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Abstract

This thesis studies the ability of several compositional distributional models to recog-
nize logical entailment relations. We first investigate the performance of recursive neural
matrix and tensor networks on an artificially generated data set labelled according to
a natural logic calculus. Several issues with this set-up are identified, which we aim to
solve by introducing a new task: First-Order Entailment Recognition. In combination
with an automated theorem prover and model builder, an artificial language with higher
grammatical complexity is used to generate a new data set, whose labels are determined
by the semantics of first-order logic. The tree-shaped networks perform well on the new
task, as opposed to a bag-of-words baseline. Qualitative analysis is performed to re-
veal meaningful clusters on the level of word embeddings and sentence vectors. A novel
recurrent architecture is proposed and evaluated on the same task. The high testing
scores obtained by GRU cells in particular prove that recurrent models can learn to
apply first-order semantics without any cues about syntactic structure or lexicalization.
Projection of sentence vectors demonstrates that negation creates a mirroring effect at
sentence level, while strong clustering with respect to verbs and object quantifiers is
observed. Diagnostic classifiers are used for quantitative interpretation, which suggests
that the best-performing GRU encodes information about several linguistic hypotheses.
Additional experiments are conducted to assess whether the recurrent models owe their
success to compositional learning. They do not profit from the availability of syntactic
cues, but prove capable of generalization to unseen lengths. After training with fixed
GloVe vectors, the GRU can handle sentence pairs with unseen words whose embed-
dings are provided. These results suggest that recurrent models possess at least basic
compositional skills.
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Chapter 1

Introduction

“We don’t see any contradiction”
— Sarah Huckabee Sanders,

Press Secretary of Donald Trump

The ability to recognize entailment, contradiction or any other kind of logical relation
is an essential aspect of human reasoning and language use. It is what enables us to
follow arguments, to reject conclusions or detect inconsistencies. How can this faculty
best be modelled? Both from an NLP and a cognitive science perspective this is a crucial
question, which will be the focus of the current research.

The task of identifying semantic relations in natural language is known as ‘natural
language inference’, or ‘recognition of textual entailment’ in the case of written objects.
There is a tradition of symbolic approaches to the challenge, which have attempted to
determine relations between natural language expressions by representing the problem
in logical terms (Rinaldi et al. 2003; Bos and Markert 2005; Tatu and Moldovan 2005).
Statements are analyzed in terms of their compositional structure and formalized as
per the syntactic conventions of a logic. The logical encodings are processed by a rule-
based deductive method to establish their relation. Usually, the proof system is not
only presented with the pair of statements to be assessed, but also with a large amount
of background information. This knowledge base captures the ontology of a particular
context, which comprises valid formulas that serve as axioms in a derivation.

In their purest form, symbolic methods face some major shortcomings. Due to the
ambiguity of natural language, formalization is not always straightforward, let alone
that translation into logical representations can easily be automated on a large scale.
The approach relies on the principle of compositionality, which states that meaning
primarily depends on syntax and lexical semantics, to which factors such as context are
subordinated. Ontologies have to be composed separately, and quickly risk becoming
excessive in size or complexity. Even if a manageable knowledge base is available, the
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1 Introduction

content matter tends to concern demarcated themes, which risks rendering the system
as a whole overly specific in its applicability.

An alternative course of action, which has gained popularity in recent years, is based
on data rather than logic. Data-driven models do not infer entailment relations from
hardcoded logical heuristics, but apply machine learning techniques to large numbers
of training instances. They adapt their internal representations to match the statistical
properties of the data witnessed during the training phase, a process that need not be
governed by mechanisms with a clear linguistic or logical interpretation. It is common
for such probabilistic models to replace the compositional hypothesis with its distribu-
tional counterpart, which assigns most importance to context. Based on this assumption,
vectors capturing distributional properties can be used to represent words or higher-level
entities.

Data-driven models have proven successful in entailment recognition tasks. Here fol-
lows a short overview of relevant research, mainly aimed readers with prior knowledge on
the subject. Baroni, Bernardi, et al. 2012 showed that entailment between short nominal
and quantifier phrases can be established using purely distributional encodings of the
phrases. Socher, Huval, et al. 2012 combined distributional and compositional seman-
tics in tree-shaped neural networks, which recursively construct complex representations
from word embeddings. These networks can determine semantic relations such as cause-
effect or member-collection. Rocktäschel, Bošnjak, et al. 2014 computed low-dimensional
embeddings of objects and relations, which can be used to perform first-order inferences
between rudimentary formal expressions, thereby providing a proof-of-concept for the
distributional modelling of first-order semantics.

In 2014, the Sentences Involving Compositional Knowlege (SICK) data set was re-
leased. It contains approximately 10,000 English sentence pairs, which human annotators
labelled with the entailment relation ‘neutral’, ‘contradiction’ or ‘implication’ on Ama-
zon Mechanical Turk (Marelli et al. 2014). It has since been used as a benchmark for
compositional distributional model testing. Bowman, Potts, and Manning 2015 created
an artificial data set with pairs of short premises and hypotheses, automatically labelled
by a natural logic calculus, and showed that tree-shaped neural networks can accurately
predict the entailment relations between unseen sentence pairs. Performance improved
if the composition function contained a tensor product term in addition to traditional
matrix multiplication. Moreover, when combined with a parser the recursive networks
obtained competitive results on the SICK test.

In 2015, Bowman and others released the Stanford Natural Language Inference
(SNLI) corpus, which is similar to SICK in its format, labels and generation, but much
larger: it contains more than 500,000 English sentence pairs. Bowman, Angeli, et al.
2015 showed that an LSTM architecture achieves a reasonable testing accuracy on the
SNLI data. Rocktäschel, Grefenstette, et al. 2015 improved their results by extending
the LSTM set-up with an attention mechanism.

Other types of compositional distributional modelling were proposed by Bankova
et al. 2016, Serafini and Garcez 2016 and Sadrzadeh, Kartsaklis, and Balkır 2018. These
approaches have in common that models are endowed with algebraic characterizations of
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1 Introduction

particular linguistic features, either in the form of pregroup grammars or neural-symbolic
structures. Allamanis et al. 2016 described a neural method to classify algebraic and
logical expressions according to their truth conditions, thereby modelling the particular
entailment relation of equivalence. Evans, Saxton, et al. 2018 recently introduced
‘PossibleWorldNets’ to predict the semantic relation between pairs of formulas in
propositional logic, computed as a convolution over possible worlds.

The above-mentioned entailment recognition models intend to capture semantic behav-
ior. Therefore, their targets depend on the semantics that are assumed, either by explicit
knowledge representation or by extraction from data. In this regard, all described meth-
ods can be divided into one of the following two categories:

1. those that have a clear theory of meaning

2. those that do not

Category 2 prevails and includes all compositional distributional models that are de-
signed to address the challenges of corpora such as SICK and SNLI. Apart from reliability
issues of Amazon Mechanical Turk, the notion of semantic entailment that these data
sets intend to cover is at best ill-defined. E.g., SNLI assigns ‘entailment’ to a pair with
premise ‘A soccer game with multiple males playing’ and hypothesis ‘Some men are play-
ing a sport’. What notion of consequence licenses the entailment from a nominal phrase
to a sentence? No semantic framework is available to assess or control such inferences,
which ultimately depend on the colloquial understanding of Mechanical Turk workers.
If the objective is purely empirical this need not be problematic, but from a theoretical
perspective it seems preferable to be aware of the actual notion of entailment that is
being modelled. Furthermore, the informal nature of the data generation process causes
coarse-grained distinctions between three general classes, and leaves no space for more
nuanced entailment relations.

Methods belonging to category 1, which depend or concentrate on explicit semantics,
can do so in two ways. They either generate data sets that adhere to the principles
of a particular theory (e.g. Evans, Saxton, et al. 2018), or they supply their models
with a symbolic representation of such principles (e.g. Sadrzadeh, Kartsaklis, and Balkır
2018). In practice, this has mostly led to research focusing on totally formal data, or on
models that are so dependent on representations of specific entities that their generalizing
potential is limited. In other words, if methods lacking a clear semantic profile are not
logical enough, then methods that do adopt such a profile seem not natural enough.

The most notable exception is the research of Bowman, Potts, and Manning 2015.
Bowman e.a. adopted a natural logic as semantic foundation, but did not supply their
tree-shaped models with explicit details about this theory. Moreover, using natural
logic they generated a data set that is artificial but not formal, containing readily
interpretable expressions such as ‘((all (not warthogs)) move)’. The instances were
labelled with seven different entailment relations, as opposed to the three general SICK
and SNLI classes. The target behavior on this data set is dictated by the logic that was
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1 Introduction

used to generate it. In other words, good testing performance indicates that classifiers
learnt logical semantics while performing natural language inference. This is very
different from other experiments, which dealt with logical semantics or natural language,
but not with both.

This thesis continues Bowman’s line of research, by approaching entailment as a semantic
phenomenon that can be recognized in natural language but that is produced by logic:
can compositional distributional models learn logical semantics from natural language?
By taking this perspective, the aim is to address a niche in the field of computational
semantics that has been largely unoccupied since Bowman’s experiments.

Essential notions from semantics, logic and neural modelling are discussed in Chapter
2, which is especially aimed at readers with a different background. Chapter 3 is dedicated
to the Quantified Natural Logic Inference task, as introduced by Bowman 2013. The
data generation process is described, as well as the recursive models, their performance
in the original study and a new replication. The chapter concludes by listing a variety
of problems associated with these experiments and the role of natural logic.

Chapter 4 addresses the identified issues by proposing a new classification task: First-
Order Entailment Recognition. A new data set is generated according to the semantics
of first-order logic. The included sentences are non-formal and have greater length and
linguistic complexity than those in Bowman’s data. The same tree-shaped models are
trained on the new data, and subjected to interpretation.

Chapter 5 examines whether the task can also be handled by recurrent models, which
process sentences sequentially instead of recursively. A new architecture is suggested, and
its performance is studied with three different recurrent units: Simple Recurrent Net-
works, Gated Recurrent Units and Long-Short Term Memory. The results are interpreted
both qualitatively and quantitatively, using the new technique of diagnostic classifica-
tion. Particular attention is paid to the question whether the implemented recurrent
networks are capable of compositional learning, which would enable them to handle ar-
bitrary structures with known constituents. Several experiments are performed to test
different compositional capacities of the models. A concluding section reflects on the
obtained results, and the new questions that they raise.
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Chapter 2

Theoretical background

This preliminary chapter briefly introduces the most important theoretical themes and
notions underlying the project. Three different perspectives on semantics are described,
as well as the two types of logic and neural network basics that will be used in later
chapters. The information in this chapter is mostly assumed familiar, but included for a
broader readership.

2.1 Semantics

This research focuses on the automated recognition of entailment relations between sen-
tences, which is essentially a semantic challenge. It requires not only an adequate repre-
sentation of the meaning of individual statements, but also of paired expressions whose
relation is captured by a specific kind of logical entailment. In modern semantics, two ma-
jor paradigms can be distinguished: the compositional and the distributional approach.
Both are discussed below, as well as the hybrid perspective combining both. Note that,
in practice, the opposition between the different strands need not be as harsh as this
introduction might suggest. The focus on their discrepancies is intended to single out
the theoretical principles lying at the basis of the approaches in their least compromised
form.

2.1.1 Compositional

Compositional semantics relies on the principle of compositionality. A clear formulation
of the principle states that ‘the meaning of a complex expression is determined by its
structure and the meanings of its constituents’ (Szabó 2004). It is often attributed to
Frege, who did not explicitly assert it as a doctrine but made many claims in the same
spirit, e.g. that ‘the possibility of our understanding sentences which we have never heard
before rests evidently on this, that we can construct the sense of a sentence out of parts
that correspond to words’ (Frege [1914] 1980, p. 79).

If compositional semanticists are right, the meaning of any expression is derivable
from the meanings of its elements, together with the way in which these elements are
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2 Theoretical background

structured. Or, as Partee phrases it: ‘the meaning of an expression is a function of
the meanings of its parts and of the way they are syntactically combined’ (Partee 1984,
p. 281). This requires that both syntax and lexical semantics (meanings of primitive
vocabulary items) of the language in question are known.

An illustration
of

compositional semantics

Figure 2.1: An illustration of compositional semantics.

Suppose that the syntax of English is shaped by binary trees. Then Figure 2.1 shows
the interpretation of the nominal phrase ‘An illustration of compositional semantics’.
The total statement is analyzed syntactically, which produces the parse tree with the
individual words at its leaf nodes. The words are atomic items, whose meaning must be
specified by the lexical semantics and cannot be further decomposed under the current
syntactic assumptions. An alternative example is propositional logic, whose semantics
is fully compositional. If a valuation specifies the truth values of the atomic constants
occurring in a formula, then the status of the entire proposition follows immediately from
the truth-functional definition of the involved connectives.

Compositionality is often justified by the ‘argument from productivity’. According
to this argument, it explains the human capacity to interpret and generate infinitely
many different expressions on the basis of a finite number of linguistic experiences and
internalized semantic units (Dowty 2007; Groenendijk and Stokhof 2004). Additional
support is offered by the ‘argument from systematicity’ (Fodor 1998). Systematicity is
the property allowing languages to combine syntactically analogous expressions in iden-
tical ways. E.g., if ‘an illustration’ and ‘a visualization’ are of the same syntactic type,
and ‘an illustration of compositional semantics’ is grammatical, then ‘a visualization of
compositional semantics’ is so too. For these and similar reasons, many consider com-
positionality to be a major, if not the defining, foundational element of human language
and thought (Chomsky 1957; Montague 1970).

As intuitive as it seems, the compositional approach to semantics is not uncontested.
Consider idiomatic expressions such as ‘beating around the bush’ or ‘barking up the
wrong tree’. These are complex expressions whose interpretation is not constructed
from the literal meaning of its constituent words, but rather from their combination as
phrasal configurations, thereby challenging the principle of compositionality (Goldberg
2015). Another problem lies in sentences containing propositional attitudes such as ‘be-
lieving’ (Pelletier 1994). ‘Phacochoeri’ is the Latin name for ‘warthogs’, and is therefore
supposed to have the same meaning. However, ‘Sam believes warthogs are mammals’ is
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not necessarily equivalent to ‘Sam believes Phacochoeri are mammals’, for Sam may not
know the term ‘Phacochoerus’. This suggests that lexical semantics and syntactic struc-
ture alone do not account for all meaning. Even if this were the case, lexical semantics
is problematic enough in itself, because it assumes that words have unique meanings,
which exist in isolation. This does no justice to the relevance of context to correctly
interpreting sentence constituents (Travis 1994; Lahav 1989).

2.1.2 Distributional

Orthogonal to compositional semantics is distributional semantics. This approach does
not depart from the principle of compositionality, but relies on the distributional hy-
pothesis, which states that ‘words that occur in the same contexts tend to have similar
meaning ’ (Pantel 2005, p. 126). Firth is often credited with an early formulation of the
hypothesis, by claiming that ‘[y]ou shall know a word by the company it keeps’ (Firth
1957, p. 11). Harris had already stated three years earlier that ‘distributional statements
can cover all of the material of a language without requiring support from other types of
information’ (Harris 1954, p. 34).

Distributional semantics is also known as statistical semantics, because it uses sta-
tistical methods to find numerical representations of meaning. Delavenay defined it as
the ‘statistical study of meanings of words and their frequency and order of recurrence’
(Delavenay 1960, p. 133). To carry out this study, natural language corpora are required
for the computation of word counts relative to documents, topics or other words. Such
quantitative analysis gives shape to a context-based notion of meaning. The more data
are available, the more accurately the resulting distribution is supposed to match seman-
tic intuitions. To put it otherwise, ‘words with similar meanings will occur with similar
neighbors if enough text material is available’ (Schütze and Pedersen 1995, p. 166).

Figure 2.2: An illustration of distributional semantics.

More concretely, distributional semanticists process linguistic data in order to con-
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struct representations of semantic units (usually words) as finite-dimensional vectors,
also known as ‘embeddings’. Figure 2.2 visualizes this for the sample phrase ‘An illustra-
tion of distributional semantics’. Assuming that 2-dimensional word embeddings were
generated on the basis of a large and representative corpus of English texts, the plotted
points are located at the learned positions of the five words in the phrase. Items ‘an’ and
‘of’ are located in the same region, as are ‘semantics’ and ‘distributional’. This reflects
the distributional hypothesis: if the meaning of a word is determined by its context, then
words with similar statistical properties should be represented by nearby vectors. ‘An’
and ‘of’ are both function words, which cluster together. ‘Distributional’ and ‘semantics’
often occur in the same contexts, so they also share a subspace. ‘Illustration’ has no
strong semantic connection to any of the other words in the phrase, so it is located in a
different region. We see that the toy vector distribution of Figure 2.2 embodies geometric
analogues of the semantic connections between words, which demonstrates how statistics
can provide a model of relational meaning.

In modern applications, word embeddings tend to contain many more than two
units. Dimensionality reduction methods such as Principal Component Analysis and
t-distributed Stochastic Neighbor Embedding can be used to project such vectors to
lower-dimensional representations (Pearson 1901; Maaten and Hinton 2008). A vari-
ety of distance measures is used to express (dis)similarity between embeddings, such
as subtractive norm, cosine and Euclidean distance (Lee 1999). Cluster analysis can
be performed quantitatively by means of algorithms such as k-means (MacQueen et al.
1967).

There are many different methods of distributional semantic modelling. Traditional
algorithms are mostly unsupervised and count-based, focusing on co-occurrence matri-
ces as a means to statistically relate semantic entities. An example is Latent Semantic
Analysis, introduced by Letsche and Berry 1997. For an overview of other such methods,
see Bullinaria and Levy 2007. Count-based models are hardly used anymore nowadays.
Instead, neural or predictive models are favored, which use the machine learning frame-
work of neural networks to learn word embeddings from a training corpus. Well-known
examples are the continuous bag-of-words and skip-gram models (Mikolov, Chen, et al.
2013). Roughly stated, the former aims to predict words given their context, whereas the
latter predicts a likely context from words. Both are commonly referred to as ‘word2vec’.
Many follow-up algorithms have been proposed, such as GloVe, which is trained on global
co-occurrence counts rather than separate local context windows (Pennington, Socher,
and Manning 2014). These and other systems have been used to generate large databases
of pretrained word embeddings, many of which are available online. Alternatively, it is
possible to treat the embeddings as parameters in existing architectures, and update
them as regular layer weights.

Baroni, Dinu, and Kruszewski 2014 showed that neural models outperform their
count-based predecessors on several benchmark NLP tasks. The predictive models are
not only capable of producing meaningful geometries for words, but also for phrases
(Mikolov, Sutskever, et al. 2013). However, encoding more complex objects such as
sentences or documents has proven problematic, because a distributional account alone
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appears insufficiently scalable to accommodate higher-level compounds (Mohammad et
al. 2013; Sadrzadeh and Kartsaklis 2016). Even if this were theoretically possible, data
sparsity would be a bottleneck for longer expressions.

2.1.3 Hybrid

Compositional and distributional semantics complement each other in this respect, that
the former describes how to handle composite statements without specifying individual
word meanings, while the latter successfully captures lexical semantics but fails to model
utterances with high complexity. This observation has motivated semanticists to combine
both perspectives in a hybrid approach, which is known as ‘compositional distributional
semantics’. The following citation gives a clear introduction:

Compositional distributional models extend [word] vector representations
from words to phrases and sentences. They work alongside a principle of
compositionality, which states that the meaning of a phrase or sentence is
a function of the meanings of the words therein. (Sadrzadeh and Kartsaklis
2016, p. 2)

In other words, compositional distributional semantics aims to express the meaning
of complex expressions as a function on the embeddings of their primitive constituents.
This function can have a recursive structure, such as the parse tree of Figure 2.1, but
accept vectorial word representations as input arguments, such as the embeddings in
Figure 2.2. There are three main categories of compositional distributional models:

• Vector mixture models. Simple bag-of-words models that perform element-wise
operations on the input vectors. The embeddings can be added or multiplied,
without taking word order into consideration. E.g. Mitchell and Lapata 2008.

• Tensor-based models. Models that treat relational words as functions, which take
one or more vectors as input arguments. The functions are implemented as ten-
sors, whose order depends on the grammatical type of the represented word. E.g.
Coecke, Sadrzadeh, and Clark 2010.

• Neural models. Models that use a neural network to compose input embeddings.
There are several ways for the model to take sentence structure into account, e.g.
by topologically mimicking the syntactic parse (recursive networks) or by imple-
menting feedback cycles (recurrent networks). E.g. Socher, Huval, et al. 2012.

Compositional distributional models have performed very well on a variety of NLP
tasks, including sentence similarity recognition (Marelli et al. 2014), sentiment analysis
(Le and Zuidema 2015) and entailment classification (Sadrzadeh, Kartsaklis, and Balkır
2018).
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2 Theoretical background

2.2 Logics

The relation that has to be identified in the entailment recognition task depends on the
logic underlying the utterances in question. In this project, several data sets will be
used that contain large numbers of sentence pairs that are not labelled by hand, but
by automated deduction methods. These methods rely on the implementation of two
systems: natural logic (NL) and first-order logic (FOL). The below subsections describe
how both logics are understood in this project.

2.2.1 Natural logic

In modern times, the dominant conception of logic has focused on formal systems. From
this perspective, the only legitimate inferences are those between formulas adhering to
a rigid, predefined syntax. NL opposes this paradigm, by seeking to offer a deductive
method that computes the relations between natural language expressions without re-
quiring intermediate formalization. In other words, its aim is to provide a logical calculus
that operates immediately on natural language expressions.

Van Benthem describes NL as ‘a system of modules for ubiquitous forms of reasoning
that can operate directly on natural language surface form’ (Van Benthem 2007, p. 5),
and argues that “natural logic’ itself cannot be one single mechanism’, due to the many
different ways in which natural language is used to draw inferences (Van Benthem 1987,
p. 460). Thus, rather than one unified framework, NL must be a collection of separate
faculties, each of which accounts for a different aspect of the reasoning encountered in
natural language usage.

One kind of reasoning that is commonly considered essential to human cognition
and language, and which has therefore been the focus of many theories on NL, revolves
around monotonicity (Sommers 1982; van Eijck 2005; van Benthem 2007). Monotonicity,
following Barwise and Cooper 1981, is a property of quantifiers that specifies how their
arguments can be substituted with weaker or stronger notions without affecting validity
of the statements in which they occur. There are two kinds of monotonicity: upward
(increasing) and downward (decreasing). Their general definitions are as follows:

Definition 2.1. Upward monotonicity. A quantifier QM of type (n1, · · · , nk) is upward
monotone in the ith argument iff the following holds:

If QM [R1, · · · , Rk] and Ri ⊆ R′i, then QM [R1, · · · , Ri−1, R′i, Ri+ 1, · · · , Rk], where
1 ≤ i ≤ k.

Definition 2.2. Downward monotonicity. A quantifier QM of type (n1, · · · , nk) is down-
ward monotone in the ith argument iff the following holds:

If QM [R1, · · · , Rk] and R′i ⊆ Ri, then QM [R1, · · · , Ri−1, R′i, Ri+ 1, · · · , Rk], where
1 ≤ i ≤ k.

Roughly said, an upward monotone quantifier legitimizes the inference from subsets
to supersets, while a downward monotone quantifier sanctions the inference from super-
sets to subsets. E.g., ‘every mammal moves’ implies that ‘every warthog moves’, because
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‘every’ is downward monotone in its first argument and ‘warthog’ is a hyponym of ‘mam-
mal’. Likewise, ‘some warthog moves’ entails ‘some mammal moves’, because ‘some’ is
upward monotone in its first argument and ‘mammal’ is a hypernym of ‘warthog’.

One NL that is based on a monotonicity calculus is the system advanced by MacCart-
ney 2009 and MacCartney and Manning 2009. This version was adopted by Bowman,
Potts, and Manning 2015, and is most relevant to the current project. MacCartney dis-
tinguishes seven different entailment relations, which are defined in Table 2.1. Figure
2.3 offers a diagrammatic illustration of their differences. The relations are defined with
respect to pairs of sets, but they are also applied to pairs of sentences, which can be
interpreted as the sets of possible worlds where they hold true.

name symbol set-theoretic definition example
cover ∨ x ∩ y 6= ∅ ∧ x ∪ y = D animal, non-turtle
negation ∧ x ∩ y = ∅ ∧ x ∪ y = D able, unable
forward entailment < x ⊂ y turtle, reptile
equivalence = x = y couch, sofa
backward entailment > x ⊃ y reptile, turtle
alternation | x ∩ y = ∅ ∧ x ∪ y 6= D turtle, warthog
independence # (else) turtle, pet

Table 2.1: The seven entailment relations of MacCartney and Manning 2009. D denotes
the universe of discourse (i.e. the total domain). (Note the difference between the symbols
for negation (∧), conjunction (∧), cover (∨) and disjunction (∨). This notation is used
in order to maintain coherence between the current project, MacCartney and Manning
2009 and the data.)

Figure 2.3: Visualization of the seven entailment relations specified in Table 2.1.
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MacCartney proposes a procedure to determine the entailment relation between a
premise p and a hypothesis h, which is shown here as Algorithm 2.1. The atomic edits
of step 1 in Algorithm 2.1 can be deletions, insertions or substitutions of subexpres-
sions in a sentence. E.g., sub(warthog,mammal), the substitution of ‘warthog’ with
‘mammal’, is the edit that changes ‘every warthog moves’ into ‘every mammal moves’.
(ej ◦ ei)(s) denotes the sucessive applications of edits ei and ej to sentence s. Hence,
provided that h = (en ◦ · · · ◦ e1)(p), the total sequence of n edits transforming premise
p into hypothesis h is 〈e1, · · · , en〉. By definition, x0 = p. For any i ∈ [1, n] sentence xi
is the result of applying edit ei to predecessor xi−1 (step 4). Each edit ei generates a
lexical entailment relation β(ei), which is determined at step 5 of Algorithm 2.1. Hence,
if ei = sub(warthog,mammal), then β(ei) =‘<’, denoting forward entailment because
‘warthog’ is a hyponym of ‘mammal’. Step 6 then assesses the atomic entailment relation
β(xi−1, ei) between sentence xi−1 and edit ei, by means of several fixed matrices con-
taining the monotonicity properties of different grammatical categories.1 Finally, step
7 applies the ‘join’ operation ./ to all previously established atomic entailments, which
amounts to a series of look-up operations in the join table for the seven basic entail-
ment relations, given on page 85 of MacCartney 2009 (not repeated here for the sake of
brevity).

Input: premise p, hypothesis h
Output: entailment relation β(p, h)

1 Find atomic edits 〈e1, · · · , en〉 such that h = (en ◦ · · · ◦ e1)(p)
2 x0 ← p
3 for i ∈ [1, n] do
4 xi ← ei(xi−1)
5 Determine lexical entailment relation β(ei) generated by ei
6 Project β(ei) upward through semantic composition tree of xi−1 to find atomic

entailment relation β(xi−1, ei) = β(xi−1, xi)

7 β(p, h)← β(x0, xn) = β(x0, e1) ./ · · ·β(xi−1, ei) ./ · · · ./ β(xn−1, en)
Algorithm 2.1: Inference NL entailment relation, from MacCartney 2009, pp. 105-
106.

For a detailed description of MacCartney’s NL calculus, with more examples and the
exact projectivity matrices that are used, I refer to MacCartney’s PhD thesis on this
topic (MacCartney 2009) and the concise overview in MacCartney and Manning 2009.

1More precisely, MacCartney uses an extended version of the calculus proposed by Sánchez Valencia
1991, generalizing the concept of monotonicity to the notion of ‘projectivity’. A number of projectivity
matrices specify the functions that return an atomic entailment relation, given some linguistic construc-
tion and lexical entailment. MacCartney does not only spell out the projectivity signatures of logical
connectives and quantifiers, but also of particular verb classes such as implicatives and factives.
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2.2.2 First-order logic

This thesis will also make use of the more conventional system of FOL (also known as
first-order predicate calculus). Most of the details of this logic are assumed familiar. In
the context of this thesis, the main difference between NL and FOL is that the latter
requires natural language statements to be translated into an encoding that meets the
syntactic requirements of the logic before inference can take place. That is, expressions
must be formalized into sequences of connectives, quantifiers, parentheses, variables,
equality symbols, predicates and/or constants that adhere to the recursive definition of
a well-formed formula.

The semantics of a FOL system must specify a non-empty domain of discourse D
and an interpretation function I mapping constants and predicates in the language to
elements and relations in the domain D. Together, the domain and the interpretation
function form the modelM = 〈D, I〉. Truth of a FOL formula is evaluated with respect
to a modelM = 〈D, I〉 and a variable assignment g, which sends each variable to some
object in D.

