
Hybrid Logics for Arguments, Beliefs, and their
Dynamics

MSc Thesis (Afstudeerscriptie)

written by

Max Rapp
(born March 28th, 1989 in Bayreuth, Germany)

under the supervision of Prof Dr Sonja Smets and Dr Fernando
Velázquez-Quesada, and submitted to the Board of Examiners in partial

fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
September 19th, 2018 Dr Floris Roelofsen

Dr Ronald de Haan
Prof Dr Davide Grossi
Dr Luca Incurvati



Abstract

We study abstract argumentation, argument based belief and their dynamics in
the setting of Hybrid logic. For this purpose, we develop Hybrid Argumentation
Logic (HAL), a logic optimized to express the concepts of abstract argumen-
tation theory. Combining HAL, a theory of support between arguments and
propositions, and a logic for the claims of arguments in a product logic, we study
three notions of argument based belief that reflect ways in which agents might
form beliefs from arguments: credulous belief, skeptical belief and strong belief.
In addition, two update operations for abstract argumentation frameworks are
introduced and studied: argumentation framework union and argumentation
framework intersection. These serve as semantics for two dynamic modal op-
erators for HAL, yielding the logic HAL∩∪. It is shown that HAL∩∪ is at least
as expressive as first-order logic and hence undecidable. We then study how
argumentation framework union affects credulous, skeptical and strong belief
respectively and find that they have different dynamic properties. In addition
we provide sufficient conditions for preservation of belief under argumentation
framework union.
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Chapter 1

Introduction

This work is about how people change their opinions. An opinion for our pur-
poses is a belief that is backed by arguments. People change their opinions
through a process involving the creation, exchange, modification or retraction
of arguments. But when does a new argument prompt an agent to change her
opinion? When does a modification of an existing argument do the trick? Which
kinds of opinions are easy to change, which are ”safe”? Which arguments are
fundamental to an agent’s world view? In the present work these questions
will be investigated using tools from epistemic logic and abstract argumenta-
tion theory. In epistemic logic, the study of justified belief has recently seen
increased interest (van Benthem and Pacuit [2011],Baltag, Renne, and Smets
[2014],Baltag, Bezhanishvili, Özgün, and Smets [2016]). In addition there is a
strong research tradition on the dynamics of belief change (see Baltag and Renne
[2016]). Abstract argumentation theory Dung [1995] deals with modelling the
structure of argumentations and provides the tools needed to decide which ar-
guments should be accepted in a debate. Putting these elements together this
work develops a formal framework to define and study notions of belief based on
argumentation and their behaviour when the underlying argumentation changes.

Example 1. Alice is worried about the threat sea level rise might pose to her
home, the island nation of Atlantis. Today she encountered the following on the
news:

• a1: A report from the Atlantian Scientific Society predicting the complete
inundation of Atlantis City due to sea level rise.

• a2: A ”bubble” by the Atlantian strategos stating: ”The concept of sea
level rise was created by and for the Athenians in order to make Atlantian
manufacturing non-competitive”.

• a3: A new study shows that bloodletting cures the cold.

Suppose Alice has about the same degree of trust in the Atlantian Scientific
society and the strategos. Should she believe sea level rise is real? Should
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she reserve judgement and seek out further information? And what about the
seemingly unrelated stuff about bloodletting?

The goal of this work is to develop formal tools that allow Alice and her
fellow Atlantians to form beliefs based on the arguments they are presented
with in situations like Example 1 and to investigate how these beliefs change
when new arguments are received. We structure our task as follows: in Chapter
2 we will lay down the basic notions of abstract argumentation theory needed for
our investigation. In Chapter 3, we introduce two logical systems for describing
abstract argumentation frameworks, one based on normal modal logic (KU ), one
based on hybrid logic (HAL). Next, Chapter 4 develops a logic for the claims
of arguments, a notion of support that connects arguments to their claims and
conjoins these elements with HAL to create a logic for argument-based belief. In
Chapter 5, we will investigate the dynamics of argumentation frameworks in the
setting of our logical framework. Chapter 6 studies how dynamics such as adding
and removing arguments affect the notions of belief defined in Chapter 4 and
gives some answers to the questions posed at the beginning of this introduction.
Finally, Chapter 7 touches on some of the great many questions that this work
has to leave open and concludes by revealing the final fate of Atlantis.
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Chapter 2

Basics of Abstract
Argumentation Theory

2.1 Basic Notions

It is difficult to pin down what exactly constitutes an argument. The logician
might be tempted to view an argument as a sort of informal and incomplete
description of a proof from certain axioms. But many, probably most, arguments
that people use to justify their opinions would fail this test: the arguments that
feature in the justification of people’s opinion do so not on merit of validity
but by being convincing. What constitues a convincing argument is very much
in the eye of the beholder: just ask people during an election campaign which
candidate won the latest televised debate.

Given this difficulty one might give up hope to understand argumentation
and opinion change, but this would be premature. Besides their ”internal”
properties - such as the mode of inference and the rhetorical strategies they
employ, the evidence they appeal to or the assumptions they make - arguments
also have ”external” properties. Most important among these are the relation
in which an argument stands to other arguments and the relation in which it
stands to the proposition that is up for debate. The latter will be discussed in
Chapter 4 of this work. The first is studied in the field of abstract argumentation
theory discussed in this section. We base our discussion on the seminal paper
by Dung 1995.

The basic idea of abstract argumentation theory is to investigate what can
be said about argumentation based only on how arguments attack each other.
Thus arguments are conceived of as atoms that stand in an attack relation.
The resulting structure is captured as a directed graph where the nodes are
arguments and the edges represent ”attacks” between arguments.

Definition 1 (Argumentation framework). An argumentation framework (or
relational structure) A is a tuple ⟨A,↠⟩ where A is a non-empty set and ↠⊆
A ×A. For X ⊆ A, a, b ∈ A we write a↠ b iff (a, b) ∈↠ and X ↠ b if there is
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A1

a1
a2
a3

Figure 2.1: Alice’s Argumentation Framework

a ∈ X with a↠ b. We say that a (X) attacks b iff a↠ b, (X ↠ b). Mirroring
this, a (X) attacks Y ⊆ A iff there is some b ∈ Y such that a (X) attacks b.

Example 2. How can we represent the scenario from example 1 as an argu-
mentation framework? In general, extracting argumentation frameworks from
natural language is more of an art than a science but a possible interpretation
might be the following:

A1 = (A = {a1, a2, a3},↠ = {(a1, a2), (a2, a1)}}
We will frequently graphically represent such argumentation framework in a

table as seen in Figure 2

Throughout this thesis, we will work with finite argumentation frameworks
unless otherwise specified. This assumption not only makes our life easier in
many ways, it can also be justified well in the context of argumentation: for one
argumentation is in large part an application driven field and infinite structures
are the exception in applications in AI 1 and do not occur “in the wild”. In
addition, presently we seek to model the belief state of an agent in terms of
arguments and at least for boundedly rational human agents, infinite structures
as belief makers are not cognitively plausible. Nevertheless, we will sometimes
briefly discuss which of our results carry over to infinite argumentation frame-
works.

Given such an argumentation framework, a question we frequently ask is
“which arguments can be accepted in a rational way?” One way of operational-
izing rationality in argumentation theory is the concept of admissibility. In-
tuitively, a set of arguments is admissible if all its member are acceptable in a
certain sense and can be accepted together without incurring a conflict. In what
follows, we make our notions of conflict and acceptability precise. Intuitively,
it make sense to define conflict in terms of the attack relation: it appears spu-
rious to accept two arguments that attack each other. We therefore define the
following ”neutrality” function:

Definition 2 (Neutrality-Function, Grossi [2012]). Given an argumentation
framework A = ⟨A,↠⟩ the neutrality function nA ∶ 2A↠ 2A of A is defined as

nA(X) = {x ∈ A ∶X /↠ x}
1 though not unheard of, see Belardinelli et al. [2015]
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A set of arguments X thus is conflict free in an argumentation framework
A iff X ⊆ nA(X).

As for acceptability, the intuition is that we can accept an argument if we
can defend it. Intuitively, an attacker of an attacker of a given argument defends
that argument against its attacker. An argument a (or setX) (perfectly) defends
an argument b iff a (X) attacks all attackers of b. More generally, we define the
following defense function:

Definition 3 (Defense Function). Given an argumentation framework A =
⟨A,↠⟩ the characteristic or defense function dA ∶ 2A↠ 2A of A is defined as

dA(X) = {x ∈ A ∶ ∀y ∈ A if y↠ x then X ↠ y}

An argument a is said to be acceptable to a set X if X defends it or in other
words a ∈ dA(X). Finally, a set of arguments X is self-acceptable iff X ⊆ dA(X).

Clearly, it makes sense to regard a set of arguments that can defend itself
against all of its attackers as stronger than one that can not. In addition, we
can ask for maximal self-acceptable sets, i.e. sets of arguments that contain
everything they defend.

We can construct these maximmal sets by iterating the defense function:
intuitively, if this iteration reaches a fixpoint we obtain one of the maximal sets
we asked for: it defends all of its members and nothing else.

In other words, denote dA(dA(X)) by d2A(X) and so forth. We call the
series {dnA(X)}n∈N a stream and say it stabilizes with limit or fixpoint dmA(X)
iff m is a natural number s.t. dmA(X) = dm+1

A (X).
It is often useful to consider not only direct attacks and defenses between

arguments but also indirect connections: intuitively, an attacker of a defender
of a given argument attacks it, although indirectly. To pin down these notions,
we define the following extensions of the attack relation

Definition 4 ((Odd, Even) Transitive Closure). Let A be an argumentation
framework with attack relation ↠. We denote by ↠+, ↠odd, ↠even the transi-
tive, odd-transitive and even-transitive closure of ↠ defined recursively as

a↠1 b iff a↠ b (2.1)

a↠n+1 b iff there is c such that a↠n c and c↠ b (2.2)

Then ↠+= ⋃n∈N∖0 ↠n, ↠odd= ⋃n∈Nodd∖0 ↠n, ↠even= ⋃n∈Neven∖0 ↠n.

Putting the notion of (odd and even) transitive closure to use we can pin
down indirect attack and defense.

Definition 5 (Reachability, Indirect Attack, Indirect Defense). Let A be an
argumentation framework with attack relation ↠.

• If a↠+ b we say that b is reachable from a.

• If a↠odd b we say that a indirectly attacks b.
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• If a↠even b we say that a indirectly defends b.

• If for some b, a↠even b and a↠odd b we say that a is controversial.

Although we now have the notions of acceptability and conflict in place, it
is not obvious how high we should set the bar for acceptance. A set of accepted
arguments is called an extension. Intuitively, the minimal extension we would
want to accept should be conflict-free and self-defending. However, it turns out
that many such extensions may exist in a given argumentation framework. Is
this a problem? It depends! For example when we would like to define a notion
of belief in terms of arguments, it may be reasonable to demand consistency: an
agent should not believe ”P” and ”not P” at the same time. But what if there
are conflict-free and self-defending sets of arguments supporting either option?
Considerations such as this one have led to the proposal of various ”semantics”
- i.e. ways of choosing the extensions in a given argumentation framework - in
the literature. We mention here only a subset of them.

Definition 6 (Extensions and Semantics). Given an argumentation framework
A = ⟨A,↠⟩ a semantic S is a subset of the powerset of A. A member of S is
called an extension under S. The following are some important semantics:

• The conflict-free semantic is the set of extensions
CF = {X ∶ X is conflict free}

• The self-acceptable semantic is the set of extensions
SA = {X ∶ X is self-acceptable}

• The admissible semantic is the set of extensions
AD = {X ∶ X is conflict free and self-acceptable}

• The complete semantic is the set of extensions
CO = {X ∶ X is admissible and X = dA(X)}

• The grounded semantic is the (singletion) set of extensions
GR = {X ∶ X is the ⊆-least complete extension}

• The preferred semantic is the set of extensions
PR = {X ∶ X is a ⊆-maximal complete extension}

Some of these semantics allow for several extensions to exist. We still need
a way to deal with this. Essentially, we have two choices: accept the argument
if it is in some extension; or accept it if it is in all of the extensions. This leads
us to the following definitions:

Definition 7 (Acceptance). Given an argumentation framework A and a se-
mantic S for A, an argument a is

• skeptically accepted under S iff a ∈X for all X ∈ S.

• credulously accepted under S iff a ∈X for some X ∈ S.
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A1 AD CO GR PR
a1
a2
a3

A2 AD CO GR PR
a1
a2
a3
b1
b2

Figure 2.2: Acceptance in Alice’s argumentation framework before (A1) and af-
ter (A2) the conversation with Bob where black marks rejection, gray credulous
acceptance and white skeptical acceptance.

• rejected under S iff a ∉X for all X ∈ S.

Example 3. Later that day, Alice has the following conversation wih her friend
Bob.

• Alice: “Do you believe sea level rise is really happening?

• Bob: b1:“We ought to believe what our best science supports.”

• Alice: “Anyway, how are you? You sound a bit under the weather”

• Bob: “Terrible! I have a cold.”

• Alice: a3 ∶“There is a new study saying bloodletting is effective against
the common cold and has few side effects. Will you go for bloodletting?”

• Bob: b2 ∶“Science is an inherently fallible enterprise. Therefore we should
not prematurely believe our scientists’ conclusions.”

Figure 2.2 shows how her argumentation framework might look like after
this exchange. It also shows her options with respect to which arguments she
should accept.

Finally, we mention here a property of semantics that will come in handy in
our treatment of argument dynamics:

Definition 8 (Directionality). A semantic S satsifies directionality iff for any
argumentation framework A and unattacked set U ⊆ A, S((U,↠↓U)) = {X ∩U ∶
X ∈ S(A)} where ↠↓U is the restriction of ↠ to U . In other words, S is
directional iff the S-extensions of the restriction of A to any unattacked set U
are exactly the intersections of the S-extensions of A with U .

That is under directional semantics the status of an argument a depends
only on the arguments from which a is reachable. Hence the argument statusses
of members of unattacked sets should remain the same under the semantic when
the rest of the argumentation framework is modified.
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2.2 Basic Results

We state here without proof a number of results from abstract argumentation
theory with respect to the existence and uniqueness of extensions.

Proposition 1 (Dung [1995]). Let A be an argumentation framework. Then
A

• has at least one admissible extension (possibly the empty set);

• thereby has at least one complete extension (possibly empty).

• has a unique grounded extension;

• has at least one preferred extension;

A useful way to express the grounded extension is as the least fixpoint of
the defense function:

Proposition 2 (Dung [1995]). Given an argumentation framework A a set of
arguments X ⊆ A is the grounded extension iff X is the least fixpoint of the
defense function dA or in other words X is grounded iff for the unique m such
that dmA(∅) = dm+1

A (∅) we have dmA(∅) =X.

With respect to directionality we have the following result:

Proposition 3 (Baroni and Giacomin [2007]). The admissible, grounded, com-
plete, and preferred semantics satisfy directionality.

Finally, there is a strong connection between well-foundedness of argumenta-
tion frameworks and how well the semantics behave. An argumentation frame-
work is well-founded iff it contains no infinite chain of arguments a1 ↠ a2 ↠
a3....

2. It is easy to see that in the finite case an argumentation framework is
well-founded iff it is acyclic. We define cycles in terms of indirect defense and
attack as follows:

Definition 9. Let A be an argumentation framework. We say that A is cycle-
free, odd-cycle-free, even-cycle-free respectively iff there is no argument a ∈ A
s.t. a↠+ a, a↠odd a, a↠even a respectively.

If an argument indirectly attacks itself, it is in a way pathological: intuitively,
a good argument should not defend arguments that attack it. Likewise, if an ar-
gument defends itself (indirectly), that implies that the agent (or whoever came
up with the attack relation) is undecided which of two contradicting arguments
is stronger. The following proposition shows that both of these ”defects” have
consequences on the well-behavedness of the argument semantics.

Proposition 4 (Dung [1995],Dunne and Bench-Capon [2001], Dunne and Bench–
Capon [2002]). Let A be an argumentation framework.

2Note that in Modal Logic this is usually referred to as converse well-foundedness
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• If A is well-founded the complete, preferred and grounded extensions co-
incide (and are thereby unique).

• If A is finite and cycle-free the complete, preferred and grounded exten-
sions coincide (and are thereby unique).

• IfA is finite and odd-cycle-free then it has at least one non-empty preferred
extension.

• If A is finite and even-cycle-free then it has a unique preferred extension.
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Chapter 3

Logics for Argumentation

3.1 Modal Logic for Argumentation: KU

It is noteworthy that an abstract argumentation framework is nothing else but
a relational structure (with labels) which is precisely the fundamental notion
used in the standard Kripke-semantics of modal logics. Since there are sound-
ness and completeness results for many classes of relational structures and modal
languages, the setting of modal logic arguably allows for a more parsimonious
approach to studying abstract argumentation than employing the full expres-
sive power of first order logic. In addition, modal logicians have developed an
immense toolkit to work with relational structures and the modal logical setting
allows to make use of these powerful tools.

For example, frame definability, the problem of which properties of relational
structures can be defined in terms of modal formulas and if so, by which formula
precisely, has been extensively studied in modal logic.

It therefore seems natural to investigate abstract argumentation from a
modal logical perspective. This approach has been pursued in depth by Grossi
(2010, 2011a, 2011b, 2012, 2013, 2014). We shall summarize here some of the
basic results.

Definition 10 (Attack Model). Given a set of propositional letters P an argu-
mentation framework A = ⟨A,↠⟩ and a valuation function Vprop ∶ P Ð→ 2A, an
attack model is a tuple M = ⟨A, V ⟩.

Definition 11 (The logic KU for argumentation). Given an attack model M,
define the following language:

L(P ) ∶ φ ∶∶= p ∣ � ∣ ¬φ ∣ φ ∧ φ ∣◇φ ∣◇Uφ

where p ∈ P is a propositional letter.
Satisfaction is defined as usual for �,¬,∧ plus

M, a ⊧◇φ iff there is a′ ∈ A ∶ a← a′ and M, a′ ⊧ φ
M, a ⊧◇Uφ iff there is a′ ∈ A ∶M, a′ ⊧ φ

13



The valuation function Vprop is extended to a function V ∶ L Ð→ 2A such
that V (φ) = Vprop(φ) if φ ∈ P and V (φ) ∶= {a ∈ A ∶M, a ⊧ φ} else.

