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Abstract

Leitgeb [30] proposes an acceptance rule based on the notion of probabilistically stable

hypotheses. This stability rule offers a formal solution to the Lottery Paradox and suggests

a promising account of the relationship between logical and probabilistic models of belief. In

this thesis, we investigate the role of probabilistic stability in bridging logical information

dynamics – modeled by revision operators – with probabilistic models of belief change, as

captured by Bayesian conditioning.

Our first topic is the connection between Bayesian conditioning and AGM revision

operators. The gold standard of dynamic compatibility between a logical revision operator

and Bayesian conditioning is given by the tracking criterion, which amounts to the requirement

that the revision operator commmute with Bayesian update modulo the acceptance rule.
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A general impossibility theorem by Lin & Kelly [25] shows that no well-behaved acceptance

rule allows AGM operators to track Bayesian update. We show that, even though Leitgeb’s

stability rule falls prey to Lin & Kelly’s theorem, there is nonetheless a precise sense in

which it allows to bridge AGM revision and conditioning. We establish this by appealing to

notions from information theory: by an application of the principle of maximum entropy, we

show that AGM revision operators can be generated, through Leitgeb’s rule, by Bayesian

conditioning. In situations of information loss, AGM revision is compatible with – and

indeed emerges from – Bayesian conditioning.

Another approach to the tracking problem is to axiomatise the revision operators
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generated by the stability rule: the study of these probabilistically stable revision operators

constitutes our second topic. We show that the class of probabilistically stable revision

operators can be captured using selection function models, as employed in non-monotonic

logics. We first identify the key properties of the resulting non-monotonic logic. We then

prove a probabilistic representation theorem for the selection function models in question.

The theorem, which draws on the theory of comparative probability orders, yields a complete

characterisation of probabilistically stable revision operators. Along the way, we prove a

general result giving sufficient conditions for the joint representation of a pair of (respectively,

strict and non-strict) comparative probability orders, and we point out an application of the

representation theorem to simple voting games.
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1
Introduction

When a Bayesian agent reasons about the world, she formulates a probability model within

which she evaluates the probabilities of various hypotheses. Such a model involves a

probability measure over an algebra of events which is taken to reflect the agent’s credences,

or degrees of belief. This quantitative notion of belief plays an important role in Bayesian

statistics, game and decision theory, and in probabilistic approaches to artificial intelligence.

On the other hand, in models of belief employed in applied logic, logic-based artificial

intelligence, and traditional epistemology, the central notion is that of qualitative belief,

generally taken to be a coarser, all-or-nothing attitude: a proposition is either believed or

not.

It is natural to think of ‘all-or-nothing’ belief as being a coarse-grained analogue of

the quantitative representation of belief, as provided by the Bayesian account. In spite

of this intuitive connection, the formal details of the relationship between qualitative and

quantitative belief have proven to be rather elusive. How exactly does the probabilistic

information encoding a rational agent’s credences get translated into the categorical infor-

mation representing her qualitative beliefs? Can this be done in a way that satisfies some

very elementary desiderata for beliefs of rational agents – e.g., consistency, or closure under

logical consequence?

An analogous question arises in the context of statistical reasoning. Much of statistical

theory – particularly so in areas concerned with statistical hypothesis testing – is aimed at

determining which hypotheses should be believed, or accepted, and which hypotheses should

be rejected on the basis of the available probabilistic information. Acceptance and rejection

of hypotheses are qualitative, categorical notions. Is there a general recipe for rationally

extracting such qualitative content from probabilistic information? Or, in slightly different

terms, can we provide some lossy – yet reasonably well-behaved – qualitative description of

statistical information in terms of all-or-nothing commitment to hypotheses?
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One prominent way to approach these questions is through the study of acceptance

rules. An acceptance rule is a map which assigns to each probability model a collection

of propositions that the agent accepts. It can be seen as a systematic method to extract

the essential qualitative content of uncertain information, or as a rigorous model of the

functional dependence between a rational agent’s credences and her propositional belief state.

Acceptance rules thus provide a simple and natural mathematical framework to elucidate

the logic(s) of uncertain acceptance.

Although providing a reasonable acceptance rule has been fraught with difficulties –

as evidenced by the ever-growing literature on Kyburg’s Lottery paradox [29] – several

recent proposals have opened up some promising avenues [26, 30]. Notable among these is

Leitgeb’s stability rule [30, 32, 33], which is based on the notion of probabilistic stability

(itself adapted from Skyrms’ notion of probabilistic resiliency [53]). The key idea is that

accepted hypotheses ought to be resilient, or stable, under new information. The rule is

promising in that it succeeds in preserving some intuitions behind the Lockean rule (which

recommends the acceptance of all and only propositions with probability above a fixed

threshold) while avoiding the Lottery paradox: it also allows to preserve the closure of

accepted propositions under logical consequence.

The search for well-behaved acceptance rules raises several methodological questions.

What are reasonable desiderata for acceptance rules? Which transformations on the un-

derlying probability models should acceptance rules be sensitive to, and which ones should

they be invariant under? How should acceptance rules relate to our policies for updating

our beliefs in the face of new information? Can acceptance rules reconcile the differences

between probabilistic and logical models of uncertainty and information dynamics? How

can we guarantee that an acceptance rule allows successful inductive learning?

These methodological concerns raise several logical and mathematical questions about

acceptance rules, and the stability rule in particular. In this thesis we explore some of these

aspects of probabilistic stability and the stability rule for acceptance: we will appeal to tools

and perspectives from various areas (logic, belief revision theory, as well as probability and

information theory) to solve certain formal questions that naturally arise in investigating

the behaviour of acceptance rules. We will address some of the underlying methodological

and philosophical concerns along the way.

From a more general perspective, part of the motivation for the present work is a

fundamental interest in the connections between logic and probability theory. Probability and

logic interact in a variety of fascinating ways that continue to stimulate much mathematical

and philosophical research. This thesis investigates the relationship between logic and

probability in the context of studying the dynamics of informational states: the particular

focus is on formal models of probabilistic learning and logical accounts of belief dynamics.
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Our results are situated along two main lines of research, both of which concern distinct

aspects of the relationship between probabilistic and qualitative accounts of belief dynamics.

The first one is the connection between Bayesian conditioning and AGM revision operators.

We appeal to elementary notions from information theory to bridge the two: by an application

of the principle of maximum entropy, we show that we can see AGM revision as emerging

from Bayesian conditioning.

The second line of inquiry concerns studying the logical revision operators and the

non-monotonic logic (or conditional doxastic logic) generated by the stability rule. The

stability rule generates a qualitative revision operator that automatically commutes with

Bayesian conditioning. Here we capture the resulting revision operation using selection

function models, as employed in non-monotonic logics. We identify the key properties of

the resulting logic. We draw on the theory of comparative probability orders to give a

probabilistic representation theorem for selection function models. This gives a complete

characterisation of probabilistically stable revision operators.

The specific content of each chapter is outlined below in more detail.

1.1 Thesis outline

In Chapter 2, we begin our investigation into the relationship between qualitative belief

revision operators and Bayesian conditioning. In particular, we study how AGM belief

revision operators can be related to Bayesian conditioning via Leitgeb’s acceptance rule, in

order to flesh out some (in)compatibilities between Bayesian and AGM-compliant models of

rational belief dynamics. Our starting point is Lin and Kelly’s No-Go Theorem [25] which

entails that, in a precise sense, AGM revision operators do not agree with Bayesian condi-

tioning under any acceptance rule which satisfies some modest requirements. Leitgeb’s rule

in particular falls prey to this No-Go Theorem, but it has nonetheless been argued to offer

hope for a reconciliation between Bayesian and AGM dynamics [30]. We consider some ways

in which one may circumvent the No-Go Theorem so as to approximate agreement between

AGM and Bayesian conditioning, using Leitgeb’s rule. We show that threshold raising, a

very natural idea in this context, fails; as we argue, this failure raises further difficulties

for the “peace project” between Bayesian and AGM-compliant revision operators. However,

we also show how an information-theoretic perspective allows to derive a close connection

between them: there is a precise sense in which AGM revision can be seen as deriving from

(1) Leitgeb’s rule, (2) Bayesian conditioning, and (3) a version of the maximum entropy

principle. This suggests that one could study qualitative revision operators as special cases

of Bayesian reasoning which naturally arise in situations of information loss or incomplete

probabilistic specification of the agent’s credal state.
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In Chapter 3, we approach the problem of bridging qualitative and probabilistic dynamics

from a different perspective: instead of trying to harmonise AGM revision operators with

Bayesian conditioning via the notion of probabilistic stability, we consider the “dual” problem

of characterising the qualitative revision operators generated from Bayesian conditioning by

Leitgeb’s rule. This automatically yields a revision operation – probabilistically stable revision

– which commutes with conditioning. We identify certain key properties of the revision

generated by Leitgeb’s rule and briefly compare its behaviour to that of AGM operators.

We then investigate the problem of giving a purely qualitative description of stability-based

revision. Firstly, we formulate the problem in the framework of non-monotonic logic: we

want to identify the non-monotonic consequence relations corresponding to this new kind of

revision (or, alternatively, the conditional doxastic logic of probabilistically stable belief ). We

ask how to characterise qualitatively the corresponding class of models: we show this can be

done via models based on selection functions which emulate probabilistic strongest-stable-

set-operators. We appeal to some notions from the theory of comparative probability orders

and prove a probabilistic representation theorem for these selection function models, thus

obtaining a purely ‘qualitative’ (non-probabilistic) characterisation of strongest-stable-set

operators. We briefly point out an interesting connection between our representation theorem

and the theory of simple voting games [57]. Lastly, we discuss the problem of giving a

complete axiomatisation for the logic of probabilistic stability.

1.2 Main results

The main results of this thesis are the following:

• We show that one cannot in general regain commutativity between AGM revision and

Bayesian conditioning by raising the stability threshold in Leitgeb’s acceptance rule

(§2.3.2).

• We prove that AGM revision operators can be generated from Bayesian conditioning

and the maximum entropy principle, using Leitgeb’s rule (§2.4, Proposition 2.4.1). We

give an explicit formula for computing the maximum entropy distribution generating a

given plausibility ranking (Proposition 2.4.4).

• We provide sufficient conditions for the joint probabilistic representation of two partial

comparative probability orders, one of which extends the other (Proposition 3.3.2).

• We provide a qualitative characterisation of strongest-stable-set operators for finite

probability spaces, using selection functions (Propositions 3.3.2 and Theorem 3.3.8).

This gives a probabilistic representation theorem for models of the non-monotonic

logic of probabilistic stability.
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2
Bridging Bayesian conditioning and AGM

revision

The Bayesian account of rational belief comprises both a static and a dynamic component.

The static component consists in representing the agent’s credal states as probability

measures; the dynamic one is embodied in the requirement that the revision of a credal

state be carried out by Bayesian conditioning. By contrast, the more common notion of

belief encountered in traditional epistemology is qualitative1: similarly, in applied logic

and artificial intelligence, doxastic states are often represented ‘qualitatively’ as logical

propositions, sometimes endowed with some extra structure (e.g., plausibility orderings). In

this setting, the most prominent logic-based account of rational belief change is given by

AGM belief revision theory [2], in which revisions triggered by new information are modelled

by AGM belief revision operators – functions taking one propositional belief state to another.

Thus we have two rather intuitive representations of doxastic states – one probabilistic,

and one qualitative – and two corresponding accounts of rational revision of a doxastic state.

The question of how Bayesian belief dynamics differ from those of AGM revision is very

natural, albeit not so straightforward, as it first requires a well-behaved translation between

the two representations. Such a comparison leaves us with a challenge both formal and

methodological, motivated by two philosophical questions: firstly, can one reduce the all-or

nothing notion of belief to an intrinsically quantitative one? Secondly, what do those two

accounts of belief dynamics have in common? Are they competing or compatible? Is there

some common notion of dynamic rationality underlying both accounts?

An immediate idea for translating between the two representations of doxastic states

consists in defining an acceptance rule [25], which maps each probability measure to a

1The word qualitative suffers from a certain ambiguity. Here, by ‘qualitative’ we mean little more than
not explicitly involving a (real-valued) measure on the relevant space of propositions.
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propositional belief state2. However, providing a reasonable acceptance rule has been, for a

long time, fraught with difficulties. Those can be traced back to Kyburg’s notorious Lottery

paradox [29], which shows that a most intuitive such rule dubbed the Lockean rule – i.e.,

given a subjective probability measure µ, accept all and only propositions X with µ(X)≥ t,
where t is some threshold in (0.5,1] – forces the agent into inconsistent belief states, unless

she accepts exactly propositions with probability 1. In turn, this ‘probability-1’ rule has been

criticised for requiring rational acceptance to be too cautious [30]: it seems very plausible

that a rational agent should believe at least some propositions whose subjective probability

falls below 1. Further, the probability-1 proposal renders any formal system for qualitative

reasoning under uncertainty essentially trivial, given that it makes it inapplicable to cases

of genuine uncertainty. It also makes the comparison with AGM revision quite simple: no

(non-trivial) revision of beliefs is possible under the probability-1 rule, since it would require

the agent to condition on an event of measure 0.

