
Computation with Infinite Programs

MSc Thesis (Afstudeerscriptie)

written by

Ethan S. Lewis
(born January 6, 1993 in Newark, Delaware USA)

under the supervision of Prof. Benedikt Löwe and Lorenzo Galeotti
MSc, and submitted to the Board of Examiners in partial fulfillment of the

requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
June 28, 2018 Dr. Merlin Carl

Dr. Tejaswini Deoskar (chair)
Lorenzo Galeotti MSc (supervisor)
Prof. Benedikt Löwe (supervisor)
Dr. Benjamin Rin
Dr. Piet Rodenburg

Abstract

Koepke introduced a machine model of computation that uses infinite time and
space. In our thesis, we generalize Koepke’s model by allowing for infinite pro-
grams in addition to infinite time and space. With this new model of computa-
tion, we prove generalizations of basic results from finite computability theory.
Furthermore, we introduce the axiom of computable enumerability and show
that it is independent of Gödel-Bernays class theory with the axiom of global
choice. Assuming this axiom, we prove results that characterize the computably
enumerable and decidable classes, as well as the computable functions.

Contents

1 Introduction 4
1.1 Thesis Overview . 5

2 Preliminaries 6
2.1 Class Theory . 6

2.1.1 The Axioms of Gödel-Bernays Class Theory 6
2.1.2 The Lévy Hierarchy . 8
2.1.3 The Gödel Pairing Function 8
2.1.4 The Set Hκ . 9

2.2 Strings . 9
2.3 Partial Functions . 11
2.4 Koepke Machines . 12

2.4.1 Intuition . 12
2.4.2 Definition . 13

3 Infinite Programs 15
3.1 Definitions . 15
3.2 Basic Results . 16

3.2.1 Computing the Gödel Pairing Function 17
3.2.2 The Halting Problem . 17
3.2.3 The Universal Program 19

4 A Hierarchy of Computability 20
4.1 Trimmed Programs . 20
4.2 The Restricted Halting Problem 24

5 Computable Enumerability 26
5.1 Enumerability vs Semidecidability 26
5.2 Independence of Enumerability 29

6 Characterizing Computation 33
6.1 Hereditary Lists . 33
6.2 Decidability of ∆0(V) Classes . 35
6.3 Characterization Results . 38

2

6.3.1 Enumerability of Σ1(V) Classes 38
6.3.2 Decidability of ∆1(V) Classes 39
6.3.3 Computability of Σ1(V) Functions 40

7 Conclusion 42
7.1 Future Work . 43

3

Chapter 1

Introduction

In Turing’s seminal paper [18], he introduced an abstract model of computation,
which we now refer to as a Turing machine. This machine executes a finite
program in a finite amount of time using a finite amount of tape. Eventually,
Turing machines became the accepted standard for finite computability theory.
Since then, there have been attempts to generalize computability theory to
an infinite setting. One of the earliest known examples is α-recursion theory,
which is detailed by Sacks in [16]. This generalization, however, is based on
definability using formulas as opposed to some concrete model of computation
such as a Turing machine. More recently, there have been various proposals for
a machine model of infinitary computation. The earliest of these are the infinite
time Turing machines (ITTMs) of Hamkins, Kidder, and Lewis defined in [6]. As
their name suggests, these machines generalize Turing machines by allowing a
computation to proceed for any ordinal number of steps. While these machines
generalize the time in which a computation can occur, they still restrict the
machine to a tape of length ω. Thus, ITTMs generalize time, but they do not
generalize space. Another example that generalizes time, but not space, are the
infinite time register machines defined by Koepke in [10] and further developed
in [1, 12].

There is a noticeable asymmetry, however, if one allows a machine to take
any ordinal number of steps while also restricting the space it can use. A far
more natural approach is the one suggested in [9], in which Koepke defines
what we will refer to as Koepke machines. These machines can take any ordinal
number of steps, but they also have a class-length tape indexed by the ordinals.
Thus, Koepke machines generalize Turing machines in both time and space.

While generalizations have been made for time and space, none of these
models generalize the last key feature of a Turing machine: its internal pro-
gramming. Each of the models mentioned still require that programs be finite.
In this thesis, we will examine what happens when we relax this requirement.
In particular, we will investigate the consequences of allowing Koepke machines
to execute infinite programs. In doing so, we will introduce the axiom of com-

4

putable enumerability and show that by assuming this axiom, we can give exact
characterizations of the computably enumerable and decidable classes, as well
as the computable functions.

1.1 Thesis Overview

In Chapter 2, we will cover some important background material. The most im-
portant topics will be Gödel-Bernays class theory, infinite strings, and Koepke
machines. In Chapter 3, we will give our definition of a program and the as-
sociated definitions for computability of a function and decidability of a class
of strings. We will also define an encoding for programs, which will allow us
to define a halting problem that is provably undecidable. Furthermore, we will
show that there exists a universal program. In Chapter 4, we will define a re-
stricted halting problem for each infinite cardinal. We will show that programs
of cardinality less than a given cardinal cannot decide their associated halting
problem, while programs of greater cardinality can. This demonstrates that
each increase in the cardinality of programs gives rise to a stronger notion of
computability. In Chapter 5, we will define semidecidability and computable
enumerability. We will show that the equivalence of these notions is indepen-
dent of Gödel-Bernays class theory with the axiom of global choice. This is
a marked difference from finite computability theory in which semidecidability
and computable enumerability are equivalent. In Chapter 6, we will prove re-
sults that characterize enumerability, decidability, and computability in terms
of the Lévy hierarchy.

5

Chapter 2

Preliminaries

2.1 Class Theory

With our model of computation, we will be far more interested in proper classes
than sets. Therefore, it is important that we work in a theory of classes. For
this reason, we have decided to work in Gödel-Bernays class theory.

The variables in Gödel-Bernays range over classes. We say that a class X
is a set if it belongs to another class (i.e. there exists a class Y such that
X ∈ Y). Following convention, we will use lower case letters to denote classes
that are sets, and we will use upper case letters to denote classes in general. In
particular, we will use (∃x)ϕ(x) and (∀x)ϕ(x) as abbreviations for the formulas
(∃X)[(∃Y)(X ∈ Y) ∧ ϕ(X)] and (∀X)[(∃Y)(X ∈ Y)→ ϕ(X)], respectively.

Note that there exists a translation ϕ 7→ ϕGB from formulas in the language
of ZF to formulas in the language of Gödel-Bernays, which is given as follows:

(x = y)GB = (∃Z)(X ∈ Z) ∧ (∃Z)(Y ∈ Z) ∧X = Y

(x ∈ y)GB = (∃Z)(X ∈ Z) ∧ (∃Z)(Y ∈ Z) ∧X ∈ Y
(¬ϕ)GB = ¬ϕGB

(ϕ ∧ ψ)GB = ϕGB ∧ ψGB(
(∃x)ϕ

)GB
= (∃X)[(∃Y)(X ∈ Y) ∧ ϕGB](

(∀x)ϕ
)GB

= (∀X)[(∃Y)(X ∈ Y)→ ϕGB]

Therefore, every formula in the language of ZF can be identified with a
formula in the language of Gödel-Bernays. For this reason, the language of
Gödel-Bernays can be considered an extension of the language of ZF.

2.1.1 The Axioms of Gödel-Bernays Class Theory

The axioms of Gödel-Bernays class theory are often broken into five groups
labelled A through E, corresponding to the presentation given by Gödel in [5].

6

Gödel’s presentation gives a finite axiomatization of the theory, but we will give
an axiomatization that highlights the theory’s similarities with ZFC:

A. 1. Extensionality: If X and Y have the same elements, then X = Y .

2. Pairing: For sets x and y, there is a set z = {x, y}.

B. Comprehension: For classes X1, . . . , Xn and for any formula ϕ in which
only set variables are quantified, there is a class Y = {x | ϕ(x,X1, . . . , Xn)}.

C. 1. Infinity: There is a set x such that ∅ ∈ x, and y ∪ {y} ∈ x if y ∈ x.

2. Union: For every set x, there is a set y =
⋃
x.

3. Power Set: For every set x, there is a set y = P(x).

4. Replacement: For every function F and set x, there is a set y =

{F (z) | z ∈ x}.

D. Regularity: For every nonempty class X, there is a set y ∈ X such that
y ∩X = ∅.

E. Global Choice: There is a function F such that F (x) ∈ x for every
nonempty set x.

Let GB denote the theory with axioms A through D, and let GBC denote the
theory with axioms A through E.

As mentioned previously, the axioms of GBC are very similar to the axioms
of ZFC. In fact, GBC is a conservative extension of ZFC, which is to say that
the following theorem holds [3, Corollary 4.1]:

Theorem 2.1. If ϕ is a sentence in the language of ZF, then ϕ is provable in
ZFC if and only if ϕGB is provable in GBC. 4

This theorem was proven independently by several people. For more infor-
mation on its history, we refer the reader to [3, p. 242] and [4, p. 381]. As a
consequence of this theorem, we have the following corollary:

Corollary 2.2. ZFC is consistent if and only if GBC is consistent. 4

Proof. Suppose GBC is inconsistent. Then GBC can prove that ∅ 6= ∅. Since
this is expressible in the language of ZF, it follows that ZFC also proves that
∅ 6= ∅. Hence, ZFC is inconsistent. Therefore, GBC is consistent if ZFC is
consistent. The converse holds by essentially the same argument.

Thus, GBC can be seen as the weakest possible extension of ZFC that in-
cludes classes. It is for this reason that we have decided to use GBC as opposed
to some other theory of classes such as Morse-Kelley [8, Appendix], which is not
a conservative extension of ZFC.

7

2.1.2 The Lévy Hierarchy

The Lévy hierarchy is a hierarchy of formulas that was introduced by Azriel Lévy
in [15]. Typically these are formulas in the language of ZF, and even though
we are working in GBC, we will still be interested in the hierarchy associated
with (the translations of) formulas in the language of ZF. At the bottom of the
hierarchy, we have the ∆0 formulas:

Definition 2.3. The ∆0 formulas are defined inductively as follows:

(1) x = y and x ∈ y are ∆0 formulas.

(2) If ϕ and ψ are ∆0 formulas, then ¬ϕ and ϕ ∧ ψ are ∆0 formulas.

(3) If ϕ is a ∆0 formula, then (∃x ∈ y)ϕ and (∀x ∈ y)ϕ are ∆0 formulas.

4

To define the rest of the hierarchy, we let the Σ0 and Π0 formulas be the ∆0

formulas. Then we say that a formula is Σn+1 if it is of the form (∃x)ϕ, where
ϕ is Πn. Similarly, we say that a formula is Πn+1 if it is of the form (∀x)ϕ,
where ϕ is Σn.

Using the Lévy hierarchy, we can define a similar hierarchy for classes:

Definition 2.4. For any classA, a classB is Σn(A) ifB = {x | ϕ(x, a1, . . . , am)},
where ϕ is Σn and a1, . . . , am ∈ A. The definition of Πn(A) is similar. We say
that a class is ∆n(A) if it is both Σn(A) and Πn(A). 4

Note that if a class is Σn(V), this just means that the class is Σn-definable
with set parameters. Furthermore, a class is Σn(∅) if it is Σn definable without
parameters. In this case, we say that the class is Σn. Similarly, we say that a
class is Πn or ∆n if it is Πn(∅) or ∆n(∅), respectively.