A sound and complete axiomatization of KU is given by the propositional
tautologies plus the following axioms and rules:

◇−Normality ∶ ◇(p ∨ q)↔ (◇p ∨◇q)
◇U −Normality ∶ ◇U(p ∨ q)↔ (◇Up ∨◇Uq)
◇−Dual ∶ ◇p↔ ¬ ◻ ¬p
◇U −Dual ∶ ◇Up↔ ¬ ◻U ¬p
◇U −Reflexivity ∶ p→◇Up

◇U −Symmetry ∶ p→ ◻U◇U

◇U −Transitivity ∶ ◇U ◇U p→◇Up

◇U −Inclusion ∶ ◇p→◇Up

Necessitation ∶ if ⊢ φ then ⊢ ◻φ
◻U −Necessitation ∶ if ⊢ φ then ⊢ ◻Uφ
Modus Ponens ∶ if ⊢ φ and ⊢ φ→ ψ then ⊢ ψ

Recall the semantics defined in definition 17. We can express them in the
language of KU as follows:

Proposition 5 (Grossi [2012]). Let A, V be an attack model, a ∈ A an arbitrary
argument and φ ∈ L(P )

• V (φ) is a conflict-free extension of A iff A, V, a ⊧ CF (φ) where CF (φ) ∶=
◻U(φ→ ¬◇ φ)

• V (φ) is a self-acceptable extension ofA iffA, V, a ⊧ SA(φ) where SA(φ) ∶=
◻U(φ→ ◻◇ φ)

• V (φ) is an admissible extension of A iff A, V, a ⊧ AD(φ)where AD(φ) ∶=
◻U(φ→ (¬◇ φ ∧ ◻◇ φ))

• V (φ) is a complete extension of A iff A, V, a ⊧ CO(φ) where CO(φ) ∶=
◻U((φ→ ¬◇ φ) ∧ (φ↔ ◻◇ φ))

Example 4. Suppose we treat propositional letters as topics, say s for the
topic sea level rise and b for the topic bloodletting. Define the attack model
M1 = (A, V ) where V (s) = {a1, a2} in A1 and V (b) = {a3} (see Figure 3.1. It
is easy to check the following:

• M1 ⊧ ◻U(b→ (¬◇ b ∧ ◻◇ b))

• M1 ⊧ ◻U((b→ ¬◇ b) ∧ (b↔ ◻◇ b))

14



A1 V AD CO GR PR
a1 s
a2 s
a3 b

Figure 3.1: Alice’s original argumentation framework equipped with a valuation
to denote the topics s=sea level rise and b=bloodletting.

• M1 /⊧ ◻U(s→ (¬◇ s ∧ ◻◇ s))

That is, V (b) is admissible and complete while V (s) is neither. Hence one
might say Alice has made up her mind on the topic of bloodletting but has
currently no opinion regarding sea level rise.

Expressing the grounded and preferred extensions requires richer languages.
One way is to take a dynamic view and make use of fixpoint definitions of these
semantics by introducing model transformers and iterating them. Another is to
equip the language with names and eventualities. Grossi [2012] takes the first
approach.

However, in the finite case the grounded and preferred extensions can be
expressed in a different way: suppose that for each argument a we had a propo-
sitional letter pa that names a, i.e. V (pa) = {a}. Then we could express any set
of arguments X as a disjunction ⋁a∈X pa. Denote this disjunction by X̌.

Proposition 6. Let A be a finite argumentation model and X ⊆ A. Then

1. V (φ) is the grounded extension of A iff

A, V, a ⊧ CO(φ) ∧ ⋀
X⊆A

((CO(X̌)→ ◻U(φ→ X̌))

2. V (φ) is a preferred extension iff

A, V, a ⊧ CO(φ) ∧ ⋀
X⊆A,X≠V (φ)

(CO(X̌)→◇U(φ ∧ ¬X̌))

In words, V (φ) is grounded iff it is complete (6.1, first conjunct and it is a
subset of every complete extension (6.1, second conjunct). V (φ) is preferred iff
it is complete and it is not a strict subset of any other complete extension (6.2,
second conjunct).

Proof. (1)⇒ Suppose A, V, a ⊧ ◻U((φ→ ¬◇φ)∧(φ↔ ◻◇φ))∧⋀S⊆A(◻U((S →
¬◇S)∧ (S ↔ ◻◇S))→ ◻U(φ→ S)). We will go through the conjuncts one by
one. The first conjunct is the formula representation of the complete extension
(see Proposition 5), hence V (φ) needs to be a complete extension. The second
conjunct asserts an implication for all subsets of Arg. The antecedent of that
implication again states the definition of the complete semantic. The consequent
states that at all arguments, φ implies X̌. Hence the second conjunct states that
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for any X ⊆ A, iff it is complete, then φ implies X̌ everywhere. But this is the
case iff V (φ) ⊆ X. Hence V (φ) is complete and a subset of every complete
extension. But this is just the definition of the grounded semantic, as desired.
⇐ Similar.

(2) The proof is similar to (1), except that now we have that for all X ⊆ A,
X ≠ V (φ), we have that φ is no subset of X. But then since V (φ) is complete,
it must be a maximal complete extension under set inclusion and hence V (φ)
is a preferred extension.

Example 5. InM1 (3.1), neither V (b) nor V (s) are a preferred extension. But
the sets X1 = {a1, a3} and X2 = {a2, a3} are. Hence given names pa1 , pa2 , pa3
with V (pa1) = {a1}, V (pa2) = {a2}, V (pa3) = {a3} we get:

• M1 ⊧ CO(X̌1) ∧⋀X⊆A,X≠X1
(CO(X̌)→ ◻U¬(X̌1 → X̌))

• M1 ⊧ CO(X̌2) ∧⋀X⊆A,X≠X1
(CO(X̌)→ ◻U¬(X̌2 → X̌))

Thus adding names to the language would allow us to gain additional ex-
pressivity with respect to argument semantics. Therefore, in the next section
we will investigate such a language.

3.2 Hybrid Logic for Argumentation

3.2.1 Where Modal Logics and Argumentation Frameworks
match and where they don’t

We have seen in the last section that modal logic equips us with formal lan-
guages that allow us to capture a lot of what we would like to be able to say
about argumentation frameworks. However, the correspondence between modal
language and argumentation frameworks is not a perfect one.

Firstly, semantically speaking, argumentation frameworks are frames not
models. That means that modal languages are in a way too expressive for
standard abstract argumentation theory as they provide the full expressiveness
of propositional logic to talk about properties of arguments. For example, we
might be interested in all arguments from analogy in a given AF. Or in all argu-
ments that are either from analogy or deductive. Modal argumentation logics
go beyond standard abstract argumentation theory in providing a language for
such properties of arguments.

While further investigation of this added expressiveness would be very in-
teresting in its own right (especially when taking the step to first-order modal
languages), the lack of propositional letters in abstract argumentation theory
shows that it is really a theory that operates on the frame level rather than
the model level. Thus the minimal logic rich enough to capture argumentation
frameworks should be a frame language, i.e. a language whose formulas can
be evaluated on argumentation frameworks without the need for a valuation
function to interpret propositional letters.
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Figure 3.2: Representation of the bisimilar models in the proof for Proposition
7. The dotted lines represent the bisimulation Z.

In addition, we will explore where modal languages are not expressive enough
to deal with standard abstract argumentation theory. As we have seen in Chap-
ter 2, an important feature of argumentation frameworks are indirect attacks
and defenses. Therefore we would like to be able to modally capture the indirect
attackers and defenders of an argument.

Say that for this purpose we define the following two modalities:

• A, V, a ⊧ ◇oddφ iff there is an argument b such that A, V, b ⊧ φ and a is
indirectly attacked by b.

• A, V, a ⊧ ◇evenφ iff there is an argument b such that A, V, b ⊧ φ and a is
indirectly defended by b.

Is KU expressive enough to define these operators? We obtain a negative
result:

Proposition 7. The operators ◇odd and ◇even are not definable in KU .

Proof. Consider the following two models: A = (A = {a, b},↠ = {a, b}×{a, b}, V (p) =
{a, b}), B = (B = {c, d, e},↠ = {(c, d), (d, e), (e, c)}, V (p) = {c, d, e}).
Clearly Z={(a,c),(a,d),(a,e),(b,c),(b,d),(b,e)} is a KU -bisimulation between A,
B (Compare Figure 3.2. Hence A, B are KU -equivalent. But A ⊧ ◻oddp and
A /⊧ ◻evenp whereas B ⊧ ◻evenp and B /⊧ ◻oddp. Hence ◻odd,◻even are not
definable in KU .

The notion of indirect attacks comes in especially handy when studying
cycles in argumentation frameworks. Recall from Chapter 2 that the absence of
odd or even cycles is a sufficient condition for uniqueness of extensions under
certain semantics for finite argumentation frameworks. Thus we would like to
be able to express the presence or absence of cycles in the language. Evaluating
locally, a state is in an odd/even cycle iff it can reach itself through the odd/even
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transitive closure of the attack relation. The odd/even Diamonds only get us
half-way towards expressing this: we still need an ingredient to denote individual
states.

Again, this can be accomplished by using names. We have already seen
in the last section that names add useful expressiveness a modal language for
argumentation. Thus one might ask whether it is possible to get them for free
by defining them in KU? This would require that each argument a in a model
is identified by a propositional letter p s.t. A, a ⊧ p and there is no b ∈ Arg
s.t. A, b ⊧ p. Again, this goes beyond the expressiveness of KU as the following
simple example shows.

Proposition 8. Names are not definable in KU .

Proof. Consider the following two bisimilar models (a single reflexive point and
an infinite, directed chain): A = ({a},{a} × {a}, V (p) = {a}), B = (N,{(n,n +
1}n∈N, V (p) = N).

Names would also help us in a different way: suppose we use an abstract
argumentation framework to represent the arguments an agent is aware of. How
can we query the model as to whether the agent knows of a certain argument?
Without names we could give a description of the argument in terms of prop-
erties it satisfies. Since it would not be practical to model all the properties an
argument could possibly satisfy, we would have to restrict the set of properties.
Hence there may well be several arguments that satisfy the same properties from
among the ones we consider, we cannot be sure we identified the right argument
with our query. With names this is not a problem since every name denotes a
unique argument. Say we are interested in an argument named i. Our query
would thus amount to checking whether the model satisfies the formula ◻U i.

3.2.2 HAL: Hybrid Argumentation Logic

We shall therefore develop a logic that combines the simplicity of a frame lan-
guage with the expressiveness we desire. It is based on hybrid logic (for detailed
treatments of hybrid logic see Areces and ten Cate [2007], Cate [2005] and
Blackburn [2001]; Chapter 7.3). In essence, hybrid logic expands normal modal
languages by adding a set of constants called nominals to denote individual
states. In our case we shall follow the approach established by Hansen [2011]
where only a subset of the nominals denote a state. Thus we are equipped with
an overabundance of names that allows us to add or remove states when needed.
This will come in handy when studying dynamics. In addition, such partially
denoting nominals allow some additional frame definability: it is well-known
that the class of finite frames is not modally definable. Using a language with
a countably infinite number of nominals we can at least provide a necessary
condition for a frame to be finite (or a sufficient condition for it to be infinite).
We start with the semantics.
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Definition 12. Let A be a countable set of arguments, Nom be a count-
ably infinite set of nominals. A named frame N is defined as a tuple N =
(A,R,{Di}i∈Assigned) where Assigned ⊆ Nom, R is a binary relation over A and
every Di is a subset of A. We call N nice if for every i, Di is a singleton.

Given such frames we define a logical language as follows.

Definition 13 (Hybrid Argumentation Logic). Let Nom be a set of nominals.
Then we define the language (Hodd,@) of HAL as follows:

L(Nom) ∶ φ ∶∶= i ∣ � ∣ ¬φ ∣ φ ∧ φ ∣ ◻φ ∣ ◻oddφ ∣ @iφ

where i ∈ Nom is a nominal. Given a named frame N = (A,↠,{Di}i∈Assigned),
satisfaction is defined as follows

N , a ⊧ i iff a ∈Di

N , a, /⊧ �
N , a,⊧ ¬φ iff N , a /⊧ φ
N , a,⊧ φ ∧ ψ iff N , a ⊧ φ and N , a,⊧ ψ
N , a,⊧ ◻φ iff for all a′ ∈ A ∶ a↞ a′ and N , a′ ⊧ φ
N , a ⊧ ◻oddφ iff for all a′ ∈ A s.t. a ↞odd a′ and M, a′ ⊧ φ where ↞odd is the
odd transitive closure of ↞.
N , a,⊧ @iφ iff there is a′, such that a′ ∈Di, N , a′ ⊧ φ

We define the following abbreviations: ⊺,∨,→,◇ are as usual, N , a ⊧ [@]aφ
iff N , a ⊧ ¬@a¬φ, N , a ⊧ ◻evenφ iff N , a ⊧ ◻odd ◻ φ and N , a ⊧ ◻+φ iff N , a ⊧
◻evenφ ∧ ◻odd ◻ φ. In addition, as before, for any set X ⊆ A we use X̌ to
denote the disjunction of nominals ⋁Di⊆X i. Moreover, whenever we work in
a finite argumentation framework, we put N , a ⊧ ◻Uφ iff N , a ⊧ ⋀Di⊆A@iφ
and N , a ⊧ ◇Uφ iff N , a ⊧ ⋁Di⊆A@iφ. Finally, in the finite setting we take
N , a ⊧↓ x.φ to mean N , a ⊧ ⋂Di∈A(i → φ) where every occurence of x in φ is
substituted by i.

With these definitions in place we turn to axiomatization. The axiomatiza-
tion is based on the one provided by Hansen [2011] provides for hybrid logics
with partially assigning nominals except that we add the odd and even itera-
tion and induction axioms. They correspond to the usual axioms for transitive
closure operators but are adapted for the odd and even case.
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(K) ◻(φ ∧ ψ)↔ ◻φ ∧ ◻ψ
(K[@]) [@]i(φ ∧ ψ)↔ [@]iφ ∧ [@]iψ
(@ − Functionality) @iφ→ [@]iφ
(Introduction) i→ (φ↔ @iφ)
(Weak Reflexivity) [@]ii
(Bridge) (@i◇ j ∧@jφ)→ @i◇ φ

(Weak Agree) @j@iφ→ @iφ

(Back) ◇@iφ→ @iφ

(Denote) @iφ→ @ii

(Collapse) @ii→ ([@]iφ→ @iφ)
(Kodd) ◻odd(φ ∧ ψ)↔ ◻oddφ ∧ ◻oddψ
(Odd Iteration) ◻oddφ↔ ◻(φ ∧ ◻evenφ)
(Odd Induction) ◻φ ∧ ◻odd(φ→ ◻ ◻ φ)→ ◻oddφ
(Even Induction) ◻ ◻ φ ∧ ◻even(φ→ ◻ ◻ φ)→ ◻evenφ
Necessitation ∶ if ⊢ φ then ⊢ ◻φ
Odd −Necessitation ∶ if ⊢ φ then ⊢ ◻oddφ
[@]i −Necessitation ∶ if ⊢ φ then ⊢ [@]iφ
Modus Ponens ∶ if ⊢ φ and ⊢ φ→ ψ then ⊢ ψ
Name If ⊢ [@]iφ and i does not occur in φ, then ⊢ φ
Paste If ⊢ (@i◇ j ∧@jφ)→ φ and i ≠ j and

j does not occur in φ and ψ, then@i◇ φ→ φ

Note also, that the following are theorems of HAL (Hansen [2011]):

Proposition 9. The following formulas are HAL-theorems:

1. Weak Self-Dual: : @ij → ([@]iφ↔ @iφ)

2. Sym: @ij ↔ @ji

3. Weak Reverse Agree: (@ii ∧@jj)→ (@jφ↔ @i@jφ)

4. Nom: @ij → (@iφ↔ @jφ)

5. @-transitivity: (@ij ∧@jk)→ @ik

6. Keven: ◻even(φ ∧ ψ)↔ ◻evenφ ∧ ◻evenψ

7. Even Iteration: ◻evenφ↔ ◻ ◻ (φ ∧ ◻evenφ)

8. Even Necessitation: if ⊢ φ then ⊢ ◻evenφ
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Proof. We (sketch-)prove only items 9.6 to 9.8 which do not appear in (Hansen
[2011]).

9.6: ⇒ We use the definition of ◻evenφ as ◻◻odd φ and then apply first Kodd

and then K. Then we use the definition of ◻evenφ again to obtain the desired
theorem. ⇐: similar.

9.7: ⇒ We use the the definition of ◻evenφ as ◻◻odd φ and then apply odd-
iteration. ⇐ We take the contrapositive and then proceed as in the left-to-right
direction.

9.8: By applying first Odd Necessitation, then Necessitation, then the defi-
nition of ◻evenφ as ◻ ◻odd φ.

3.2.3 Soundness and Completeness of HAL?

Before we turn to the questopm of soundness and completeness of HAL, we have
to take care of a peculiarity of the frame semantics we are using: completeness
for Hybrid logics is usually obtained with respect to the class of all frames
using the following standard approach: Take the contrapositive of the (strong)
completeness claim, i.e. every consistent set of formulae can be satisfied in
some model. Construct a named canonical model on which every Hybrid-logic-
consistent set of formulas is satisfiable. However, we have defined names as a
frame property, not a model property. Hence we want to prove completeness
with respect to the class of nice named frames over Nom, not all frames. We
define this class as follows:

NAMED = {N ∶ (A,↠) is a frame ,Assigned ⊆ Nom}

where N = ((A,↠,{Di}i∈Assigned) is nice and named. Hence for complete-
ness we strong completeness of HAL with respect to NAMED we would have
to prove that every consistent set of formulae can be satisfied on some frame
N ∈ NAMED. However, we begin with soundness:

Proposition 10. HAL is sound with respect to NAMED.

Proof. We check here the validity of the axioms not included by Hansen [2011].

• Kodd: ⇒: Suppose N , a ⊧ ◻oddφ ∧ ◻oddψ. Then for any indirect attacker
a′ of a, N , a′ ⊧ φ and N , a′ ⊧ ψ. But then N , a′ ⊧ φ ∧ ψ and hence
N , a ⊧ ◻odd(φ ∧ ψ) as desired. ⇐ Suppose N , a ⊧ ◻odd(φ ∧ ψ). Then for
any indirect attacker a′ of a, N , a′ ⊧ φ ∧ψ. Then a fortiori, N , a′ ⊧ φ and
N , a′ ⊧ ψ. Hence N , a ⊧ ◻oddφ ∧ ◻oddψ.

