forcing all atomic formulas, including f , is a
model of MQC. Therefore, every theory over MPC or MQC will be consistent.

2.3 An Example of Ex Falso in Intuitionistic Analysis

In Kleene’s intuitionistic formal system of analysis, I, Church’s thesis that every
effectively computable number-theoretic function is general recursive, CT, can be
given by the following schema:

∃αA(α) → ∃α(GR(α) ∧A(α)),

11



2. Minimal Logic

in whichGR(α) is a predicate expressing that α is general recursive, andA(α) contains
only α as a free function variable. We denote the instance of CT for the predicate A
by CTA. In [Mos71], Joan Moschovakis proves the consistency of CT with a certain
extension of I, under the assumption that ∃αA(α) is closed. Within this argument we
find a proof of the statement that the schema ¬¬CT is equivalent in proof strength
in I to the statement ∀α¬¬GR(α).

Moschovakis suggested to us that there is an essential use of ex falso in this proof.
We will reconstruct the proof in a more perspicuous way to uncover the minimal
invalidity of this statement.

Proposition 2.3.1. The following hold in the system I:

(i) ¬¬CT ⊢I ∀α¬¬GR(α);

(ii) ∀α¬¬GR(α) ⊢I ¬¬CTA for all predicates A.

Proof.

(i) From ¬¬CT, we derive ¬¬(∃α¬GR(α) → ∃α(GR(α)∧¬GR(α))). In I we have:

¬¬(∃α¬GR(α) → ∃α(GR(α) ∧ ¬GR(α))) → ¬¬¬∃α¬GR(α)
→ ¬∃α¬GR(α)
→ ∀α¬¬GR(α)

These steps are all minimally valid as well.

(ii) Let us suppose ∀α¬¬GR(α), then we have in I:

∃αA(α) → ∃α(¬¬GR(α) ∧A(α))
→ ∃α(¬¬GR(α) ∧ ¬¬A(α))
→ ∃α¬¬(GR(α) ∧A(α))
→ ¬¬∃α(GR(α) ∧A(α))

Again, these steps are all minimally valid as well.
In intuitionistic logic, we have ⊢IPC (p → ¬¬q) → ¬¬(p → q), so we obtain
from our result above, ∃αA(α) → ¬¬∃α(GR(α) ∧ A(α)), the desired result:
¬¬(∃αA(α) → ∃α(GR(α) ∧A(α)).1

Note that the proof of (i) works for minimal logic. Regarding (ii), as we can see
in the model given below, the intuitionistically valid implication used to derive the
final result in the proof above is not minimally valid:

⊬MPC (p→ ¬¬q) → ¬¬(p→ q)

1We note that Moschovakis seemingly made use of another intuitionistically valid propositional
implication to derive the final result, namely ¬(p → q) → (¬¬p ∧ ¬q). However, this formula is
minimally equivalent to our (p→ ¬¬q) → ¬¬(p→ q).

12



2.3. An Example of Ex Falso in Intuitionistic Analysis

w0

p,fw1

Figure 2.1

Let us now confirm our intuition that the use of minimal logic is not sufficient for
the proof of the statement

¬¬(∃αA(α) → ∃α(GR(α) ∧A(α))) ↔ ∀α¬¬GR(α).

Consider the following countermodel with Dw0
= ∅ and Dw1

= Dw2
= {t}, then w0

forces ∀α¬¬GR(α) but it does not force the left-hand-side of the equivalence.

w0

A(t), fw1

GR(t), A(t), fw2

Figure 2.2

Remark 2.3.2. This argument shows that (ii) cannot be proved in minimal logic,
but this does not mean that the full power of the ex falso principle is needed: In
Remark 3.3.8 in chapter 3, we will see that the principle (p→ ¬¬q) → ¬¬(p→ q) is
a weakened form of ex falso. We have seen that this weakened version is sufficient to
prove Proposition 2.3.1. Moreover, we will show in chapter 5 that for some parts of
intuitionistic analysis the use of intuitionistic logic can be justified even on a minimal
base, namely, by interpreting falsum by 1 = 0.

Let us conclude this discussion by noting that this is an example of a situation
where it seems that the ex falso principle is needed, but actually, a weaker principle
is sufficient. Adding the principle (p → ¬¬q) → ¬¬(p → q) to minimal logic results
in the logic SM1 that we are going to discuss in chapter 3.
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Chapter 3

Differences between Minimal and
Intuitionistic Logic

In this chapter, we will investigate the purely logical differences between the proposi-
tional logics MPC and IPC. After discussing the fundamental differences, we explain
on which fragments the two logics either coincide or differ and we examine the latter.
Finally, we analyse the consequences of adding a minimally invalid formula as an
axiom to minimal logic, obtaining superminimal logics.

3.1 Fundamental Differences

The difference in the axiomatisations of minimal and intuitionistic propositional logic
is of course the ex falso principle, which can be stated as:

p→ (¬p→ q).

Over MPC, the ex falso principle is equivalent to the following principle, called
disjunctive syllogism:

((p ∨ q) ∧ ¬p) → q.

Hence, the disjunctive syllogism, an important tool of deduction in intuitionistic
logic, does not hold in minimal logic. We can see this in following simple counter-
model:

w0

p,fw1

Figure 3.1

We have w1 ⊩ (p ∨ q) ∧ (p→ f), but w1 ⊮ q. Hence w0 ⊮ ((p ∨ q) ∧ ¬p) → q. An
even simpler countermodel would be the single-noded model on which p and f are
forced.

We now turn to the following important observation:

15



3. Differences between Minimal and Intuitionistic Logic

Remark 3.1.1. In minimal logic, the principle of negative ex falso is valid:1

(p ∧ ¬p) → ¬q.

This means that minimal logic still allows for some kind of ‘explosion’, as falsum
implies all negated formulas. The negative ex falso principle is equivalent to the
following special instance of the disjunctive syllogism:

((p ∨ ¬q) ∧ ¬p) → ¬q.

The following is a derivation of the above principle in minimal logic:

[p ∨ ¬q]3

[p]1 [¬p]2

f
¬q [¬q]1

1¬q
2¬p→ ¬q

3
(p ∨ ¬q) → (¬p→ ¬q)
((p ∨ ¬q) ∧ ¬p) → ¬q

In the remainder of this section, we will focus on finding intuitionistically valid
propositional formulas that are not minimally valid. We do so systematically by
examining different fragments of IPC and MPC.

Definition 3.1.2. Let L be either IPC or MPC, and let X be a subset of the logical
connectives of L. Then the [X]-fragment of L consists of all L-formulas φ such that
all logical connectives that appear in φ are among X. Given a natural number n, let
the [X]n-fragment of L consist of all formulas φ in the [X]-fragment such that the
variables that appear in φ are among {p1, . . . , pn}. The full fragment of L consists of
all L-formulas.

We call an [X]n-fragment of L locally finite if it contains only finitely many formu-
las up to equivalence over L. We call an [X]-fragment locally finite if [X]n is locally
finite for every natural number n.

All fragments of IPC without disjunction are locally finite. This was proven first
for the [→]-fragment by Diego in [Die65].

Proposition 3.1.3. For every formula A in the [∧,¬]-fragment of IPC we have, if
⊢IPC A, then ⊢MPC A.

Proof. Let A be any formula in the [∧,¬]-fragment of IPC and let A∗ denote the
formula obtained from A by replacing all instances of ⊥ by f . We will first prove by
induction on the structure of A that Ahj ↔ A∗, where A 7→ Ahj is the Johansson
translation defined above Proposition 2.1.4. For the base cases we have phj = p and

1Also the law of non-contradiction, ¬(p ∧ ¬p), is minimally valid, which is often thought of as
the law stating that something cannot be both true and false. Nonetheless, minimal theories for sure
have models in which a statement is both true and false.
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3.1. Fundamental Differences

⊥hj = f . The induction step for conjunction follows trivially from the induction
hypothesis, so the only case left to prove is the case for negation:

(¬A)hj ↔ (A→ ⊥)hj

↔ Ahj → (⊥hj ∨ f)
↔ Ahj → (f ∨ f)
↔ Ahj → f

↔ A∗ → f (by IH)

↔ ¬A∗

Now, if ⊢IPC A, then by Proposition 2.1.4 we know that ⊢MPC Ahj and thus, by our
previous conclusion, ⊢MPC A∗. Since A∗ is simply obtained from A by replacing ⊥ by
f , this means that MPC ⊢ A, which finishes the proof.

Lemma 3.1.4. Each formula in the [∧,∨,¬]n-fragment of MPC is equivalent to a
disjunction of formulas in the [∧,¬]n-fragment of MPC.

Proof. By induction on the structure of the formula. The base cases are disjunction-
free and therefore trivial. We have two induction steps.

Let A = B ∧ C, where B and C are equivalent to disjunctions of formulas,
∨
iBi

and
∨
j Cj , in the [∧,¬]n-fragment of MPC. Then A is equivalent to

∨
iBi ∧

∨
j Cj ,

and over MPC we have:∨
i

Bi ∧
∨
j

Cj ↔ (B1 ∧
∨
j

Cj) ∨ . . . ∨ (Bn ∧
∨
j

Cj)

↔ ((B1 ∧ C1) ∨ . . . ∨ (B1 ∧ Cm)) ∨ . . . ∨ ((Bn ∧ C1) ∨ . . . ∨ (Bn ∧ Cm))

↔ (B1 ∧ C1) ∨ . . . ∨ (B1 ∧ Cm) ∨ . . . ∨ (Bn ∧ C1) ∨ . . . ∨ (Bn ∧ Cm)

Hence, A is over MPC equivalent to a disjunction of formulas in the [∧,¬]n-fragment.
Let A = ¬B, where B is equivalent to a disjunction of formulas,

∨
iBi, in the

[∧,¬]n-fragment of MPC. Then A is equivalent to ¬
∨
iBi, and over MPC we have:

¬
∨
i

Bi ↔ ¬(B1 ∨ . . . ∨Bn)

↔ ¬B1 ∧ . . . ∧ ¬Bn

And again, A is over MPC equivalent to a disjunction of formulas in the [∧,¬]n-
fragment.

Proposition 3.1.5. For every formula A in the [∧,∨,¬]-fragment of IPC we have,
if ⊢IPC A, then ⊢MPC A.

Proof. Let A be any formula in the [∧,∨,¬]-fragment of IPC and suppose ⊢IPC A.
Then, by Lemma 3.1.4, we know that A is minimally equivalent to a disjunction
of formulas in the [∧,¬]-fragment, say ⊢MPC A ↔ A1 ∨ . . . ∨ An. Then also ⊢IPC

A↔ A1 ∨ . . . ∨An. Since IPC has the disjunction property, we know that one of the
disjuncts, say Ai, is derivable in IPC. Now, since Ai is a formula in the [∧,¬]-fragment
of IPC, we conclude using Proposition 3.1.3 that ⊢MPC Ai, and thus, using ∨I, we
conclude ⊢MPC A.
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3. Differences between Minimal and Intuitionistic Logic

So, all intuitionistically provable formulas in the fragments without implication
are also minimally provable. Together with Lemma 2.2.6 this yields that all intuition-
istically provable formulas in the fragments without either implication or negation,
are also minimally provable. In other words, minimal and intuitionistic logic are the
same on the fragments [∧,∨,→] and [∧,∨,¬]. Note, however, that this does not
mean that all fragments of minimal logic without implication are isomorphic to some
positive fragment of intuitionistic logic. The minimal fragment [∧,¬]2, for instance,
has 26 classes compared to the 23 classes of the intuitionistic fragment [∧,¬]2. This
difference between the fragments is due to the formulas: p ∧ ⊥, q ∧ ⊥ and p ∧ q ∧ ⊥,
which are intuitionistically all equivalent to ⊥. In the next section, we will go into
the details of those fragments in which minimal and intuitionistic logic differ.

3.2 Different Fragments of Minimal Logic

Since falsum behaves in MPC like any other propositional variable, we can easily
derive the following conclusion.

Proposition 3.2.1. For X ⊆ {∧,∨}, the [X,→,¬]n-fragment of minimal proposi-
tional logic is isomorphic the [X,→]n+1-fragment of intuitionistic propositional logic.

Proof. We can rewrite the [X,→,¬]n-fragment of MPC as [X,→, f ]n.

Before we go into the details of our investigation, we should make a note on the
methodology used. We work with computational methods and programs developed
for this purpose by Lex Hendriks and will restrict our attention to at most two
propositional variables. Hence, only an examination of the four fragments presented
in Table 3.1 below, will be of interest for our investigation. The table presents the
number of equivalence classes in the different fragments of the two logics.

Fragment Logic n = 1 n = 2

[→,¬] IPC 6 518
MPC 14 25165802

[∧,→,¬] IPC 6 2134
MPC 18 623662965552330

[∨,→,¬] IPC ∞ ∞
MPC ∞ ∞

[∧,∨,→,¬] IPC ∞ ∞
MPC ∞ ∞

Table 3.1: Number of equivalence classes.

Besides the limit on the number of propositional variables, we confine our search
by only considering formulas of the form A → B. This, first of all, for the following
reason: If ⊬MPC A∧B, then either ⊬MPC A or ⊬MPC B. If ⊬MPC A∨B, then both ⊬MPC
A and ⊬MPC B. Hence, if we find a formula of one of these forms that is minimally not
derivable, then already one of its subformulas is not. Therefore, implication seems
to be the most interesting building block when searching for minimally underivable
formulas. Another reason for this restriction is that it simplifies our search.
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3.2. Different Fragments of Minimal Logic

The [∧,→,¬]1-fragment of MPC
We will first define what diagrams and exact Kripke models of fragments of proposi-
tional logics are (for more details, see [Hen96]). The Lindenbaum-Tarski algebra, or
Lindenbaum algebra, of a fragment of a propositional logic is the algebra of equiva-
lence classes of all its formulas, ordered by inclusion. We will also refer to this algebra
as the diagram of a fragment. The truth set of a formula A in a model M is the set
of all nodes in M that force A.

Definition 3.2.2 (Exact Kripke model). An exact Kripke model2 for a fragment of
propositional logic is a Kripke model M with the following two properties: Firstly,
for formulas A and B in the fragment, if A ⊢ B, then the truth set of A is contained
in the truth set of B. Secondly, for any upwards closed set U of nodes in M there
exists a formula A in the fragment such that U is the truth set of A.

Only when the diagram of a fragment is a lattice, the fragment has an exact Kripke
model. In that case, the upwards closed sets of nodes in the exact Kripke model of
the fragment correspond to the nodes in the diagram. Below are given both the exact
Kripke models and the diagrams of the [∧,→,¬]1-fragments of the two logics. Note,
again, that the [∧,→,¬]1-fragment of MPC is isomorphic to the [∧,→]2-fragment of
IPC.

t
t@

@@

t
t@

@@

t
t@

@@

�
�

�
�
�

�
�
�
�
�

p→ p

¬¬p

p

¬¬p→ p

¬p

⊥

t t
tp

Figure 3.2: Diagram and exact Kripke model of [∧,→,¬]1-fragment of IPC.

2A notion first introduced by de Bruijn in [Bru75].
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3. Differences between Minimal and Intuitionistic Logic
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Figure 3.3: Diagram and exact Kripke model of [∧,→,¬]1-fragment of MPC.

The formulas in the diagram of the [∧,→,¬]1-fragment of MPC:

1. p ∧ f 10. f → p

2. p 11. ¬¬p
3. (¬p) ∧ (f → p) 12. (((¬p) → p) → p) ∧ ¬¬(f → p)

4. f 13. (f → p) → p

5. ¬p→ p 14. ¬p
6. ¬¬p→ p 15. ¬¬(f → p)

7. ¬¬p ∧ ((f → p) → p) 16. (¬p ∧ (f → p)) → p

8. ¬((f → p) → p) 17. (¬p→ p) → p

9. ¬(f → p) 18. p→ p

Note that in both IPC and MPC, falsum is equivalent to the formula ¬(p → p).
Using the diagrams in Figure 3.2 and Figure 3.3, we can now determine all the
formulas of the form A → B in the [∧,→,¬]1-fragment of IPC that are valid in IPC,
yet not in MPC. By construction of the diagrams, we know that A→ B is valid if the
node that denotes the equivalence class of A is connected to the node that denotes
the equivalence class of B, via a path that only goes downwards. When we do this
for the nodes in the diagram of the fragment for IPC we obtain the following three
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3.2. Different Fragments of Minimal Logic

implications that are not valid in MPC:

¬(p→ p) → p 4 is not above 2

¬(p→ p) → (¬¬p→ p) 4 is not above 6

¬p→ (¬¬p→ p) 14 is not above 6

These three formulas are minimally equivalent. Hence, we conclude that in the
[∧,→,¬]1-fragment of IPC there is only one formula of the form A → B that is
intuitionistically but not minimally valid.3 Note that this formula is ∧-free, and
hence is already in the [→,¬]1-fragment.