In recent years, new proposals have appeared to replace the probability-1 rule, due to

Leitgeb [30], Lin and Kelly [25], and Delgrande [12]. The shift in perspective comes from the

fact that those rules are motivated by the dynamics of doxastic states; their behaviour under

Bayesian conditioning and/or AGM operators played a role in selecting them as desirable.

Interestingly, they succeed in preserving some intuitions behind the Lockean rule, while

avoiding the Lottery paradox, and without collapsing into the probability-1 solution. In

particular, they allow Bayesian conditioning to generate non-trivial revisions. Thus, they

constitute interesting bridges between the probabilistic and qualitative frameworks.

In this chapter, we focus on one such rule due to Leitgeb [30], based on the notion

of stably high probability. Our central question concerns what Lin and Kelly [25] have

called the tracking problem (represented schematically in Figure 2.1). Tracking is a simple

commutativity condition which gives an obvious criterion of dynamic compatibility between

probabilistic and qualitative revision: roughly, a qualitative belief revision method tracks

Bayesian conditioning modulo an acceptance rule if, starting from any probabilistic credal

state, translation through the acceptance rule followed by qualitative revision results in

the same belief state as using Bayesian conditioning followed by translation. We study the

tracking problem for AGM revision in the light of Leitgeb’s rule, and derive two lessons on

the (in)compatibilities between Bayesian and AGM-inspired belief dynamics.

After introducing the framework and notation (Section 2.1), we sketch Leitgeb’s theory

and set the stage for our investigation (Section 2.2). Its starting point is Lin and Kelly’s

No-Go Theorem [25], which shows that AGM revision operators cannot in general track

2In the literature, a distinction is sometimes made between the notions of acceptance and belief [61]. For
the purposes of this thesis, we shall treat the two as synonymous. It is, in fact, an interesting issue whether
one could characterise this distinction formally in terms of the behaviour of acceptance rules; but we shall
not be concerned with this matter here.
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Figure 2.1: The general tracking problem.

Bayesian conditioning modulo an acceptance rule, provided the acceptance rule satisfies some

modest requirements. In particular, the No-Go Theorem entails that Leitgeb’s rule cannot

yield perfect commutativity between Bayesian conditioning and AGM revision. Nonetheless,

the principles behind Leitgeb’s rule point to an interesting connection between the two

operations. We thus consider some ways in which one may circumvent the No-Go Theorem so

as to approximate commutativity between AGM and Bayesian conditioning, using Leitgeb’s

notion of stability (Section 2.3). We show that threshold raising, a very natural idea in

this context, fails; as we argue, this failure raises further difficulties for the ‘peace project’

between Bayesian and AGM-compliant operators. This constitutes our first lesson. However,

we also show (in Section 2.4) how an information-theoretic perspective allows to derive a

close connection between the Bayesian and AGM accounts: there is a sense in which AGM

revision can be seen as deriving from (1) Leitgeb’s rule, (2) Bayesian conditioning, and (3)

a version of the maximum entropy principle. This is our second lesson: it suggests that

one could study qualitative revision operators as special cases of Bayesian reasoning which

naturally arise in situations of information loss or incomplete probabilistic specification of

the agent’s doxastic state.

2.1 Preliminaries

We work with probability spaces (Ω,A, µ), with A a set algebra over a sample space Ω, and

µ a probability measure on A. We represent propositions X,Y,Z as elements of the set

algebra A. In the infinite case, we sometimes require A to be a σ-algebra, in which case

we mention it explicitly. We let ∆A denote the set of all probability distributions on A.

An acceptance rule α maps a probability distribution µ in ∆A to the strongest accepted

proposition α(µ) ∈ A; we then say an agent accepts (or ‘believes’) a proposition X ∈ A if

and only if α(µ)⊆X. By a slight abuse of terminology, the strongest accepted proposition

will also be called the ‘belief set’.

In this framework, a qualitative (or propositional) belief revision operator is a function

∗ :A×A→A: it is understood that the first variable represents the current strongest accepted

7



proposition, and the second the new revision input. We will often write a revision by X ∈ A

as a (projection) function (·)∗X : A→ A, parametrised by X.

We assume some acquaintance with the basics of AGM theory, as presented in [2, 4, 20].

Since the AGM revision postulates are usually formulated in terms of operators acting on

sets of logical formulae, it is worth noting that we can adapt them to our context as follows:

for any belief state K ∈ A (where K is the strongest accepted proposition) and propositions

X,Y , the revision ∗ is AGM-compliant (or simply AGM) if we have the following:

• K∗X ⊆X
• K ∩X ⊆K∗X (Inclusion)

• If K ∩X 6= ∅, then K∗X ⊆K ∩X (Preservation)

• If K∗X = ∅ then K = ∅ or X = ∅
• (K∗X) ∩ Y ⊆K∗(X ∩ Y )

• If (K∗X) ∩ Y 6= ∅, then K∗(X ∩ Y )⊆ (K∗X) ∩ Y

As usual, a probability measure on A is a function µ :A→ [0, 1] which is additive (namely,

X ∩ Y = ∅ entails µ(X ∪ Y ) = µ(X) + µ(Y )) and satisfies µ(Ω) = 1. When Ω is infinite, we

sometimes require countable additivity. Instead of µ({ω}) we will write µ(ω) for simplicity.

For finite powerset algebras, a probability distribution on Ω is a function µ : Ω→ [0, 1]

such that
∑

ω∈Ω µ(ω) = 1. Such a function extends uniquely to a probability measure on A.

Similarly to the above, we will often denote Bayesian conditioning on X ∈ A in parametric

form as |X : as usual we have µX(Y ) := µ(Y |X) = µ(Y ∩X)
µ(X) .

For finite probability spaces with Ω = {ω1, .., ωn}, we will identify probability measures µ

with vectors (µ(ω1), ..., µ(ωn))∈Rn, in which case ∆A is a regular (n−1)-simplex ∆n−1. In the

last section we will make use of the notion of Shannon entropy for probability distributions

on finite spaces. When A is a finite powerset algebra, the Shannon entropy H(µ) of a

distribution µ ∈∆A is defined as H(µ) =
∑

ω∈Ω−µ(ω) logµ(ω). When S ∈ A is some finite

set, we write H(µ � S) :=
∑

ω∈S −µ(ω) log µ(ω). Sometimes we may wish to distinguish H as

a function of n arguments (e.g. seeing the argument µ as (µ(ω1), ..., µ(ωn))), in which case we

denote it as Hn(x1, ..., xn) =
∑n

i=1−xi log xi. A motivation for the notion of entropy (and its

use in uncertain reasoning) can be found in [46, 44, 21]; see [46] for basic properties of entropy

measures. A useful fact is the following grouping property: whenever we have a finite partition

of Ω so that Ω =
⊎
i≤mBi, we have H(µ) =Hm(µ(B1), ..., µ(Bm))+

∑m
i=1 µ(Bi)H( 1

µ(Bi)
µ �Bi),

where the notation kµ denotes the measure defined as (kµ)(ω) = k · µ(ω).
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2.2 Stability principles, AGM revision and the tracking prob-

lem

Stability-based acceptance principles were introduced by Leitgeb [30] to provide a bridge

between probabilistic and qualitative representations of doxastic states, whilst avoiding the

difficulties caused by the Lockean thesis. Those acceptance principles come in two forms:

one is based on a fixed threshold parameter determined in advance, and is an acceptance rule

in the strict sense above. The other, of a less reductionist flavour, allows the threshold to be

co-dependent on the probability measure under consideration. Here, we will focus on the

first variant, which we dub the τ -rule (we shall briefly discuss the other one in section 2.3).

To set the stage for our investigation, we will first recall the essentials of Leitgeb’s results,

define the τ -rule and explain how it can be seen as deriving from two plausible requirements.

We will then clarify why it provides an elegant bridge from probabilistic reasoning to AGM

revision. This will lead us to characterise the tracking problem. We will then present Lin

and Kelly’s No-Go Theorem [25] and explain how it applies to Leitgeb’s τ -rule.

2.2.1 Stability

As is well-known, Lockean acceptance can be understood as the conjunction of two principles.

Suppose the agent’s credal state is represented by a probability measure µ on some fixed

space. Let then λt(µ) denote the strongest accepted proposition under the Lockean rule (λ)

with threshold t ∈ (0.5, 1]. Consider the following:

(→) If λt(µ)⊆X then µ(X)≥ t

(←) If µ(X)≥ t then λt(µ)⊆X

The conjunction of those principles constitutes what is known the Lockean thesis [18]. Both

of them are highly intuitive but, as shown by the Lottery paradox, easily lead to accepting

contradictions: for let 1
2 ≤ t <

n−1
n for some natural n > 2, and suppose µ is a uniform

distribution on some finite space Ω = {ω1, ..., ωn} (e.g., a lottery with n tickets, which the

agent believes to be fair, where each {ωi} represents the proposition ‘ticket i will win’,

and it is assumed only one ticket can win). Then we have, for any i≤ n: µ(ωi) = 1/n,

so µ(Ω \ {ωi}) = n−1
n > t, and so λt(µ)⊆ Ω \ {ωi}. As this holds for any i≤ n, it means

that the agent believes of each ticket that it will not win. But it was an elementary

assumption (encoded in the sample space Ω) that one ticket will win. Formally, we see that

λt(µ)⊆
⋂
i≤n Ω \ {ωi}= ∅. So λt(µ) = ∅: i.e., the agent believes a contradiction.

To avoid the shortcomings of the Lockean rule, Leitgeb introduces in [30] an interesting

new acceptance rule, based on the notion of stably high probability. Leitgeb’s rule follows the
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basic intuition behind the Lockean rule, but it avoids Lottery-like paradoxes: the idea is to

preserve the (→)-direction of the Lockean thesis, while modifying the (←)-direction so that

the agent is never led to accept a contradiction. Instead of believing all propositions with

probability above the threshold, one restricts acceptance to only some of them. To explain

this restriction, we need the following:

Definition 2.2.1 (Stability)

Let (Ω,A, µ) a probability space and t ∈ (0.5, 1]. A set X ∈ A is (µ, t)-stable if and only if

∀Y ∈ A such that X ∩ Y 6= ∅ and µ(Y )> 0, µY (X)≥ t.

Stability captures a notion of robustness under new information: a proposition X is

(µ, t)-stable if only learning a proposition inconsistent with X can bring the probability of

X below the threshold3. In this sense, X has no defeaters – propositions consistent with X

which lower its probability below t. Leitgeb [33] advocates the requirement that, given a

probability measure µ and threshold t, the strongest accepted proposition be (µ, t)-stable.

This is the first requirement for acceptance:

The Stability Principle (SP): given a threshold t and µ ∈∆A, the strongest

accepted proposition must be a (µ, t)-stable set in A.

(SP) demands that, whenever K is the agent’s strongest accepted proposition, no

proposition that can be consistently learnt lowers the probability of K below the threshold:

only disbelieved propositions (inconsistent with K) can affect the probability of K in this

way. In other words, K cannot have any defeaters, understood as above.

According to (SP), a necessary condition for accepting some proposition X ∈ A is that

X be entailed by a chosen (µ, t)-stable proposition (it is important to note here that (SP)

requires only entailment by a stable set, not that every accepted proposition be (µ, t)-

stable). Two remarks are in order: firstly, any measure-1 set is always (µ, t)-stable, as all

its potential defeaters have measure 0 and cannot be conditioned upon: so there is always

some (µ, t)-stable set in A which can be chosen as strongest accepted proposition. Secondly,

any (µ, t)-stable set K also has probability above the threshold (consider conditioning on

the tautological proposition Ω). We can then say that the probability of K is stably high.

This guarantees that the (→)-direction of the Lockean thesis is always satisfied: supposing

K is (µ, t)-stable, we have that K ⊆X entails t≤ µ(K)≤ µ(X). It also guarantees that no

contradiction is ever accepted: and in this setup, logical closure of accepted propositions is

immediate, as we take all and only consequences of the strongest accepted proposition. So

(SP) suffices to avoid Lottery-like paradoxes, as we shall soon explain more in detail.

3For standard probability measures such as here, (µ, t)-stable sets are analogous to high-probability cores, a
concept which was arrived at independently by Arló-Costa and Pedersen in the context of dyadic probability
functions [3].
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In the above, the Lockean thesis specified exactly one rule for each value of t ∈ (0.5, 1],

in the sense of a uniquely defined map λt : ∆A→ A. (SP), however, is too weak to uniquely

specify what the belief set should be4: typically, there will be many (µ, t)-stable sets for a

given µ and t.