• Odd Iteration: ⇒: Suppose N , a ⊧ ◻oddφ. Then for any indirect attacker
a′ of a, N , a′ ⊧ φ. Hence a fortiori for any direct attacker a′′ N , a′′ ⊧ φ.
In addition, any indirect attacker of a is an indirect defender of a′′. Hence
N , a′′ ⊧ ◻evenφ. But then N , a′′ ⊧ φ ∧ ◻evenφ and therefore N , a ⊧ ◻(φ ∧
◻evenφ as desired. ⇐: By applying K.
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• Odd Induction: Suppose N , a ⊧ (φ→ ◻φ)∧◻odd(φ→ ◻◻φ) and N , a ⊧ φ.
N , a ⊧ ◻oddφ iff for any indirect attacker a′ of a, N , a′ ⊧ φ. We prove
this by induction. We need to show that for all odd numbers n, if a is
reachable from a through a path of length n, N , a′ ⊧ φ. For the base case,
assume a′ is a direct attacker of a. By assumption we have that N , a ⊧ φ
and (N , a ⊧ φ → ◻φ) and thus we immediately get N , a ⊧ ◻φ. Hence
N , a′ ⊧ φ. Now suppose we have φ for all indirect attackers of a such
that there is a path from a′ to a of length n. Hence N , a′ ⊧ φ. Then by
assumption, N , a′ ⊧ ◻ ◻ φ and hence for any a′ such that there is a path
of length n + 2 we have that N , a′ ⊧ φ as desired.

• Even Induction: analogous to odd induction.

• Odd Necessitation: here we only spell out the induction step for odd
necessitation that would form part of an induction to prove soundness of
all the inference rules. Suppose ⊢ φ and suppose ⊧ φ if ⊢ φ. Then for
any a ∈ N , N , a ⊧ φ. But then a fortiori for all indirect attackers a′ of a,
N , a′ ⊧ φ. Hence N , a ⊧ ◻oddφ as desired.

We conjecture that HAL is also complete with respect to NAMED but we
do not currently have a proof for this. We sketch how such a proof would look
like in what follows leaving the details to future work.

Firstly, our aim has to be weak completeness rather than strong complete-
ness. The reason is that due to the odd transitive closure operator, HAL is not
a compact logic. That is, there exist infinite, consistent sets of HAL-formulas
that are not satisfiable at a single argument in a frame although every finite set
of HAL formulas is satisfiable.

Definition 14 (Consistency). A set of formulas Γ is consistent if there do not
exist formulas φ1, ..., φn ∈ Γ s.t. Γ ⊢ ¬(φ1 ∧ ... ∧ φn)

Consider the following example, which is a variation of a standard example
(found e.g. in Blackburn [2001]):

Example 6.
Γ = {◇oddφ,¬◇ φ,¬◇◇◇ φ, ...}

Even if we can prove that every finite subset of Γ is satisfiable on a frame,
Γ itself is not: for suppose N , a ⊧ ◻oddφ. Then there is some odd number n
such that for some argument a′ reachable from a through a path of length n,
N , a′ ⊧ φ. But by assumption N , a ⊧ ¬◇n φ and we get a contradiction.

This implies that we cannot prove satisfiability for every consistent set of
HAL-formulas and thus strong completeness is out of reach 1. Hence instead we
will aim for weak completeness.

1For finitary proof systems that is. Kooi et al. [2006] provide a strongly complete sequent
calculus for various Hybrid logics with transitive closure but extending this approach to HAL
is beyond the scope of this work.
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The structure of the proof would be as follows: first we define a notion of
closure that leads to atoms that are finite in the relevant respects. Then we
prove a Lindenbaum’s Lemma for this setting. Based on this we construct a
named and pasted canonical frame. Finally we establish an existence and a
truth lemma. Our proof is based on the general approaches from Blackburn
[2001]; (Section 4.8 for completeness of PDL; Section 7.3 for completeness of
hybrid logic) and combines it with elements from the completeness proof in
Hansen [2011].

The notion of closure will be akin to the closure that features in the usual
approach to proving weak completeness for PDL. It is defined as follows:

Definition 15 (Closure). Given a formula φ and a set of formulas Σ such that
φ ∈ Σ we define the following closure operations:

• Denote by ∼ φ a formula such that ∼ φ = ψ iff φ is of the form ¬ψ and
∼ φ = ¬φ else. Σ is closed under single negations if whenever φ ∈ Σ, ∼ φ ∈ Σ.

• Σ is odd Fischer-Ladner closed if it is closed under subformulas and when-
ever ◇odd ∈X then ◇◇even ∈X.

Finally, the closure ¬FL(Σ) of a set Σ is the smallest superset of Σ that is
closed under single negations and odd Fischer-Ladner closed.

The closure of a set of formulas ensures that it contains all relevant for-
mulas needed to admit an existence lemma while at the same time it is finite.
Finiteness is important since instead of maximally consistent sets, the canonical
model will use maximally consistent subsets of the closure as its worlds. These
are called atoms. Since atoms only contain finitely many formulas, we can never
encounter an infinite set of formulas that is consistent yet not satisfiable like
the one in example 6.

Unfortunately, here we have a problem with the nominals. If we want to
prove completeness with respect to named frames, we need to make sure that
every atom is named, (i.e. it contains a nominal). Moreover, we need to make
sure that we have enough named worlds to satisfy all of the modal operators.
This is ensured by a property called pastedness: an atom is pasted iff @i◇φ ∈ B
implies that for some j ∈ Nom, @i◇ j ∧@jφ ∈ B.

In order to meet these conditions, we have to add to the closure a nominal
for every atom as well as satisfaction operators for every nominal and additional
formulas of the form ◇i for the paste condition. The problem is that this process
quickly results in an infinite set once again. Therefore we have to prove that
the closure is at least finite in the important dimension:

Proposition 11 (◇-Finiteness). Let B an atom over (Γ) where Γ is a finite
set of formulas. Then the set {φ ∈ B ∶ φ is of the form ◇ψ} is finite.

This result would ensure that we can never encounter an unsatisfiable atom
such as in example 6.
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Given such a result we would construct a canonical frame. For this we need
an extended Lindenbaum Lemma. The lemma is extended in that it ensures we
can build not just any canonical frame but a frame of named and pasted atoms.

Proposition 12 (Lindenbaum Lemma). For any consistent HAL-formula φ and
any set of HAL-formulas Γ s.t. φ ∈ @¬iFL there is an atom B over Γ such that
φ ∈ B and B is named and pasted.

We can then extend any consistent HAL-formula to a named and pasted
atom and we would make use of this to build a named canonical frame. Unfor-
tunately we cannot simply take the collection of all named and pasted atoms
as the worlds of the canonical model since there is no guarantuee that names
and diamonds would be assigned to worlds ”coherently”. Instead, we wwould
use a single atom to generate all the worlds of the frame. For this purpose the
following lemma is crucial:

Proposition 13. Let Σ be an atom over φ. For every nominal i ∈ Nom, the
set named by i is defined as ∆i = {φ ∶ @iφ ∈ Σ}. Then:

1. For every assigned nominal i ∆i is an atom over φ that contains i iff
∆i ≠ ∅.

2. For all nominals i and j, if i ∈ ∆j , then ∆j = ∆i

3. For all nominals i and j, @iφ ∈ ∆j iff @iφ ∈ Σ.

4. If i ∈ Σ then Σ = ∆i

This lemma is not hard to prove forHAL. We would then build the canonical
frame on the named sets as follows:

Definition 16 (Canonical Frame). Let φ be any HAL-formula, B ∈ At({φ})
and define ASSIGNEDB = {i ∶ @ii ∈ B}. Then the canonical frame over B for
φ is given by NB,φ = (A,R,{Di}i∈ASSIGNEDB

) where

• W = {∆i ∶ i ∈ ASSIGNEDB}

• ∆j ↠∆i iff for all φ ∈ ∆j , ◇φ ∈ ∆i.

• ∆j ↠odd ∆i iff for all φ ∈ ∆j , ◇oddφ ∈ ∆i.

• Di = {∆i}

Next we need to show that the canonical frame is getting the job done. For
this we need to prove that there are enough worlds with the right properties to
satisfy the modalities and satisfaction operators.

Proposition 14 (Existence Lemma). Let NB,φ = (A,R,{Di}i∈ASSIGNEDB
) be

the canonical frame yielded by φ. Suppose a ∈ A. Then

1. @iφ ∈ a implies that there is a′ with Di = {a′} and φ ∈ a′.
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2. ◇φ ∈ a implies that there is a′ such that a′↠ a and φ ∈ a′.

3. ◇oddφ ∈ a implies that there is a′ such that a′ indirectly attacks a and
φ ∈ a′

Finally, we need a truth lemma to complete the proof:

Proposition 15 (Truth Lemma). Let φ be any HAL-formula and NB,φ its
canonical frame over B. Then for any i ∈ ASSIGNEDB and all HAL-formulas
ψ ∈ @¬iFL, NB,φ,∆i ⊧ ψ iff ψ ∈ ∆i.

3.2.4 Expressiveness of Hybrid Logic for Argumentation

We are now in a position to deliver the expressiveness results promised in the
introduction of this chapter. We are interested in such expressiveness on three
levels: firstly, which properties of argumentation frameworks can HAL express;
secondly, which properties of sets of arguments within an argumentation frame-
work; finally, which properties of individual arguments are expressible.

The properties we are interested in on the argumentation framework level are
mainly questions of existence: does the AF contain a cycle? Does an extension
under a given semantic exist? On the level of sets of arguments we seek to
identify cycles or extensions. Finally, on the argument level we would like to
answer the questions of membership in a cycle and rejection, credulous as well
as skeptical acceptance under a semantic.

Expressibility of properties of AFs corresponds to the well-studied area of
frame definability in modal logic. I.e., is there a formula in the language that
characterises a given class of frames? Before we turn to answer this question we
have to define what frame definability means in our setting: normally in modal
logic, a formula is said to define a class of frames iff it is true in any model that
can be built on any frame in the class. However, we already work with frames,
not with models. Hence we need the following definition:

Definition 17. Given an argumentation framework A = (A,↠) we call any
named argumentation framework N = (A′,↠′,{Di}i∈ASSIGNED) such that A =
A′, ↠=↠′ a named argumentation framework based on A. We say that φ is
valid on A and write A ⊧ φ if for every N based on A, N ⊧ φ.

On this level we obtain the following results:

Proposition 16. Let A be an argumentation framework. A is

1. well-founded iff A ⊧ ◻U(←Ð◻φ → φ) → φ where
←Ð◻φ is the reverse box

operator defined as ↓ x. ◻U (◇x→ φ);

2. cycle-free iff A ⊧ ¬@i◇+ i;

3. odd-cycle-free iff A ⊧ ¬@i◇odd i;

4. even-cycle-free iff A ⊧ ¬@i◇even i;
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5. infinite if A ⊧ @ii.
2

Proof. 16.1: Recall that the notion of well-foundedness in argumentation the-
ory corresponds to the notion of converse well-foundedness in modal logic. ⇐:
Suppose A is well-founded and let N be based on A, a be any argument such
that N , a ⊧ ◻U(←Ð◻φ → φ). Then for all a′ ∈ N , N , a′ ⊧ ←Ð◻φ → φ. Since N is
well-founded, all chains originating from a are finite. That is, for each chain
there is a last argument. Pick an arbitrary such argument a′′. Since there is no
argument a′′′ s.t. a′′ ↠ a′′′, N , a′′ ⊧ ←Ð◻φ. But then by assumption N , a′′ ⊧ φ.
Since a′′ was chosen arbitrary, this holds for all endpoints of chains originating
at a. But then any member of those chains must satisfy φ as we prove by in-
duction: for suppose all arguments b reachable from a through a chain of length
n satisfy φ. Then all arguments b′ reachable from a through a chain of length
n − 1 satisfy

←Ð◻φ. But then by assumption N , b′ ⊧ φ as desired. Hence N , a ⊧ φ
as desired. ⇒: Suppose for any N based on A, N ⊧ ◻U(←Ð◻φ→ φ)→ φ. Suppose
for contradiction there an argument a ∈ A such that an infinite ascending chain
of attacks originates from a. Choose N such that N , a′ ⊧ ¬φ for any a′ in the
chain. Then, since there is a′′ such that a′↠ a′′ and N , a′′ ⊧ ¬φ, N , a′ ⊧ ¬←Ð◻φ.
Hence N , a′ ⊧ ←Ð◻φ→ φ. But by supposition a′ ⊧ ¬φ and we get a contradiction.

16.2: ⇐: Suppose A is cycle-free and let N be based on A and a ∈ A.
Either Di = {a′} for some a′ ∈ A or Di = {}. In the latter case, trivially
N , a ⊧ ¬@i ◇+ i. In the first case, by cycle-freeness, a′ does not reach itself.
But then N , a ⊧ ¬@i ◇+ i as desired. ⇒: Suppose for any N based on A,
N ⊧ ¬@i ◇odd i}. Suppose for contradiction A had a cycle. Pick any member
a ∈ N of that cycle. Choose N such that Di = a. Since a is in a cycle, it can
reach itself. Hence N ′, a ⊧◇+i and we reach a contradiction.

The proofs of 16.3 & 16.4 are analogous to 16.2.
16.5: Suppose for any N based on A, N ⊧ @ii. Then i is assigned in any N .

Now suppose for contradiction, A were finite. For any N , every a ∈ A, we have
that a ∈ Dj for some j since N is a named frame. Since A is finite for any N
a finite number of nominals suffices for this. Hence we can find a named frame
N ′ based on A such that i is not assigned. Contradiction! Hence A must be
infinite.

Expressiveness on the level of sets corresponds to truth conditions on the
level of models. This is the level at which we express extensions of specific
argumentation frameworks. Here we obtain the following results:

Proposition 17. Let A be a finite argumentation framework and X ⊆ A be a
set of arguments. X is

2For a necessary and sufficient condition, additional expressiveness is needed. Namely, we
need to be able to quantify over the nominals. This allows for the condition N , a ⊧ ∃i.¬@ii. It
is easy to see that this condition characterises finite frames in a language with countably many
nominals. However, it can be shown that adding the existential quantifier to our language
(with predicates) would give it the full expressive power of first-order logic and thus render it
undecidable Areces and ten Cate [2007]Blackburn and Seligman [1996].

26



1. conflict-free iff N , a ⊧ CF (X̌) where CF (X̌) ∶= ◻U(X̌ → ¬◇ X̌)

2. self-acceptable iff N , a ⊧ SA(X̌) where SA(X̌) ∶= ◻U(X̌ → ◻◇ X̌)

3. admissible iff N , a ⊧ AD(X̌) where AD(X̌) ∶= ◻U((X̌ → ¬ ◇ X̌) ∧ (X̌ →
◻◇ X̌))

4. complete iff N , a ⊧ CO(X̌) where CO(X̌) ∶= ◻U((X̌ → ¬ ◇ X̌) ∧ (X̌ ↔
◻◇ X̌))

5. grounded iff N , a ⊧ GR(X̌) where GR(X̌) ∶= ◻U X̌ ↔ ◻odd◇odd ¬◇ ⊺

6. preferred iffN , a ⊧ PR(X̌) where PR(X̌) ∶= CO(X̌)∧⋀X′⊆A,X′≠X CO(X̌ ′)→
◻U¬(X̌ → X̌ ′)

7. cycle-free iff N , a ⊧ ◻U ↓ x.(X̌ → ¬◇+ x)

8. odd-cycle-free iff N , a ⊧ ◻U ↓ x.(X̌ → ¬◇odd x)

9. even-cycle-free iff N , a ⊧ ◻U ↓ x.(X̌ → ¬◇even x)

Proof. The expressions for 17.1 - 17.4 carry over from KU . 17.5: Recall that
X is grounded iff it is the least fixpoint of the defense function (proposition
2). ⇒ Suppose N , a ⊧ ◻U X̌ ↔ ◻odd ◇odd ¬◇ ⊺. Then a ∈ X iff for all indirect
attackers of a, there is an unattacked indirect attacker a′. Then a′ is defended
by the empty set. Since there is an even path from a′ to a, there is an even
number n such that a ∈ dnN (∅). But then a must be in the least fixpoint
of dN as desired. ⇐ Suppose X is the least fixpoint of dN and N , a ⊧ X̌.
Then X = ⋃0≤n≤ω dN (∅). But then a ∈ X iff a is defended by the empty set
or indirectly perfectly defended by an argument a′ defended by the emptyset.
In the first case, trivially N , a ⊧ ◻odd ◇odd ¬ ◇ ⊺. In the second case, there
exists an unattacked indirect attacker for any indirect attacker of a. But then
N , a ⊧ ◻odd◇odd ¬◇ ⊺ as desired.

For 17.6, the proof is similar to the proof of proposition 6.2.
17.7 to 17.9 follow immediately from proposition 16.2 to 16.4 by considering

the subframe induced by X.

Example 7. We have already seen how names work for the attack model M1.
Now consider instead a named argumentation framework (N ,{Di}i∈ASSIGNED
where ASSIGNED = {i, j, k} and Di = {a1},Dj = {a2},Dk = {a3}. The reader
can check the following:

• A ⊧ ¬@i◇odd i and is hence odd-cycle-free.

• A /⊧ ¬@i ◇even i and hence contains an even cycle, namely, we have N ⊧
¬@i◇odd i and is hence odd-cycle-free
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3.2.5 Expressiveness of HAL: The Infinite Case

We should note here that the expressions we found in the previous section do
not work for infinite argumentation frameworks: disjunctions (conjunctions)
over all subsets of the AF would then have infinitely many disjuncts. But
such an infinite disjunction (conjunction) is not a formula of HAL language. In
fact, infinite disjunctions (conjunctions) correspond to existentially (universally)
quantified formulas. Since this quantification occurs both over individual states
and subsets of the space, it is clear that most of the previous characterizations
correspond to second order formulas in the infinite case. It is well known that
on the level of frame definability, modal and first order language expressivity
intersect with non-empty differences: some second order frame conditions are
expressible in modal language while some first order conditions are not. It is then
natural to ask which of the previous second-order formulas can be expressed in
hybrid logic and how we need to extend the language of HAL for this purpose.