The [∧,→,¬]2-fragment of MPC
The exact Kripke model of the [∧,→,¬]2-fragment of IPC is given below.
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Figure 3.4: The exact Kripke model of the [∧,→,¬]2-fragment of IPC.

This fragment contains 2134 equivalence classes and is therefore not as manageable
as the previous fragment. One solution for making our search more feasible would be
to only consider those intuitionistically valid formulas A→ B for which the truth sets
of A and B in the exact model differ by one element. We can obtain these formulas
by taking a truth set corresponding to some formula A and adding an extra node to
it. In order for the formula to be minimally valid, it should be globally true in the
exact Kripke model of the [∧,→,¬]2-fragment of MPC, given below. This fragment
contains more than 600 trillion equivalence classes.4

3We will say more about this formula towards the end of this section, see Table 3.2.
4This result was computed first by de Bruijn, who discovered the exact model of the [∧,→]3-

fragment of IPC, with 61 nodes.
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Figure 3.5: The exact Kripke model of the [∧,→,¬]2-fragment of MPC.

An example of a formula that we have found by the method described above is:

((¬p→ q) → p) → ((¬q → p) → p).

A derivation of this formula in IPC is given below.

[¬q → p]4

¬p→ ¬¬q [¬p]3
¬¬q

[¬p]3
[q]2

[q]1

¬p→ q [(¬p→ q) → p]5

p
1q → p

p
2¬q

⊥
q

3¬p→ q [(¬p→ q) → p]5

p
4

(¬q → p) → p
5

((¬p→ q) → p) → ((¬q → p) → p)

It is difficult to get an intuition of what this formula conveys and an examination
of the derivation above does not make the meaning of the formula much clearer. We
have found several other formulas of the form A → B for which the truth sets of A
and B differ by one node. Yet, often, they were even more complex in meaning and
structure. Moreover, there are certainly interesting differences between MPC and IPC
that include disjunctions. Considering these reasons, we broaden our research to the
full fragment [∧,∨,→,¬] and restrict the length of the formulas so that we can avoid
high complexity in managing the infinite fragment.

The [∧,∨,→,¬]2-fragment of MPC
The [∧,∨,→,¬]2-fragment of MPC is the full fragment in two propositional variables.
Lex Hendriks designed programs for both generating all intuitionistic equivalence
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3.2. Different Fragments of Minimal Logic

classes of formulas up to a maximal length and for checking whether, for formulas
A and B of two different classes, the implication A → B is intuitionistically, yet not
minimally, valid.

The length len(A) of a formula is calculated in the following way:

len(p) = 1

len(¬A) = len(A) + 1

len(A ◦B) = len(A) + len(B) + 1 where ◦ ∈ {∧,∨,→,↔}

Note that brackets do not increase the length of a formula. Minimally non-
equivalent formulas of the form A → B with at most length 9 that are intuition-
istic validities but not minimal validities are given in Table 3.2 below. Of course,
there may be formulas in the same equivalence class of greater length, but we chose
representatives with a minimal length.

Formula Length
1. p→ (¬p→ q) 6
2. q → (¬q → p) 6
3. ¬(p→ p) → p 6
4. ¬(p→ p) → q 6
5. ¬¬(¬¬p→ p) 7
6. ¬¬(¬¬q → q) 7
7. ¬(p→ p) → (p ∧ q) 8
8. ¬(p→ p) → (p ∨ q) 8
9. ¬(p→ p) → (q ↔ p) 8
10. ¬(p→ q) → ¬¬p 8
11. ¬(q → p) → ¬¬q 8
12. ¬(¬p→ q) → ¬p 8
13. ¬(¬q → p) → ¬q 8
14. ¬p→ (p ∨ (p→ q)) 8
15. ¬q → (q ∨ (q → p)) 8

Formula Length
16. ¬(p→ q) → (¬p→ p) 9
17. ¬(q → p) → (¬q → q) 9
18. ¬(¬p→ (p→ q)) → p 9
19. ¬(¬p→ (p→ q)) → p 9
20. ((p→ q) → p) → ¬¬p 9
21. ((q → p) → q) → ¬¬q 9
22. (¬¬(p→ q) ↔ p) → p 9
23. (¬¬(q → p) ↔ q) → p 9
24. p→ (¬p ∨ (¬p→ q)) 9
25. q → (¬q ∨ (¬q → p)) 9
26. p→ (¬q ∨ (¬p→ q)) 9
27. q → (¬p ∨ (¬q → p)) 9
28. ¬p→ (¬q ∨ (p→ q)) 9
29. ¬q → (¬p ∨ (q → p)) 9

Table 3.2: Representatives of equivalence classes of minimal invalidities.

An interesting question that comes up is whether all formulas we have found will
give us intuitionistic logic when adding them as an axiom to minimal logic. By adding
a formula of the form A→ B to minimal logic, we mean adding the rule:

A
B

to the natural deduction system of MPC. As can be seen in the table above, the
first two formulas both represent some form of ex falso, despite the fact that they are
minimally not equivalent. Hence, when we add one of these formulas as an axiom to
MPC, the resulting logic is precisely IPC.
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3. Differences between Minimal and Intuitionistic Logic

3.3 Superminimal Logics

The results in this section are related to the work on extensions of minimal logic by
Krister Segerberg in [Seg68] and by Sergei Odintsov in [Odi08, Chapter 5 and 6]. In
fact, we will see that the logics we discover here already appeared in [Seg68]. We,
however, have used computational methods to obtain our extensions and we have
systematically considered the different fragments of minimal logic with restrictions
on the length of the formula. Moreover, in comparison to the paraconsistent log-
ics studied by Segerberg and Odintshov, we are merely interested in logics strictly
between MPC and IPC.

The logics we obtain by adding an intuitionistic validity to the axioms of minimal
logic, will always be sublogics of IPC. Before we discuss the sublogics we have found,
we give two examples of logics obtained from MPC by adding an extra axiom, that
are incomparable to IPC.

Take the formula p∨¬p. If we add this formula as an axiom to MPC, the resulting
logic is clearly not a sub-logic of IPC, because the law of excluded middle is not
intuitionistically valid. If we add this formula as an axiom to IPC, the resulting logic
is classical propositional logic, CPC, but, if we add it to MPC, the resulting logic is
not CPC. To see this, just consider the model consisting of a single node forcing f .
Then for every formula A, A∨¬A is forced on this model. However, ¬¬p→ p is not.
Therefore, when we only add p ∨ ¬p as an axiom to MPC, the formula ¬¬p → p is
not derivable in the newly obtained logic. Hence, this new logic is an extension of
minimal logic that is incomparable to intuitionistic logic.

For the other example, take the formula ¬p∨¬¬p. This is not an intuitionistically
valid formula, adding this formula to IPC results in the intermediate logic KC. All in-
stances of this formula are again valid on the single node that only forces f . However,
not all instances of ex falso are valid in this model, take for instance ¬(p → p) → p.
Therefore, adding ¬p ∨ ¬¬p as an axiom to MPC results in a logic incomparable to
IPC.

Let us call a logic that extends minimal propositional logic a superminimal logic.
Since our investigation solely leads to extensions of minimal propositional logic that
are contained in intuitionistic propositional logic, the superminimal logics we find
will all be subintuitionistic logics. From the list of 29 formulas in Table 3.2, there
are 11 formulas that give rise to intuitionistic logic when adding them as an axiom
to minimal logic. The remaining 18 formulas are given in Table 3.3 below and give
rise to the following four different superminimal logics.
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3.3. Superminimal Logics

Formula Length Logic
5. ¬¬(¬¬p→ p) 7 SM1
6. ¬¬(¬¬q → q) 7 SM1
10. ¬(p→ q) → ¬¬p 8 SM1
11. ¬(q → p) → ¬¬q 8 SM1
12. ¬(¬p→ q) → ¬p 8 SM1
13. ¬(¬q → p) → ¬q 8 SM1
20. ((p→ q) → p) → ¬¬p 9 SM1
21. ((q → p) → q) → ¬¬q 9 SM1
22. (¬¬(p→ q) ↔ p) → p 9 SM1
23. (¬¬(q → p) ↔ q) → q 9 SM1
14. ¬p→ (p ∨ (p→ q)) 8 SM2
15. ¬q → (q ∨ (q → p)) 8 SM2
24. p→ (¬p ∨ (¬p→ q)) 9 SM3
25. q → (¬q ∨ (¬q → p)) 9 SM3
26. p→ (¬q ∨ (¬p→ q)) 9 SM4
27. q → (¬p ∨ (¬q → p)) 9 SM4
28. ¬p→ (¬q ∨ (p→ q)) 9 SM4
29. ¬q → (¬p ∨ (q → p)) 9 SM4

Table 3.3: Minimal invalidities and superminimal logics.

Note that formulas 5 and 6 are also of the form A → B, where B is f or, for
instance, ¬(p → p). Let us first prove that the formulas that are grouped together
in this table, indeed give rise to the same logic. We call a formula A the p-variant
of formula B, if A is obtained from B by switching p and q, and if in A the most
left propositional variable is p. Analogously, we can say A is the q-variant of B. Let
us note that adding the p-variant or the q-variant of a formula as an axiom to MPC,
gives rise to the same logic. Therefore, it is only left to show that formulas 5, 10, 12,
20 and 22 give rise to the same logic (SM1), and that formulas 26 and 28 give rise to
the same logic (SM4).

Let us denote the logic obtained by adding formula n to MPC by Ln.

Proposition 3.3.1. L5 = L10 = L12 = L20 = L22

Proof. L5 is the logic obtained by adding ¬¬(¬¬p → p) as an axiom to MPC. Over
MPC, ¬¬(¬¬p→ p) implies ¬¬(q∨(q → p)), which is equivalent to ¬(q → p) → ¬¬q,
the q-variant of formula 10. Hence, L10 ⊆ L5. On the other hand, ¬(p → q) → ¬¬p
is minimally equivalent to ¬¬(p ∨ (p → q)). If we substitute ¬¬p for p and p for
q, we obtain the formula ¬¬(¬¬p ∨ (¬¬p → p)), which is minimally equivalent to
¬¬(¬¬p → p). Hence, ¬¬(¬¬p → p) is derivable in L10 and thus L5 ⊆ L10. If
we substitute ¬p for p in formula 10, we obtain formula 12. Hence, formula 12 is
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3. Differences between Minimal and Intuitionistic Logic

derivable in L10 and thus L12 ⊆ L10. To show the other inclusion, we observe:

⊢MPC p→ ¬¬p ⇒ ⊢MPC (¬¬p→ q) → (p→ q)

⇒ ⊢MPC ¬(p→ q) → ¬(¬¬p→ q)

⇒ ⊢MPC (¬(¬¬p→ q) → ¬¬p) → (¬(p→ q) → ¬¬p)

By substituting ¬p for p in formula 12, we conclude that ¬(¬¬p → q) → ¬¬p is
derivable in L12. So, by the above reasoning, also ¬(p → q) → ¬¬p is derivable
in L12, which is formula 10. We conclude that L12 = L10. Over MPC, formula 10
implies formula 20, so L20 ⊆ L10. If we substitute ¬p for p in formula 20, we get
a formula that is minimally equivalent to formula 12. Hence, L12 ⊆ L20 and thus
L5 = L10 = L12 = L20. Logic L22 is obtained by adding (¬¬(p→ q) ↔ p) → p as an
axiom. We observe:

⊢L22 (¬¬(p→ q) ↔ p) → p ⇒ ⊢L22 ¬p→ ¬(¬¬(p→ q) ↔ p)

⇒ ⊢L22 ¬¬(¬¬(p→ q) ↔ p) → ¬¬p
⇒ ⊢L22 ¬¬(¬¬(¬p→ q) ↔ ¬p) → ¬p

This last formula is over MPC equivalent to ¬¬(¬¬(¬p → q) → ¬p) → ¬p.
Moreover, over MPC, ¬(¬p → q) implies ¬¬(¬¬(¬p → q) → ¬p). Hence, ¬(¬p →
q) → ¬p is derivable in L22 and thus L12 ⊆ L22. Finally, over MPC, formula 10
implies formula 22, so L22 ⊆ L10. And thus L5 = L10 = L12 = L20 = L22.

Proposition 3.3.2. L28 = L26

Proof. Clearly L28 ⊆ L26, because formula 28 is obtained from formula 26 by substi-
tuting ¬p for p. On the other hand, if we substitute ¬p for p in formula 28, we obtain
the formula ¬¬p → (¬q ∨ (¬p → q)). Now, using ⊢MPC p → ¬¬p, we conclude that
we can derive formula 26, p→ (¬q ∨ (¬p→ q)), in L28. Hence, L28 = L26.

We completed showing that the formulas that are grouped together in Table 3.3,
indeed give rise to the same logic. In other words, all these formulas are representa-
tives for the same superminimal logic. In the subsequent propositions, we will prove
the strict inclusions between the four superminimal logics as shown in the figure
below.

SM1

MPC SM3 SM2 IPC

SM4

⊊⊊

⊊
⊊ ⊊

⊊

Figure 3.6: Proper inclusions of superminimal logics.

The two most left strict inclusions are clear, since SM1 and SM4 contain formulas
that are not minimally valid. Moreover, SM1 and SM4 are incomparable, in the sense
that SM1 ⊈ SM4 and SM4 ⊈ SM1, which will be shown in Proposition 3.3.7.
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3.3. Superminimal Logics

Let us describe the way we prove that for two superminimal logics SMA and
SMB , both obtained by adding a single formula A or B to minimal logic, we have
SMA ⊊ SMB . First, we can show that SMA ⊆ SMB by proving that A can be
derived in SMB , i.e., that A can be derived over MPC from substitution instances of
B. Then, we can show that SMA ⊊ SMB by finding a model of MPC on which every
substitution instance of A is valid, yet on which some substitution instance of B is
not. Since this will be a model of SMA, this means that B is not in the logic SMA

and thus SMB ⊈ SMA. Hence, SMA ⊊ SMB .

Proposition 3.3.3. SM2 ⊊ IPC

Proof. We already know that SM2 ⊆ IPC. So, we can prove SM2 ⊊ IPC by finding
a formula in IPC that is not derivable in SM2. Take the formula ¬p → (p → q) and
consider the single-noded, minimal Kripke model M1 below.

f, p

Figure 3.7: Model M1

Clearly, ¬p→ (p→ q) is not valid on M1. But, we will show that every substitu-
tion instance of the formula ¬p → (p ∨ (p → q)), formula 14, is valid on this model.
Let A and B be arbitrary formulas. Clearly, M1 ⊩ ¬A. So, we will have to show
that M1 ⊩ A ∨ (A → B). If M1 ⊩ A, we are done. If not, then M ⊮ A and thus
M1 ⊩ A → B. We can therefore conclude M1 ⊩ ¬A → (A ∨ (A → B)). Hence,
M1 is a model of SM2 but not of IPC. Therefore IPC ⊈ SM2 and this finishes our
proof.

Proposition 3.3.4. SM3 ⊊ SM2

Proof. Logic SM2 is axiomatised by formula 14, ¬p→ (p∨(p→ q)). Hence, SM2 also
contains the formula ¬¬p → (¬p ∨ (¬p → q)). Then, using that ⊢MPC p → ¬¬p, we
conclude that also p→ (¬p∨ (¬p→ q)) is derivable in SM2. This is precisely formula
24, the formula that axiomatises logic SM3. Hence, we conclude that SM3 ⊆ SM2.
Now, consider the minimal Kripke model below.

fw

f, pv

Figure 3.8: Model M2

Clearly, w ⊮ ¬p→ (p∨ (p→ q)), so formula 14 is not valid on M2. On the other
hand, we will show that for all formulas A and B we have w ⊩ A→ (¬A∨(¬A→ B)),
which are all substitution instances of formula 24. This is simple: w ⊩ ¬A, since f
is forced globally. Hence, M2 is a model of SM3 but not of SM2. We conclude
SM2 ⊈ SM3 and thus SM3 ⊊ SM2.
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3. Differences between Minimal and Intuitionistic Logic

Proposition 3.3.5. SM4 ⊊ SM3

Proof. The logic SM3 is axiomatised by formula 24, p→ (¬p∨(¬p→ q)) and the logic
SM4 is axiomatised by formula 26, p → (¬q ∨ (¬p → q)). Formula 24 is minimally
equivalent to p → (f ∨ (¬p → q)). Hence, using ⊢MPC f → (q → f), we can derive
p → (¬q ∨ (¬p → q)) in SM3. We conclude that SM4 ⊆ SM3. Consider the minimal
Kripke model below.

pw

f, pv

Figure 3.9: Model M3

It is clear that w ⊮ p→ (¬p ∨ (¬p→ q)). We prove that w ⊩ A→ (¬B ∨ (¬A→
B)) for all formulas A and B, i.e., for all substitution instances of formula 26. Suppose
w ⊮ A, then we are done, because v ⊩ ¬B. Suppose w ⊩ A. If w ⊩ ¬B, then we
are done. If w ⊮ ¬B, then necessarily w ⊩ B. But then of course w ⊩ ¬A → B

by persistency, so we are also done. We conclude that w ⊩ A → (¬B ∨ (¬A → B))

for all A and B. Hence, M3 is a model of SM4, but not a model of SM3. Therefore
SM3 ⊈ SM4 and thus SM4 ⊊ SM3.