2.1.3 The Gödel Pairing Function

The Gödel pairing function, denoted by Γ, is a bijection from Ord×Ord to Ord.
The definition of Γ is based on the rank function for a set-like well-order. In
general, for any well-founded, set-like relation ≺ on a class A, let rank≺ a denote
the rank of a with respect to ≺. That is, rank≺ : A→ Ord is given recursively
by rank≺ a =

⋃
{rank≺ b+ 1 | b ≺ a}. Now we can give a formal definition of Γ:

Definition 2.5. The function Γ : Ord × Ord → Ord is given by Γ(α, β) =

rank≺(α, β), where ≺ is the set-like well-order such that (α, β) ≺ (γ, δ) if and
only if (α ∪ β, α, β) < (γ ∪ δ, γ, δ), where < denotes lexicographical order. 4

One of the important features of Γ is that Γ[ωα × ωα] = ωα for every α [7,
Theorem 3.5]. As a consequence, ℵα + ℵβ = ℵα · ℵβ = max{ℵα,ℵβ}. Later we
will see that Γ and Γ−1 are computable.

8

2.1.4 The Set Hκ

The set Vω is sometimes referred to as the set of all hereditarily finite sets.
This is because x ∈ Vω if and only if TC(x) is finite, where TC(x) denotes the
transitive closure of x. We can generalize this idea to any infinite cardinal κ by
defining Hκ as the set of all x such that |TC(x)| < κ. Moreover, we can prove
the following:

Proposition 2.6. If κ is regular, then Hκ = {x ⊆ Hκ | |x| < κ}. 4

Proof. Let κ be regular.

(⊆) Suppose x ∈ Hκ. Then |TC(x)| < κ. Since |TC(y)| ≤ |TC(x)| < κ for
every y ∈ x, we have that x ⊆ Hκ. Furthermore, |x| ≤ |TC(x)| < κ.
Hence, x ⊆ Hκ and |x| < κ.

(⊇) Suppose x ⊆ Hκ and |x| < κ. Since x ⊆ Hκ, we have that |TC(y)| < κ

for every y ∈ x. Note that TC(x) = x ∪
⋃
y∈x TC(y). Therefore, since

κ is regular and |x| < κ, we have that |TC(x)| = |x ∪
⋃
y∈x TC(y)| < κ.

Hence, x ∈ Hκ.

2.2 Strings

Even in the finite setting, computation can be thought of as performing basic
operations on strings. In this regard, infinitary computation is no different.
What is different, however, is that infinitary computations often involve infinite
strings. So what do we mean when we refer to an infinite string? This is best
defined in terms of sequences: A sequence is a function whose domain is an
ordinal. The length of a sequence is its domain. If the range of a sequence f is
a subset of a class A, then we say that f is a sequence of elements of A.

Now we can give a precise definition of a string: A string is a sequence of
bits (i.e. a sequence of elements of the set {0, 1}). We will use 2<Ord to denote
the class of all strings, and in general, for any class A, let A<Ord =

⋃
α∈Ord

αA.
That is, A<Ord is the class of all sequences of elements of A.

There is one particular sequence, however, that is worth assigning its own
symbol. This sequence is know as the empty sequence, and we denote it by ε.
Strictly speaking, the empty sequence is just the empty set, but it is convenient
to have an alternative symbol for when we want to focus on its properties as
a sequence. One should also note that the empty sequence is a string, and
therefore, we will also refer to it as the empty string.

In addition to the empty string, it is convenient to have a notation for other
strings of finite length. The notation we will use for this purpose is surrounding
the string in straight quotes. For example, we will use '1011' to denote the
string {(0, 1), (1, 0), (2, 1), (3, 1)}.

9

As notation for infinite strings, we will often use χBA to denote the character-
istic function of A restricted to B. If A is a class of ordinals and B is an ordinal,
then χBA is a string. In this case, A∩B is the support of the string χBA . In general,
the support of a string s, denoted supp s, is the set {α ∈ dom s | s(α) = 1}.

Having defined sequences and strings, we can now define some basic oper-
ations thereon. The first of these is concatenation, which is the operation of
extending one sequence using another sequence.

Definition 2.7. For sequences f and g, their concatenation is given by

f t g = f ∪
{(

dom f + α, g(α)
)
| α ∈ dom g

}
In general, the concatenation

⊔
α<β fα of a sequence of sequences is defined

recursively on β as follows: ⊔
α<0

fα = ε

⊔
α<γ+1

fα =

(⊔
α<γ

fα

)
t fγ⊔

α<λ

fα =
⋃
γ<λ

⊔
α<γ

fα

4

One of the nice properties of strings is their capacity to encode a wide variety
of information. An example of this that will prove tremendously useful is the
ability to encode any sequence of strings as a single string. Such strings will fill
the role of the list data type often found in computer programming languages.
But before we can define the standard encoding of a sequence of strings, we must
first introduce the operation of bitwise doubling. In short, the bitwise doubling
of a string s is the string that results from repeating each bit in s twice. For
example, the bitwise doubling of the string '1011' would be the string '11001111'.
More formally,

Definition 2.8. The bitwise doubling of a string s is given by

2s =
⊔

α∈dom s

(2× {s(α)})

4

This operation is not very interesting on its own, but it is important for en-
coding a sequence of strings as a single string. We will define this encoding now,
starting with pairs of strings and then generalizing it to arbitrary sequences.

10

Definition 2.9. For strings s and t, let [s, t] = 2s t '01' t 2t t '01'. In general,
the list [sα | α < β] of a sequence of strings is defined recursively on β as follows:

[sα | α < 0] = ε

[sα | α < γ + 1] = [sα | α < γ] t 2sγ t '01'

[sα | α < λ] =
⋃
γ<λ

[sα | α < γ]

4

We will use List to denote the class of all lists. That is, s ∈ List if there
exists a sequence f of strings such that s = [f(α) | α ∈ dom f]. Note that by
this definition, a list is itself a string, so List is a class of strings. For finite
sequences of strings, we will often just write the list as [s1, . . . , sn].

The lists we have just defined have a couple of nice properties. The first
of these is that they are effective. By that we mean that a program should be
able to determine each of the elements in a list, and this will indeed be the
case for the programs we will define later. The second nice property of these
lists is that the concatenation of two lists is the list of the concatenation of
their underlying sequences. That is, if f and g are sequences of strings, then
[f(α) | α ∈ dom f] t [g(α) | α ∈ dom g] = [(f t g)(α) | α ∈ dom(f t g)].
This makes the task of appending strings to a list very simple for a program to
perform.

As a final note, we will often want to refer to the elements of a list. For this
reason, we will use the notation s @− t to denote that s is one of the strings in the
list t. To be precise, for a string s and a list t, we will write s @− t if s ∈ ran f ,
where f is the unique sequence of strings such that t = [f(α) | α ∈ dom f].

2.3 Partial Functions

Our definition of a program will be in terms of partial functions, and the function
computed by a program will often be partial. For this reason, we give the
following definition and notation for partial functions:

Definition 2.10. A class F is a partial function from A to B, denoted by
F : A 99K B, if there exists a subclass A′ of A such that F is a function from
A′ to B. We say F is total if A′ = A. 4

Since the exact domain of a partial function is unspecified, the following
notation will sometimes be useful:

Definition 2.11. For partial functions F : A 99K B and G : A 99K B, we
write F (a) ' G(a) if either a /∈ domF ∪ domG, or a ∈ domF ∩ domG and
F (a) = G(a). 4

11

2.4 Koepke Machines

Our model of computation is based on the work of Koepke [9] in which he defined
a generalization of a Turing machine to allow for infinite time and space. We
will take this generalization one step further by allowing for infinite programs,
but before we do, it is a good idea to review Koepke machines. To properly
motivate the definition of a Koepke machine, we will give a brief and informal
review of Turing machines, and then we will explain the additional nuances that
come from allowing for infinite time and space.

2.4.1 Intuition

A Turing machine can be thought of as a machine with three components.
The first of these is a tape that we assume to be as long as necessary for the
given computation. This tape is divided into cells, and on each of these cells is
written a symbol from some fixed alphabet. For us, this alphabet will consist
of the numerals 0 and 1 and also a blank symbol. The second component is a
tape head which moves left and right along the tape. The tape head can read
the symbol written on the cell at its current location, and it can also change the
current symbol on the cell. The third component is the internal programming of
the machine, which determines the machine’s behavior based upon the contents
of the machine’s tape. In particular, the machine’s program specifies what
symbol the tape head should write on the cell at its current location, whether
the head should move left or right on the tape, and what the machine’s next
internal state should be. This determination is made based upon the machine’s
current internal state and the current symbol written on the cell at the tape
head’s current position.

Now imagine one wanted to allow a Turing machine to use an infinite amount
of time. The computation would proceed normally for the first ω steps, but what
happens at time ω? In particular, how are the tape contents, head position, and
program state determined at time ω? The answer that Koepke gives is that they
are determined by taking inferior limits. That is, the program state at time ω
is the inferior limit of all prior program states. Similarly, the symbol on a
given cell and the head position at time ω are determined by taking the inferior
limits of all prior values, respectively. What is nice about this method is that
it works for any limit ordinal, not just ω. Furthermore, the standard rules
of execution used by a Turing machine will also work at any successor stage
α > ω. Therefore, taking inferior limits at limit stages in a computation allows
a Turing machine to use an infinite amount of time, but moreover, defining the
head position in terms of the inferior limit of all prior values implicitly assumes
that the machine’s tape can extend beyond ω. Hence, this also allows a machine
to use an infinite amount of space.

12

2.4.2 Definition

We would like to formalize what we have just discussed. The definitions we will
give differ from those found in [9], but none of these differences affect what is
or is not computable. We begin with the definition of a Koepke program:

Definition 2.12. A Koepke program is a partial function of the form p : n ×
3 99K n× 3× 2, where n < ω. 4

This reflects the informal definition given earlier because the elements of n
represent program states, the elements of 3 represent tape symbols (think of 2

as a blank symbol), and the elements of 2 represent the directions the tape head
can move (left and right). Next, we define the execution of a Koepke program:

Definition 2.13. The execution of a Koepke program p on the input s : β → 2

is a triple

S : θ → Ord H : θ → Ord T : θ → β∪θ3

representing program state, head position, and tape contents, respectively, at
each step τ < θ. Moreover, these functions satisfy the following requirements:

(1) θ is a successor ordinal, or θ = Ord. (The program halts if θ is a successor
ordinal, and the program diverges if θ = Ord.)

(2) S(0) = H(0) = 0. (The starting state and head position are both zero.)

(3) T (0)|β = s and T (0)≥β = 2. (The initial tape content is the input string,
possibly followed by blank symbols.)

(4) If τ < θ and p(S(τ), T (τ)H(τ)) is undefined, then τ+1 = θ. (The program
halts if it reaches a state and symbol combination for which it has no
accompanying instruction.)

(5) If τ < θ and p(S(τ), T (τ)H(τ)) = (γ,m, n), then τ + 1 < θ and

S(τ + 1) = γ

H(τ + 1) =

H(τ) + 1 if n = 1

H(τ)− 1 if n = 0 and H(τ) is a successor ordinal

0 otherwise

T (τ + 1)δ =

{
m if δ = H(τ)

T (τ)δ otherwise

(6) If τ < θ is a limit ordinal, then

S(τ) = lim inf
γ→τ

S(γ) H(τ) = lim inf
γ→τ

H(γ) T (τ)δ = lim inf
γ→τ

T (γ)δ

13

We say that p halts after τ steps if θ = τ + 1. If p halts after τ steps, its
output is T (τ)|η, where η is the least ordinal such that either η = domT (τ) or
T (τ)η /∈ 2. (This ensures that the output of a halting program is also a string.)
If p diverges, then it has no output. 4

One of the important results that Koepke proved [9, Theorem 6.2] is the
following:

Theorem 2.14 (Koepke). A string s is the output of a Koepke program on an
input string with finite support if and only if s is constructible. 4

14

Chapter 3

Infinite Programs

Having taken care of the necessary preliminaries, we are prepared to define our
programs and to prove some basic results.