What we need are equivalents to the disjunctions and conjunctions over all
arguments we used in the finite case. We have already hinted at these equivalents
through the abbreviations we used in the last section. Namely, the extended
language we will investigate is the language HAL enriched with the binder
operator ↓ x.φ and the global modality ◻Uφ. where x ∈ Nom. Satisfaction for
the new formulas is defined as follows:

• N , a ⊧↓ x.φ iff N ′, a ⊧ φ where x is a “fresh” nominal, i.e. x ∉ Assigned
andN ′ = (A,R,{Di}i∈Assigned′) where {Di}i∈Assigned′ = {Di}i∈Assigned∪{Sx}
and Sx = {a}.

• N , a ⊧ ◻Uφ iff there is a′ ∈ A s.t. N , a′ ⊧ φ.

Employing this additional expressive power we can express some of the se-
mantics covered in the previous section. On the level of sets we have that:

Proposition 18. Let N be an argumentation framework and X ⊆ A be a set
of arguments. X is

1. conflict-free iff N , a ⊧ CF (X̌) where CF (X̌) ∶= ◻U(X̌ → ¬◇ X̌)

2. self-acceptable iff N , a ⊧ SA(X̌) where SA(X̌) ∶= ◻U(X̌ → ◻◇ X̌)

3. admissible iff N , a ⊧ AD(X̌) where AD(X̌) ∶= ◻U((X̌ → ¬ ◇ X̌) ∧ (X̌ →
◻◇ X̌))

4. complete iff N , a ⊧ CO(X̌) where CO(X̌) ∶= ◻U((X̌ → ¬ ◇ X̌) ∧ (X̌ ↔
◻◇ X̌))

5. grounded iff N , a ⊧ GR(X̌) where GR(X̌) ∶= ◻U X̌ ↔ ◻odd◇odd ¬◇ ⊺

6. cycle-free iff N , a ⊧ ◻U ↓ x.(X̌ → ¬◇+ x)

7. odd-cycle-free iff N , a ⊧ ◻U ↓ x.(X̌ → ¬◇odd x)
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8. even-cycle-free iff N , a ⊧ ◻U ↓ x.(X̌ → ¬◇even x)

Proof. The propositions carry over from the finite case only that the semantics
of the global modality and binder are now adjusted to the infinite case.
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Chapter 4

A Logic for
Argument-based Belief

4.1 Motivation

We have now studied various ways of choosing which arguments to accept from
an argumentation framework. We are thus a step closer to helping the Atlantians
to base all of their beliefs on the outcome of rational argumentations. But one
ingredient is missing: so far we have only talked about arguments. But the
Atlantians are not interested in believing in arguments, they are interested in
beliefs about the claims the arguments make. To help them with this we need
to provide them with a language for those claims and appropriately connect it
to our argumentation logic HAL. This is what we will set out to do in this
section.

4.2 Representing Claims

Intuitively, an argument is a device that aims to convince an agent of the truth
of a proposition by providing support for it. There are many formal languages
we could use to represent these propositions. However, for simplicity’s sake we
will use basic propositional language. In addition, there is certain condition
when a persuasion attempt can never succeed: the proposition is false and the
agent knows this. Knowledge is usually modelled using the modal logic S5. Its
language is the following:

Definition 18 (S5-Language). Let P be a set of atoms. Our language is given
by

L(P ) ∶ φ ∶∶= p ∣ � ∣ ¬φ ∣ φ ∧ φ ∣Kφ
where p ∈ P .
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Semantically, S5 is the logic of the class of frames whose relation is an
equivalence relation. However, we will go a step further and interpret S5 over
a global relation. This essentially yields a version of the logic KU we discussed
earlier without a local modality.

Definition 19 (S5 Semantics). Let W be a set of worlds and define a function
Vprop ∶ P Ð→ 2W . Then M = (W,V ) is a an S5-model where satisfaction is
defined as follows:

M,w ⊧ p iff Vprop(p) = w
M,w /⊧ �
M,w ⊧ ¬φ iff M,w /⊧ φ
M,w ⊧ φ ∧ ψ iff M,w ⊧ φ and M,w ⊧ ψ
M,w ⊧ ◻φ iff M,w′ ⊧ φ for all w′ ∈W .

Finally, we extend Vprop to a function V ∶ LÐ→ 2A such that V (φ) = Vprop(φ)
if φ ∈ P and V (φ) ∶= {a ∈ A ∶M, a ⊧ φ} else.

These semantics allow us to view propositions as sets of worlds. The advan-
tage of this is that frequently in epistemic logic, belief is modelled in terms of
“spheres”. I.e. each agent is associated with a set of worlds they deem most
plausible. The K operator is interpreted as representing knowledge. Hence, a
proposition is known iff it holds in all worlds the agent considers epistemically
possible - that is in all worlds in W . A proposition is believed iff it is true in all
worlds in that sphere, that is if it includes it. However, we still have to specify
this sphere in terms of arguments. We will turn to this issue in the next section.

4.2.1 The Support Relation

Intuitively, an agent should believe in the propositions which are supported by
arguments she accepts. But what does it mean for an argument to support
a proposition P? Should the argument be a logical deduction with P as its
conclusion? Clearly this requirement is too strong: most arguments are not
valid deductions. Instead an argument could support P in many ways, for ex-
ample by giving evidence in favor of it, by adding credibility to a source that
asserts P or merely through rhethoric. In addition, assessing what makes for
a good argument is non-trivial and arguably subjective. On the other hand, if
we place no constraints on the support relation at all, then arguments do not
constrain what the agent believes at all. For example the agent might have an
accepted argument that supports both P and ¬P and thus inconsistent beliefs.
The approach commonly taken in abstract argumentation theory (especially
in Logic Programming) is to model arguments as defeasible implications and
support as the negation of defeaters (e.g. Dung [1995]). Then argument a at-
tacks b if a supports a defeater for what b supports. In a modal setting with
propositions interpreted as sets of worlds, this approach can be mimicked in the
following way: we assume that each argument can be exhaustively described by
a (consistent) set of propositions. Semantically then, the argument is the set
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of worlds where all of these propositions obtain (in what follows we shall blur
the distinction between an argument and its semantics and refer to both sim-
ply by ”argument”). Any proposition whose valuation includes the argument
is regarded as supported. This resembles the view of arguments as defeasible
implications in that the argument is an implication that holds at a subset of
the possible worlds in the universe. Information that eliminates all those worlds
can be viewed as a defeater for it. The question then is, how should an ar-
guments semantic interpretation and the attack relation constrain each other?
Shi, Smets, and Velázquez-Quesada [2017] seek to add argumentative structure
to topological evidence models. I.e., given a topology over the universe, they
interpret the open sets as arguments and aim at inducing an attack relation
over them. For this purpose, they stipulate three requirements:

(A) For arguments a, b, a attacks b or b attacks a iff a ∩ b = ∅.

(B) Let a, b, c be arguments. If a attacks b and c ⊆ b then a attacks c.

(C) All arguments attack the empty argument and the empty argument at-
tacks nothing.

The intuitive interpretation of (A) is that arguments are in conflict with
each other iff there is no possible world in which both arguments hold. Then
the whichever of the two arguments is judged to be the better argument should
attack the other one. In addition, if an argument a is a subset of an argument
b semantically it can be understood as a ”strengthening” of that argument:
syntactically, it is a superset of a thus having more demanding requirements. At
the same time it supports more propositions making it more general. According
to (B), an attacker of a general argument should also attack any more specific
version of that argument. Finally, (C) demands that inconsistent arguments
should be exposed in the sense that every argument attacks them and they do
not succeed in attacking anything but themselves.

Now, we have the reverse goal as Shi et al. [2017], namely given an argu-
mentation framework, assign semantics to arguments in terms of sets of worlds
that allow us to define a notion of belief. In this setting slightly different con-
ditions seem warranted. Firstly, it is easy to come up with examples where two
arguments attack each other although there are worlds in which both of them
are correct.

Example 8. Suppose Alice sees another news report stating that:

• a3: The oracle of Delphi confirms that Atlantis will be inundated but due
to the wrath of the gods.

Alice is not sure what to make of this. Clearly, the oracle is contradicting
the scientists’ report. Thus it seems like either the oracle or the scientists must
be wrong. Or could it be the case that both of them are right? Maybe the gods
will engineer the downfall of Atlantis through exactly the mechanism described
by the Atlantian Scientific Society?
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In light of this, it seems wise to require only half of (A) in our setting:

(A’) a attacks b or b attacks a if a ∩ b = ∅.

Secondly, in addition to (B), it seems also plausible that an argument should
attack everything attacked by a weaker version of it.

Example 9. Later that day Alice reads an in depth piece on the Delphian
oracle’s prediction. She reads that:

• a′3: Not only did the oracle of Delphi confirm that Atlantis will be inun-
dated and that this is due to the wrath of the gods but also it predicted
that the catastrophe will occur in a single day.

Now this strengthened version of the argument is incompatible with the scien-
tists’ prediction which describes a gradual process taking place over years.

Therefore we strengthen (B) in the following way:

(B’) Let a, b, c be arguments. If a attacks b and c ⊆ b then a attacks c. Addi-
tionally, if a attacks b and c ⊆ a, then c attacks b.

Finally, we have to decide how to deal with inconsistent arguments, i.e.
arguments that support only the empty set. Shi et al. [2017]’s conditition (C)
is very much an artifact of the evidence topology: every topology includes the
empty set, hence one better had a way of dealing with it. Coming from an
argumentation framework however, the situation is less clear: most frameworks
will not contain an argument that is self-attacking and attacked by all other
arguments. In addition, condition (A’) allows for non-empty, self-attacking
arguments. Empirically speaking it appears plausible that people sometimes
put forward inconsistent arguments due to the bounds of their rationality or
for strategic reasons. Such arguments are not always recognised as inconsistent.
Even if they were, it appears strange that any other argument would attack
such an inconsistent argument. Rather, an argument that clearly points out the
inconsistency would be needed. On the other hand condition (A’) requires that
there be an attack between disjoint arguments and the empty set is disjoint from
any other argument. Thus it seems what would be needed here to dissolve the
dilemma would be a notion of impossible worlds, that is worlds that allow for
contradictions. An inconsistent argument would then support a set of impossible
worlds. There is a long tradition of research into modal logics allowing for
impossible worlds (see Berto [2013]), but we leave this topic to future work. For
present purposes we will forgo dealing with inconsistent arguments by giving
agents the benefit of the doubt and assuming their arguments to be consistent.
In other words, we require that every argument supports some non-empty set
of worlds:

(C’) For every argument a, a ≠ ∅.
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4.3 Putting Things Together: Argument-Support
Logic

Now that we have developed a language to characterize argumentation frame-
works, a language for argument claims and a notion of support it remains to
combine these ingredients in a unified framework. In the literature, there are
two approaches to this problem: Shi et al. [2017] develop an approach based on
topological semantics. In contrast, Grossi and van der Hoek [2014] use prod-
uct logics to combine logic for argumentation with a logic for argument claims.
In Shi et al. [2017]’s topological semantics arguments are the open sets of a
topology over a space of epistemically possible worlds. As usually, formulas are
evaluated locally at individual worlds. This setting is difficult to combine with
a hybrid language for arguments: if an argument refers to a set of worlds the
naming character of nominals is violated. Furthermore, as arguments are not
necessarily disjoint, Sym will no longer hold: @ij /↔ @ji. Thus what we need
are semantics that preserve the hybrid character of HAL on the one hand and
allow for the interpretation of arguments as sets of worlds on the other. In-
tuitively, we need the ability to distinguish between world w when considering
argument a and w when considering argument a′. I.e., we need an evaluation
point for every argument-world combination. In other worlds our semantics
should be based on the Cartesian product of the set of arguments and epistemic
possibilities. This approach is explored by Grossi and van der Hoek [2014] under
the name Doxastic Argument Logic (DA). However, in DA both arguments and
belief are modelled as primitive. That is, semantically an argumentation frame-
work is combined with a doxastic KD45-frame with a ”readymade” doxastic
accessibility relation. Contrary to this we seek to define belief in terms of ar-
gumentation. For this purpose we shall develop a logic for argument supported
belief.

4.3.1 Product Logics

We present here a HAL-variant of the product logic DA presented by Grossi
and van der Hoek [2014]. As before, we start with semantics. In general, a
product frame is defined as follows.

Definition 20 (Product Frame). [Gabbay and Shehtman [1998]] LetA = {A,R},
F = {W,R′} be frames. Then the corresponding product frame is defined as
DA = {A ×W,Q,S} where

(a,w)Q(b, v) iff aRb and w = v
(a,w)S(b, v) iff wR′v and a = b

We extend this definition to classes of frames in the natural way: let F, F′

be classes of frames. Then their product class is defined as F×F′ = {F ×F ′ ∶ F ∈
F,F ′ ∈ F′}. In turn, the logic of a product class F×F′ is denoted by L×L′ where
L, L′ are the logics of F,F′ respectively. We will discuss how to axiomatize
such a logic in section 4.3.2. Then it seems like the logic HAL × S5 (where
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S5 is interpreted over a global relation) as a good candidate for our purposes.
However, we still need to build in the support relation. On the language side,
following Grossi and van der Hoek [2014] we will do this by adding a special
operator σ. The logic (HAL × S5)σ has the following language:

Definition 21 (Argument-Support Logic: Language). Let P be a set of atoms,
Nom be a set of nominals. The language of Hybrid Argument Support Logic is
defined as follows:

L(P ) ∶ φ ∶∶= i ∣ p ∣ � ∣ ¬φ ∣ φ ∧ φ ∣ qφ ∣ q+oddφ ∣ @iφ ∣Kφ ∣ σ

where p ∈ P is an atom, i ∈ Nom is a nominal.

σ denotes the nullary support operator. That is, (a,w) ⊧ σ is to be inter-
preted as “argument a supports world w” (or vice versa). Correspondingly we
will now define product frames equipped with a unary relation to interpret σ.

Definition 22. An Argument-Support frame is a tuple (N ×W,Rσ) where N
is a named argumentation framework, W a non-empty set and Rσ is a subset
of A×W . Rσ is constrained to respect the conditions (A’) to (C’) delineated in
section 4.2.1:

• (A’): For all a, b ∈ A, if {w ∶ (a,w) ∈ Rσ}∩{w ∶ (b,w) ∈ Rσ} = ∅ then a↠ b
or b↠ a.

• (B’).1: For all a, b, c ∈ A, if a↠ b and {w ∶ (c,w) ∈ Rσ} ⊆ {w ∶ (b,w) ∈ Rσ}
then a↠ c.

• (B’).2: For all a, b, c ∈ A, if a↠ b and {w ∶ (c,w) ∈ Rσ} ⊆ {w ∶ (a,w) ∈ Rσ}
then c↠ b.

• (C’): For all a ∈ A there is w ∈W such that (a,w) ∈ Rσ

Now let (N ×W,Rσ) be an Argument-Support frame. Then we gain a model
by equipping it with a valuation function Vbase ∶ P ∪NomÐ→ 2A×W such that:

• Vbase(i) = {(a,w) ∶ a ∈Di,w ∈W} for any i ∈ Nom;

• Vbase(p) = {(a,w) ∶ w ∈ VProp(p)} for any p ∈ Prop;

Then we define satisfaction as follows:

• AS, (a,w) ⊧ p iff (a,w) ∈ Vbase(p)

• AS, (a,w) ⊧ i iff (a,w) ∈ Vbase(i)

• AS, (a,w) ⊧ σ iff (a,w) ∈ Rσ)

• AS, (a,w) ⊧ ¬φ iff AS, (a,w) /⊧ φ.

• AS, (a,w) ⊧ φ ∧ ψ iff AS, (a,w) ⊧ φ and AS, (a,w) ⊧ ψ.
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AS1 w1 w2 w3 w4 Ext
a1 σ σ AD1, CO1, PR1

a2 σ σ AD2, CO2, PR2

a3 σ σ AD3, CO2, GR,
PR2

cure,
rise

cure,
¬rise

¬cure,
¬rise

¬cure,
rise

Figure 4.1: Alice’s orginal Argument-Support ModelAS1 with admissible exten-
sions AD1,AD2, complete extensions CO1,CO2, preferred extensions PR1, PR2

and grounded extension GR.

• AS, (a,w) ⊧ qφ iff for all a′ ∈ A if a↞ a′ then AS, (a′,w) ⊧ φ

• AS, (a,w) ⊧ qoddφ iff for all a′ ∈ A s.t. a ↞odd a
′ and AS, (a′,w) ⊧ φ

where ↞odd is the odd transitive closure of ↞.

• AS, (a,w) ⊧ @iφ iff there is a′ such that for all w, (a′,w) ∈ Vbase(i) and
AS, (a′,w) ⊧ φ.

• AS, (a,w) ⊧Kφ iff AS, (a,w′) ⊧ φ for all w′ ∈W .

Note that each nominal denotes a single argument and akin to “rigid des-
ignators”, points to that arguments across all worlds. Hence the valuation of
a nominal is now a set of argument-world pairs where the argument stays the
same. Correspondingly, the satisfaction-operator - since it now refers to a set
- demands that every argument-world pair satisfy the proposition in its scope
(recall, that unlike in standard hybrid logic, not every nominal needs to be
assigned). It is thus, in a way, a two-dimensional operator. In constrast, the
modal operators are one-dimensional in that each modal operator “looks” along
one axis of the product space only. I.e. K looks along worlds while q looks
along arguments. In addition to the above language, we also import all the
abbreviations we defined for HAL. That is qUφ, ↓ x.φ, qevenφ are all defined
as before with respect to the HAL component of the language.

Example 10. Figure 4.1 shows the AS-model representing Alice’s argumen-
tation framework from Example 2 featuring in a product logic enriched with
the support operator σ and atoms cure and rise for the claims made by the
arguments (see the lower margins).

4.3.2 A Note on Axiomatization

Our conjecture is that Argument Support Logic can be axiomatized by the
axiomatization of HAL for the vertical logic, the axiomatization of S5 for the
horizontal logic and the following axioms:
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◇−Com ⟨K⟩y∗ φ↔y∗⟨K⟩φ (4.1)

◇−Con y∗Kφ↔K y∗ φ (4.2)

(A′) @iK(σ → qU(j → ¬σ)→ @iy j ∨@j y i (4.3)

(B′.1) @iy k ∧@jK(σ → qU(σ → i)→ @j y k (4.4)

(B′.2) @iy k ∧@jK(σ → qU(σ → k)→ @iy j (4.5)

(C ′) ⟨K⟩σ (4.6)

where y∗ ∈ {y,yodd} and q∗ is defined accordingly. Here ◇−Com and ◇−
Con are the axioms that govern the interactions between horizontal and vertical
modalities (see Carnielli and Coniglio [2016], Gabbay and Shehtman [1998],
section 7)). The axioms (A′) − (C ′) correspond to the conditions we placed on
Rσ. For a large class of logics, completeness transfers from the component logics
to the product logic (see Gabbay and Shehtman [1998], section 7). Namely, this
is the case for normal modal logics axiomatized by axioms that either satisfy
a condition called “pseudotransitivity” or do not contain propositional letters.
It is known that the S5-axioms are pseudotransitive. In addition note that all
axioms of HAL are free of propositional letters (since it is a frame language).
So are the axioms (A′) − (C ′) but they are not part of the component logics.
This suggests that the above axiomatization should be complete with respect to
Argument-Support frames. However, we leave it to future work to prove this.