There are many deductive systems for FOL, which establish logical consequence
by syntactic means, such as natural deduction, sequent calculus and Hilbert-style (ax-
iomatic) systems. With his completeness theorem, Gödel proved that deductive systems
for FOL can be sound and complete (Gödel 1929; Gödel 1930). Soundness of the logic
with respect to a deductive system D means that only valid formulas are provable by D.
Completeness, which is much harder to demonstrate, states that only formulas that are
provable by D are valid. These are important metalogical properties, which make FOL
a convenient system for many purposes that do not require total expressivity. This will
be an important consideration in Chapter 4, where FOL is used to generate a new data
set.

Another metalogical feature is decidability: is there an effective method to determine
the (in)validity of an arbitrary FOL formula? This question is known as the Entschei-
dungsproblem. Church and Turing independently established that it must be answered
negatively (Church 1936; Turing 1936). FOL is undecidable, because there exists no de-
cision procedure for determining the (in)validity of arbitrary formulas in a FOL language
containing at least one n-ary predicate such that n ≥ 2. For the fragment of FOL that
uses only unary or nullary predicates an effective method does exist, so if the logic is
thus restricted it is decidable.2

In Chapter 4 I will construct a data set containing pairs of sentences labelled according
to their FOL entailment relation. In order to do so, I will make use of an automated
theorem prover and model builder: Prover9 and Mace4 (McCune 2010). Given a premise,
a set of axioms and a hypothesis, Prover9 pursues a proof by contradiction. Statements
that are derivable from the assumptions are compared to the negated hypothesis. If this
leads to a contradiction, Prover9 concludes that the hypothesis must hold. Derivation is
governed by the following rules:

2For a more in-depth explanation of FOL and its metalogical properties, see e.g. Mendelson 1987,
Boolos, Burgess, and Jeffrey 2007 or Sider 2010.
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• Clausification. Conversion from quantified formulas into unquantified clauses. For
existentially quantified formulas this amounts to instantiation with a term. Uni-
versally quantified variables are substituted with free ones.

• Resolution. Application of the resolution rule to lines of the form P (x) ∨Q1(x) ∨
· · · ∨Qn(x) (with free variable x) and ¬P (t) (with term t):

P (x) ∨Q1(x) ∨ · · · ∨Qn(x),¬P (t)
resolution[t/x]

Q1(t) ∨ · · · ∨Qn(t)

• Denial. Negation of previously encountered expressions.

Model builder Mace4 addresses entailment semantically, and tries to find a counter-
model. That is, it attempts to construct a modelM (as specified above) that satisfies the
premise and all axioms, while falsifying the hypothesis. It does so by checking models of
all domain sizes up to some n. If a countermodel is identified, the argument is concluded
to be invalid.

A sample trace produced by Prover9 and Mace4 is provided in Appendix A. It
illustrates that searching proofs using this method is computationally expensive and
prone to combinatorial explosion as the number of axioms increases. The algorithms
continue to apply admissible rules until a contradiction or a countermodel is found, or
until the maximum recursive depth or time is exceeded. For these reasons, in addition to
the fact that all input sentences have to be parsed, automated theorem proving of this
kind faces serious scalability issues.

2.3 Neural networks

Most of the models used in this thesis are artificial neural networks, a class of ma-
chine learning algorithms that combine linear transformations with nonlinear activation
functions in order to approximate the conditional distribution of a set of classes given
vectorized input. There are many different kinds of neural networks, so this section
serves to introduce only some of their most basic properties. As a simple example, let us
consider a so-called feed-forward neural network and its defining characteristics.

Suppose that we have a data set D, which consists of pairs of input vectors xi and
corresponding targets ti. D consists of a training set Dtrain and a test set Dtest. We
want a neural network to predict the labels t of the data instances. To achieve this, the
network is trained on the items in Dtrain, and tested on the unseen items in Dtest.

Figure 2.4 shows a small feed-forward neural network, which we call N , as an example
for four-dimensional input vectors xi, a five-dimensional hidden layer and three output
classes. If data instance xi is presented to N , the corresponding hidden layer vector hi
is computed as follows:

hi = f(Wh × xi + bh), (2.1)
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Figure 2.4: Schematic visualization of the small feed-forward neural network N .

where Wh is the input-to-hidden weight matrix (c.q. of dimensions 5 × 4) and bh
is a bias term. f is a nonlinear activation function, e.g. tanh. Next, to move from the
hidden layer to the output layer, a similar computation is performed on hi:

yi = Wo × hi + bo, (2.2)

where yi denotes the output vector, which is three-dimensional for this three-class
classification problem. Wo is the hidden-to-output weight matrix (in this example of
dimensions 3× 5) and bo is a bias term. It is common to apply a softmax function to yi
in order to represent the output as a probability distribution. Generally, the softmax of
yji , the jth entry of yi, is given by:

softmax(yji ) =
ey

j
i∑

j′ e
yj

′
i

(2.3)

The index of the entry of yi with the highest softmax value can then be returned as
the predicted label yi for input xi:

yi = argmax
j

(softmax(yji )) (2.4)

In the example of Figure 2.4, the upper node of the output layer yields the highest
softmax value and is therefore returned as the predicted label.

The aim is to predict the target value of the input, i.e. yi = ti. In order to achieve
this, the parameters in the (randomly initialized) weight matrices Wh, Wo and bias
vectors bh, bo must be optimized. This can be done during the training phase with a
method called backpropagation, which updates the network parameters by differentiating
an objective function. This function, also known as the loss function, expresses the
deviance between the output of N and the training target.
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A popular objective function is the negative log likelihood (NLL). Let zi denote the
vector containing the softmax output for each class (i.e. zji = softmax(yji ) for each index
j). For target ti, let ti denote the corresponding target vector, which is a one-hot vector
with the 1-entry at the index of the correct class. Then the NLL loss is given by:

E(zi, ti) = −
∑
j

log(zji )t
j
i (2.5)

Additionally, L2-regularization can be applied to prevent overfitting. This is the
phenomenon occurring when a model fits the training data too closely to be capable of
successful generalization to unseen data. A model is at particular risk of overfitting when
its learned parameter values become excessively high. L2-regularization seeks to prevent
this effect by penalizing large coefficients. It does so by extending the loss function with
a weight decay term:

Er(zi, ti) = E(zi, ti) + λ
∑
j

w2
j (2.6)

Here, E(zi, ti) is a loss function, c.q. the NLL of Equation (2.5). The quantities wj
represent the model weights and λ is the L2 penalty term. The higher λ, the more cost
is associated with large parameter values.

During the training phase, the aim is to minimize the error as computed by Equation
(2.6) for any output-target pair zi, ti. This is done by using the outcome of the objec-
tive function as an error signal for parameter updating with a differential optimization
algorithm. Stochastic Gradient Descent (SGD) is the most basic such method, which
updates the network weights wi as per the following equation:

wn+1
i = wni − η∇wiEr, (2.7)

where wni represents the value of parameter wi at time n, η is the learning rate and
∇wiEr is the gradient of the objective function Er with respect to wi. During training,
the network iterates over the training set several times. One such iteration is called
an ‘epoch’, and starts with reshuffling the data instances. At testing time the learned
parameters are frozen.
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Chapter 3

Quantified Natural Logic Inference

This chapter serves to introduce the Quantified Natural Logic Inference task as addressed
by Bowman 2013 and Bowman, Potts, and Manning 2015. Earlier results are reported, as
well as those obtained by means of a replication. Consecutively, some major shortcomings
of this type of research are addressed.

3.1 Bowman’s research

In recent years, one of the most influential studies on textual entailment recognition
was led by Bowman. His 2013 paper (Bowman 2013), tentatively titled ‘Can recursive
neural tensor networks learn logical reasoning?’, was soon followed by a more decisive
publication: ‘Recursive Neural Networks Can Learn Logical Semantics’ (Bowman, Potts,
and Manning 2015). The claim made in the second title is supported by the high scores
that recursive neural networks obtained in classification tasks based on the semantics of
propositional and natural logic. Here, I focus on the more advanced natural logic task.

3.1.1 Data generation

Natural logic, as introduced in Section 2.2.1, is a calculus comprising inference rules
between words and phrases in natural language. Because it operates directly on unfor-
malized utterances, no translations to a particular logical syntax are required in order to
assess the relation between expressions. Bowman uses the version of Natural Logic spec-
ified by MacCartney and Manning (MacCartney and Manning 2009) to automatically
generate data containing pairs of sentences, labelled with their logical relation.

Prior to the data generation process, a small toy language is constructed. Let this
language be denoted by LB (with B for Bowman). The vocabulary of LB consists of
four classes: quantifiers, nouns, intransitive verbs and adverbs. Let these classes be
represented by QLB , NLB , VLB , ALB , respectively. They contain the following words:
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QLB = {all, some, most, two, three, not_all, no, not_most, lt_two, lt_three}

NLB = {warthogs, turtles, mammals, reptiles, pets}

VLB = {walk, swim, move, growl}

ALB = {not, ε1}

Individual sentences can be generated combinatorially from the above classes accord-
ing to the phrase structure grammar in Table 3.1 (Chomsky 1957). The statements X
→ X in the right column summarize all production rules connecting a non-terminal X to
the terminals in class X . That is, X → X abbreviates the set of rules {X→ x | x ∈ X}.

S → NP VP Det → QLB
NP → Det NP N → NLB
NP → Adv N V → VLB
VP → Adv V Adv → ALB

Table 3.1: Phrase structure grammar for artificial language LB.

In the data, sentences are formed by constituent words together with the underlying
syntactic structure, which takes the shape of a binary tree and is represented by the use
of brackets. E.g.: ‘((all warthogs) walk)’. The set SLB of all sentences in LB can also be
expressed as the Cartesian product QLB × ALB × NLB × ALB × VLB . Evaluating the
cardinality of SLB shows that there are 10× 2× 5× 2× 4 = 800 different valid sentences.

Note that class ALB contains the expression not, for logical complement, and the
dummy term ε, representing an empty string. Including ε as an adverb is useful because
it facilitates a more concise description of the language. This is due to the fact that
negation is allowed, but not required, at two positions: in front of the noun and in front
of the verb.

The set QLB can be divided into the ‘positive’ quantifiers all, some, most, two, three
and their negated counterparts not_all, no, not_most, lt_two, lt_three. (The prefix lt
for the numeric quantifiers two and three should be read as ‘less than’.) Because the
negated versions are not decomposed, a model can effectively learn to apply negations
specifically tailored for particular quantifiers.

The classes NLB and VLB contain non-logical symbols whose lexical meaning is cap-
tured relationally by a taxonomy of terms. This is a hierarchy denoting the set-theoretic
relations between the different concepts in a domain of discourse, c.q. some fragment
of the animal world. The hierarchy for NLB adopted by Bowman is shown in the Venn
diagram of Figure 3.1. The one for VLB is shown in Figure 3.2. If a region A is fully
contained by another region B, the corresponding terms relate as subset and superset,

1ε denotes the empty string.
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respectively. Partial overlap denotes independence. Absence of any overlap between re-
gions indicates that the corresponding terms cannot apply together, i.e. that they are
mutually exclusive.

pets

mammals

warthogs

reptiles

turtles

Figure 3.1: Venn diagram visualizing the taxonomy of nouns NLB in LB.

walk

move

growl

swim

Figure 3.2: Venn diagram visualizing the taxonomy of verbs VLB in LB.

These ontologies can be regarded as a knowledge base. Together with the calculus
outlined in Section 2.2.1, they determine which natural logic inferences are allowed.
Bowman uses this system to establish the entailment relation between pairs of sentences,
according to the relations defined in Table 2.1 and visualized in Table 2.1. With the lexical
relations between the different vocabulary items in place, Bowman’s implementation of
the natural logic calculus is used to generate data. A sample looks as follows:

< ( ( all warthogs ) walk ) ( ( all warthogs ) move )
# ( ( lt_two pets ) ( not growl ) ) ( ( two turtles ) ( not growl ) )
| ( ( three turtles ) ( not walk ) ) ( ( lt_three ( not warthogs ) ) ( not walk ) )
< ( ( all reptiles ) ( not walk ) ) ( ( most ( not warthogs ) ) ( not walk ) )
> ( ( lt_three turtles ) ( not swim ) ) ( ( lt_three turtles ) growl )

Five different data sets are generated. Each of them contain a train and a test
set, which are mutually exclusive not only with respect to pairs of sentences, but also
with respect to single sentences. This is guaranteed by first randomly partitioning the
total set of possible, individual expressions into training and testing instances. None
of the training sentences are included in any test set pairs and vice versa. Hence, no
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test sentences can be seen during training. Sentence pairs with relation ‘unknown’ are
omitted from the data.2

Bowman’s training sets contain some 27,000 pairs on average, and his test sets some
7,000 pairs. As his toy language LB allows for 800 different sentences, there are 800 ×
800 = 640, 000 unique sentence combinations. This means that each training set contains
approximately 4.2% of all possible pairs.

3.1.2 Models

Recursive models Bowman uses compositional distributional models to address the
task described in the previous section. See Section 2.1 for a general description of such
models and the underlying assumptions. Meaning is progressively constructed, starting
with single words, and gradually moving upwards to a representation of complete sen-
tences by the repeated application of some composition function. This process is guided
by the syntactic form of the input sentences. Because sentences in the data are rep-
resented as binary trees, it is this recursive structure that dictates the topology of the
models. Therefore, they are called ‘recursive’ or ‘tree-shaped’ networks. Notable exam-
ples of studies that examined comparable tree-shaped models are Socher, Karpathy, et al.
2014, Irsoy and Cardie 2014, Le and Zuidema 2015 and Tai, Socher, and Manning 2015.

Figure 3.3 provides a schematic visualization of the architecture characterizing
Bowman-style recursive networks. Two types of neural compositional distributional mod-
els are introduced: the tree-shaped Recursive Neural Network (tRNN, shown in Figure
3.3a) and the tree-shaped Recursive Neural Tensor Network (tRNTN, shown in Figure
3.3b). Their topology is largely identical, but the parameter space is different, as will be
explained below in more detail.

The input consists of a pair of sentences from the data. First, all member words are
mapped to trainable word embeddings. Next, the two sentences are separated and pro-
cessed individually by identical recursive networks. ‘Identical’ is meant to say that the
networks contain the same set of parameters. This type of architecture is also known as
a ‘Siamese network’ (Mueller and Thyagarajan 2016a). The specific recursive topology,
however, differs from sentence to sentence, depending on the syntactic structure of the
individual input phrases. Once both sentences have been processed, their final represen-
tations are combined and passed to a comparison layer. Finally, a softmax classifier is
used to determine the most likely logical relation for the input pair.

In the illustration, the forward-pass is visualized for an input pair whose left sentence
is ‘((all warthogs) walk)’, and whose right sentence ‘((all warthogs) move)’. The process
is only shown for the left sentence, but takes place in exactly the same fashion for the
right one.

First, the individual words at the leaf nodes are mapped to n-dimensional word
embeddings. These embeddings are the result of a linear transformation. Before the

2Note the difference between the relations ‘unknown’ and ‘independent’. If there is conclusive evidence
that none of the other relations hold, ‘independent’ is assigned. If nothing at all can be concluded, which
is frequently the case in this natural logic system, the label becomes ‘unknown’.
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Figure 3.3: Schematic visualization of the two types of recursive networks: the tree-
shaped Recursive Neural Network (tRNN), also referred to as the matrix model, and the
tree-shaped Recursive Neural Tensor Network (tRNTN), sometimes abbreviated as the
tensor network.

actual training begins, the model reads the available data in order to create a vocabulary,
which contains all the words occurring in the training corpus. These words are indexed,
so that they can be mapped to corresponding one-hot vectors. Generally, for a sentence
S containing words w1 to wn, we can represent the one-hot encoding of a member wi as
hi. The n-dimensional embedding ei for this word is then determined as follows:

ei = Memb × hi, (3.1)

whereMemb denotes the embedding matrix. This matrix has dimensions n×V , where
n is the desired dimensionality of the embeddings, and V is the vocabulary size, i.e. the
number of unique words occurring in the training data. As there are V unique words,
the one-hot encodings hi are sparse column vectors with V entries.

Next, the composition stage takes place. This process is structured according to
the parse trees of the individual input phrases. In Figure 3.3, the parse tree for ‘((all
warthogs) walk)’ requires that ‘all’ and ‘warthogs’ be composed together, the result of
which is composed with ‘walk’ to obtain the complete sentence vector. Generally, there
are no restrictions on sentence length or recursive depth, because the network topology
is automatically adapted in accordance with any binary parse tree.
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A learned composition function takes pairs of vectors as input, and returns an output
with the same dimensionality as the argument vectors. The input vectors can be word
embeddings, results of earlier compositions or a combination of both. Two different
composition functions are implemented. The one is a standard neural layer function
using only matrix multiplication, the other uses the more advanced notion of tensor
multiplication. Which of these two options is adopted determines the difference between
the regular tRNN of Figure 3.3a and the tRNTN of Figure 3.3b. Let ei, ej be the n-
dimensional column vector representations for the left and right child of some composition
node (e.g. those for ‘all’ and ‘warthogs’ at the first composition node in Figure 3.3). Let
function f(x) denote the nonlinearity tanh (x). Then the composition function produces
the result ctRNN for the matrix model or ctRNTN for the tensor model:

ctRNN = f(Mcps ×
[
ei
ej

]
+ bcps) (3.2)

ctRNTN = ctRNN + f(eᵀi ×Tcps × ej) (3.3)

Here, Mcps is the composition matrix of dimensions n × 2n, which is multiplied
with the 2n-dimensional concatenation of ei an ej . bcps is a bias vector. As shown in
Equation (3.3), the tRNTN model applies the tRNN composition function of Equation
(3.2) and adds the tensor product of the input vectors with the n × n × n-dimensional
tensor Tcps (following Chen et al. 2013).3 The result of this computation is another
n-dimensional vector. Matrix and tensor multiplication model the interactions of child
vectors in different ways. Matrix multiplication, on the one hand, treats them additively,
by taking a concatenation of vectors as the only input. Tensor multiplication, on the
other hand, provides a way of modelling the multiplicative interactions between the
argument vectors, too. Furthermore, the tensor Tcps contains n×n×n weights, whereas
the matrix Mcps only contains n× 2n weights. Hence, for any n > 2, the tensor encodes
more information than the matrix, and is therefore a more powerful tool (at the expense
of longer training times).

The difference between both routines is illustrated in Figure 3.3. The tRNN, in Figure
3.3a, concatenates child vectors before applying the composition function. The tRNTN,
in Figure 3.3b, first computes the n × n-dimensional Kronecker product of the child
vectors, which is flattened to form an n2-dimensional vector.4 The n×n×n-dimensional
tensor Tcps can be transformed to a regular n × n2-dimensional matrix. Multiplying
this matrix with the flattened Kronecker product of the child vectors at the composition
stage returns an n-dimensional output vector and is equivalent to directly taking the

3See Hackbusch 2012 or Kolda and Bader 2009 for an introduction to tensor algebra.
4For n-dimensional child vectors ei, ej , the Kronecker product is interpreted as follows:

ei ⊗ eᵀ
j =

e
1
i e

ᵀ
j

...
eni e

ᵀ
j

 =

e
1
i e

1
j . . . e1

i e
n
j

...
. . .

...
eni e

1
j . . . eni e

n
j


This matrix can be flattened to produce an n2-dimensional row vector.
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tensor product of Equation (3.3). Note that Figure 3.3b does not visualize the complete
tRNTN composition, because this requires addition with the result of the regular tRNN
composition function.

The composition function is repeatedly applied, until all branches have been collapsed
and an entire sentence is represented as an n-dimensional vector. This process takes place
for both the left and the right sentence, so that eventually, the two sentence vectors can be
concatenated into a single 2n-dimensional vector. This representation is presented to an
m-dimensional comparison layer. Let (S, T ) denote a pair of input sentences, with final
vector representations sS , sT . Then the comparison layer performs one of the following
transformations to compute the output vector ptRNN or ptRNTN , depending on whether
the network is a tRNN or a tRNTN:

ptRNN = g(Mcpr ×
[
sS
sT

]
+ bcpr) (3.4)

ptRNTN = ptRNN + g(sᵀS ×Tcpr × sT ) (3.5)

Here, Mcpr is the comparison matrix of dimensions m× 2n, which is multiplied with
the 2n-dimensional concatenation of sS and sT . bcpr is a bias vector. Tcpr is the n×m×n
comparison tensor. Equation (3.4) is applied by the matrix model, and (3.5) by the tensor
model. The functions are essentially the same as the ones used at the composition stage,
but of course the parameters are learned independently. Obviously, the dimensionality
of both layers can also differ, in which case m 6= n. Usually, the comparison layer has
a higher dimensionality than the embeddings, implying m > n. A different nonlinearity
function is adopted. Instead of f(x) = tanh(x), the leaky rectified linear function g(x)
is used (Maas, Hannun, and Ng 2013). Bowman reports that this function gives better
results at the comparison stage than a tanh nonlinearity.

g(x) = max(x, 0) + 0.01min(x, 0) (3.6)

Following the comparison layer, classification takes place. For this purpose, the vector
produced by either Equation (3.2) or (3.3) must be transformed so as to form a new vector
whose dimensionality matches the number of different classes in the task. There are
currently seven different classes, namely the possible entailment relations of Table 2.1 and
Figure 2.3. Hence, the m-dimensional output of the comparison layer must be processed
by a classification layer with 7-dimensional vectors as output. Let p represent the output
of the comparison layer for an arbitrary recursive network. Then the classification layer
function outputs the vector y:

y = Mclass × p+ bclass (3.7)

Mclass denotes the classification layer matrix of dimensions 7 × m, and bclass the
bias vector for this final layer. At this stage, no distinction is made between matrix and
tensor models. Finally, the softmax function is applied to the last layer output y in
order to represent the vector as a probability distribution and determine the most likely
output class (see Section 2.3). In Figure 3.3, this output is ‘<’ (forward entailment) for
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3 Quantified Natural Logic Inference

the input sentences ‘((all warthogs) walk)’ and ‘((all warthogs) move)’. This is correct,
because indeed the left sentence implies the right one, but not vice versa.

Summing baseline In addition to the recursive models described in this section so
far, a simple baseline model is implemented. This is a summing neural network based
on a unweighted vector mixture model, abbreviated ‘sumNN’. Its architecture is iden-
tical to the one described above, but differs in one crucial aspect: instead of using a
learned composition function that is recursively applied to the constituents of complex
expressions, the embeddings of member words are summed. This means that the sumNN
architecture is visualized by Figure 3.3a, if only the steps labelled ‘composition’ are omit-
ted and replaced by a simple summation of the word embeddings. Technically, the final
representation sS of a single sentence S containing words w1 to wn then becomes:

sS =

n∑
i=1

ei, (3.8)

where ei is the embedding of word wi with one-hot encoding hi, following Equation
(3.1). Due to the commutativity of summation, the sumNN is not sensitive to word
order and hierarchy. In ‘natural’ contexts this should severely disadvantage the baseline,
but due to the rigid syntax of the toy language LB, the only factor that could currently
confuse the model is the location of a single negation (allowed both in front of the noun
and the verb). The disregard of order in the word input qualifies this baseline as a
bag-of-words model.

For all models, the training regime is mostly as described in the example of Section
2.3. NLL loss is used as an objective function and L2-regularization is applied to prevent
overfitting. The optimization method is SGD, together with AdaDelta for the adaptive
computation of the learning rate (Zeiler 2012).

3.1.3 Results and replication

Bowman applies five fold cross-validation to generate sets of train and test data that are
called f1 to f5. A partitioning is made between single sentences, so that no sentence
seen during training time is encountered during testing and vice versa. All three models
(sumNN, tRNN and tRNTN) are trained on the different training data. Per fold, five
runs are performed, so that 75 different models are trained in total. Training and testing
accuracy are averaged per model over all runs and folds.

Parameters are initialized by drawing from a uniform distribution. For layer param-
eters (composition, comparison and classification matrices), the range is (−0.05, 0.05).
For the word embeddings it is (−0.01, 0.01).5 Although this is not explicitly mentioned,
it is to be expected that biases are initialized as zero vectors, as is common practice.

5Slightly better results are obtained with Xavier initialization, but to keep all training conditions in
the replication as similar to Bowman’s as possible, only uniform initialization with the given parameters
is applied.

24



3 Quantified Natural Logic Inference

The comparison layer dimensionality is set to 75, and for the word embeddings it is kept
constant at 25.

Assuming that the same regularization coefficients are used for all experiments de-
scribed in Bowman, Potts, and Manning 2015, the L2-penalty for the tRNN is λ = 0.001,
and for for the tRNTN λ = 0.0003. No weight decay term for the baseline is reported,
so here I assume that for the sumNN, also λ = 0.0003. Manual tuning shows that this is
a reasonable choice.

It is not clear for how many epochs the models are trained, or what stopping condition
is maintained. It is possible that Bowman trained the models for a fixed number of
epochs, and reported accuracy scores at the very end. However, it is also possible that
the model with the best testing accuracy at some earlier epoch was selected. Due to the
fluctuating performance after stabilization of a trained model, it is often the case that
better scores are obtained at epochs (shortly) preceding the final one.

For the current project, the sumNN, tRNN and tRNTN models are reimplemented
using the PyTorch machine learning library (Paszke et al. 2017).6 The different architec-
tures are exactly as described in the above. The hyperparameter values and parameter
initializations are also identical to Bowman’s, insofar as this information could be in-
ferred from the literature. A possible difference is the adopted training regime, because
the number of epochs is fixed at 50 for all replicated experiments. All reported results
are obtained after the 50th training epoch, at which point the learning is terminated.
On CPUs, training time per run in the new implementation is below 10 minutes for the
sumNN, approximately 1.5 hours for the tRNN and slightly longer than 2 hours for the
tRNTN. The long training times for the tree-shaped models are largely due to the fact
that the recursively applied composition function makes efficient batching impossible.
The network topology differs from sentence to sentence, and the composition arguments
often depend on the results of preliminary compositions. Because of these variations and
interdependencies, the models cannot fully profit from the significant speed-ups associ-
ated with large-scale matrix manipulations.

Table 3.2 shows the performance of the different models on the quantified natural
logic inference task. The results reported by Bowman are included, as well as those
obtained in the PyTorch replication. Performance is expressed in terms of accuracy,
which is the percentage of correctly predicted classes for some collection of instances.
Accuracy scores are provided for train and test sets. As noted, they are averaged with
respect to five runs on five folds for each model.

It is clear from Table 3.2 that the tRNN and the tRNTN both perform very well on
the task, and that the tRNTN reaches almost perfect scores. In fact, even the sumNN
obtains seemingly decent results. The scores reported by Bowman and those obtained
in the current replication are definitely in the same ballpark. The relative differences
between training and testing accuracy and those between different models are also very
similar. Yet, it must be noted that the replication scores are consistently lower than
Bowman’s results. On average, the difference is smaller than one percentage point, and

6The full replication code, together with all other scripts written for this thesis, is available at
www.github.com/MathijsMul/mol-thesis.
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Bowman replication
train test train test

25/75 sumNN 96.9 93.9 95.0 93.0
25/75 tRNN 99.6 99.2 98.8 98.1
25/75 tRNTN 100 99.7 99.7 99.1

Table 3.2: Training and testing accuracy scores on the quantified natural logic inference
task, as reported in Bowman, Potts, and Manning 2015 and obtained by own replication.
An n/m model has n-dimensional word embeddings and an m-dimensional comparison
layer. Results are averaged over five runs on five folds for each model.

there is a variance across runs of two percentage points at most, but the generality of this
observation and the large number of experimental runs exclude the possibility that this
effect is due to chance. Most probably it is caused by differences between hyperparameter
settings, number of training epochs or stopping conditions. As mentioned above, superior
models are often available if one takes previous states of the network into consideration.
Stagnation of the loss may occur at a relatively early stage, after which there remains
only some minor oscillation. In the replication, evaluation always happens after epoch
50, even if the final model is outperformed by some predecessor. This could partially
explain the slightly lower scores in Table 3.2.

Figure 3.4 shows the development of the accuracy score on the test set of fold f1 for
a single run of all three models on the training data of f1. Although this plot is based
on only one training session per model, its rough characteristics are still representative
because the variance between different runs is very limited. The graph clearly shows
how stabilization of the testing accuracy sets in around the 30th epoch for the tRNN,
and already around the 15th epoch for the tRNTN. The baseline produces a less abrupt
asymptote, but does not obtain significant improvement after the 30th epoch anymore
either. It is interesting to see that the tRNTN soon outperforms the baseline, and very
quickly reaches its peak performance, whereas the tRNN only improves on the sumNN at
a much later epoch. Apparently the tensors require little training to obtain good results.
During the initial epochs, the baseline is on a par with the recursive models, which is
explained by the fact that summing word embeddings is a more sensible composition
method than multiplication with random, untrained matrices.