There is, however, another natural constraint that one may impose to guide the choice

of a (µ, t)-stable set. Recall that the (←)-direction of the Lockean thesis requires the agent

to accept all propositions with measure greater or equal to t. We know, from the Lottery

paradox, that this is too strong a requirement. Nonetheless, in order to remain as close as

we can to the Lockean thesis, we can weaken it somewhat and opt for the following:

Relativised Lockean Principle (RLP): accept as many propositions X with

µ(X)≥ t as is possible without violating (SP).

Leitgeb’s rule follows from this strengthening of (SP). In short, it recommends that

the strongest accepted proposition be the logically strongest (µ, t)-stable proposition, or

equivalently, the ⊆-least (µ, t)-stable set. For suppose that K ⊂K ′ and both K, K ′ are

stable: then both have probability above t, and so does any proposition either one entails. It

is immediate than choosing K ′ as strongest accepted proposition is a more severe departure

from the (←)-direction of the Lockean thesis than selecting K: here K entails anything

that K ′ does, but not vice-versa. So, in choosing K ′, there are more propositions X with

µ(X)≥ t that the agent fails to accept (and K is one of them).

Of course, for this definition to generate a well-defined acceptance rule, we need to make

sure that a unique ⊆-minimal stable set always exists. This is guaranteed by Leitgeb’s main

results from [30], which we now briefly recapitulate. In the reminder of this section we

assume, as Leitgeb does, that A is a σ-algebra, and that measures µ on it are σ-additive

[30]. For our purposes, the most significant is the following:

Proposition 2.2.2 (Leitgeb [30])

Let µ ∈∆A a σ-additive measure, t ∈ (0.5, 1].

Then the set St
<1(µ) := {X ∈ A |µ(X)< 1 and X is (µ, t)-stable} is well-ordered by set in-

clusion, and has order type at most ω.

Thus, the collection of all (µ, t)-stable sets with probability less than 1 is well-ordered

(and at most countable): as a consequence, whenever there is at least one such set for a

given µ and t, a ⊆-least one exists. Then (RLP) designates this least (µ, t)-stable set as the

strongest accepted proposition.

4In fact, this is in tune with the non-reductionistic variant of Leitgeb’s theory: it relies on using (SP)
to give a ‘coherence’ restriction for pairs (µ,K), which tells us when the probabilistic and propositional
representations of a doxastic state are in harmony, while reducing neither of the two representations to the
other. We will come back to this idea in Section 2.3.
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However, if the collection St
<1(µ) above is empty – i.e., all (µ, t)-stable sets have measure

1 – the well-order property is not guaranteed. In order to avoid this difficulty here, we follow

Leitgeb in restricting our attention to those probability spaces which admit a ⊆-least set

among all sets with measure 1. More formally, we work with probability spaces which satisfy

the following Least Certain Set property (LCS): ∃X ∈ A s.t. µ(X) = 1 and for any Y , if

µ(Y ) = 1 then X ⊆ Y . This trivially ensures the following:

Proposition 2.2.3 (Leitgeb [30])

Let (Ω,A, µ) a (σ-additive) probability space satisfying (LCS), and t ∈ (0.5, 1]. Let S∞

the least measure-1 set in A. Then the set St(µ) := St
<1(µ) ∪ {S∞} is well-ordered by

set-inclusion.

We call St(µ) the system of spheres generated by the measure µ, in reference to Grove’s

well-known construction [20], to which the link will be made shortly. When the µ and t are

implicit, we can simply refer to the (µ, t)-stable sets in St(µ) as spheres.

Now we are all set to define Leitgeb’s acceptance rule: selecting the minimal sphere as

the strongest believed proposition clearly satisfies (SP) (as it is (µ, t)-stable) but also (RLP)

(as any proposition X with µ(X)≥ t which is entailed by some other sphere already follows

from the least one). We can define:

Definition 2.2.4 (The τ-rule)

For any probability measure µ on A which satisfies (LCS), and any t ∈ (0.5, 1], let St(µ) the

system of spheres generated by µ. Then we define the map τt : ∆A→ A as

τt(µ) := min
⊆

St(µ)

Since, under (LCS), the system of spheres St(µ) is always well-ordered by ⊆, the

expression τt(µ) is clearly well-defined: the strongest accepted proposition under Leitgeb’s

τ -rule is the least (strongest) stable set for the given µ and t. Whenever the threshold is

fixed and implicit in the discussion, we drop the subscript and denote this map as τ .

How restrictive is the (LCS) assumption? Among the measures satisfying (LCS), we

can find all probability measures on finite algebras, all countably additive measures on

full powersets of countable sets, and all countably additive measures on regular spaces (s.t.

µ(X) = 0 iff X = ∅) [30]. Many probability spaces that are typically of interest in artificial

intelligence or used as examples in formal epistemology satisfy (LCS)5.

Next, how does the τ -rule avoid the Lottery paradox? One can easily see that, for any

uniform distribution µ on a finite algebra A = P(Ω), the only (µ, t)-stable set is Ω: take any

5In the last chapter, we shall briefly discuss the case of richer probability spaces which violate (LCS), such
as probability models typically occurring in Bayesian statistical inference.
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Figure 2.2: Acceptance zones for Leitgeb’s τ -rule with t= 2/3 and |Ω|= 3.

X ⊂ Ω. Take ω ∈X, ω′ 6∈X and let Y := {ω, ω′}. Then µ(Y )> 0 and µY (X) = µ(X∩Y )
µ(Y ) =

µ(ω)
µ(ω)+µ(ω′) = 1/2< t. So no such X is stable: we have τt(µ) = min⊆{Ω}= Ω, so as expected,

the agent accepts only the tautological proposition. Figure 2.2 gives an example of how the

τ -rule partitions a simplex ∆A into acceptance zones (an acceptance zone for a proposition

X ∈ A is defined as τ−1(X) = {µ ∈∆A | τ(µ) =X}).

2.2.2 Stability and AGM revision

We have seen that, on the static side, the τ -rule avoids the Lottery paradox, and is motivated

by two plausible principles: (SP) and a weakened version of the (←)-direction of the Lockean

thesis. It thus remains very close to the original Lockean proposal, without leading to

contradiction. Now, what makes the rule so interesting for our purpose is that, on the

dynamic side, it is very closely connected to AGM revision operators. This connection is

made by noticing that each system St(µ) of (µ, t)-stable sets can be seen as a system of

spheres centered on τ(µ), in the sense of Grove [20]: i.e., (i) it is totally ordered by ⊆ with

minimum τ(µ), (ii) we have S∞ ∈St(µ), and (iii) for every proposition X ∈A, if X intersects

some S ∈St(µ), then there is a ⊆-minimal SX ∈St(µ) which intersects X (this follows form

the well-ordering of St(µ)). Grove’s well-known representation theorem (see [20, 4]) states

that a revision operator K∗(·) : A→A acting on a belief set K is AGM if and only if there is

a system of spheres S centered on K such that, for any X, we have K∗X = SX ∩X, where

SX = min⊆{S ∈S |S ∩X 6= ∅}. A consequence of this is that, given a system of the form

St(µ) – which we can now call ‘sphere system’ with full legitimacy – we can define a revision

operator on τ(µ) as τ(µ)∗X := SX ∩X, where SX := min⊆{S ∈St(µ) |S ∩X 6= ∅}. Grove’s

theorem then entails that this revision is AGM. We will simply refer to it as the revision
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operator generated by St(µ), or equivalently, generated by τ (for some fixed threshold).

Observe that the sphere system St(µ) generates a ranking (total preorder) on Ω. First

note that we can index all spheres in St(µ) by natural numbers (with the possible exclusion

of S∞) so that Si ⊆ Sj if and only if i≤ j: this is possible as the order type of St
<1(µ) is at

most the ordinal ω (under the assumption of countable additivity). We can then define ranks

generated by St(µ) as follows: R0 := S0, and Rn+1 := Sn+1 \ Sn. If St
<1(µ) is infinite, we

have S∞ =
⋃
i∈N Si =

⊎
i∈NRi: then the sphere S∞ does not define a rank. We say that, for

ω, ω′ ∈Ω, ω�τµ ω′ if and only if min{i |ω ∈Ri}≤min{i |ω′ ∈Ri}. We read ω�τµ ω′ as saying

that ω is at least as plausible as ω′. For finite powerset spaces, we can also treat all states

in Ω with measure 0 as being less plausible than all other states. In this way, the τ -rule

effectively translates a probability measure into a qualitative plausibility ordering, using the

notion of stability as a bridge between the quantitative and propositional representations.

Thus we see how the τ -rule generates a qualitative revision which is AGM. In this sense,

it provides a qualitative revision policy : to each probability measure, it assigns not only

a qualitative belief state, but also an (AGM-complying) qualitative revision operator for

revising the latter. We can now turn to dynamics, and ask to what extent the resulting

AGM revisions can be said to agree with Bayesian conditioning.

2.2.3 Tracking and the No-Go Theorem

In general, a qualitative revision policy A maps each µ ∈∆A to a proposition α(µ) and a

revision operator ∗ applicable to that proposition6, and dependent only on µ. We then say

the policy A is based on the underlying acceptance rule α. It is AGM whenever all revision

operators it generates are.

Let us begin by giving a formal definition of tracking.

Definition 2.2.5 (Tracking)

A qualitative belief revision policy based on the acceptance rule α tracks Bayesian conditioning

if we have the following commutativity property:

∀µ ∈∆A, ∀X ∈ A with µ(X)> 0, α(µ)∗X = α(µX),

where ∗ is the associated revision operator.

This notion is illustrated in Figure 2.1. We say that AGM revision can track Bayesian

conditioning modulo α if there is some AGM-complying revision policy that is based on

α and tracks Bayesian conditioning. This corresponds to a straightforward requirement of

agreement between the probabilistic and qualitative doxastic states under translation by α,

6We allow operators defined only for a restricted set of revision inputs, such as sets with positive measure
under µ.
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which must persist under updating by new information. The problem of tracking Bayesian

conditioning with qualitative revision operators seems to have been first explicitly addressed

by Lin and Kelly in [25]: there, they severely constrain the hope for a harmonious link

between Bayesian kinematics and AGM operators, by proving the following:

Theorem 2.2.6 (The No-Go Theorem, Lin&Kelly [25])

Let |Ω|> 2, A a field of sets over Ω, and let α : ∆A→ A be any sensible acceptance rule.

Then no AGM revision policy based on α tracks Bayesian conditioning.

What is a sensible rule? Sensibility amounts to a list of four properties (from Lin and

Kelly [25]) which are intended to give minimal conditions for acceptance rules to count as

well-behaved. The most important of those conditions is that the acceptance rule never leads

to accept the contradictory proposition ∅; the other three give fairly natural constraints on

the geometry of acceptance zones in ∆A. We omit the exact definition, as the general case

for arbitrary rules is not at the center of our attention here: for our purposes, suffice it to say

that Leitgeb’s τ -rule can be easily checked to be sensible. Nonetheless, the No-Go Theorem

deserves to be stated in its general form, as it indicates that the problem of reconciling AGM

revision with Bayesian kinematics goes beyond the difficulties encountered by the τ -rule7:

simply put, under relatively weak constraints on the acceptance rule, AGM revision cannot

track Bayesian conditioning.

Let us take a closer look at those difficulties, to understand how the No-Go Theorem

applies in our case. It entails that, once we fix a threshold, a sample space Ω and algebra

A (with |Ω|> 2: we assume this henceforth), there always will be some µ ∈∆A and X ∈ A

s.t. µ(X) 6= 0 and τ(µ)∗X 6= τ(µX), where ∗ is the τ -generated revision operator. Note the

following:

Observation 2.2.7

Let µ∈∆A, t∈ (0.5, 1], and ∗ the AGM revision generated by τt. Then ∀X ∈A with µ(X)> 0,

the set τ(µ)∗X is (µX , t)-stable.

Proof. We show SX ∩X is (µX , t)-stable (where SX is the least stable set intersecting X, as

defined above). Let Y ∈ A such that SX ∩X ∩ Y 6= ∅ and µX(Y )> 0. As µX(Y ) = µ(Y ∩X)
µ(X) ,

this entails µ(X ∩ Y )> 0. We have SX ∩ (X ∩ Y ) 6= ∅, so since SX is (µ, t)-stable, we

can write µX∩Y (SX)≥ t. But µX∩Y (SX) = µ((SX∩X)∩Y )
µ(X∩Y ) = µX∩Y (SX ∩ X); we can write

µX∩Y (SX ∩X) = µX(SX ∩X |Y )≥ t, as required.