4.4 Belief in Terms of Argument Semantics

Argument-Support Logic provides us with a powerful language to express dif-
ferent notions of belief. In this section we will explore three such notions and
investigate their properties when using different argument semantics as belief-
makers.

Namely, we make the following distinctions:

Definition 23. Given a semantic S, we say that a proposition φ is

• credulously believed iff there is some argument a, such that a ∈ E for some
extension E ∈ S and φ holds at every world that is supported by a (or to
present it as a pseudo-second order expression:

∃a,E.(E(a) ∧ S(E) ∧ ∀w.(σ(a,w)→ φ(a)))).

• skeptically believed iff there is some argument a, such that a ∈ E for all
extensions E ∈ S and φ holds at every world that is supported by a (or

∃a.∀E.((S(E)→ E(a)) ∧ ∀w.(σ(a,w)→ φ(a)))).
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• strongly believed iff for all arguments a, such that a ∈ E for some extension
E ∈ S, φ holds at every world that is supported by a (or

∀a.∃E.((E(a) ∧ S(E))→ ∀w.(σ(a,w)→ φ(a)))).

Let ψ be the formula scheme that characterizes S as per proposition 171 and
let X be a set of arguments. Then, for finite argumentation frameworks, we can
express these three notions of belief as follows in Argument-Support logic:

Credulous Belief CBSφ ∶=yU( ⋁
X⊆A

(X̌ ∧ ψ(X̌)) ∧K(σ → φ))

Skeptical Belief SBSφ ∶=yU(⋀
S⊆A

(ψ(X̌)→ X̌) ∧K(σ → φ))

Strong Belief STBSφ ∶= qU(⋁
S⊆A

(X̌ ∧ ψ(X̌))→K(σ → φ))

Comparing these formulas to the second order expressions in Definition 23
is instructive: the vertical global modality serves as an existential/universal
quantifier over arguments. The second order quantifier is represented by a
big disjunction over all subsets of A. Finally and most interestingly, K̄ takes
the role of the universal horizontal quantifier. In other words, credulous and
skeptical belief require that it is known that the considered argument supports
the proposition in question whereas strong belief requires that this be the case
for all accepted arguments.

As the reader may have noticed, credulous and skeptical belief follow the
distinction between credulous and skeptical acceptance of arguments we en-
countered in chapter 2. We should note that on finite frames, “grounded be-
lief” as proposed by Shi et al. [2017] is similar to credulous belief where S is
the grounded semantic (not equivalent, as we shall see). On the other hand
strong belief captures a situation when the agent has maximal certainty in a
proposition: all the arguments she is aware of and willing to accept support
the proposition. Another noteworthy property of these belief operators is that
they are global. That is AS, (a,w) ⊧ CBSφ (SBSφ, STBSφ respectively) iff
AS ⊧ CBSφ (SBSφ, STBSφ respectively). This is so because they quantify
over all arguments and the “row properties” bearing on the evaluating argu-
ment hold independently of the evaluation world.

Example 11. The reader is invited to check the following in Figure 4.1:

• Alice believes that bloodletting cures the cold credulously under admissi-
ble semantics complete semantics and preferred semantics.

• She believes that bloodletting cures the cold skeptically under grounded
and preferred semantics but not under admissible or complete semantics.

1Strictly speaking, the version of the formula in the language of ASL, i.e. every ◇ has to
be replaced by a y and so forth.
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• She believes that bloodletting cures the cold strongly under grounded
semantics but not under admissible, complete or preferred semantics.

We shall now study some general properties of credulous, skeptical and
strong belief before turning to their behaviour under specific semantics. First,
we should take note of the duals of the belief operators.

Definition 24. (Duals) Given an ASL formula φ denote by ⟨CB⟩φ, ⟨SB⟩φ,STBφ
respectively the formuals ¬CB¬φ, ¬SB¬φ, ¬STB¬φ which correspond to

• AS ⊧ ⟨CB⟩Sφ↔ qU(⋀X⊆A(X̌ → ¬ψ(X̌)) ∨ ⟨K⟩(σ ∧ φ))

• AS ⊧ ⟨SB⟩Sφ↔ qUφ(⋁X⊆A(ψ(X̌) ∧ ¬ X̌) ∨ ⟨K⟩(σ ∧ φ))

• AS ⊧ ⟨STB⟩Sφ↔yU(⋁X⊆A(X̌ ∧ ψ(X̌)) ∧ ⟨K⟩(σ ∧ φ))

Usually, the duals of belief operators are interpreted as the agent not ruling
out a proposition or considering it a “serious possibility”. However, in the case
of credulous and skeptical belief this interpretation is unsuitable: as well shall
see in the next section, depending on the semantic it is possible for an agent
to believe both a proposition φ and its negation ¬φ. As a consequence belief
in ¬φ is not enough to rule out φ. Another difference between credulous and
skeptical belief on the one hand and strong belief on the other is that the latter
quantifies universally over arguments. As a consequence, if the only extension
is the empty set, the agent trivially strongly believes everything. This is not
the case for the existentially quantified credulous and skeptical belief. Thus the
intuition that strong belief should imply the weaker forms of belief holds only
in the case where there are non-empty extensions. More curiously, it is even
possible to know something and yet to (credulously, skeptically) believe nothing
- again this is the case if no argument is accepted. One could compare this
situation to the extreme skepticism explored by Descartes: suppose the agent
is not willing to accept any argument as it may only appear convincing to her
due to the works of an evil demon. As a consequence she believes nothing. Yet
it is not possible to know nothing as there are some things one knows, such as
that one exists, that cannot be given up. This is also the point where Credulous
Grounded Belief differs from Grounded Belief as defined by Shi et al. [2017]:
Since the arguments in their setting are the open sets in a topology, the whole
space is always an argument and it is always accepted. This ensures that what
is known is also believed. Coming from an argumentation framework, there is
no such guarantee. Finally, it is easy to see that if there is a unique extension,
credulous and skeptical belief become equivalent. We summarise these facts in
the following proposition:

Proposition 19. Let AS be a finite argument-support model and S a semantic.
Then

1. AS ⊧Kφ→ STBSφ

2. For all E ∈ S, E ≠ ∅ implies AS ⊧ STBSφ→ SBSφ→ CBSφ
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3. ∣S∣ = 1 implies AS ⊧ CBSφ↔ SBSφ.

Proof. 19.1: Suppose AS ⊧ φ. Then for all (a,w) ∈ A ×W , AS, (a,w) ⊧ φ. But
then a fortiori AS, (a,w) ⊧ σ → φ and thereby thereby AS ⊧ K(σ → φ). This
holds for all arguments and by weakening we get AS ⊧ qU(⋁S⊆A(X̌ ∧ψ(X̌))→
K(σ → φ)) as desired.

19.2: Suppose E ≠ ∅ and AS ⊧ STBSφ. Then there is at least one accepted
argument and for every accepted argument a, AS, (a,w) ⊧ K(σ → φ)) where
W is any world. But then it follows that (a,w) ⊧ ⋀X⊆A(ψ(X̌) → X̌). Hence
AS ⊧ STBSφ → SBSφ. Now clearly (a,w) ⊧ ⋀X⊆A(ψ(X̌) → X̌) implies that
(a,w) ⊧ ⋁X⊆A(ψ(X̌) ∧ X̌) and hence AS ⊧ STBSφ → SBSφ → CBSφ as
desired.

19.3,⇒: Suppose ∣S∣ = 1 and AS ⊧ CBSφ. Let E be the unique extension in
S. Then for some argument s.t a ∈ E and AS, (a,w) ⊧ K(σ → φ). But since E
is the unique extension we have that for all E ∈ S, a ∈ E and hence AS ⊧ SBSφ
as desired. ⇐: similar.

Next we study how our notions of belief compare to a standard doxastic
logic with an S5-knowledge operator and a KD45-belief operator. In doing so
we consider the following axioms where B stands for a generic belief operator:

• N: Kφ→ Bφ

• D: Bφ→ ⟨B⟩φ

• M: B(φ ∧ ψ)→ Bφ ∧Bψ

• C: Bφ ∧Bψ → B(φ ∧ ψ)

• 4: Bφ→ B(Bφ)

• 5: ¬Bφ→ B(¬Bφ)

Axiom N demands that knowledge imply belief. We have already seen that
this axiom only holds for strong belief in our setting. M and C together are
equivalent to axiom K. Finally D, 4, and 5 are the usual requirements on belief:
D enforces consistency, 4 positive introspection and 5 negative introspection.
Grounded belief as defined by [Shi et al., 2017] satisfies all of these axioms
except C. We will now study which fragment of the standard axiomatization
each of credulous, skeptical and strong belief fulfill.

4.4.1 Credulous Belief

We begin with credulous belief and investigate its behaviour when plugging
in various semantics for S. Our focus is on the admissible, complete, grounded
and preferred semantics. Except for the grounded semantics, an argumenta-
tion framework may have multiple extensions under any of these semantics. For
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credulous belief, this has the consequence that agents can be locally inconsistent
in the sense that they can believe both a proposition and its negation. How-
ever, they are saved from full-blown inconsistency by the fact that there beliefs
need not be closed under conjunction. A possible interpretation of Credulous
Belief under non-unique argument semantics is the idea that people may have
several, mutually incompatible yet coexisting mental models that allow them to
have context-dependent beliefs. Under this interpretation, extensions play the
role of mental models with consistency required within each extension but not
between extensions. The result is a notion of bounded rationality that limits
the degree to which agents check the consistency of their beliefs: in the case of
admissible semantics, they only check that their model can defend itself and is
internally consistent; if completeness is required, agents are assumed to be able
to also derive all the argumentative consequences of their models; finally in the
preferred case, the agents look for and are able to obtain maximally complete
models.
Proposition 20. LetAS be an Argument-Support model and let S ∈ {AD,CO,PR}.
Then we have that

1. N: AS /⊧Kφ→ CBSφ

2. D: AS /⊧ CBSφ→ ⟨CB⟩Sφ

3. M: AS ⊧ CBS(φ ∧ ψ)→ CBSφ ∧CBSψ

4. C: AS /⊧ CBSφ ∧CBSψ → CBS(φ ∧ ψ)

5. 4: AS ⊧ CBSφ→ CBS(CBSφ)

6. 5: AS ⊧ ¬CBSφ→ CBS(¬CBSφ)

Proof. 20.1: Take as a counterexample any model where there is a unique empty
extension such as the case of a single self-attacking argument.

20.2: Take as a counterexample any model where there are two extensions
containing arguments supporting both φ and ¬φ. See e.g. Figure 4.1.

20.3: Suppose AS ⊧ CBS(φ∧ψ). Then there exist a, E ∈ S such that a ∈ E
and for all w, AS, (a,w) ⊧ σ → (φ ∧ ψ). But then AS, (a,w) ⊧ σ → φ and
AS, (a,w) ⊧ σ → ψ as desired.

20.4: For a counterexample consider again 4.1. AS1 ⊧ CBSrise and AS1 ⊧
CBS¬rise under admissible, complete and preferred semantics with a1 support-
ing rise and a2 supporting ¬rise. But clearly there is no world w such that
AS1, (a,w) ⊧ rise ∧ ¬rise for some a and hence AS1 /⊧ CBS(rise ∧ ¬rise).

20.5: Suppose AS ⊧ CBSφ. Then for all (a,w) ∈ A ×W we have that
AS, (a,w) ⊧ CBSφ. This holds fortiori for all (a,w) such that AS, (a,w) ⊧
σ. But since there is some accepted argument that supports some world by
assumption, there must be some accepted argument that supports CBSφ. Hence
AS ⊧ CBS(CBSφ) as desired.

20.6: The argument is analogous to the proof of 20.5.
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If the semantics yield a unique extension as in the case of the grounded se-
mantics, local inconsistency is not possible. However, closure under conjunction
still fails. One might wonder what causes this. The reason becomes apparent
when comparing the semantics of arguments in our setting to the setting of
?. As we have noted, the arguments form a topology in their setting. This
requires that every intersection of arguments is an argument. In our setting no
such requirement is placed on the valuation of arguments. That is for any a,
a′, {w ∶ (a,w) ∩ (a′,w)} needn’t correspond to an argument. Thus, even in a
unique extension is not enough to ensure closure under conjunction.

Proposition 21. Let N × F be an argument-support frame and let S = GR.
Then we have that

1. N: AS /⊧Kφ→ CBSφ

2. D: AS ⊧ CBSφ→ ⟨CB⟩Sφ

3. M: AS ⊧ CBS(φ ∧ ψ)→ CBSφ ∧CBψ

4. C: AS /⊧ CBSφ ∧CBSψ → CB(φ ∧ ψ)

5. 4: AS ⊧ CBSφ→ CBS(CBSφ)

6. 5: AS ⊧ ¬CBSφ→ CBS(¬CBSφ)

Proof. The proofs for N,M,4,5 are as in the proof of 20.
21.2: Suppose AS ⊧ CBSφ. Then there is an argument a in the grounded

extension such that for all w, AS, (a,w) ⊧ σ → φ. Now suppose for contra-
diction there were an argument a′ in the grounded extension such that for
all w AS, (a,w) ⊧ σ → ¬φ. Then from V (φ) ∩ V (¬φ) = ∅ it follows that
{w ∶ (a,w) ∈ Rσ} ∩ {w ∶ (a′,w) ∈ Rσ} = ∅. Then by (B’) a ↠ a′ or a′ ↠ a.
But then the grounded extension is not conflict-free and we get a contradiction.
Hence AS, (a,w) /⊧ σ → ¬φ. It follows immediately that AS /⊧ CBS¬φ and
hence AS ⊧ ⟨CB⟩Sφ.

21.4: The counterexample from the proof of 20 fails now since the grounded
extension cannot contain arguments supporting φ and ¬φ respectively (see the
argument for 21.2). However, consider the example in Figure 4.2. Here we have
in the grounded extension the arguments a3 and a4 which support cure and
rise respectively. But neither of them supports cure and rise.

Example 12. Alice trusts the Oracle of Delphi more than the Atlantian Sci-
entific Society and so her new argumentation framework looks like in Figure
4.2.
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AS2 w1 w2 w3 w4 Ext
a1 σ σ
a2 σ σ
a3 σ σ AD1, AD2,CO,

GR, PR
a4 σ σ AD2,AD3,CO, GR,

PR
cure,
rise

cure,
¬rise

¬cure,
¬rise

¬cure,
rise

Figure 4.2: Alice’s Argument-Support Model after hearing the prophecy by the
oracle of Delphi

4.4.2 Skeptical Belief

Under the skeptical interpretation of belief, the question is not so much whether
the semantics admit multiple extensions but rather whether the intersection
of those extensions is empty, a true intersection or equals the union of the
extensions. In the first case, the agent will believe nothing: there is no argument
that is in all the extensions. Consider for example admissible semantics: since
the empty set is always admissible, the intersection of all admissible sets is
always empty. Thereby under admissible semantics skeptical belief collapses:
the agent will not skeptically believe anything.

Proposition 22. Let AS be an argument-support model and S the admissible
semantic. Then we have that

AS ⊧ ¬SBSφ

Proof. Suppose for contradiction AS ⊧ SBφ. Then there is an argument that is
in all admissible sets. But the intersection of all admissible sets is empty. Hence
we get a contradiction.

On the other hand, if the intersection of the extensions equals their union
skeptical belief collapses into credulous belief. This is the case if the extension
is unique and thus for the grounded semantic:

Proposition 23. Let AS be an argument-support model and let S be the
grounded semantic. Then we have that

AS ⊧ CBSφ↔ SBSφ

Proof. This follows trivially from the observation that in the case of a unique
extension, an argument being in all extensions is equivalent to it being in one
extension.

Finally, for the complete and preferred semantics, skeptical belief behaves
similar to credulous belief under the grounded semantic. However, instead of
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one mental model we get several ones that are required to be “mutually con-
sistent” with respect to the proposition in question. That is, skeptical belief
enforces C even without a unique extension since it requires that each extension
contains the same arguments supporting the proposition. By condition (C’) of
the support relation a proposition and its negation cannot both be supported
by the same argument.

Proposition 24. Let AS be an argument-support model and S ∈ {CO,PR}
Then we have that

1. N: AS /⊧Kφ→ SBSφ

2. D: AS ⊧ SBSφ→ ⟨SB⟩Sφ

3. M: AS ⊧ SBS(φ ∧ ψ)→ SBSφ ∧ SBSψ

4. C: AS /⊧ SBSφ ∧ SBSψ → SBS(φ ∧ ψ)

5. 4: AS ⊧ SBSφ→ SBS(SBSφ)

6. 5: AS ⊧ ¬SBSφ→ SBS(¬SBSφ)

Proof. 24.1: The same counterexamples as for 20.1 apply.
24.2: Suppose AS ⊧ SBSφ. Then there is an argument a such that a ∈ E

for all extensions E ∈ S and for all W , AS, (a,w) ⊧ σ → φ. Now the proof is
analogous to the proof of 21.2 except that we consider all extensions under S.

24.3: Again the proof is analogous to the proof of 20.3, accounting for the
universal quantification.

24.4: Consider again the counterexample presented in Figure 4.2.
19 and 19 follow as before from the globality of SBS .