Proposition 3.3.6. SM1 ⊊ SM3

Proof. Formula 12, ¬(¬p → q) → ¬p, gives rise to logic SM1 and formula 24, p →
(¬p∨ (¬p→ q)), gives rise to SM3. Since, over MPC, 24 implies 12, we conclude that
SM1 ⊆ SM3. Consider the minimal Kripke model below.

pw

p, qv f, pu

Figure 3.10: Model M4

We can see that p → (¬p ∨ (¬p → q)) is not valid on this model, because w ⊩ p

but w ⊮ ¬p and w ⊮ ¬p → q. Now, as in the above propositions, we prove that
¬(¬A→ B) → ¬A is valid on M4 for every formula A and B. Suppose v ⊮ A, then
w ⊩ ¬A and we are done. So, suppose v ⊩ A. Then v ⊮ ¬A, so v ⊩ ¬A → B and
thus w ⊮ ¬(¬A→ B), because v ⊮ f . Also v ⊮ ¬(¬A→ B). Therefore, we conclude
that w ⊩ ¬(¬A → B) → ¬A. Hence, M4 is a model of SM1 but not of SM3. We
conclude that SM3 ⊈ SM1 and thus we obtain the strict inclusion SM1 ⊊ SM3.

Proposition 3.3.7. SM1 ⊈ SM4 and SM4 ⊈ SM1

Proof. We first prove that SM4 ⊈ SM1. Consider model M4 in Figure 3.10. We
have already shown in the proof of the previous proposition that this is a model of
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SM1. However, p → (¬q ∨ (¬p → q)) is not valid on this model, because w ⊩ p

but w ⊮ ¬q and w ⊮ ¬p → q. Hence, this is not a model of SM4 and therefore
SM4 ⊈ SM1. For proving SM1 ⊈ SM4, consider model M3 in Figure 3.9. In the proof
of proposition Proposition 3.3.5 we have shown that this is a model of SM4. Recall
that ¬(¬p→ q) → ¬p is a representative for SM1. We will show that this formula is
not valid on M3. We can see that w ⊮ ¬p → q, so we know that w ⊩ ¬(¬p → q).
However, w ⊮ ¬p. So we conclude that w ⊮ ¬(¬p → q) → ¬p and thus M3 is not a
model of SM1. Hence, SM1 ⊈ SM4.

Remark 3.3.8. The formula ¬(¬p→ q) → ¬p, which gives rise to superminimal logic
SM1, is minimally equivalent to p → ¬¬(¬p → q). This formula can be constructed
from the formula p → (¬p → q), a form of ex falso, by weakening the consequent.
Therefore, we could see logic SM1 as the result of adding a weakened version of ex
falso to MPC. Another way we could weaken ex falso, is by taking the double negation
of the whole formula, i.e., ¬¬(p→ (¬p→ q)). This formula, in fact, gives rise to the
same logic, SM1.

Another representative of SM1 is, for instance:

(p→ ¬¬q) → ¬¬(p→ q)

We will prove this. Let us denote the logic obtained from adding (p → ¬¬q) →
¬¬(p→ q) as an axiom to MPC by L∗. As we have just mentioned, p→ ¬¬(¬p→ q)

can be taken as a representative for SM1. We observe:

⊢SM1 p→ ¬¬(¬p→ q) ⇒ ⊢SM1 ¬p→ ¬¬(¬¬p→ q) (substitution)
⇒ ⊢SM1 ¬p→ ¬¬(p→ q) (MPC-valid)
⇒ ⊢SM1 (p→ ¬¬q) → ¬¬(p→ q) (MPC-valid)

Hence, L∗ ⊆ SM1. For the other inclusion, we observe:

⊢L∗ (p→ ¬¬q) → ¬¬(p→ q) ⇒ ⊢L∗ (¬¬p→ ¬¬p) → ¬¬(¬¬p→ p) (substitution)
⇒ ⊢L∗ ¬¬(¬¬p→ p) (MPC-valid)

We note that ¬¬(¬¬p→ p) is a representative for SM1 and conclude that SM1 ⊆ L∗

and thus L∗ = SM1.
Recall from Remark 2.3.2 that the statement ¬¬CT ↔ ∀α¬¬GR(α) is not prov-

able using only minimal logic, because, in MPC, (p → ¬¬q) → ¬¬(p → q) does not
hold. However, we have just proven that there exists a superminimal-subintuitionistic
logic in which (p→ ¬¬q) → ¬¬(p→ q) is derivable. Hence, Proposition 2.3.1 can be
proved in SM1.

As we have mentioned at the beginning of this section, our work on superminimal
logics is related to the work of Segerberg ([Seg68]) and Odintsov ([Odi08]). First of
all, our logic SM1 was baptised Glivenko’s Logic by Odintsov, for the reason that, as
Segerberg already remarks, it is the weakest logic in which ¬¬A is derivable if and
only if A is classically derivable.

In Segerberg, the representative for SM1 is written as ¬¬(f → p), which is an
intuitionistically valid instance of the intuitionistically invalid Peirce’s law, because
¬¬(f → p) = ((f → p) → f) → f .
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3. Differences between Minimal and Intuitionistic Logic

Moreover, we have found out that our other logics also appear among Segerberg’s
Logics (how Odintsov denotes them, see [Odi08, Chapter 5]), in the form of disjunc-
tions:

SM2 as axiomatised by: (¬(p→ p) → p) ∨ (¬(p→ p) → (p→ q))

SM3 as axiomatised by: ¬(p→ p) ∨ (¬(p→ p) → p)

SM4 as axiomatised by: ¬p ∨ (¬(p→ p) → p)

The representatives we have found in our research as axioms for these logics, do
not appear in [Seg68] nor [Odi08]. For us, however, they are interesting as theorems,
or rules, of intuitionistic logic that are minimally invalid, but that are weaker than
ex falso. Finally, our research can easily be extended by systematically computing
minimally invalid formulas of the form A→ B of a maximal length greater than 9.
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Chapter 4

Obtaining Minimal Theories from
Intuitionistic Theories

In this chapter, we will develop a general framework for considering a theory based
on different logical systems. Our aim is to investigate the consequences of considering
certain theories in the context of minimal logic. We attempt two different approaches,
which will be formalised in the remainder of this section: In the first approach, we
add an unspecified falsum to the system and the meaning of a negated formula ¬A
becomes A → f . In the second approach, we interpret falsum by a formula in the
system. There may be several possible candidates, which will become clear when
we discuss the conditions such an interpretation has to satisfy. In some cases, there
exists a really attractive sentence from which all formulas can be derived. We will
investigate this case as well.

4.1 From Axiomatisations to Theories

From here on, we will not consider the connective ¬ as an abbreviation anymore, in
the sense that ¬A does not abbreviate A → ⊥, but we will consider ¬ a primitive
symbol of our language. We need this syntactical distinction between ¬A, A → ⊥
and A→ f , in order to interpret negation differently depending on context.

Definition 4.1.1. A set of sentences A is an axiomatisation of a theory T with
underlying logic L if T = {A | A ⊢L A}. We call A a clean axiomatisation if it is
formulated in the fragment [∧,∨,→,¬,∀,∃] (i.e., without ⊥ or f).

We will from now assume a theory to have a clean axiomatisation. Only after
a certain translation of the axioms, which we will now define, negation is given a
particular meaning.

Definition 4.1.2. Let T be a theory and ψ a sentence formulated in L (T) \ {¬}.
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We define the translation τψ by induction on formulas as follows:

τψ(A) := A for A propositional or atomic
τψ(A ◦B) := τψ(A) ◦ τψ(B) with ◦ ∈ {∧,∨,→}
τψ(¬A) := τψ(A) → ψ

τψ(∀xA) := ∀xτψ(A)
τψ(∃xA) := ∃xτψ(A)

Note that, since we require ψ to be negationless, we have τψ(ψ) = ψ. Now, given
any clean axiomatisation A for a theory T, let Aψ := {τψ(A) | A ∈ A}. We can then
define:

Tψ := {B | Aψ ⊢IQC τψ(B)},
MTψ := {B | Aψ ⊢MQC τψ(B)}.

We will say that a formula B is derivable in Tψ, Tψ ⊢ B, whenever B ∈ Tψ. And,
similarly, MTψ ⊢ B whenever B ∈ MTψ.

We require an interpretation ψ of falsum to be negationless because we want to
avoid circularity, as we do not want to interpret negation in terms of negation.

The following proposition follows immediately from the above definitions.

Proposition 4.1.3. Let T be a theory and ψ a sentence formulated in L (T) \ {¬}.
Then Tψ is closed under the natural deduction rules of IQC, and MTψ is closed under
the natural deduction rules of MQC.

The following lemma shows that negation behaves as intended in the systems Tψ
and MTψ.

Lemma 4.1.4. We have Tψ ⊢ ¬A↔ (A→ ψ) and MTψ ⊢ ¬A↔ (A→ ψ).

Proof. By the definition of the translation τψ we have:

τψ(¬A↔ (A→ ψ)) = τψ(¬A) ↔ τψ(A→ ψ)

= (τψ(A) → ψ) ↔ (τψ(A) → τψ(ψ))

= (τψ(A) → ψ) ↔ (τψ(A) → ψ)

Hence, using ⊢MPC p→ p, we can conclude that Aψ ⊢MQC τψ(¬A↔ (A→ ψ)), which
means that both MTψ ⊢ ¬A↔ (A→ ψ) and Tψ ⊢ ¬A↔ (A→ ψ) hold.

We will sometimes say that we add a certain logic to a theory. By adding in-
tuitionistic logic to a theory T, we mean to obtain the theory T⊥, and by adding
minimal logic to a theory T, we mean to obtain the theory MTf . If the original
theory T is an intuitionistic theory, i.e., a theory over IQC such that ⊥ ∈ L (T),
then the resulting theory T⊥ is precisely the original theory T. Take, for instance,
Heyting arithmetic, then HA⊥ = HA. Similarly, if the original theory T is a minimal
theory, i.e., a theory over MQC such that f ∈ L (T), then the resulting theory MTf
is precisely the original theory T. Therefore, we may assume that every intuitionistic
theory is of the form T⊥ and every minimal theory is of the form MTf .
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Having given the necessary definitions, we can now observe some general properties
of the different theories.

A formula A is an intuitionistic theorem when ⊢IQC A, i.e., when A is derivable in
the natural deduction system for IQC from an empty set of assumptions.

Proposition 4.1.5. Let T be an intuitionistic theory. Then any formula formulated
in L (T) is either an intuitionistic theorem, equivalent to ⊥, or, equivalent to a ⊥-free
formula.

Proof. Let T be any intuitionistic theory. We will show by induction on formulas
that for any well-formed formula A in L (T ), the above claim holds.

The cases for A = ⊥ and A atomic are trivial.

Suppose A = B ∨ C. If B or C is an intuitionistic theorem, then A is too. If
B is equivalent to ⊥ or C is equivalent to ⊥, then A is equivalent to C or A
is equivalent to B, respectively. Finally, if B and C are both equivalent to a
⊥-free formula, then A as well.

Suppose A = B ∧ C. If B or C is equivalent to ⊥, then A is too. If B is an
intuitionistic theorem, then A is equivalent to C and if C is an intuitionistic
theorem, then A is equivalent to B. Finally, if B and C are both equivalent to
a ⊥-free formula, then so is A.

Suppose A = B → C. If B is equivalent to ⊥, then A is an intuitionistic
theorem. If C is equivalent to ⊥, then we can rewrite A as ¬B. Then, in case B
is an intuitionistic theorem, A is equivalent to ⊥ and in case B is ⊥-free, then
A is too. If B is an intuitionistic theorem, then A is equivalent to C. If C is an
intuitionistic theorem, then A is too. Finally, if both B and C are equivalent
to a ⊥-free formula, then A as well.

Suppose A = ∃xB. If B is ⊥-free, then A is too. If B is equivalent to ⊥, then
A as well. And, if B is an intuitionistic theorem, then so is A.

The case for A = ∀xB works analogously to the previous case.

This finishes our proof by induction.1

An intuitionistic theory T is consistent if T ⊬ ⊥. An immediate consequence of
the previous proposition is the following corollary.

Corollary 4.1.6. If A is an axiomatisation of a consistent intuitionistic theory T,
then there exists a clean axiomatisation A∗ of T.

Proof. By Proposition 4.1.5 we know that all formulas in A are, over T, equivalent
to ⊥-free formulas or intuitionistic theorems. Hence, we can construct an equivalent
axiomatisation A∗ of T that is clean.

1Note that we do not have to prove the case for negation, since T is the same theory as T⊥ and
in the latter ¬A is equivalent to A→ ⊥.
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Note that the standard axiomatisations of the intuitionistic theory of arithmetic
and the intuitionistic theory of apartness are clean axiomatisations. The following
corollary demonstrates that when we add minimal logic to an intuitionistic theory,
we may assume that the resulting theory is ⊥-free.

Corollary 4.1.7. For an intuitionistic theory T, we may assume that all sentences
derivable in the theory MTψ are ⊥-free whenever ψ is ⊥-free.

Proof. Let A be an axiomatisation of some intuitionistic theory T. We may assume,
by Corollary 4.1.6, that A is clean. Hence, by definition of MTψ, ⊥ will not occur in
any sentence derivable in this theory.

If, in one of the systems Tψ or MTψ, the negation of a formula A is not equivalent
to A→ ⊥, we will call it a pseudo-negation.

Example 4.1.8. In chapter 5, we will encounter the theories MHAk=0 for some nat-
ural number k. These theories are axiomatised by the axioms of HA with underlying
logic MQC, where ¬A is equivalent to A→ (k = 0).

4.2 Properties of Tψ and MTψ

As we have mentioned before, we want to examine the consequences of interpreting
falsum when we add minimal logic to a certain theory. MTψ is the theory we obtain
when we add minimal logic to the theory T, in which we interpret falsum by some
sentence ψ. By definition of MTψ, the sentence ψ is negationless. Besides that, we
want to add the following requirement for ψ: we require that the negation of ψ is
derivable in MTf , i.e., that MTf ⊢ ψ → f . This requirement is necessary to preserve
the intended meaning of negation: we want ψ to be an absurdity, hence we need ψ

to lead to a ‘contradiction’ in the original minimal system MTf .2
For some theories T, we can find a sentence that naturally satisfies ex falso, i.e.,

such that from this sentence all formulas are derivable. In general, for any theory in
a language containing only finitely many relation symbols, there always exists such a
sentence.

Proposition 4.2.1. In any theory that contains only finitely many relation symbols,
there exists a sentence from which all formulas can be derived.

Proof. Let T be a theory containing the relation symbols R1, . . . , Rn with arities
m1 . . . ,mn. We then consider the conjunction of the universal quantifications over
all relations between all elements and over the negations of all relations over all
elements: ∧

1≤i≤n

∀x1 . . . ∀xmi
Rix1 . . . xmi

∧
∧

1≤i≤n

∀x1 . . . ∀xmi
¬Rix1 . . . xmi

.

By construction of this sentence it is clear that it implies f , or ⊥, depending on the
logic of the theory, and that it implies all atomic formulas. By an easy induction on
formulas we can then prove that from this sentence all formulas can be derived.

2Note that for a complete theory this requirement is directly satisfied if ψ is not derivable.
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Note, however, that the sentence in the proof above contains negations and is
therefore not of the form we desire for an interpretation of falsum. Still, it might be
possible that it is minimally equivalent to a negationless sentence (this is the case, e.g.,
in the minimal theory of equality and apartness, see Proposition 7.1.2). Moreover,
this sentence is a rather obvious candidate for an interpretation of falsum if the goal
is to satisfy the ex falso principle. But in most cases, this sentence is not so short
and attractive. We are mostly interested in finding sentences that in fact are short
and from which perhaps ‘surprisingly’ all formulas can be derived.

Remark 4.2.2. Let us consider only the positive part of the above sentence, that is:

ψ :=
∧

1≤i≤n

∀x1 . . . ∀xmi
Rix1 . . . xmi

.

It is clear that we can derive all positive formulas from this sentence. Moreover, if
there exists a positive formula A whose negation ¬A is derivable in the theory (M)Tψ,
then we can derive all formulas from ψ in this theory. In this case, we have found a
negationless sentence that satisfies the ex falso principle.

Proposition 4.2.3. If in some formal system (M)Tψ, there exists a sentence A such
that ¬A implies all formulas, then ¬A is equivalent to ψ in (M)Tψ.

Proof. Suppose (M)Tψ ⊢ ¬A → B for all formulas B, then we also have (M)Tψ ⊢
¬A→ ψ. Using Lemma 4.1.4 and by the fact that in minimal logic ψ → (A→ ψ) is
provable, we also have (M)Tψ ⊢ ψ → ¬A. Hence, (M)Tψ ⊢ ¬A↔ ψ.