Since τ(µX) is the minimal (µX , t)-stable set, this observation entails that all revision

cases yield τ(µX)⊆ τ(µ)∗X: thus, the belief state obtained by Bayesian conditioning followed

7In fact, the No-Go Theorem as originally proven in [25] is even more general, where the impossibility result
is extended not only to AGM revision, but to any revision operators satisfying Inclusion and Preservation.
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by translation through the τ -rule is in general logically stronger than the one obtained

by translation followed by the associated AGM revision. As a consequence, whenever

tracking fails for the τ -rule (and the associated revision), we must have the strict entailment

τ(µX)⊂ τ(µ)∗X. The converse holds trivially: this gives us a clear characterisation of all

revision cases for which τ -generated revision fails to commute with Bayesian conditioning

(modulo τ). Consider the following:

Example 2.2.8

Let Ω := {ω1, ..., ω4} and A the full power set algebra over Ω. Set t= 0.7. Consider the

distribution µ=(0.5, 0.12, 0.05, 0.33)∈∆A. We have τ(µ)={ω1, ω2, ω4}. Let X :={ω1, ω2, ω3}.
We have τ(µ)∗X={ω1, ω2}=τ(µ)∩X (this is in accordance with the Inclusion and Preservation

postulates). But conditioning on X gives µX ≈ (0.746, 0.179, 0.075, 0), and we get τ(µX) =

{ω1}: conditioning raises the probability of ω1 just enough to make it (µX , t)-stable. So

τ(µX)⊂ τ(µ)∗X, and tracking fails.

As this example illustrates, we cannot always guarantee that τ(µ)∗X will be the min-

imal (µX , t)-stable set. Thus the τ -generated revision operator ∗ cannot track Bayesian

conditioning modulo τ . This shows how the No-Go Theorem affects the specific class of

revision operators generated by τ (for any threshold t). Note, however, that the theorem

extends to all AGM revision operators: no matter what AGM operator we begin with, a

counterexample to commutativity will exists, effectively preventing the τ -rule itself – and

not only the duo τ -rule + τ -generated revision – to establish the desired harmony between

AGM revision and Bayesian conditioning.

Our example also illustrates one reason why this happens. Here, consider the qualitative

revision τ(µ) 7→ τ(µX), generated by Bayesian conditioning and the τ -rule. It was bad

enough that this “Bayesian” revision did not coincide with the τ -generated revision. This

does not, in itself, prevent the possibility of representing the former through an AGM-

complying operation. But, to make things worse, it is clear that this cannot be done, as the

revision τ(µ) 7→ τ(µX) simply fails to satisfy the AGM postulates. In particular, we have

τ(µ) ∩X 6⊆ τ(µX); so the Inclusion postulate fails.

One interpretation of this situation is as follows: in the above, consider the events {ωi}
as mutually exclusive and exhaustive hypotheses Hi under consideration. Given µ and τ0.7,

the agent accepts the disjunction H1 ∨H2 ∨H4. But – so the interpretation goes – a look at

the distribution µ reveals that the “main reason” the agent believes H1 ∨H2 ∨H4 is because

H1 ∨H4 appears very plausible to her: H2 is retained as possible only because H1 ∨H4 is

not quite (µ, t)-stable without H2 – the disjunction H1 ∨H4 by itself fails to be stable (by a

small margin) since µ({ω1, ω4} | {ω2, ω3, ω4}) = 0.66< 0.7 = t. But once the possibility H4 is

eliminated through conditioning, H1 is so much more plausible that H2 ∨H3 than no doubt

remains: the agent believes H1, while the more conservative AGM revision recommends to
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be more cautious and accept only H1 ∨H2.

This phenomenon is typical of counterexamples to tracking. The idea is that probabilistic

representations provide enough information to identify some propositions ϕ,ψ which were

the “main” reason for accepting a disjunction ϕ ∨ ψ ∨ χ, in situations where (1) ϕ ∨ ψ was

not plausible (stable) enough to be accepted, and (2) ϕ is the most plausible proposition and

χ the least, as given by the probability measure. Then, after conditioning on ¬ψ, comparing

the probabilities of ϕ and χ leads to ϕ being believed in view of how much more probable

it is than the alternatives. In the qualitative AGM setting, however, once a disjunction

is accepted, all of its disjuncts stand on equal footing; no distinctions based on relative

plausibility can be made. One is then not warranted in arbitrarily excluding one of them,

unless it is contradicted by new information. This analysis gives more substance to the

intuition that Bayesian conditioning is too fine-grained to agree with the more coarse-grained,

and conservative, AGM revision.

Of course, a Bayesian convinced by the Lockean and stability principles behind the τ -rule

could very well use this line of reasoning as an argument against Inclusion. Arguing in this

manner against Inclusion should be seen as complementing an argument of Lin and Kelly

against Preservation given in [25] and [26]. This argument is based on the following kind of

examples: working in a space with at least three mutually exclusive propositions ϕ, ψ, χ, one

accepts ϕ ∨ ψ ‘mostly because’ of ϕ. The idea is that one’s probability distribution roughly

measures the subjective strength of the rationale for accepting compound propositions. The

proposition ϕ has a much higher probability than either ψ or χ – so much so that the revision

by the very ‘surprising’ proposition ¬ϕ leads one to reconsider the previous acceptance

entirely and accept ψ ∨ χ, including χ again as a possibility. It is then argued that this

revision is reasonable: it encodes the intuition that revising by ¬ϕ amounts to invalidating

the main rationale for believing ϕ ∨ ψ in the first place, and thus for having excluded χ.

In fact, it turns out that, as soon as the Bayesian reasoner tries to track AGM revision,

she is led to a trade-off between Inclusion and Preservation (when provided with a sensible

acceptance principle). This, in broad terms, is the reasoning found in Lin and Kelly’s proof of

the No-Go Theorem. In [25], Lin and Kelly not only give a Bayesian-style argument against

the Preservation postulate8, but they also offer an alternative acceptance rule – the so called

Shoham-driven rule – which leads the Bayesian reasoner to fail Preservation while satisfying

Inclusion [25, 26]. We leave a more careful comparison between the Shoham and τ rules for

another time; for an idea of how the Shoham-driven rule behaves, see Figure 3. By contrast,

under Leitgeb’s τ -rule, Bayesian reasoning will not necessarily satisfy Inclusion, while always

complying with Preservation. To see this, suppose τ(µ) ∩X 6= ∅: by Observation 2.2.7, we

get τ(µX)⊆ τ(µ)∗X. As the τ -generated revision ∗ satisfies Inclusion and Preservation, we

8In [26], they also use it to argue against the closely related Rational Monotonicity rule for nonmonotonic
logics.
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(a) Acceptance zones for Lin’s and Kelly’s Shoham-
driven rule with t= 2/3.
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(b) Disagreement zones between the τ and Shoham-driven rules with t= 2/3. On the left-hand side,
we have coloured in red the zone where Inclusion fails for the τ -rule under conditioning by Ω \ {ω2}.
On the right-hand side, all disagreement zones are coloured.

Figure 2.3: Comparing Leitgeb’s τ and Lin and Kelly’s Shoham-driven rules.

have τ∗X = τ(µ) ∩X, and we are done.

Here is a more interesting example where tracking fails:

Example 2.2.9

The agent is given an urn. She knows that it is either of the type A – containing 30% black

marbles and 70% white marbles, or B – containing 70% black and 30% white marbles. She

believes option A and option B are equally plausible. Suppose she draws (with replacement)

10 marbles form the urn. How many black marbles would she have to draw to be convinced

the urn is of type A?
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Our sample space contains the 22 propositions in {A ∩Di, B ∩Di | 0≤ i≤ 10}, where A,

B indicate which urn was given, while Di means that i black marbles have been drawn in

our 10-draw trial. Here we assume a 50-50 prior distribution µ for urns A, B and we use

a binomial distribution to compute conditional probabilities. We obtain the following joint

distribution:

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

A .0141 .0605 .1167 .1334 .1000 .0514 .0183 .0045 .0007 .00. . . .00. . .

B .00. . . .00. . . .0007 .0045 .0183 .0514 .1000 .1334 .1167 .0605 .0141

For a threshold of 1/2, the system of spheres S1/2 generates the following ranking (we have

two ranks 0 and 1):

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

A 0 0 0 0 0 0 0 1 1 1 1

B 1 1 1 1 0 0 0 0 0 0 0

This means that, using the τ -generated revision policy, drawing 0, 1, 2, or 3 black marbles

convinces the agent that she was given urn A: e.g., learning D2 leaves only the propositions

A ∩D2 (with rank 0) and B ∩D2 (with rank 1), so the agent believes A ∩D2. However,

drawing 4 marbles yields disagreement between conditioning and revision: on the AGM side,

the agent is undecided between the two urns, as she remains with the propositions A ∩D4

and B ∩D4 of equal rank. On the Bayesian side, however, we get µ(A |D4)≈ 0.845, while

µ(B |D4)≈ 0.155. The proposition A ∩D4 is then the least µD4-stable set, and so gets the

least rank: the agent believes the urn is of type A.

This down-to-earth example is a good illustration of how the cautiousness of AGM

revision may prevent agreement with Bayesian conditioning.

While the No-Go Theorem precludes the possibility of perfect commutativity with AGM

modulo the τ -rule, it is natural to ask if there is any way one could still make the case for

a certain harmony between AGM and Bayesian reasoning. Despite its failures, the τ rule

imposes itself as a natural tool for this purpose. Our discussion so far reveals two reasons

why this is so: first, it is a well-motivated acceptance principle, which avoids Lottery-like

paradoxes and remains close to Lockean intuitions. Secondly, it provides a very elegant

(though imperfect) bridge to qualitative revision dynamics through its connection with

sphere-based models. We will consider the following question: is there any sense in which

one can approximate commutativity through τ -generated revisions? The idea is to weaken

somewhat the tracking requirement, and try to show that the τ -rule allows AGM operators

to ‘approximate’ Bayesian reasoning in this weaker sense. Now that we know how the No-Go

Theorem affects the τ -rule and its associated revisions, we have a clearer idea of where the

problem lies; let us consider some ways to address it.
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2.3 Approximating Agreement

We now consider two ways in which one may attempt to show the (approximate) compatibility

of Bayesian and AGM reasoning by weakening the commutativity criterion. Both involve

modifying the notion of acceptance rule in a way that renders τ -generated revisions and

Bayesian updates dynamically compatible under the resulting (weakened) criterion. The

first one consists in adopting a highly non-reductionist notion of acceptance, which yields a

criterion for dynamic compatibility so weak that even the most trivial qualitative revisions

pass the test. The second attempt relies on allowing an acceptance principle the output

of which depends not only on the current probability measure, but also on the history of

past updates. While this proposal appears more promising, it cannot be carried out without

violating Lockean intuitions. A closer analysis shows that this violation reveals a deeper

conflict between Lockean intuitions and AGM revision, which arises in the light of the

stability principles.

2.3.1 Non-reductionism: lowering the bar

As we mentioned above, Leitgeb’s stability theory of belief admits a variant of a strongly

non-reductionistic flavour. The theory amounts to keeping the Stability Principle (SP) and

abandoning the Relativised Lockean Principle (RLP) which gives rise to the τ -rule. Thus,

given µ and t, selecting any (µ, t)-stable set constitutes a reasonable translation from the

probabilistic credal state: in other words, the pair (µ,K) – with K ∈A as strongest accepted

proposition – is considered coherent, as long as K is (µ, t)-stable. In this way, qualitative belief

states are not seen as emerging deterministically from subjective probabilities. Accordingly,

if one accepts only (SP) as a criterion of acceptance, this also yields a weaker criterion of

dynamic coherence between conditioning and a qualitative revision ∗: one requires only that,

given a pair (µ,K) that is coherent in the sense above, the pair (µX ,K
∗X) be coherent

for any X with µ(X)> 0. In this sense, we achieve coherence between AGM and Bayesian

conditioning by taking ∗ to be the τ -generated revision: as we have seen, K∗X is then

(µX , t)-stable and coherence is preserved at every revision step.

This is, however, a very weak criterion of dynamic coherence. It is simply due to the

fact that (SP) is a rather weak constraint. For example, the following revision process

would pass the coherence test: begin by accepting only the least probability-1 proposition

S∞ and, for any Bayesian update by X, accept as strongest S∞ ∩X =X, iterating this

process as needed by taking intersections. This makes acceptance trivial: at every step,

the strongest accepted proposition simply represents the weakest proposition that has not

been yet ruled out: the plausibility ordering given by the corresponding system of spheres

forgets all other information provided by the probability distribution. One can hardly say
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that such a procedure ‘approximates’ tracking: it simply consists in ignoring virtually any

detail provided by the probabilistic description of the agent’s doxastic state. Nothing in this

weakened coherence criterion allows to rule out such cases as degenerate.