3.1 Definitions

Recall that a Koepke program is a partial function of the form p : n × 3 99K

n × 3 × 2, where n < ω. The most obvious way to generalize this definition is
to allow for infinitely many program states (i.e. replace n < ω with α ∈ Ord).
This is precisely what our definition of a program will be:

Definition 3.1. A program is a partial function of the form p : α×3 99K α×3×2,
where α ∈ Ord. We denote the class of all programs by Prog. 4

Now recall Definition 2.13, which is the definition for the execution of a
Koepke program. We can, and will, use this exact same definition as the def-
inition for the execution of a program. Next, we define what it means for a
function to be computable:

Definition 3.2. For any program p, let Fp : 2<Ord 99K 2<Ord denote the class
of all pairs (s, t) such that p halts on s and t is the output of p on s. We say
that a function F : 2<Ord 99K 2<Ord is computable if F = Fp for some program
p, in which case, we say that p computes F . 4

This definition is specifically for functions on strings. To define computabil-
ity for functions on ordinals, we give the following definition:

Definition 3.3. A function F : mOrd → nOrd is computable if the function
Gn ◦ F ◦ G−1

m : 2<Ord 99K 2<Ord is computable, where Gn : (α1, . . . , αn) 7→
[χα1
α1
, . . . , χαnαn]. 4

Implicit in this definition is the fact that an ordinal α is encoded as the string
χαα, and that a tuple of ordinals is encoded as a list of their respective encodings.

15

However, when describing programs in a proof, we will often disregard this
formal encoding because the exact details of the encoding are often irrelevant to
the proof itself. Instead, we will reason about operations on ordinals and lists
at a higher level.

In addition to computing functions, we will also be interested in deciding
classes of strings:

Definition 3.4. A class A of strings is decidable if there exists a (total) com-
putable function F : 2<Ord → {'0', '1'} such that F (s) = '1' if and only if s ∈ A.
Moreover, if p is a program such that F = Fp, then we say that p decides A. 4

3.2 Basic Results

At this point, we should emphasize that our programs can compute anything a
Turing machine can compute. Furthermore, they can also compute anything a
Koepke program can compute because every Koepke program is a finite program.
So then a natural question to ask is what can infinite programs do that finite
programs cannot do? In short, the only real advantage an infinite program
has over a finite one is the ability to have infinite strings hard-coded into the
program. This allows the program to write out the hard-coded string and then
use said string in its computation. The next two propositions demonstrate the
power that hard-coding infinite strings affords an infinite program.

Proposition 3.5. Every set of strings is decidable. 4

Proof. Let a be a set of strings. Then there exists a bijection f : α → a for
some ordinal α. Let t = [f(β) | β < α]. Given an input s, a program can write
out the list t and check if s @− t. If so, then the program halts and outputs '1',
and otherwise the program outputs '0'. Such a program will decide a, so a is
decidable.

Proposition 3.6. Every function f : 2<Ord 99K 2<Ord that is a set is com-
putable. 4

Proof. Let f : 2<Ord 99K 2<Ord be a set, and let a = {[s, t] | (s, t) ∈ f}.
Then a is a set, so there exists a bijection g : α → a for some ordinal α. Let
u = [g(β) | β < α]. Let p be a program that when given an input s, writes
out the list u, checks whether [s, t] @− u for some string t, and if so, outputs t.
Otherwise, p diverges. Then clearly p computes f , so f is computable.

Initially it may seem that these results imply that our notion of computation
is trivial in the sense that we can compute anything, but this is actually not the
case. As we will show, there is a halting problem for our programs that is not
decidable. This does not contradict the results above because, as we will see,
the halting problem is a proper class and not a set. Therefore, while every set
of strings is decidable, there are proper classes that are not decidable. This is

16

analogous to the fact that a Turing machine can decide any finite set of natural
numbers, but there are infinite sets that are not decidable.

3.2.1 Computing the Gödel Pairing Function

In order to define the halting problem, we will need a way to encode programs
as strings. There are, of course, a variety of ways to do this, but the encoding
we will give uses Γ. For this reason, it will be useful to show that both Γ and
Γ−1 are computable.

Theorem 3.7. The function Γ is a computable bijection such that its inverse
is also computable and Γ[ωα × ωα] = ωα for all α. 4

Proof. It suffices to show that Γ and its inverse are computable. To show that
Γ−1 is computable, note that if given an ordinal γ, a program can list the first
γ + 1 pairs of ordinals according to the order ≺ given in Definition 2.5. This
is done by incrementing an ordinal variable µ, and for each value of µ, listing
the pairs in {(α, µ) | α < µ} according to their first coordinate, followed by
the pairs in {(µ, β) | β ≤ µ}, listed according to their second coordinate. This
process repeats until the program has listed γ + 1 pairs of ordinals, at which
point the program can output the pair at position γ in the list. This pair will
be the value of Γ−1(γ).

To show that Γ is computable, note that if given a pair of ordinals (α, β), a
program can increment an ordinal variable γ, and for each value of γ, compute
Γ−1(γ) and compare it to (α, β), repeating this process until the two are equal.
Since Γ is a bijection, this must occur eventually, at which point the program
can output γ. This will be the value of Γ(α, β).

On its own, Γ is quite useful, but it would also be useful to have functions
with similar properties for triples, quadruples, quintuples, etc. To this end, we
give the following definition:

Definition 3.8. For n > 0, the function Γn : nOrd → Ord is defined recur-
sively on n so that Γ1 is the identity function on ordinals, and for m > 0,
Γm+1(α1, . . . , αm, αm+1) = Γ(Γm(α1, . . . , αm), αm+1). 4

From this definition, we obtain the following corollary of Theorem 3.7:

Corollary 3.9. The function Γn is a computable bijection such that its inverse
is also computable and Γ[nωα] = ωα for all α. 4

Often when using Γn, the value of n will be clear from context. For this
reason, we will often drop the subscript n and just use Γ to denote Γn.

3.2.2 The Halting Problem

As mentioned previously, we will be using Γ to encode programs as strings. This
encoding is defined in terms of the support of a string. We say that a string s

17

is a code for the program p if supp s = Γ[p]. More explicitly, s is a code for p if

{α ∈ dom s | s(α) = 1} = {Γ5(α,m, β, n, k) | (α,m, β, n, k) ∈ p}

Note that every string is a code for at most one program, but not every string is
a code for some program. For strings that do not encode any program, we will
associate them with a program that computes the identity function on strings.
Strictly speaking, the empty set is an example of such a program because it
immediately halts on every input, and therefore, its input is always its output.
Therefore, to assign a program to every string, we give the following definition:

Definition 3.10. The function π : 2<Ord → Prog is given by

π(s) =

{
p if supp s = Γ[p]

∅ otherwise

4

As a final matter of notation before defining the halting problem, we will
write p ↓ s if the program p halts on the input s, and we will write p ↑ s if the
program p diverges on the input s. Furthermore, we will write p ↓α s if p halts
after fewer than α steps on the input s. Now we can finally give a definition of
the halting problem:

Definition 3.11. The halting problem is the class

K = {[s, t] ∈ List | π(s) ↓ t}

4

As promised, we can prove the following theorem:

Theorem 3.12. The halting problem is undecidable. 4

Proof. Assume to the contrary that there exists a program p that decides K.
Let p′ be a program that when given an input s, computes Fp([s, s]), and then
halts if and only if Fp([s, s]) = '0'. Let e be a code for p′. Then we have that

p′ ↓ e ⇐⇒ π(e) ↓ e (e is a code for p′)

⇐⇒ Fp([e, e]) = '1' (p decides K)

⇐⇒ p′ ↑ e (definition of p′)

This creates a contradiction. Hence, K is undecidable.

Thus, we have shown that our notion of computation is indeed nontrivial in
the sense that not everything is computable.

18

3.2.3 The Universal Program

The encoding we have introduced to define the halting problem can also be used
to prove that there is a universal program:

Theorem 3.13. There exists a program p such that Fp(s) ' Fπ(s0)(s1) if
s = [s0, s1] for strings s0 and s1, and otherwise, p ↑ s. 4

Proof. Let p be a program that when given an input s, checks if s is a two-
element list. If not, the program diverges. Otherwise, s = [s0, s1] for strings s0

and s1, in which case p can determine s0 and s1 from s. Therefore, p can write
out the elements of p′ = Γ−1[supp s0] because Γ−1 is computable. Then p can
check whether p′ is a program by checking that

(1) β, δ ∈ 3 and ζ ∈ 2 for every (α, β, γ, δ, ζ) ∈ p′

(2) If (α, β, γ, δ, ζ), (α, β, γ′, δ′, ζ ′) ∈ p′, then (γ, δ, ζ) = (γ′, δ′, ζ ′)

If p′ is a program, then p has all the information it needs to simulate the
execution of p′ on the input s1. If p′ is not a program, then p halts and outputs
s1. Therefore, p is a program such that Fp(s) ' Fπ(s0)(s1) if s = [s0, s1] for
strings s0 and s1, and otherwise, p ↑ s.

Note that the universal program is finite because it does not require any hard-
coded, infinite strings. Therefore, the universal program is a Koepke program,
so every program is equivalent to a Koepke program with a string parameter.

19

Chapter 4

A Hierarchy of Computability

Until now, we have not said much about the length or size of our programs
other than the fact that they are either finite or infinite. A natural question to
ask, however, is to what extent the order type or cardinality of states allowed
in a program affects what they can compute. We will demonstrate that the
order type is relatively unimportant, but the cardinality does make a difference.
Furthermore, we will show that this leads to a hierarchy of computability based
on the cardinalities of programs.

4.1 Trimmed Programs

It will be helpful for this chapter (and in general) to focus our attention on
trimmed programs. Before defining what a trimmed program is, we introduce
some notation: For any program p, let sts p denote the set of states in p. That
is, sts p =

⋃{
{α, β} | (∃m,n, k)(α,m, β, n, k) ∈ p}. A program p is trimmed

if sts p is an ordinal. The motivation behind this definition is that a trimmed
program has no “gaps” between states. The removal of these gaps is analogous
to removing blank lines in a computer program, hence the use of the word
trimmed.