Recall that every theory over minimal logic is of the form MTf . The above
proposition immediately gives us the following useful insight.

Theorem 4.2.4. Let T be a minimal theory and A a formula such that in T all
formulas are derivable from ¬A. Then, f naturally satisfies the ex falso principle.

A direct consequence of Proposition 4.2.3 is the following corollary. Recall that a
formula A is stable in a formal system S if S ⊢ ¬¬A→ A.

Corollary 4.2.5. If in some formal system (M)Tψ, there exists a stable sentence A
from which all sentences are derivable, then (M)Tψ ⊢ A↔ ψ.

In particular, if in MTf there exists a stable sentence A from which all sentences
are derivable, then MTf ⊢ A↔ f . In that case, all possible interpretations for falsum
are equivalent. Unfortunately, we have not been able to find a convincing concrete
example to apply this corollary.

4.3 Comparison of Intuitionistic and Minimal Theories:
Conservativity Results.

For the comparison of adding either minimal or intuitionistic logic to a theory, we
distinguish different theories on the basis of their axiomatisation in the following way:
Firstly, the axiomatisation of a theory can be positively given, or positive, by which
we mean that no axiom contains a negation. Secondly, we call a theory simple if
all axioms in the axiomatisation that contain negation, are of the form ¬A with A
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4. Obtaining Minimal Theories from Intuitionistic Theories

positive. We call a formula of this form, ¬A with A positive, a simple negation.
Finally, a theory can be neither positive nor simple, i.e., the axiomatisation of the
theory contains more complex axioms that contain negation. For a simple system,
it seems a reasonable choice to interpret falsum as A where ¬A is a simple axiom.
An example of a simple theory is Robinson arithmetic, Q. Heyting arithmetic, HA, is
rather close to being such a theory, a fact to which we will return in chapter 5. An
example of a theory that is neither positive nor simple is the theory of apartness, AP,
which we will discuss in chapter 7.

We will now observe some general features of the different kinds of theories.

Definition 4.3.1 (Conservative extension). A theory T’ is a conservative extension
of, or conservative over, a theory T if T ⊆ T’ and if for every sentence A formulated
in the language of T it holds that T′ ⊢ A if and only if T ⊢ A.

The following proposition shows that any intuitionistic theory proves the same
positive sentences as the corresponding minimal theory.

Proposition 4.3.2. Let T be a positive theory. Then T⊥ is conservative over MTf
with respect to positive sentences.

Proof. We will only sketch the proof. Let A be a sentence formulated in L (MTf ).
We then need to show that T⊥ ⊢IQC τ⊥(A) if and only if Tf ⊢MQC τf (A). But, since
T and A are negation-free, this comes down to showing that for any positive sentence
A we have ⊢IQC A if and only if ⊢MQC A. In order to show this, we will temporarily
switch from the natural deduction systems for IQC and MQC to one of Gentzen’s
sequent calculus systems for IQC and MQC, e.g., G3i and G3m as described in [TS00,
Definition 3.5.1].3

Now, if ⊢IQC A, there exists a derivation of A in G3i. The system G3i has cut
elimination and thus, as a consequence of the subformula property, we know that
there exists a deduction of A, with an empty set of open assumptions, in which only
logical rules and axioms for the logical operators occurring in A appear. Hence,
there is a derivation of A in which ⊥ does not occur. This means that there exists
a derivation of A in the weaker minimal sequent calculus G3m, namely, the same
derivation. This derivation translates to a derivation of A in the natural deduction
system for MQC, i.e., ⊢MQC A.

An immediate consequence, already stated in Lemma 2.2.6, of the above proposi-
tion is that IQC and MQC prove the same positive formulas (i.e., IQC is conservative
over MQC with respect to positive formulas).

Let us now give a sequence of helpful results concerning positive theories.

Proposition 4.3.3. Let T+ be a positive theory. If T+ ⊢MQC ¬A→ ¬B for positive
sentences A and B, then T+ ⊢MQC B → A.

3We will not go into the details of these systems here, but refer the reader to the reference
mentioned.
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Proof. Let T+ be a positive theory, then:

T+ ⊢ ¬A→ ¬B ⇒ T+ ⊢ (A→ f) → (B → f)

⇒(∗) T+ ⊢ (A→ A) → (B → A)

⇒ T+ ⊢ B → A

(∗): This substitution is valid since f does not occur in T+, A or B.

Remark 4.3.4. The previous proposition does not hold for IQC. To see this, we can
use the fact that IPC ⊢ ¬p → ¬((p → q) → p), but IPC ⊬ ((p → q) → p) → p. In
Remark 5.5.1 we will make this counterexample concrete, using a positive formulation
of Heyting arithmetic.

Proposition 4.3.5. Let T+ be a positive theory. If T+ ⊢MQC ¬A→ (¬B → ¬C) for
positive sentences A, B and C, then T+ ⊢MQC C → A ∨B.

Proof. Let T+ be a positive theory, then:

T+ ⊢ ¬A→ (¬B → ¬C) ⇒ T+ ⊢ (¬A ∧ ¬B) → ¬C
⇒ T+ ⊢ ¬(A ∨B) → ¬C
⇒ T+ ⊢ C → A ∨B (by Proposition 4.3.3)

Proposition 4.3.6. Let T = T+ ∪ {¬A0} be a simple theory, where T+ is a positive
theory and A0 a positive sentence. Then T+ ∪ {¬A0} is conservative over T+ with
respect to L (T+) in MQC.

Proof. Let T be a positive theory and A a positive sentence, then:

T+ ∪ {¬A0} ⊢ A ⇒ T+ ⊢ ¬A0 → A

⇒ T+ ⊢ (A0 → f) → A

⇒(∗) T+ ⊢ (A0 → A0) → A

⇒ T+ ⊢ A

(∗): This substitution is valid since f does not occur in T+ or A.

Remark 4.3.7. If T is a simple theory of the form T = T+ ∪ {¬A0}, then A0 is a
possible interpretation for falsum and, moreover, every other possible interpretation
for falsum will be at least as strong as A0. We can see this as follows. Suppose
T ⊢ ¬A, with A positive. Then T+ ⊢ ¬A0 → ¬A, i.e., T+ ⊢ (A0 → f) → (A → f).
We can substitute A0 for f , since f is just a propositional variable not occurring in
T+, A or A0. We then obtain T+ ⊢ A → A0. So, if A0 proves all sentences, or a
subclass of them, then so does A.

We hereby conclude our general observations and we will turn to concrete examples
in the following three chapters. There are several formal theories in which there
exists a short and clear sentence from which all formulas are derivable without using
ex falso. Hence, when we add minimal logic to such a theory and interpret falsum
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as such a particular sentence, the resulting minimal theory naturally satisfies the ex
falso principle. We will see in the subsequent chapter that the sentence 0 = 1, or for
instance 1 = 2, is an example of such short and clear, but powerful sentence in the
context of several theories.
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Chapter 5

First-Order Minimal Heyting
Arithmetic

In this chapter, we will consider first-order minimal Heyting arithmetic. After in-
troducing Heyting arithmetic in section 5.1, we will investigate the system MHAf ,
in sections 5.2–5.4, with an uninterpreted falsum. This system has the disjunction
and existence property, and satisfies the propositional variant of de Jongh’s theo-
rem. However, we will see that MHAf is rather weak: Equality is not stable and
not all primitive recursive functions are representable. To prove these results we will
introduce several non-standard models for minimal arithmetic.

Finally, in section 5.5, we will briefly investigate the system MHA0=1, where falsum
is interpreted as 0 = 1, and prove that it is equivalent to the intuitionistic system
HA0=1. The latter system has the same proof-strength as HA. Moreover, 0 = 1 is the
strongest possible interpretation for falsum. We will see that there are many other
candidates for falsum that are weaker than 0 = 1. The reason for this is that even
though it is provable in MHAf that 0 is not a successor, MHAf does have models in
which 0 is a successor.

5.1 Heyting Arithmetic

Let us first take a look at Heyting arithmetic, HA, the formal system of intuitionistic
first-order arithmetic (see e.g. [TD88, Chapter 3.3.1]). It has the same language and
non-logical axioms as Peano arithmetic, but uses first-order intuitionistic predicate
logic as its underlying logic.

(1) ∀x(x = x)

(2) ∀x∀y(x = y → y = x)

(3) ∀x∀y∀z(x = y → (y = z → x = z))

(4) ∀x∀y(x = y → Sx = Sy)

(5) ∀x∀y(Sx = Sy → x = y)

(6) ∀x¬(Sx = 0)
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5. First-Order Minimal Heyting Arithmetic

(7) ∀x(x+ 0 = x)

(8) ∀x∀y(x+ Sy = S(x+ y))

(9) ∀x(x× 0 = 0)

(10) ∀x∀y(x× Sy = x× y + x)

Induction schema, for every formula A:

(I) (A(0) ∧ ∀x(A(x) → A(Sx))) → ∀xA(x)

Let us denote the axioms and the induction schema above by AHA. We note that
HA has the disjunction and existence property and satisfies de Jongh’s theorem. De
Jongh’s theorem is the result that intuitionistic propositional logic is precisely the
logic of Heyting arithmetic.

Theorem 5.1.1 (de Jongh, [Jon70]). Let A be any propositional formula, then IPC ⊢
A(p1, . . . , pn) if and only if for all arithmetical sentences α1, . . . , αn we have HA ⊢
A(α1, . . . , αn).

A Kripke model for HA is simply a Kripke model K for intuitionistic predicate
logic for the language of HA, such that K ⊩ HA. Equality is interpreted at each node
as a congruence relation.

The following result conveys the idea that in Heyting arithmetic, 0 = 1 is a natural
candidate for falsum.

Proposition 5.1.2. In Heyting arithmetic, we can derive all formulas from 0 = S0,
without using ex falso.

Proof. First, note that ⊥ is derivable from 0 = S0, since 0 = S0 implies ∃x(Sx = 0).
Now, we will show that ⊢HA 0 = S0 → ∀x(x = 0) by proving ⊢HA ∀x(0 = S0 → x = 0)

by the following easy induction:

x = 0 : Since ⊢HA 0 = 0, then ⊢HA 0 = S0 → 0 = 0;

x→ Sx : If we have ⊢HA 0 = S0 → x = 0, then ⊢HA 0 = S0 → Sx = S0

and thus ⊢HA 0 = S0 → Sx = 0.

This yields that for all x and y we have 0 = S0 → x = 0 and 0 = S0 → y = 0, and
thus 0 = S0 → (x = 0 ∧ y = 0) → x = y. Therefore, we conclude ⊢HA ∀xy(0 = S0 →
x = y), i.e., ⊢HA 0 = S0 → ∀xy(x = y). The atomic formulas of HA, except ⊥, are of
the form s = t, where s and t are terms. Since ⊢HA 0 = S0 → ∀xy(x = y), then ⊢HA
0 = S0 → s = t for all terms s, t. Therefore, we conclude that ⊢HA 0 = S0 → P for
all atomic formulas P . By induction on formulas we establish that ⊢HA S = S0 → A

for all formulas A:

A = B ∧ C:

[0 = S0]1
IH

B

[0 = S0]1
IH

C
B ∧ C 1

0 = S0 → B ∧ C
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A = B ∨ C:

[0 = S0]1
IH

B
B ∨ C 1

0 = S0 → B ∨ C

A = B → C:

[0 = S0]2 [B]1

0 = S0 ∧B
0 = S0 IH
C 1

B → C 2
0 = S0 → (B → C)

A = ∃xB(x):

[0 = S0]1
IH

B(x)
∃I (x free for x in B(x))

∃xB(x)
1

0 = S0 → ∃xB(x)

A = ∀xB(x):

[0 = S0]1
IH

B(x)
∀I (x not free in ‘0=S0’)

∀xB(x)
1

0 = S0 → ∀xB(x)

This finishes the proof of the theorem.

Let us note that this result extends to Kleene’s system I and, for instance, to
the system of intuitionistic analysis with variables for sequences, EL. Moreover, it
extends to any system where function symbols are used exclusively via their values.
Even equality between functions can be added as long as this equality is extensional.

5.2 Metamathematical Properties of Minimal Arithmetic

We can add minimal logic to the theory HA in the way described in Definition 4.1.2.
We then obtain the theory MHAf = {A | Af

HA ⊢MQC τf (A)}, which is the deductive
closure under minimal predicate logic of AHA, where ¬A is defined as A → f and
where f can be used in instances of the induction schema. We baptise the theory
MHAf as the formal system of ‘minimal first-order arithmetic’.

Besides instances of the induction schema, the only axiom containing negation in
HA and in MHAf is ∀x¬(Sx = 0). Note that MHAf ⊢ ∀x¬(Sx = 0) ↔ ∀x(Sx = 0 →
f), by Lemma 4.1.4. Hence, using Lemma 2.1.2, we know that in MHAf , and thus
in HA, ∀x¬(Sx = 0) is equivalent to ¬∃x(Sx = 0). For this reason HA is close to
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5. First-Order Minimal Heyting Arithmetic

being a simple theory, but not quite, because there can be negations in instances of
the induction schema.

Similar to the case of HA, a Kripke model for MHAf is simply a Kripke model K
for minimal predicate logic for the language of MHAf , as defined in Definition 2.2.2,
such that K ⊩ MHAf . Equality is interpreted at each node as a congruence relation.

We will first show that MHAf with regards to metamathematical properties is
much like HA. It has the disjunction property and the existence property and we will
prove de Jongh’s theorem for MHAf with respect to MPC. The latter makes clear
that MHAf really behaves as a ‘minimal’ theory.

Remark 5.2.1. In HA, and in various other intuitionistic systems, the disjunction
property is reducible to the existence property by the following observation:

HA ⊢ (A ∨B) ↔ ∃x((x = 0 → A) ∧ (¬(x = 0) → B)).

However, this is not provable anymore when we consider minimal arithmetic:

MHAf ⊬ (A ∨B) → ∃x((x = 0 → A) ∧ (¬(x = 0) → B)).

Let us prove this. Suppose MHAf ⊢ (A ∨ B) → ∃x((x = 0 → A) ∧ (¬(x = 0) → B))

and instantiate B with 1 = 0. Then:

MHAf ⊢ (A ∨ 1 = 0) → ∃x((x = 0 → A) ∧ (¬(x = 0) → 1 = 0))

⇒ MHAf ⊢ (f → (A ∨ 1 = 0) → ∃x((x = 0 → A) ∧ (¬(x = 0) → 1 = 0)))

⇒ MHAf ⊢ (f → (A ∨ 1 = 0) → ∃x((x = 0 → A) ∧ (1 = 0)))

⇒ MHAf ⊢ (f → (A ∨ 1 = 0) → 1 = 0 ∧ ∃x((x = 0 → A)))

⇒ MHAf ⊢ f → (A→ 1 = 0)

Let A be f . We observe that the above derivation cannot be the case, because, we
would have to conclude that MHAf ⊢ f → (f → 1 = 0), i.e., MHAf ⊢ f → 1 = 0.
That this fails, will become clear in Lemma 5.3.2, where we encounter models of MHAf
in which f is forced, but 0 = 1 is not. This means that for MHAf the disjunction
property needs to be proven separately from the existence property.

The disjunction property of MHAf can be proved similarly to the disjunction
property for HA, see e.g. [JVV11, Lemma 5.1].

Theorem 5.2.2. MHAf has the disjunction property.

Proof. To prove this, we use what is known as Smoryński’s trick: Given any set of
MHAf -models, we can take their disjoint union and add the standard model N below
as the new root α0. A quick check of the axioms allows us to conclude that this is
again a model of MHAf .
Now, if MHAf ⊢ A ∨ B, but MHAf ⊬ A and MHAf ⊬ B. We know, by completeness
of MQC, that there exist MHAf -countermodels for A and B. Apply Smoryński’s
trick and conclude that α0 ⊮ A ∨ B, which is a contradiction. Hence, MHA has the
disjunction property.
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Theorem 5.2.3. MHAf has the existence property.

Proof. Works analogously to the proof for HA, using again Smoryński’s trick.

Let us now prove de Jongh’s theorem for MHAf with respect to MPC.

Theorem 5.2.4. Let A be a propositional formula, then MPC ⊢ A(p1, . . . , pn, f) if
and only if for all arithmetical sentences α1, . . . , αn we have MHAf ⊢ A(α1, . . . , αn, f).