Can we do any better? Here is another idea: use the τ -rule as long as tracking works, and

‘force’ commutativity when it does not. This amounts to setting another acceptance map τ ′

as follows: starting at some prior measure µ and some fixed threshold, we set τ ′(µ) = τ(µ).

For the next revision step by X ∈A, simply define the map τ ′ as picking τ(µ)∗X as strongest

accepted proposition. Thus, if the revision τ(µ) 7→ τ(µX) coincides with the τ -generated

revision, we have τ ′(µX) = τ(µX); but whenever tracking fails and we have τ(µX)⊂ τ(µ)∗X,

the τ ′ map selects τ(µ)∗X. So we force τ ′ to coincide with τ in all revision cases except the

problematic ones, by setting it to respect the AGM revision generated by the sphere system

of (µ, t)-stable sets. It is important to note that τ ′ is not an acceptance rule in the technical

sense: it is clearly not a function from ∆A to A, as the value of τ ′(µ) for some measures µ –

indeed, the problematic ones, of the form µX , for which τ(µX)⊂ τ(µ)∗X – will depend on

the particular revision history that has taken place so far9.

Leitgeb himself has suggested a solution similar to the above [31]. An acceptance principle

behaving like the one just described yields a much closer connection between AGM revision

and Bayesian dynamics. It respects (SP) at all times, and imitates the behaviour of the

τ -rule, except when the τ -rule fails to respect commutativity. In this sense, it can be said to

approximate tracking.

However, on one level, this connection remains unsatisfactory. To begin with, the

acceptance principle above lacks an independent motivation: it is simply designed to satisfy

AGM, and is defined directly in terms of the AGM operator generated by the τ -rule. That

one can use this principle to approximate tracking without violating (SP) is, of course, a

step towards reconciliating AGM with Bayesian models of reasoning – particularly so since

(SP) can be motivated in a manner entirely independent of the tracking problem for AGM

revision. But an obvious difficulty is that this solution is in direct conflict with (RLP).

Consider any case where tracking fails: we have some rule τ , threshold t∈ (0.5, 1], and X ∈A
such that τ(µX)⊂ τ(µ)∗X. After conditioning on X, the probability of τ(µX) is above the

threshold t: thus, Lockean intuitions – as expressed in (RLP) – dictate that τ(µX) should

be believed. So picking τ(µ)∗X as strongest accepted proposition goes against (RLP).

This violation of (RLP) calls for a justification. After all, an important motivation for

9For instance, to identify the strongest accepted proposition τ ′(µX) given a distribution µX , the τ ′ map
needs to be provided at least enough information to identify µ and X, in order to know what τ(µ)∗X is. We
may well have ρ= µX = νX for different measures µ and ν such that commutativity holds when updating µ by
X (in which case we set τ ′(ρ) = τ(ρ)), but fails when updating ν by X (in which case we want τ ′(ρ) = τ(ν)∗X).
The τ ′ map must be able to differentiate between those cases. One way to ensure this is to provide it with
(1) the initial prior distribution µ and (2) the proposition

⋂
i≤nXi, where 〈Xi | i≤ n〉 is the sequence of all

revision inputs provided so far.
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the stability-based account – and one of its strengths – was to remain as close as possible to

the Lockean thesis whilst avoiding paradoxes of the Lottery kind. Indeed, the τ -rule, which

selects the minimal (µ, t)-stable set, owes its specificity (among all rules satisfying (SP)) to

the fact that it satisfies the greatest number of instances of the (←)-direction of the Lockean

thesis. But we see that selecting τ(µ)∗X as strongest accepted proposition, in cases where

commutativity fails, cannot be done for free. Not only does a Bayesian reasoner have no

positive incentives to obey the AGM requirements in those cases, she can do so only at the

cost of violating the Lockean principle (RLP). Thus, she is confronted with a true trade-off

between AGM and Lockean intuitions.

One ideal of compatibility could be described as follows: under an independently estab-

lished acceptance principle10, feasible AGM revisions can be probabilistically represented

by a Bayesian update, and any Bayesian update translates into an AGM revision. This

corresponds to a two-way agreement between the Bayesian and AGM-compliant reasoner,

mediated by an acceptance principle that is acceptable to both. But under this proposal,

only the latter side can be content: the Bayesian, on the other hand, may naturally still

demand a rationale for privileging AGM dynamics over the (←)-direction of the Lockean

thesis.

So if, in Leitgeb’s words, a “peace project” [30, p.70] between AGM and Bayesian models

of reasoning is to be carried out successfully, it would be reasonable to require a more

principled reason to ‘force’ commutativity: justifying the commutative choice by a simple

desire to preserve AGM revision gets us only half of the way there.

2.3.2 Raising the bar

As the τ -rule depends on the (“contextually determined” [30, p.14]) threshold parameter

t, a very simple idea suggests itself for justifying the commutative map τ ′(µX) := τ(µ)∗X.

Whenever commutativity fails for the rule τt and revision of µ by X, one could try and show

that τ ′(µX) = τq(µX), where q is some new threshold, so that the revision τt(µ) 7→ τq(µX) is

AGM. In other words, the idea is to show that using the τt-generated revision on τt(µ) can

be represented as Bayesian conditioning followed by τq. Then, we could claim that selecting

the AGM-compliant proposition as strongest does not really violate (RLP), but instead is a

perfectly legitimate instance of τ -based acceptance, only with a different threshold. It is

immediate that we should set q > t for this to work: it follows directly form the definition of

stability that (µ, t)-stability entails (µ, q)-stability for any q ≤ t. So picking any q ≤ t would

not do, as it would preserve the stability of τt(µX).

Recall Example 2.2.8: we have a distribution µ= (0.5, 0.12, 0.05, 0.33), and a threshold

10Of course, as the No-Go theorem indicates, this acceptance principle cannot be a (sensible) acceptance
rule in the technical sense.
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µ µX
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Figure 2.4: Rationalising AGM revision by raising the threshold: here we pick a new
threshold q > t.

t= 0.7, hence τ(µ) = {ω1, ω2, ω4}. Let Y := {ω1, ω2}. Then µY ≈ (0.806, 0.194, 0, 0) and we

get τ(µY ) = {ω1}. Then tracking fails, since τ(µ)∗Y = {ω1, ω2}= Y . But now we can lift

the threshold to a new value q = 0.807 (any value above 0.806 will do). Then clearly τ(µY )

is not (µY , q)-stable (here, µY (τ(µY )) is not even above the threshold). However τ(µ)∗Y is –

indeed it has probability 1 – and is also the least (µY , q)-stable set. We have thus ‘corrected’

the threshold as required: we approximate commutativity as we have τt(µ)∗Y = τq(µY ), with

∗ the AGM revision operator generated by τt.

However, this threshold-raising method does not work in general. To see why, first

consider how the method works when it does: we start with a measure µ ∈∆A and X ∈ A

such that τt(µX)⊂ τt(µ)∗X, with both of those sets (µX , t)-stable. For the method to work,

we need at least to raise the threshold enough so that τt(µX) is no longer stable, but τt(µ)∗X

is. So it works if and only if ∃q ∈ (0.5, 1], τt(µ)∗X is the least (µX , q)-stable set, while τt(µX)

is not stable for q. Now, to determine whether such a q exists, we can first check, for each of

these sets, what is the maximal value of q which would make them (µX , q)-stable. This is a

set’s degree of stability11:

Definition 2.3.1 (Degree of stability)

The degree of stability of X ∈A with respect to a measure µ∈∆A, denoted S(µ,X) (or simply

S(X) when µ is implicit) is defined as:

S(µ,X) := sup{q ∈ [0, 1] |X is (µ, q)-stable}.

Note that this is defined only when µ(X)> 0. Before giving a counterexample to

threshold-raising, it is useful to have the following:

Proposition 2.3.2

Let µ ∈∆A and X ∈ A, with µ(X)> 0. Then, S(µ,X) = inf{µY (X) |µ(Y )> 0, X ∩ Y 6= ∅}
11Here we extend the notion of stability to cases with t < 1/2.
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and, as a consequence, we have that

X is (µ, t)-stable if and only if S(µ,X)≥ t.

Proof. Let us write TX := {q ∈ [0, 1] |X is (µ, q)-stable} (for the set of good Thresholds of

X) and DX := {µY (X) |µ(Y )> 0, X ∩ Y 6= ∅}, for the set of probabilities given by potential

Defeaters of X. We show supTX = inf DX . First suppose that supTX > inf DX . Then

∃q ∈ TX with inf DX < q. But this means ∃Y with µ(Y )> 0, X ∩ Y 6= ∅ s.t. µY (X)< q. But

then X is not (µ, q)-stable, so q 6∈ TX ; contradiction. So supTX ≤ inf DX after all. For the

other direction, it is enough to note the following. Let Y such that µ(Y )> 0, X ∩ Y 6= ∅.
Then µY (X) ∈DX , so µY (X)≥ inf DX . As this holds for any such Y , this means that X

is (µ, inf DX)-stable. This means inf DX ∈ TX , an so supTX ≥ inf DX . We can conclude

S(µ,X) = supTX = inf DX .

Now we show X is (µ, t)-stable if and only if inf DX ≥ t. First assume inf DX ≥ t. Then

no potential defeater Y of X brings the probability of X strictly below t: more precisely, ∀Y
s.t. µ(Y )> 0, and X ∩ Y 6= ∅, we have µY (X)≥ t. This says exactly that X is (µ, t)-stable.

For the other direction, suppose X is (µ, t)-stable, and assume for reductio that inf DX < t.

Then there is a Y with µ(Y )> 0, and X ∩ Y 6= ∅, and such that µY (X)< t. So X has a

defeater Y , hence is not (µ, t)-stable, which is contrary to our assumption. So inf DX ≥ t
holds and we are done.

Both of those simple characterisations of S(µ,X) can be useful, depending on the context.

The result above is rather intuitive. It says that, by computing S(µ,X), we in fact check

how low the probability of X can be brought down by conditioning on potential ‘defeaters’

in the sense of Section 3. If inf{µY (X) |µ(Y )> 0, X ∩ Y 6= ∅} ≥ t, this means that no such

potential defeater Y can lower the probability of X strictly below t. So X does not actually

have any defeaters with respect to t: it is (µ, t)-stable. Note that the proof of the proposition

above also allows us to write S(µ,X) = maxTX ; the set TX = {q ∈ [0, 1] |X is (µ, q)-stable}
always has a maximum. This is because, as shown in the proof, supTX = inf DX ∈ TX , so

S(µ,X) = supTX = maxTX .

One last remark before proceeding. Here is a simple method for computing S(µ,X),

particularly useful for finite probability spaces. Suppose you know that A is a (nonempty)

minimal-measure subset of X and that µ(X)< 1. Then it is straightforward that we have

S(µ,X) = µ(X |Xc ∪ A) = µ(A)
µ(A)+µ(Xc) : i.e., then Xc ∪ A is the ‘strongest’ defeater: we have

(Xc ∪ A) ∩ X =A 6= ∅ and µ(Xc ∪ A)> µ(Xc)> 0, and no other such set can bring the

probability of X any lower. In fact, we then have µXc∪A(X) = minDX .

Let us go back to the threshold-raising method. By the above, we now know that if B is

not (µ, t)-stable but A is, clearly we have S(µ,B)< t≤ S(µ,A). If follows that, whenever
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tracking fails and we have τ(µX)⊂ τ(µ)∗X, one can raise the threshold to “correct” the

revision process only if S(µX , τ(µX))< S(µX , τ(µ)∗X). But not all such cases are correctible

in this way. We illustrate this with a simple counterexample:

Example 2.3.3

Consider the same setting as in Example 2.2.8. We have t= 0.7, a distribution µ=

(0.5, 0.12, 0.05, 0.33), and X={ω1, ω2, ω3}. Here τt(µ)={ω1, ω2, ω4}. Then µX≈(0.746, 0.179, 0.075, 0),

and tracking fails since τt(µX) = {ω1} and τt(µ)∗X = {ω1, ω2}. We want to find q ∈ (0.5, 1]

such that τt(µ)∗X = τq(µX): for such a q, we must have τt(µ)∗X as (the least) (µX , q)-stable

set, while τt(µX) is not stable. But we have the following degrees of stability with respect to

µX:

S(τt(µX)) =
µX(ω1)

µX(ω1) + µX(Ω \ {ω1})
=

0.746

1
= 0.746

And

S(τt(µ)∗X) =
µX(ω2)

µX(ω2) + µX(Ω \ {ω1, ω2})
=

0.179

0.179 + 0.075
≈ 0.705

This means that the maximal q such that τt(µ)∗X is (µX , q)-stable is q = 0.705. But for

τt(µX), this maximal threshold it at q = 0.746. So any threshold q for which τt(µ)∗X is

(µX , q)-stable also makes τt(µX) stable. So we cannot raise the threshold so as to approximate

commutativity in our sense.