We are dealing with a logical classification task that can be solved without errors
by the same algorithmic implementation of the natural logic calculus that was used to
generate the data, so even if there are few errors, they must be inspected with extra care.
Any potential pattern in the error profile could clarify something about the particular
weaknesses of the models, or reveal which fragments of the data are particularly chal-
lenging. Therefore, Figure 3.5 shows the confusion matrices with respect to the f1 test
data for the fully trained models whose accuracy development was visualized in Figure
3.4. In these matrices, the rows represent the target labels, and the columns represent
the classes assigned by the model in question. The entries in the rows are normalized,
so that they can be interpreted as a probability distributions over predicted classes per
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3 Quantified Natural Logic Inference

Figure 3.4: Accuracy development on the test set of fold f1 for a single run on the
training data of f1, for sumNN, tRNN and tRNTN.

actual class. The rows and columns are indexed according to the seven different classes,
whose symbols are the same as those in Table 2.1.

(a) sumNN (b) tRNN (c) tRNTN

Figure 3.5: Confusion matrices with respect to the f1 test data for the fully trained
sumNN, tRNN and tRNTN models whose accuracy development is visualized in Figure
3.4. Rows represent targets, columns predictions.

Evidently, all models perform well enough to produce strongly diagonal confusion
matrices. This indicates that most of the predictions for testing instances with a certain
label are identical to that label. All non-zero entries other than those on the diagonal
indicate misclassifications. The sumNN seems slightly biased towards forward entailment
(<) and independence (#) in the case of backward entailment (>), while forward en-
tailment is most often misclassified as backward entailment or independence. This can
be explained by the strong analogy between the two kinds of entailment, and the high
frequency of data pairs that are labelled with independence. In the f1 training data,
30% of all sentence pairs has this target. For the tRNN, the only relevant observation
seems to be the fact that negation (∧) is most often mistaken for independence. This is
because negation is the rarest label, assigned to only 1% of the training instances of f1,
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3 Quantified Natural Logic Inference

which can be easily overlooked and dominated by the prevalent class of independence.
The confusion matrix for the tRNTN is almost perfectly diagonal, so no further remarks
seem justifiable. In fact, all of these three models perform too well for their confusion
matrices to reveal any surprising information, but at least they can serve to introduce
this useful method of visualization.

3.2 Related research

At this point it is worthwhile to mention some follow-up research on Bowman’s experi-
ments:

• Veldhoen 2015 investigated whether recursive neural networks of the kind used by
Bowman can actually learn a principled solution to the task of natural language
inference, rather than applying an ad hoc approach with little generalizability. As
a more easily interpretable analogue to the problem, she focused on arithmetic ex-
pressions. She proposed an interpretative method called project-sum-squash, which
recognizes that during the composition stage, embeddings are only multiplied with
one part of the composition matrix. In the case of arithmetic, this transforma-
tion reveals a meaningful geometry of the learned embeddings, suggesting that a
principled solution has been found.7

• Veldhoen, Hupkes, and Zuidema 2016 continued this line of research. Not only tree-
shaped networks were considered, but also sequential architectures with recurrent
units. Gated Recurrent Units (GRUs) were used to obtain good results on the
arithmetic toy data, and proved capable of generalization to longer statements
than seen during training. The method of diagnostic classification was proposed to
analyse the high-dimensional hidden units of the recurrent networks. See Section
5.4 for an explanation of this technique.

• Repplinger 2017 replicated Bowman’s experiments, and complicated the task by
decomposing negated quantifiers such as not_some into two separate words as:
not some. He critically assessed Bowman’s data generation process, focusing in
particular on limitations of the implemented natural logic calculus. Using PCA and
three-dimensional visualization, some meaningful hyperplane separations between
learned expressions were observed.

3.3 Problems

In the preceding sections, the quantified natural logic task was introduced, as well as the
models used by Bowman to address it, his results and the ones obtained by means of a

7As shown by Veldhoen 2015, tree-shaped networks can learn to perform addition and subtraction
of the numbers [−10, · · · , 10], but the word embeddings are not neatly ordered. A spatial organiza-
tion according to ordinality only manifests itself after multiplication with the relevant fragments of the
composition matrix.
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new replication. Given the task at hand, it is fair to conclude that the presented tree-
shaped networks perform extremely well. This was reported by Bowman, and confirmed
by the replication and the follow-up research of the preceding section.

However, if the aim is to investigate the extent to which such models are capable
of determining semantic entailment relations, or even of performing logical reasoning,
some doubts concerning the current task and the associated data are justified. Nine such
concerns are mentioned below, and developed in more detail in Appendix B:

1. Natural logic. The appealing simplicity of the natural logic calculus comes at
the expense of other properties. Although intended to operate on fully natural
language, the use of brackets in the data makes the logic less natural than it is
intended to be. Results can be unconclusive or uninformative. The implemented
system does not allow reasoning with multiple premises and can only be used to
express some quantifier-based inferences. Moreover, it is provably incomplete (e.g.
De Morgan’s laws cannot be established) and not provably sound.

2. Implementation and data anomalies. The data contain some anomalies that cannot
be explained by MacCartney’s natural logic calculus, which suggests that there are
issues with Bowman’s implementation.

3. Simplistic syntax. Sentences are short and their structure is extremely rigid. Other
than negation, no words can be used twice in a sentence and only unary predicates
are used.

4. Symmetric hierarchy. The ordering of nouns in NLB is symmetric: warthogs and
turtles relate in exactly the same way as mammals and reptiles. This decreasess
the diversity of the taxonomy, which can make the classification task even less
challenging.

5. Composed quantifiers. As noted by Repplinger 2017, the negated quantifiers in
QLB are composed for no clear reason. This is an unnatural simplification of the
problem.

6. Relative size of training data. A large fraction of the total data space is observed
during each training epoch: more than 4% (see page 20).

7. Baseline performance. As shown in Table 3.2, even the simplistic summing baseline
obtains decent results on the current task. The fact that the more advanced recur-
sive networks only slightly outperform this baseline suggests that the task might
be trivial.

8. Symbolic prerequisites. The recursive network topology depends on the availability
of syntactic information about the input sentences. The need for this symbolic
knowledge makes the models more artificial and less scalable.

9. Lack of interpretation. Bowman, Potts, and Manning 2015 hardly pay any attention
to interpretation and analysis of the models.
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Chapter 4

First-Order Entailment Recognition

Despite the shortcomings of Bowman’s line of research, the task in itself - classifying
logical entailment with neural models - remains as interesting and relevant as it was
before. For this reason, the remainder of the current project addresses the same general
problem, but with data and models that are chosen so as to avoid the issues identified
in Section 3.3.

In this chapter, the task is updated and complicated in order to solve old problems
and meet new requirements. An alternative lexical taxonomy is introduced and a new
data generation process is specified. Consequently, experiments are performed on the
tree-shaped models and the summing baseline. An in-depth analysis of the results thus
obtained is provided at the end of the chapter.

4.1 Data

The majority of the issues that have to be addressed are related to the data. In particular,
the natural logic calculus and the toy language LB that were used to generate Bowman’s
data sets are responsible for most of the problems listed in Section 3.3. Therefore, the
first two measures that have to be taken are the adoption of a different logical system, and
the adaptation of the artificial language. These steps are described in the next sections.

4.1.1 New logic

Problems As mentioned in Section 3.3 and explained in detail on the pages 87-90, the
main difficulties of the natural logic underlying the old data are that:

1. It is not applied to natural language.

2. Several edit sequences may be possible.

3. Results are often uninformative.

4. No reasoning with multiple premises is possible.
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5. The system is provably incomplete.

6. It is not provably sound.

7. Only some quantifier-based inferences can be expressed.

These problems provide a strong incentive to adopt a different logic. For the quanti-
fied propositions that have been the focus so far, first-order predicate logic seems a logical
choice. The aim remains to study the ability of neural models to perform compositional
generalization and recognize different entailment relations in (a somewhat) natural lan-
guage, so the final data will not be formal expressions of FOL. Instead, the data should
resemble the Bowman-format. This format could be called ‘semi-natural’ because the
sentences are comprehensible without any need for translation, while the use of brack-
ets and lack of auxiliary verbs are definitely artificial aspects. Hence, if sentences in a
pair are generated combinatorially on the basis of some phrase structure grammar, they
must first be formalized in FOL to infer the entailment relation according to this logic.
This will be done with an automated theorem prover and model builder. Afterwards,
the phrases must be translated back into the format used for the data. The resulting
classification task is called ‘First-Order Entailment Recognition’.

Referring back to Section 2.2.2, where some important properties of FOL were ex-
plained, we can confirm that this system is hardly affected by any of the above-mentioned
issues. As for problem 1, the entire discrepancy between a natural logic and an unnatural
language has disappeared. Previously, natural logic operated on an artificial language,
whereas its most fundamental purpose is to act directly on natural language statements.
In Appendix B, the recommendation was made to either apply natural logic to fully nat-
ural expressions, or to substitute the system with a well-understood formal logic. Here, I
choose the latter option. Natural logic is abandoned in favour of traditional FOL, which
is not applied to the expressions in the data, but to an intermediate representation in
the correct formal syntax. The second issue is completely irrelevant in the context of
FOL. Instead of a monotonicity calculus that allows for different possible edit sequences,
thereby producing divergent results, there are deductive systems that can be used to infer
entailment relations according to the procedure discussed below. Different proofs may be
available for a single case, but this never yields different results. Also, results cannot be
uninformative in the sense of problem 3. A deterministic programme (Algorithm 4.1 on
page 37) will be provided that outputs one of the seven entailment relations of Table 2.1
for each sentence pair. It first checks for all six relations other than independence, and
if none of these hold, it concludes that the sentences must be independent. Situations
yielding unions of relations are thus excluded, so nothing has to be labelled ‘unknown’.
As for issue 4, reasoning with multiple premises is trivial in FOL. Although this option
is currently not needed, it is an important property for the reasons discussed on page
88. Problems 5 and 6 are solved by Gödel’s completeness theorem, which states that
there exist deductive systems for FOL that are both sound and complete (see Section
2.2.2). This means that FOL has formal systems for which all provable statements are
also valid, while all valid statements are also provable. Surely, the systems that will be
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used in this project fall within this class. As a consequence, when working with FOL,
one never has to face problems of the kind encountered in natural logic when it comes to
e.g. De Morgan’s laws. The equivalences of page 88 can easily be established, as is the
case for all other valid inferences that natural logic was unable to handle.

Quantifier ‘most’ The seventh and final objection on page 31 demands a more nu-
anced response. It is true that natural logic only describes a part of all possible quantifier-
based inferences, as explained on page 89. Much of the compositional ambiguity occur-
ring in natural language cannot adequately be captured by natural logic without the
admission of supplementary machinery such as brackets. It is also true that many of the
propositions that prove challenging to natural logic are straightforwardly expressible in
FOL. The formal apparatus of FOL then serves to eliminate the interpretative confusion
that arises so often in natural language. However, it is not true that FOL describes all
quantifier-based inferences.

Indeed, there exist quantifiers that face great expressibility issues in FOL. One such
quantifier is part of the vocabulary of LB, namely most (together with its negation
not_most). Because I first wish to produce data that are as similar to Bowman’s as
possible, only replacing the NL calculus by FOL deductions, it is preferable to maintain
all quantifiers of his original data. Hence, five options to circumvent the issue of quan-
tifier most are briefly considered below. Unfortunately, none of these options provides a
satisfying solution, due to the problems indicated for each of them.

1. Generalized quantifier. Following Barwise and Cooper 1981, the quantifier most
can be added as a generalized quantifier to the logical syntax of FOL, yielding the
system FOL(most). most can be represented as a 〈1, 1〉 quantifier with the following
definition:

most(A,B)⇔| A ∩B |>| A−B |

This equivalence states that most A are B if and only if the set of objects that are
A and B (the intersection A ∩ B) contains more elements than the set of objects
that are A but not B (the difference A−B). Hereby, it captures the understanding
of most as applying to a strict majority of some (sub)domain of discourse.

Problem: In FOL(most) it is possible to define the Härtig quantifier IM , which
expresses equinumerosity: IM (A,B) ⇔| A |=| B |. With this quantifier one can
categorically characterize (ω,<), so that it follows from Tarski’s theorem that there
is no axiomatization (Weaver 2012). This implies that completeness has to be given
up.

2. Weak models. In second-order logic (SOL), using weak semantics, it is possible to
express most. This is because SOL allows quantification over relations in addition
to quantification over individual objects in the domain. See Mostowski 1995 and
van Benthem and Westerståhl 1995.

32



4 First-Order Entailment Recognition

Problem: This is second-order. It is strongly preferable to maintain a first-order
system, because automated theorem proving for SOL is problematic and several
nice properties of the logic would have to be given up. Most importantly, it is a
corollary of Gödel’s incompleteness theorem that no deductive system for SOL can
be sound, complete and effective at the same time with standard semantics (Gödel
1931; Shapiro 1991).

3. Syllogistic system. In a syllogistic system, most can be added as a quantifier with
corresponding introduction and elimination rules. The resulting system can be
complete, as is shown by Endrullis and Moss 2015.

Problem: most is primitive in this approach, so no immediate representation in
FOL is available. It could be possible to add the quantifier, with the corresponding
inference rules, but this would either create the problems of option 1, or the number
of axioms would become too high for a theorem prover to function properly.

4. Majority digraphs. In finite simple digraphs, the property ‘most As are B’ can be
expressed as a binary relation, as shown by Lai, Endrullis, and Moss 2016. The
results are applied to a propositional logic.

Problem: This system is too weak. The goal is to find a FOL representation, not
a propositional one.

5. Constant domain. Assume that the domain has a fixed size, say n. Then ‘most x
are A’ is equivalent to ‘more than n/2 x are A’.

Problem: Although from a computational point of view it is justified to assume a
finite domain, it does not seem reasonable to assume that the domain has a fixed
size n. Even if this were the case, a particular n has to be chosen. This decision
would always be arbitrary. And even if this were acceptable, not only the domain
would need to have a fixed size; also the different predicates should have a fixed
cardinality to account for statements such as ‘most A are B’.

It appears that none of these five possibilities meets our requirements. For this reason,
the quantifier most will be left out of consideration when generating the first new data
set. All other quantifiers used by Bowman can be expressed in FOL and will be included.
Table 4.1 shows how all of the positive ones can be translated to FOL representations.
For negated determiners, nouns and verbs it suffices to prefix the FOL encoding of their
positive counterparts with a negation symbol.

It turns out that substitution of NL with FOL effectively solves the issues identified
in the preceding chapter. The only drawbacks are the inexpressibility of most and the
computational overhead of the intermediate translation to a FOL representation and the
automated theorem proving that is to replace the rather simple monotonicity calculus.
Another possible objection is that the tokenization required by the formalization into
FOL does not correspond to the cognitive processing of natural language. If one believes
that human agents deduce semantic relations by processing utterances in their natural
form, without resorting to some abstract language of thought, then NL has a definite
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LB (NL) FOL

( ( all warthogs ) move ) ∀x(warthog(x)→ move(x))

( ( some warthogs ) move ) ∃x(warthog(x) ∧move(x))

( ( two warthogs ) move ) ∃x∃y(warthog(x) ∧ warthog(y) ∧move(x) ∧move(y) ∧ x 6= y)

( ( three warthogs ) move ) ∃x∃y∃z(warthog(x) ∧ warthog(y) ∧ warthog(z) ∧move(x)
∧move(y) ∧move(z) ∧ x 6= y ∧ y 6= z ∧ x 6= z)

Table 4.1: Representations of quantifiers expressible in FOL with equality. ti 6= tj
abbreviates ¬(ti = tj).

advantage over FOL. However, the NL expressions in Bowman’s data set were not entirely
natural to begin with (see page 87), so some degree of formalization was already present.

Data generation The data generation process has to be adapted according to the new
logic. The monotonicity calculus of NL, with its jointables and projectivity matrices, is
discarded. Instead, the relation between two expressions is established by means of an
automated theorem prover for FOL with equality, Prover9. If Prover9 does not manage
to find a proof in time, the model builder Mace4 takes over (McCune 2010, see Section
2.2.2). Thanks to the soundness and completeness of FOL, the notions of syntactic and
semantic provability coincide. This means that (in the context of the current research)
no distinction has to be made between the results obtained by Prover9 and Mace4.

The first step is to translate the lexical entailment relations between vocabulary
items into FOL. This information represents the taxonomic background knowledge that
is always true, and could therefore be treated as a set of axioms. The axioms are derived
from the primitive entailment relations according to the mapping of Table 4.2.

lexical entailment relation axiom representation in FOL

A < B {∀x(A(x)→ B(x))}

A > B {∀x(B(x)→ A(x))}

A | B {∀x(¬(A(x) ∧B(x))),¬∀x(A(x) ∨B(x))}

A∧B {∀x(¬(A(x) ∧B(x))),∀x(A(x) ∨B(x))}

A∨B {∀x(¬A(x)→ B(x))}

Table 4.2: FOL axiom representations of lexical entailment relations. (Recall from Table
2.1 that < denotes forward entailment, > backward entailment, | alternation, ∧ negation
and ∨ cover.)
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The logical representations in Table 4.2 are the FOL analogues of the set-theoretic
definitions provided for each entailment relation in Table 2.1. Note that no translation is
provided for = (equivalence) and # (independence). The only notions that are lexically
equivalent are so by self-identity. This is necessarily the case for all predicates, so no
additional axioms representing such tautologies are required. Independence simply means
that there is no particular semantic relation between two concepts, so for these cases there
is nothing meaningful to encode. For the relations | (alternation) and ∧ (negation), two
axioms have to be addded, as shown in Table 4.2.

The FOL axioms are derived for all nouns in NLB and verbs in VLB according the
translation of Table 4.2 and the lexical entailment relations visualized in Figures 3.1
and 3.2. Let the total set of axioms for Bowman’s language LB be denoted by ALB .
Provability in FOL with equality and the universally valid formulas of ALB can then be
expressed by `ALB . That is, if ϕ `ALB ψ, then ψ is provable from ϕ in FOL with the
correct axiomatization. Given soundness, completeness and the current research focus,
the distinction between semantic and syntactic provability is not relevant enough to
necessitate separate notation for both concepts, so `ALB also represents the equivalent
notion |=ALB .

Not only logical, but also computational aspects have to be taken into account. The
speed of Prover9 and Mace4 rapidly decreases as the number of axioms grows, so it is
essential to keep the set of constraints considered per derivation as limited as possible.
Hence, before computing whether ϕ `ALB ψ, the collection of axioms is filtered in such a
way as to retain the minimal set of formulas that could possibly be used in the proof or
refutation of this particular entailment. This is done by dismissing all axioms containing
predicates that do not occur in either ϕ or ψ. E.g., if ϕ = ∀x(A(x) → C(x)) and
ψ = ∀x(B(x)→ D(x)), then all constraints in ALB containing terms not in {A,B,C,D}
are omitted. As the first term in a FOL representation of a LB sentence (c.q. A and B)
is always a noun from NLB , while the second term (c.q. C and D) is always a verb from
VLB , only those axioms are used that relate the noun predicates or the verb predicates
of both sentences to each other. No axioms combining terms from NLB and VLB exist,
so this is generally the case. Additionally, not only identical but also equivalent axioms
are eliminated. That is, if e.g. ∀x(A(x) ∨B(x)) is already included, ∀x(B(x) ∨A(x)) is
redundant and cannot be added as well.

Apart from filtering the axioms of ALB to the bare minimum, it is sometimes nec-
essary to append valid formulas as well. This is the case for propositions whose first
predicate is not necessarily instantiated, e.g. ‘((all warthogs) walk)’. At present, this
expression does not entail that there is any object instantiating the term warthogs: the
FOL translation ∀x(warthog(x) → walk(x)) does not imply that any warthog actually
exists. Bowman uses MacCartney’s NL, which endorses the assumption of non-vacuity,
according to which there can be no quantification over terms with empty (or universal)
denotation (MacCartney 2009, p. 78). Hence, I do so too. In the current example, this
means that the existence of some warthog is postulated. In general, it means that for a
premise or hypothesis of the form ∀x(A(x) → B(x)) or ¬∀x(A(x) → B(x)), the axiom
∃xA(x) is added.
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Now that all logical and computational prerequisites have been addressed, the final
procedure to infer the entailment relation between two sentences can be provided in pseu-
docode as Algorithm 4.1. The input comprises the LB statements Sl and Sr, where Sl
is the left and Sr the right sentence of some pair (Sl, Sr). The output β(Sl, Sr) is the
entailment relation between them. The sentences are translated to their FOL encodings
ϕ,ψ by the function translate_to_fol, which is just the mapping of Table 4.1. The ax-
ioms of ALB are filtered by the function filter as described in the preceding paragraphs,
thus yielding the minimal set Aϕ,ψ required for proofs involving ϕ and ψ. Although all
seven entailment relations can be returned as output, at most four proofs are required,
namely those determining whether there Sl entails Sr (ϕ `Aϕ,ψ ψ), whether Sr entails Sl
(ψ `Aϕ,ψ ϕ), whether Sl and Sr contradict each other (`Aϕ,ψ ¬(ϕ∧ ψ)) and whether the
disjunction of Sl and Sr is always true (¬ϕ `Aϕ,ψ ψ). The results of these proofs are, re-
spectively, the Boolean variables forward_entailment, backward_entailment, conflict
and exhaustion, all initialized as ‘False’. Sometimes it suffices to only (dis)prove
forward_entailment and backward_entailment. If at least one of these is true, it
follows that the entailment relation is either =, < or >. If not, conflict and exhaustion
must be checked in order to determine whether |,∧ or ∨ holds. If none of these relations is
deducible, # is returned. Proofs are first attempted by Prover9. If the maximum time or
recursive depth of the pending proof is exceeded, it is aborted and Mace4 takes over by
searching a countermodel. E.g., to check whether ϕ `Aϕ,ψ ψ, Mace4 tries to find a model
M such that M |= {Aϕ,ψ, ϕ}, while M 6|= ψ. If such a model is found, it follows that
ϕ 6`Aϕ,ψ ψ. Upon completion, the sentence pair (Sl, Sr) is added to the data, labelled
with the inferred entailment relation β(Sl, Sr).

New data sets With the new deductive method in place, it is possible to start pro-
cessing Bowman’s data by substituting the NL labels with the FOL relations. The pairs
with sentences containing most are removed. No other data instances are omitted or ma-
nipulated. I will not translate all of Bowman’s five folds, but concentrate exclusively on
f1, following Repplinger 2017, p. 61: ‘no discernible differences could be found between
single model runs on these sets, and no motivation of the splits is offered or could be
derived by us.’ Furthermore, translating all data in f1 to f5 and training all models for
at least five runs on each of these folds would be excessively time-consuming.

The translated data set is called f1_fol. The training data contain some 22,000
sentences, which is approximately 6,000 fewer than the original f1 training set, due to
the omission of most. The test set is reduced to 4,500 pairs, as opposed to 6,500 in
its NL predecessor. A preliminary, manual inspection of the data does not reveal any
of the anomalies encountered in Bowman’s. In particular, all of the five sample errors
given on page 90 are labelled correctly by the new method.1 A more general analysis
of the conflicts between Bowman’s f1 and our f1_fol train set shows that 45.3% of the
instances in f1_fol are labelled differently in f1. This is almost half of the entire training
data, which is an extremely large fragment. The confusion matrix in Figure 4.1a provides

1To be precise, the computed FOL relations are |,#, >,>,#, respectively, which is in agreement with
the intuitions articulated on page 90.
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Input: left sentence Sl, right sentence Sr
Output: entailment relation β(Sl, Sr)

1 forward_entailment, backward_entailment, conflict, exhaustion← False
2 ϕ,ψ ← translate_to_fol(Sl), translate_to_fol(Sr)
3 Aϕ,ψ ← filter (ALB , ϕ, ψ)
4 if ϕ `Aϕ,ψ ψ then
5 forward_entailment = True
6 if ψ `Aϕ,ψ ϕ then
7 backward_entailment = True
8 if forward_entailment ∧ backward_entailment then
9 return =

10 else if forward_entailment then
11 return <
12 else if backward_entailment then
13 return >
14 if `Aϕ,ψ ¬(ϕ ∧ ψ) then
15 conflict = True
16 if ¬ϕ `Aϕ,ψ ψ then
17 exhaustion = True
18 if conflict ∧ exhaustion then
19 return ∧

20 else if conflict then
21 return |
22 else if exhaustion then
23 return ∨
24 else
25 return #

Algorithm 4.1: Inference of FOL entailment relation.

a visualization. As the matrix is row-normalized, it is visible that the instances labelled
with a specific FOL relation have the same relation as their most frequent label in the NL
training data. However, the diagonal entries account for less than 55% of all data. So far,
sample-wise checks of the individual conflicts have only brought more aberrations in the
NL data to light. Figure 4.1b illustrates the distribution of both training sets in absolute
frequencies. This reveals something the confusion matrix does not, namely the fact that
the new data are very unbalanced. Some 61% of the instances are labelled with #, as
opposed to 30% in Bowman’s data. This bias is caused by the numerous cases where the
NL calculus erroneously concludes a more ‘interesting’ relation than independence. The
labels ∨, <,> and | remain evenly distributed, but have a much lower relative frequency
than before (∼ 10% vs ∼ 20% before). = and ∧ have a very low frequency, but this is
because equivalence (de facto identity) and negation rarely occur.2

2This imbalance will be corrected on page 38.
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(a) (b)

Figure 4.1: (a) Row-normalized confusion matrix visualizing the distribution of NL labels
in Bowman’s f1 training set (columns) with respect to the FOL labels in the new f1_fol
training set (rows). (b) Histograms showing the absolute frequency of each entailment
relation in the training sets of f1, f1_fol and unary_balanced_fol.

The sumNN, tRNN and tRNTN models are trained on the new data. The training
regime is the same as for the replication described in the preceding chapter. Also the
network topologies remain the same. Word embeddings have 25 dimensions, the com-
parison layer 75. Results are shown in Table 4.3. Comparing these findings to Table 3.2
shows a dropped performance across the board. Especially the summing baseline suffers
from the new data, but also the tree-shaped models deteriorate.

f1_fol unary_balanced_fol
train test train test

25/75 sumNN 91.7 87.3 84.2 78.0
25/75 tRNN 96.5 95.4 98.0 98.0
25/75 tRNTN 99.6 98.4 99.5 98.4

Table 4.3: Training and testing accuracy scores on the FOL inference task for data
f1_fol and unary_balanced_fol. Results are averaged over five runs.

Due to the unbalanced nature of the new data f1_fol it is not clear to what extent
the decrease in accuracy is attributable to the substitution of NL with FOL. To assess
this, a data set is needed that corrects for the imbalance and smaller size of f1_fol. I
call these new data unary_balanced_fol. A training and test set are generated accord-
ing to the described procedure, but no reference is made to the original Bowman data
anymore. Sentences are independently constructed from the grammar of Table 3.1, pairs
are formed and their FOL relations inferred. With a downsampling ratio, the fraction
of #-labelled instances is controlled. Again, a partitioning between single statements
guarantees that the train and test set have neither pairs nor sentences in common. The

38



4 First-Order Entailment Recognition

absolute frequencies of the labels in the training set of unary_balanced_fol are shown in
Figure 4.1b. The distribution seems acceptable again, with 33% of all instances labelled
#. This still makes independence far more prevalent than any other relation, but at least
a fair comparison is possible now. The data size has also been augmented in order to
match Bowman’s.

Results of training all three models on the unary_balanced_fol data are included
in Table 4.3. The performance of the tensor model is hardly affected, but the average
accuracy of the matrix model improves significantly, closely approaching the replication
results of Table 3.2. These findings demonstrate that also with FOL as background logic,
the tree-shaped models can learn to recognize the semantic relation between two sentences
quite successfully. Apparently, the tree-shaped networks are not strongly (dis)advantaged
by the use of the frequently erroneous NL data.

This is different for the sumNN. Both for the f1_fol and the unary_balanced_fol
data, the baseline obtains much lower scores than reported in Table 3.2. For the
unary_balanced_fol, accuracy scores drop most. How can this effect be explained?
At first sight, it seems that there is no structural difference between the new data and
Bowman’s f1 that could challenge the sumNN so much more than the other models.
But perhaps this intuition is mistaken, and the use of FOL does constitute a serious
complication that the tree-shaped models can cope with, thanks to their sophisticated
architecture, while the rudimentary summing baseline has no such compensation. This
would confirm once more that the FOL task is more interesting to consider than the NL
one, because a problem that hardly challenges the baseline disincentivizes the examina-
tion of more complex models.

4.1.2 New language

By endorsing FOL instead of NL (or Bowman’s version thereof), the first two problems
identified in Section 3.3 have been solved. This comes at the cost of the computational
overhead of FOL theorem proving and model building, as well as the omission of the
quantifier most. This price is not prohibitive, because the data only have to be gener-
ated once and it is disputable whether a representation of the problematic determiner
most constitutes a critical addition to a model that already captures the classical logical
quantifiers. At the same time, many other issues remain, and cannot be addressed by
only changing the underlying logic. More specifically, in order to complicate the syntax
(problem 3), remove the ontological symmetry (problem 4), and decompose the quanti-
fiers (problem 5), it is necessary to replace LB, design a new artificial language and use
it as the basis for new data. This is the aim of the current section.