Proof. The direction from left to right is trivial, since the underlying logic of MHAf
is MQC. We prove the other direction by contraposition. If MPC ⊬ A(p1, . . . , pn, f),
then IPC ⊬ A(p1, . . . , pn, f), because MPC corresponds to the positive fragment of
IPC and A(p1, . . . , pn, f) is positive in IPC. Then we know, by de Jongh’s theorem,
that there exists a model of HA with root w0 and arithmetical sentences α1, . . . , αn
and β such that w0 ⊮ A(α1, . . . , αn, β). Let us give f the valuation of β. Then
w0 ⊮ A(α1, . . . , αn, f). We show that M is a model of MHAf , where we take the
valuation for f to be the one for β. To do so, we have to show that all axioms
of MHAf hold in α0. There are only two non-trivial cases to check. Firstly, the
axiom ∃x(Sx = 0) → f . This axiom trivially holds in w0 since ∃x(Sx = 0) is forced
nowhere, because M is a model of HA. Secondly, we have to make sure that the
induction axioms go through. But since f is interpreted as β and the induction
axioms hold with instances of β, they also hold with instances of f . Hence, M is a
model of MHAf and therefore we conclude MHAf ⊬ A(p1, . . . , pn, f).

We will now prove that in minimal arithmetic, like in HA, all atomic formulas are
decidable.

Lemma 5.2.5. MHAf ⊢ ∀xy(x = y ∨ (x = y → ∃x(Sx = 0)))

Proof. By induction on x.

The case x = 0 we show by induction on y.

(i) For y = 0 we have 0 = 0, so we are done.
(ii) For y → Sy we have 0 = Sy → ∃x(Sx = 0) and so we are also done.

For the induction step, we assume ∀y(x = y ∨ (x = y → ∃x(Sx = 0))) and we
show ∀y(Sx = y ∨ (Sx = y → ∃x(Sx = 0))) by induction on y.

(i) For y = 0 we of course have Sx = 0 → ∃x(Sx = 0).
(ii) For y → Sy we assume x = y ∨ (x = y → ∃x(Sx = 0)). Clearly, if

x = y then Sx = Sy, and, if x = y → ∃x(Sx = 0) then Sx = Sy →
∃x(Sx = 0), by using that ∀xy(x = y ↔ Sx = Sy). Hence, we conclude
Sx = Sy ∨ (Sx = Sy → ∃x(Sx = 0)) and this finishes our proof by
induction.

Corollary 5.2.6. In MHAf , all atomic formulas are decidable.

Proof. As a consequence of the above lemma, since MHAf ⊢ ∃x(Sx = 0) → f , we
conclude MHAf ⊢ ∀xy(x = y ∨ ¬(x = y)).

In the next section, we will see that, contrary to decidability, stability fails for
atomic formulas in MHAf .
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5.3 Models of Minimal Arithmetic

In this section, we will study the structure of non-standard models of minimal arith-
metic. As we have mentioned before, a model of minimal arithmetic is a Kripke model
for MQC on which the axioms of MHAf are valid. The model needs, at each node w,
an interpretation of the constant 0 and an interpretation of Sx for each element x
in the domain of w. Recall that Dw ⊆ Dv whenever w ≤ v and note that Skx is an
abbreviation for applying the successor function k times to the element x.

Definition 5.3.1 (false k-circle). For any natural number k, the false k-circle is the
single-noded Kripke model for MQC, M = {∗}, with domain D∗ = {0, . . . , k − 1},
such that {∗} ⊩ f , where we interpret the function symbols and constant as follows:

0 := 0, a+ b := (a+ b)mod k, a · b := (a · b)mod k and Sa := (a+ S0)mod k.

0k−1

S

Figure 5.1

Lemma 5.3.2. The false k-circle is a model of MHAf .

Proof. Let k be given and let M be the false k-circle. We have to check axioms (1-10)
and the induction schema (I). Almost all axioms are clear to hold from the way we
defined the operations, as the modulo operations ‘inherit’ these properties from the
usual operations · and +. We will check axiom (8) and (I):

a+ Sb = (a+ Sb)mod k

= (a+ (b+ 1)mod k)mod k

= (a+ (b+ 1))mod k

= ((a+ b) + 1)mod k

= S(a+ b)

Suppose, for some formula A, that A(0) and ∀x(A(x) → A(Sx)) are forced at the
only node in M. Then, by applying ∀x(A(x) → A(Sx)) k times, we know that
A(0), A(1), . . . , A(k) are forced. So, for all x in the domain of the singleton node in
the model, A(x) is forced. Hence, ∀xA(x) is forced and thus the induction scheme is
valid.

Abusing terminology, we will also speak of a false k-circle as part of a Kripke
model with several nodes, so, when at some node the interpretations of 0 and S on
its domain generate a natural number k such that Sk0 = 0. We can also imagine
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domains with circles in which 0 does not occur, but for which there is an element x
such that Skx = x for some natural number k. Such a circle we will denote with a
zeroless false k-circle.

Lemma 5.3.3. MHAf ⊢ ∃x(Skx = x) ↔ Sk0 = 0.

Proof. The direction from right to left is clear. For the other direction, we know by
Lemma 2.1.2 that ∃x(Skx = x) → Sk0 = 0 is over MQC equivalent to ∀x(Skx = x→
Sk0 = 0). We prove the latter by induction on x. The case for x = 0 is clear. Now
suppose Skx = x→ Sk0 = 0, then:

SkSx = Sx→ Sk+1x = Sx

→ SSkx = Sx

→ Skx = x (by axiom (5))
→ Sk0 = 0

A consequence of this lemma is that whenever a node in a model of MHAf contains
a zeroless false l-circle, the same node also contains a false k-circle for some divisor
k of l, because the induction schema fails in models with nodes where we have a
false k-circle together with a zeroless false l-circle where k is not a divisor of l. In
particular, if a node has a domain with a zeroless false l-circle for some l, the domain
also has a false k-circle, for some k.

We will now prove a much stronger result. Namely, a model of MHAf cannot have
a node with a domain containing a zeroless false l-circle for any natural number l. In
order to show this, we will first prove the following lemma.

Lemma 5.3.4. No domain of any node in any model of MHAf contains both a false
k-circle and a zeroless false l-circle, for some natural numbers k and l.

Proof. Suppose, towards a contradiction, there exists a model M of MHAf with node
w of which the domain Dw contains both a false k-circle and a zeroless false l-circle,
for some natural numbers k and l. This means that Dw is the set {0, 1, . . . , k −
1, 0′, 1′, . . . , (l − 1)′}, where the successor function is defined in the following way:

Dw

0k−1

S
0′(l−1)′

S

Figure 5.2
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Let A(x) be the formula x = 0 ∨ Sx = 0 ∨ . . . ∨ Sk−1x = 0. We will prove that
w ⊩ A(0) ∧ ∀x(A(x) → A(Sx)). We have w ⊩ A(0), because w ⊩ 0 = 0. It is left
to show that w ⊩ ∀x(A(x) → A(Sx)), i.e., that for every v ≥ w, every d ∈ Dv and
every u ≥ v we have, if u ⊩ A(d), then u ⊩ A(Sd). Suppose u ≥ v ≥ w and u ⊩ A(d)

for some d ∈ Dv. Then u ⊩ d = 0 ∨ Sd = 0 ∨ . . . ∨ Sk−1d = 0. We need to show:

u ⊩ Sd = 0 ∨ SSd = 0 ∨ . . . ∨ Skd = 0

From u ⊩ d = 0 ∨ Sd = 0 ∨ . . . ∨ Sk−1d = 0, we know that u ⊩ Sld = 0 for some
l ∈ {0, . . . , k−1}. In case of u ⊩ Sd = 0 or . . . or u ⊩ Sk−1d = 0 we can conclude what
we needed to show. Now suppose that u ⊩ d = 0. Then by applying axiom 4 k times
we know that u ⊩ Skd = Sk0. Since w ⊩ Sk0 = 0, then by persistency u ⊩ Sk0 = 0,
hence u ⊩ Skd = 0. We conclude u ⊩ Sd = 0 ∨ SSd = 0 ∨ . . . ∨ Skd = 0. Now, by
the induction schema we should be able to conclude that w ⊩ ∀xAx. However, we
can see that for instance w ⊮ A(0′), because w ⊮ 0′ = 0∨ S0′ = 0∨ . . .∨ Sk−10′ = 0.
This is a contradiction to M ⊩ MHAf , which proves the lemma.

From here on, we will sometimes leave out k when denoting a false k-circle, and
simply say false circle, when there is no need to specify k. Analogously, we will
sometimes say zeroless false circle, or even, zeroless circle.

Using the previous two lemmas, we can now prove the subsequent proposition.

Proposition 5.3.5. No domain of any node in any model of MHAf contains a
zeroless false circle, i.e., a circle in which 0 does not occur.

Proof. Suppose there exists a model of MHAf with a node of which the domain
contains a zeroless false circle. As a consequence of Lemma 5.3.3 we know that this
domain then also contains a false circle. We now apply Lemma 5.3.4 to conclude that
this cannot be the case.

Lemma 5.3.6. MHAf ⊢ ∀x(Skx = x) ↔ Sk0 = 0.

Proof. From left to right is clear. For the other direction, suppose Sk0 = 0 is forced at
some node w in some model of MHAf . We prove by an easy induction on x, similar to
the induction in the proof of Lemma 5.3.3, that then ∀x(Skx = x) must be forced at
every successor v of w. The base case is clear. Suppose v ⊩ Ska = a for some a ∈ Dv.
Then v ⊩ S(Ska) = Sa, hence v ⊩ Sk(Sa) = Sa and thus v ⊩ ∀x(Skx = x).

Let M be a model of MHAf with node w. We say that a, b ∈ Dw are not
equivalent if w ⊮ a = b. By the previous lemma we know that whenever a domain
contains a false circle, then all elements in the domain occur in a circle. Therefore, a
direct consequence of combining Lemma 5.3.6 with Proposition 5.3.5 is the following
corollary.

Corollary 5.3.7. If a domain of some node in some model of MHAf contains a false
k-circle, then the domain contains precisely k non-equivalent elements.

Hence, we know that whenever a domain contains a false circle, it contains no
other elements outside of this circle. However, it remains a question which other non-
standard models MHAf has, as we have not fully determined what kind of models
can find a place in nodes of models of MHAf .
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5.3. Models of Minimal Arithmetic

Using the false circles we can make the following important observation. For any
natural number k greater than 1 we have:

MHAf ⊬ k = 0 → 1 = 0.

This is witnessed by the false k-circle. Hence, we conclude:

MHAf ⊬ ∃x(Sx = 0) → 1 = 0.

And, therefore:

MHAf ⊬ f → 1 = 0.

An immediate consequence of the last observation is stated in the following corol-
lary.

Corollary 5.3.8. MHA0=1 is not a subtheory of MHAf .

Another observation, following from the existence of the false k-circles as models,
is that we have the following two underivable fundamental formulas of HA:

MHAf ⊬ x+ y = 0 → (x = 0 ∧ y = 0)

MHAf ⊬ x · y = 0 → (x = 0 ∨ y = 0)

Take for instance the false 2-circle as a countermodel for the first one and the false
6-circle as a countermodel for the latter one.

The following model is drawn to give an example of a non-standard model of
MHAf :

v u

w

S

SS

Figure 5.3
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5. First-Order Minimal Heyting Arithmetic

Remark 5.3.9. Recall from Corollary 5.2.6 that in MHAf all atomic formulas are
decidable, i.e., MHAf ⊢ ∀xy(x = y∨¬(x = y)). Stability of the equality relation, i.e.,
in our case, stability of all atomic sentences, means that ∀xy(¬¬(x = y) → x = y).
The model above shows us that not all atomic formulas are stable, because w ⊩
¬¬(1 = 0), but w ⊮ 1 = 0. Note that it is also possible to see this in a single-noded
model, such as the standard model where f is forced, or, the false 2-circle.

Note that the following is derivable:

MHAf ⊢ ∀xy(¬¬(x = y) ↔ (x = y ∨ f)).

From right to left is clear. The other direction is proven as follows:

∀xy(x = y ∨ ¬(x = y))

u = v ∨ ¬(u = v)

[u = v]1

u = v ∨ f

[¬(u = v)]1 [¬¬(u = v)]2

f

u = v ∨ f
1

u = v ∨ f
2

¬¬(u = v) → (u = v ∨ f)
∀xy(¬¬(x = y) → (x = y ∨ f))

In this respect, MHAf is very different from HA, because we know that HA ⊢
∀xy(¬¬(x = y) ↔ x = y). Even more surprising is the following result.

Lemma 5.3.10. In MHAf , ∃x(Sx = 0) has the disjunction property.

Proof. Suppose for a contradiction that there exist formulas A and B such that
MHAf ⊢ ∃x(Sx = 0) → A ∨B, but MHAf ⊬ ∃x(Sx = 0) → A and MHAf ⊬ ∃x(Sx =

0) → B. By completeness, we then know there exist models MA and MB with roots
rA and rB such that rA ⊩ ∃x(Sx = 0) and rB ⊩ ∃x(Sx = 0), but rA ⊮ A and rB ⊮ B.
This means that the domains of rA and rB consist of false circles. Let us say that DrA

contains the false k-circle and DrB contains the false l-circle for some natural numbers
k and l. Now, let m be the least common multiple of k and l. We then construct a
new model M by placing a new root r below the models MA and MB , with domain
the false m-circle. This is again a model of MHAf (for an example of such a model,
see Figure 5.3). Hence, r ⊩ ∃x(Sx = 0) → A ∨B. Since r ⊩ ∃x(Sx = 0), then r ⊩ A

or r ⊩ B. This is a contradiction and thus we conclude that ∃x(Sx = 0) has the
disjunction property.

5.4 Representability

In this section, we discuss some results concerning representability of functions in
minimal arithmetic. In a particular formal system S, the numeral n is the symbol
that stands for the n-th successor of the interpretation of the symbol 0 in that system.
Note that ∃!yAy is an abbreviation for ∃yAy ∧ ∀z(Az → y = z).

Definition 5.4.1 (Numeralwise Representability, [Kle52, p. 200]). We call a function
F (x1, . . . , xk) numeralwise representable in a formal system S if there exists a formula
φ(x1, . . . , xk, y) such that for all natural numbers n1, . . . , nk and n we have:
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5.4. Representability

(i) if F (n1, . . . , nk) = n, then ⊢S φ(n1, . . . , nk, n);

(ii) ⊢S ∃!yφ(n1, . . . , nk, y).

In MHAf , in contrast to HA, not every primitive recursive function is numeralwise
representable (for a definition of primitive recursive functions see e.g. [Kle52, p. 219]).

Proposition 5.4.2. The primitive recursive function F : N → N defined by:

n 7→

{
0, if n = 0

1, otherwise

is not numeralwise representable in MHAf .

Proof. Suppose F is numeralwise representable, i.e., suppose there exists a formula
φ(x, y) such that for every natural number n:

(i) if F (n)=m, then ⊢MHAf
φ(n,m);

(ii) ⊢MHAf
∃!yφ(n, y).

Now, consider the false 2-circle M:

0

1

By Lemma 5.3.2 we know that M is a model of MHAf . Using (i), we have
M ⊩ φ(2, 1). We know that M ⊩ 2 = 0, hence we obtain M ⊩ φ(0, 1). However, by
(i) we also have M ⊩ φ(0, 0). Now we use (ii), which is an abbreviation for:

⊢MHAf
∃y(φ(x, y) ∧ ∀z(φ(x, z) → y = z)).

Thus, we derive M ⊩ 0 = 1, but M ⊮ 0 = 1, a contradiction.

Let us call a function ill-defined modulo k, if there exist m and n such that in the
full k-circle we have m = n (mod k), but F (m) ̸= F (n) (mod k).

Proposition 5.4.3. If F is a function that is ill-defined modulo k, then F is not
numeralwise representable in MHAf .

Proof. This works analogously to the proof of the previous proposition, by simply
taking the model M to be the false k-circle.

The above proposition shows that many primitive recursive functions will not
be numeralwise representable in MHAf . In Heyting arithmetic, the fact that every
primitive recursive predicate is numeralwise expressible is a consequence of the fact
that every primitive recursive function is numeralwise representable (see e.g. [Kle52,
p. 244]). Hence, the next natural question we can ask is whether there are primitive
recursive predicates that are not numeralwise expressible in MHAf . We have not
answered this question yet.
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5. First-Order Minimal Heyting Arithmetic

Remark 5.4.4. The addition of a predecessor function, recursively defined by pd(0) =
0 and pd(Sx) = x, to MHAf , would ensure that all possible candidates for interpre-
tations of falsum are equivalent. Because, if we add a predecessor function, then,
using Lemma 5.5.4, we conclude that MHAf ⊢ A → 1 = 0 for A positive such that
MHAf ⊢ ¬A. An interesting question is whether, when adding a predecessor function,
there would still be a difference between minimal arithmetic and Heyting arithmetic.

Let us conclude this section with the following rather negative observation. If we
practice minimal arithmetic with an uninterpreted falsum, i.e., if we work in MHAf ,
then many of the valuable properties that Heyting arithmetic has, will no longer
hold. It might therefore be more interesting to examine systems MHAβ that are
stronger than MHAf . A consequence of the existence of MHAf -models with circles
in their domains, is that there are several non-equivalent possible candidates β for
interpretations of falsum, giving rise to different systems MHAβ . We investigate this
in the following section.