We will show that every program is equivalent to a trimmed program. By
equivalent, we mean that they compute the same function. In general, the
programs p and p′ are equivalent if Fp = Fp′ . Showing that every program is
equivalent to a trimmed program is not entirely trivial, especially in the case of
infinite programs. One of the reasons for this is demonstrated in the following
example:

Example 4.1. Consider the following program:

{(α, 2, α+ 1, 1, 1) | α < ω or α = ω + 1}

Note that this program is not trimmed because it has a gap at ω. On the input
ε, this program will output χωω. If we naively remove the gap by shifting the

20

state ω + 1 down to ω, we have the following program:

{(α, 2, α+ 1, 1, 1) | α < ω + 1}

This program is indeed trimmed, but it will output χω+1
ω+1 when given the input

ε. Therefore, in general, we cannot remove gaps at limit ordinals by simply
shifting states. 4

One may notice that for the program in the example above, we could just
remove the state ω + 1 altogether and obtain an equivalent trimmed program,
but in general this will not always work. What will always work, however, is a
combination of shifting states and adding limit states. This method is used in
the proof of the following theorem:

Theorem 4.2. Every program of cardinality less than ℵα is equivalent to a
trimmed program of cardinality less than ℵα. 4

Proof. Let p be a program of cardinality less than ℵα, and let β be the order
type of (sts p,<), where sts p = {

⋃
x | x ⊆ sts p} (i.e. the closure of sts p). Then

there exists an order isomorphism f : β → sts p. Note that f is continuous
because sts p contains all its limit points. Now let

p′ = {(f−1(γ),m, f−1(δ), n, k) | (γ,m, δ, n, k) ∈ p}

Then p′ is equivalent to p. To see why, note that if Sp and Sp′ are the functions
denoting the state of p and p′ respectively at each stage in their execution, then
f
(
Sp′(τ)

)
= Sp(τ) at every stage τ . This is obviously true at successor stages,

but it is also true at limit stages because f is a continous order isomorphism, so

f

(
lim inf
τ→λ

Sp′(τ)

)
= lim inf

τ→λ
f
(
Sp′(τ)

)
Therefore,

f
(
Sp′(λ)

)
= f

(
lim inf
τ→λ

Sp′(τ)

)
(definition of Sp′)

= lim inf
τ→λ

f
(
Sp′(τ)

)
(f is cont. order isomorphism)

= lim inf
τ→λ

Sp(τ) (induction hypothesis)

= Sp(λ) (definition of Sp)

Since these programs perform the same operations at corresponding states, it
follows that these programs must be equivalent.

We are not quite done yet. Although sts p′ is an ordinal because sts p′ =

f−1[sts p] = f−1
[
sts p

]
= β, it is not necessarily the case that sts p′ = sts p′. In

other words, there may still be “gaps” at limit ordinals. Therefore, we need to
fill in these gaps. To do so, let

p′′ = p′ ∪ {(γ,m, β,m, 1) | (γ,m) ∈ (sts p′ \ sts p′)× 3}

21

Then p′′ is equivalent to p′. To understand why, note that if p′ enters a state
in sts p′ \ sts p′, then it will halt. Similarly, if p′′ enters a state in sts p′ \ sts p′,
then it will move its tape head to the right once and enter the state β, at which
point it will also halt. Since the execution of p′′ and p′ is the same at every
other state, these programs are equivalent, so p′′ is equivalent to p.

And finally, p′′ is trimmed because sts p′′ = sts p′∪{β} = β+1 if sts p′\sts p′ is
nonempty, and otherwise, sts p′′ = sts p′ = sts p′ = β. Furthermore, |sts p′| < ℵα
because | sts p′| = | sts p| < ℵα, so | sts p′′| < ℵα. Hence, p′′ is a trimmed program
of cardinality less than ℵα that is equivalent to p.

A nice consequence of the theorem we have just proven is that if p is a
program of cardinality less than ℵα, then we can assume that sts p is an ordinal
less than ωα. Can we make any further assumptions about the specific value
of sts p? It turns out we can. If p is a program of cardinality ℵα, then we can
assume that sts p = ωα + 1. This is demonstrated in the proof of the following
thereom:

Theorem 4.3. Every program of cardinality at most ℵα is equivalent to a
trimmed program p such that sts p ≤ ωα + 1. 4

Proof. Let p be a program of cardinality at most ℵα. By Theorem 4.2, we can
assume p is trimmed. If |p| < ℵα, then since p is trimmed, sts p < ωα, so
clearly sts p ≤ ωα + 1. Now suppose |p| = ℵα. Then there exists a bijection
f : ωα → sts p. Let

q = {(f−1(β),m, f−1(γ), n, k) | (β,m, γ, n, k) ∈ p}
≺ = {(β, γ) ∈ ωα × ωα | f(β) < f(γ)}

Note that ≺ is a well-order on ωα because sts p is an ordinal.
The idea behind the rest of the proof is to give an encoding of q and ≺ as

a single string of length ωα, and then argue that there exists a program p′ that
writes this string on its tape, decodes q and ≺, reconstructs p from q and ≺,
and then simulates p. Afterwards, we will explain why p′ is a trimmed program
such that sts p′ = ωα+ 1. To this end, we begin by giving the encoding of q and
≺.

Since Γ is such that Γ[nωα] = ωα, it follows that Γ[q] ⊆ ωα ⊇ Γ[≺]. There-
fore, we can encode q as sq = χωαΓ[q] and ≺ as s≺ = χωαΓ[≺], and then we can “zip”
these two strings together into a single string s of length ωα:

s =
⊔
β<ωα

{(
0, sq(β)

)
,
(
1, s≺(β)

)}
An infinite program can contain an encoding of s in its states and can there-
fore write s on its tape. After this, the program can use s to write q and ≺
because Γ−1 is computable. Furthermore, the program can list the elements of
ωα according to the order ≺. To see why, first note that for every β < ωα, the

22

program can build a list of all γ ≺ β. This is done by incrementing γ, and for
each value of γ < ωα, checking if (γ, β) ∈ ≺ and adding it to the list if so. This
process repeats until the program has gone through all values of γ < ωα. (The
program can check that γ < ωα because the program can determine ωα from s.)

Using the procedure above, the program can build a list u of the elements of
ωα according to the order ≺. This is done by incrementing an ordinal variable
β, and for each value of β < ωα, creating a list of all γ ≺ β as explained above.
Then the program can compare this list to u. If they contain the same elements
(not necessarily in the same order), it means that β is the next ordinal according
to the order ≺. Therefore, if this occurs, the program appends β to u, resets β
to 0, and repeats this process to search for the next ordinal to add to the list u.
Otherwise, the program just increments β and continues its current search. This
process repeats until the program goes through all values of β < ωα without
adding any elements to u, at which point u will be a list of the elements of ωα
according to the order ≺.

Now note that by listing the elements of ωα according to the order ≺, this
allows the program to compute f because f(β) = rank≺ β, which is just the
position of β in the list u. Therefore, the program can use f and q to write p
and then use this to simulate p on the given input. Since this program simulates
p, the two must be equivalent.

Finally, we must explain why the program p′ just described is a trimmed
program such that sts p′ = ωα + 1. To explain this, note that p′ can be thought
of as having two main parts: the part that writes down s, which requires ωα
consecutive states, and the part that does the necessary computations on s

to simulate p, which requires only a finite number n of states. Therefore, we
can organize p′ as follows: At state zero, p′ does nothing and transitions to
state n + 1, and then from state n + 1 through (but not including) state ωα,
p′ writes down s. Having transitioned through all these states, p′ will be at a
limit stage, and its state will be ωα. Therefore, at state ωα, p′ does nothing
and transitions to state 1, and then states 1 through (and including) n can be
used to perfrom the necessary computations on s to simulate p. Therefore, p′ is
trimmed (because we can assume its finite portion is trimmed by Theorem 4.2)
and sts p′ = ωα + 1.

The important consequence of this theorem is that the order type of a pro-
gram’s states is relatively unimportant. This is because any program can be
rewritten as a program p such that sts p = ωα + 1 for some α. What is im-
portant, however, is the program’s cardinality. For this reason, we give the
following definitions:

Definition 4.4. A function is κ-computable if it is computed by a program of
cardinality less than κ. 4

Definition 4.5. A class of strings is κ-decidable if it is decided by a program
of cardinality less than κ. 4

23

4.2 The Restricted Halting Problem

What we would like to show is that if κ > λ ≥ ω, then the notion of κ-
computability is strictly stronger than the notion of λ-computability. That is,
there are κ-computable functions that are not λ-computable. If this is the case,
then there is a hierarchy of computability notions based on the cardinalities of
programs.

For solving this problem, a natural starting point would be the halting prob-
lem. We know that the halting problem is not decidable by any program, but
maybe we can define a modified halting problem that is κ-decidable but not
λ-decidable. To this end, we give the following definition:

Definition 4.6. For any infinite cardinal κ, the κ-restricted halting problem is
the set Kκ = {s ∈ K | |s| < κ}. 4

Indeed we can show that Kκ is not κ-decidable. The proof is very similar to
the proof that K is not decidable, but there are a few added details to consider,
so we will give the proof in full.

Theorem 4.7. Kκ is not κ-decidable. 4

Proof. Assume to the contrary that Kκ is κ-decidable. Then there exists a
program p of cardinality less than κ that decides Kκ. Let p′ be a program
that when given an input s, computes Fp([s, s]), and then halts if and only if
Fp([s, s]) = '0'. Note that p′ will also be a program of cardinality less than κ.
By Theorem 4.2, we can assume p′ is trimmed, so due to the properties of Γ,
p′ has a code e of cardinality less than κ. Since e has cardinality less than κ, it
follows that [e, e] also has cardinality less than κ, but then we have that

p′ ↓ e ⇐⇒ π(e) ↓ e (e is a code for p′)

⇐⇒ Fp([e, e]) = '1' (p decides Kκ)

⇐⇒ p′ ↑ e (definition of p′)

This creates a contradiction. Hence, Kκ is not κ-decidable.

We can also show that Kκ is in fact κ+-decidable. To prove this, we will
need the following lemma:

Lemma 4.8. If p is a program and s is a string such that both are of cardinality
less than κ > ω, then p halts on the input s only if it halts after fewer than κ
steps on the input s. 4

Proof. It is already known [2, Proposition 1] that if given an input s of cardi-
nality less than κ > ω, a finite program will halt on s only if it halts after fewer
than κ steps on the input s. Let p be a program and let s be a string such
that both are of cardinality less than κ > ω. Since p has cardinality less than
κ, it has a code e of cardinality less than κ, so the string [e, s] is of cardinality

24

less than κ. Since the universal program is finite, it will halt on [e, s] only if it
halts after fewer than κ steps on the input [e, s]. Therefore, p halts on the input
s only if it halts after fewer than κ steps on the input s because simulating a
program’s execution takes at least as many steps as the execution itself.

In essence, this lemma gives us a κ+-computable halting criterion for pro-
grams and input strings of cardinality less than κ > ω. We can use this fact to
prove the following theorem:

Theorem 4.9. Kκ is κ+-decidable. 4

Proof. We must consider two cases. For the first case, suppose κ = ω. Then Kκ

is countable, so there exists a bijection f : ω → Kκ. Let t = [f(α) | α < ω], and
note that t is also countable. Let p be a program that when given an input s,
writes out the list t and checks if s @− t. If so, then p halts and outputs '1', and
otherwise p outputs '0'. Clearly p decides Kκ. Furthermore, p has cardinality
less than ω1 because t is countable. Hence, Kκ is κ+-decidable.

Now suppose κ > ω. Let p be a program that when given an input s, writes
out κ and checks that s is shorter than κ. If not, then p halts and outputs '0'.
Otherwise, p checks that s = [s0, s1] for strings s0 and s1, and if not, p halts and
outputs '0'. Otherwise, p checks if π(s0) ↓κ s1 by simulating π(s0) for κ steps on
the input s1. By Lemma 4.8, it follows that π(s0) ↓ s1 if and only if π(s0) ↓κ s1,
so p can determine if [s0, s1] ∈ Kκ by determining if π(s0) ↓κ s1. Therefore, p
decides Kκ+ . Furthermore, p has cardinality less than κ+ because κ < κ+ and
because the universal program is finite. Hence, Kκ is κ+-decidable.