So, one cannot in general justify the choice of the AGM-compliant belief state by raising

the threshold, as there exist such ‘non-correctible’ cases. In fact, it can be shown such cases

exist whenever the algebra A is generated by more than 3 elements12, and, for full powerset

algebras at least, they form an open neighbourhood in ∆A of significant size (their geometric

Lebesgue measure is > 0). The failure of the threshold-raising method simply follows form

the fact that degrees of stability do not necessarily respect the ⊆-order on A.

The fact that such counterexamples exist also seems to undermine another attempt to

legitimise the method of forcing commutativity. This argument, which Leitgeb sketches in [31],

relies on a specific instance of threshold-raising and applies to cases where µX(τ(µX))< 1.

Here the idea is again to move to a new threshold q, by setting q = µX(τ(µ)∗X) when

commutativity fails. Then – the argument goes – selecting τ(µ)∗X as strongest accepted

proposition is in fact in accordance with Lockean principles, since one gets the full Lockean

thesis w.r.t the measure µX and threshold q. In other words, we get ∀Y ∈ A, τ(µ)∗X ⊆ Y if

and only if µX(Y )≥ q, as shown in [30, p. 34]. On this basis, one may be tempted to claim

that threshold-raising is a reasonable solution after all13. But our remarks above should cast

12For A = P(Ω) with |Ω|= 3, each revision which fails tracking is in fact correctible: this is because, in
each such case we have τ(µX) is a singleton, in which case it suffices to raise the threshold above µX(τ(µX)).

13This argument cannot apply to cases where µX(τ(µX)) = 1, for we cannot get the Lockean thesis with
τ(µ)∗X as strongest accepted proposition. This is immediate, since we then have q = 1 and so µX(τ(µX))≥ q
but τ(µX)⊂ τ(µ)∗X.
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some doubt on this claim, as they yield the following:

Observation 2.3.4

Let µ ∈∆A, X ∈ A, and let τ have a fixed threshold. Suppose the following hold:

• τ(µX)⊂ τ(µ)∗X (tracking fails)

• S(µX , τ(µX))≥ S(µX , τ(µ)∗X) (the case is non-correctible)

• µX(τ(µX))< 1

Set q := µX(τ(µ)∗X). Then τ(µ)∗X is not (µX , q)-stable.

Proof. For some fixed t ∈ (0.5, 1], take any ‘non-correctible’ case as above. Suppose τ(µ)∗X

is (µX , q)-stable. Then, since we know S(µX , τ(µX))≥ S(µX , τ(µ)∗X), the set τ(µX) is also

(µX , q)-stable. This entails µX(τ(µX))≥ q. But we also know τ(µX)⊂ τ(µ)∗X. This entails14

µX(τ(µX))< µX(τ(µ)∗X), which means simply µX(τ(µX))< q. This is a contradiction.

Alternatively, we can derive the contradiction using Leitgeb’s result about the full

Lockean thesis for q. We know µX(τ(µX))≥ q. Now Leitgeb’s result entails that for any Y

we have τ(µ)∗X ⊆ Y if and only if µX(Y )≥ q. In particular, this means that µX(τ(µX))≥ q
entails τ(µ)∗X ⊆ τ(µX). But this last inclusion cannot hold, since τ(µX)⊂ τ(µ)∗X.

What does this say about Leitgeb’s variant of the threshold-raising method? In a word,

when we apply the method to non-correctible cases by raising the threshold to q as above,

we necessarily violate the Stability Principle (SP) with respect to q. For example:

Example 2.3.5

Consider again Example 2.2.8. There, set τ(µ)∗X as strongest accepted proposition, and

let q := µX(τ(µ)∗X) = 0.925. It is easy to see that we obtain the full Lockean thesis for q,

but τ(µ)∗X itself is not (µX , q)-stable. For take Y = {ω2, ω3}. Then µX(Y ) = 0.254> 0 and

(τ(µ)∗X)∩Y = {ω2} 6= ∅; but by conditioning on Y we get µX(τ(µ)∗X |Y ) = µX(ω2)
µX(Y ) = 0.179

0.254 =

0.705< q. Thus Y is a defeater for τ(µ)∗X.

Observation 2.3.4 entails that this happens in any case to which Leitgeb’s argument

applies. Thus, when we force commutativity by selecting τ(µ)∗X as the strongest belief,

we have another dilemma: either we keep our initial threshold t – in which case Lockean

principles are violated – or we switch to this new threshold q, thus getting the full Lockean

thesis with respect to q, but failing the stability requirement (SP) (with respect to q). This,

of course, follows from the very existence of non-correctible cases, for which no threshold

satisfies both stability and Lockean principles, as required by (RLP).

14To see why this is strict: suppose we have equality here. This means (τ(µ)∗X) \ τ(µX) has measure
0 under µX . But we know, by assumption, that µX(τ(µ)∗X)< 1. So τ(µ)∗X is a (µX , t)-stable set with
probability < 1, and with a measure 0 subset. This cannot happen in general: for suppose S is (µ, t)-stable,
µ(S)< 1 and A⊂ S with µ(A) = 0. Then Sc ∪A is a defeater for S, contradicting the fact that S is stable.
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One way to avoid those negative conclusions would be to see the τ ′ acceptance map as

generated by two thresholds: in fact, in the cases above, we can see that τ(µ)∗X is stable

with respect to the old threshold t, while it yields the Lockean thesis with respect to the

new threshold q. So we could always require stability with respect to the parameter t, and

the Lockean thesis with respect to q. To understand this proposal, it is useful to sketch

Leitgeb’s more recent presentation of the non-reductionistic version of the stability rule,

which explicitly follows this path [35].

The non-reductionistic stability rule can be derived from what Leitgeb calls the Humean

Thesis. Let the belief set of an agent be represented by a set K⊆A of accepted propositions.

The Humean thesis is a constraint on accepted beliefs according to which a rational agent’s

belief set K must satisfy

A ∈K if and only if ∀X ∈ Poss(K) such that µ(X)> 0, µ(A |X)> t (2.1)

where Poss(K) := {X ∈ A |Xc 6∈K} is the collection of doxastically possible hypotheses. A

probabilistic reasoner who follows the Humean thesis believes all and only those hypotheses

that are stable under conditioning on any proposition that is not disbelieved. Leitgeb shows

that, on any finite probability space, the sets K satisfying (2.1) correspond exactly to sets of

the form {X ∈ A |S ⊆X} where S is a (µ, t)-stable set. So the Humean reasoner selects a

stable set and closes under deduction. Further, we have the following

Theorem 2.3.6 (Leitgeb [35])

Representation theorem for the stability rule on finite spaces.

Let (Ω,A, µ) a finite probability space and K⊆A. Fix t∈ (0.5, 1). The following are equivalent.

(i) K satisfies the Humean thesis (2.1).

(ii) K = {X ∈ A |S ⊆X} where S is a (µ, t)-stable set.

(iii) K = {X ∈ A |µ(X)≥ q} where q = µ(S) for a (µ, t)-stable set S.

In (ii) and (iii), if µ(S) = 1, then S is the least set of measure 1.

The Humean Thesis (and the stability rule) derive much of their strength from this

representation theorem. The theorem shows that, on finite spaces, the non-deterministic

stability rule coincides with the Humean thesis; and that both coincide with a version of

the Lockean thesis in which the choice of threshold is constrained by the measure of stable

sets15. In other words, it shows that three distinct ways of thinking about acceptance yield

one and the same acceptance rule:

15Leitgeb [35, Thm 7, p.121] shows something slightly stronger: namely, that (i) and (ii) above are equivalent
to the statement that K is consistent, closed under consequence and conjunctions, and is generated by some
unique strongest proposition S such that it satisfies the right-to-left direction of the Lockean Thesis with
threshold equal to µ(S).
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• acceptance as (Humean) stability under doxastically possible propositions,

• acceptance as entailment by a chosen probabilistically stable hypothesis,

• acceptance as selecting a consistent, logically closed belief given by the Lockean thesis

(with the choice of the Lockean threshold set to the measure of some stable set)16.

This account of acceptance evidently does not yield a functional acceptance rule in the

reductionistic sense: a probability measure does not uniquely determine a set of accepted

hypotheses. Given a probability measure, there exist as many possible belief sets for the

agent as there are probabilistically stable hypotheses: one generates a belief set by selecting

a stable hypothesis and closing the belief set under logical consequence. This deterministic

stability rule τ corresponds to selecting the logically strongest belief set satisfying either one

of (i), (ii) and (iii); this canonical choice can additionally be justified as the collection of

propositions that admit a probabilistically stable justification. That is, the τ -rule amounts

to accepting all and only those propositions X for which there is some stable hypothesis

entailing X.

Now, one can argue, as Leitgeb does [35], that the choice of a generating stable set corre-

sponds to the choice of a Lockean threshold, which tracks the agent’s degree of ‘cautiousness’.

In this way, this extra degree of freedom in applying the acceptance rule is explained by

the existence of a Lockean threshold for the agent. Crucially, as our observations above

show, the Lockean threshold must be independent of the threshold for stability, if we want

revisions to preserve both the Lockean thesis and the principle that the strongest accepted

proposition be stable. Bayesian agents can follow AGM revisions by selecting an appropriate

Lockean threshold q: the fact that the resulting strongest accepted proposition is not stable

with respect to the chosen Lockean threshold does not matter, since it is only required to be

stable with respect the distinct stability threshold t.

In the context of dynamics of credal states, such a separation of the stability threshold

from the Lockean threshold may strike one as being somewhat inelegant and, at worse,

entirely ad-hoc. Setting aside the cost of introducing an additional parameter, it is far from

clear what the relationship between these two distinct parameters is, and what exact role

they play in the acceptance process. For one thing, in order to justify AGM revisions one

would need to explain why the Bayesian agent should feel compelled to select a Lockean

threshold that generates the AGM-compliant revision. It is not clear how one would justify

the introduction of this extra parameter in a manner independent enough of AGM revision

to be acceptable for the Bayesian. One would then also lose the advantage of the stability

theory as initially introduced, in which the use of a single threshold for stability and Lockean

principles constitutes a rather simple and plausible refinement of the original Lockean thesis.

16It can be shown that the probabilities of stable sets are Lockean thresholds that yield a conjunctive,
deductively closed, and consistent belief set.
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Finally, looking at degrees of stability may give rise to one more worry, albeit a minor one,

when ‘forcing’ the relevant AGM-compliant belief state. In non-correctible cases, inducing

AGM revision in this way means not only departing from the Lockean principle, but also

choosing a belief state τ(µ)∗X that is less stable than the one given by Bayesian Conditioning

and the τ rule. Presumably, if the stability requirement has any plausibility at the outset

– at least enough plausibility to convince the Bayesian reasoner to opt for stable sets as

qualitative representations of belief – then perhaps it would be even more natural to advocate

the choice of τ(µX) as belief state, given that it is not only logically stronger, but also stabler

than τ(µ)∗X.

We can sum up what we have seen so far:

• The threshold-raising method does not always work, and for many probability spaces

there exist counterexamples to tracking that cannot be captured by the application of

the stability rule with a higher threshold;

• Non-correctible cases highlight an incompatibility between the Lockean and Stability

principles and the τ -generated AGM revision, even if one allows thresholds to vary;

• Leitgeb’s variant of the threshold-raising method, which relies on the non-reductionistic

variant of the stability rule, requires the parameters (the Lockean and stability thresh-

olds) to be distinct; only a very limited choice of Lockean thresholds leads the Bayesian

reasoner to comply with AGM revision.

Thus, we do not appear to be any closer to a satisfactory justification for the method

of ‘forcing’ commutativity. The threshold-raising argument brings more difficulties than it

solves. And if the same threshold is kept throughout, making Bayesian conditioning and

AGM revision compatible entails giving up on the Lockean principles underlying (RLP). This

is a significant price to pay. In the absence of an independent rationale for this, it is difficult

to see what incentive the Bayesian reasoner would have to recognise those AGM-compliant

representations as legitimate. But if the hope is to allow Bayesian and AGM reasoning

to ‘make peace’, one must convince both parties – hence the Bayesian also – that peace is

desirable in the first place. Unless some justification is found for prioritising AGM-based

intuitions over Lockean ones, the AGM reasoner and the Bayesian will have to agree to

disagree.

2.4 Recovering revision operators via Maximal Entropy

In this section, we show that the conclusions drawn so far – largely negative for Leitgeb’s

peace project – can be mitigated by considering another approach to the comparison of prob-

abilistic and qualitative belief dynamics. We employ elementary information theory to show
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that an interesting connection emerges between AGM revision and Bayesian conditioning,

in cases where the probabilistic information about the agent’s doxastic state is incomplete.