5.5 Interpreting Falsum in Minimal Arithmetic

Let β be a sentence formulated in L (HA) \ {¬}. As defined in Definition 4.1.2, we
can then investigate the following theories:

HAβ := {A | Aβ
HA ⊢IQC τβ(A)}

MHAβ := {A | Aβ
HA ⊢MQC τβ(A)}

We first examine the systems HA0=1 and MHA0=1. We observe that HA0=1 is a
subtheory of HA, simply because HA ⊢ ∃x(Sx = 0) → 0 = 1 and because HA ⊢ ⊥ ↔
0 = 1. This is not the case for the corresponding minimal systems, because MHA0=1

is not a subtheory of MHAf , see Corollary 5.3.8.
Note that A0=1

HA is a set of positive axioms, since the only axiom containg a nega-
tion in fact only contains a pseudo-negation, namely, ∃x(Sx = 0) → 1 = 0. Hence,
A0=1

HA is a positive theory. We can now return to Remark 4.3.4 and provide a con-
crete counterexample for Proposition 4.3.3 in the following remark, when we replace
minimal logic by intuitionistic logic.

Remark 5.5.1. We show that there exist positive formulas A and B such that
A0=1

HA ⊢IQC ¬A → ¬B, but A0=1
HA ⊬IQC B → A. We know that Peirce’s law is not

intuitionistically valid, i.e., IPC ⊬ ((p→ q) → p) → p. Hence, by de Jongh’s theorem
we know that there exist arithmetical sentences α and β such that HA ⊬ ((α →
β) → α) → α. Now, let α′ := τ0=1(α) and β′ := τ0=1(β) (recall Definition 4.1.2).
We obtain A0=1

HA ⊬IQC ((α′ → β′) → α′) → α′. For suppose A0=1
HA ⊢IQC ((α′ →

β′) → α′) → α′. Then by definition HA0=1 ⊢ ((α → β) → α) → α, and thus
HA ⊢ ((α → β) → α) → α, because HA0=1 is a subtheory of HA. Hence, we
conclude that A0=1

HA ⊬IQC ((α′ → β′) → α′) → α′. On the other hand, we know that
IPC ⊢ ¬p → ¬((p → q) → p), hence A0=1

HA ⊢IQC ¬α′ → ¬((α′ → β′) → α′) follows
immediately.

Recall, from Proposition 5.1.2, that in HA, all formulas are derivable from 0 = 1

without using ex falso. It is important to note, however, that the intuitionistic system
HA0=1 is not the same as HA. The false 1-circle is a model of HA0=1, but not of HA.
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5.5. Interpreting Falsum in Minimal Arithmetic

Closely examining the proof of Proposition 5.1.2, we see that it can also be carried
out in any of the systems HAβ and MHAβ , where only for MHAf it also needs to be
proved that 0 = 1 implies f , which follows from axiom (6).

Lemma 5.5.2. For positive formulas A, we have MHA1=0 ⊢ A if and only if HA ⊢ A.

Proof. Let A be a positive formula, that is, A does not contain ¬, ⊥ nor f . We show:
MHA1=0 ⊢ A ⇔ HA ⊢ A.

MHA1=0 ⊢ A ⇔ A1=0
HA ⊢MQC τ1=0(A) (by definition)

⇔ A1=0
HA ⊢MQC A (A is positive)

⇔ A1=0
HA ⊢IQC A (by Lemma 2.2.6)

⇔ AHA ⊢IQC A (HA ⊢ ⊥ ↔ 1 = 0)
⇔ HA ⊢ A (by definition)

Since MHA1=0 is a positive theory, the above lemma immediately gives rise to the
following corollary.

Corollary 5.5.3. MHA1=0 is precisely the positive fragment of HA.

Besides 0 = 1, there are various possibilities for the interpretation of falsum in
MHAf . The only condition a candidate A has to satisfy is that MHAf ⊢ ¬A, i.e.,
MHAf ⊢ A → f . With the subsequent lemma, we show that ∃x(Sx = 0) is the
weakest possible candidate for falsum in MHAf .

Lemma 5.5.4. If MHAf ⊢ ¬A and A positive, then MHAf ⊢ A→ ∃x(Sx = 0).

Proof. As we have mentioned before, MHAf is not precisely a simple theory, because
there can be negations in instances of the induction schema. However, let MHA0

be the theory axiomatised by MQC together with AHA \ {¬∃x(Sx = 0)}. Suppose
MHAf ⊢ ¬A for some positive formula A. Then MHA0 ⊢ ¬∃x(Sx = 0) → ¬A, i.e.,
MHA0 ⊢ (∃x(Sx = 0) → f) → (A → f). Since we know nothing in particular about
f in MHA0, f behaves just like a propositional variable. So, we can in the deduction
of (∃x(Sx = 0) → f) → (A → f) replace all instances of f by ∃x(Sx = 0), including
the possible instances of f in the induction schema. We then obtain MHA0 ⊢ A →
∃x(Sx = 0).

Hence, for positive A such that MHAf ⊢ ¬A, we know that ∃x(Sx = 0) is either
weaker than A or equivalent to A and thus we conclude that ∃x(Sx = 0) is the
weakest possible candidate for falsum in MHAf .

Lemma 5.5.5. In MHA1=0, all possible candidates for an interpretation of falsum
are equivalent to 1=0.

Proof. Suppose MHA1=0 ⊢ ¬A. Then, by Lemma 4.1.4, we know that MHA1=0 ⊢
A→ 1=0. Moreover, we know that MHA1=0 ⊢ 1 = 0 → A by Corollary 5.5.3. Hence,
MHA1=0 ⊢ A↔ 0 = 1.
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5. First-Order Minimal Heyting Arithmetic

We have seen that in MHAf , the weakest possible candidate for interpreting fal-
sum is ∃x(Sx = 0) and the strongest one is 1 = 0. Other possible interpretations are
for instance 2 = 0, 3 = 0, 4 = 0, and so on. Or, for instance, a disjunction of those
atomic sentences, like 2 = 0∨3 = 0. The conjunction Sk0 = 0∧Sl0 = 0 of two atomic
formulas is equivalent to Sm0 = 0, where m is the greatest common divisor of k and
l. Note that for any k and l we have MHAf ⊬ (Sk0 = 0 → Sl0 = 0) → f , since the
standard model always forces Sk0 = 0 → Sl0 = 0. Hence, these implications do not
satisfy the requirements of an interpretation for falsum. Finally, for every k, we know
by Lemma 5.3.3 that the candidate ∃x(Skx = 0) is equivalent to Sk0 = 0, hence,
also atomic. Unfortunately, we do not have a complete description of the hierarchy
of candidates for falsum.

We finish this chapter by remarking that the system MHAf is clearly in various
respects not as one would wish. We can ask ourselves what can be done about this.
As we have seen in this section, the system MHA0=1 has the same proof-theoretic
strength as HA. Another suggestion would be to add ∃x(Sx = 0) → 0 = 1 as an
axiom to MHAf , to collapse all possible candidates for falsum. This comes close to
the system MHA0=1, in which the same is true. However, one has to defend extending
MHAf in this way, from a minimal point of view.
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Chapter 6

Second-Order Minimal Heyting
Arithmetic

In this chapter, we study second-order intuitionistic arithmetic, i.e., second order
Heyting arithmetic (see e.g. [Tro73]). We concentrate on [JS76], in which Smoryński
and de Jongh introduce Kripke models for second-order Heyting arithmetic, HAS.
There, the consistency of the principles UP!, UPC , MP and IP0 with HAS was shown
by giving models for them. We will introduce these principles along the way and we
will replicate some, but not all of these results, in a minimal context, where in the case
of UPC we have to use much more complicated models than in [JS76]. Furthermore,
in [JS76], models in which non-intuitionistic logical principles are contradictory were
given. We will do the same here for non-minimal logical principles and even prove a
stronger form of de Jongh’s theorem for second-order minimal arithmetic.

6.1 Models of Second-Order Minimal Arithmetic

By second-order Heyting arithmetic, HAS, we understand the intuitionistic theory
of species, given by HA together with unary species variables X0, X1, . . . and the
following two axioms:

For any formula A(x) the comprehension axiom, where X a possible free set
variable in A(x):

∃X∀x(x ∈ X ↔ A(x)).

For any second order formula A, where m and X are possibly free numerical
and set variables in Ax, respectively, the second order induction scheme is given
by:

∀m∀X(A(0) ∧ ∀n(A(n) → A(Sn))) → ∀nAn,

where an essential instance is the second order induction axiom:

∀X((0 ∈ X ∧ ∀n(n ∈ X → Sn ∈ X)) → ∀n(n ∈ X)).

Let second-order minimal arithmetic, a “minimal theory of species”, be the theory
MHASf as defined in Definition 4.1.2. This is the theory given by MHAf together
with unary species variables X0, X1, . . . and the above axioms.

53



6. Second-Order Minimal Heyting Arithmetic

Definition 6.1.1 (MHASf frame). An MHASf frame is of the form (K,≤, F,D1, D2)

where (K,≤) is a partially ordered set of nodes, containing a least node α0, and F ⊆ K

is upwards closed with respect to ≤. D1 and D2 are domain functions. For α ∈ K

we have D1α = ω = {0, 1, . . .} and D2α is the family of all systems of sets, or species.
A species is a class of subsets of the natural numbers indexed by the nodes of K,
T = {Tα | α ∈ K}, such that:

α ≤ β ⇒ Tα ⊆ Tβ

Definition 6.1.2 (MHASf model). An MHASf model M for minimal logic is of the
form (K,≤, F,D1, D2,⊩) where (K,≤, F,D1, D2) an MHASf frame for minimal logic
and ⊩ a forcing relation defined by:

α ⊩ A ⇔ ω ⊩ A for A atomic in L (HA)

α ⊩ f ⇔ α ∈ F

α ⊩ t ∈ T ⇔ t ∈ Tα where t ∈ ω and T = {Tα : α ∈ K}
α ⊩ A ∧B ⇔ α ⊩ A and α ⊩ B

α ⊩ A ∨B ⇔ α ⊩ A or α ⊩ B

α ⊩ A→ B ⇔ for all β ≥ α: if β ⊩ A, then β ⊩ B

α ⊩ ∃xA(x) ⇔ for some t ∈ D1α : α ⊩ A(t)

α ⊩ ∃XA(X) ⇔ for some T ∈ D2α : α ⊩ A(T )

α ⊩ ∀xA(x) ⇔ for all β ≥ α and all t ∈ D1β : β ⊩ A(t)

α ⊩ ∀XA(X) ⇔ for all β ≥ α and all T ∈ D2β : β ⊩ A(T )

Note that the upwards closed set F is part of the frame. This means that the set
of nodes where falsum is forced is independent of the valuation we choose. From here
on, we will use Xx as an abbreviation for x ∈ X.

For the remaining part of this chapter, we interpret f by 0=1, i.e, we investigate
the system MHAS0=1. We will first show that interpreting falsum by 1 = 0 falls
under the third approach we discussed in chapter 1. For simplicity, we will denote
the system MHAS0=1 by MHAS. We obtain for every node α in every MHAS model:

α ⊩ f → ∀X(∃xXx→ ∀xXx).

Because, if α ⊩ 0=1, then α ⊩ ∀xy(x = y). Hence, for every T ∈ D2α, either Tα = ∅
or Tα = ω, where we note that = is not interpreted simply as identity. However, we
do not obtain α ⊩ f → ∀XY (X = Y ). In fact, recall Proposition 4.2.1 (where we now
have to take two kinds of variables into account), from ∀xy(x = y) ∧ ∀XY (X = Y ),
all formulas can be proven. Taking this as an interpretation for falsum feels a little
forced and unnatural, in contrast to taking 0 = 1. We therefore find interpreting
negation in terms of 0 = 1 more appealing, yet it does not naturally give rise to
the ex falso principle. So, although second order arithmetic is not like first order
arithmetic the same in minimal and intuitionistic logic if we interpret f by 0=1, the
influence of this is still heavily felt. In particular, MHAS ⊢ 0=1 → A still holds for
all purely arithmetical statements A.

We observe that the model defined in Definition 6.1.2, where we interpret f by
0=1, indeed satisfies MHAS. The proof of this statement proceeds like the proof of
the analogous statement for HAS in [JS76, Theorem 1.1].
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In [JS76], all results were obtained by using models on the full binary or full
ℵ0-ary tree. Here, we will need to use a model on a more complicated tree to show
consistency of the parameter-free from of the Uniformity Principle and to prove de
Jongh’s theorem in stronger form.

6.2 Principles of Second-Order Minimal Arithmetic

Let us first prove the consistency of the weak Uniformity Principle with MHAS. Note
that this is a weaker result than the consistency of the paramater-free form of the
Uniformity Principle, which we will prove later on.

Theorem 6.2.1. Let M be an MHAS model on the full binary (or ℵ0-ary) tree, then
the weak Uniformity Principle:

∀X∃!yA(X, y) → ∃!y∀XA(X, y) (UP!)

is valid in the model M.

Proof. Suppose we have α ⊩ ∀X∃!yA(X, y), α ⊩ A(S,m) and α ⊩ A(T, n). We will
show that m = n. Note that if α ⊩ f , i.e., α ⊩ 0=1, then we have α ⊩ ∀xy(x = y),
hence α ⊩ ∃!y∀XA(X, y) directly follows.

Let U := {Uβ | β ∈ K} be defined by:

(i) Uβ = ∅ for β ≯ α;

(ii) Uβ = Sβ if β = α ∗ ⟨0⟩ ∗ σ for some sequence σ;

(iii) Uβ = Tβ if β = α ∗ ⟨1⟩ ∗ σ for some sequence σ.

We have:

α ∗ ⟨0⟩ ⊩ U=S, hence α ∗ ⟨0⟩ ⊩ A(U,m), and we have
α ∗ ⟨1⟩ ⊩ U=T, hence α ∗ ⟨1⟩ ⊩ A(U, n).

Since α ⊩ ∀X∃!yA(X, y), then α ⊩ A(U, p) for a unique p. Whence we get
α ∗ ⟨0⟩ ⊩ A(U, p) and α ∗ ⟨1⟩ ⊩ A(U, p) and thus m = p = n. We note that if
α ∗ ⟨i⟩ ⊩ f , this will still hold. Thus there exists precisely one m ∈ ω such that
α ⊩ A(X,m) for all X ∈ D2α. Since D2β = D2α for all β ≥ α, we conclude
α ⊩ ∃!y∀XA(X, y).

We will now show that, unlike in the intuitionistic case, Markov’s Principle is not
valid on all models of MHAS.

Proposition 6.2.2. Markov’s principle (MP) is not valid on all MHAS models:

∀X∀x(((Xx ∨ ¬Xx) ∧ ¬¬∃xXx) → ∃xXx) (MP)

Proof. Consider the MHAS model on the full ℵ0-ary tree (K,≤) in which the root α0

has some successor β that forces f . Define the species T by Tα = ∅ for all α ∈ K.
Since T ∈ D2β and β ⊩ ∀x(Tx ∨ (Tx→ f)) ∧ ((∃xTx→ f) → f) but β ⊮ ∃xTx, we
conclude α0 ⊮ MP.
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Note that, if MP is valid on a model, then also ∀X(f → ∃xXx) is valid on the
model. This is not the case, as we have mentioned before.1 The Independence of
premise principle, on the other hand, is valid on all MHAS models.

Proposition 6.2.3. The Independence of premise principle (IP0) is valid on all
MHAS models:

∀XY ((∀x(Xx ∨ ¬Xx) ∧ (∀xXx→ ∃yY y)) → ∃y(∀xXx→ Y y)) (IP0)

Proof. Let M be any MHAS model and α any node of M. To show α ⊩ IP0 we
need to show that for any successor β of α and any two species X and Y , if β ⊩
∀x(Xx ∨ ¬Xx) ∧ (∀xXx → ∃yY y), then β ⊩ ∃y(∀xXx → Y y). Let β and X,Y be
any such successor and species. We know that either β ⊩ ∀xXx, or β ⊮ ∀xXx. If
β ⊩ ∀xXx, then by our assumption β ⊩ ∃yY y and thus β ⊩ ∃y(∀xXx → Y y). If
β ⊮ ∀xXx, then for any successor γ of β that forces ∀xXx, we have γ ⊩ ∃yY y, because
β ⊩ ∀xXx → ∃yY y. Moreover, for any such successor γ we have γ ⊩ 0 = 1, because
β ⊩ ∀x(Xx∨¬Xx). Hence, for every successor γ forcing ∀xXx, we know that γ ⊩ Y 0

and thus β ⊩ ∀xXx→ Y 0, from which we conclude β ⊩ ∃y(∀xXx→ Y y).