4.4.3 Strong Belief

Finally, strong belief goes beyond credulous and skeptical belief in that it is
implied by knowledge and enforces consistency and closure under conjunction
yielding the classical KD45 notion of belief:

Proposition 25. LetN×F be an argument-support model and let S ∈ {AD,CO,GR,PR}.
Then we have that

1. N: AS ⊧Kφ→ STBSφ

2. D: AS ⊧ STBSφ→ STBSφ

3. M: AS ⊧ STBS(φ ∧ ψ)→ STBSφ ∧ STBSψ

4. C: AS ⊧ STBφ ∧ STBSψ → STBS(φ ∧ ψ)

5. 4: AS ⊧ STBSφ→ STBS(STBSφ)

6. 5: AS ⊧ ¬STBSφ→ STBS(¬STBSφ)
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Proof. 25.1: Suppose AS ⊧ Kφ. Then for all (a,w) ∈ A ×W , AS, (a,w) ⊧ φ.
A fortiori this holds for all (a,w) s.t. AS, (a,w) ⊧ σ. But then it follows
immediately that AS ⊧ STBSφ as desired.

25.2: As in the proofs of 21.2 and 24.2 this follows from the fact that two
arguments supporting φ and ¬φ respectively cannot be in the same extension.

25.3: Almost the same as the proof of 20.3.
25.4:Suppose AS ⊧ STBφ ∧ STBSψ. Then for any a, if a ∈ E for some

E ∈ S, then for all w ∈W , AS, (a,w) ⊧ σ → φ and AS, (a,w) ⊧ σ → ψ. But then
AS, (a,w) ⊧ σ → (φ ∧ ψ) as desired.

25.5 and 25.6 follow from the globality of STBS .

Strong belief enforces closure under conjunction through “brute force”: since
all accepted arguments have to support each of the conjuncts, it follows from
propositional logic for each of them that they have to support the conjunction.
Thus STBS is the best-behaved operator with respect to the standard doxastic
axioms. In addition, this good behaviour is completely invariant with respect
to the argument semantics. On the other hand strong belief is very demanding:
speaking in terms of the mental models we discussed earlier, it requires that
each theory contains only arguments supporting the proposition. That is, it is
intolerant to neutral arguments as Example 13 demonstrates.

Example 13. In figure ??, Alice has two arguments that are accepted under
the grounded semantic. But since neither of them support both rise and cure,
she does not believe either proposition.

While skeptical belief and credulous belief are more forgiving they are also
less well-behaved with respect to the standard axioms. Depending on the use
case or one’s philosophical inclination this can be a defect or a strength (espe-
cially the lack of closure under conjunction). However, the failure of the usual
knowledge-implies-belief condition suggests that in this setting a belief-first def-
inition of knowledge in terms of arguments might be more fruitful. We leave
this issue to future work.
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Chapter 5

Dynamics for
Argumentation Logic

We are now able to describe an agent’s argumentation framework in the formal
language provided by HAL. However, argumentation is an inherently dynamic
process: agents devise, exchange, modify, withdraw, comment on, or deliber-
ately ignore arguments to just name a few phenomena in the wild. Therefore
it is perhaps surprising that the investigation of dynamics of argumentation
frameworks have only attracted significant interest in the last ten years and is
still in its infancy. An overview of this work is presented by Mailly [2015]. Most
of the research on dynamics of argumentation is guided by one of three goals:
characterising conditions that ensure invariance of semantics, extensions and
the acceptance status of individual arguments under various dynamics; finding
operations that enforce certain properties of argumentation frameworks; and,
in a logical context, expressing properties of argumentation frameworks in a
dynamic formal language. The second approach has synergies with the AGM
paradigm of belief revision, especially when it poses the question of the minimal
change to bring about the desired goal. In this way, the literature on enforce-
ment pertains particularly to strategic argumentation. We will only touch on
considerations of strategy in this work insofar as they affect agents’ beliefs.
Namely, we will investigate the degree of confidence an agent can have that his
current beliefs will survive the confrontation with new arguments. While the
third approach is important to this work insofar it concerns the expressibility of
the logics used here, we will sidestep most of these issues by restricting ourselves
to working with finite argumentation frameworks. It is the first approach that
is most congenial to our work in this section which mainly consists in studying
the behaviour of various semantics under operations that make sense from a
doxastic viewpoint.

Such operations fall into the following categories (Boella et al. [2009], Boella
et al. [2010]):

Definition 25 (Argumentation Framework Updates). Let A, A′ be two argu-
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mentation frameworks. Then

• A′ is an argument refinement of A iff A ⊆ A′ and for all (a, a′), (a, a′) ∈→′

implies (a, a′) ∈→.

• A′ is an attack refinement of A iff A = A′ and → ⊆→′.

• A′ is an argument abstraction of A iff A′ ⊆ A and for all (a, a′), (a, a′) ∈→′

implies (a, a′) ∈→.

• A′ is an attack abstraction of A iff A = A′ and →′ ⊆→.

Liao et al. [2011] define two operations that are capable of carrying out all
of these changes:

Definition 26 (Addition). Given an argumentation framework A, an addition
to A is defined as a tuple (B, IA∶B∪IA) s.t. B is a set of arguments disjoint from
A, IA ⊆ A × A, IA∶B ⊆ {(a, b), (b, a), (b, b) ∶ a ∈ A, b ∈ B}. The argumentation
framework resulting from A updated by (B, IA∶B ∪ IA) is defined as

A′ = A⊕(B, IA∶B ∪ IA) = (A ∪B,R ∪ (IA∶B ∪ IA))

Definition 27 (Deletion). Given an argumentation framework A, a deletion
from A is defined as a tuple (B, IA∖B∶B ∪IA∖B) s.t. B ⊆ A, IA∖B ⊆ A∖B×A∖B,
IA∖B∶B = R ∩ (B ×A ∪A ×B). The argumentation framework resulting from A
updated by (B, IA∖B∶B ∪ IA∖B) is defined as

A′ = A⊖(B, IA∖B∶B ∪ IA∖B) = (A ∖B,R ∖ (IA∖B∶B ∪ IA∖B))

5.1 Argumentation Framework Updates in HAL

5.1.1 Semantics

While the operations of addition and deletion provide us with the ability to
add and remove arguments or attacks, they have a crucial drawback for our
purposes. Ultimately, we would like to be able to use HAL as a language for
argumentation dynamics that allows us to formally express dynamic properties
of the kind ”If N , a ⊧ φ and A′ ⊧ ψ then A⊕A′ ⊧ γ. However, the notions of
addition and deletion differ from argumentation frameworks in a crucial way:
they contain relations over arguments that are not elements of their underlying
space but of the original framework. Therefore, they cannot be understood as
Kripke-frames and it is unclear how they could serve as semantics for HAL.

For this reason we will develop a different notion of addition and deletion
of arguments. The basic idea is that both the original framework and the ar-
guments and attacks to be added/removed should form full-blown, independent
Kripke-frames. In addition, they should be named frames so that we can use
them as semantics for HAL.

Hence let U = (U,↠U,{Di}i∈Nom) be some ↠-complete countably infinite,
nice, named frame that will serve as our local universe. We call N = (A ⊆
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U,↠⊆↠U,{Di}i∈Assigned⊆Nom) a subframe of U. Then we define the following
two operations.

Definition 28 (Argument Framework Union). Let N , N ′ be argumentation
frameworks. Then the union of N , N ′ is defined as

N ∪N ′ = N ′′

where

• A′′ = A ∪A′

• R′′ = R ∪R′

• D′′ = {Di}i∈Assigned∪Assigned′

Definition 29 (Argument Framework Intersection). Let N , N ′ be argumenta-
tion frameworks. Then the intersection of N , N ′ is defined as

N ∩N ′ = N ′′

where

• A′′ = A ∩A′

• →′′ =→ ∩→′

• D′′ = {Di}i∈Assigned∩Assigned′

Note that the local universe U plays an important role here: if N , N ′ where
not subset of U, it could be the case that they have the same name for two
different arguments. Then N ∪N ′ would no longer be a nice frame.

It is easy to prove that we can represent any addition and deletion using
union and intersection update. For this purpose, denote by AN the argumen-
tation framework underlying a partial named argumentation framework.

Proposition 26 (Representation). Given a local universe U and N a partial
named subframe of U, for any addition (B, IA∶B ∪ IA) where B ⊆ U , IA∶B ∪
IA ⊆↠U , there exists N ′ s.t. AN ⊕(B, IA∶B ∪ IA) = AN ′′ where N ′′ = N ∪N ′

Proof. TakeAN ′ = (B∪C, IA∶B∪IA) where C = {a ∈ A ∶ (a, b), (b, a), (a, a′), (a′, a) ∈
IA∶B ∪ IA for b ∈ B,a′ ∈ A}. Clearly, this is an argumentation framework. Since
B ∪C ⊆ U , AN ′ corresponds to a unique named argumentation framework N ′.
clearly AN ⊕(B, IA∶B ∪IA) = AN ∪AN ′ . But then clearly AN ⊕(B, IA∶B ∪IA) =
AN ′′ where N ′′ = N ∪N ′.

The proof of proposition 26 makes it clear that nothing hinges on whether we
work with named or unnamed argumentation frameworks, if we assume a local
universe to take care of the naming. Hence in what follows we will exclusively
use named argumentation frameworks.
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In addition, it is clear that union and intersection update are ”sound and
complete” with respect to U insofar as every frame obtained from a union update
or a intersection update of subframes of U is a subframe of U and any subframe
of U can be obtained from any other subframe of U through repeated union or
intersection update.

Hence for any argument or attack refinement (abstraction) N ′′ of N we
can easily construct an argument framework N ′ s.t. N ′′ = N ∪ N ′ (N ′ s.t.
N ′′ = N ∩N ′).

Based on the directionality property Liao et al. [2011] develop a method
to divide an argumentation framework under a semantic into three parts with
respect to one of its sub-frameworks B: a part unaffected by B (anything up-
stream from B), a part affected by B (B itself and anything downstream from
it) and a ”conditioning” part (the subset of B that attacks any argument in
the affected part). This division enables them to prove necessary and sufficient
condition for monotony of semantics and argument status while updating only
the affected part of the framework.

We will keep things slightly simpler here and only consider the unaffected
and affected subframe of an update argumentation framework.

Definition 30 (Affected and Unaffected Part of an Argumentation Framework
Union). Let N , N ′, N ′′ be argumentation frameworks s.t. N ′′ = N ∪N ′. Then
we define the following sub-frameworks of N ′′: the affected arguments (A′′

a ,→′′
a)

and the unaffected arguments (A′′
u,→′′

u), where:

• A′′
a = A′ ∪ {a ∈ A ∶ A′↠′′+ a}.

• A′′
u = A′′ ∖A′′

a .

• ↠′′
a =↠′′ ∩ (A′′

a ×A′′
a).

• ↠′′
u =↠′′ ∩ (A′′

u ×A′′
u).

• D′′
u = {Di}i∈Assigned∩Assigned′ ∩ {{w} ∶ w ∈ A′′

u}

• D′′
a = {Di}i∈Assigned∩Assigned′ ∩ {{w} ∶ w ∈ A′′

a}

In other words, the affected part of an Argumentation Framework comprises
the arguments that are either from the update frame N ′ or are attacked - under
the updated attack relation ↠′′ - by A′; the restriction of the updated attack
relation to those arguments; and the names corresponding to those arguments.
Of course we can make the same distinction for intersection update:

Definition 31 (Affected and Unaffected Part of an Argumentation Framework
Intersection). Let N , N ′, N ′′ be argumentation frameworks s.t. N ′′ = N ∩N ′.
Then we define the following sub-frameworks of N ′′: the affected arguments
(A′′

a ,↠′′
a) and the unaffected arguments (A′′

u,↠′′
u) where:

• A′′
a = {a ∈ A ∶ A′ ∩A↠+ a}.
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• A′′
u = A′′ ∖A′′

a .

• ↠′′
a =↠′′ ∩ (A′′

a ×A′′
a).

• ↠′′
u =↠′′ ∩ (A′′

u ×A′′
u).

• D′′
u = {Di}i∈Assigned∩Assigned′ ∩ {{w} ∶ w ∈ A′′

u}

• D′′
a = {Di}i∈Assigned∩Assigned′ ∩ {{w} ∶ w ∈ A′′

a}

Note while our definitions of the affected and unaffected arguments are equiv-
alent to the ones given by Liao et al. [2011], they also consider what they call
“conditioning arguments“. However, the conditioning arguments in Liao et al.
[2011]’s setting do not form a complete argumentation framework which is why
we leave them out. A consequence is that taking the union of the unaffected and
affected arguments would not yield back the orginal argumentation framework
- namely it would be missing the attacks between them. However, we proceed
to show that the results obtained by Liao et al. [2011] are still valid in our set-
ting. For this purpose consider Liao et al. [2011]’s notion of the conditioning
arguments of an updated argumentation framework:

Definition 32. Let N , N ′, N ′′ be argumentation frameworks s.t. N ′′ = N ∩N ′

or N ′′ = N ∩ N ′. The conditioning arguments (A′′
c ,↠′′

c ,D
′′) are defined as

follows:

• A′′
c = {a ∈ A′′

u ∶ there is b ∈ A′′
a s.t. a ↠′′ b} ∪ {a ∈ A′′

a ∶ there is b ∈
A′′
u s.t. b↠′′ a}.

• ↠′′
c =↠′′ ∩ (A′′

c ×A′′
a).

• D′′
c = {Di}i∈Assigned∩Assigned′ ∩ {{w} ∶ w ∈ A′′

c }

Definition 33. Given an argumentation framework A an assigned conditioned
argumentation framework wrt A is a tuple A′A,E = (A′,C(A), I,E) where

• A′ is an argumentation framework s.t. A ∩A′ = ∅

• C(A) ⊆ A is non-empty

• I is a binary relation over C(A) × A′ where for all (a, b) ∈ I, a ∈ C(A),
b ∈ A′

• E is an extension of A under some semantic S.

Semantics for assigned conditioned argumentation frameworks are defined
as in standard argumentation framework except that the notion of acceptability
of an argument is modified as follows:

• an argument a ∈ A′ is acceptable in A′ to a set B iff for all b ∈ A′ such
that b ↠′ a there exists c ∈ E ∩ C(A) ∪ B s.t. (c, b) ∈ I∪ ↠′ and for all
b′ ∈ C(A), if (b′, a) ∈ I then E ↠ b′.
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This definition of acceptability yields conditioned versions of the various
semantics described in definition 2.

Again, conditioned argumentation frameworks are not frames in their own
right. We will replace them with the following notion of acceptability given a
set:

Definition 34. [Acceptability given a set of arguments] Let N , N ′,N ′′ be
subframes of Us.t. N ′ ∩N ′′ = ∅, N ′ ⊆ N , N ′′ ⊆ N and B,C sets of arguments
s.t. B ⊆ A′, C ⊆ A′′. An argument a ∈ A′ is called acceptable to B in N ′ given
N ′′, C iff for all b ∈ A′ s.t. b↠′ a we have B↠′ b or C ↠′′ b.

Definition 35. Let N , N ′,N ′′ be subframes of Us.t. N ′ ∩N ′′ = ∅, N ′ ⊆ N ,
N ′′ ⊆ N and S a semantic. Denote by SN ′′,C(N ′) the set of extensions obtained
by replacing acceptability by acceptability given N ′′, C in the definition of S.
If Ext ∈ SN ′′,C(N ′) we call Ext an extension of N ′ under S given N ′′, C.

By replacing conditioned argumentation frameworks by normal argumen-
tation frameworks plus acceptability given a set, we ensure that the division
process can be expressed in the semantics of HAL. It remains to prove that we
can really capture conditioned argumentation frameworks in this way.

Definition 36 (Completion of a Conditioned Argumentation Framework). Given
an assigned conditioned argumentation framework N ′

N ,E = (N ′,C(A), I,E) wrt
an argumentation framework N we call N ′′ = (A ∪A′,↠ ∪I∪↠′′) the comple-
tion of N ′

N ,E .

Proposition 27 (Representation of CAFs). Let U be the local universe, N a
subframe of U, S a semantic, E ∈ SN an extension under S in N and
name′N ,E = (N ′,C(A), I,E) an assigned conditioned argumentation framework
wrt N . Let N ′′ be the completion of N ′

N ,E . Then a ∈ N ′ is accepted wrt B in
N ′
E iff a is accepted wrt B in N ′ given N , E. Likewise, E′ is an extension of
A′E under S iff E′ is an extension of A′ given N , E.

Proof. ⇒ Suppose a is acceptable wrt B in N ′ given N ,E. Then for all b ∈ A′

s.t. b ↠ a either B ↠′ b or E ↠′′ b. In the latter case, since A and A′ are
disjoint, b ∈ {b ∶ (a, b) ∈ I}. Since b ∉ A, E��↠b. Hence there must be e ∈ E s.t.
(e, b) ∈ I. Then by definition, e ∈ E ∩C(A). Now suppose there were c ∈ C(A)
s.t. (c, a) ∈ I. Since all elements of I are of the form (x, y) where x ∈ C(A)
and y ∈ A′, B��↠c it must be the case that E ↠ c. Taking all this together we
have that a is accepted wrt B in N ′

E as desired. The case for extensions follows
immediately from the definitions.
⇐ Suppose a ∈ N ′ is accepted wrt B in N ′

E . Then for all b ∈ A′ such that
b↠′ a there exists c ∈ E ∩C(A) ∪B s.t. (c, b) ∈ I∪↠′ and for all b′ ∈ C(A), if
(b′, a) ∈ I then E ↠ b′. Then either c ∈ E ∩C(A) or c ∈ B. If c ∈ E ∩C(A), then
it is in E a fortiori and (c, b) ∈ I. But then E ↠′′ b. If c ∈ B, then B↠′ b. But
then a is accepted wrt B in N ′ given N ′′, E as desired. The case for extensions
is immediate from definition.
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This representation lemma tells us that if we choose the right superframe,
namely the completion of a conditioned argumentation framework, conditioned
acceptability and “acceptability given” are equivalent. The last remaining puz-
zle piece is to show that the completion of the affected arguments conditioned on
the conditioning subset of the unaffected arguments of an argumentation frame-
work union or intersection returns precisely the whole updated framework:

Proposition 28 (Representation of Completions). Let N , N ′,N ′′ be sub-
frames of Us.t. N ′′ = N ∪N ′ or N ′′ = N ∩N ′. Then the completion of N a

N c,E

is N ′′.

Proof. We state only the case for union: N ′′ = (A ∪ A′,↠ ∪ ↠′,D ∪ D′) =
(A′′a ∪A′′u,↠′′

a ∪I∪↠′′
u,D ∪D′′) since I is precisely the set of attacks between

the affected and the unaffected part.