Therefore, if κ > λ ≥ ω, then Kλ is κ-decidable but not λ-decidable. Hence,
by increasing the cardinality of programs, we indeed obtain a stronger notion
of computability.

25

Chapter 5

Computable Enumerability

One of the most commonly studied topics in finite computability theory is com-
putable enumerability. Typically, a set of natural numbers (or equivalently, a
set of finite strings) is defined as computably enumerable if it is the domain
of a (Turing) computable function, but strictly speaking, this is not so much
a definition of computable enumerability as it is a definition of semidecidabil-
ity. It just so happens that in finite computability theory, these concepts are
equivalent. The reason for their equivalence has to do with the fact that the
set of natural numbers (or equivalently, the set of finite strings) is computably
enumerable. When we generalize to an infinite setting, however, the class of
ordinals is computably enumerable, but the class of strings is not necessarily
computably enumerable. This fact has some interesting consequences which we
will address in this chapter.

5.1 Enumerability vs Semidecidability

To be precise, we will say that a class A of strings is semidecidable if A =

domF for some computable function F . This captures the intuitive notion of
semidecidability because if a class A of strings is semidecidable, then there exists
a program that can “recognize” the elements of A. In contrast, we will say that
a class A of strings is computably enumerable if there exists a set-like well-order
≺ on A such that the function rank−1

≺ : Ord 99K A is computable. This captures
the intuitive notion of computable enumerability because if a class A of strings is
computably enumerable, then there exists a program that can list the elements
of A according to some set-like well-order. In light of the previous chapter, we
can also give definitions for κ-semidecidable and κ-computably enumerable in
the obvious way (i.e. replace the word “computable” with “κ-computable” in
each definition).

Although the notions of semidecidability and computable enumerability are
equivalent in finite computability theory, they are not necessarily equivalent for

26

our programs. We can, however, show that semidecidability always follows from
computable enumerability:

Theorem 5.1. Every κ-computably enumerable class of strings is κ-semidecid-
able. 4

Proof. Let A be a κ-computably enumerable class of strings. Then there exists
a set-like well-order ≺ on A such that rank−1

≺ is κ-computable. Let p be a
program that when given an input s, increments an ordinal variable α, and for
each value of α, computes rank−1

≺ α and compares it to s. If they are equal, p
halts. Otherwise, the process repeats. Note that p ↓ s if and only if s ∈ A, so
A = domFp. Furthermore, p is a program of cardinality less than κ because
rank−1

≺ is κ-computable. Hence, A is κ-semidecidable.

In the special case that A is a class of (codes for) ordinals, then the converse
of the previous theorem also holds. That is, computable enumerability follows
from semidecidability:

Theorem 5.2. Every κ-semidecidable class of ordinals is κ-computably enu-
merable. 4

Proof. Let A be a κ-semidecidable class of ordinals. Then there exists a program
p of cardinality less than κ such that A = domFp. Let ≺ be a set-like well-
order on A such that α ≺ β if and only if α′ < β′, where α′ is the least ordinal
such that Γ−1(α′) = (α, γ) and p ↓γ α. Now it remains to show that rank−1

≺ is
κ-computable.

Given an ordinal α, a program can list the first α + 1 ordinals according
to the order ≺. This is done by incrementing an ordinal variable β, and for
each value of β, computing Γ−1(β) = (γ, δ) and checking if p ↓δ γ by simulating
p for δ steps on the input γ. If p ↓δ γ and γ is not already on the list being
constructed, then γ is added to the list. Otherwise, γ is not added to the
list. This process repeats until the program has listed the first α + 1 ordinals
according to the order ≺, at which point the program can output the ordinal
at position α. This will be the value of rank−1

≺ α. Note that if A is a set and
not a proper class, then it may be that α /∈ dom rank−1

≺ , but in this case, the
program just described will diverge as desired. Since Γ−1 is ω-computable and
p has cardinality less than κ, it follows that rank−1

≺ is κ-computable. Hence, A
is κ-computably enumerable.

Thus, for classes of ordinals, the notions of semidecidability and computable
enumerability are equivalent. The same is not necessarily true for classes of
strings. In particular, the halting problem is an example of a class that is
semidecidable, but not necessarily computably enumerable. Moreover, the class
of strings is an example of a class that is even decidable, but not necessarily com-
putably enumerable. It is the case, however, that the halting problem and the

27

class of all strings are computably enumerable if and only if every semidecidable
class of strings is computably enumerable:

Theorem 5.3. The following are equivalent:

(1) Every κ-semidecidable class of strings is κ-computably enumerable.

(2) K is κ-computably enumerable.

(3) 2<Ord is κ-computably enumerable.

4

Proof. To show that (1) implies (2), it suffices to show thatK is κ-semidecidable.
Note that K = domFp, where p is the universal program (see Theorem 3.13).
Since the universal program is finite, it follows that K is κ-semidecidable.

To show that (2) implies (3), suppose K is κ-computably enumerable. Then
there exists a set-like well-order ≺ on K such that rank−1

≺ is κ-computable. Now
recall that the empty set is a program that immediately halts on every input.
Since ε is a code for the empty set, it follows that [ε, s] ∈ K for every s ∈ 2<Ord.
Thus, we can define a set-like well-order ≺′ on 2<Ord such that s ≺′ t if and
only if [ε, s] ≺ [ε, t]. Now it remains to show that rank−1

≺′ is κ-computable.
Given an ordinal α, a program can list the first α + 1 strings according to

the order ≺′. This is done by incrementing an ordinal variable β, and for each
value of β, computing rank−1

≺ β. If rank−1
≺ β = [ε, t] for some string t, then

the program appends t to the list it is constructing. Repeating this process,
the program will eventually list the first α + 1 strings according to the order
≺′, at which point the program can output the string at position α. This will
be the value of rank−1

≺′ α. Hence, rank−1
≺′ is κ-computable because rank−1

≺ is
κ-computable, so 2<Ord is κ-computably enumerable.

To show that (3) implies (1), suppose 2<Ord is κ-computably enumerable,
and let A be a κ-semidecidable class. Then there exists a set-like well-order ≺
on 2<Ord such that rank−1

≺ is κ-computable, and there exists a program p of
cardinality less than κ such that A = domFp. Let ≺′ be a set-like well-order
on A such that s ≺′ t if and only if αs < αt, where αs is the least ordinal such
that Γ−1(αs) = (rank≺ s, β) and p ↓β s. Now it remains to show that rank−1

≺′ is
κ-computable.

Given an ordinal α, a program can list the first α + 1 strings according to
the order ≺′. This is done by incrementing an ordinal variable β, and for each
value of β, computing Γ−1(β) = (γ, δ). Then the program can determine if
p ↓δ s, where s = rank−1

≺ γ, by simulating the program p for δ steps on the
input s. If p ↓δ s and s is not already on the list being constructed, then s

is appended to the list. Repeating this process, the program will list the first
α+ 1 strings according to the order ≺′, at which point it can output the string
at position α. This will be the value of rank−1

≺′ α. Note that if A is a set and
not a proper class, then it may be that α /∈ dom rank−1

≺′ , but in this case, the

28

program just described will diverge as desired. Hence, rank−1
≺′ is κ-computable

because rank−1
≺ is κ-computable and because p is a program of cardinality less

than κ. Thus, A is κ-computably enumerable.

In the following section, we will demonstrate that the statement “the class of
strings is computably enumerable” is independent of GBC. As a consequence of
the theorem we have just shown, this implies that the equivalence of computable
enumerability and semidecidability is independent of GBC.

5.2 Independence of Enumerability

For convenience, we will refer to the statement “the class of strings is computably
enumerable” as ACE, which is an abbreviation for “the axiom of computable
enumerability”. Similarly, we will use ACEκ to refer to the statement “the
class of strings is κ-computably enumerable”. One should note that for each
infinite cardinal κ, ACEκ implies ACE. Furthermore, due to the definition of
computably enumerable, ACE implies that the class of strings is well-ordered.

We should also point out that ACE is expressible in the language of ZF. This
is because ACE is equivalent to the statement “there exists a program p such
that p halts on all and only the (codes for) ordinals, every string is the output of
p on some ordinal input, and for any two distinct ordinals, the outputs of p on
these ordinals are distinct”. This statement only requires quantifying over sets
because halting executions are sets. Hence, ACE is equivalent to a statement
in the language of ZF.

As the word “axiom” may suggest, one can show that ACE and ACEκ are
independent of GBC. The proof involves showing that both ACEκ and ¬ACE

are consistent with GBC. To show that ACEκ is consistent with GBC, we will
show that ACEκ is a consequence of V = L. To prove this, however, we need
the following result from Koepke [9, Theorem 6.2]:

Theorem 5.4 (Koepke). A string s is the output of a finite program on an
input string with finite support if and only if s is constructible. 4

This theorem is important because a program can “simultaneously” execute
every finite program on every possible string with finite support, which allows a
program to enumerate the strings in L. Therefore, if we assume V = L, then a
program can enumerate the entire class of strings. This is demonstrated in the
proof of the following lemma:

Lemma 5.5. If V = L, then 2<Ord is ω-computably enumerable. 4

Proof. Suppose V = L. Then it follows from Theorem 5.4 that every string is
the output of some finite program on an input string with finite support. Let
fin : Ord→ ω be the function that maps an ordinal α to the unique n < ω such
that α = ω · β + n for some ordinal β. It is not that hard to show that fin is

29

ω-computable. Let ≺ be a set-like well-order on 2<Ord such that s ≺ t if and
only if αs < αt, where αs is the least ordinal such that

(1) Γ−1(αs) = (β, γ, δ, ζ, η)

(2) fin γ + 1 = m and fin ζ + 1 = n

(3) Γ−1
m (β) = (β1, . . . , βm) and Γ−1

n (δ) = (δ1, . . . , δn)

(4) e = χβ
′

b , where b = {β1, . . . , βm} and β′ =
⋃
b

(5) u = χδ
′

d , where d = {δ1, . . . , δn} and δ′ =
⋃
d

(6) π(e) ↓η u

(7) Fπ(e)(u) = s

In other words, αs is the least ordinal that encodes a finite program with code
e, an input string u with finite support, and an ordinal η, such that π(e) ↓η u

and Fπ(e)(u) = s. Since we are assuming V = L, such an ordinal must exist for
every string s. Now it remains to show that rank−1

≺ is ω-computable.
Given an ordinal α, a program can list the first α + 1 strings according

to the order ≺. This is done by incrementing an ordinal variable θ, and for
each value of θ, computing e, u, and η as defined above. Using these, the
program can determine if π(e) ↓η u by simulating π(e) for η steps on the input
u. If π(e) ↓η u, then the program can determine if Fπ(e)(u) is already in the
list it is constructing, and if not, it can add Fπ(e)(u) to the list. This process
repeats until the program has listed α+ 1 strings, at which point it can output
the string at position α. This will be the value of rank−1

≺ . Hence, rank−1
≺

is computable. Furthermore, the program just described is finite because the
universal program is finite and because Γ−1 and fin are both ω-computable.
Thus, 2<Ord is ω-computably enumerable.