Desiderata Let LN (with N for ‘new’) denote the new language, which comprises
a phrase structure grammar, a vocabulary and taxonomy of terms that are at present
still unspecified. Recalling problems 3-5 of Section 3.3 (elaborated on pages 92-94), LN
should ideally satisfy the following requirements:
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1. LN should be able to produce longer expressions than LB, which has a maximal
sentence length of only five words, while many sentences are even shorter.

2. Different sentence constituents should not only be taken from mutually exclusive
classes, so that the same words can be used more than once in a single statement.
This also implies that word order becomes more important.

3. Not only unary, but also binary predicates must be included.

4. No taxonomic symmetries (such as the one illustrated in Table B.2) are allowed.

5. Negated quantifiers are not composed, but included as pairs of two separate lexical
items: negation/adverb not together with a positive quantifier.

Additionally, it would be nice if the ontology of LN were inspired by something else
than biology, not just for the sake of variation but also to show that there exist other
domains than the animal kingdom where such semantic hierarchies are applicable.3 A
positive side effect would be that we can then discharge the rather unrealistic assumption
that there are people with pet warthogs.

First, the noun and verb classes of the new language are introduced: NLN and
VLN . For both these sets, care is taken to prevent the kind of symmetry observed in
NLB , so that the fourth requirement is met. NLN contains five nouns, all of which
are unary predicates, as before. Instead of biological classes, the noun hierarchy now
comprises four demonyms (identifying people from different geographical locations), and
the independent class children (comparable to the class pets in LB). The new taxonomy
of nouns is visualized in Figure 4.2. The four verbs in VLN are all transitive, e.g. fearing
and loving. That is, they take both a subject and an object argument, which makes them
binary predicates. Thereby, the third requirement is satisfied. Both verb arguments are
taken from NLN , so that the subject and the object of a sentence are not taken from
mutually exclusive classes. This addresses the second requirement. VLN is illustrated in
Figure 4.3.4

The adverbs ALN are not changed, and contain only negation and an empty string as
dummy adverb. In order to meet the fifth requirement, all negated, composed quantifiers
fromQLB are discarded. Moreover, the numerical quantifiers two and three are no longer
considered. There are several reasons for this decision. As the current project is FOL-
oriented, it is natural to start by studying models’ capacities to capture the notions that

3At first, the taxonomies were intended to instantiate all seven relations from Table 2.3. This turned
out virtually impossible, unless very unnatural predicates were adopted. The cover relation proved
particularly difficult, as already noted by MacCartney 2009, p. 90: ‘Very few naturally-occurring pairs
of terms belong to the ∨ relation. When we are obliged to produce such pairs for the purpose of an
illustrative example, we often resort to using a general term and the negation of one of its hyponyms,
such as mammal ∨ nonhuman or metallic ∨ nonferrous.’ Hence, in order to maintain a somewhat natural
vocabulary, this requirement was dropped.

4Note that the extension of a binary predicate P is the set of ordered pairs 〈a, b〉 for which P (a, b)
holds. Hence, in the Venn diagram of Figure 4.3, the circles do not represent sets of individual objects,
but of ordered pairs. E.g., if a pair 〈a, b〉 is contained by love, this means that a loves b, implying that
a likes b and 〈a, b〉 is also a member of like.
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Europeans

children

Romans

Italians

Germans

Figure 4.2: Venn diagram visualizing the taxonomy of nouns NLN in LN

fear

love

like

hate

Figure 4.3: Venn diagram visualizing the taxonomy of verbs VLN in LN .

are logically primitive in this framework. The only irreducible quantifiers of FOL are ∀
(c.q. all) and ∃ (c.q. some), and with equality, all numerical quantifiers are definable
in terms of the existential one (see Table 4.1). Hence, from a logical point of view, the
numerical quantifiers are far less interesting than all and some. Also, their inclusion
causes computational issues. Table 4.1 shows how number-based statements increase the
length of FOL encodings, thereby greatly slowing down the theorem proving process on
the available computational resources. Although it would be worthwhile to study the
numerical quantifiers at a later stage, they are currently omitted on these grounds. An
overview of the complete vocabulary of LN can now be provided:

LN



QLN = {all, some}

NLN = {Romans, Italians, Germans, Europeans, children}

VLN = {fear, hate, like, love}

ALN = {not, ε}

Of all five desiderata on page 39, only the first one still has to be addressed. The
maximum sentence length in LN depends on the new phrase structure grammar provided
in Table 4.4. Sentences are now of the form ‘( ( ( adverb quantifier ) ( adverb noun ) )
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( ( adverb verb ) ( quantifier ( adverb noun ) ) ) )’.5 As adverbs can be empty strings,
this means that the minimal sentence length is five words, and the maximum nine, so
statements can become almost twice as long as in LB. It is clear now that LN satisfies
all specified requirements for the new language.

S → NP VP Det → Quant
NP → Det NP Quant → QLN
NP → Adv N N → NLN
VP → VP NP V → VLN
VP → Adv V Adv → ALN
Det → Adv Quant

Table 4.4: Phrase structure grammar for artificial language LN .

Data generation The data generation process is essentially the same as described in
Section 4.1.1, but has to be extended to accommodate the new grammar. Specifically,
the translation between representations of LN phrases and their FOL encodings must
be updated. As the syntactic backbone of FOL representations is determined by the
quantifiers in the concerned expressions, it is the quantifier configuration that governs
the translation. Because LN has two unique quantifiers, there are only four such con-
figurations, all of which are included in Table 4.5. The four examples do not contain
negations, but these can simply be inserted as prefixes to the predicates or quantifiers
they are meant to modify. FOL axioms are derived from the lexical entailment relations
of the noun and verb ontologies as before, but the translation of Table 4.2 must be gen-
eralized to binary predicates. This is easily realized by adding a universal quantifier and
an object argument to the FOL representations.

LN FOL

( ( all Europeans ) ( love ( all Germans ) ) ) ∀x(European(x)→ ∀y(German(y)→ love(x, y)))

( ( all Europeans ) ( love ( some Germans ) ) ) ∀x(European(x)→ ∃y(German(y) ∧ love(x, y)))

( ( some Europeans ) ( love ( all Germans ) ) ) ∃x(European(x) ∧ ∀y(German(y)→ love(x, y)))

( ( some Europeans ) ( love ( some Germans ) ) ) ∃x(European(x) ∧ ∃y(German(y) ∧ love(x, y)))

Table 4.5: FOL representations of LN statements.

With the updated translation and axiomatization functions, Algorithm 4.1 can be
used to infer the FOL relation per pair of LN sentences. Thus, a new data set is generated,
which I call binary_fol. By downsampling the instances labelled with #, a balanced
distribution is maintained. The train set contains some 30,000 instances, the test set

5Theoretically, it is also possible to negate the second quantifier in a sentence, but to keep the
statements somewhat readable I decided not to do so in the current data.
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7,500. As always, no unique sentences from the train set occur in the test set and vice
versa. A small specimen is shown below:

< ( ( all Europeans ) ( like ( some Italians ) ) )
( ( ( not some ) Italians ) ( ( not like ) ( some Europeans ) ) )

v ( ( all Germans ) ( ( not hate ) ( all ( not Italians ) ) ) )
( ( ( not all ) ( not Italians ) ) ( love ( some ( not Italians ) ) ) )

# ( ( all children ) ( ( not hate ) ( all Romans ) ) )
( ( all ( not Italians ) ) ( ( not fear ) ( all Romans ) ) )

| ( ( some ( not Europeans ) ) ( like ( all ( not Italians ) ) ) )
( ( ( not some ) ( not Italians ) ) ( like ( all ( not Italians ) ) ) )

^ ( ( ( not all ) ( not Germans ) ) ( ( not fear ) ( all Europeans ) ) )
( ( ( not some ) ( not Germans ) ) ( fear ( all Europeans ) ) )

The several negations can make these sentences cumbersome to read, but careful
inspection shows that the relations assigned to the examples are as one would expect.
Generally, it is helpful to read the quantifier some as ‘any’ in negated clauses. The last
instance of the above specimen nicely demonstrates that complex instantiations of De
Morgan’s equivalences are handled correctly.

The data set binary_fol is based on a random sample from the total space of possible
sentence pairs. Let SLN denote the set of all sentences in LN . This set equals the
Cartesian product ALN × QLN × ALN × NLN × ALN × VLN × QLN × ALN × NLN .
The cardinality of this set is 2 × 2 × 2 × 5 × 2 × 4 × 2 × 2 × 5 = 6, 400. It follows
that the number of different sentence pairs is 6, 400 × 6, 400 = 40, 960, 000 ≈ 40M. The
training set of binary_fol contains almost 30,000 pairs, which is only 0.07% of the total
space of possibilities. This fraction is 60 times smaller than Bowman’s 4.2%, so it seems
that also problem 6 of Section 3.3, concerning the relative size of the training data, has
been solved. It is worth noting that LN has a nearly 800% larger space of admissible
sentences than LB, whereas the vocabulary has become almost 40% smaller. Otherwise
stated, LN produces many more sentences with fewer words. In this respect, it reflects
the (infinitely) generative capacity of human language more realistically than LB.

4.2 Recursive models

As shown, the binary_fol data solve problems 1-6 of Section 3.3. I now proceed to
train the summing baseline and the recursive models on the new training set according
to the same regime as before. Following a description of the results thus obtained, a
more in-depth interpretation will be provided.

4.2.1 Results

Training and testing accuracies after 50 training epochs, averaged over five different
model runs, are shown in Table 4.6.

Immediately striking about these results is the increased variation between the scores
obtained by the different models. The tensor model still performs very well, with nearly
perfect average training accuracy. Testing accuracy is 5 percentage points lower, but
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train test
25/75 sumNN 55.9 51.3
25/75 tRNN 83.0 81.7
25/75 tRNTN 99.0 94.1

Table 4.6: Training and testing accuracy scores on the FOL inference task for the
binary_fol data. Results are averaged over five runs.

still well above 90%. This is approximately 4% lower than the tensor testing scores
of Table 4.3. Taking into account that the artificial language LN is more complicated
than LB, and that the relative size of the training data is 60 times smaller than before,
it is remarkable that the tensor model only deteriorates this little. The matrix model
suffers much more from the new data. Average testing accuracy is below 82%, while the
tRNTN used to only slightly outperform the tRNN. It seems that for the new data, the
tensor term in the composition and comparison functions of Equations (3.3) and (3.5) has
gained importance. Apparently, only modelling the additive interactions between vectors
suffices to obtain decent scores on the unary_balanced_fol data, whereas the complex
binary_fol instances require something more. This is offered by the tensor term in
the layer functions, which also pays attention to the multiplicative interactions between
vectors. The summing baseline fails dramatically. Both training and testing accuracy are
not far above 50%. This result clearly shows that a simple bag-of-words model is not at all
capable of recognizing entailment relations for complex sentences whose constituents can
always be arranged in several different orders. Previously, determining word order was
only challenging in the case of a single negation. Now, it is always an issue. Nouns and
quantifiers are both interchangeable, and there are four negatable positions per sentence.
Models oblivious to word order, such as the sumNN, therefore face great uncertainty,
which explains the current performance. The low baseline scores reported in Table 4.6
show that by adopting the new data, also problem 7 of Section 3.3 is addressed, which
is extra evidence for the non-triviality of the task.

In general, the results suggest that sophisticated model properties become more im-
portant in the face of the new, complicated data. Following the replication of Bowman’s
experiments, all scores were still above 90% (see Table 3.2). Now, the testing accuracies
of the sumNN and tRNTN are more than 40% apart. There can be no suspicion anymore
that the recursive architectures of the matrix and tensor models simply serve as means to
boost performance by a few percentage points. It is this design that enables the tRNTN
in particular to successfully approach an entailment classification task with significantly
less data and higher complexity than before. Conversely, the primitive sumNN set-up is
not just a relatively minor handicap anymore, as suggested by Table 3.2, but the cause
of drastic failure. Likewise, the tensor term in the layer functions no longer accounts for
a marginal difference between testing accuracy scores of the matrix and tensor models,
but for a gap of more than 12%.
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4.2.2 Interpretation

In the remainder of this section, I focus on the most powerful model so far: the tRNTN.
More specifically, of the five tensor models that were trained to obtain the results of Table
4.6, the one that performed best on the test set is selected for a more detailed analysis
and interpretation. This model achieved final training and testing accuracy scores of
99.1% and 94.6%, respectively. Its row-normalized confusion matrix with respect to
the binary_fol test data is shown in Figure 4.4a. For reference, Figure 4.4c contains a
histogram visualizing the relative frequency of each entailment relation in the binary_fol
train data.

(a) (b)

(c)

< >=

| ∨∧

#

(d)

Figure 4.4: (a) Row-normalized confusion matrix with respect to the binary_fol test
data for the best-performing tRNTN model. (b) The confusion matrix of (a), with no
normalization or diagonal entries (correct classifications). (c) Histogram showing the
relative frequency of each entailment relation in the train and test set of binary_fol.
(d) Venn diagram visualizing the seven entailment relations, interpreted as the sets of
sentence pairs for which they hold.
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Confusion matrix The confusion matrix reveals some interesting facts about the error
profile of the tensor model. Of course, because most testing instances are classified
correctly, the matrix is strongly diagonal. Concentrating on the mistakes, two classes
stand out: equivalence (=) and negation (∧). As targets, these relations are most often
misclassified. The distribution of the training data illustrated by Figure 4.4c shows that
these are also the two least occurring classes in the training data. As stated on page
37, this imbalance is a logical matter that cannot be fixed as easily as the dominance
of the independence relation, which was dealt with by simply downsampling #-labelled
instances. Equivalence and negation are so rare that forcing a uniform distribution over
all seven classes by similar means would yield a very small data set. Hence, they are
included as smaller classes, as was the case in all earlier data sets (see Figure 4.1b).
Figure 4.4c shows that the binary_fol test set has an almost identical distribution as
the train set, so the errors made for targets = and ∧ cannot account for most mistakes.
To be precise, only 11% of all errors made by the model concern instances labelled =
or ∧. The confusion matrix of Figure 4.4a can be misleading in this respect, because its
row-normalization seems to suggest that these are important error categories.

Indeed, the diagonal entries of the confusion matrix in Figure 4.4a are so large that
they overshadow the nuances in the error profile. To avoid this, Figure 4.4b shows the
same matrix, but this time without normalization and without diagonal entries. Thus,
the error distribution becomes more distinct. Relative to the other error categories, the
misclassifications of = and ∧ are not frequent at all. Most errors are related to inde-
pendence, either by misclassification (true negative, errors in the first row) or wrongful
attribution (false positive, errors in the first column). The only two categories the model
never confuses with independence are equivalence and negation, because these were sel-
dom observed during training. It turns out that, even though independence is the most
common class, it is not the easiest one to classify. A possible explanation is that, due to
the semantic unrelatedness of #-labelled sentence pairs, independence has become a kind
of container class, attributed to items whose true target the model fails to recognize. As
opposed to the other relations, independence has no rigid logical definition, but is simply
a class of ‘other’ instances. Hence, there are no relations that independence contradicts
as clearly as is the case between e.g. equivalence and alternation. This is why # is more
likely to show up as a mistake than the other relations.

The matrix of Figure 4.4b is quite symmetric. If a class A is often wrongfully assigned
to instances labelled B, then probably B is also assigned to many A-labelled items. The
details of the error pattern can all be understood with reference to the class definitions
of Table 2.1, and the Venn diagram of Figure 4.4d, which visualizes the relations be-
tween the sets of sentence pairs assigned to each entailment class. Equivalence is often
mistaken for either forward or backward entailment. This makes sense from a logical
perspective, because the definition of equivalence is the conjunction of the definitions
of forward and backward entailment. This is illustrated in Figure 4.4d, where = is the
intersection of < and >.6 This also holds for negation, which is defined as the conjunc-

6In a personal meeting, Luciano Serafini (from FBK - Trento) suggested that attribution of either
kind of entailment in the case of equivalence should not be treated as a full error, because it is at least
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tion of cover and alternation. Indeed, negation is most often misclassified as either of
these two classes. Conversely, forward and backward entailment are often misclassified
as equivalence, and cover and alternation as negation, because definition-wise these are
the nearest alternatives. <, = and > form the upper semantic cluster in Figure 4.4d,
while the corresponding rows and columns in Figure 4.4b show that they are often con-
fused. The same holds for |,∧ and ∨. At the same time, sentence pairs belonging to the
<,=,>-cluster are rarely mistaken for instances of |,∧ or ∨, and vice versa. Thus, even
in the mistakes made by this tRNTN there is logic, because the error profile reflects the
definitions of the entailment classes.

Word embeddings Next, I look at the word embeddings learned by the winning ten-
sor model. Principal Component Analysis (PCA) is applied to reduce the dimensionality
of the vector representations from 25 to 2, while maintaining the largest possible vari-
ance.7 The result is shown in Figure 4.5a. By now, it is well-known that unsupervised
models can be trained on a corpus to produce a word vector space with meaningful linear
substructures, as shown by e.g. Mikolov, Yih, and Zweig 2013 and Pennington, Socher,
and Manning 2014. The word embeddings of our models are not taken from an existing
data set, but learned during the training phase as regular network parameters (see Equa-
tion 3.1). A relevant question to ask is whether the geometry of the learned embeddings
reflects the semantic interrelations between the represented words. It is difficult to assess
this on the basis of Figure 4.5a alone. The verbs ‘fear’, ‘hate’ and ‘like’ form somewhat
of a cluster. Nouns ‘Germans’ and ‘Italians’ are closer to each other than to ‘Romans’
or ‘Europeans’, which is understandable because both concern countries instead of a city
or continent. The embedding for ‘children’ is an outlier, as this predicate is independent
of all other ones.

Figure 4.5a confirms some semantic intuitions, but only weakly. As the word vector
space is so large, a single PCA projection is hardly representative of general model dynam-
ics. Therefore, Figure 4.5b shows the average of the two-dimensional PCA projections of
the word embeddings learned by all five tRNTN models trained on the binary_fol data.
Additionally, the radius of the concentric circle around each mean projected embedding
indicates the average absolute distance to the individual model embeddings. It turns out
that the configuration of learned word representations is surprisingly consistent across
models. Each model’s word embeddings are uniformly randomly initialized, so prior to

partially correct. This is justifiable, because equivalence between two sentences always implies that both
backward and forward entailment are also the case, so strictly speaking there is no untruth in this kind
of misclassification. But despite the semantic legitimacy, there are strong pragmatic objections against
this kind of ‘truth’. It is at best incomplete, because a stronger logical relation also holds. As such, it
violates the scalar or quantity implicature, according to which a stronger claim is false unless explicitly
claimed to be true. See Carston 1997, or the Maxim of Quantity in Grice 1975. Furthermore, forward
and backward entailment are understood as exclusive notions during the data generation process, see
Algorithm 4.1.

7Another popular dimensionality reduction algorithm is t-distributed Stochastic Neighbor Embedding
(t-SNE), see Maaten and Hinton 2008. It is not used here because it is focused too much on local structure
for our purposes. Moreover, due to its stochastic nature, some trial runs yielded results that were too
divergent to interpret.

47
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(a) (b)

Figure 4.5: (a) PCA projection of the word embeddings learned by the best-performing
tRNTN model after training on binary_fol. (b) Average of the PCA projections of the
word embeddings learned by all five tRNTN models trained on binary_fol, with the
average absolute distance visualized as a radius around the mean locations.

training, the individual embedding matrices must be very different. Figure 4.5b shows
that after 50 training epochs, the embedding matrices of the tRNTN models have con-
verged, as the networks have learned to organize the vectors in very similar ways. Verbs
clearly cluster together, ‘Germans’ and ‘Italians’ are closer to each other than to ‘Ro-
mans’ or ‘Europeans’, and the embedding for ‘children’ is an outlier. These observations
already applied to Figure 4.5a, but their generalization to other models compensates for
some of the uncertainty caused by the 25-to-2-dimensional projection. It is now more
salient that the tensor models organize their word embeddings in a geometry that echoes
important structural aspects of the vocabulary semantics.8

Composition vectors The tree-shaped models produce sentence vectors by recur-
sively applying a learned composition function. The first arguments to this function are
the embeddings of the words at the leaf nodes of the syntactic tree, the results of which
then serve as new inputs until all branches have been collapsed. In order to gain more
insight into this process, Figures 4.6a-4.6c show the 2-dimensional PCA projections of all
stages in the best-performing tRNTN’s composition of three sample expressions. These
sentences are taken from the binary_fol test set, and belong to pairs correctly classi-
fied by the tRNTN. Projections of word embeddings are labelled with the corresponding
vocabulary items from LN , and (activated) outputs returned by the composition func-
tion are annotated as ‘cps’. The arrows indicate the direction in which the composition

8The project-sum-squash method, mentioned on page 28, was applied to the word embeddings and
the composition matrix to check if an effect as described in Veldhoen 2015 takes place here as well.
However, the method did not produce a more interpretable configuration than the projections of Figure
4.5a.
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(a) (b)

(c) (d)

Figure 4.6: (a)-(c) PCA projections of all stages in the best-performing tRNTN’s compo-
sition of the sentences (a) ((some Germans) (like (some Germans))), (b) ((some Germans)
(love (some Italians))) and (c) ((all Europeans) (fear (all (not Italians)))). Projected em-
beddings are labelled with the corresponding vocabulary item from LN . Outputs from
the composition function are annotated as ‘cps’. (d) Projections of all composition stages
for 1,000 sampled sentences. Blue points represent embeddings or intermediate compo-
sitions, red points denote complete sentence vectors.

function is applied. E.g., in Figure 4.6a for the sentence ‘ ((some Germans) (like (some
Germans)))’, the composition of ‘some’ and ‘Germans’ is visualized by the arrows con-
necting the embeddings to a cps node representing the noun phrase ‘(some Germans).
‘like’ is composed with this cps node, which produces a new cps node representing the
verb phrase ‘(like (some Germans))’. Finally, the composition function sends this cps
node together with the ‘(some Germans)’ node to a new cps node, which constitutes the
sentence vector.

Although it is not straightforward to interpret the details of the plots in Figure 4.6,
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they expose some global facts about the composition method. Most importantly, they
show that the distance between composition arguments and outputs increases propor-
tionally to the complexity of the composed phrase. Embeddings represent the sentence
constituents with the least complexity, namely primitive vocabulary items. When con-
joining two word representations, the composition function never returns a vector in
the region between the embeddings: it maps the input arguments to a different linear
subspace. As the arguments become cps nodes themselves, the composition function
increases the variance even more. This effect is clear in all plots 4.6a-4.6c. It is strongest
at the final step, when the main noun and verb phrases of the sentence are combined.
This produces the total sentence vector, which is situated in a region distant from all
its recursive predecessors. Sentence vectors generally live in an isolated subspace, as is
illustrated by Figure 4.6d. Here, the projections of all composition stages are plotted for
1,000 statements, sampled from the sentences in the binary_fol test set belonging to
correctly classified pairs. Blue points represent embeddings or intermediate compositions,
red points denote complete sentence vectors. The two regions are linearly separable. This
strong geometric division suggests that the tRNTN recognizes sentences and their partial
constituents as fundamentally different objects.

Sentence vectors Finally, I pay some more specific attention to the highest-level in-
ternal representations with a direct semantic interpretation: the sentence vectors. Here,
focus is on the unactivated sentence vectors, which sum the final matrix and tensor com-
position results. Figure 4.7a shows the PCA projection of some 200 correctly classified
sentence pairs sampled from the binary_fol test set. Points representing sentences that
belong to the same pair are connected with a line whose color indicates their entailment
relation. Figure 4.7a is not very elucidating, because it fails to show any obvious geo-
metric characteristics distinguishing different entailment relations from each other. That
is, the relations do not appear to correspond with fixed linear transformations in the
sentence vector space. The plot provides only some meager evidence that relations be-
longing to the upper cluster of Figure 4.4d (<,>,=) have a preference for transformations
orthogonal to those of the lower cluster (|,∧, ∨).

Figure 4.7b singles out one relation, namely negation (∧). Because only few instances
in the binary_fol data are labelled with ∧, a new data set containing only negations was
constructed by taking single sentences from the existing data and negating them. This
new data set is called only_negations. Figure 4.7b shows a sample of 200 correctly clas-
sified sentence pairs from this data set, with lines connecting statements belonging to the
same pairs. Only pairs of the form 〈ϕ,¬ϕ〉 are considered, i.e. sentences together with
their trivial logical complement, which prefixes the positive expression with a negation.
In our case, negation of the entire sentence amounts to negation of the first quantifier.
For this reason, Figure 4.7b also colors each included point according to its main deter-
miner, understood as the (possibly negated) first quantifier. There seems to be a weak
clustering of universal statements (starting with ‘all’ or ‘not some’) and existential ones
(‘some’ or ‘not all’). More importantly, the plot shows that negation dictates a very
specific geometry, where sentence vectors are mirrored with respect to a kind of centroid.
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(a)

(b)

Figure 4.7: PCA projections of unactivated sentence vectors produced by the best-
performing tRNTN. (a) 200 pairs of sentences connected according to their entailment
relation. (b) 200 pairs of negated sentences, colored according to their first (possibly
negated) quantifier.
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This geometric mirroring appears to be a non-local equivalent of the semantic mirroring
effectuated by logical negation: the inversion of a sentence’s position relative to a specific
point can serve as a metaphor for the inversion of its truth value.

(a) (b)

Figure 4.8: PCA projections of unactivated sentence vectors produced by the best-
performing tRNTN. (a) 4,000 sentences, colored according to their verb. (b) 4,000
sentences, colored according to their second quantifier.

Not only the relations between sentences, but also their internal structure can re-
veal geometrical patterns. Figures 4.8a and 4.8b include the projections of some 4,000
sentences belonging to correctly classified pairs in the binary_fol test set, colored ac-
cording to their verbs and second quantifiers, respectively. (Similar experiments were
performed for other individual words and complex sentence components, but interesting
results were only obtained for the verb and the second quantifier.) In Figure 4.8a, the
colors of the projected sentences represent their verbs. Each sentence has only one verb,
taken from the set VLN . In this set, ‘fear’ and ‘hate’ semantically contrast ‘like’ and
‘love’. See also the Venn diagram of Figure 4.3. The configuration of the projections
in Figure 4.8a reflects this dichotomy. Sentences containing ‘like’ or ‘love’ are clustered
together in the central cloud of blue points. On either sides of this area are red clusters
of sentences containing ‘fear’ or ‘hate’. It is not clear why there are two such clusters, or
what distinguishes them from each other. The overlap between the blue and red regions
is not negligible, but seems largely due to sentences containing ‘like’. Those containing
‘love’ are packed together more closely inside the blue region. Perhaps, this is explained
by the fact that ‘love’ is a hyponym of ‘like’, and the corresponding extensions relate as
sub- and superset.

Figure 4.8b provides a similar visualization, but now with coloring relative to the
second quantifier. As this quantifier is never negated in the binary_fol data, there are
only two values to consider: ‘some’ and ‘all’. The plot shows five clusters, three of which
contain sentences with second quantifier ‘some’, while the other two contain sentences
with quantifier ‘all’. As with the previous plot, there is no obvious explanation for the
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number of clusters, but it is observable that sentences tend to group together if they
share their second quantifier. So far, this has not been established for any other sentence
components than the verb and the second quantifier. Apparently, these constituents
prove more useful to the tRNTN as a basis for geometrical partitioning than any of the
other ones, including subject and object noun phrases. It is likely that there are other
factors capable of determining an equally meaningful division of the sentence vector
space, but until now these are the only ones that have been identified.
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Chapter 5

A recurrent approach

By now, most issues listed in Section 3.3 have been addressed. Endorsing FOL instead
of NL solves problems 1 and 2, while replacing language LB with LN solves problems
3 to 5. Issues 6 and 7 are overcome by the new binary_fol data set. Problem 9, the
methodological objection concerning a lack of interpretation, does not apply anymore
either, given the attention paid to analysis in the preceding section. The only issue
remaining is the eighth: the symbolic prerequisites of the models. It is problematic
that the tree-shaped architectures depend on the availability of linguistic information
specifying the syntactic structure of the input sentences. Especially the tensor models
have proven successful in addressing the current entailment recognition task, but as long
as they owe their achievements to symbolic background knowledge that guides their entire
topology, they are neither scalable nor natural. Additionally, as mentioned on page 25,
the tree-shaped set-up is notoriously inefficient to train, especially when there are tensors
involved.

The only solution is to consider a different class of models. The aim is to learn
whether they are able to address the same challenge without relying on access to parse
trees. Given the poor performance of the summing baseline on the new task, a bag-
of-words model is insufficient. Required is a model that processes sentences according
to their internal order, without using supplementary linguistic structure of any kind
to direct the computational process. This is exactly what a recurrent model does, by
treating sequences of inputs in a linear fashion. Therefore, I will now focus on recurrent
models, and examine whether they manage to successfully address the FOL entailment
classification task in a sequential manner.