Given the three representation lemmas we can finally transfer the an impor-
tant result proved by Liao et al. [2011] for addition/deletion and conditioned
argumentation frameworks to our setting:

Proposition 29. [Monotony for Semantics under Union and Intersection Up-
date; Liao et al. [2011], Theorem 4,5, 6,7] Let N ′′ be a subframe of U and
N ′′ = N ∪N ′ or N ′′ = N ∩N ′. Let E ⊆ A′′. For every directional semantic S,
E ∈ S(N ′′) iff E ∩Aa ∈ SE′(N ′′

a ), E ∩Au ∈ S(N ′′
u ) where E′ is an extension of

Nu under S.

5.1.2 Syntax

Union and Intersection Update provide us with the necessary semantics to add
dynamic operators to the language of HAL. We define the resulting logic as
follows:

Definition 37 (HAL with Argument Framework Union/Intersection). The lan-
guage is given by the following grammar:

φ ∶= L ∶ φ ∶∶= i ∣ � ∣ ¬φ ∣ φ ∧ φ ∣ ◻φ ∣ ◻oddφ ∣ [∪N ′]φ ∣ [∩N ′]φ

where i ∈ Nom is a nominal and N ′ a subframe of U. Satisfaction is defined
as in HAL plus the following clauses for the update operators is defined as
follows:

• N , a ⊧ [∪N ′]ψ iff a ∈ N ∪N ′, N ∪N ′, a ⊧ ψ

• N , a ⊧ [∩N ′]ψ iff a ∈ N ∩N ′, N ∩N ′, a ⊧ ψ

We denote this language by HAL∩∪.
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Undecidability of HAL∩∪

A useful technique to axiomatize dynamic logics is the use of reduction axioms.
That is, axioms that allow the translation of any formula of the dynamic logic
into a formula of the underlying static logic. Obviously, this is only possible
if every formula of the dynamic logic is expressible in the underlying static
logic. Can we reduce HAL∩∪ to HAL? No. For consider the binder operator
we discussed in section 3.2.5. The binder operator works by naming the current
argument. Thus ↓ x.φ ensures that whenever the nominal x appears in φ, it
refers to the current argument. We cannot do this syntactically in HALcapcup
but semantically, we can pick out the current state, say a, without a problem.
But the dynamic modalities allow us to bring the semantics into the syntax.
Hence we can use [∩N ′] to simply delete every argument besides a. If x appears
in ψ it has to denote a. Thus, x will be satisfied iff the current argument exists
after deleting all arguments besides a. Thus we can express binder in HAL∩∪ as
follows:

Proposition 30. Let φ be a (Hodd,@, ↓)-formula of the form ↓ x.ψ. Let N be
a named frame. Then we have that N , a ⊧ φ iff N , a ⊧ ψ[x ∶= [∩({a},{},Di =
{a})]⊺].
Proof. ⇒ Suppose N , a ⊧ ψ[x ∶= [∩({a},{},Di = {a})]⊺]. Then N ′′ = N ∪N =
({a},{},Di = {a}). Hence N , b ⊧ [∩({a},{},Di = {a})]⊺ iff a = b. Now pick any
fresh nominal y and set Dy = {a ∶ N , a ⊧ [∩({a},{},Di = {a})]⊺}. Clearly, Dy =
{a}. Denote by NDy={a} the frame obtained from N by replacing {Di}i∈Assigned
by {Di}i∈Assigned∪{Dx}. Clearly,NDy={a}, a ⊧ y ifN , a ⊧ [∩({a},{},Di = {a})]⊺.
Hence NDy={a}, a ⊧ ψ. But then N , a ⊧↓ y.ψ as desired.
⇐ Suppose N , a ⊧ φ. Then for NDx={a} = (A,R,{Di}i∈Assigned∪Dx) where

Dx = {a} we have that NDx={a}, a ⊧ ψ. Now recall from the proof of the
other direction that Dx = {a} = {a ∶ N , a ⊧ [∩({a},{},Di = {a})]⊺}. Hence if
NDx={a}, a ⊧ x then N ⊧ [∩({a},{},Di = {a})]⊺ while for any x-free formula
γ, N ⊧ γ if NDx={a}, a ⊧ γ. But then if NDx={a}, a ⊧ ψ then N , a ⊧ ψ[x ∶=
[∩({a},{},Di = {a})]⊺] as desired.

Thus adding union and intersection update raises the expressiveness of HAL
to at least the level of HAL with binder. This implies that we cannot hope
to find an axiomatization for HAL∩∪ based on reduction axioms to HAL. One
might then ask, is HAL with binder enough? Again the answer is negative: if
removing all worlds but one gives us added expressivity, what can we do by
removing any number of worlds? The answer is, we can mimmick propositional
letters. Semantically, a propositional letter is just a set of worlds. But we can
pick out every set of worlds using [∩N ′].
Proposition 31. Let Prop be a set of propositional letters and N , VProp a
model with a valuation function VProp ∶ Prop Ð→ 2A. Then for any p ∈ Prop,
N , VProp, a ⊧ p iff N , a ⊧ [∩N ′]⊺ where N ′ is the restriction of N to VProp(p).
Proof. ⇒ Suppose N , a ⊧ [∩N ′]⊺. Define N ′′ = N ∩ N ′. A′′ = VProp(p) by
definition of N ′. Hence a ∈ VProp(p). But then N , VProp, a ⊧ p as desired.
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⇐ Suppose N , VProp, a ⊧ p. Then a ∈ VProp(p) by its definition. Let N ′ be
the restriction of N to VProp(p). By the definition of satisfaction for [∩N ′],
N , a ⊧ [∩N ′]⊺.

Thus argumentation framework union and intersection turn HAL into a full-
blown Hybrid logic with propositional letters. And we are not done yet: so far
we have only used the expressivity yielded by removing states. What happens
if we consider the manipulations of the attack relation that HAL∩∪ allows?

Proposition 32. Let φ be (Hodd,◇U)-formula of the form ◻Uψ andN a named
frame. Then N , a ⊧ φ iff N , a ⊧ [∪N ′] ◻ [∩N ]ψ where N ′ is the complete and
reflexive graph over A.

Proof. N ′ is an S5-frame with a single non-empty equivalence class and hence
its ◻ is equivalent to the global modality. Clearly, N ′, a′ ⊧ ◻[∩N ]ψ iff N , a′ ⊧ ψ.
Hence for any a′, N , a′ ⊧ ψ iff N , a ⊧ [∪N ′] ◻ [∩N ]ψ. But then N , a ⊧ φ iff
N , a ⊧ [∪N ′] ◻ [∩N ]ψ as desired.

Now we have reached a decisive point: Recall the identity first-order logic
= modal logic + nominals + global modality + interpolation we discussed in
chapter 3. It is known that the Hybrid logic with binder has the interpolation
property (see e.g. Cate [2005], Theorem 9.51). It follows that HAL∩∪ is at least
as expressive as first-order logic (we have not considered the transitive closure
modality). The main result of this section follow immediately:

Proposition 33. HAL∩∪ is undecidable.

What has happened here? We started with a very impoverished language
that did not even contain propositional letters and ended up with the full ex-
pressive power of first order logic. This goes to show that frame union and
intersection are extremely expressive operations. This ought to be expected
since at the beginning of this chapter we noted that union and intersection are
”complete” with respect to the local universe. That is, any subframe of the
local universe can be constructed from any other frame using (combinations of)
union and intersection. Hence we can modify the semantics as we please and in
addition ”import” the semantics into the syntax through the union and inter-
section operators. This combination allows us to express any frame condition
using the union and intersection operators which yields the enormous expressive
power.

Another logic which offers similar abilities is Local Graph Modifier Logic
(LGML) as described by Aucher et al. [2009]. LGML has similar expressivity
to HAL∩∪, except for models, not frames: LGML provides various operators to
construct any model by adding or removing states, modifying the accessibility
relation and modifying the valuation function. As we have seen, we can express
propositional letters in HAL∩∪ and thus one might speculate that it is possible
to reduce LGML to HAL∩∪. On the other hand, Aucher et al. [2009] provide
a reduction from Hybrid logic with binder and global modality to Local Graph
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Modifier Logic. Thus, it would be interesting to investigate the exact relation-
ship between HAL∩∪ and LGML. We leave this question as well as the quest
for an axiomatization of HAL∩∪ to future work.

Expressing Argumentation

Based on the semantics developed in the previous sections, we can use the
language of HAL∩∪ to express the results developed by [Liao et al., 2011]. We
begin with the notion of (un)affectedness which can be expressed in the language
of HAL in the following way on the set and argument level:

Proposition 34. Let N ′′ = N ∪N ′ or N ′′ = N ∪N ′ and B ⊆ N ′′. Then

1. B is the unaffected set iff N ⊧ [∪N ′](B̌ ↔ ¬ ◇∗ Ǎ′) or N ⊧ [∩N ′](B̌ ↔
¬◇∗ Ǎ′) respectively.

2. B is the affected set iff N ⊧ [∪N ′](B̌ ↔◇∗Ǎ′) or N ⊧ [∩N ′](B̌ ↔◇∗Ǎ′)
respectively

Proof. 34.1: ⇒: Suppose N ⊧ [∪N ′](B̌ ↔ ¬ ◇∗ Ǎ′). Then N ′′ ⊧ B̌ iff N ′′ ⊧
¬◇∗ Ǎ′ iff N ′′ ⊧ ¬Ǎ′∧¬◇+ Ǎ′. Hence a ∈ B iff a ∉ A′ and a is not reachable from
A′ as desired. The argument is the same for the intersection case. ⇐: similar.
34.2 follows immediately from from 34.1.

Proposition 35. Let N ′′ = N ∪N ′ or N ′′ = N ∩N ′ and a ∈ N ′′. Then

• a is unaffected iff N ⊧ [∪N ′]@a¬◇∗ Ǎ′, N ⊧ [∩N ′]@a¬◇∗ Ǎ′ respectively.

• a is affected iff N ⊧ [∪N ′]@a◇∗ Ǎ′, N ⊧ [∩N ′]@a¬◇∗ Ǎ′ respectively.

Proof. An immediate corollary of 34.

Next we consider “acceptability given” as defined in definition 34. In the
language of HAL this is expressed as follows:

Proposition 36. Let N , N ′,N ′′ be subframes of Us.t. N ′ ∩N ′′ = ∅, N ′ ⊆ N ,
N ′′ ⊆ N and B,C sets of arguments s.t. B ⊆ A′, C ⊆ A′′. Then a ∈ A′ is
acceptable to B in N ′ given N ′′,C iff

N ⊧ @a ◻ (Ǎ′ → ([∩N ′]◇ B̌ ∨ [∩N ′′]◇ Č))

Proof. ⇒: Suppose N ⊧ @a ◻ (A′ → ([∩N ′]◇B ∨ [∩N ′′]◇ C)). It is easy to
see that then for every attacker b of a under ↠′, there is an attacker c such
that either c ∈ A′ and c↠′ b or c ∈ A′′ and c↠′′ b. But that is just the desired
definition. ⇐: similar.

As a corollary we also get a HAL∩∪-version of Definition 35
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Proposition 37. Let N , N ′,N ′′ be subframes of Us.t. N ′ ∩N ′′ = ∅, N ′ ⊆ N ,
N ′′ ⊆ N , C ⊆ A′′, S a semantic and φ the formula scheme characterising S as per
Proposition 17. Define φN ′′,C = φ[◻◇ψ ∶= ◻(Ǎ′ → ([∩N ′]◇ψ∨[∩N ′′]◇Č))] to
be the formula scheme where all instances of the scheme ◻◇ ψ are substituted
by ◻(Ǎ′ → ([∩N ′]◇B ∨ [∩N ′′]◇ Č)). Then X is an extension of N ′ under S
given N ′′,C iff N ⊧ φC(X̌).

Proof. This is an immediate corrolary of 36.

Proposition 38 (Monotony for Semantics under Union/Intersection Update in
HAL∩∪). Let N ′′ be a subframe of U and N ′′ = N ∪N ′ or N ′′ = N ∩N ′. Let
E ⊆ A′′, S be a semantic and φ be the formula scheme characterising S. Then
N ′′, a ⊧ φ(Ě) iff Na, a ⊧ (φE′(Ě ∧ Ǎa)) and Nu, a ⊧ (φ(Ě ∧ Ǎu)) where E′ is an
extension of Nu under S.

Proof. This is a corollary of 29 and 37.
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Chapter 6

Argument Dynamics and
Belief

We are now in a position to tackle the problem we set out to investigate in
the introduction: when does a new argument change an agent’s opinion? We
scrutinize this question in the framework of Argument Support Logic enriched
with argument dynamics. That is, in the product logic, the place of HAL is
now taken by HAL∩∪. We will restrict ourselves to the interactions between one
kind of opinion change and one kind of update here: losing a belief (or belief
contraction as it is called in the belief revision literature) and argumentation
framework union. This is not to say that it is not of interest how argumentation
framework intersection update influences belief and that there are not differ-
ent ways in which update operations can change belief. Intersection update is
interestingly not symmetric in its effects to union: for example, removing an
argument or an attack can be a more effective way of causing a belief change
than adding arguments and attacks since it allows for example the splitting of
extensions. Likewise it is obvious that belief gain is of equal interest than belief
loss and there are other interesting questions that can be asked with respect to
belief change. For example, it would be of interest under which circumstances
an agent’s beliefs can be rendered (in)consistent through updates of their argu-
mentation framework; or how their beliefs can be weakened and strengthened
in this way. However, we will leave these additional questions to future work.

There are two ways in which union update can affect an agent’s beliefs.
Firstly, through manipulating (adding and changing the attack relation on)
arguments that affect accepted arguments in the original argumentation frame-
work. We call this kind of change destructive. Secondly, by adding arguments
that leave the acceptance status of arguments from the original argumentation
framework unaffected. This latter approach may seem strange but we will see
that skeptical agents may lose a belief when they are provided with alterna-
tive “theories” that neither contradict nor support or when their theories are
“watered down” through additions.We call this kind of change expansive.
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We start by looking at the conditions under which an update of an argu-
mentation framework is safe for a credulous belief an agent holds.

6.1 Dynamics of Credulous Belief

We begin with destructive loss of belief. It is intuitively clear that supplying
someone with a single counterargument against an argument for a belief they
have will not generally suffice to make them lose that belief. People usually
have more than just one argument for an opinion they hold. In addition, they
may have counterarguments that defend their original argument against the new
attack.

For credulous belief, this means that the new arguments have to kick out
every argument that supports the belief from all extensions of the argumentation
framework. This can be achieved in two ways: either by attacking the arguments
themselves; or, if they are attacked, by attacking their defenders.

Either option may be easier to achieve, depending on the situation: an argu-
ment a supporting a belief may be at the root of an inverse tree under indirect
defense. In that case it has multiple defenders and each of its defenders has
several defenders and so forth. Obviously, then the better strategy is to attack
arguments directly. On the other extreme each of the supporting arguments
may be a leaf of an indirect defense tree. In that case, the belief can be lost due
to a single attack on the root of the tree.

We pin these ideas down in terms of a notion of “entrenchment” which we
define in what follows. Since entrenchment depends on the number of defenders
an argument has, we first need to introduce counting versions of the y-operator.
We do this making use of the expressive power of nominals under our usual
assumption that the argumentation framework is finite.

Definition 38 (Counting Operators). Given an Argument-Support model AS,
abbreviate by ynφ the formula ⋁( n

∣A∣)(y(i1 ∧ φ)∧, ... ∧ y(in ∧ φ)) where ⋁( n
∣A∣)

denotes the disjunction over all combinations of n arguments from A. Corre-
spondingly, define by y≥nφ the disjunction ynφ ∨ yn+1φ ∨ ... ∨ y∣A∣φ and by
y≤nφ the disjunction ¬yφ∨yφ∨...∨ynφ. The strict inequality modalities y>n,
y<n are defined accordingly and the definitions are extended in the obvious way
to yU , yodd.

We put these counting modalities to use to define a counting version of
acceptance.

Definition 39. Given an named argumentation framework N , an argument a
is accepted to degree n wrt a set X ⊆ A iff every attacker of a is attacked by n
arguments from X or in other words

N , a ⊧ qyn X̌

We say that a is strongly accepted to degree n wrt X iff a and every (indirect)
defender of a are accepted to degree n, that is:
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N , a ⊧ qoddyn X̌

We are now ready to make precise what we mean by entrenchment:

Definition 40. Let AS be a finite argument-support model, S a semantic, and
ψ the formula scheme characterising that semantic as per Proposition 17. Then
we say that φ is credulously entrenched to degree x iff it is supported by at least
x arguments that are credulously strongly accepted to degree x under S or in
other words:

AS, (a,w) ⊧y≥x
U ( ⋁

X⊆A
(ψ(X̌) ∧ X̌) ∧K(σ → φ) ∧ (qoddy≥x X̌))

We say that φ is grounded credulously entrenched to degree x iff it is credu-
lously entrenched to degree x and in addition, each of the considered supporters
of φ is indirectly defended by at least x unattacked arguments:

AS, (a,w) ⊧y≥x
U ( ⋁

X⊆A
(ψ(X̌)∧X̌)∧K(σ → φ)∧(qoddy≥xX̌)∧(qoddyodd¬yodd⊺)

Finally, φ is credulously entrenched to degree x given N ′,C in N ′′ where
N ′ ∩N ′′ = ∅ and N ′ ⊆ N , N ′′ ⊆ N iff

AS, (a,w) ⊧y≥x
U ( ⋁

X⊆A
(ψN ,C(X̌)∧X̌)∧K(σ → φ)∧(qoddy≥x([∩N ′]X̌∨[∩N ′′]X̌)))

That is, φ is supported by at least x accepted arguments such that for every
indirect attacker of a there is an attacker that is either in A′ or in A′′.

A proposition is thus credulously entrenched to degree x if it is supported
by at least x accepted arguments and those arguments have at least x accepted
defenders against every of their indirect attackers.

In addition to the notion of entrenchment we need a dynamic-oriented ver-
sion of belief, i.e. a kind of belief operator that tells us what would happen if
we were to implement a certain change to the argumentation framework. Recall
the definitions of acceptability given a set (Definition 34, Definition 36) and
extensions given a set (Definition 35, Definition 37. We define belief given a set
of arguments as follows:

Definition 41 (Belief given a Set of Arguments). Let Bel ∈ {CB,SB,STB}
and AS,AS ′,AS ′′ be Argument-Support models such that W = W ′ = W ′′,
A′ ⊆ A, A′′ ⊆ A, A′ ∩ A′′ = ∅, C ⊆ A′′, S a semantic and ψ the formula that
characterises S as per proposition 17. Then φ is believed in AS ′ given N ′′,C
iff AS ⊧ BelS,N ′′,Cφ where BelS,N ′′,Cφ ∶= BelSφ[φ ∶= φN ′′,C].