In such situations, as we will prove, Bayesian conditioning generates AGM revisions purely

from the stability rule and a version of the maximum entropy principle. This suggests that

some qualitative revision operators can be studied as special cases of probabilistic reasoning

under the constraint of information loss.

Bayes with no measure. It would appear thus far that the dynamic behaviour of

AGM operators cannot be easily reconciled with that of Bayesian conditioning, despite the

significant step in this direction made by Leitgeb’s stability principles. The cautiousness of

AGM revision does not mix well with the fine-grained nature of subjective probabilities. But

what if the probabilistic representation of the agent’s doxastic state is not fully specified?

Suppose, for example, that only a qualitative representation is available to the agent (say, a

single proposition X, or a sphere system S), but the agent is strictly committed to Bayesian

conditioning as an update method. What is then needed is a principled way to obtain a

probabilistic representation µ of her doxastic state (suitably ‘matching’ X or S) in order to

perform conditioning on µ and translate the result back into a qualitative representation, by

means of a selected acceptance rule α.

As we will now see, it turns out that for A a finite powerset algebra, and when the

acceptance rule in question is Leitgeb’s τ -rule, this can be done in such a way that the

resulting revision operation is always AGM. In fact, we show how AGM revision emerges in

a natural way from two purely probabilistic principles together with the τ -rule, in situations

where the information about the agent’s probabilistic credal state is incomplete. This will

yield a way of approximating commutativity in cases where translating a probability measure

into a plausibility ordering results in some loss of information.

The first of the probabilistic principles in question is simply Bayesian conditioning. The

other principle is the following version of the Maximum Entropy Principle.

Maximum Entropy Principle (MEP):

If all that is known to the agent is that a probability distribution lies within some zone

N ⊆∆A, the agent selects a distribution with maximal entropy among those in N , if such

exist.

Versions of the maximum entropy principle abound in the information theory and

artificial intelligence literature (see [21]) and numerous justifications have been offered

for its application, both in the context of statistical inference in particular sciences (e.g.

in statistical mechanics, as famously advocated by Jaynes [24]) as well as in the general
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mathematical study of uncertain reasoning (for instance, see [44] or [21]). The gist of the

argument is that the Shannon entropy H(µ) of a distribution µ measures the uncertainty

about which state in Ω is the true one (in our case, the one that should be believed); so the

higher the entropy of the distribution, the less biased it is towards any particular element of

the sample space. In this way, if the only available constraint on the distribution is that it

lies within some zone N ⊆∆A, selecting a maximal entropy distribution in N amounts to

choosing a least biased distribution, given the available information. Such a distribution is

naturally thought to best represent the available information.

In the problem at hand, how does this principle come into play? Starting from a

qualitative representation Q of the agent’s doxastic state (Q could be a proposition in A,

or a sphere system S), MEP guides the selection of a probabilistic representation of Q.

First of all, it would be of course reasonable to expect the chosen acceptance rule τ to help

specify what counts as an acceptable probabilistic representation of Q. For instance, for a

probability measure µ to represent a belief set K we must at least require that µ generates

the belief set K via our acceptance rule. So, more generally, for a measure µ to count as a

representation we must at least require τ(µ) =Q if Q∈ A, and St(µ) =Q if Q is a system

of spheres (recall there that St(µ) is the system of spheres given by the (µ, t)-stable sets,

as defined at the start of this chapter). Secondly, there will in general be many suitable

representations of Q, forcing a subset N ⊆∆A: the MEP comes in handy in the selection of

a minimally biased representation.

From here on we assume A = P(Ω) with Ω finite (of size > 2). We can now give

mathematical substance to our claim and prove the following:

Proposition 2.4.1

Let X 6= ∅ a proposition in A, and τ = τt for some t ∈ [0.5, 1). Then there is a unique

maximal entropy distribution µ ∈∆A such that τ(µ) =X. Moreover, for any Y ∈A, we have

τ(µY ) =X∗Y , where ∗ is the AGM revision operator generated by St(µ).

First let us introduce the following useful notions: given a measure µ ∈∆A, we say that

µ is rank-uniform if it is uniform on all ranks in the sphere system St(µ) associated with

µ (see subsection 2.2.2 for the definition of ranks). We say that two measures ρ and µ are

rank-equivalent if for they generate the same ranks, and for any rank R in their associated

systems of spheres we have ρ(R) = µ(R). A measure ρ entropy-dominates µ if H(ρ)≥H(µ).

Lastly, we say that µ has m ranks if St(µ) does (equivalently, when |St(µ)|=m). We will

make use of the following observation:

Observation 2.4.2

Any µ ∈∆A is entropy-dominated by some rank-equivalent, rank-uniform probability measure

ρ ∈∆A.
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Proof. We adapt a standard argument for the entropy-maximality of uniform distributions.

Let µ∈∆A. Write all µ-ranks as R1, ..., Rm (generated by the τ rule for some fixed threshold

t). We have

H(µ) =
∑
ω∈Ω

−µ(ω) logµ(ω) =

m∑
i=1

∑
ω∈Ri

−µ(ω) logµ(ω)


=

m∑
i=1

H(µ �Ri) (2.2)

Now assume µ is not rank-uniform. Take the rank-equivalent, rank-uniform measure ρ,

defined as ρ(ω) = µ(Ri)
|Ri| for ω ∈Ri. This generates the exact same system of spheres as µ:

(i) clearly ρ cannot create any new stable sets, as all states in the same rank have equal

measure, and (ii) ρ preserves the stability of any (µ, t)-stable set. Suppose S is (µ, t)-stable:

this entails that µ(ωm)
µ(ωm)+µ(Sc) ≥ t, where ωm is the state of minimal measure in S. But the

definition of ρ entails ρ(ωm)≥ µ(ωm) and ρ(Sc) = µ(Sc), so we have ρ(ωm)
ρ(ωm)+ρ(Sc) ≥ t: S is

also (ρ, t)-stable. So µ and ρ generate the same ranks. We also have, for each rank Ri,

ρ(Ri) = µ(Ri).

For all ranks R′ on which µ is uniform, we have µ �R′=ρ �R′, and so H(µ �R′) =H(ρ �R′).

Now let R be a rank on which µ is not uniform. We show H(ρ �R)>H(µ �R): then, equation

(2.2) gives us the desired result. We have H(ρ �R) =
∑

ω∈R
ρ(R)
|R| log

(
|R|
ρ(R)

)
= ρ(R) log

(
|R|
ρ(R)

)
.

Now consider the function θ : x 7→ x log x defined on R+. This is strictly convex on (0,∞).

Using Jensen’s inequality17, we can write

θ

(∑
ω∈R

µ(ω)

|R|

)
<
∑
ω∈R

1

|R|
θ(µ(ω)) =

1

|R|
∑
ω∈R

θ(µ(ω))

As
∑

ω∈R µ(ω) = µ(R) = ρ(R), we write

|R| · θ
(ρ(R)

|R|

)
<
∑
ω∈R

θ(µ(ω))

so − |R| · θ
(ρ(R)

|R|

)
>−

∑
ω∈R

θ(µ(ω)) =−
∑
ω∈R

µ(ω) logµ(ω)

17Jensen’s inequality states that whenever we have a strictly convex map f : R→ R, then ∀xi ∈Dom(f)
(with i≤ n) and αi ∈ [0, 1] with

∑
i αi = 1, we have that

f

(
n∑
i=1

αixi

)
<

n∑
i=1

αif(xi)

unless all xi’s are equal and all αi > 0, in which case we have equality. Here we can use the strict inequality,
as the xi correspond to the µ(ω)’s, which, by assumption, are not all equal.

32



Now the left-hand side equals −|R| · (−ρ(R)
|R| ) log( |R|ρ(R)) = ρ(R) log

(
|R|
ρ(R)

)
, while the right-hand

side equals H(µ �R). So we have

ρ(R) log

(
|R|
ρ(R)

)
=H(ρ �R)>H(µ �R)

So ρ entropy-dominates µ, as required.

Note that we have shown something slightly stronger: that any non-rank uniform µ is

strictly dominated by a rank-equivalent, rank-uniform measure. Another key observation is:

Observation 2.4.3

If µ is rank-uniform, then for any X ∈ A, the revision τ(µ) 7→ τ(µX) is the AGM revision

generated by St(µ).

Proof. Suppose µ is rank-uniform. We show that St(µX) = St(µ) �X. By an argument

similar to the one in Observation 2.2.7, we get St(µ) �X ⊆St(µX). We only need the other

inclusion. Suppose, for reductio, that St(µX) strictly refines St(µ) �X. Then there exist

at least two states ω1, ω2 ∈X which both belong to the same µ-rank R, but are separated

into different µX-ranks: say ω1 ∈R1 and ω2 ∈R2. As µ is rank-uniform, we must have

µ(ω1) =µ(ω2) and hence µX(ω1) = µ(ω1)
µ(X) clearly equals µX(ω2). But states with equal measure

cannot have different ranks. Now St(µX) = St(µ) �X entails τ(µX) = minSt(µX) = τ(µ)∗X:

first recall that τ(µ)∗X = SX ∩X, where SX is the smallest sphere in St(µ) intersecting X.

Suppose towards a contradiction that ∃Y ∈St(µ) �X such that Y ⊂ SX ∩X: then we have

Y = S′ ∩X for some S′ ∈St with S′ ⊂ SX , contradicting the minimality of SX .

We now prove Proposition 2.4.1.

Proof of Proposition 2.4.1. Let ∅ 6=X ∈A. We can assume X 6= Ω (if X = Ω we simply take

µ uniform on Ω and we are done). Let τ−1(X) := {µ ∈∆A |X = τ(µ)}. We want to find a

maximum entropy measure µ in τ−1(X).

We define a distribution µ such that (1) µ is uniform on X, (2) µ is uniform on Ω \X,

and (3) X is (µ, t)-stable. The requirements (1) and (2) directly imply

µ(ω) =


µ(X)
|X| if ω ∈X

1−µ(X)
|Ω|−|X| if ω 6∈X

(?)

(3) in turn requires that µ(ωX)≥ t(1− µ(X))/1− t, where ωX is a state in X with minimal

µ-measure; as we want µ uniform on X, this condition is equivalent to

µ(X)

|X|
≥ t

1− t
(1− µ(X))
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Here we set µ to satisfy µ(X)
|X| = t

1−t(1 − µ(X)). In other words, among all distributions

satisfying (1), (2) and (3), we pick the one that assigns a minimal measure to X. Rewrite

the last equation as

µ(X) =
t · |X|

1 + t(|X| − 1)

Together with (?) this gives us the following definition for µ:

µ(ω) =

 t
1+t(|X|−1) if ω ∈X

1
(|Ω|−|X|) ·

1−t
(1+t(|X|−1)) if ω 6∈X

It should be clear that St(µ) contains exactly two spheres (hence two ranks, X and Ω \X)

and µ is uniform on both ranks. We claim µ is the unique distribution with maximum

entropy in τ−1(X), i.e., we show ∀ρ 6= µ in τ−1(X), H(ρ)<H(µ). Let ρ ∈ τ−1(X), ρ 6= µ.

By Observation 2.4.2 above, we know that each measure is entropy-dominated by a rank-

equivalent measure which is uniform on all ranks. This means we can assume, without loss

of generality, that ρ is rank-uniform and show that µ strictly entropy-dominates ρ.

(i) First, consider the case where |St(ρ)|> 2, hence ρ has > 2 ranks. Take the measure ρ′

s.t. ρ′ �X = ρ �X, and ρ′ uniform on Ω\X. Then ρ′ is a measure with 2 ranks, with minimal

rank X: the fact that ρ′ �X = ρ �X clearly guarantees that X is the least (ρ′, t)-stable set,

and since ρ′ is uniform on Ω \X, the only other (ρ′, t)-stable set is Ω itself (as states with

equal measure cannot belong to distinct spheres). Now we can write

H(ρ) =
∑
ω∈X
−ρ(ω) log (ρ(ω)) +

∑
ω∈Ω\X

−ρ(ω) log (ρ(ω))

=H(ρ �X) +H(ρ �Xc)

And similarly for H(ρ′). This means we have H(ρ′)−H(ρ) =H(ρ′ �Xc)−H(ρ �Xc). Note

that, since ρ has strictly more than 2 ranks, it cannot be uniform on Xc, while ρ′ is. Moreover

we have ρ′(X) = ρ(X) so ρ′(Xc) = ρ(Xc). We have shown in the proof of Observation 2.4.2

that this entailsH(ρ′ �Xc)>H(ρ �Xc), which gives usH(ρ′)>H(ρ). So ρ′ is a (rank-uniform)

measure with 2 ranks which strictly entropy-dominates ρ. Thus it only remains to show that

µ entropy-dominates all other rank-uniform measures with two ranks (and with minimal

rank X). We take care of this in the next case.