Recurrent neural networks (RNNs) are defined as neural models with feedback con-
nections (Fausett 1994; Medsker and Jain 1999). They were introduced in the 1980s
by, among others, Rumelhart, Hinton and Williams, who used them to learn strings
of characters (Rumelhart, Hinton, and Williams 1985). In the 1990s they were further
developed and applied to a range of real-world problems by e.g. Giles, Lawrence, and
Tsoi 1997, Liang, Su, and Lin 1999 and Costa et al. 1999. Largely thanks to an increase
in computational resources, it has become easier to train sophisticated RNNs in recent
years. This has caused a surge in publications on recurrent architectures, which turn out
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5 A recurrent approach

to be remarkably successful in a wide variety of tasks, ranging from machine translation
(Sutskever, Vinyals, and Le 2014) to speech recognition (Graves and Jaitly 2014) and
joke generation (Ren and Yang 2013).

5.1 Three recurrent units

There are many different ways of designing the feedback connections in an RNN. Recur-
rency is obtained by any computational unit that accepts output from a previous time
step as input. In the current project, three types of recurrent cells are considered. All
three are schematized in Figure 5.1, and will now be introduced in more detail.
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Figure 5.1: Schematic visualization of three recurrent units. Switch signs represent gates,
⊗ element-wise product and ⊕ summation. x and y are input and output vectors.

5.1.1 Simple Recurrent Network

The most basic recurrent unit is the Simple Recurrent Network (SRN), also known as
the Elman network because it was introduced by Elman 1990. See Figure 5.1a. At a
time t, an SRN has a hidden state ht, which is computed from the input xt at the same
time step and the previous hidden state, ht−1. The hidden state of time t−1 constitutes
the state st at time t:

st = ht−1 (5.1)

st is also known as the context unit. It can be interpreted as the memory of the cell.
The new hidden state is calculated as:

ht = tanh(Wxt +Ust + b), (5.2)

where W denotes the h× d-dimensional weight matrix connecting the d-dimensional
input xt to the h-dimensional hidden unit ht. U is the h × h-dimensional matrix con-
taining the internal hidden layer weights and b is a bias term. A tanh nonlinearity is
applied to the entire sum.
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5.1.2 Gated Recurrent Unit

The Gated Recurrent Unit (GRU) is a more advanced recurrent cell introduced by Chung
et al. 2014. It is schematized in Figure 5.1b. The switch signs in the figure represent
additional internal states known as ‘gates’. They are used to organize the information flow
in a more controlled way than the rudimentary feedback loop of the SRN. Individually, all
gates are just regular feed-forward neurons that apply a nonlinearity to a weighted sum of
the input vectors. In the GRU case, r is a reset gate used to compute the h-dimensional
preliminary hidden state h̃t at time t:

h̃t = tanh(Whxt +Uh(rt ⊗ ht−1) + bh) (5.3)

As before, for d-dimensional input xt at time t, Wh is the h× d-dimensional weight
matrix to the candidate hidden state. Uh is the h × h-dimensional matrix storing the
internal hidden weights, rt is the reset gate value at time t, ht−1 is the previous hidden
state and bh an h-dimensional bias vector. ⊗ is the element-wise product, also known
as the ‘Hadamard product’. r is called the ‘reset gate’ because it determines how much
of the previous hidden state is remembered and used in computation. At time t it takes
the following value:

rt = σ(Wrxt +Urht−1 + br) (5.4)

Wr are Ur are weight matrices of dimensionality h× d and h× h, respectively. br is
another bias term. σ is the logistic sigmoid function that is used as nonlinear activation
at the gates. The value of gate z, the update gate, at time t is the result of a similar
computation:

zt = σ(Wzxt +Uzht−1 + bz) (5.5)

Wr and Ur are weight matrices of the same dimensions as before, bz is a new bias
term. The gate value zt establishes the extent to which the previous hidden state ht−1
is retained, or updated with h̃t:

ht = zt ⊗ ht−1 + (1− zt)⊗ h̃t (5.6)

5.1.3 Long Short-Term Memory

Finally, here follows a description of the unit shown in Figure 5.1c: the Long Short-Term
Memory (LSTM). The LSTM is a predecessor of the GRU, introduced by Hochreiter and
Schmidhuber 1997. It has more gates, and therefore more parameters, than the GRU. To
be precise, it has a forget gate f, an input gate i and an output gate o. It also has an extra
component c, which serves as memory cell. As with the GRU, all gates are traditional
neurons, which apply the logistic sigmoid function σ to a linear transformation of the
input vectors. At time t, they take the following values:
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ft = σ(Wfxt +Ufht−1 + bf ) (5.7)

it = σ(Wixt +Uiht−1 + bi) (5.8)
ot = σ(Woxt +Uoht−1 + bo) (5.9)

As usual, xt and ht−1 denote the input vector at time t and the hidden state at
time t − 1. For d-dimensional input and h hidden units, weight matrices Wf ,Wi and
Wo are h × d-dimensional, and internal hidden-to-hidden matrices Uf ,Ui and Uo are
h×h-dimensional. bf ,bi and bo are h-dimensional bias vectors for the three gates. The
memory cell c is computed at time t as:

ct = ft ⊗ ct−1 + it ⊗ tanh(Wcxt +Ucht−1 + bc), (5.10)

with Wc an h× d- and Uc an h× h-dimensional weight matrix, and bc a bias vector
of length h. The new hidden state is now computed as:

ht = ot ⊗ tanh(ct) (5.11)

The functions of the different LSTM components can best be understood with refer-
ence to Figure 5.1c. The⊗-symbols in the diagram all denote element-wise multiplication.
⊕ is ordinary matrix addition. The forget gate f can selectively obliviate information
from the previous cell state, up to total annihilation in the hypothetical case of a weight
matrix containing only zeroes. With a similar mechanism, the input gate i determines
which values of the cell state must be updated. In the GRU, the update gate has a role
that is comparable to a combination of the LSTM forget and input gates. The output
gate o modifies the final result before it is returned and passed on to the next cell state.

So far, all gates were characterized as single-layer neurons, but their definitions can be
straightforwardly generalized to multi-layer analogues by adding sets of parameters for
extra layers. The weight matrices and biases of all recurrent units are trainable by means
of an adapted version of traditional backpropagation. This method is called ‘backprop-
agation through time’ and was independently established in several publications. See
Robinson and Fallside 1987, Werbos 1988 and Mozer 1989.

5.2 New architecture

In PyTorch, a new architecture is implemented that replaces the tree-shaped sentence
composition of the tRNN and tRNTN models with a sequence of recurrent units. An ab-
stract visualization of the new set-up is given in Figure 5.2. The upper part of the model
is identical to Bowman’s (see Figure 3.3 for comparison). It consists of a comparison
layer and a classification layer, after which a softmax function is applied to determine
the most probable target class. As before, the comparison layer takes the concatena-
tion of two sentence vectors as input. However, these vectors are no longer produced
by a composition function, but returned as final output of a series of recurrent cells.

57



5 A recurrent approach

The number of cells equals the number of words, so it differs per sentence. The new
set-up resembles the Siamese architecture for learning sentence similarity of Mueller and
Thyagarajan 2016b and the LSTM classifier described in Bowman, Angeli, et al. 2015,
although the latter contains more upper layers and fewer output units.

all Germans love all Romans some Europeans

like some Italians

embeddings

hidden units

comparison

classification

softmax

<

Figure 5.2: Visualization of the general recurrent model. The region in the dashed box
represents any of the recurrent cells schematized in Figure 5.1, which is repeatedly applied
until the final sentence vector is returned.

In the diagram, the dashed box indicates the location of an arbitrary recurrent unit.
The specific computations that take place in the unit depend on its type, which can be
any of those listed in Section 5.1. Recall the schematizations of the SRN, GRU and
LSTM in Figure 5.1, all of which can be inserted in the dashed region of the high-level
overview in Figure 5.2. The generic input vector x in the diagrams of the individual
recurrent units now takes the shape of a word embedding. More precisely, at each time
step t, the input xt is the vector representation of the word at position t in the sentence.
The final output y is the sentence vector, which is returned after an entire sentence has
been processed.

The number of hidden units (the dimensionality of the hidden vectors, denoted by
h in Section 5.1) is fixed at 128. The dimensionality of the word embeddings is 25, as
before, and the comparison layer remains 75-dimensional. By default, all recurrent units
are single-layered.1 Prior to training, all hidden units are initialized as zero vectors. Net-
work parameters are initialized according to the default PyTorch routine. Weights of the
recurrent units are drawn from the uniform distribution U(−1/

√
h, 1/

√
h). In our case

h = 128, so the lower bound is −1/
√
128 and the upper bound 1/

√
128. Non-recurrent

parameters, belonging to the linear comparison and classification layers, are initialized
1Experiments were conducted with multi-layered recurrent units, but this did not improve results.
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uniformly randomly according to distribution U(−1/
√
fanin, 1/

√
fanin), where fanin

denotes the number of input units. The comparison layer is initialized according to
U(−1/

√
50, 1/

√
50), because its input is the concatenation of two 25-dimensional sentence

vectors, and the initial classification layer weights are drawn from U(−1/
√
75, 1/

√
75),

because the comparison layer outputs are 75-dimensional. Word embeddings are ini-
tialized according to a normal distribution with mean 0 and standard deviation 1, i.e.
N (0, 1).

During training, AdaDelta is used as optimizer. L2 is not applied as regularization
method for the recurrent units, because it reduces their memorizing capacities (Pascanu,
Mikolov, and Bengio 2013). Experiments were conducted with dropout layers, which
perform regularization by zeroing elements of input vectors with some preset probability
p during training (Bluche, Kermorvant, and Louradour 2015). However, hyperparameter
tuning showed that best results were obtained for probability p = 0, which equals no
dropout, so no such layers are used in the final experiments.

Three types of models, containing the three different kinds of recurrent units, are
trained for five runs on the binary_fol data, while completely ignoring brackets. Train-
ing is always continued for 50 epochs, and results are reported after termination. The
final scores, averaged over all five runs, are given in Table 5.1.

train test
128/25/75 SRN 97.9 87.3
128/25/75 GRU 100.0 96.0
128/25/75 LSTM 100.0 94.6

Table 5.1: Training and testing accuracy scores of models with the three different recur-
rent units on the FOL inference task for the binary_fol data. Results are averaged over
five runs. An h/n/m model has h hidden units, n-dimensional word embeddings and an
m-dimensional comparison layer.

Comparison with the results in Table 4.6 shows that all recurrent models outperform
the summing baseline. Even the simplest recurrent network, the SRN, achieves higher
training and testing accuracy scores than the tree-shaped matrix model. The GRU and
LSTM even beat the tensor model. The LSTM obtains slightly lower scores than the
GRU, which is unexpected given its more complex design, but perhaps the current chal-
lenge does not require separate forget and input gates. It must be noted that comparison
between the training accuracies of Table 5.1 and earlier ones can be misleading. More
regularization was applied while training the tree-shaped models, which tends to decrease
the training accuracy.

The consistently higher testing accuracy, however, provides evidence that the re-
current networks are not only capable of recognizing FOL entailment relations between
unseen sentences, but that they can also outperform the tree-shaped models on this
task. This is a surprising result, because the recurrent models do not use any of the
symbolic structure that seemed to explain the success of their recursive predecessors.
The recurrent classifiers have learned to apply their own strategy. In what follows, I will
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(a) (b)

Figure 5.3: (a) Unnormalized confusion matrix with respect to the binary_fol test
data for the best-performing GRU model, with diagonal entries (correct classifications)
omitted. (b) PCA projection of best-performing GRU’s learned word embeddings.

investigate the details of this method, and juxtapose it with the recursive mechanism of
the tree-shaped networks.

5.3 Interpretation

As before, I first focus on the most successful single model. This is a GRU, which
obtained a final testing accuracy of 96.8% and a training accuracy of 100.0%.2 Recurrent
neural networks are notoriously hard to interpret, which is why they are often referred
to as ‘black boxes’. In what follows I will attempt to shed some light on their intricate
dynamics.

Confusion matrix The winning GRU’s confusion matrix is so strongly diagonal that
it does not even reveal which categories are relatively most error-prone. For that reason,
it is not included here. Figure 5.3a is more informative in this respect, because it is
not normalized and omits the correct classifications of the diagonal entries, as was done
for the best-performing tRNTN in Figure 4.4b. The manifested error pattern is totally
different from the one produced by the winning tensor model. The vast majority (90%)
of all errors made on the test set is related to #, comprising misclassifications of items
labelled with independence, and attribution of independence to sentence pairs with a
different target. Relative to this class, other error categories are virtually negligible. It

2To verify that the recurrent units are responsible for the success of the GRU, and not the feed-forward
upper layers of the network, a random GRU was tested. For this experiment, the recurrent weights of the
best-performing GRU were randomized, but the trained upper layers remained unchanged. The mean
testing accuracy of five such models was no more than 22.0%, confirming that the positive results are
not attributable to the upper layers alone.
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seems that the GRU has learned to distinguish quite accurately between the relations
within the semantic clusters of Figure 4.4d, which proved to be a source of confusion
for the tensor model. The remaining #-related errors are most difficult to overcome,
because of their diversity. The GRU hardly ever confuses independence with equivalence
or alternation. From the distribution in Figure 4.4c, recall that these are the two rarest
labels.

Word embeddings Next, I examine the word embeddings. Figure 5.3b shows the
PCA projection of the representations learned by best-performing GRU after 50 training
epochs. Much of the geometric distribution matches the semantic order. Consider, for
instance, that ‘love’ and ‘like’ are clustered relatively far away from ‘fear’ and ‘hate’,
that ‘Romans’ and ‘Italians’ are close together, and that ‘children’ is an outlier. Some of
these observations also applied to the word embeddings of the tRNTN shown in Figure
4.5a. An important difference between the tRNTN and the GRU is consistency across
models. Figure 4.5b demonstrated that the distribution of the final word embeddings
did not differ a lot across model runs for the tRNTN. This is not the case for the GRU.
Although similar clusters are often discernible, their distribution over the word vector
space is completely different for each fully trained model. In this respect the GRU models
are far less convergent than the tRNTNs.

Hidden vectors Figure 5.4 is the recurrent analogue of Figure 4.6. It shows the
PCA projection of the vectors representing the subsequent stages of processing a single
sentence. Only now, the plots do not show how a composition function recursively maps
word embeddings to a sentence vector, but how a sequence of recurrent units outputs
hidden vectors, the last one of which represents the entire statement. Arrows indicate
the direction in which the recurrent units are applied, following the order of the sentence.

The four examples in Figure 5.4 are taken from the sentence pairs in the binary_fol
test set that are correctly classified by the best-performing GRU. Because this model
has 128 hidden units, applying PCA to find a two-dimensional projection requires that
only two out of 128 principal components are maintained. This is a heavy reduction, so
it would be premature to base any major conclusions on these plots. They do, however,
clarify some details that are particularly interesting in relation to the tRNTN sentence
composition visualized in Figure 4.6. For instance, the trajectories do not map subse-
quent vectors into increasingly remote regions of the space, as opposed to the tensor
model’s composition function. Indeed, there seems to be no rigid separation between
the subspaces containing sentence vectors and those containing intermediate or initial
representations. In this regard, the GRU appears less geometrically sensitive to gram-
matical distinctions than the tRNTN. Also, looking at the distances between the items
per recurrent path, large steps are usually caused by quantifiers, verbs and negation,
while nouns tend to have a smaller impact. It remains to be seen whether this signals a
proportional contribution to the classifier’s performance.
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(a) (b)

(c) (d)

Figure 5.4: PCA projections of the hidden vectors generated by the best-performing
GRU while processing the sentences (a) some not Romans not love all not Romans, (b)
not some not Italians not hate all not Italians, (c) all not Europeans love all Germans,
and (d) not all Germans not fear some not children. Projections are annotated with the
corresponding vocabulary items from LN .

Sentence vectors Figure 5.5 includes four plots showing PCA projections of sentence
vectors generated by the best-performing GRU. The first one, Figure 5.5a, shows a sample
of approximately 500 correctly classified sentence pairs from the only_negations data
set, which only contains pairs of the form 〈ϕ,¬ϕ〉, labelled with ∧. Projected vectors
are colored according to the negatable first quantifier of the represented sentence. Apart
from some minor clustering of existentially and universally quantified propositions, an
even stronger mirroring effect takes place than with the tRNTN (shown in Figure 4.7b).
Negated sentences are not symmetric with respect to a point, but with respect to a
line that forms an almost perfect linear boundary between propositions and their logical
complements. In this sense, the GRU has realized a geometry that captures the semantics
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(a) (b)

(c) (d)

Figure 5.5: PCA projections of sentence vectors produced by the best-performing GRU.
(a) 400 pairs of negated sentences, colored according to their first (possibly negated)
quantifier. (c) 4,000 sentences, colored according to their verb. (d) 4,000 sentences,
colored according to their second quantifier. (e) 4,000 sentences, colored according to
the combination of their verb and second quantifier.

of negation even more intuitively than the tree-shaped tensor model managed to do.
This is especially remarkable when taking into consideration that negation of a sentence
currently reduces to negation of its first quantifier, which is just a matter of adding
(or removing) ‘not’ as first word of the sentence. At the same time, this modification
swaps the truth value of the complete sentence. In other words, we have here a single
word at the very beginning of a statement, capable of manipulating the semantics at
sentence level. Even though the GRU processes expressions sequentially, it has managed
to recognize the global importance of this first word, which is memorized during the
recurrent processing, and assigned sufficient weight to effectuate the strongly symmetric
ordering of Figure 5.5a. This is evidence that the GRU not only remembers important
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historic inputs, but that it also distinguishes items that are semantically significant and
organizes the sentence space according to such items, even if they are observed at the
very beginning of a sequence.

Figure 5.5a already suggests that the sentence vectors, irrespectively of their first
quantifier or its sign, form three major clusters. This is confirmed when a higher number
of vectors is projected, representing sentences belonging to correctly classified pairs in
the binary_fol test set. Figures 5.5b-5.5d include samples of approximately 4,000 such
sentence vectors. Even more clearly than those produced by the tRNTN (shown in
Figure 4.8), these projections form three distinct, linearly separable clusters. Coloring
the individual points according to a range of grammatical properties of the represented
sentences provides more insight into the nature of these configurations.

In particular, it turns out that sentences containing ‘like’ or ‘love’ as verb are situated
in a different subspace than those containing ‘fear’ or ‘hate’, as illustrated in Figure
5.5b. This is reminiscent of Figure 4.8a, but then without overlap between the different
regions. Furthermore, there now seems to be an explanation for the division between the
two ‘fear/hate’ clusters. Consider Figure 5.5c, which colors the plotted vectors according
to the second quantifier of the underlying sentences. This is clearly an ordering factor of
the sentence vector geometry, with overlap between the two classes only occurring in the
middle region, which has two totally separate clusters located on either side of it. Because
Figures 5.5b and 5.5c visualize different samples, it is not necessary (although likely) that
the three major clusters in Figure 5.5c coincide with the verb clusters of Figure 5.5b. To
test this, Figure 5.5d visualizes another sample, with vectors colored according to the
combination of the verb and second quantifier of the represented sentences. For clarity,
‘fear’ and ‘hate’ are considered together, as are ‘like’ and ‘love’. The new plot confirms the
suspicion that the three clusters of Figure 5.5c are indeed the verb clusters identified in
Figure 5.5b, and shows that a grammatical feature has been found that appears to capture
all major clusters in the sentence vector space. So far, no other sentence constituents
(or combinations thereof) have been found to correspond with notable patterns in the
sentence space. Apparently, the GRU is similar to the tRNTN in this respect, that the
verb and the second quantifier are the grammatical features with most impact on the
sentence vector distribution, although the geometry as a whole is better understood in
the case of the GRU.

5.4 Diagnostic classification

The PCA projections of word embeddings, hidden units and sentence vectors shed light
on certain aspects of the internal mechanisms of the GRU. Most of all, they facilitate
a qualitative analysis of clustering and partitioning among learned representations, as
performed in the previous section. Although this revealed some interesting facts, it has
not taught us much about the general ‘method’ used by the GRU to classify entailment.
Due to their highly specific topology, the tree-shaped networks have no option but to
process sentences recursively, collapsing their syntactic structure branch by branch until
a sentence vector is returned. The recurrent models have no such guidance, but also
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perform very well on the entailment recognition task. I would like to know more about
the strategy they apply ‘under the hood’, in order to explain their success.

Understanding the internal dynamics of a recurrent model is not straightforward,
due to the high numbers of parameters and hidden units that are involved. One way of
opening the black box is to study the hidden units in terms of specific symbolic hypotheses
to find out if they have learned to encode details corresponding with particular linguistic
facts. In order to do so as comprehensively as possible, I make use of a technique called
diagnostic classification, introduced by Hupkes, Veldhoen, and Zuidema 2017:

To test whether a network is computing or representing a certain variable
or feature, I determine the sequence of values that this variable or feature
takes at each step while processing a sentence. I then train an additional
classifier – a diagnostic classifier – to predict this sequence of variable values
(representing our hypothesis) from the sequence of hidden representations a
trained network goes through while processing the input sentence. (Hupkes,
Veldhoen, and Zuidema 2017, p. 14)

Diagnostic classifiers can provide the basis for a quantitative analysis of recurrent
models that is more precise than the visual, often somewhat handwavy interpretation
of plotted projections. The method is also more systematic than the approach of e.g.
Karpathy, Johnson, and Fei-Fei 2015, who visualized cell and gate activations as part of
a qualitative investigation. The only required assumption is that predictability of some
linguistic hypothesis by a diagnostic classifier trained on the hidden representations of
a recurrent model indicates that this information is truly encoded by that model. This
should be an uncontroversial supposition, given the fact that diagnostic classifiers are very
simple, linear tools. If such basic models can successfully predict a symbolic hypothesis
from a sequence of hidden vectors, this serves as evidence that the recurrent model
actually computes that information. If they are unable to do so, this indicates that the
model does not encode such information, and is therefore unlikely to base any internal
strategy on it.

Logistic regression is used as diagnostic classification method in all experiments re-
ported in this section. The entire binary_fol data set is presented to the best-performing
GRU, in order to retrieve the hidden vectors produced following each word of every sen-
tence in the data. These vectors are labelled according to some symbolic feature (the
hypothesis) that is heuristically derived from the data. The result is a separate data set
for each hypothesis, containing 128-dimensional vectors with their corresponding labels.
Duplicate items are removed from the data, and the order is randomized. 80% of the
remaining instances are used to train the diagnostic classifier (∼ 11,000 items). The
other 20%, unseen during training, is used for testing (∼ 3,000 items). Four hypotheses
are considered, and discussed below.

Recursive depth The tensors models owe their success to their recursive structure,
so it is surprising to see that GRUs, which are wholly sequential, perform at least as
well on the same entailment classification task. Could it be that the recurrent models
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all not Italians love some not Germans

all not Italians

all not Italians

not Italians

love some not Germans

love some not Germans

some not Germans

not Germans

0

1

2

3

4

Figure 5.6: Illustration of recursive depth for sample sentence ‘all not Italians love some
not Germans’.

are internally applying a recursive strategy of their own? In Hupkes, Veldhoen, and
Zuidema 2017, this hypothesis is tested on GRUs that have learned to evaluate arithmetic
expressions. Consider e.g. the statement ‘(5+(2−3))’. There are two symbolic strategies
to solve such a sum: a cumulative and a recursive one. A cumulative computer calculates
the tentative result at each point in the expression. In this example, she would thus
produce the intermediate outcomes 5, 7 and 4. In the recursive strategy, expressions at
different branches (between brackets) are first evaluated separately. Here, this means
that the initial value 5 has to be remembered while ‘(2−3)’ is assessed and concluded to
equal -1. Next, the computation ‘5− 1’ is performed and the final result 4 is returned.

In the case of the binary_fol data, there is no direct equivalent of intermediate
outcomes associated with either a cumulative or a recursive strategy. It still makes
sense, however, to wonder if the GRUs apply an analogue of the recursive method. If
so, this would mean that they have developed an internal parsing mechanism, without
the supervision of the brackets needed by the tree-shaped models to structure their
computation graph. Moreover, a ‘proclivity for tree structures’ has been considered
‘central to human cognition’ (Fitch 2014), so it is worthwhile to investigate if GRUs also
have such a tendency.

By lack of a more precise evaluation method to label the individual branches in a
sentence tree, what I test here is recursive awareness, understood as predictability of
recursive depth. Figure 5.6 illustrates this notion for a sample sentence. Every sentence
constituent is located at a specific location in the binary parse tree, whose depth is
indicated by the numbers on the right hand side. What matters here is only the depth
of the individual words, shown in bold typeset, because these are the units presented
to the GRU. Each hidden vector is labelled with the recursive depth of the token that
produced it. If a diagnostic classifier is able to predict that depth for unseen instances,
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this is regarded as evidence that the GRU has some recursive awareness.
It turns out that a diagnostic classifier can predict recursive depth very well: the

mean squared error (MSE) on the test set is 0.01, and the accuracy 99.1%. The fact
that simple logistic regression suffices to derive recursive depth from the hidden vectors
with nearly perfect accuracy indicates that the GRU is not indifferent with respect to
this information. Yet, it would be exaggerated to conclude that the model performs a
recursive strategy from this result alone. The number of classes is low, because individual
words can only be located at depth 2, 3 or 4, and encoding of recursive information does
not imply that the entire process is guided by a tree-oriented mechanism.

Word index The next hypothesis to be considered is word index. I test if a diagnostic
classifier can infer the sentence position of a token from the hidden vector that was
produced upon its observation. If this is possible, it suggests that, while processing a
sentence, the GRU keeps track of its location in a linear fashion. This property seems
best associated with a cumulative approach.

(a)

(b)

(c) (d)

Figure 5.7: (a) Row-normalized confusion matrix of the diagnostic classifier trained to
predict word indices from hidden vectors of the best-performing GRU, with respect to the
test set. (b)-(d) Visualization of the diagnostic classifier’s performance on three sample
sentences, with correct labelling (hypothesis) shown in the upper rows, and predictions
below.
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Sentence length ranges from five words (with no negations) to nine (with four nega-
tions), so classification of word index is a 9-class problem. The diagnostic classifier
obtains an MSE of 0.36 on the test set. The testing accuracy is 75.3%, which is not
extremely high, but the confusion matrix in Figure 5.7a shows that wrongly predicted
positions do tend to be close to the targets. For an index i, the most common mistakes
are attribution of either i − 1 or i + 1, so errors made by the classifier are usually not
very serious.

The examples in Figures 5.7b-5.7d confirm this. For three sample sentences, these
plots show the correct label (the hypothesis) per word in the upper row. The lower row
shows the same sentence, but this time with coloring according to the labels predicted by
the diagnostic classifier. Thus, they provide a more small-scale illustration of the kind of
errors made by the classifier. The figures demonstrate that, indeed, most of the errors
are quite close to the hypothesis, and that the predicted index generally increases while
iterating over the sentence words from start to finish. All in all, it seems clear that the
GRU roughly keeps track of its position in an expression while processing it.

Semantic type I also check if a diagnostic classifier can be trained to predict the
semantic type of a sentence constituent from the corresponding hidden vector. Four
types are distinguished: quantifiers, nouns, verbs and negations, which are the four
groups of vocabulary items in LN specified on page 41. If a simple classifier manages to
accurately infer the type of a word from the hidden vector produced with that word as
input, this suggests that the GRU is ‘conscious’ of basic grammatical categories.

As it turns out, the diagnostic classifier is hardly challenged by this task. On the
test set it achieves an accuracy of 99.9%. This means that virtually all testing instances
have been labelled correctly according to their semantic type, so the confusion matrix
is almost totally diagonal. It appears that this information is easily derivable from the
hidden vectors. Then again, sentence structure is still rather rigid, so words of a given
type usually end up in the same regions of a statement. Therefore, it is impossible
to exclude the possibility that the classifier has learned to recognize correlations with
particular positions rather than semantic categories. If sentence structure were more
flexible, diagnostic classification would prove more conclusive in this respect.

Monotonicity direction Another interesting phenomenon to address diagnostically is
monotonicity. As described in Section 2.2.1, monotonicity concerns the truth-preserving
replaceability of quantifier arguments with weaker or stronger notions. The sentences in
LN have quantifiers at two positions. The first, at the beginning of a sentence, takes
the first noun and the verb as its arguments. The second, towards the end of a sen-
tence, has only the second noun as an argument. Both quantifiers are taken from the set
QLN = {all, some}, and only the first one is negatable. Examples of the four most basic
configurations that can thus be constructed (without negations) are shown in Table 4.5.
For these standard sentences, I evaluate the monotonicity of the quantifier arguments in
Table 5.2. Upward monotonicity is denoted by an upward arrow (↑), downward mono-
tonicity by a downward arrow (↓). Brackets are omitted, as these are not considered by
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the recurrent models.