One can think of this kind of belief in terms of the situation a jury faces
in a court case. There is a body of evidence the general public knows about.
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The jurors however are only provided the evidence the court deems admissible.
Thus their argumentation frameworks constitute subframes of the overall argu-
mentation framework representing the body of evidence. The evidence that is
presented to them at any given time is a subset of the admissible evidence. They
don’t necessarily know whether the evidence in this set is accepted among the
admissible evidence. However, during the court proceedings it becomes appar-
ent to them how each piece of evidence supports or undermines the presumption
of innocence of the accused and which other pieces of evidence it attacks or de-
fends in their argumentation frameworks. Hence they believe in the innocence
or guilt of the accused given a set of evidence from the argumentation frame-
work represented by the admissible evidence which is in turn a subframe of the
overall body of evidence.

Next we define a corresponding notion of degrees for updates. In words an
argumentation framework union is of degree x if both the number of attacks from
the update framework to the original framework and the number of vice versa
attacks are smaller than x. For intersection update we require that the update
remove less or equal to x attacks and arguments from the original framework.
More formally:

Definition 42. Let AS be a finite argument-support model. We call [∪N ′] as
of degree x to AS if AS ⊧ qU [∪N ′]y≤x

U (Ǎ ∧ yǍ′) ∧ y≤x
U (Ǎ′ ∧ yǍ). We call

[∩N ′] as of degree x to AS if AS ⊧ qU((y>xǍ′ → [∩N ′]y Ǎ′) ∧y≤x[∩N ′]�

Together with propositions 29, 38 and this allows us to derive the following
result:

Proposition 39. Let AS be an Argument-Support model and S a semantic
such that AS ⊧ CBSφ. Then CBSφ is preserved under an update [∪N ′] if any
of the following conditions hold:

1. AS ′′u ⊧ CBSφ or AS ′′a ⊧ CBS,N ′′u ,Eφ where E ∈ S(N ′′
u ).

2. for S ∈ {AD,CO,PR} (S = GR), φ is (grounded) credulously entrenched
to degree x in N or N ′ and [∪N ′] is of degree < x to N .

3. for S ∈ {AD,CO,PR} (S = GR), N ′ is of degree < x to N and φ is
(grounded) credulously entrenched to degree x in N ∩ N ′′

a given N ′′
u ,E

where E ∈ S(N ′′
u ) or (grounded) credulously entrenched to degree x in

N ′ ∩N ′′
a .

Proof. 39.1 is an easy corollary of Proposition 38.
39.2: Consider first the case where S ∈ {AD,CO,PR} and suppose φ is

credulously entrenched to degree x in N or N ′ and N ′ is of degree < x to N .
In the first case, there are at least x accepted supporters of φ in A which are
defended against any indirect attacker by at least x accepted arguments. Since
N ′ is of degree < x, A′↠′′ a for at most at most x−1 arguments a inN . But then
there must be a ∈ A′′ s.t. a supports φ and a has at least one accepted defender
a′ against any indirect attacker. But then a is credulously accepted under AD,
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CO and PR. It follows immediately that N ′′ ⊧ CBSφ. The second case is
analogous. As for the grounded semantic, note that by grounded entrenchment
each of the x considered accepted arguments supporting φ is indirectly defended
by at least x unattacked arguments. But then there is a ∈ A′′ s.t. a supports
φ and a has at least one accepted defender a′ against any indirect attacker and
in addition is indirectly defended against any indirect attacker by at least one
unattacked argument. But then by Proposition 17.5, a is accepted under the
grounded semantic. Hence N ′′ ⊧ CBGRφ as desired.

39.3: Again consider first the case where S ∈ {AD,CO,PR} and suppose N ′

is of degree < x to N and φ is (grounded) credulously entrenched to degree x in
N ∩N ′′

a given N ′′
u ,E where E ∈ S(N ′′

u ) or (grounded) credulously entrenched to
degree x inN ′∩N ′′

a . In the first case, there are at least x accepted supporters a of
φ in A which are defended against any indirect attacker by at least x arguments
that are accepted given N ′′

u ,E. Since N ′ is of degree < x, A′ ↠′′ a for at most
at most x − 1 arguments a in N . Then there must be a ∈ A′′

a s.t. a supports
φ and a has at least one defender a′ that is accepted given N ′′

u ,E against any
indirect attacker. Hence a is accepted in N ′′

a given N ′′
u ,E. Then by proposition

29, any such a is accepted in N ′′ and hence N ′′ ⊧ CBSφ. The argument for the
second case as well as the grounded extension follow like before.

In other words, if credulous belief in φ (given an extension of the unaffected
arguments) obtains for either of the sub-frameworks N ′′

u or N ′′
a of the updated

argumentation framework then N ′′ ⊧ CBφ. Furthermore, if a credulous belief is
credulously entrenched to degree x then any union-update with an argumenta-
tion framework that attacks less than x arguments in the original argumentation
framework will not change the credulous belief. Finally, it also suffices that φ
be credulously entrenched to degree x given the unaffected arguments in only
the affected arguments within N or N ′. This kind of belief change falls in the
destructive category we outlined earlier. Notably, credulous belief is safe from
any expansive update: adding new extensions never affects the acceptance sta-
tus of arguments under the original extensions. That is, for a credulous believer
more evidence always leads to more believed propositions (under semantics that
allow multiple extensions). Coming back to the interpretation of extensions as
mental models or theories, the credulous believer maximizes: she accepts any
new theory regardless of whether it is consistent with her other theories.

6.2 Dynamics of Skeptical Belief

The natural question is now whether the conditions we devised for credulous
belief also suffice for the preservation of skeptical and strong belief. As far
as the grounded extension and skeptical belief are concerned, the answer is yes
since under the grounded extension credulous and skeptical belief are equivalent.
Hence we immediately get as a corollary of Proposition 39 that the same suf-
ficient conditions for preservation apply to skeptical belief under the grounded
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extension:

Proposition 40. Let AS be an Argument-Support model such that AS ⊧ SBφ
and GR be the grounded semantic. Then SBGRφ is preserved under an update
[∪N ′] if any of the following conditions hold:

1. AS ′′u ⊧ SBGRφ or AS ′′a ⊧ SBGR,N ′′u ,Eφ where E ∈ GR(N ′′
u ).

2. φ is grounded credulously entrenched to degree x in N or N ′ and N ′ is
of degree < x to N .

3. N ′ is of degree < x to N and φ is grounded credulously entrenched to de-
gree x in N ∩N ′′

a given N ′′
u ,E where E ∈ GR(N ′′

u ) or grounded credulously
entrenched to degree x in N ′ ∩N ′′

a .

Proof. This immediately follows from Propositions 39 and 23 which states that
under grounded semantics credulous and skeptical belief are equivalent.

However, the picture looks entirely different for the other semantics. For
admissible semantics, we do not need to investigate invariance of skeptical be-
lief since, as we have seen in Proposition 22, no proposition is ever skeptically
admissibly believed. For complete and preferred semantics it suffices that a sin-
gle extension contains no supporter of φ for the agent to lose belief in φ. Thus
the crucial question is how many supporters of φ each extension contains, how
deeply entrenched they are and whether the update creates any new extensions
without supporters of φ. In other words, skeptical belief is vulnerable to ex-
pansive updates. Updates that add a new candidate to the set of acceptable
theories or mental models at the agent’s disposal can shake her confidence in
her previous beliefs if the new candidate does not bear out the proposition in
question. To account for this we need to modify our notion of entrenchment:

Definition 43. Let N ×F be a finite argument-support model, S a semantic, ψ
the formula scheme characterising that semantic. A formula φ is skeptically en-
trenched to degree x iff a) every extension under S contains at least x arguments
that support φ which are defended against any indirect attacker by at least x
arguments from the extension and b) every argument a that is rejected wrt S
and does not support φ is undefended and has at least x accepted attackers or
every indirect defender of a has at least x accepted attackers. In other words φ
is skeptically entrenched to degree x iff

a) it is strongly entrenched to degree x, that is AS ⊧ ⋀X⊆A ψ(X̌)→y≥x
U (X̌∧

K(σ → φ) ∧ (qoddy≥x X̌)))

b) and it is reverse entrenched to degree x, that is AS ⊧ qU(⋀X⊆A(ψ(X̌) →
¬X̌) ∧ ⟨K⟩(σ ∧ ¬φ)→y≥x⊺ ∨ qeveny≥x ⊺

Then we obtain the following invariance result for skeptical belief under
destructive change:
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Proposition 41. Let AS be an Argument-Support model and S ∈ {CO,PR}
a semantic such that AS ⊧ SBSφ. Then SBSφ is preserved under an update
[∪N ′] if any of the following conditions hold:

1. AS ′′u ⊧ SBSφ or AS ′′a ⊧ SBS,N ′′u ,Eφ where E ∈ S(N ′′
u ).

2. φ is skeptically entrenched to degree x in N and N ′ and N ′ is of degree
< x to N .

3. N ′ is of degree < x to N and φ is skeptically entrenched to degree x in
N ∩N ′′

a given N ′′
u ,E where E ∈ S(N ′′

u ) or skeptically entrenched to degree
x in N ′ ∩N ′′

a .

Proof. 42.1: This again carries over from Proposition 38.
42.2: Suppose φ is skeptically entrenched to degree x in N and N ′ and

N ′ is of degree < x to N . Then every extension of N , N ′ under S contains
at least x arguments that support φ which are defended against any indirect
attacker by at least x arguments from the extension and b) every argument a
that is rejected wrt S in N , N ′ respectively and does not support φ is either
undefended and has at least x accepted attackers or every indirect defender
of a has at least x accepted attackers. Since N ′ is of degree < x to N , only
at most x − 1 arguments from A can be attacked by A′ and vice versa. Now
suppose for contradiction there were an extension E ∈ S(N ′′) such that E does
not contain any argument that supports φ. By assumption, E can not be an
extension of either N or name′. In addition, E cannot be obtained by removing
all arguments that support φ from an existing extension E′ of N ,N ′ since
x − 1 attacks do not suffice for that. Adding arguments to E′ does not affect
the acceptance status of members of E′ for complete and preferred semantics.
Hence the only remaining option is that E is a new extension. But then E must
contain a formerly not accepted argument that does not support φ. But since
any such argument is skeptically entrenched to degree x, this is not possible:
N ′ is only of degree x − 1. We have derived a contradiction.

42.3: Suppose N ′ is of degree < x to N and φ is skeptically entrenched to
degree x in N ∩N ′′

a given N ′′
u ,E where E ∈ S(N ′′

u ) or skeptically entrenched
to degree x in N ′ ∩N ′′

a . In the first case, every extension E′ of N contains at
least x arguments which are defended against any indirect attacker by at least
x arguments that are accepted under E′ given N ′′

u ,E. In addition, any rejected
argument is either undefended and attacked by at least x arguments from A,
E or each of its indirect defenders is attacked by at least x arguments from
A, E. Since N ′ contains maximally x − 1 attacks on arguments in Na, every
extension of N ′′

a must contain at least one argument that supports φ. But then
by Proposition 29, any such a is accepted in N ′′ and hence N ′′ ⊧ SBSφ. The
argument for the second case is analogous.
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6.3 Dynamics of Strong Belief

Finally, we consider strong belief. Here we also have to require that no new
arguments be added and no new extensions arise but luckily we don’t have
to worry about entrenchment: removing an argument from an extension will
never lead to loss of a strong belief as every accepted argument is required to
support φ. Thus even if we reduce the argumentation framework’s extensions to
empty sets, an existing strong belief will not be lost (however,the agent will then
believe everything). In this respect strong belief is the dynamic mirror image of
credulous belief: it is immune to destructive updates but vulnerable to expansive
ones. For the strong believer, the content of her belief is so strongly embedded
in her mental models that only the rise of a new theory or an expansion of her
existing theories can destroy her beliefs.

Proposition 42. LetAS be an Argument-Support model and S ∈ {AD,CO,GR,PR}
a semantic such that AS ⊧ STBSφ. Then STBSφ is preserved under an update
[∪N ′] if any of the following conditions hold:

1. AS ′′u ⊧ STBSφ or AS ′′a ⊧ STBS,N ′′u ,Eφ where E ∈ S(N ′′
u ).

2. φ is reverse entrenched to degree x in N and N ′ and N ′ is of degree < x
to N .

3. N ′ is of degree < x to N and φ is reverse entrenched to degree x in
N ∩N ′′

a given N ′′
u ,E where E ∈ S(N ′′

u ) or reverse entrenched to degree x
in N ′ ∩N ′′

a .

Proof. Essentially the same argument as for Proposition 41 insofar as it pertains
to reverse entrenchment.
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Chapter 7

Conclusion

We set out to study how agents can form and change opinions based on the
process of argumentation. What follows gives a brief recap of what this work
contributed to this area.

7.1 Summary

In chapter 2 we assembled a toolkit from the literature on abstract argumenta-
tion theory that we used throughout this work. Chapter 3 introduced a basic
modal logic for argumentation developed by Grossi [2010] and built on it by
equipping it with nominals and (odd) eventualities to yield Hybrid Argumenta-
tion Logic (HAL).

HAL is one of the main contributions of this work in that it allows us to
express many many of the concepts many of the concepts from argumentation
theory, including reference to individual arguments, the grounded extension and
the presence of odd and even cycles. In Chapters 4 and 5 we put HAL to work
to develop logics for argument based belief and argument dynamics.

For the first task we took inspiration from Grossi and van der Hoek [2014]
in combining HAL with a logic for the content of propositions in a product
logic. For this purpose we also developed a theory of support between argu-
ments and propositions. We place three conditions on this support relation:
Firstly, arguments that support jointly inconsistent propositions are in conflict;
secondly, when an argument a attacks another argument b then a also attacks
any stronger version of b and any stronger version of a also attacks b; thirdly,
every argument has to support something. Integrating this notion of support
in the product logic yields Argument Support Logic (ASL). We then defined
three notions of argument based belief in ASL that reflect how agents might
form beliefs from the arguments they are given: credulous believers require only
that one accepted argument support the proposition in question; skeptical be-
lievers demand that such an argument be a part of every theory (extension)
they consider possible; strong believers do not believe a proposition if not all of
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the arguments they accept point to it. We studied the well-behavedness of these
belief operators with respect to the classical KD45 axioms for belief: credulous
belief and skeptical belief turned out to be weaker than those axioms require,
strong belief satisfies all of them. Thus credulous believers may be inconsistent,
skeptical believers’ do not close their beliefs under conjunctions and both may
believe nothing at all, even if they know something.

In Chapter 5 we developed argument framework union and argument frame-
work intersection as a semantic for dynamics of HAL. We showed that these
two operations cover all of the notions found in the literature on argumentation
dynamics. We then added two dynamic modalities based on these semantics to
HAL to obtain HAL∩∪. We proved that HAL∩∪ is very expressive - at least as
expressive as first order logic - and concluded that it is undecidable.

Finally, we employ the theory developed in chapters 3 to 5 to study the
dynamic behaviour of argument based belief. We find that different strategies
are needed to destroy credulous, skeptical and strong beliefs: credulous belief
is never lost in the face of a new alternative theory. On the other hand strong
belief is immune to attacks on individual accepted arguments. Skeptical belief
is vulnerable to both approaches. In addition, we defined three notions of en-
trenchment (weak entrenchment, strong entrenchment, reverse entrenchment)
that describe how difficult it is to change an agent’s opinion in terms of the
minimum number of arguments needed.

7.2 Future Work

On the other hand, there are a great many questions that we could not answer
here due to time and space constrains. Most importantly, we conjectured but
had to leave open the question of completeness of HAL. In future work we hope
to complete the proof sketch we provided. As for the completeness of ASL an
investigation of the behaviour of hybrid logics in products of logics would be
required. We also left aside the questions of decidability and complexity of the
satisfaction problem for these logics.

Likewise, finding an axiomatization for HAL∩∪, its precise relation to Lo-
cal Graph Modifier Logic (LGML) (Aucher et al. [2009]) and its second order
correspondence language would be an interesting investigation in its own right.
Such a study could go beyond the context of argumentation and take a wider
perspective of HAL as a language to describe general (directed) graphs. Akin
to the Global Graph Modifier Logic, a fragment of LGML that can be reduced
to PDL without eventualities Aucher et al. [2009], one would look for decidable
fragments of full HAL∩∪ by placing restrictions on the expressive power of the
union and intersection operators.

A different direction of research might explore the added value of proposi-
tional variables ranging over arguments give to argumentation: we have seen
that propositional variables allow one to pick out all arguments with a certain
properties. In the context of dynamics, this could allow one to equip arguments
with dynamic properties, akin to the preconditions used in action models of
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Dynamic Epistemic Logic (see Baltag and Renne [2016]). E.g. an argument a
might attack all arguments with property p. Thus whenever an update adds
such an argument b that satisfies p to the argumentation framework, an at-
tack from a to b also has to be added. Such dynamic properties would allow

even further expressiveness: for example, a might have a dynamic property
←Ð◇i,

meaning that it will attack every added argument that attacks the argument
named by i.

Finally, deepening the study of dynamics of argument based belief conducted
in Chapter 6 would be of interest. This would entail not only exploring different
kinds of belief change such as belief gain but also obtaining not only sufficient
but also necessary conditions for preservation of belief. Such an investigation
would certainly have to start by extending the known invariance results of ar-
gumentation dynamics - a worthy topic for a study in its own right.

7.3 The Fate of Atlantis

After thorough debate the Atlantians decided to base their politics on their sci-
entists’ recommendations. They elected new leaders and conducted great efforts
to halt the process of sea level rise threatening their nation. Driving enormous
rods deep into the earth they stabilized their island’s geology. Alas, the Oracle
of Delphi is never wrong: Displeased with the hubris of mortals attempting to
bind the forces of nature, Zeus decided to punish Atlantis with a more tradi-
tional disaster. Luckily, such divine catastrophies are usually preceded by bad
omens such as heavy rains of various sorts of amphibians. Thus the Atlantians
were able to escape in time and bestow their story to the world. Atlantis how-
ever was swallowed by the sea in a single day, just as predicted. And so castles
made of sand slip into the sea, eventually.
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fied belief and the topology of evidence. In Jouko Väänänen, Åsa Hirvonen,
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