Therefore, ACEω is a consequence of V = L, so for every infinite cardinal κ,
ACEκ is a consequence of V = L. To show that ¬ACE is consistent with GBC,
we will need a couple results from [3, Theorems 3.1 and 4.2]:

Theorem 5.6 (Easton). If GB is consistent, then the axiom of global choice
cannot be proven in the system GB + AC. 4

Theorem 5.7. If ϕ is a sentence in the language of ZF, then ϕGB is provable
in GBC if and only if ϕGB is provable in GB + AC. 4

We will also need the following lemma:

Lemma 5.8. If 2<Ord is well-ordered, then V can be well-ordered. 4

30

Proof. Suppose ≺ is a well-order on 2<Ord. For every α, let ≺α = ≺∩ (α2×α2).
Let P : V <Ord → V <Ord be given by

P (f) =
{(

rank≺dom f
t, {f(β) | β ∈ supp t}

)
| t ∈ dom f2

}
Note that P (f) is a surjection from some ordinal to P(ran f). Using P , we can
define a function F : Ord→ V as follows:

F0 = ε

Fα+1 = Fα t P (Fα) F =
⋃

α∈Ord

Fα

Fλ =
⋃
α<λ

Fα

It can be shown by induction that ranFα = Vα for every α, so F is a surjection.
Therefore, we can define a well-order ≺′ on V by letting x ≺′ y if and only if
αx < αy, where αx is the least ordinal such that F (αx) = x. Thus, V can be
well-ordered.

Note that the proof of this lemma does not require choice, so it can be proven
in GB. Therefore, the axiom of global choice is a theorem of GB + ACE. With
this in mind, we can prove the following:

Theorem 5.9. For every infinite cardinal κ, ACEκ and ¬ACE are consistent
with GBC. 4

Proof. Let κ be an infinite cardinal. By Lemma 5.5, ACEκ is a consequence of
V = L. Since V = L is consistent with GBC, it must be that ACEκ is consistent
with GBC. Furthermore, ¬ACE is consistent with GBC. To demonstrate this,
assume to the contrary that GBC proves ACE. Since ACE is expressible in the
language of ZF, it follows by Theorem 5.7 that ACE can be proven in GB+AC.
But then by Lemma 5.8, the axiom of global choice can be proven in GB + AC,
which contradicts Theorem 5.6. Hence, ¬ACE is consistent with GBC.

Corollary 5.10. For every infinite cardinal κ, ACE and ACEκ are independent
of ZFC and GBC. 4

It is interesting that the axiom of global choice follows from ACE and that
the reverse does not hold, but intuitively, the reason for this is because ACE

requires that there exists a choice function that is “computable” in the sense
that it is definable from some program. The axiom of global choice, however,
places no such requirements on the choice function. This is similar to how
V = L implies the axiom of global choice and the reverse does not hold. As
demonstrated in Lemma 5.5, there is clearly a connection between ACE and
V = L. The following theorem clarifies the exact nature of this connection:

Theorem 5.11. V = L is equivalent to ACEω. 4

31

Proof. The forward implication follows from Lemma 5.5. As for the reverse
implication, note that if the class of strings is computably enumerable by a
finite program, then every string is constructible. This is a consequence of
Theorem 5.4. Therefore, it suffices to show that every set is constructible if
every string is constructible.

Suppose every string is constructible. The proof follows by ∈-induction.
Suppose x ⊆ L. Then there exists an ordinal α such that x ⊆ Lα. Let β be
the order type of (Lα, <L), where <L is the canonical well-order on L, and let
s be the unique string of length β such that supp s = rank<L [x]. Since we are
assuming that every string is constructible, there exists some γ > β ≥ α such
that s ∈ Lγ . Then x is definable over Lγ because x = {y ∈ Lα | rank<L y ∈
supp s}, so x ∈ L. Hence, every set is constructible, so V = L.

Therefore, if the class of strings is computably enumerable by a finite pro-
gram, then we can say something very interesting about V (i.e. that V = L).
But what if the class of strings is computably enumerable, but not by a finite
program? More generally, we have the following open question:

Open Question 5.12. What can be said of V if we assume ACEκ+ ∧ ¬ACEκ
for some infinite cardinal κ? 4

32

Chapter 6

Characterizing Computation

The purpose of this chapter is to characterize enumerability, decidability, and
computability in terms of the Lévy hierarchy.

6.1 Hereditary Lists

One of the first things we want to prove is that every ∆0(V) class of strings is
decidable. To this end, it will be helpful to have codes for every set. Before we
can give a definition of these codes, we need to prove a proposition about the
relation @−. Recall that s @− t if s is a string and t is a list such that s ∈ ran f ,
where f is the unique sequence of strings such that t = [f(α) | α ∈ dom f]. We
can prove the following proposition about @−:

Proposition 6.1. @− is a well-founded, set-like relation. 4

Proof. To show that @− is set-like, note that {s | s @− t} = ran f for some
sequence f of strings such that t = [f(α) | α ∈ dom f]. Since f is a set, its
range is a set, so {s | s @− t} is a set.

To show that @− is well-founded, assume to the contrary that there exists an
infinite descending chain of strings:

s0 A− s1 A− s2 A− s3 A− · · ·

Note that if s @− t, then dom s < dom t. Therefore, there exists an infinite
descending chain of ordinals:

dom s0 > dom s1 > dom s2 > dom s3 > · · ·

This, however, is impossible. Hence, @− is well-founded.

Since @− is a well-founded, set-like relation, we can give the two definitions
found below. For more details, see [7, pp. 66-68].

Definition 6.2. Λ is the class of strings that are hereditarily lists. That is, Λ

is the unique class such that Λ = {s ∈ List | {t | t @− s} ⊆ Λ}. 4

33

Definition 6.3. For every s ∈ Λ, let ŝ = {t̂ | t @− s}. 4

The importance of Λ comes from the fact that every s ∈ Λ encodes the set
ŝ. The following are a few examples of elements of Λ and the sets that they
encode:

ε̂ = ∅

[̂ε] = {∅}[̂
ε, [ε]

]
=
{
∅, {∅}

}
If we let Λκ = {s ∈ Λ | |s| < κ}, then we can show the following:

Theorem 6.4. If κ is regular, then s 7→ ŝ is a surjection from Λκ to Hκ. 4

Proof. Let κ be regular. The proof follows by ∈-induction. Suppose that for
all y ∈ x, if y ∈ Hκ, then there exists s ∈ Λκ such that ŝ = y. Suppose
x ∈ Hκ. Then x ⊆ Hκ and |x| < κ. By the induction hypothesis, for every
y ∈ x, there exists s ∈ Λκ such that ŝ = y. Therefore, there exists a function
f : x → Λκ such that f̂(y) = y for every y ∈ x. Since |x| < κ, there exists a
bijection g : α → ran f for some α < κ. Let s = [g(β) | β < α]. Note that
s ∈ Λ because s is a list and {t | t @− s} = ran f ⊆ Λ. Furthermore, |s| < κ

because κ is regular and |t| < κ for every t @− s. Hence, s ∈ Λκ. Moreover,
ŝ = {t̂ | t @− s} = {f̂(y) | y ∈ x} = x, so there exists s ∈ Λκ such that ŝ = x.
Thus, it follows by induction that for every x ∈ Hκ, there exists s ∈ Λκ such
that ŝ = x.

Corollary 6.5. s 7→ ŝ is a surjection from Λ to V . 4

Thus, every set is encoded by some element of Λ. While this is important,
the critical feature of these codes is that a program can determine if ŝ = t̂ and
ŝ ∈ t̂ from the codes s and t. For s, t ∈ Λ, let s =̂ t if and only if ŝ = t̂, and let
s ∈̂ t if and only if ŝ ∈ t̂. Then we can prove the following theorem:

Theorem 6.6. The classes Λ, =̂, and ∈̂ are all ω-decidable. 4

Proof. The programs described below use recursion. Formally speaking, this can
be implemented using a call stack, which itself can be implemented using a list,
but we will not concern ourselves with the details of such an implementation.
For examples of recursion being used in infinitary computations, see [10, 14].

(Λ) Let p be a program that when given a string s, checks if s is a list. If
not, then p halts and outputs '0'. Otherwise, p checks that Fp(t) = '1' for
every t @− s. If so, then p halts and outputs '1'. Otherwise, p halts and
outputs '0'. Note that p decides Λ, so Λ is decidable.

(=̂) Note that for s, t ∈ Λ, we have that

s =̂ t ⇐⇒ {û | u @− s} = {v̂ | v @− t}
⇐⇒ (∀u @− s)(∃v @− t)(u =̂ v) ∧ (∀v @− t)(∃u @− s)(u =̂ v)

34

This equivalence gives us an algorithm for deciding =̂.

Let p be a program that when given strings s and t, checks that s, t ∈ Λ.
If not, then p halts and outputs '0'. Otherwise, p checks that for every
u @− s, there exists v @− t such that Fp(u, v) = '1', and that for every v @− t,
there exists u @− s such that Fp(u, v) = '1'. If so, then p halts and outputs
'1'. Otherwise, p halts and outputs '0'. Note that p decides =̂, so =̂ is
decidable.

(∈̂) Note that for s, t ∈ Λ, we have that

s ∈̂ t ⇐⇒ ŝ ∈ {v̂ | v @− t}
⇐⇒ (∃v @− t)(s =̂ v)

This gives us an algorithm for deciding ∈̂.

Let p be a program that when given strings s and t, checks that s, t ∈ Λ.
If not, then p halts and outputs '0'. Otherwise, p checks that s =̂ v for
some v @− t. If so, then p halts and outputs '1'. Otherwise, p halts and
outputs '0'. Note that p decides ∈̂, so ∈̂ is decidable.

Note that each of these programs is finite, so each of these classes is indeed
ω-decidable.

As a final note, the structure (Λ, =̂, ∈̂) is very similar to the class of points
defined by Koepke in [11, 14], and just as the class of points is a model of ZFC,
one could also prove that (Λ, =̂, ∈̂) is a model of ZFC.

6.2 Decidability of ∆0(V) Classes

Using the codes discussed in the previous section, we want to show that every
∆0(V) class of strings is decidable. In order to do this, we will need to show
that the truth value of every ∆0 sentence with set parameters is computable.
To this end, we give the following definition:

Definition 6.7. For every ∆0 formula ϕ, let ϕ′ be given recursively as follows:

(x = y)′ = (x =̂ y) (x ∈ y)′ = (x ∈̂ y)

(¬ψ)′ = ¬ψ′ (ψ0 ∧ ψ1)′ = ψ′0 ∧ ψ′1(
(∃x ∈ y)ψ

)′
= (∃x @− y)ψ′

(
(∀x ∈ y)ψ

)′
= (∀x @− y)ψ′

4

The importance of ϕ′ comes from the fact that every relation and connective
in ϕ′ is computable. This is significant because ϕ and ϕ′ have the following
relationship:

Lemma 6.8. For every ∆0 formula ϕ and every s1, . . . , sn ∈ Λ, we have that
ϕ(ŝ1, . . . , ŝn) if and only if ϕ′(s1, . . . , sn). 4

35

Proof. The proof follows by induction on the complexity of ϕ. By the definitions
of =̂ and ∈̂, we have that ŝ = t̂ if and only if s =̂ t, and ŝ ∈ t̂ if and only if s ∈̂ t.
The cases for negation and conjunction are straightforward. For existential
quantification, note that

(∃x ∈ ŝi)ψ(x, ŝ1, . . . , ŝn) ⇐⇒ (∃t @− si)ψ(t̂, ŝ1, . . . , ŝn) (definition of ŝi)

⇐⇒ (∃t @− si)ψ′(t, s1, . . . , sn) (induction hypothesis)

The case for universal quantification follows by a similar argument.