As we observed in the proof above, an even stronger principle holds in all MHAS
models for minimal logic:

∀XY ((∀x(Xx ∨ ¬Xx) ∧ (∀xXx→ ∃yY y)) → ∀y(∀xXx→ Y y))

A consequence of Proposition 6.2.3 is that the corresponding rule, IR0, also holds
for MHAS: for any species X and Y , if MHAS ⊢ ∀x(Xx ∨ ¬Xx) ∧ (∀xXx → ∃yY y),
then MHAS ⊢ ∃y(∀xXx→ Y y).

Theorem 6.2.4. Let A(p1, . . . , pn, f) be an unprovable formula of MPC. Then there
exists a model M on the full ℵ0-ary tree such that M ⊮ A(∃xX1x, . . . , ∃xXnx, 0=1)

for some species X1, . . . , Xn.

Proof. Suppose A(p1, . . . , pn, f) is an unprovable formula of MPC. Since MPC has
the finite model property, see [Col16], there exists a finite Kripke countermodel for
A. Since the full ℵ0-ary tree (K,≤) can be projected on this finite model through a
p-morphism, we find a countermodel M on (K,≤) such that M ⊮ A(p1, . . . , pn, f).
We define for i ∈ {1, . . . , n} species Xi = {Xi, α | α ∈ K}, where:

Xi, α :=

{
∅ if α ⊮ pi

ω if α ⊩ pi

By definition of the species we then obtain M ⊮ A(∃xX1x, . . . , ∃xXnx, 0=1).

The conclusion we can draw from Theorem 6.2.1, MHAS+UP! is consistent, is by
itself rather weak, as HAS+UP! is also consistent. From Theorem 6.2.1 together with
Theorem 6.2.4 we can however obtain the following interesting corollary:

1This makes clear that validating Markov’s Principle on a model for MHAS is not at all trivial.
Markov’s Principle does seem to have a rather different status in minimal logic from the one in
intuitionistic logic.
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Corollary 6.2.5. For each unprovable formula A(p1, . . . , pn, f) of MPC we have:

MHAS+UP! ⊬ ∀X1 . . . XnA(∃xX1x, . . . , ∃xXnx, 0=1)

So far, we have been able to use very similar methods as in [JS76] to obtain
results for MHAS. The following principle, the parameter-free form of the Uniformity
Principle, does not hold in all MHAS models on the ℵ0-ary tree:

∀X∃yA(X, y) → ∃y∀XA(X, y) (UPc)

The proof of the consistency of UPC (in [JS76, Theorem 1.6]) is dependent on an
isomorphism between a submodel of an HAS model and the model itself. In minimal
logic however, such an isomorphism does not exist for every MHAS model on the full
ℵ0-ary tree, when we define f to be 0 = 1. In order to prove the consistency of UPC ,
we therefore introduce a more homogeneous tree-structure with a more complicated
partial ordering in which such an isomorphism does exist:

Definition 6.2.6. We define the tree Kℵ0

Q := (K,≤, F ) of the form (N × Q)<ω as
follows. The root of the tree is the empty sequence ⟨⟩. For every α ∈ K, also
α ∗ (n, q) ∈ K for all n ∈ N and q ∈ Q>0. We define α < β if and only if α is a
proper initial segment of β. Furthermore a ∗ (n, q) ∗ (0, q′) := α ∗ (n, q + q′). Finally,
we define F := {α ∈ K | α ≥ β ∗ (2n+ 1, 1) for some β ∈ K and n ∈ N}.

Note that α ∗ (n, q′) is an initial segment of α ∗ (n, q) for q′ < q and thus for every
q′ < q we have α ∗ (n, q′) < α ∗ (n, q).

. . .

. . .

. . .

. . .

. . .

. . .

q

q′

1

⟨1, 1⟩

⟨(1, q), (2, q′), (3, 1)⟩

Now, for an MHAS model on Kℵ0

Q , the set F is fixed. So, whenever we take a
generated submodel of the MHAS model on Kℵ0

Q , either f holds globally, or, due to
the structure of the model, the submodel is isomorphic to the whole model.
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Theorem 6.2.7. The MHAS model on the tree Kℵ0

Q satisfies the paramater-free form
of the Uniformity Principle UPC:

∀X∃yA(X, y) → ∃y∀XA(X, y)

Proof. Let M be the MHAS model on Kℵ0

Q and let A(X, y) be parameter-free. Sup-
pose:

α ⊩ ∀X∃yA(X, y)

α ⊮ ∃y∀XA(X, y)

Note that α ⊮ 0 = 1. Also, since D1 constant and D2 practically constant we obtain
from α ⊮ ∀XA(X,n) that there exists T ∈ D2α such that α ⊮ A(T, n).

Let for each n, a species Sn be given such that:

α ⊮ A(Sn, n)

Define the species S by:

Sβ = ∅ if β ≯ α

Sα∗(n,q)∗β = ω if α ∗ (n, q) ∗ β ⊩ 0 = 1

Sα∗(n,q)∗β = Sn,α∗β if α ∗ (n, q) ∗ β ⊮ 0 = 1

Now, there exists m such that α ⊩ A(S,m). Hence α ∗ (m, q) ⊩ A(S,m) for all
q ∈ Q. Since α ⊮ 0 = 1, we know by definition of Kℵ0

Q that α ∗ (m, q) ⊮ 0 = 1 for
q < 1.

Let q < 1. The submodels generated by α and by α ∗ (m, q) are isomorphic, as
they are both isomorphic to M, because α, α ∗ (m, q) /∈ F . Since A(X, y) contains
no parameters, we obtain α ⊩ A(Sm,m), because Sm above α looks like S above
α ∗ (m, q). This contradicts our assumption, hence UPC is valid in the model.

Our next goal is to prove Theorem 6.2.10, a stronger version of de Jongh’s theorem.
To do so we need the following. For any unprovable formula in MPC, we want to find
a Kripke countermodel such that there exists a model on the tree Kℵ0

Q that can be
projected, via a p-morphism, on this finite countermodel. This requires the finite
countermodel to only have end nodes where f is forced. That such a model can
always be found, was for example shown in [JZ15, Theorem 5]. We will first define
the necessary notions and then state the part of the implicated theorem that we need.

Definition 6.2.8 (Top-model).

(i) For any Kripke model M we define its top-model M+ by adding a node at the
top of the model, accessible from all the other nodes and forcing all propositional
variables, including f .

(ii) A formula φ has the top-model property if for any Kripe model M and all w we
have M, w ⊩ φ iff M+, w ⊩ φ.

Theorem 6.2.9. Every formula φ in the language of MPC has the top-model property.

Proof. By induction on the length of φ.
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Theorem 6.2.10. Let A(p1, . . . , pn, f) be an unprovable formula of MPC. Then there
exists a model M on the tree Kℵ0

Q such that:

α0 ⊩ ¬∀X1 . . . XnA(∃xX1x, . . . , ∃xXnx, 0 = 1)

Proof. Suppose A(p1, . . . , pn, f) is an unprovable formula of MPC. By the finite model
property of MPC we find a finite Kripke countermodel N for A. By the previous
theorem, the top-model N+ is still a Kripke countermodel for A and we can project
the tree Kℵ0

Q on this finite model N+ through a p-morphism. Hence, we find a
countermodel M on Kℵ0

Q such that α0 ⊮ A(p1, ..., pn, f). We can now define a species
Xi as done in the proof of Theorem 6.2.4 and obtain α0 ⊮ A(∃xX1x, . . . , ∃xXnx, 0 =

1) and thus α0 ⊮ ∀X1 . . . ∀XnA(∃xX1x, . . . , ∃xXnx, 0 = 1). Since for every β > α0

where f is not forced, the submodel generated by β is isomorphic to M, we conclude
α0 ⊩ ¬∀X1 . . . ∀XnA(∃xX1x, . . . , ∃xXnx, 0 = 1).

The following and final theorem we state without a proof, as it can be proved in
precisely the same manner as the analogous theorem for HAS in [JS76, Corollary 2.2].

Theorem 6.2.11. MHAS has the disjunction property and the numerical existence
property (ED0).
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Chapter 7

A Minimal Theory of Equality and
Apartness

In this chapter, we consider minimal theories of equality and apartness. We will
see that in the minimal theory of apartness there exists a candidate for interpreting
falsum which satisfies ex falso. However, we will only follow our first approach, i.e.,
we will not interpret falsum as it has natural strength in these systems.

Starting with van Dalen and Statman [DS79], a number of conservativity results
were proved for theories of equality and apartness over theories with just equality. In
other words, the theories of pure equality induced by the theories with both equality
and apartness were determined. We prove a number of these results for the minimal
case, starting with an analogue of the main result in [DS79]. Extending this result,
we prove the minimal analogue of a result by Smoryński in [Smo77]. Finally, we prove
a conservativity result for MQC that concerns the existence of a choice function in
the theory of apartness. This result is also new for IQC.

7.1 Preliminaries

We start by introducing the intuitionistic theories EQ and AP (see e.g. [DS79, p.
95]).

Definition 7.1.1. A binary relation # is called an apartness relation if:

(i) ∀xy(x = y ↔ ¬(x # y))

(ii) ∀xy(x # y ↔ y # x)

(iii) ∀xyz(x # y → x # z ∨ y # z)

We assume the theory of equality, EQ, to be the first-order intuitionistic theory
with the following non-logical axioms: 7

Let us denote axioms (1)− (2) by AEQ and axioms (1)− (6) by AAP. Recall from
Definition 4.1.2 that we obtain the corresponding minimal theories in the following
way:

MEQf = {A | Af
EQ ⊢MQC τf (A)}

MAPf = {A | Af
AP ⊢MQC τf (A)}
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As we will not consider any interpretations of falsum in this chapter, we will write
MEQ instead of MEQf , and MAP instead of MAPf . Note that the minimal theory
of equality, MEQ, has the same non-logical axioms as EQ, because AEQ is positive.
Moreover, in both MEQ and MAP, just as in the minimal theories before, we have
¬A↔ (A→ f). In particular, in MAP we have ¬(x # y) ↔ (x # y → f).

Due to the axiomatisation, MAP is much stronger than one might expect from
our experiences in arithmetic. Examining axiom (4), we conclude that from falsum
we can derive that all elements are equal, shown in the following short derivation:

[f ]1

¬(t # s)
ax(4)

t = s
∀xy(x = y)

f → ∀xy(x = y)

This does not mean however, that f by itself is strong enough to prove all sen-
tences. In particular, we cannot derive from falsum that all elements are apart. To
prove this, consider the single-noded model M = {∗}, with a singleton as domain
D∗ = {a}, in which f is forced: ∗ ⊩ f . A quick check of the axioms allows us to con-
clude that this is a model of MAP. Moreover, M ⊮ a # a and thus M ⊮ ∀xy(x # y).
Hence, MAP ⊬ f → ∀xy(x # y).

We will now exhibit an example of an attractive sentence that does naturally
satisfy the ex falso principle.

Proposition 7.1.2. In MAP, ∃x(x # x) implies all formulas.

Proof. Let us first give the following helpful derivations.
D:

[t # t]1

∀x(x = x)
ax(1)

t = t
ax(4)

¬(t # t)

f

¬(s # s′)
ax(4)

s = s′

∀xy(x = y) ∃x(x # x)
1

∀x(x = y)

D′:

∀xyz(x = y ∧ z # x→ z # y)
ax(3)

t = s ∧ t # t→ t # s t = s ∧ t # t

t # s

D′′:

∀xyz(x = y ∧ z # x→ z # y)
ax(3)

t = s ∧ s # t→ s # s

t = s ∧ t # s

t = s ∧ s # t

s # s
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D′′′ :

∀xyz(x # y → z # x ∨ z # y)
ax(6)

∀xz(x # x→ z # x ∨ z # x)

∀xy(x # x→ y # x)

s # s→ s′ # s s # s

s′ # s

Now, the final derivation:

[∃x(x # x)]1

⧹ D ⧸
∀xy(x = y)

t = s

[∃x(x # x)]1

⧹ D ⧸
∀xy(x = y)

t = s t # t

t = s ∧ t # t

⧹ D′ ⧸
t # s

t = s ∧ t # s

⧹ D′′ ⧸
s # s

⧹ D′′′⧸
s′ # s

∀xy(x # y)

[∃x(x # x)]1

⧹ D ⧸
∀xy(x = y)

∀xy(x # y ∧ x = y)
1

∃x(x # x) → ∀xy(x # y ∧ x = y)

Since the only relation symbols in MAP are = and #, we can now use Proposi-
tion 4.2.1 and axiom (4) to conclude that from ∀xy(x # y ∧ x = y), we can derive all
other formulas.

Remark 7.1.3. In intuitionistic logic, we know that if equality is decidable on a set,
then inequality is an apartness relation. This holds because, in intuitionistic logic, a
decidable equality is a stable equality, which follows from:

⊢IPC (p ∨ ¬p) → (¬¬p→ p)

This however, does not hold in minimal logic, as we have have already discussed in
Remark 5.3.9. Hence, minimal logic allows for a set with a decidable equality on
which inequality is not an apartness relation.

We will now introduce the van Dalen Statman result, immediately in the minimal
context.

Let x ̸= y be an abbreviation of ¬(x = y). We define the following inequalities,
inductively on n ∈ N:

x ̸=0 y := (x ̸= y)

x ̸=n+1 y := ∀z(z ̸=n x ∨ z ̸=n y)
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7. A Minimal Theory of Equality and Apartness

As stated in [DS79, p. 96], it is immediate that for n ≥ m, the following axiom
schema is provable in EQ:

∀xy(x ̸=n y → x ̸=m y) (In,m)

This can be shown by proving that EQ ⊢ ∀xy(x ̸=n+1 y → x ̸=n y), i.e. EQ ⊢
∀xy(∀z(z ̸=n x∨z ̸=n y) → x ̸=n y), for all n. By an easy induction we therefore need
to show that EQ ⊢ ∀x¬(x ̸=n x) and the claim then follows by using the disjunctive
syllogism:

((p ∨ q) ∧ ¬p) → q

As we have seen in chapter 3, the disjunctive syllogism is not minimally valid.
However, we recall from Remark 3.1.1 that any instance of the disjunctive syllogism
where a negated formula is substituted for q, is minimally provable. For the proof of
the following proposition only instances of the disjunctive syllogism of this form are
needed.

Proposition 7.1.4. ⊢MEQ ∀xy(x ̸=n+1 y → x ̸=n y)

Proof. By induction on n. Base case:

[t ̸=1 s]
2

def.∀z(z ̸= t ∨ z ̸= s)

t ̸= t ∨ t ̸= s

[t ̸= t]1
[∀x(x = x)]ax.

t = t

f

t ̸= s [t ̸= s]1
1

t ̸= s
def.

t ̸=0 s 2
t ̸=1 s→ t ̸=0 s

∀xy(x ̸=1 y → x ̸=0 y)

For the induction step, we assume ∀xy(x ̸=n+1 y → x ̸=n y):

[t ̸=n+2 s]
2

def.∀z(z ̸=n+1 t ∨ z ̸=n+1 s)

r ̸=n+1 t ∨ r ̸=n+1 s

[r ̸=n+1 t]
1

IH
r ̸=n t

r ̸=n t ∨ r ̸=n s

[r ̸=n+1 s]
1

IH
r ̸=n s

r ̸=n t ∨ r ̸=n s 1
r ̸=n t ∨ r ̸=n s

∀z(z ̸=n t ∨ z ̸=n s) def.
t ̸=n+1 s 2

t ̸=n+2 s→ t ̸=n+1 s

∀xy(x ̸=n+2 y → x ̸=n+1 y)

This finishes the induction.

We conclude that for n ≥ m, the axiom schema (In,m) is provable in MEQ.

We define for any n the following generalized stability axiom:

∀xy(¬(x ̸=n y) → x = y) (Sn)
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Proposition 7.1.5.

(i) MAP ⊢ Sn for all n;

(ii) MEQ ⊢ Sn → Sm for n ≥ m.

Proof. We first note that since the positive parts of MPC and IPC are the same, we
have: ⊢MPC (p→ q) → ((q → r) → (p→ r)).

(i) By a straightforward induction on n we can prove MAP ⊢ x # y → x ̸=n y, and
thus MAP ⊢ ¬(x ̸=n y) → ¬(x # y), for all n. From there we conclude using
axiom (4) that MAP ⊢ ∀xy(¬(x ̸=n y) → x = y) for all n.

(ii) Let n ≥ m, then MEQ ⊢ x ̸=n y → x ̸=m y by the previous proposition. Hence
MEQ ⊢ ¬(x ̸=m y) → ¬(x ̸=n y), and thus:

MEQ ⊢ (¬(x ̸=n y) → x = y) → (¬(x ̸=m y) → x = y)

Hence MEQ ⊢ ∀xy(¬(x ̸=n y) → x = y) → ∀xy(¬(x ̸=m y) → x = y).

We define for each n ∈ N:

SMEQn := MEQ + Sn,

And:
SMEQω := MEQ + {Sn | n ∈ ω}.