↓ ↑ ↓
all Europeans love all Germans

↓ ↑ ↑
all Europeans love some Germans

↑ ↑ ↓
some Europeans love all Germans

↑ ↑ ↑
some Europeans love some Germans

Table 5.2: Monotonicity properties of quantifiers in basic LN sentences.

As indicated in the table, a universal quantifier in the first position is downward
monotone in its first and upward monotone in its second argument, while an existential
quantifier at the beginning of a sentence is upward monotone in both its arguments. This
is not surprising, because it is generally the case for the natural language analogues of
these quantifiers (Keenan 1996), and LN is supposed to resemble natural English. A
universal quantifier in the second position is downward monotone, and an existential one
upward monotone. Both nouns and the verb can be prefixed with a negation that modifies
only these individual words. Negation reverses monotonicity, so it can be integrated in
any of the patterns of Table 5.2 by simply reversing the direction of the arrow above the
negated word. The second quantifier is not negatable, but the first one is. As the entire
sentence is in the scope of the first quantifier, the full expression is semantically affected
upon its negation. This is accommodated by reversing the direction of all arrows.

I now have a heuristic procedure to determine the monotonicity direction of the
quantifier arguments in all LN sentences. It is used to construct a new diagnostic data
set, which labels hidden vectors according to the monotonicity direction of the token it
took as input. Words with no monotonicity properties (without arrows in Table 5.2) are
assigned label ‘neutral’.

The diagnostic classifier does not excel at predicting monotonicity directions. On the
test set, it obtains an accuracy score of only 62.5%. It manages to recognize most neutral
words, but constantly confuses upward and downward monotone quantifier arguments.
This is illustrated by the confusion matrix of Figure 5.8a, and by the sample sentences in
Figure 5.8b. Given a target of either direction, the classifier only has a slight preference
for the correct label. The high accuracy for neutral terms is as expected, because the
distinction between neutral and monotone items reduces to the distinction betweenQLN∪
ALN (quantifiers and negations) on the one hand, and NLN ∪ VLN (nouns and verbs)
on the other hand. The results of the diagnostic classifier trained to predict semantic
type already showed that the difference between these categories is encoded in the hidden
vectors, so distinguishing their unions should be even easier. The inability of a linear
model to discriminate between upward and downward monotonicity indicates that this
logical-linguistic feature does not contribute to the GRU’s success. The GRU may have
integrated an analogue of some symbolic system under the hood, but most probably not
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(a)

- ↓ - ↓ - - ↑
all children not like all not Europeans
- ↓ - ↓ - - ↓

- - ↓ ↑ - - ↓
some not Romans love some not children
- - ↑ ↑ - - ↑

- - ↓ ↓ - - ↑
not some Germans hate some not Romans
- - ↑ ↓ - - ↑

(b)

Figure 5.8: (a) Row-normalized confusion matrix of the diagnostic classifier trained to
predict monotonicity directions from hidden vectors of the best-performing GRU, with
respect to the test set. (b) Visualization of the diagnostic classifier’s performance on
three sample sentences, with correct labelling (hypothesis) shown above each sentence,
and predictions shown below.

a monotonicity calculus.

Scope of negation Finally, a data set is constructed in which the hidden vectors are
labelled according to the sign of the corresponding words. In this context, ‘sign’ indicates
whether or not a word is negated. In the syntax of LN , negation acts on individual lexical
items, so for each word one can ask if it is in the scope of a negation. The heuristics
to determine whether a word is negated (and label the data) are simple: it suffices to
check if the word ‘not’ immediately precedes it. The diagnostic classifier will show if this
information can be inferred as easily from the GRU’s hidden vectors.

I find that a logistic regression model has no difficulty to predict whether a hidden
vector is produced within or outside the scope of a negation. The diagnostic classifier’s
testing accuracy is 99.5%, so only a handful of errors is made and the confusion matrix is
practically diagonal. This demonstrates that negation marks the hidden state, and leaves
a trace that is maintained while the GRU is processing the item in its scope. This is not
surprising in the lights of Figure 5.5a, which already showed that the GRU is very aware
of negations at sentence level. Vectors representing pairs of sentences and their negations
are almost linearly separable, and a similar partitioning appears to hold between hidden
vectors representing negated words on the one hand, and unnegated items on the other.
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5.5 Compositional learning

The diagnostic classifier analysis has shown that the GRU is more aware of some logical-
linguistic notions than of others. This indicates that, if the model internally applies a
strategy that could be mapped to some symbolic analogue, such a method is probably
describable in terms of these or related concepts. Another question about the recurrent
models’ functioning does not concern the way in which they learn, but the type of learning
that is applied. Research of recent years has made it clear that these models have a
strong generalizing potential, as is confirmed by the results reported in this project.
However, the great amount of data required for training raises questions about the kind
of generalization that takes place.

An important question to ask is whether neural models in general, and recurrent ones
in particular, apply any compositional skills in their learning processes. Composition-
ality is the ability to interpret and generate a possibly infinite number of constructions
from known constituents, and is commonly understood as one of the fundamental aspects
of human learning and reasoning (Chomsky 1957; Montague 1970). It has often been
claimed that neural networks operate on a merely associative basis, lacking the com-
positional capacities to develop systematicity without an abundance of training data.
See e.g. Fodor and Pylyshyn 1988, Marcus 1998, Calvo and Symons 2014. Especially
recurrent models have recently been regarded quite sceptically in this respect, following
the negative results established by Lake, Ullman, et al. 2017 and Lake and Baroni 2017.
Their research suggests that recurrent networks only perform well provided that there
are no systematic discrepancies between train and test data, whereas human learning is
robust with respect to such differences thanks to compositionality.

In this section, the recurrent architectures introduced at the beginning of the chap-
ter are studied in terms of their compositional abilities, in order to assess whether the
negative results obtained in the above-cited research apply in our case. Because composi-
tionality is such a broad concept, the models are subjected to three separate experiments,
each of which focuses on a different aspect.

5.5.1 Recursive cues

So far, all recurrent models have been trained and tested without access to the parse
trees of the sentences. This was done by removing all brackets from the binary_fol
data. The results of Table 5.1, and especially those obtained by the GRU, prove that
recurrent models can successfully address this entailment classification task, even if no
symbolic guidance in the form of brackets is available. This means that there exists a
sequential approach to the challenge, which contrasts the recursive strategy applied by
the tree-shaped networks of Chapter 4.

The compositional nature of language LN , used to construct the binary_fol data,
is manifest in the bracketed data. The topology of the tree-shaped networks can be
regarded as an imposed form of compositional learning, because it forces the models to
construct the meaning of complex expressions from individual components according to
their explicitly provided syntactic form. The recurrent models are free to design their
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own internal algebra. Yet, under the hood, they may well have learned to distinguish
compositional patterns resembling those specified by the parse trees. It is known that
recurrent models can perform parsing, as shown by e.g. Vinyals et al. 2015. Not only the
high accuracy scores on the test set indicate that the recurrent models have internalized
structural properties of the sentences in LN . Also the diagnostic classifier that predicts
recursive depth with more than 99% accuracy demonstrates that compositional structure
of input expressions is latently present in the hidden vectors of the GRU, as discussed in
Section 5.4.

Could this mean that the recurrent models apply compositional learning by uncover-
ing and exploiting the syntax of their input expressions? If so, they should profit from
a more explicit representation of this structure. In order to test this, the SRN, GRU
and LSTM models are now trained and tested on the binary_fol data without ignoring
brackets. Additionally, the data are adapted by randomly omitting only certain bracket
pairs. Thus, a modified version of the binary_fol data is created, with only 50% of all
bracket pairs included. The models are also trained and tested on this half-bracketed
data set. All results are shown in Table 5.3. The previously obtained scores for the data
with no brackets are also included for easier reference. Figure 5.9 visualizes all results in
a factor plot.

0% 50% 100%
train test train test train test

128/25/75 SRN 97.9 87.3 79.0 72.0 84.8 82.4
128/25/75 GRU 100.0 96.0 100.0 95.2 100.0 96.2
128/25/75 LSTM 100.0 94.6 100.0 90.6 99.3 90.6

Table 5.3: Training and testing accuracy scores of the three recurrent models on the
FOL inference task for the binary_fol data, with percentage of included bracket pairs
in train and test set indicated in the upper row. Results are averaged over five runs.

The GRU obtains the best average score for each data set, and seems least affected
by the differing bracket percentages. There is no significant difference between its testing
performance on the 100%, 50% and 0% data sets. Training accuracy after the 50th epoch
is always 100%. The GRU does not profit from the syntactic cues, but it does not suffer
from them either, unlike the SRN and the LSTM. Both these models deteriorate when
only 50% of the bracket pairs are shown. Apparently the brackets do not seduce them
to learn and use the underlying hierarchic structures - the partial bracketing just seems
to confuse them. Especially the SRN cannot cope with the 50% data at all, as the high
standard deviation in Figure 5.9 shows. One SRN only obtains a testing accuracy of
37.5%. Upon inclusion of all remaining brackets, performance improves significantly for
the SRN, but not for the LSTM. LSTM training accuracy even decreases.

All in all, none of the considered models seems to profit from the bracketing. This
either indicates that their strategy does not depend on a notion of syntactic hierarchy,
or that they do not recognize the brackets as relevant signals in this regard.
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Figure 5.9: Factor plot visualizing the results of the bracket experiments reported in
Table 5.3, together with the standard deviation per model per data set.

5.5.2 Unseen lengths

The next challenge that I consider is generalization to unseen lengths. Compositional
agents use knowledge of primitive semantic components to infer the meaning of complex
expressions. In theory, there is no limit to the length of interpretable sequences as long
as all individual constituents have been encountered and internalized before. E.g., if
someone knows the meaning of the words ‘walk’, ‘stop’ and ‘and’, then she knows the
meaning of ‘walk and stop’, but also of ‘walk and stop and walk’, ‘walk and stop and walk
and stop’ and all other grammatically admissible combinations of these items. Likewise,
if she also knows the meaning of ‘not’, she does not need to witness all its possible
instantiations to make sense of new combinations containing the word. The meanings of
‘not walk’ and ‘not stop’ are equally clear, given a correct understanding of the applied
primitives.

Neural models are often considered incapable of such generalization, allegedly because
they are limited to the training space. See Marcus 2003, Kaiser and Sutskever 2015, Reed
and De Freitas 2015 or Evans and Grefenstette 2018. I want to test if this is the case
for the recurrent models studied in this project. The language LN licenses a heavily
constrained set of grammatical configurations, but it does allow the sentence length to
vary according to the number of included negations. A perfectly compositional model
should be able to interpret statements containing any number of negations, on condition
that it has seen an instantiation at least once at each position where this is allowed
If this condition is not met, the training data provide statistical evidence against the
negatability of particular sentence components. If a model is consequently confronted
with items that do contain negations at these positions, its failure is due to an adequate
fit rather than limited generalizability.

In a new experiment, the models are trained on pairs containing sentences with
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a fixed maximum length, which is set to 7. The minimum length is 5, for sentences
containing no negations. Thus, during training the models encounter negations at all
possible positions, but never more than two in a single statement. After 50 epochs, they
are tested on a set of pairs containing only sentences with the complementary lengths 8
and 9. These expressions contain three or four negations, which is something the models
have not seen before, but if they learned to apply negation at all individual positions,
compositionality should enable them to also accommodate the longer combinations in
the test data. The train and test set are generated according to the procedure described
in Chapter 4. They contain approximately 30,000 and 5,000 instances, respectively. Due
to the division between sentence lengths they are necessarily mutually exclusive.

train test
128/25/75 SRN 98.9 47.9
128/25/75 GRU 100.0 51.9
128/25/75 LSTM 100.0 54.5

Table 5.4: Accuracy scores on the FOL inference task for models trained on pairs of
sentences with lengths 5, 6 or 7 and tested on pairs of sentences with lengths 8 or 9.
Results are averaged over five runs.

The results are shown in Table 5.4. The difference between mean training and testing
performance is dramatic for all three recurrent models, with a drop of almost 50 per-
centage points on average. This shows that none of the considered architectures fully
masters the compositional ability required to generalize from the sentences with at most
two negations to those containing three or four. Let N denote the set of negatable sen-
tence positions. During training, the models did not only encounter sentences with a
single negation at position n for each n ∈ N , but also sentences with double instantia-
tions at positions n,m for all n,m ∈ N such that n 6= m. The testing results in Table 5.4
prove that this is not enough to reach a decent score on the test set. Nevertheless, it must
be noted that the reported accuracies are well above chance level. The test data follow
a distribution similar to the one visualized in Figure 4.4c, with the most prevalent label
assigned to 25.8% of the instances. The fact that the models reach an accuracy of approx-
imately 50% on this 7-class problem shows that they certainly outperform any classifier
with a single or random output. This suggests that some limited form of compositional
learning does take place.

It can be objected that the training regime of this experiment actually discourages
models from generalizing to unseen sentence lengths, because the lengths that are ob-
served form an uninterrupted succession on the natural number line. By only confronting
a model with sentences containing 5, 6 or 7 words, the training data suggest that this is
the range of valid sentence lengths. From this point of view, model failure for longer sen-
tences need not indicate poor generalizing potential, but can also be due to appropriate
specialization with respect to the statistical properties of the training data. To really test
whether models can cope with new sentence lengths, they should at least be provided
with a cue that such lengths exist. For this reason, a new experiment is conducted in
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which the models are trained on pairs of sentences with length 5, 7 or 8, and tested on
pairs of sentences with lengths 6 or 9. As before, the training and test sets contain some
30,000 and 5,000 sentence pairs, respectively. Results are shown in Table 5.5.

train test
128/25/75 SRN 98.2 28.8
128/25/75 GRU 100.0 90.4
128/25/75 LSTM 100.0 88.8

Table 5.5: Accuracy scores on the FOL inference task for models trained on pairs of
sentences with lengths 5, 7 or 8 and tested on pairs of sentences with lengths 6 or 9.
Results are averaged over five runs.

As before, all recurrent models obtain (near-)perfect training accuracy scores. What
happens on the test set is interesting. It turns out that the GRU and LSTM can generalize
from lengths 5, 7 and 8 to 6 and 9 very well, while the SRN has even more difficulty with
this task than with the previous one. Apparently, the training corpus of lengths 5, 6 and
7 did bias the models to specialize on a specific range of lengths. The new data suggest
that other lengths are possible by skipping length 6 during training, thereby enabling
the GRU and LSTM to generalize to unseen sentence lengths 6 and 9. From witnessing
expressions with no, two or three negations, the models extrapolate to sentences with
one or four negations. It appears that the GRU and LSTM gates play a crucial role,
because the results show that the SRN does not have this capacity at all.

5.5.3 One-shot learning

Typical to compositional reasoning is that it enables agents to perform one-shot learning:
correct classification of examples that have not been observed more than a handful of
times before. Provided that atomic constituents and production rules are understood,
compositionality does not require that abundantly many instances embodying a semantic
category are observed. In a new experiment, I assess if this property applies to the GRU,
the recurrent unit that performed best in all preceding experiments. In particular, the
aim is to determine whether the model generalizes from entailment relations between
sentences containing words observed during training to sentences of the same structure
with words that were never seen before, but whose lexical semantics resemble those of
known vocabulary items.

The current set-up cannot deal with unknown words, so the training regime is mod-
ified. Instead of randomly initializing an embedding matrix Memb that is updated by
backpropagation, pretrained word embeddings are used that were generated by the GloVe
algorithm from the combined Wikipedia and Gigaword corpus (see Section 2.1.2 and
Pennington, Socher, and Manning 2014). The 50-dimensional GloVe representations of
vocabulary words are stored and kept constant. After training, model behavior with
unseen words can be tested by simply adding the corresponding GloVe vector to the
embedding matrix. All other parameters are treated as before.
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On the unbracketed binary_fol data, the GRU that uses 50-dimensional GloVe
embeddings, 128 hidden units and a 75-dimensional comparison layer obtains a mean
training accuracy of 100.0% and a testing accuracy of 95.9% (averaged over five runs).
The best GRU achieves 100.0% training and 97.1% testing accuracy. This performance
is on a par with earlier experimental results, for which the word embeddings were trained
alongside the regular network parameters. Because no optimization is applied, the pre-
trained embeddings prove to be well suited for this task as they are. This indicates that
GloVe somehow encodes the lexical entailment relations that are required to perform
logical classification at sentence level, as already established for word2vec by Henderson
and Popa 2016.

In the following experiments, the best-performing GRU is provided with knowledge
about new individual words in the form of their GloVe embeddings. Together with the
information it acquired about sentence structure during training, this should be enough
for a compositional model to accommodate certain types of new sentence pairs. Three
such cases are investigated below.

Synonyms One of the most basic relations on the level of lexical semantics is synonymy,
which holds between words with equivalent meanings. The binary_fol data contain no
hyperintensionality or propositional attitudes, so a word can be substituted with one of its
synonyms without altering the entailment relation assigned to the sentence pairs. If the
GRU manages to perform well on such a modified data set after receiving the pretrained
word embedding of the unseen word, this is a first piece of evidence for its one-shot
learning skills. I test this for several pairs of synonymous words. The best-performing
GRU is first evaluated with respect to the fragment of the test data containing the original
word w, and consequently with respect to that same fragment after replacing the original
word with its synonym s(w). The pairs of words, the cosine distance cos_dist(w, s(w))
between their GloVe embeddings and the obtained results are listed in Table 5.6.

accuracy on binary_fol test data
w s(w) cos_dist(w, s(w)) containing w containing s(w)

children kids 0.21 98.3 91.9
love adore 0.57 97.0 92.5
fear dread 0.39 97.2 91.3
hate detest 0.56 97.4 48.2

Table 5.6: Effect on best-performing GRU of replacing words w by unseen synonyms
s(w) in the binary_fol test set and providing the model with the corresponding GloVe
embedding.

For the first three examples in Table 5.6, substitution only decreases testing accuracy
by a few percentage points. Apparently, the word embeddings of the synonyms encode
the lexical properties that the GRU needs to recognize that the same entailment relations
apply to the sentence pairs. This does not prove that the model has distilled essential
information about hyponymy from the GloVe embeddings. It could also be that the word
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embeddings of the replacement words are geometrically very similar to the originals, so
that it is an algebraic necessity that the same results arise. However, this suspicion is
inconsistent with the result of changing ‘hate’ into ‘detest’. The cosine distance between
these words is 0.56, so according to this measure their vectors are more similar than
those representing ‘love’ and ‘adore’ (which have a cosine distance of 0.57). Nonetheless,
replacing ‘hate’ with ‘detest’ strongly confounds the model, whereas substitution of ‘love’
into ‘adore’ only decreases testing accuracy by 4.5 percentage points. This illustrates
that robustness of the GRU in this respect is not a matter of simple vector similarity. In
those cases where substitution into synonyms does not confuse the model it must have
recognized a non-trivial property of the new word embedding that licenses particular
inferences.

Ontological twins Relative to the ontology of language LN , certain pairs of concepts
fill an identical semantic ‘niche’. This is to say that there are words whose extensions are
not necessarily equivalent, but that can be substituted with each other without affecting
the entailment relation between any pair of sentences in which they feature. This trivially
applies to self-identical terms or synonyms, but in the strictly defined hierarchy of LN it is
also the case for pairs of terms w, v that maintain the same lexical entailment relations to
all other terms in the taxonomy. I call such terms ‘ontological twins’. Technically, if � is
an arbitrary lexical entailment relation and O is an ontology, then w and v are ontological
twins if and only if w, v ∈ O and for all u ∈ O, if u 6∈ {w, v} then w � u⇔ v � u.

Examples of ontological twins in the taxonomy of nouns NLN are ‘Romans’ and
‘Venetians’ . This can easily be verified in the Venn diagram of Figure 4.2 by replacing
‘Romans’ with ‘Venetians’ and observing that the same hierarchy applies. The same
holds for e.g. ‘Germans’ and ‘Polish’ or for ‘children’ and ‘students’. For several such
word-twin pairs the GRU is evaluated with respect to the fragment of the test data
containing the original word w, and with respect to that same fragment after replacing
the original word with ontological twin t(w). Results are shown in Table 5.7.

The examples in Table 5.7 suggest that the best-performing GRU is largely robust
with respect to substitution into ontological twins. Replacing ‘Romans’ with other urban
Italian demonyms hardly affects model accuracy on the modified fragment of the test
data. As before, there appears to be no direct correlation with vector similarity because
the cosine distance between the different twin pairs has a much higher variation than the
corresponding accuracy scores. ‘Germans’ can be changed into ‘Polish’ without significant
deterioration, but substitution with ‘Dutch’ greatly decreases testing accuracy. The
situation is even worse for ‘Spanish’. Again, cosine similarity provides no explanation
- ‘Spanish’ is still closer to ‘Germans’ than ‘Neapolitans’ to ‘Romans’. Rather, the
accuracy appears to be negatively correlated with the geographical distance between the
national demonyms. After replacing ‘children’ with ‘students’, ‘women’ or ‘linguists’,
testing scores are still decent.

Alternative hierarchies So far, I replaced individual words in order to assess whether
the GRU can generalize from the vocabulary to new notions that have comparable se-
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accuracy on binary_fol test data
w t(w) cos_dist(w, t(w)) containing w containing t(w)

Venetians 0.28 97.3
Romans Milanese 0.72 97.3 95.4

Neapolitans 0.57 95.4
Polish 0.37 96.3

Germans Dutch 0.40 96.8 78.3
Spanish 0.50 62.9
students 0.27 94.6

children women 0.24 98.3 91.8
linguists 0.92 86.3

Table 5.7: Effect on best-performing GRU of replacing words w by unseen ontological
twins t(w) in the binary_fol test set and providing the model with the corresponding
GloVe embedding.

mantics in the context of this entailment recognition task. The examples have illustrated
that the model tends to do this quite well. In the last one-shot learning experiment, I
do not replace single words, but sets of nouns, thereby also studying the flexibility of
internalized relational semantics. The substitute noun sets generalize the understanding
of ontological twins, in the sense that they must not alter the hierarchic structure of the
original noun ontology NLN . This is to maintain correct entailment labels. Formally,
the replacement can be regarded as a function r, mapping words w to substitutes r(w).
Not all items have to be replaced. For an ontology O, the function r must be such that
for any w, v ∈ O and lexical entailment relation �, w � v ⇔ r(w) � r(v). The result of
applying r can be called an ‘alternative hierarchy’.

An example of an alternative hierarchy is the result of the replacement function r1
that maps ‘Romans’ to ‘Parisians’ and ‘Italians’ to ‘French’. Performing this substitu-
tion in the Venn diagram of Figure 4.2 shows that the taxonomy remains structurally
intact. The best-performing GRU is evaluated on the fragment of the binary_fol test
data containing ‘Romans’ or ‘Italians’, and consequently on the same fragment after im-
plementing replacement r1 and providing the model with the GloVe embeddings of the
unseen words. Replacement r1 is incrementally modified up until replacement r4, which
substitutes all nouns in NLN . The results of applying r1 to r4 are shown in Table 5.8.

The results are positive: the GRU obtains 86.7% accuracy even after applying r4,
which substitutes the entire ontology NLN so that no previously encountered nouns
are present in the test set anymore. Testing scores are above 87% for the intermediate
substitutions r1 to r3. This outcome clearly shows that the classifier does not depend on a
strongly customized word vector distribution in order to recognize higher-level entailment
relations. Even if all nouns are replaced by alternatives with embeddings that have not
been witnessed or optimized beforehand, the model obtains a high testing accuracy.
This establishes obvious compositional capacities, because familiarity with structure and
information about lexical semantics in the form of word embeddings are enough for the
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accuracy on
binary_fol test data

Romans Italians Germans Europeans children before
substitution

after
substitution

r1 Parisians French
...

...
... 97.2 93.5

r2
...

... Polish
...

... 97.1 93.9

r3
...

...
... Eurasians

... 97.1 87.6

r4
...

...
...

... students 97.1 86.7

Table 5.8: Effect on best-performing GRU of replacing noun ontology NLN with alter-
native hierarchies as per the replacement functions r1 to r4. Vertical dots indicate that
cell entries do not change on the next row.

model to accommodate configurations of unseen words.
These findings must be relativized by noting that the functions r1 to r4 map nouns in

NLN to alternatives that are thematically quite similar to the original taxonomy. What
happens upon considering ontologies with the same structure, but with an altogether
different subject matter? Three such alternative hierarchies are considered: ranimals,
rreligion and rAmerica. Each of these functions relocalizes the noun ontology in a to-
tally different domain of discourse, as indicated by their names. Table 5.9 specifies the
functions and their effect.

Romans Italians Germans Europeans children accuracy
ranimals rabbits rodents cats mammals pets 59.0
rreligion calvinists protestants catholics christians orthodox 56.3
rAmerica Clevelanders Ohioans Californians Americans women 58.2

Table 5.9: Effect on best-performing GRU of replacing noun ontology NLN with alterna-
tive hierarchies as per the replacement functions ranimals, rreligion and rAmerica. Accuracy
is measured on the binary_fol test set after applying the respective replacement func-
tions.

Testing accuracy decreases drastically, which indicates that the model is sensitive
to the changing topic. Variation between the scores obtained after the three transfor-
mations is limited. Although they are much lower than before, they are still far above
chance level for a seven-class problem. This suggests that the model is not at a complete
loss as to the alternative noun hierarchies. Possibly, including a few relevant instances
during training could already improve the results.

The experiments performed in the last few sections suggest that the GRU and LSTM
architectures apply at least basic forms of compositional learning. Especially the results
of the one-shot learning experiments are difficult to explain if no such mechanism is at
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work within the GRU. It remains to be investigated exactly how the internal representa-
tions of the GRU achieve this. Many other experiments can be designed to test different
aspects of the compositionality of the recurrent models. Appendix C describes one such
experiment, which assesses the extent to which the GRU exploits logical structures in
the training data.
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Chapter 6

Conclusion

6.1 Summary

In this thesis I studied the recognition of entailment, understood as a semantic issue with
a linguistic appearance and a logical basis. To this end, I used the research of Bowman,
Potts, and Manning 2015 as a starting point, because it is the only major project of
recent years that challenged semantic models with (semi-)natural data generated by
explicit inference rules. Other studies have tended to focus on fully natural or fully
formal data, lacking either a clear theory of meaning or applicability to natural language
contexts. I reimplemented Bowman’s tree-shaped matrix and tensor models, as well as a
bag-of-words baseline, and replicated his experiments using the original data sets. These
were produced by the NL calculus of MacCartney 2009 and the artificial language LB,
with information about syntactic structure provided by brackets. The obtained results
are comparable to those reported by Bowman.

A number of issues with Bowman’s research came to light. I identified some general
problems with NL, as well as issues issues concerning the specific data sets used in the
earlier research. To overcome these issues, I proposed a new classification task: First-
Order Entailment Recognition. NL was replaced by FOL as underlying logic, and a
first-order theorem prover and model builder were adopted to generate new data sets. I
translated Bowman’s data into FOL in order to deduce the first-order entailment relation
between the premise-hypothesis sentence pairs, yielding the f1_fol data. To avoid class
disbalance, the new data set unary_balanced_fol was generated as well. On both of
these sets, the tree-shaped models obtained high accuracy scores.

To increase the difficulty of the task, I abandoned Bowman’s language LB in favor
of the new language LN , with a more complex grammar and taxonomy of terms, longer
sentences, binary predicates and varying word order. The new data set binary_fol was
produced using LN with FOL as background logic. It turned out that the recursive
networks are able to generalize from the new training data, while the summing baseline
failed dramatically because it does not pay attention to word order. Detailed analysis of
the best-performing tensor model showed that the error pattern has a logical explanation.
I observed some semantic clustering of word embeddings, which was consistent across
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model runs. Projections of the different composition stages demonstrated that the tensor
model localizes sentences and their constituents in different subspaces. I showed that
negation effectuates a mirroring effect on sentence level, and discovered that sentence
vectors cluster according to their verb and their second (object) quantifier.

Next, I discarded the recursive models and shifted attention to a recurrent archi-
tecture in order to investigate if the same entailment classification task can be handled
sequentially, without cues about syntactic structure. Three different recurrent units were
included: SRN, GRU and LSTM. All of these set-ups successfully faced the task, with
the GRU and LSTM outperforming the tensor model. This suggests that compositional
distributional models can learn to apply first-order semantics, even if they process the
input linearly and are not provided with background knowledge about sentence struc-
ture. Qualitative analysis of sentence vectors of the best-performing GRU revealed that
negation mirrors representations with respect to a hyperplane, while clear clusters are
observable for verbs, second quantifiers and verb-second quantifier combinations. I used
diagnostic classifiers to perform quantitative analysis, and demonstrated that the best-
perorming GRU encodes information about recursive depth, word index, semantic type
and scope of negation, but not about the monotonicity direction of the words it processes.