Therefore, if we can show that a program can determine the truth value
of any sentence of the form ϕ′(s1, . . . , sn), where ϕ is ∆0 and s1, . . . , sn ∈ Λ,
then we will be able to show that every ∆0(V) class of strings is decidable.
As a technical note, we should say something about encoding a sentence like
ϕ′(s1, . . . , sn). There is obviously a finite encoding of ϕ′ for each ∆0 formula
ϕ. Therefore, if sϕ′ is the code for ϕ′(x1, . . . , xn) and s1, . . . , sn ∈ Λ, then
a program can use

[
sϕ′ , [s1, . . . , sn]

]
as the code for ϕ′(s1, . . . , sn). Now we

would like to show that when given (the code for) ϕ′(s1, . . . , sn), a program can
determine its truth value:

Lemma 6.9. There is a finite program that determines the truth value of any
sentence of the form ϕ′(s1, . . . , sn), where ϕ is ∆0 and s1, . . . , sn ∈ Λ. 4

Proof. A finite program can determine the truth value of ϕ′(s1, . . . , sn) by recur-
sion on its subformulas. The truth value of atomic sentences can be determined
because =̂ and ∈̂ are decidable by a finite program, and the truth values for nega-
tions and conjunctions can be determined in the obvious way. The truth value of
(∀x @− si)ψ

′(x, s1, . . . , sn) can be determined by determining the truth value of
ψ′(t, s1, . . . , sn) for every t @− si and returning '1' if and only if ψ′(t, s1, . . . , sn)

is true for every t @− si. The truth values of existentially quantified sentences
can be determined in a similar manner.

Now we are almost prepared to prove that every ∆0(V) class of strings is
decidable. However, there is one more detail that we need to cover. If we want to
show that a program can decide the class of strings defined by ϕ(x, a1, . . . , an),
where ϕ is ∆0, then we will need codes for a1, . . . , an as well as for the program’s
input string. The codes for a1, . . . , an will come from Λ and can be hard-coded
into the program. The code for each input string, however, will need to be
computed at runtime. Fortunately this is possible:

Lemma 6.10. There exists an ω-computable function C : 2<Ord → Λ such that
Ĉ(s) = s for every string s. 4

Proof. In order to define C, we need to define two other functions first. Let

36

O : Ord→ Λ be given recursively by

O(0) = ε

O(α+ 1) = O(α) t [O(α)]

O(λ) =
⋃
α<λ

O(α)

Note that Ô(α) = α for every ordinal α. Furthermore, O is computable. To
see why, note that if given an ordinal α, then for every β ≤ α, a program can
determine whether β is zero, a successor ordinal, or a limit ordinal, and then
the program can perform some operation on a string variable s depending upon
the value of β. If β is zero, the program sets s = ε. If β is a successor ordinal,
then the program computes s t [s] and sets this as the new value of s. If β is a
limit ordinal, then the program does nothing to s because the value of s at this
stage in the computation will be the union of all prior values of s as desired.
Thus, after having performed these operations for every β ≤ α, the resulting
value of s will be O(α). Hence, O is computable.

For the second function, let P : Λ×Λ→ Λ be given by P (s, t) =
[
[s], [s, t]

]
.

Note that P̂ (s, t) =
{
{ŝ}, {ŝ, t̂}

}
= (ŝ, t̂) for every s, t ∈ Λ. Furthermore, P is

clearly computable. Now with O and P , we can define C. Let C : 2<Ord → Λ

be given by C(s) =
[
P
(
O(α), O(s(α))

)
| α ∈ dom s

]
. Note that for every string

s, we have that Ĉ(s) =
{(
α, s(α)

)
| α ∈ dom s

}
= s. Furthermore, C is clearly

computable because O and P are computable. As a final note, each of the
programs described is finite, so C is ω-computable.

Now we can finally prove the desired theorem:

Theorem 6.11. If κ is regular, then every ∆0(Hκ) class of strings is κ-decidable.
4

Proof. Let κ be regular, and let A be a ∆0(Hκ) class of strings. Then there
exists some ∆0 formula ϕ and sets a1, . . . , an ∈ Hκ such that

A = {s ∈ 2<Ord | ϕ(s, a1, . . . , an)}

By Theorem 6.4, for each ai there exists si ∈ Λκ such that ŝi = ai.
Now to show that A is κ-decidable, let p be program that when given an

input s, computes s0 = C(s), writes down the sentence ϕ′(s0, s1, . . . , sn), and
then determines the truth value of ϕ′(s0, s1, . . . , sn). Since ϕ′(s0, s1, . . . , sn) is
true if and only if ϕ(s, a1, . . . , an) is true, p decides A. Furthermore, p has
cardinality less than κ because s1, . . . , sn have cardinality less than κ.

Corollary 6.12. Every ∆0(V) class of strings is decidable. 4

It should be noted that the decidability of ∆0(V) classes of strings does
not depend on whether we assume that 2<Ord is computably enumerable. In
contrast, many of the results in the next section will require assuming that
2<Ord is computably enumerable.

37

6.3 Characterization Results

In this section, we will prove results that characterize enumerability, decidability,
and computability. We will begin with enumerability.

6.3.1 Enumerability of Σ1(V) Classes

Recall Theorem 5.3, which highlights some of the consequences of assuming that
2<Ord is computably enumerable. We can improve this theorem by adding a
statement about Σ1(V) classes:

Theorem 6.13. If κ is regular, then the following are equivalent:

(1) Every κ-semidecidable class of strings is κ-computably enumerable.

(2) The halting problem is κ-computably enumerable.

(3) 2<Ord is κ-computably enumerable.

(4) Every Σ1(Hκ) class of strings is κ-computably enumerable.

4

Proof. Let κ be regular. The equivalence of (1), (2), and (3) follows from
Theorem 5.3. Therefore, it suffices to show the equivalence of (3) and (4). Note
that (4) implies (3) because 2<Ord is ∆0.

To show that (3) implies (4), suppose 2<Ord is κ-computably enumerable.
Then there exists a set-like well-order ≺ on 2<Ord such that rank−1

≺ is κ-
computable. Let A be a Σ1(Hκ) class of strings. Then there is a ∆0 formula ϕ
and a1, . . . , an ∈ Hκ such that

A = {s ∈ 2<Ord | (∃x)ϕ(s, x, a1, . . . , an)}

By Theorem 6.4, for each ai there exists si ∈ Λκ such that ŝi = ai. Let ≺′ be a
set-like well-order on A such that s ≺′ t if and only if αs < αt, where αs is the
least ordinal for which there exists u ∈ Λ such that Γ−1(αs) = (rank≺ s, rank≺ u)

and ϕ(s, û, a1, . . . , an). Now it remains to show that rank−1
≺′ is κ-computable.

Given an ordinal α, a program can list the first α + 1 strings according
to the order ≺′. This is done by incrementing an ordinal variable β, and for
each value of β, computing Γ−1(β) = (γ, δ). Then the program can compute
(s, u) = (rank−1

≺ γ, rank−1
≺ δ) and check if u ∈ Λ. If not, then the program con-

tinues with the next value of β. Otherwise, the program computes v = C(s) and
determines the truth value of ϕ(s, û, a1, . . . , an) by writing down the sentence
ϕ′(v, u, s1, . . . , sn) and determining its truth value. If ϕ′(v, u, s1, . . . , sn), then
the program appends s to the list it is constructing. This process repeats until
the program has listed α + 1 strings, at which point it outputs the string at
position α. This will be the value of rank−1

≺′ α. Note that if A is a set and not a
proper class, then it may be that α /∈ dom rank−1

≺′ , but in this case, the program

38

just described will diverge as desired. Hence, rank−1
≺′ is computable. Further-

more, rank−1
≺′ is κ-computable because rank−1

≺ is κ-computable and s1, . . . , sn
have cardinality less than κ. Hence, A is κ-computably enumerable.

The theorem we have just proven, in conjunction with the following theorem,
gives us a characterization of the computably enumerable classes of strings.

Theorem 6.14. Every κ-computably enumerable class of strings is Σ1(Hκ). 4

Proof. Suppose A is a κ-computably enumerable class of strings. Then A is
enumerated by some program p of cardinality less than κ. By Theorem 4.2, we
can assume p is trimmed, so p ∈ Hκ. Now note that there is some ∆0 formula
ϕ(x, y, z, w) that expresses “x is a halting execution of the program y on the
input z and the output of y is w”. Since A is the range of Fp, we have that

A = {s ∈ 2<Ord | (∃e)(∃t)ϕ(e, p, t, s)}

Hence, A is Σ1(Hκ).

Corollary 6.15. If κ is regular and 2<Ord is κ-computably enumerable, then
the κ-computably enumerable classes of strings are precisely those that are
Σ1(Hκ). 4

Corollary 6.16. If 2<Ord is computably enumerable, then the computably
enumerable classes of strings are precisely those that are Σ1(V). 4

Before we end this section, note that by Theorem 6.13 and Theorem 5.1,
ACE implies that every Σ1(V) class of strings is semidecidable. What is not
immediately clear, however, is if the converse also holds. In other words, we
have the following open question:

Open Question 6.17. Is 2<Ord computably enumerable if and only if every
Σ1(V) class of strings is semidecidable? 4

6.3.2 Decidability of ∆1(V) Classes

Next, we can characterize decidability:

Theorem 6.18. If κ is regular and 2<Ord is κ-computably enumerable, then
the κ-decidable classes of strings are precisely those that are ∆1(Hκ). 4

Proof. Let κ be regular and suppose 2<Ord is κ-computably enumerable.

(⇒) Suppose A is a κ-decidable class of strings. Then A is decided by some
program p of cardinality less than κ. By Theorem 4.2, we can assume p is
trimmed, so p ∈ Hκ. Now let ϕ(x, y, z) be a ∆0 formula that expresses “x
is a halting execution of the program y on the input z” and let ψ(x, y, z, w)

be a ∆0 formula that expresses “x is a halting execution of the program y

39

on the input z and the output of y is w”. Since executions are unique and
since p halts on every input, we have that

A = {s ∈ 2<Ord | (∃e)[ϕ(e, p, s) ∧ ψ(e, p, s, '1')]}
= {s ∈ 2<Ord | (∀e)[ϕ(e, p, s)→ ψ(e, p, s, '1')]}

Hence, A is ∆1(Hκ).

(⇐) Suppose A is a ∆1(Hκ) class of strings. Then A is both Σ1(Hκ) and
Π1(Hκ). Since A is Π1(Hκ), it follows that 2<Ord \A is Σ1(Hκ). Since we
are assuming κ is regular and that 2<Ord is κ-computably enumerable, it
follows from Theorem 6.13 that both A and 2<Ord \ A are κ-computably
enumerable. Therefore, let p and q be programs witnessing that A and
2<Ord \ A are κ-computably enumerable, respectively. Using p and q, we
can show that A is κ-decidable.

Given an input s, a program can increment an ordinal variable α, and for
each value of α, compute Γ−1(α) = (β, γ) and check if p ↓β γ or if q ↓β γ. If
p ↓β γ, then the program can check if Fp(γ) = s. If so, then the program
halts and outputs '1'. Similarly, if q ↓β γ, then the program can check
if Fq(γ) = s. If so, then the program halts and outputs '0'. If neither
Fp(γ) = s nor Fq(γ) = s, then the process repeats. Since every string is
an element of either A or 2<Ord \A, this process will eventually terminate.
Hence, the program just described decides A. Furthermore, this program
will have cardinality less than κ because both p and q have cardinality less
than κ. Thus, A is κ-decidable.