Henkin models, also called canonical models, of MQC are obtained by a similar
construction as for IQC (e.g. [Smo73, Theorem 5.1.5 - 5.1.11], or [TD88, pp. 87 - 89]).
We can leave out the condition that the theories need to be consistent, for any theory
in MQC will be. We will state the saturation lemma and the truth lemma without
proofs, as they are essentially the same as in the case for IQC (see e.g. [TD88, Lemma
6.3 and 6.5]).

Definition 7.1.6 (Saturated theory). Let C be a set of constants. A theory Γ,
formulated in some language L , is C-saturated if for any sentences A, B formulated
in L , and for any formula C(x) formulated in L with only x free in C, we have:

(i) if Γ ⊢ A, then A ∈ Γ;

(ii) if Γ ⊢ A ∨B, then Γ ⊢ A or Γ ⊢ B;

(iii) if Γ ⊢ ∃xC(x), then C(c) ∈ Γ for some c ∈ C.

Lemma 7.1.7 (Saturation lemma). Let Γ be a theory and A a sentence, both for-
mulated in some language L , and let C be a countable set of constants not in L . If
Γ ⊬ A, then there exists a C-saturated theory ∆ ⊇ Γ such that ∆ ⊬ A.

Definition 7.1.8 (Henkin model construction for MQC). Let C0, C1, C2, ... be a
countable sequence of disjoint countable sets of constants not occurring in some lan-
guage L , where we define C∗

n := C0 ∪C1 ∪ . . .∪Cn. For any C0-saturated theory Γ0

we can construct a Henkin model M = (W, F,⊆, D,⊩) with root Γ0 as follows:

(i) W consists of all C∗
n-saturated theories Γ ⊇ Γ0 formulated in L ∪C∗

n, for all n;
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(ii) F is an upwards closed set of W such that Γ ∈ F if and only if Γ ⊩ f ;

(iii) D(Γ) = C∗
n, where Γ is C∗

n-saturated and formulated in L ∪ C∗
n;

(iv) For atomic sentences A in L (D(Γ)), we define Γ ⊩ A if and only if A ∈ Γ.

Lemma 7.1.9 (Truth lemma). For each theory Γ in any Henkin model M and for
each sentence A formulated in L (D(Γ)), we have:

Γ ⊩ A ⇔ A ∈ Γ

Now, for each Γ in any Henkin model we know that A ∈ Γ if and only if Γ ⊢ A if
and only if Γ ⊩ A.

7.2 Conservativity Results

Let us now start proving the conservativity results. The proof of the following theorem
is an adaptation of Smoryński’s proof as sketched in [DS79, p.115]. Note again that
any MQC-theory is consistent. In our proof we use the following definition for a set
of MQC-sentences Γ:

Γ is f -consistent if and only if Γ ⊬ f .

Theorem 7.2.1. MAP is conservative over SMEQω.

Proof. Let Γ0 be any saturated extension of SMEQω and let M be the Henkin model
of MQC with root Γ0. We will prove that M is a model of MAP. For any Γ in M
and all a, b ∈ D(Γ), we define:

Γ ⊩ a # b if and only if for all n ∈ ω Γ ⊩ a ̸=n b.

Claim. The relation # is an apartness relation on M.
Proof of the Claim. The only interesting axiom to check is the left to right direction
of (4):

∀xy(¬(x # y) → x = y)

Suppose for contradiction that Γi ⊩ ¬(a # b) and Γi ⊮ a = b for some theory Γi ∈ W.
Since M is a model of SMEQω, Γi ⊩ Sn for all n. Hence Γi ⊩ (a ̸=n b→ f) → a = b

for all n. Since we have Γi ⊮ a = b, we know Γi ⊮ f , hence by the truth lemma,
Lemma 7.1.9, we conclude that Γi is f -consistent. Consider Γi ∪ {a ̸=n b | n ∈ ω}.
If Γi ∪ {a ̸=n b | n ∈ ω} is not f -consistent, then we have Γi ∪ {a ̸=n b | n ∈ ω} ⊢ f
and thus it follows that Γi ∪ {a ̸=n b | n ≤ k} ⊢ f for some k ∈ ω. We thus have
Γi ⊢ a ̸=0 b∧ . . .∧ a ̸=k b→ f . Since M is a model of SMEQω, by the axiom schema
(In,m) we know that Γi ⊢ a ̸=n b → a ̸=m b for n ≥ m. We may then conclude
that Γi ⊢ a ̸=k b → f . By Γi ⊩ Sk, we have Γi ⊩ (a ̸=k b → f) → a = b, hence
Γi ⊢ a = b, a contradiction. We conclude that Γi ∪ {a ̸=n b | n ∈ ω} is f -consistent.
Then, by the saturation lemma, Lemma 7.1.7, there exists a theory ∆ ∈ W such
that Γi ∪ {a ̸=n b | n ∈ ω} ⊆ ∆ and f /∈ ∆. Our assumption Γi ⊩ ¬(a # b)

implies ∆ ⊩ ¬(a # b), by the truth lemma, Lemma 7.1.9. On the other hand,
Γi ∪ {a ̸=n b | n ∈ ω} ⊆ ∆ implies a ̸=n b ∈ ∆, and thus ∆ ⊩ a ̸=n b, for
all n. By our definition above, this gives us ∆ ⊩ a # b. From this we obtain
∆ ⊩ f , which contradicts f /∈ ∆. We therefore conclude that Γi ⊩ a = b, hence
Γ0 ⊩ ∀xy(¬(x # y) → x = y). ■
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Suppose SMEQω ⊬ A, for some sentence A formulated in the language of equality.
Then, by the saturation lemma, we know that there exists a saturated extension Γ of
SMEQω such that Γ ⊬ A. Take Γ0 := Γ. Since # defines an apartness relation on M,
it follows that M is a model of MAP an thus MAP ⊬ A. This shows that SMEQω is
the equality fragment of MAP, i.e. MAP is conservative over SMEQω.

We will now present an extension of the above theorem, which was proved for
intuitionistic logic by Smoryński in [Smo77, Theorem 2]. We mimic the proof for
MQC. First we define for n ≥ 2:

MAPn := MAP + ∃x1 . . . ∃xn(
∧
i<j

xi # xj)

SMEQω
n := SMEQω + ∃x1 . . . ∃xn(

∧
i<j

xi ̸=m xj), for all m

Moreover, we define:

MAPω :=
∪
n

MAPn

SMEQω
ω :=

∪
n

SMEQω
n

Theorem 7.2.2. For any 2 ≤ n ≤ ω, MAPn is conservative over SMEQω
n.

Proof. It suffices to proof this for finite n, the case for MAPω then easily follows. Let
n be given and let Γ be any f -consistent extension of SMEQω

n . Let C0 be a set of
constants and c1, . . . , cn ∈ C0 pairwise distinct.

Claim. Γ ∪ {ci ̸=m cj | i < j ≤ n,m ≥ 0} is f -consistent.
Proof of the Claim. Suppose not, then Γ ∪ {ci ̸=k cj | i < j ≤ n, 0 ≤ k ≤ m} ⊢ f

for some finite m. Then Γ ∪ {ci ̸=m cj | i < j ≤ n} ⊢ f , by the axioms Im,k.
Then Γ ∪ {∃x1 . . . ∃xn(

∧
i<j≤n xi ̸=m xj)} ⊢ f and thus Γ ⊢ f , contradicting our

assumption. ■

Let Γ′ := Γ ∪ {ci ̸=m cj | i < j ≤ n,m ≥ 0}. Now suppose SMEQω
n ⊬ A.

We use the saturation lemma to find a C0-saturated extension Γ0 of Γ′. Let M
be the Henkin model for MQC with root Γ0. Let the relation # be again defined by
a # b := ∀n(a ̸=n b), then # again defines an apartness relation. Now Γ0 ⊩ ci # cj for
any i < j ≤ n, hence Γ0 ⊩

∧
i<j≤n ci # cj and thus Γ0 ⊩ ∃x1 . . . ∃xn(

∧
i<j≤n xi # xj).

We conclude that the Henkin model M is a model of MAPn. Hence MAPn ⊬ A and
thus MAPn is conservative over SMEQω

n .

Remark 7.2.3. An alternative and simplified way to do this proof is by leaving out
the condition of f -consistency. We can simply take Γ to be any extension of SMEQω

n

and Γ0 any C0-saturated extension of Γ ∪ {ci ̸=m cj | i < j ≤ n,m ≥ 0}. The
claim in the above proof is then superfluous. That there always exists a C0-saturated
extension for a certain set C0 for any theory Γ, can be easily shown by simplifying
the proof of the saturation lemma.
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The Addition of a Choice Function
Classically, a choice function g for which ∀xR(x, gx), can be conservatively added
to the existence axiom ∀x∃yRxy. In both [Smo77] and [Smo78], Smoryński showed
that, intuitionistically, the following axioms are needed to satisfy extensionality of g,
a result that was first proved by Mints (unpublished):

∀x1∃y1 . . . ∀xn∃yn
( ∧
i≤n

Rxiyi ∧
∧
i≤j

(xi = xj → yi = yj)
)

(∗n)

Let us denote the theory in the language of =, R and g with the axioms of MEQ and
∀xRxgx as T1 and let T2 be the theory in the language of = and R with the axioms
of MEQ and all the axioms (∗n).

Theorem 7.2.4. T1 is conservative over T2.

Proof. If T2 ⊬ A for some sentence A formulated in T2, we can find a saturated
extension Γ of T2 such that Γ ⊬ A. Now we can construct a Henkin Model of Γ which
is a model of T2 by mimicking the proof of the analogous theorem for intuitionistic
logic found in [Smo77, Theorem 1]. We can do this by merely leaving out ‘consistency’
(which in fact simplifies the proof) and replacing ‘strong C-saturated extension’ by
‘C-saturated extension’.

We can strengthen this theorem by adding ∀xy(gx # gy → x # y) to the theory
of apartness. Intuitively, this should have no consequences for the theory of equality
and indeed it does not.

Theorem 7.2.5. MAP∪T2∪{∀xy(gx # gy → x # y)} is conservative over SMEQω∪
T1.

Proof. Let Γ be any f -consistent saturated extension of SMEQω∪T1. Then construct
the Henkin Model M with root Γ as in Theorem 7.2.4. By Theorem 7.2.1 and
Theorem 7.2.4 we already know that M is a model of MAP and T2, respectively.
We will show that the choice function g as constructed in Theorem 7.2.4 satisfies
∀xy(gx # gy → x # y), where # defined as in Theorem 7.2.1. This will complete
our proof.

Claim. In SMEQω ∪ T2, the following is derivable for every n:

∀x1∃y1 . . . ∀xk∃yk
(∧
i

Rxiyi ∧
∧
i≤j

(yi ̸=n yj → xi ̸=n xj)
)

Proof of the Claim. We prove this claim by induction on n. The case for n = 0

follows immediately by using axiom (∗n) and because (p → q) → (¬q → ¬p) in
minimal logic. We assume the case for n and thus it is left to show that for all k:

∀x1∃y1 . . . ∀xk∃yk
(∧
i

Rxiyi ∧
∧
i≤j

(yi ̸=n+1 yj → xi ̸=n+1 xj)
)
. (1)

Let k be arbitrary. Using the induction hypothesis for k + 1 we know that:

∀x1∃y1 . . . ∀xk+1∃yk+1

(∧
i

Rxiyi ∧
∧
i≤j

(yi ̸=n yj → xi ̸=n xj)
)
.
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Hence, for arbitrary t1 there exists s1 such that for arbitrary t2 there exists s2 such
that . . . such that for arbitrary tk there exists sk such that:

∀xk+1∃yk+1

( ∧
i≤k

Rtisi ∧ Rxk+1yk+1 ∧
∧

i<j≤k

(si ̸=n sj → ti ̸=n tj) ∧

∧
i≤k

(si ̸=n yk+1 → ti ̸=n xk+1)
)
. (2)

By (2) we already know that
∧
i≤k

Rtisi, hence it finishes the proof if we can show that∧
i<j≤k

(si ̸=n+1 sj → ti ̸=n+1 tj), because then we have proved (1). Let i and j be

arbitrary such that i < j ≤ k and suppose si ̸=n+1 sj , i.e. ∀z(z ̸=n si ∨ z ̸=n sj). We
need to show that ti ̸=n+1 tj , i.e. that ∀z(z ̸=n ti ∨ z ̸=n tj). Let tk+1 be arbitrary.
Then, using (2), we can find sk+1 such that Rtk+1sk+1 and si ̸=n sk+1 → ti ̸=n tk+1

and sj ̸=n sk+1 → tj ̸=n tk+1. Since ∀z(z ̸=n si ∨ z ̸=n sj), we know that sk+1 ̸=n
si ∨ sk+1 ̸=n sj . Hence we conclude that tk+1 ̸=n ti ∨ tk+1 ̸=n tj . Since tk+1 was
arbitrary we obtain ∀z(z ̸=n ti ∨ z ̸=n tj), i.e. ti ̸=n+1 tj . ■

Now, if Γi ⊩ ga # gb for any Γi in M, then Γi ⊩ ga ̸=n gb, for all n. Hence, by
the above claim, Γi ⊩ a ̸=n b, for all n, and thus Γi ⊩ a # b. Therefore, we conclude
Γ ⊩ ∀xy(gx # gy → x # y) and this completes the proof.

In this chapter, it has been shown that regarding the theories of equality and
apartness, minimal and intuitionistic logic differ very little.
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Chapter 8

Conclusions and Further Research

We will conclude this thesis with an overview of what we have done and ideas for
further research.

In chapter 2, we have seen an example for the use of a minimally invalid law in
analysis. However, this problem could be solved in Glivenko’s logic, which is strictly
weaker than IPC but stronger than MPC. We found new characterisations of this
logic in our research on superminimal logics in chapter 3. There we systematically
examined the differences between minimal and intuitionistic propositional logic by
restricting the length of formulas in the infinite fragment. This work can be taken
further by allowing formulas with a greater maximal length. A natural question is
whether there are differences between minimal and intuitionistic predicate logic that
do not reduce to differences between minimal and intuitionistic propositional logic.

We developed a general framework for studying formal systems on the basis of
minimal logic with different interpretations of falsum in chapter 4. Throughout this
thesis, we have attempted three different approaches of studying theories on the basis
of minimal logic: First, working with an uninterpreted falsum as in pure minimal
logic. Second, trying to find a natural sentence satisfying the ex falso principle, and
third, considering candidates for falsum of strength strictly between the previous
two approaches. Besides these approaches, one can think of working with several
interpretations of falsum at once. That is, if we have an axiomatisation with sev-
eral occurrences of negation, one can choose a different interpretation for falsum for
different occurrences.

In chapter 5, we have studied first-order minimal arithmetic and found out that
this system is quite weak: Equality is not stable, not all primitive recursive functions
are representable and several fundamental principles of arithmetic do not hold (e.g.,
x + y = 0 does not imply that x = 0 and y = 0). Naturally, the discovery of these
weaknesses of minimal arithmetic lets us wonder about ways to strengthen the theory
MHAf . This is possible, for example, by adding an axiom like ∃x(Sx = 0) → 1 = 0.
Moreover, it would be interesting to study other intuitionistic systems of arithmetic
and analysis, and see whether their minimal versions exhibit similar deficiencies.

To summarise our work on first-order arithmetic, note that minimal mathemat-
ics in its purest sense is not suitable for studying arithmetic because of its many
weaknesses. However, there are several possible solutions which one can still further
investigate: Interpreting falsum as 0 = 1, adding logical axioms (similar to the case
of Glivenko’s logic and intuitionistic analysis) or adding non-logical axioms (as we
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have seen above). Of course, one can think of other solutions as well.
When considering minimal second-order arithmetic in chapter 6, we decided to

interpret falsum as 0 = 1 (following the third approach, as 0 = 1 does not imply all
formulas). Among other things, we have seen that Markov’s Principle has a rather
different status in minimal than in intuitionistic logic as it is not at all trivial to
validate it on models for minimal second-order arithmetic, and its justification seems
less clear in the minimal case. This is worth more investigation.

Different theories of equality and apartness are the topic of chapter 7. We proved
a number of conservativity results for those theories. We decided to not interpret
falsum, for the reason that minimal logic possesses natural strength in these systems.
As a consequence, it may be interesting to add apartness to other minimal systems
to strengthen minimal logic there. For instance, this can be investigated for minimal
arithmetic.

Finally, a general direction of further research is the decidability of minimal the-
ories. Every minimal theory is consistent and, therefore, every extension of every
minimal theory will be consistent. Hence, no minimal theory is essentially unde-
cidable, as the maximal extension of all sentences in the language of our theory is
trivially decidable. Take, for instance, MHAf . If we add 0 = 1 as an axiom, we obtain
a consistent extension, since the false 1-circle is a model. This extension is decidable,
as every formula is a theorem. Our question boils down to the fact whether we can
sensibly redefine essentially undecidability to obtain an interesting notion for mini-
mal theories. A possible reformulation is to say that a minimal theory is essentially
undecidable if every f -consistent extension is undecidable.
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