I conducted additional experiments to test whether the success of the recurrent models
can be attributed to compositional learning. By using partially bracketed data sets, I
studied the models’ inclination to profit from syntactic information, but on average this
decreased testing accuracy. Next, I focused on generalization to unseen lengths and
found that the GRU and LSTM successfully extrapolate from training data containing
sentences with 5, 7 or 8 words to test data that only contain sentences of lengths 6 or
9. Finally, I assessed the GRU in terms of its one-shot learning skills. After training
with fixed GloVe embeddings, the model proved capable of accommodating not only
new words, but also sets of unseen nouns if the corresponding GloVe embeddings were
supplied.

6.2 Contributions

All in all, the main contributions of the thesis can be summarized by the following points:

• Critical assessment of research in the field of entailment recognition, focusing on
the influential work of Bowman, Potts, and Manning 2015.

• Description of the First-Order Entailment Recognition Task, together with an au-
tomated data generation protocol that labels sentence pairs in (semi-)natural lan-
guage according to their FOL entailment relation.

• Motivation and specification of language LN to produce several FOL-labelled cor-
pora of premise-hypothesis pairs, the most important of which is the binary_fol
data set.

• Extensive qualitative analysis of the performance of tree-shaped neural networks
on the First-Order Entailment Recognition Task.
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• Implementation of a recurrent neural architecture to address the same classification
task sequentially, with SRN, GRU and LSTM units.

• Qualitative interpretation of the best-performing GRU on the level of word embed-
dings, hidden units and sentence vectors.

• Quantitative interpretation by means of diagnostic classification in order to test
the GRU’s awareness of recursive depth, word index, semantic type, monotonicity
direction and scope of negation.

• Several experiments addressing compositional generalization, in particular the ones
concerning unseen lengths and one-shot learning, the results of which suggest that
recurrent models possess at least rudimentary compositional skills.

6.3 Future work

In addition to these conclusions, the project has given rise to a number of follow-up
questions. The most important next step would be to complicate the data sets. Longer
sentences could be included, connectives such as disjunction, conjunction or implication,
predicates with higher arity, function symbols, lambda expressions etc. Instead of a
single premise for each hypothesis, multiple premises could be used. One could extend
the vocabulary, replace FOL with a more expressive logic, or pay more attention to the
link between artificial data sets such as binary_fol and SICK or SNLI, to see if the
implemented models also function on wholly natural corpora.

As for the models that were used, it is most interesting to further pursue the recur-
rent approach. More sophisticated architectures could be investigated, containing e.g.
an attention mechanism. With supplementary computational resources, better hyperpa-
rameter tuning could be performed to realize the classifiers’ full potential. More tests
and experiments could be designed to interpret the models, their internal representations
and obtained results. In particular, the suspected compositional learning skills of the re-
current models deserve more attention. In the lights of the evidence that GRUs apply
compositional generalization on the level of logic, sentence length and unseen words, it is
worth assessing if these observations apply to other contexts and how they could impact
training regimes. At the end of this thesis, one entailment is easily recognized: a lot
remains to be done.
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Appendix A

Trace of Prover9 and Mace4

Suppose that we have the following set of axioms A:

A ={∀x(German(x)→ European(x)),

∀x(Roman(x)→ Italian(x)),

∀x∀y(love(x, y)→ like(x, y)),

∃xGerman(x),
∃xRoman(x)}

Let premise ϕ and hypothesis ψ be the following formulas:

ϕ := ∀x(German(x)→ ∀y(Roman(y)→ love(x, y)))

ψ := ∃x(European(x) ∧ ∃y(Italian(y) ∧ like(x, y)))

After formatting the formulas in A∪{ϕ,ψ} according to the Prover9 and Mace4 conven-
tions, computation can start to determine whether the axioms A together with premise
ϕ entail hypothesis ψ. The most relevant fragments from the produced traces are shown
below:

formulas(assumptions).
all x (German(x) -> all y (Roman(y) -> love(x,y))).
all x (German(x) -> European(x)).
all x (Roman(x) -> Italian(x)).
all x all y (love(x,y) -> like(x,y)).
exists x German(x).
exists x Roman(x).

end_of_list.

formulas(goals).
exists x (European(x) & exists y (Italian(y) & like(x,y))).

end_of_list.
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============================== Prover9 =================================

============================== PROOF =================================
Length of proof is 22.
Level of proof is 5
1 (all x (German(x) -> (all y (Roman(y) -> love(x,y)))))

# label(non_clause). [assumption].
2 (all x (German(x) -> European(x))) # label(non_clause). [assumption].
3 (all x (Roman(x) -> Italian(x))) # label(non_clause). [assumption].
4 (all x all y (love(x,y) -> like(x,y))) # label(non_clause). [assumption].
5 (exists x German(x)) # label(non_clause). [assumption].
6 (exists x Roman(x)) # label(non_clause). [assumption].
7 (exists x (European(x) & (exists y (Italian(y) & like(x,y)))))

# label(non_clause) # label(goal). [goal].
8 German(c1). [clausify(5)].
9 -German(x) | -Roman(y) | love(x,y). [clausify(1)].
10 -German(x) | European(x). [clausify(2)].
11 Roman(c2). [clausify(6)].
12 -Roman(x) | Italian(x). [clausify(3)].
13 -Roman(x) | love(c1,x). [resolve(8,a,9,a)].
14 love(c1,c2). [resolve(13,a,11,a)].
15 -love(x,y) | like(x,y). [clausify(4)].
16 European(c1). [resolve(8,a,10,a)].
17 -European(x) | -Italian(y) | -like(x,y). [deny(7)].
18 -Italian(x) | -like(c1,x). [resolve(16,a,17,a)].
19 Italian(c2). [resolve(11,a,12,a)].
20 -like(c1,c2). [resolve(18,a,19,a)].
21 like(c1,c2). [resolve(14,a,15,a)].
22 $F. [resolve(20,a,21,a)].
============================== end of proof ==========================

============================== Mace4 =================================

============================== DOMAIN SIZE 2 =========================
=== Mace4 starting on domain size 2. ===
============================== STATISTICS ============================
For domain size 2.
Current CPU time: 0.00 seconds (total CPU time: 0.00 seconds).
Ground clauses: seen=18, kept=18.
Selections=2, assignments=3, propagations=10, current_models=0.
Rewrite_terms=3, rewrite_bools=21, indexes=3.
Rules_from_neg_clauses=0, cross_offs=0.
============================== end of statistics =====================
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============================== DOMAIN SIZE 3 =========================
=== Mace4 starting on domain size 3. ===
============================== STATISTICS ============================
For domain size 3.
Current CPU time: 0.00 seconds (total CPU time: 0.01 seconds).
Ground clauses: seen=35, kept=35.
Selections=2, assignments=3, propagations=10, current_models=0.
Rewrite_terms=3, rewrite_bools=25, indexes=3.
Rules_from_neg_clauses=0, cross_offs=0.
============================== end of statistics =====================
============================== DOMAIN SIZE 4 =========================
=== Mace4 starting on domain size 4. ===
============================== STATISTICS ============================
For domain size 4.
Current CPU time: 0.00 seconds (total CPU time: 0.01 seconds).
Ground clauses: seen=58, kept=58.
Selections=2, assignments=3, propagations=10, current_models=0.
Rewrite_terms=3, rewrite_bools=29, indexes=3.
Rules_from_neg_clauses=0, cross_offs=0.
============================== end of statistics =====================

See Section 2.2.2 for a short explanation of the rules used in the proof.
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Appendix B

Objections to Bowman e.a.

This appendix provides a more detailed specification of all nine concerns about the re-
search of Bowman, Potts, and Manning 2015 summarized in Section 3.3.

B.1 Natural logic

The first issue actually encompasses a set of problems, all of which are caused by the
adopted calculus of natural logic. As explained in Section 2.2.1, the main advantage
of this system is that it allows for semantic derivations without requiring formalization
to an abstract ‘language of thought’. Instead, inference rules are applied directly to
natural language expressions. Irrespectively of this system’s plausibility from a cognitive
or linguistic perspective, its simplicity certainly makes it an appealing option from an
engineering point of view. No translations to abstract representations are needed to
perform inferences, so that large sets of artificial data can easily be generated. However,
the intuitive convenience of a logic operating directly on natural language expressions
comes at the expense of other properties. The most important such shortcomings are
listed below.

• The natural logic used by Bowman is not as natural as it seems, or at least not
as natural as it is intended to be. Natural logic owes its name to the fact that it
applies directly to natural language. It is questionable how natural the language
LB really is. Indeed, it is admitted that the ‘data consist of pairs of sentences
generated from a grammar for a simple English-like artificial language’ (Bowman,
Potts, and Manning 2015, 6), whereas the aim of the research is to ‘introduce a
novel NN architecture for natural language inference’ (idem, 1). Although sentences
such as ‘((all warthogs) (not walk))’ are immediately comprehensible, they do not
comply with English syntax. This is not only due to the inclusion of the parse
tree by means of brackets, but also to the omission of auxiliary verb ‘to do’. The
result is a data set of sentence pairs in an unnatural language, whose semantic
relations are inferred with a logic specifically designed to operate on a natural one.
Consistency in this respect would be preferable, either by applying natural logic to
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fully natural expressions, or by abandoning all naturality restrictions in favour of
some well-understood formal system.

• Bowman uses the version of natural logic proposed by MacCartney and Manning
2009. This system comes with its own calculus for determining the entailment
relation between a premise p and a conclusion or hypothesis h. See Section 2.2.1
for a more detailed description. The core of this method is finding an appropri-
ate edit sequence that connects p to h. In MacCartney 2009, MacCartney himself
already recognizes that this approach faces several important limitations. Par-
ticularly problematic is the fact that several edit sequences are usually possible.
Sometimes they lead to divergent results, which introduces a troublesome degree
of uncertainty.

• Another concern about the adopted natural logic calculus is that ‘the usefulness
of the result is sometimes limited by the tendency of the join operation toward
less informative entailment relations’ (MacCartney 2009, 106). This is to say that
the calculus joins atomic entailment relations in a way that often yields unions of
relations, which are weak or even meaningless. Such cases are labelled ‘unknown’.
As a consequence they are excluded from Bowman’s data, notwithstanding the
possible existence of a straightforward semantic relation between the constituent
sentences, which was just not captured by the calculus.

• MacCartney also concedes that ‘the inference method provides no general mecha-
nism for combining information from multiple premises’ (MacCartney 2009, 106).
This is no problem for the experiments described so far, because they only deal
with a single premise and hypothesis p and h. It is a problem if we wish the ex-
periments to be somewhat scalable. Clearly, the aim is not to fully understand the
dynamics between an artificial miniature language and a class of neural networks,
but to study the logical capacities of such models as generally as possible. The
fact that the highest degree of generality may not be realistic at present does not
justify the exclusive use of a calculus that fundamentally impedes this ambition.
It must be taken into account that logic involves reasoning with multiple premises,
as is reflected by the classical inference rules (e.g. modus ponens, modus tollens,
disjunction elimination). Therefore, a system capable of modelling this prevalent
phenomenon should be strongly preferred to one that has no such means.

• A major issue is that the natural logic calculus is provably incomplete: there exist
valid inferences for which the method is not able to produce the desired entailment
relation. Some of these inferences are rudimentary, everyday deductions that a
natural logic, if anything, should be able to explain. De Morgan’s laws are an
important example (see Repplinger 2017). The first-order representation of their
quantified forms is as follows:

(a) ¬(∀xP (x))⇔ ∃x(¬P (x))
(b) ¬(∃xP (x))⇔ ∀x(¬P (x))
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The formulas of (a) and (b) are illustrated by the following instantiations in LB:

(c) ( ( not_all warthogs ) walk )⇔ ( ( some warthogs ) (not walk ) )

(d) ( ( no warthogs ) move )⇔ ( ( all warthogs ) ( not move ) )

Such equivalences are almost trivial, so it is reasonable to expect the logic govern-
ing the data generation process to accommodate them. Nevertheless, the adopted
calculus fails to do so. MacCartney describes several attempts to derive the desired
relation for De Morgan sentences, but none are successful. At best, a less infor-
mative relation is derived, but equivalence can never be inferred. The negative
conclusion that inference rules as basic as De Morgan’s laws apparently cannot be
handled by the current system is strong evidence that a different logic is required
for the task. (Intuitionistic or other non-classical arguments against the plausibility
of (a) - (d) may be defensible from a purely theoretical viewpoint, but cannot be
expected to outweigh the instinctive reasoning patterns ingrained in the natural
language use that we eventually hope to model.) It is hard to interpret Bowman’s
results, knowing that they were obtained with ‘natural’ data produced by a system
effectively violating some of our most basic deductive principles.

• Also, the natural logic calculus is not provably sound. In this context, sound-
ness must be understood as the guarantee that informative results of the inference
method are also correct. Pursuing a proof of soundness would contradict the pur-
pose of natural logic, which is to provide a model of informal reasoning. This
means that, on the one hand, the formal apparatus required to lend decisive, tech-
nical support to a soundness claim is simply not available. On the other hand, there
are no known counterexamples to the system’s possible soundness, so it cannot be
concluded that it is unsound either.

• Finally, according to van Benthem 2007, natural logic is weaker than first-order
predicate logic because ‘it only describes a part of all possible quantifier-based
inferences’. This is to say that there are fragments of predicate logic that are not
expressible in purely natural terms. In particular, compositional structure proves to
be a problem for natural logic, if it is really understood as a system that functions
without the intervention of any formalism whatsoever. Consider e.g. the sentence
‘Some warthog is not fat and fast’. Without any specification of compositional
structure, natural logic is at a loss. For the sentence in its current form, two
different interpretations are possible: the negation can modify only ‘fat’ (a), or
the conjunction ‘fat and fast’ (b). This point can be clarified by providing the
first-order logic translation for both senses:

(a) ∃x(warthog(x) ∧ ¬fat(x) ∧ fast(x))
(b) ∃x(warthog(x) ∧ ¬(fat(x) ∧ fast(x)))

The first-order renderings of (a) and (b) indicate precisely the scope of the negation.
Due to structural ambiguity, this scope cannot be taken at face value, which is
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exactly what natural logic aims to do. This example illustrates that natural logic is
severely disadvantaged by the ubiquitous structural ambiguity of natural language,
unless additional machinery is allowed. This is the case in Bowman’s data, where
parse trees are explicitly provided by means of bracketed expressions. It could
be argued that the use of brackets is unnatural, and thus defeats the purpose of
adopting a natural logic. Their inclusion is even more puzzling if one takes into
consideration that ambiguity does not occur for the simple syntax and exclusively
unary predicates of LB. However, because we wish to study compositionality more
generally than only with respect to a toy language, this issue must be acknowledged.

B.2 Implementation and data anomalies

Even if we assume that all aforementioned, general weaknesses of MacCartney’s calculus
can be overcome, issues concerning the particular data generated by Bowman remain:1

• The implemented system is only a simplified version of MacCartney’s. Fundamen-
tal lexical entailment relations are included for the nouns and verbs in the adopted
taxonomies (see Figures 3.1 and 3.2), as well as projectivity matrices for nega-
tion and the relevant quantifiers. This is all done in accordance with the method
presented in MacCartney 2009. The more sophisticated elements of this system,
however, have not been implemented. This includes the semantic composition rules
for all logical connectives other than negation, as well as monotonicity and projec-
tivity properties of specific classes of verbs such as implicatives and factives. Yet, as
the language LB has no other connectives than negation, and no other verbs than
the four in class VLB , none of which are factive or implicative, these simplifications
are justifiable. It is mostly with an eye on scalability and generalizability that they
can be considered problematic.

• More importantly, manual inspection shows that the data sets used by Bowman
contain a great number of sentence pairs with incorrect labels. Testing the code that
was used to produce the data with new expressions confirmed the suspicion that
the generation process contains errors. A few examples are listed below, together
with the entailment relation that Bowman’s implementation of the natural logic
calculus assigns to the respective sentence pairs:

1. # ( ( all turtles ) walk ) ( ( all turtles ) ( not move ) )

2. > ( ( all warthogs ) move ) ( ( not_all ( not warthogs ) ) swim )

3. < ( ( some ( not warthogs ) ) ( not walk ) ) ( ( some turtles ) ( not walk ) )

4. < ( ( all turtles ) swim ) ( ( all ( not warthogs ) ) swim )

5. | ( ( all ( not pets ) ) ( not walk ) ) ( ( some pets ) ( not walk ) )

1All code and data used by Bowman are available on www.github.com/sleepinyourhat/vector-
entailment. The data generation script to which this section refers can be found in the file quanti-
fiers/quantgen.py.
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In all of the cases (a) - (e), the assigned relation seems incorrect, or at least un-
desirable if there is anything natural about natural logic. Example (a) shows a
sentence pair that is labelled with the independence relation. This can only be the
case if none of the other relations of Table 2.1 is derivable. However, the premise
clearly contradicts the conclusion. Walking implies moving, so if all turtles walk it
cannot be the case that all turtles do not move and vice versa. The sentences are
not complementary, so there should be an alternation between them. Instance (b)
is labelled with backward entailment, which means that premise ‘((not_all (not
warthogs)) swim)’ should entail conclusion ‘((all warthogs) move)’. This is clearly
not the case: if some turtle X doesn’t swim, the premise is validated. This does
not imply that all warthogs must move, so the conclusion can still be false. For
(c), Bowman’s code outputs forward entailment, which means that ‘((some (not
warthogs)) (not walk))’ implies ‘((some turtles) (not walk))’. This is also false.
The class ‘turtles’ is contained by ‘not warthogs’, and not the other way around, so
the monotonicity calculus should yield a backward entailment instead. The same
reasoning holds for (d). Finally, for (e), an alternation is assigned. This is to say
that ‘((all (not pets)) ((not walk))’ and ‘((some pets) (not walk))’ are mutually
exclusive, but that their disjunction is not a tautology. This is unexpected because
both sentences can be true at the same time. Consider the scenario where some
(but not all) pets are the only animals that walk. Then it is both the case that
all non-pets do not walk, and that some pets do not walk, so the premise and the
conclusion are simultaneously true.

The instances (a) - (e) are only five of the numerous anomalies appearing in Bow-
man’s data sets, and as a result of further experimentation with the code that was
used to generate them. These results are not uninformative, but demonstrably
incorrect. This means that either MacCartney’s inference method is unsound, or
Bowman’s implementation is erroneous. As noted before, no proof of soundness is
available, so neither of these options can be excluded at once. However, it seems
unlikely that MacCartney is to blame, because the method described in Section
2.2.1 can be used to infer the correct relation for at least some of the examples
(a)-(e). Consider instance (a). The edit sequence shown in Table B.1 outputs the
correct entailment relation.

i ei xi = ei(xi−1) β(ei) β(xi−1, ei) β(x0, xi)

0 ( ( all turtles ) walk )
1 SUB(walk,move) ( ( all turtles ) move ) @ @ @
2 INS(not) ( ( all turtles ) ( not move ) ) ∧ ∧ |

Table B.1: Analysis of a natural logic inference using the calculus of MacCartney 2009.
See Section 2.2.1 for an explanation of method and notation.

In only two edit steps, the hypothesis can be transformed into the conclusion, with
alternation as unique output. This is the entailment relation that we hoped to find, but
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which was not inferred by Bowman’s script. Similar analyses can be provided for the
other examples. Even if the correct relation cannot be inferred, MacCartney’s method
never seems to yield wrong results. In the worst case they are uninformative, which
means that a union of relations is returned (interpreted as ‘unknown’).2

B.3 Simplistic syntax

Another issue concerns the nature of the artificial language LB that is used to generate the
data. The grammar (see Table 3.1) is highly restricted. Although it is a sensible decision
to study a constrained language in detail before attempting to handle higher degrees
of complexity, there is a limit to the amount of simplification that can be permitted
without drifting too far away from the ultimate objective of modelling natural language
expressions. It is disputable whether Bowman exceeds this limit. Even if we just consider
the syntax of LB, there are reasons to believe that he does.

Sentence structure is rigidly defined to always follow the order ‘quantifier adverb
noun adverb verb’, which means that the maximum length is only five words (not
counting brackets). Many of the included sentences have one or no negations, so that
they are even shorter: no more than three or four words. These limitations on sentence
length and syntactic variation make the language LB even more artificial. Also, the
different sentence constituents are taken from mutually exclusive vocabulary classes
(QLB , NLB , VLB and ALB , see Section 3.1.1). This is a result of the rudimentary
grammar, which allows for no (indirect) objects or other options to use the same word
twice in one phrase. As a consequence, given a group of words constituting a sentence
with unknown order, the only factor causing uncertainty about their correct placement
is the position of a single negation. This is hardly ever the case with natural language
expressions, whose constituents can usually be placed in several orders to produce
different, but equally admissible statements. Lastly, the absence of grammatical objects
is explained by the exclusive use of unary predicates, in the form of the intransitive

2These findings strongly suggest that the problem lies in the implementation. In the lights of all
additional objections, no conclusive debugging on Bowman’s code was performed, but it was examined
thoroughly enough to identify the most probable cause of the anomalous results. The matrices containing
the compositionality and projectivity relations are all identical to the ones specified by MacCartney. This
is not the case for the interpretation function, which seems to be only loosely based on the latter’s algo-
rithm. Bowman’s semantic interpretation function has only one way of guiding the edit sequence. The
recursive structure is mechanically unfolded in the same, left-branching way for all sentence pairs, thus
determining the order of the join operations, the application of the projectivity matrices, and thereby
the eventual output. This accounts for the large number of unknowns for sentence pairs that might have
been labelled with an informative relation if another edit sequence had been pursued. It does not explain
the fact that incorrect relations are sometimes derived. This appears to be a result of the recursive struc-
ture of Bowman’s interpretation function. MacCartney’s algorithm, described in Section 2.2.1, requires
that for each edit ei, the atomic entailment relation be determined by projecting the lexical entailment
relation upward through the semantic composition tree of the entire preceding expression. Bowman col-
lapses the parse tree leaf by leaf and branch by branch, thereby inferring the atomic entailment relation
with respect to fragments of the sentence, and not with respect to the entire sentence at each stage.
Hence, the interpretation function is only a partial implementation of MacCartney’s algorithm.
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verbs of category VLB . All of these verbs only take one argument, namely the subject of
the phrase, which is in turn taken from class NLB . This is an extremely basic syntax,
which is reminiscent of Aristotle’s syllogistic (McKeon et al. 2009; Leszl 2004). Yet,
although there is discussion about the expressibility of binary predication in Aristotelian
terms (van Benthem 2007), it is certain that only monadic predicates are allowed in LB.
In this respect, it is severely limited.

B.4 Symmetric hierarchy

The terms in the classes NLB and VLB of LB are hierarchically related as illustrated
by the Venn diagrams in Figures 3.1 and 3.2. Predicates whose visualization is con-
tained in another one relate to the concerned concept as hyponyms. Conversely, they
are hypernyms of the terms that they themselves contain. Now, what is striking about
the taxonomy of NLB is a kind of symmetry in Figure 3.1. Warthogs form a subset of
mammals, are disjoined from all reptiles (including turtles), and independent of pets.
Similarly, turtles form a subset of reptiles, are disjoined from all mammals (including
warthogs), and independent of pets. For a clearer overview, the lexical entailment rela-
tions between the different nominal terms are shown in Table B.2.

warthogs turtles mammals reptiles pets

warthogs = | < | #

turtles | = | < #

mammals > | = | #

reptiles | > | = #

pets # # # # =

Table B.2: Lexical entailment relations between nouns of NLB . (Recall from Table 2.1
that = denotes equivalence, < forward entailment, > backward entailment, | alternation
and # independence.)

The exact kind of symmetry occurring here is perhaps best illustrated by the arrows
in Table B.2. The part of the table containing the actual entailment relations can be
regarded as the 5× 5-dimensional matrix M. There is a permutation mapping the first
column of M to its second column, which we call σ. If the entries per column are
identified by means of their row index, then this permutation can be written in cyclic
notation as σ = (12)(34)(5). Now, we observe that the same permutation σ maps the
third column of M to its fourth column. This is shown by the identical arrow pattern
between the respective column pairs.

Symmetries of this kind decrease the ‘diversity’ of a taxonomy. Because of the
noted analogies, the hierarchy can effectively be partitioned into two spaces with great
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set-theoretic similarities. It is preferable to use a hierarchy with more variation. The
symmetries in such a small class as NLB could enable a model to apply set-theoretic
shortcuts in the learning process that are unavailable in usual contexts. Potentially,
such a process could in itself qualify as a form of applied logic, but because it would
be the result of a highly specific taxonomy it could not rightfully serve as a basis for
general conclusions.

B.5 Composed quantifiers

The quantifiers of LB together form the set QLB (see Section 3.1.1). As noted be-
fore, QLB comprises the positive quantifiers all, some, most, two, three and their negated
counterparts not_all, no, not_most, lt_two, lt_three. The negated quantifiers consti-
tute individual lexical items, even though their semantics allow for decomposition into
the combination of negation (not) with a positive quantifier.

Bowman does not explain this design choice, but it is evident that it simplifies the
classification task. Consider the challenge currently facing a model: for each quantifier
in QLB , an individual word embedding is learned. Compare this to the task when the
negated quantifiers are decomposed. The set of quantifiers would then be limited to
all, some, most, two, three. Vector representations of negated quantifiers would be the
result of an application of the composition function to the word embeddings of negation
and a positive quantifier. In this alternative set-up, negation is represented by the same
(trained) embedding, irrespectively of the quantifier that it is combined with. Likewise,
the representations for positive quantifiers are applied both in negated and unnegated
contexts. As there are no specific lexical items anymore to capture the particular nuances
of all ten quantifiers in QLB , a model dealing with decomposed determiners has to learn
fewer representations with higher generalizability. This is probably most challenging in
the case of negation, which can be prefixed to all other vocabulary items: the nouns in
NLB , the verbs in VLB , and now also the positive quantifiers in QLB .

In short, the inclusion of synthetic quantifiers as primitive vocabulary items simplifies
the problem. At the same time, it makes the language LB more artificial than an
analogue with only positive determiners and a universal negation symbol that can be
combined with all of them. Hence, decomposing quantifiers would not only make the
task more interesting, but also more natural.

B.6 Relative size of training data

The grammar of LB only produces a finite set of admissible formulations. This allows
us to express the collection of sentence pairs per training set as a fraction of the
total space of possible instances. As computed on page 20, the training sets used by
Bowman contain approximately 4.2% of all possible pairs. Here we do not even take
into consideration that pairs labelled ‘unknown’ are discarded. Phrased differently, this
means that more than one in twenty-five of all possible cases is seen during each training
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epoch. This is a large fragment of the total space. Of course, deep learning methods are
known for their ‘data hunger’, and analogies with human learning processes are always
precarious, but observing every twenty-fifth instance of a problem seems excessive at any
rate. It certainly is an infeasible percentage to maintain for even slightly more complex
languages. Assuming a combinatorial generation process as mentioned on page 18, the
number of possible sentences grows exponentially with respect to the vocabulary size. A
training set containing 4% (or any constant fraction) of the total space of possibilities
would soon become unmanageable.

B.7 Baseline performance

There is something remarkable about the results reported in Table 3.2. The matrix and
tensor models obtain almost perfect scores, but the sumNN performs very well too. In
fact, the difference between the accuracies of the tree-shaped models and the simple
baseline is so small that it raises suspicion. In Bowman’s experiments, the baseline
reaches a training accuracy that is, on average, only 2.9 percentage points below the
score obtained by the recursive models (4.3 in the replication). For the testing accuracy,
the average difference is 5.6 percentage points (5.6 in the replication). The superiority
of the tree-shaped models is clearly not negligible. Nevertheless, their complexity and
training times are so much higher than the baseline’s that a difference of only a few
percentage points is quite meager. It demonstrates that the features distinguishing them
from such a basic model as the summing neural network only account for a minimal
fraction of the obtained scores. The fact that sophisticated models only manage to
slightly outperform a rudimentary baseline on this problem indicates that the task might
be trivial. Instead, we would prefer a more challenging task, so that increased model
complexity becomes indispensable, and not just a means to boost performance by a few
percents.

B.8 Symbolic prerequisites

The presented models are essentially data-driven, or statistical. This is to say that they
are not endowed with an integrated representation of the problem, but learn to address
it from the large number of pre-labelled instances in the training sets. In this sense
they differ from symbolic models, which handle problems by means of a knowledge base
shaped according to human perception, interpretation or strategy. The main advantage of
statistical models is that they do not require such a thorough understanding of a problem
as their symbolic counterparts in order to achieve a high robustness in the face of new
information or unexpected nuances. Instead of relying on the exhaustive description of a
scenario, they develop their own, implicit representations, which are updated on the basis
of new experiences as learning progresses. This increases their flexibility and scalability.