As a final note, the reason we check that p and q halt after a given number
of steps is because it may be that A or 2<Ord \ A is a set, in which case
Fp or Fq will not be defined on every ordinal.

Corollary 6.19. If 2<Ord is computably enumerable, then the decidable classes
of strings are precisely those that are ∆1(V). 4

6.3.3 Computability of Σ1(V) Functions

And finally, we can characterize computability:

Theorem 6.20. If κ is regular and 2<Ord is κ-computably enumerable, then
the κ-computable functions on strings are precisely those that are Σ1(Hκ). 4

Proof. Let κ be regular and suppose 2<Ord is κ-computably enumerable.

(⇒) Suppose F is a κ-computable function on strings. Then there exists a
program p of cardinality less than κ that computes F . By Theorem 4.2,
we can assume p is trimmed, so p ∈ Hκ. Now let ϕ(x, y, z, w) be a ∆0

40

formula that expresses “x is a halting execution of the program y on the
input z and the output of y is w”. Then we have that

F = {(s, t) ∈ 2<Ord × 2<Ord | (∃e)ϕ(e, p, s, t)}

Hence, F is Σ1(Hκ).

(⇐) Suppose F is a Σ1(Hκ) function on strings. Then there exists some ∆0

formula ϕ and sets a1, . . . , an ∈ Hκ such that

F = {(s, t) ∈ 2<Ord × 2<Ord | (∃x)ϕ(s, t, x, a1, . . . , an)}

By Theorem 6.4, for each ai there exists si ∈ Λκ such that ŝi = ai, and
since we are assuming 2<Ord is κ-computably enumerable, there exists a
set-like well-order≺ on 2<Ord such that rank−1

≺ is κ-computable. Now note
that when given an input s, a program can increment an ordinal variable
α, and for each value of α, compute rank−1

≺ α and check if rank−1
≺ α = [u, v]

for strings u and v such that v ∈ Λ. If not, then the program continues
with the next value of α. Otherwise, the program can compute t0 = C(s)

and t1 = C(u) and determine the truth value of ϕ(s, u, v̂, a1, . . . , an) by
writing down and determining the truth value of ϕ′(t0, t1, v, s1, . . . , sn). If
ϕ′(t0, t1, v, s1, . . . , sn) is true, then the program halts and outputs u. Oth-
erwise, the program continues with the next value of α. Such a program
will compute F , so F is computable. Furthermore, F is κ-computable
because rank−1

≺ is κ-computable and because s1, . . . , sn have cardinality
less than κ.

Corollary 6.21. If 2<Ord is computably enumerable, then the computable func-
tions on strings are precisely those that are Σ1(V). 4

41

Chapter 7

Conclusion

In review, we have defined a model of computation based on infinite programs.
This framework has a number of similarities to finite computability theory. In
many ways, finite sets of natural numbers correspond to sets of strings in our
framework, and similarly, infinite subsets of the natural numbers correspond to
proper classes of strings. Just as every finite set of natural numbers is decidable
by some Turing machine, every set of strings is decidable by some program.
Moreover, we have shown that there exists a halting problem, which is a proper
class that is not decidable. This is similar to the halting problem for Turing
machines, which is an infinite subset of the natural numbers that is not decidable
by any Turing machine. Moreover, for each infinite cardinal κ, we have defined
a κ-restricted halting problem. This halting problem is not decidable by any
program of cardinality less than κ, but it is decidable by programs of cardinality
at least κ. Therefore, restricting our model of computation to programs of
cardinality less than κ gives rise to a notion of κ-computability, and if κ >

λ, then κ-computability is a strictly stronger notion of computation than λ-
computability. This shows that there is a hierarchy of computability notions
based on the cardinalities of programs.

There is, however, one key difference between our framework and finite com-
putability theory. The difference is that, while the natural numbers are com-
putably enumerable by a Turing machine, the class of strings is not necessarily
computably enumerable. In particular, the axiom of computable enumerability
is independent of Gödel-Bernays class theory with the axiom of global choice.
As a consequence, the equivalence of semidecidability and computable enumer-
ability is not guaranteed. This stands in stark contrast to finite computability
theory, in which a set of natural numbers is semidecidable if and only if it is
computably enumerable. However, by assuming the axiom of computable enu-
merability, we have succeeded in giving exact characterizations of enumerability,
decidability, and computability in terms of the Lévy hierarchy. In particular,
the computably enumerable classes of strings are precisely those that are Σ1(V),
the decidable classes of strings are precisely those that are ∆1(V), and the com-

42

putable funtions are precisely those that are Σ1(V).

7.1 Future Work

There are a number of directions for future research that stem from the material
presented in this thesis. One possible direction would be to investigate the
parallels between our framework and α-recursion theory in a manner similar to
[13]. In this paper, Koepke and Seyfferth used Koepke machines with ordinal
parameters. It is likely that similar results could be shown by using infinite
programs instead of ordinal parameters.

Another possible direction would be to investigate the consequences of giving
programs access to an oracle. To properly implement this, one could augment
a Koepke machine with an additional read-write tape. Then at each step in
a program’s execution, the program is aware of whether the string currently
written on this tape belongs to some fixed class of strings, and the program
can react accordingly. With a proper definition of oracle programs, one can
investigate a variety of topics related to relative computability. For example, one
could define Turing reductions and Turing equivalence. With these definitions,
one could show that the most common variations of the halting problem are
equivalent. In particular, one could show that K is equivalent to the following
variants:

{s ∈ 2<Ord | π(s) ↓ s} {s ∈ 2<Ord | π(s) ↓ ε}

This matches the traditional theory but differs from the theory for infinite time
Turing machines. Part of the reason these classes are equivalent in our frame-
work is because one can prove a generalized version of the Parameter Theorem
[17, Theorem 3.5 from Chapter I] for infinite programs.

With oracle programs, one could also define a jump operator on classes of
strings. Our characterizations of the computably enumerable and decidable
classes of strings can be seen as a generalized version of only a small part
of Post’s theorem [17, Theorem 2.2 from Chapter IV]. It is likely that these
characterizations can be generalized to programs with access to the nth jump of
the empty set as an oracle, which would give a more complete generalization of
Post’s theorem. Furthermore, assuming Morse-Kelley [8, Appendix], one could
define the αth jump for any class of strings, where α can be any ordinal. With a
generalized jump operator, it would be interesting to see to what extent Post’s
theorem could be generalized.

There are also many other results from finite computability theory that we
have not discussed. Assuming the axiom of computable enumerability, it is likely
that many of these can be generalized to our framework. Therefore, it would
be worthwhile to investigate how much of the traditional theory carries over.

43

Bibliography

[1] Merlin Carl, Tim Fischbach, Peter Koepke, Russell Miller, Miriam Nasfi,
and Gregor Weckbecker. The basic theory of infinite time register machines.
Archive for Mathematical Logic, 49(2):249–273, Mar 2010.

[2] Merlin Carl, Benedikt Löwe, and Benjamin G. Rin. Koepke machines and
satisfiability for infinitary propositional languages. In Jarkko Kari, Florin
Manea, and Ion Petre, editors, Unveiling Dynamics and Complexity - 13th
Conference on Computability in Europe, CiE 2017, Turku, Finland, June
12-16, 2017, Proceedings, volume 10307 of Lecture Notes in Computer Sci-
ence, pages 187–197, Cham, 2017. Springer International Publishing.

[3] Ulrich Felgner. Choice functions on sets and classes. In Gert H. Müller,
editor, Sets and Classes: On The Work by Paul Bernays, volume 84 of Stud-
ies in Logic and the Foundations of Mathematics, pages 217–255. Elsevier,
1976.

[4] José Ferreirós. Labyrinth of Thought: A History of Set Theory and Its Role
in Modern Mathematics. Birkhäuser Basel, Basel, 2007.

[5] Kurt Gödel. The Consistency of the Axiom of Choice and of the Gener-
alized Continuum-Hypothesis with the Axioms of Set Theory. Annals of
Mathematics Studies. Princeton University Press, 1940.

[6] Joel David Hamkins and Andy Lewis. Infinite time turing machines. The
Journal of Symbolic Logic, 65(2):567–604, 2000.

[7] Thomas Jech. Set Theory: The Third Millennium Edition, Revised and Ex-
panded. Springer Monographs in Mathematics. Springer Berlin Heidelberg,
2006.

[8] John L. Kelley. General Topology, volume 27 of Graduate Texts in Mathe-
matics. Springer New York, 1975.

[9] Peter Koepke. Turing computations on ordinals. The Bulletin of Symbolic
Logic, 11(3):377–397, 2005.

44

[10] Peter Koepke. Infinite time register machines. In Arnold Beckmann, Ulrich
Berger, Benedikt Löwe, and John V. Tucker, editors, Logical Approaches to
Computational Barriers, Second Conference on Computability in Europe,
CiE 2006, Swansea, UK, June 30-July 5, 2006, Proceedings, volume 3988
of Lecture Notes in Computer Science, pages 257–266, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[11] Peter Koepke and Martin Koerwien. Ordinal computations. Mathematical
Structures in Computer Science, 16(5):867–884, 2006.

[12] Peter Koepke and Russell Miller. An enhanced theory of infinite time regis-
ter machines. In Arnold Beckmann, Costas Dimitracopoulos, and Benedikt
Löwe, editors, Logic and Theory of Algorithms, 4th Conference on Com-
putability in Europe, CiE 2008, Athens, Greece, June 15-20, 2008, Proceed-
ings, volume 5028 of Lecture Notes in Computer Science, pages 306–315,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[13] Peter Koepke and Benjamin Seyfferth. Ordinal machines and admissible
recursion theory. Annals of Pure and Applied Logic, 160(3):310–318, 2009.

[14] Peter Koepke and Ryan Siders. Register computations on ordinals. Archive
for Mathematical Logic, 47(6):529–548, Sep 2008.

[15] Azriel Lévy. A Hierarchy of Formulas in Set Theory, volume 57 of Memoirs
of the American Mathematical Society. American Mathematical Society,
1965.

[16] Gerald E. Sacks. Higher Recursion Theory. Perspectives in Logic. Cam-
bridge University Press, 2017.

[17] Robert I. Soare. Recursively Enumerable Sets and Degrees: A Study of
Computable Functions and Computably Generated Sets. Perspectives in
Mathematical Logic. Springer Berlin Heidelberg, 1999.

[18] Alan M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
s2-42(1):230–265.

45

	Introduction
	Thesis Overview

	Preliminaries
	Class Theory
	The Axioms of Gödel-Bernays Class Theory
	The Lévy Hierarchy
	The Gödel Pairing Function
	The Set H

	Strings
	Partial Functions
	Koepke Machines
	Intuition
	Definition

	Infinite Programs
	Definitions
	Basic Results
	Computing the Gödel Pairing Function
	The Halting Problem
	The Universal Program

	A Hierarchy of Computability
	Trimmed Programs
	The Restricted Halting Problem

	Computable Enumerability
	Enumerability vs Semidecidability
	Independence of Enumerability

	Characterizing Computation
	Hereditary Lists
	Decidability of 0(V) Classes
	Characterization Results
	Enumerability of 1(V) Classes
	Decidability of 1(V) Classes
	Computability of 1(V) Functions

	Conclusion
	Future Work