Although Bowman’s recursive models are essentially data-driven, they are not com-
pletely so. This is because the network topology, as described in Section 3.1.2, is de-
termined by the parse trees of the input sentences. This syntactic structure is symbolic
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information, which is assumed to be present in all the data. Therefore, although the
models as such do not encode any linguistic information other than the syntactic bi-
narity encapsulated in the composition function, they do require that the data provide
additional symbolic details. In this sense, it may be more appropriate to call the recursive
models ‘semi-symbolic’: they learn from data, but require the data to be extended with
a great number of linguistic cues in the form of brackets. This method could be consid-
ered as a form of symbolic guidance, by its way of guiding the computational process
according to symbolic prompts.

Thanks to the automated data generation process and the limited variation between
grammatical configurations, the syntactic shape of the input sentences can easily be
added to the data constructed in language LB. Because this is not generally the case, it
adds another artificial factor to the current data. When dealing with natural language,
the issue could be overcome by implementing an automated parser before the entailment
classifier, as is done in the final section of Bowman, Potts, and Manning 2015, but this
comes at the price of great computational overhead and propagation of uncertainty. It
would be worthwhile to pursue an approach that is less dependent on such pre-processing
or symbolic prerequisites.

B.9 Lack of interpretation

The final issue is no objection to Bowman’s experiments. It concerns something that
is missing in the methodology, namely a more thorough interpretation of the obtained
results, the models and their learned representations. Now that we know that the tree-
shaped models perform well on this particular task, we would like to know more precisely
how they manage to do so. This involves ‘opening the black box’ of the networks and
assessing their internal dynamics. Research focusing on such matters is part of the field
of interpretable machine learning. For other studies taking this approach see e.g. Vellido,
Martín-Guerrero, and Lisboa 2012, Veldhoen, Hupkes, and Zuidema 2016 or Doshi-Velez
and Kim 2017.

Here we list a few examples of interpretative questions that are worth addressing in
this particular case:
• What is the relation between the learned word embeddings? Are vector represen-

tations of semantically related items clustered together?

• How exactly does the composition function combine and transform word embed-
dings while recursively processing a sentence?

• Do entailment relations determine geometric regularities in the sentence vector
space?

Many other interpretative issues can be thought of. In general, the internal model
representations (all intermediate entities between input and output) deserve to be studied
in further detail to understand more clearly how the networks do what they do, and to
what extent their individual components contribute to the over-all performance.
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Logical generalization experiment

When dealing with the standard binary_fol data, much of the generalization performed
by the models is combinatorial. Words of language LN can be joined to form a finite
number of possible combinations (sentences), and a finite number of combinations of these
combinations (sentence pairs). A small fraction of this set is witnessed during training in
order to extrapolate to new configurations with the same structural properties. Opposed
to combinatorial generalization is hierarchic generalization, which is not just a matter of
combining data as a basis for abstraction, but also of exploiting systematic connections
between implicitly related instances. Models that learn through hierarchic generalization
do not exclusively rely on the amount of processed data to succeed, but achieve an effect
of synergy by recognizing and utilizing particular stratifications in the data.

One kind of hierarchic generalization that is interesting to consider here is logical
generalization: do the models capture aspects of FOL that allow them to learn more from
the available data than classifiers lacking such structural awareness? We will investigate
this by means of an experiment focusing on the first quantifier of LN sentences. In the
binary_fol data, models are faced with several kinds of quantification at the beginning
of a sentence: it can be universal or existential, and negated or unnegated. Thus, if we let
the initial determiner refer to the initial quantifier together with its optional negation, it
has four possible values: ‘some’, ‘all’, ‘not some’ and ‘not all’. It follows that, considering
sentence pairs, there are 16 possible combinations of first determiners. The data can be
partitioned into 16 corresponding classes. We name each of these classes C(d1, d2), where
d1 denotes the first determiner of the first sentence of the pairs, and d2 the first determiner
of the second sentence of the pairs in the class.

If a model applies logical generalization, it exploits the systematic relation between
different classes C(d1, d2) to improve its performance. E.g., observing instances from
class C(some, not all) does not only increase accuracy for this class, but also for the class
C(some, all) or C(all, not some) by virtue of the internalized logical associations between
the quantifier combinations. In binary_fol, all classes are collected together, so that
it is unclear if this effect takes place. To investigate if it does, the binary_fol train
and test data are subdivided into the sixteen distinct (d1, d2)-categories. The resulting
train and test sets respectively contain some 2,000 and 600 instances on average. Models
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are trained and tested on these subsets. Only the SRN and the GRU are considered
in this experiment, because the GRU has proven to consistently outperform the LSTM,
while the latter’s training times are longer. The SRN remains relevant to consider as a
recurrent baseline. The final achievements on the test set, averaged over five runs, are
visualized in the heatmaps of Figures C.1.

(a) SRN (b) GRU

Figure C.1: Heatmaps visualizing the mean testing accuracy scores on the FOL inference
task for models trained and tested on the classes C(d1, d2), isolated from the standard
binary_fol data (∼ 2,000 train and 600 test instances per class). di denotes the first
determiner of the ith sentence in each pair. Results are averaged over five runs.

Recalling the results in Table 5.1, the SRN obtained a mean testing accuracy of
approximately 87% on the binary_fol test set. The average of the testing scores on the
isolated C(d1, d2) classes is 77%, which is 10 percentage points lower. The GRU realized
a mean testing accuracy of 96% on the binary_fol data, whereas its current average
is 81%, which is 15 percentage points lower. Evidently, performance deteriorates when
training and evaluation are relative to the 16 (d1, d2)-classes. These subclasses do not
only restrict the original binary_fol data in terms of quantifier configurations, but also
in size. Therefore, it cannot be concluded that the higher scores on the binary_fol are
purely caused by logical generalization. But the difference cannot be explained by data
size alone either. If this were the case, the SRN and GRU should suffer just as much,
but the observed deterioration is stronger for the GRU (15 percentage points or 16%)
than for the SRN (10 percentage points or 11%). This shows that the GRU makes more
efficient use of the extra data in the binary_fol set than the SRN, which is possibly due
to logical generalization.

It is difficult to determine the degree to which superior performance on data com-
bining the C(d1, d2) classes is a consequence of logical generalization or of the fact that
there are simply more training instances. The difference between the SRN and the GRU
suggests that, at least for the GRU, it cannot be a matter of training size alone. To rule
out this option more confidently, a follow-up experiment is conducted. If the classifiers
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perform better on binary_fol, just because there are more training instances than in
the individual C(d1, d2) sets, then the data statistics must be more or less homogeneous
with respect to the (d1, d2)-subclasses. If not, they would represent 16 unique and un-
related classification problems, so that combination into binary_fol should not yield
higher testing scores. To assess this, sixteen new C(d1, d2) data sets are generated, with
approximately 7,000 training and 1,500 testing instances per class. The binary_fol data
are downsampled to a comparable size. The SRN and GRU are trained on all sixteen
new C(d1, d2) sets, and on the downsampled binary_fol data. If the data really are
homogeneous across (d1, d2)-subclasses, the final testing scores should be similar.

(a) SRN (b) GRU

Figure C.2: Heatmaps visualizing the mean testing accuracy scores on the FOL inference
task for models trained and tested on the classes C(d1, d2) of newly generated data (∼
7,000 train and 1,500 test instances per class). di denotes the first determiner of the ith
sentence in each pair. Results are averaged over five runs.

This is not the case. Mean scores per subclass are shown in Figure C.2. For the SRN,
the average testing accuracy obtained is approximately 86%. For the GRU, it is 91%.
After training on data with the same size that combine all these classes, the mean testing
accuracy is 78% for the SRN, and 83% for the GRU. The significant difference between
the mean accuracy scores for the individual C(d1, d2) sets and the combined class of
the same size shows that the data are not uniform across the subclasses C(d1, d2). This
means that the sets C(d1, d2) are not just random samples from the combined data, but
that they represent subproblems with a unique structure. As the partitioning is based
on the initial determiners of the sentences, the distinction between the different classes
is a logical one. Originally, the GRU and SRN were trained on the binary_fol data,
which has approximately 2,000 training instances per C(d1, d2) class. This is far below
the 7,000 instances seen during training by the models whose heatmaps are shown in
Figure C.2. Nevertheless, the mean testing accuracy on these smaller sets is lower than
the one on the binary_fol set. The difference is marginal for the SRN (86% vs 87%),
but significant for the GRU (91% vs 96%). It thus appears that the GRU exploits the
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relation between the different classes, which is a logical one, in a way that cannot be
explained by the amount of data alone. This is evidence that the model performs at
least a rudimentary form of logical generalization.

100



Bibliography

Allamanis, Miltiadis et al. (2016). “Learning continuous semantic representations of sym-
bolic expressions”. In: arXiv preprint arXiv:1611.01423.

Bankova, Desislava et al. (2016). “Graded entailment for compositional distributional
semantics”. In: arXiv preprint arXiv:1601.04908.

Baroni, Marco, Raffaella Bernardi, et al. (2012). “Entailment above the word level in dis-
tributional semantics”. In: Proceedings of the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics. Association for Computational
Linguistics, pp. 23–32.

Baroni, Marco, Georgiana Dinu, and Germán Kruszewski (2014). “Don’t count, predict! A
systematic comparison of context-counting vs. context-predicting semantic vectors”.
In: Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Vol. 1, pp. 238–247.

Barwise, Jon and Robin Cooper (1981). “Generalized quantifiers and natural language”.
In: Philosophy, Language, and Artificial Intelligence. Springer, pp. 241–301.

van Benthem, Johan (1987). “Meaning: interpretation and inference”. In: Synthese 73.3,
pp. 451–470.

— (2007). A brief history of natural logic. ILLC Prepublication Series. url: https:
//www.illc.uva.nl/Research/Publications/Reports/PP/.

van Benthem, Johan and Dag Westerståhl (1995). “Directions in generalized quantifier
theory”. In: Studia Logica 55.3, pp. 389–419.

Bluche, Theodore, Christopher Kermorvant, and Jérôme Louradour (2015). “Where to
apply dropout in recurrent neural networks for handwriting recognition?” In: Doc-
ument Analysis and Recognition (ICDAR), 2015 13th International Conference on.
IEEE, pp. 681–685.

Boolos, George S, John P Burgess, and Richard C Jeffrey (2007). Computability and
Logic. 5th ed. Cambridge: Cambridge University Press.

Bos, Johan and Katja Markert (2005). “Recognising textual entailment with logical in-
ference”. In: Proceedings of the Conference on Human Language Technology and Em-
pirical Methods in Natural Language Processing. Association for Computational Lin-
guistics, pp. 628–635.

Bowman, Samuel R (2013). “Can recursive neural tensor networks learn logical reason-
ing?” In: arXiv preprint arXiv:1312.6192.

101



Bibliography

Bowman, Samuel R., Gabor Angeli, et al. (2015). “A large annotated corpus for learning
natural language inference”. In: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics.

Bowman, Samuel R, Christopher Potts, and Christopher D Manning (2015). “Recursive
neural networks can learn logical semantics”. In: Proceedings of the 3rd Workshop on
Continuous Vector Space Models and their Compositionality (CVSC). (July 26–31,
2015). Association for Computational Linguistics. Beijing, China, pp. 12–21.

Bullinaria, John A and Joseph P Levy (2007). “Extracting semantic representations from
word co-occurrence statistics: A computational study”. In: Behavior research methods
39.3, pp. 510–526.

Calvo, Paco and John Symons (2014). The Architecture of Cognition: Rethinking Fodor
and Pylyshyn’s Systematicity Challenge. MIT Press.

Carston, R (1997). “Language of Thought”. In: Concise Encyclopedia of Philosophy of
Language, pp. 68–70.

Chen, Danqi et al. (2013). “Learning new facts from knowledge bases with neural tensor
networks and semantic word vectors”. In: arXiv preprint arXiv:1301.3618.

Chomsky, Noam (1957). Syntactic structures. Mouton, Berlin.
Chung, Junyoung et al. (2014). “Empirical evaluation of gated recurrent neural networks

on sequence modeling”. In: arXiv preprint arXiv:1412.3555.
Church, Alonzo (1936). “A note on the Entscheidungsproblem”. In: Journal of Symbolic

Logic 1, pp. 40–41.
Coecke, B, M Sadrzadeh, and S Clark (2010). “Mathematical Foundations for a Compo-

sitional Distributional Model of Meaning”. In: Linguistic Analysis 36, pp. 345–384.
Costa, Mario et al. (1999). “Short term load forecasting using a synchronously operated

recurrent neural network”. In: Neural Networks, 1999. IJCNN’99. International Joint
Conference on. Vol. 5. IEEE, pp. 3478–3482.

Delavenay, Emile (1960). An Introduction to Machine Translation. New York, NY:
Thames and Hudson.

Doshi-Velez, Finale and Been Kim (2017). “Towards a rigorous science of interpretable
machine learning”. In: arXiv preprint arXiv:1702.08608.

Dowty, David (2007). “Compositionality as an empirical problem”. In: Direct composi-
tionality 14, pp. 23–101.

van Eijck, Jan (2005). “Natural logic for natural language”. In: International Tbilisi Sym-
posium on Logic, Language, and Computation. Springer, pp. 216–230.

Elman, Jeffrey L (1990). “Finding structure in time”. In: Cognitive science 14.2, pp. 179–
211.

Endrullis, Jörg and Lawrence S Moss (2015). “Syllogistic logic with ‘most’”. In: Inter-
national Workshop on Logic, Language, Information, and Computation. Springer,
pp. 124–139.

Evans, Richard and Edward Grefenstette (2018). “Learning Explanatory Rules from
Noisy Data”. In: Journal of Artificial Intelligence Research 61, pp. 1–64.

102



Bibliography

Evans, Richard, David Saxton, et al. (2018). “Can Neural Networks Understand Logical
Entailment?” In: arXiv preprint arXiv:1802.08535.

Fausett, Laurene (1994). Fundamentals of neural networks: architectures, algorithms, and
applications. Prentice-Hall, Inc.

Firth, John Rupert (1957). Papers in Linguistics 1934-1951. London: Oxford University
Press.

Fitch, W Tecumseh (2014). “Toward a computational framework for cognitive biol-
ogy: unifying approaches from cognitive neuroscience and comparative cognition”.
In: Physics of life reviews 11.3, pp. 329–364.

Fodor, Jerry (1998). “There are no recognitional concepts; not even RED”. In: Philosoph-
ical issues 9, pp. 1–14.

Fodor, Jerry A and Zenon W Pylyshyn (1988). “Connectionism and cognitive architec-
ture: A critical analysis”. In: Cognition 28.1-2, pp. 3–71.

Frege, Gottlob ([1914] 1980). “Letter to Jourdain”. In: Philosophical and Mathemati-
cal Correspondence. Ed. by Gottfried Gabriel et al. Trans. by Hans Kaal. Chicago:
Chicago University Press, pp. 78–80.

Giles, C Lee, Steve Lawrence, and Ah Chung Tsoi (1997). “Rule inference for finan-
cial prediction using recurrent neural networks”. In: Computational Intelligence for
Financial Engineering (CIFEr), 1997., Proceedings of the IEEE/IAFE 1997. IEEE,
pp. 253–259.

Gödel, Kurt (1929). “Uber die Vollstandigkeit des Logikkalkuls”. PhD thesis. Vienna.
— (1930). “Die Vollständigkeit der Axiome des logischen Funktionenkalküls”. In: Monat-

shefte für Mathematik und Physik 37.1, pp. 349–360.
— (1931). “Über formal unentscheidbare Sätze der Principia Mathematica und ver-

wandter Systeme I”. In: Monatshefte für mathematik und physik 38.1, pp. 173–198.
Goldberg, Adele E (2015). “Compositionality”. In: The Routledge handbook of semantics.

Ed. by Nick Riemer. Routledge. url: https://adele.princeton.edu.
Graves, Alex and Navdeep Jaitly (2014). “Towards end-to-end speech recognition with

recurrent neural networks”. In: International Conference on Machine Learning,
pp. 1764–1772.

Grice, H. Paul (1975). “Logic and conversation”. In: Syntax and Semantics, Volume 3:
Speech Acts. Ed. by P. Cole and J. Morgan. Academic Press, New York, pp. 41–58.

Groenendijk, J and M Stokhof (2004). “Why Compositionality?” In: The Partee Effect.
Ed. by G N Carlson and J F Pelletier. Stanford, CA: CSLI Publications, pp. 1–20.

Hackbusch, Wolfgang (2012). Tensor spaces and numerical tensor calculus. Vol. 42.
Springer Science & Business Media.

Harris, Zellig S (1954). “Distributional structure”. In: Word 10.23, pp. 146–162.
Henderson, James and Diana Nicoleta Popa (2016). “A vector space for distributional

semantics for entailment”. In: arXiv preprint arXiv:1607.03780.
Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term memory”. In: Neural

computation 9.8, pp. 1735–1780.

103



Bibliography

Hupkes, Dieuwke, Sara Veldhoen, and Willem Zuidema (2017). “Visualisation
and’diagnostic classifiers’ reveal how recurrent and recursive neural networks process
hierarchical structure”. In: arXiv preprint arXiv:1711.10203.

Irsoy, Ozan and Claire Cardie (2014). “Deep recursive neural networks for composition-
ality in language”. In: Advances in neural information processing systems, pp. 2096–
2104.

Kaiser, Łukasz and Ilya Sutskever (2015). “Neural gpus learn algorithms”. In: arXiv
preprint arXiv:1511.08228.

Karpathy, Andrej, Justin Johnson, and Li Fei-Fei (2015). “Visualizing and understanding
recurrent networks”. In: arXiv preprint arXiv:1506.02078.

Keenan, Edward (1996). “The semantics of determiners”. In: The handbook of contempo-
rary semantic theory. Ed. by Shalom Lappin. Blackwell Oxford, pp. 41–63.

Kolda, Tamara G and Brett W Bader (2009). “Tensor decompositions and applications”.
In: SIAM review 51.3, pp. 455–500.

Lahav, Ran (1989). “Against compositionality: the case of adjectives”. In: Philosophical
studies 57.3, pp. 261–279.

Lai, Tri, Jörg Endrullis, and Lawrence S Moss (2016). “Majority Digraphs”. In: Proceed-
ings of the American Mathematical Society 144.9, pp. 3701–3715.

Lake, Brenden M and Marco Baroni (2017). “Generalization without Systematicity: On
the Compositional Skills of Sequence-to-Sequence Recurrent Networks”. In: arXiv
preprint arXiv:1711.00350.

Lake, Brenden M, Tomer D Ullman, et al. (2017). “Building machines that learn and
think like people”. In: Behavioral and Brain Sciences 40.

Le, Phong and Willem Zuidema (2015). “Compositional distributional semantics with
long short term memory”. In: arXiv preprint arXiv:1503.02510.

Lee, Lillian (1999). “Measures of distributional similarity”. In: Proceedings of the 37th
annual meeting of the Association for Computational Linguistics on Computational
Linguistics. Association for Computational Linguistics, pp. 25–32.

Leszl, Walter (2004). “Aristotle’s logical works and his conception of logic”. In: Topoi
23.1, pp. 71–100.

Letsche, Todd A and Michael W Berry (1997). “Large-scale information retrieval with
latent semantic indexing”. In: Information sciences 100.1-4, pp. 105–137.

Liang, Sheng-Fu, Alvin WY Su, and Cheng-Teng Lin (1999). “A new recurrent-network-
based music synthesis method for chinese plucked-string instruments-pipa and qin”.
In: Neural Networks, 1999. IJCNN’99. International Joint Conference on. Vol. 4.
IEEE, pp. 2564–2569.

Maas, Andrew L, Awni Y Hannun, and Andrew Y Ng (2013). “Rectifier nonlinearities
improve neural network acoustic models”. In: Proc. ICML. Vol. 30.

Maaten, Laurens van der and Geoffrey Hinton (2008). “Visualizing data using t-SNE”.
In: Journal of machine learning research 9.Nov, pp. 2579–2605.

MacCartney, Bill (2009). “Natural language inference”. PhD thesis. Stanford University.
url: https://nlp.stanford.edu/~wcmac/papers/nli-diss.pdf.

104



Bibliography

MacCartney, Bill and Christopher D Manning (2009). “An extended model of natural
logic”. In: Proceedings of the eighth international conference on computational seman-
tics. Association for Computational Linguistics, pp. 140–156.

MacQueen, James et al. (1967). “Some methods for classification and analysis of multi-
variate observations”. In: Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability. Vol. 1. 14. Oakland, CA, pp. 281–297.

Marcus, Gary F (1998). “Rethinking eliminative connectionism”. In: Cognitive psychology
37.3, pp. 243–282.

— (2003). The algebraic mind: Integrating connectionism and cognitive science. MIT
press.

Marelli, Marco et al. (2014). “SemEval-2014 Task 1: Evaluation of Compositional Dis-
tributional Semantic Models on Full Sentences through Semantic Relatedness and
Textual Entailment.” In: SemEval@ COLING, pp. 1–8.

McCune, W (2010). “Prover9 and Mace4”. url: http://www.cs.unm.edu/~mccune/
prover9.

McKeon, Richard et al. (2009). The basic works of Aristotle. Modern Library.
Medsker, Larry and Lakhmi C Jain (1999). Recurrent neural networks: design and appli-

cations. CRC press.
Mendelson, Elliott (1987). Introduction to Mathematical Logic. Belmont: Wadsworth &

Brooks.
Mikolov, Tomas, Kai Chen, et al. (2013). Efficient estimation of word representations in

vector space. ICLR Workshop.
Mikolov, Tomas, Ilya Sutskever, et al. (2013). “Distributed representations of words and

phrases and their compositionality”. In: Advances in neural information processing
systems, pp. 3111–3119.

Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig (2013). “Linguistic regularities in
continuous space word representations”. In: Proceedings of the 2013 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 746–751.

Mitchell, Jeff and Mirella Lapata (2008). “Vector-based models of semantic composition”.
In: Proceedings of the 46th Annual Meeting of the Association for Computational
Linguistics, pp. 236–244.

Mohammad, Saif M et al. (2013). “Computing lexical contrast”. In: Computational Lin-
guistics 39.3, pp. 555–590.

Montague, Richard (1970). “Universal grammar”. In: Theoria 36.3, pp. 373–398.
Mostowski, Marcin (1995). “Quantifiers definable by second order means”. In: Quantifiers:

logics, models and computation. Springer, pp. 181–214.
Mozer, Michael C (1989). “A focused backpropagation algorithm for temporal pattern

recognition”. In: Complex Systems 3, pp. 349–381.
Mueller, Jonas and Aditya Thyagarajan (2016a). “Siamese Recurrent Architectures for

Learning Sentence Similarity.” In: AAAI, pp. 2786–2792.
— (2016b). “Siamese Recurrent Architectures for Learning Sentence Similarity”. In: Pro-

ceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 2786–2792.

105



Bibliography

Pantel, Patrick (2005). “Inducing ontological co-occurrence vectors”. In: Proceedings of
the 43rd Annual Meeting on Association for Computational Linguistics. Association
for Computational Linguistics, pp. 125–132.

Partee, Barbara (1984). “Compositionality”. In: Varieties of formal semantics: Proceed-
ings of the fourth Amsterdam colloquium. Ed. by F Landman and F Veltman. Dor-
drecht: Foris Publications, pp. 281–311.

Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio (2013). “On the difficulty of train-
ing recurrent neural networks”. In: International Conference on Machine Learning,
pp. 1310–1318.

Paszke, Adam et al. (2017). Automatic differentiation in PyTorch. 31st Conference on
Neural Information Processing Systems.

Pearson, Karl (1901). “On lines and planes of closest fit to systems of points in space”. In:
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
2.11, pp. 559–572.

Pelletier, Francis Jeffry (1994). “The principle of semantic compositionality”. In: Topoi
13.1, pp. 11–24.

Pennington, Jeffrey, Richard Socher, and Christopher Manning (2014). “Glove: Global
vectors for word representation”. In: Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pp. 1532–1543.

Reed, Scott and Nando De Freitas (2015). “Neural programmer-interpreters”. In: arXiv
preprint arXiv:1511.06279.

Ren, He and Quan Yang (2013). Neural Joke Generation. 31st Conference on Neural
Information Processing Systems.

Repplinger, Michael (2017). Understanding Generalization: Learning Quantifiers and
Negation with Neural Tensor Networks. MSc Thesis, University of Amsterdam.

Rinaldi, Fabio et al. (2003). “Exploiting paraphrases in a question answering system”. In:
Proceedings of the Second International Workshop on Paraphrasing. Association for
Computational Linguistics. Saporo, Japan, pp. 25–32.

Robinson, AJ and Frank Fallside (1987). The utility driven dynamic error propagation
network. University of Cambridge Department of Engineering.

Rocktäschel, Tim, Matko Bošnjak, et al. (2014). “Low-dimensional embeddings of logic”.
In: Proceedings of the ACL 2014 Workshop on Semantic Parsing, pp. 45–49.

Rocktäschel, Tim, Edward Grefenstette, et al. (2015). “Reasoning about entailment with
neural attention”. In: arXiv preprint arXiv:1509.06664.

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams (1985). Learning internal
representations by error propagation. Tech. rep. California Univ San Diego La Jolla
Inst for Cognitive Science.

Sadrzadeh, Mehrnoosh and Dimitri Kartsaklis (2016). “Compositional Distributional
Models of Meaning”. In: Proceedings of COLING 2016, the 26th International Con-
ference on Computational Linguistics: Tutorial Abstracts, pp. 1–4.

Sadrzadeh, Mehrnoosh, Dimitri Kartsaklis, and Esma Balkır (2018). “Sentence entailment
in compositional distributional semantics”. In: Annals of Mathematics and Artificial
Intelligence, pp. 1–30.

106



Bibliography

Sánchez Valencia, Victor (1991). “Studies on Natural Logic and Categorial Grammar”.
PhD thesis. University of Amsterdam.

Schütze, H and J Pedersen (1995). “Information retrieval based on word senses”. In:
Proceedings of the 4th Annual Symposium on Document Analysis and Information
Retrieval. Vol. 4, pp. 161–175.

Serafini, Luciano and Artur d’Avila Garcez (2016). “Logic tensor networks: Deep learning
and logical reasoning from data and knowledge”. In: arXiv preprint arXiv:1606.04422.

Shapiro, Stewart (1991). Foundations without foundationalism: A case for second-order
logic. Vol. 17. Clarendon Press.

Sider, Theodore (2010). Logic for philosophy. Oxford: Oxford University Press.
Socher, Richard, Brody Huval, et al. (2012). “Semantic compositionality through recur-

sive matrix-vector spaces”. In: Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learn-
ing. Association for Computational Linguistics, pp. 1201–1211.

Socher, Richard, Andrej Karpathy, et al. (2014). “Grounded compositional semantics for
finding and describing images with sentences”. In: Transactions of the Association of
Computational Linguistics 2.1, pp. 207–218.

Sommers, Fred (1982). The logic of natural language. Cambridge University Press.
Sutskever, Ilya, Oriol Vinyals, and Quoc V Le (2014). “Sequence to sequence learning with

neural networks”. In: Advances in neural information processing systems, pp. 3104–
3112.

Szabó, Zoltán Gendler (2004). “Compositionality”. In: Stanford Encyclopedia of Philoso-
phy. url: https://plato.stanford.edu/entries/compositionality/.

Tai, Kai Sheng, Richard Socher, and Christopher D Manning (2015). “Improved semantic
representations from tree-structured long short-term memory networks”. In: arXiv
preprint arXiv:1503.00075.

Tatu, Marta and Dan Moldovan (2005). “A semantic approach to recognizing textual
entailment”. In: Proceedings of the Conference on Human Language Technology and
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, pp. 371–378.

Travis, Charles (1994). “On constraints of generality”. In: Proceedings of the Aristotelian
Society. Vol. 94. JSTOR, pp. 165–188.

Turing, Alan Mathison (1936). “On computable numbers, with an application to the
Entscheidungsproblem”. In: Proceedings of the London Mathematical Society 2.42,
pp. 230–265.

Veldhoen, Sara (2015). Semantic adequacy of compositional distributed representations.
MSc Thesis, University of Amsterdam.

Veldhoen, Sara, Dieuwke Hupkes, and Willem Zuidema (2016). “Diagnostic Classifiers
Revealing how Neural Networks Process Hierarchical Structure.” In: CoCo@ NIPS.

Vellido, Alfredo, José David Martín-Guerrero, and Paulo JG Lisboa (2012). “Making
machine learning models interpretable.” In: ESANN. Vol. 12. Citeseer, pp. 163–172.

Vinyals, Oriol et al. (2015). “Grammar as a foreign language”. In: Advances in Neural
Information Processing Systems, pp. 2773–2781.

107



Bibliography

Weaver, George (2012). Adding the quantifier ‘most’ to first-order logic.
Werbos, Paul J (1988). “Generalization of backpropagation with application to a recur-

rent gas market model”. In: Neural networks 1.4, pp. 339–356.
Zeiler, Matthew D (2012). “ADADELTA: an adaptive learning rate method”. In: arXiv

preprint arXiv:1212.5701.

108