(ii) We consider the case of (rank-uniform) measures in τ−1(X) with 2 ranks. We denote

the set of all such measures U . Note that any ρ ∈ U is entirely specified by the value of

ρ(X)(also note that, by choice of µ, we cannot have ρ(X)< µ(X) since this contradicts the

(ρ, t)-stability of X). We show that for ρ ∈ U , H(ρ) is maximised exactly when ρ(X) = µ(X);

i.e., for ρ= µ.

34



Notice that for any measure ρ ∈∆A, we can write

H(ρ) =H2(ρ(X), ρ(Xc)) + ρ(X)H
(

1

ρ(X)
ρ �X

)
+ (1− ρ(X))H

(
1

(1− ρ(X))
ρ �Xc

)
(~)

This equality can be derived directly from the definition of H, or alternatively it can be seen

as an immediate consequence of the “grouping” property of entropy18. Now if ρ is uniform

on X we have ∀ω ∈X, ρ(ω) = ρ(X)/|X|, so 1
ρ(X)ρ(ω) = 1

|X| . This also means

H
(

1

ρ(X)
ρ �X

)
=
∑
ω∈X

1

ρ(X)
ρ(ω) log

(
1

1
ρ(X)ρ(ω)

)

=
∑
ω∈X

1

|X|
log(|X|)

= log(|X|)

By the same reasoning, when ρ is uniform on Xc we get H
(

1
(1−ρ(X))ρ �X

c
)

= log(|Ω \X|).
Now for ρ ∈ U we can rewrite (~) as

H(ρ) =H2(ρ(X), ρ(Ω \X)) + ρ(X) log(|X|) + (1− ρ(X)) log(|Ω \X|)

=H2(ρ(X), 1− ρ(X)) + ρ(X) log

(
|X|
|Ω \X|

)
+ log(|Ω \X|)

It remains to show that this expression is maximised on U exactly when ρ(X) = µ(X). For

convenience we write ρ(X) = a and so H(ρ) =H2(a, 1− a) + a log
(
|X|
|Ω\X|

)
+ log(|Ω \X|).

We have

H2(a, 1− a) = a log

(
1

a

)
+ (1− a) log

(
1

1− a

)
= a log

(
1− a
a

)
− log(1− a)

Differentiating H(ρ) w.r.t a, we obtain

dH
da

= log

(
1− a
a

)
+ log

(
|X|
|Ω \X|

)

By choice of µ, for any ρ ∈ U , we must have a= ρ(X)≥ µ(X) = t·|X|
1+t(|X|−1) : so we are only

concerned with the value of the derivative dH/da for a ∈ [µ(X), 1]. First note that t > 1/2

entails19 t·|X|
1+t(|X|−1) >

1/2·|X|
1+1/2(|X|−1) = |X|

|X|+1 . So a ∈ [µ(X), 1] entails a > |X|
|X|+1 . This yields

18See the Preliminaries at the beginning of the chapter.
19The expression for µ(X) increases in t.
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1−a
a < 1

|X| , so log
(

1
a − 1

)
< log

(
1
|X|

)
, and we get

log

(
1− a
a

)
+ log

(
|X|
|Ω \X|

)
< log

(
1

|X|

)
+ log

(
|X|
|Ω \X|

)
= log

(
1

|Ω \X|

)

But it is clear that log
(

1
|Ω\X|

)
≤ 0 ( recall X 6= Ω). So we have log

(
1−a
a

)
+ log

(
|X|
|Ω\X|

)
< 0.

This means that dH/da is strictly negative for a ∈ [µ(X), 1]. Thus H(ρ) strictly decreases

on U as ρ(X) increases, with H(ρ) seen as a function of ρ(X). Since entropy is strictly

decreasing for ρ(X) ∈ [µ(X), 1], it is maximised exactly when ρ(X) = µ(X), or equivalently

for ρ= µ. So µ, as we have defined it, is the required maximum entropy distribution, and it

is unique.

Finally, µ is rank-uniform, so Observation 4 guarantees that any feasible revision τ(µ) 7→
τ(µY ) is the AGM revision X 7→X∗Y generated by St(µ).

The upshot is that one can uniquely recover AGM revision in the case where the agent’s

doxastic state is represented only by her strongest accepted proposition. Suppose the doxastic

state of the agent is represented by a proposition X ∈ A, with no information about her

numerical credences – say, the full probability distribution is too costly to remember, or

information has been lost after some quantitative-qualitative translation (or perhaps, there

never was any probabilistic representation). The agent selects, in accordance with MEP, the

distribution which best represents her state of knowledge – namely, the maximum entropy

distribution lying in the acceptance zone for X under τ . Then we have commutativity: using

Bayesian conditioning and an application of the τ -rule, we get the same result as applying to

X the AGM revision generated by τ and the corresponding maximum entropy distribution.

Further, it is not necessary to ‘forget’ this much information for this maximum-entropy

method to work: a similar result still holds if more information is available about the

doxastic state. Suppose the agent begins with a full plausibility ranking (total preorder) of

the various hypotheses ω ∈ Ω – or, equivalently, suppose we begin with a system of spheres.

This corresponds to a case where we do not retain complete information about the agent’s

probability measure, but we have preserved more information than merely the agent’s raw

propositional belief set: we store an intermediate description of her doxastic state consisting

of a qualitative plausibility ranking. Note, in particular, that the system of spheres can be

seen as encoding conditional beliefs, or belief-revision strategies. Then there is still a unique

maximum entropy distribution generating this system of spheres: from this distribution,

Bayesian conditioning always generates the AGM revision corresponding to the ranking20:

20The same holds if one remembers not only the plausibility ordering, but also the measures of each rank.
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Proposition 2.4.4

Let S be a system of spheres on A, with A finite. Then there is a unique maximum

entropy µ on A such that St(µ) = S. Moreover, for any X ∈ A with µ(X)> 0, we have

St(µX) = St(µ) �X, and so the associated revision τ(µ) 7→ τ(µX) is AGM.

Proof. We maximise H over [S] := {µ∈∆ |St(µ) =S}. By Observation 2.4.2, each non-rank

uniform distribution is strictly dominated in entropy by a rank-uniform one: so if a maximum

entropy distribution exists on this domain, it is rank-uniform. Thus it is enough to maximise

entropy on the set U of all rank-uniform measures µ such that St(µ) = S. We have

arg max
µ∈U
H(µ) = arg max

µ∈[S]
H(µ)

For any µ ∈ U , we express entropy as a function of the measure of the n ranks R1, ..., Rn

generated by S (we assume n > 1: if there is only one rank, we simply take the uniform

distribution). Writing xi = µ(Ri), we obtain H(µ) = h(x1, ..., xn) :=
∑n

i=1 xi log( |Ri|xi ). We

thus have a convex optimisation problem with linear inequality constraints. To see this, note

that the stability constraints – that each
⋃i
j≤iRj be (µ, t)-stable – are of the form:

∀i with 1≤ i < n,
xi
|Ri|
≥ t

1− t

n∑
j=i+1

xj

since xi
|Ri| =µ(ω) for each ω ∈Ri. So we are maximising the (strictly concave) function h(x) =∑n

i=1 xi log( |Ri|xi ) under one equality constraint
∑n

i=1 xi = 1 and linear inequality constraints

given by xi ≥ 0 (i≤ n) and gi(x)≥ 0 for each i < n, where gi(x) = xi − |Ri| · t
1−t
∑n

j=i+1 xj .

We want to maximise h on D := {x ∈∆n−1 | gi(x)≥ 0 for all i < n}. Clearly we have a

one-to-one correspondence between vectors in D and distributions in U : for every µ ∈ U , we

have (µ(R1), ..., µ(Rn)) ∈ D with h(µ(R1), ..., µ(Rn)) =H(µ), and for each x ∈ D we have

a unique measure µ ∈ U with h(x) =H(µ) defined by µ(ω) = xi/|Ri| where ω ∈Ri. So

arg maxx∈D h(x) uniquely determines arg maxµ∈U H(µ).

The optimization region D is an intersection of closed half-spaces, and so it is a closed

convex set. As a subset of the simplex ∆n−1, D is also bounded. This means that D is

compact: and since the function h is continuous, it admits a maximum on D. Because the

function is strictly concave, and we maximise it over a convex set, the maximum is unique21.

Since

max
x∈D

h(x) = max
µ∈U
H(µ),

such a maximum gives us the desired maximal entropy distribution. Lastly, this distribution

is rank-uniform, and so by Observation 2.4.3 it generates an AGM revision. This suffices

21When f is strictly concave and D convex, if arg maxx∈D f(x) exists, it is unique [56, Thm 7.14, p. 186].
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to establish the theorem. We now show an explicit computation of the maximum entropy

distribution.

Explicit form. An explicit solution for the maximum entropy distribution can be obtained

as follows. The maximum is reached exactly for the unique x ∈∆n−1 which satisfies all

equalities gi(x) = 0, where all the gi constraints are active. Solving this system of equations,

an expression for this x is obtained. Writing ri := |Ri| and k := t
1−t , the solution for

x = (x1, ..., xn) is

xn =
1∏n−1

j=1 (1 + rjk)
(2.3)

xi =
rik∏i

j=1(1 + rjk)
for i≤ n− 1 (2.4)

This solution can be checked via Lagrange multipliers by appealing to the Karush-Kuhn-

Tucker conditions for convex optimisation [9, p. 244] (checking that this is indeed a feasible

solution satisfying the KKT conditions is sufficient, since h is concave, h and the gi’s are

all differentiable, and the constraints are all linear). Here is a more elementary (and less

cumbersome) argument.

Take any x ∈ D for which the first i− 1 constraints are active (gj(x) = 0 for j < i), but

the i-th one is not, i.e., gi(x)> 0: this last inequality means we have

xi >
rik∏i

j=1(1 + rjk)

We first show that we can then find another y ∈D with higher entropy – that is, h(y)>h(x)

– and for which gj(y) = 0 for all of {1, .., i}. Given ε > 0, define an (ε, i)-improvement of x as

xεi =
(
x1, ..., xi − ε, xi+1 + ε, ..., xn

)
.

Now consider the following lemma (which we prove below):

Lemma 2.4.5

Let x ∈ D with gj(x) = 0 for all j < i but gi(x)> 0 (i < 1). We have

∀ε ∈

(
0, xi −

rik∏i
j=1(1 + rjk)

]
, h(xεi)> h(x).

Given the lemma, the result easily follows: take any x ∈ D for which some constraint is
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inactive. Pick the least such i for which gi(x)> 0. Take its (εi, i)- improvement with

εi = xi −
rik∏i

j=1(1 + rjk)

Proceeding in this way for each subsequent j > i, we have

h
(
x
)
< h
(
xεii
)
< h
(
(xεii )

εi+1

i+1

)
< ... < h

(
(...(xεii )...)

εn−1

n−1

)
.

The last element (...(xεii )...)
εn−1

n−1 in this improvement sequence is always equal to the optimal

solution x∗ given by equations (2.3) and (2.4), since it is the unique vector x∗ satisfying all

gi(x
∗)=0: at each step i≤n−1, the i-th coordinate is replaced by the term rik/

∏i
j=1(1+rjk).

Now every point y ∈ D different from x∗ has some inactive constraints, and so we can con-

struct an improvement sequence culminating in x∗, which witnesses that h(y)< h(x∗). This

improvement procedure corresponds to moving along the gradient of h along the boundary

of the polytope D, at each step reaching the intersection of the first i hyperplanes gi(x) = 0.

The procedure terminates at the maximum entropy point x∗, as given by the intersection of

all hyperplanes.

Proof of the Lemma.

We first prove the lemma for (ε, 1)-improvements: that is, we show:

For any x ∈ D with g1(x)> 0, we have h(xε1)> h(x) for all ε ∈
(

0, x1 −
r1k

1 + r1k

]
. (2.5)

. Take any x ∈ D for which the first constraint is not active, i.e., g1(x)> 0 – this means we

have

x1 >
r1k

1 + r1k
.

(Recall that here ri := |Ri| ∈ N \ {0} and k := t
1−t > 1). Now consider an (ε, 1)-improvement

xε1 =
(
x1 − ε, x2 + ε, x3, ..., xn

)
. Their difference in entropy is equal to

h(xε1)− h(x) = x1 log
( x1

x1 − ε

)
+ x2 log

( x2

x2 + ε

)
− ε log

( r1

x1 − ε

)
+ ε log

( r2

x2 − ε

)
(2.6)

= x1 log
( x1

x1 − ε

)
+ x2 log

( x2

x2 + ε

)
+ ε log

(r2

r1
· x1 − ε
x2 + ε

)
(2.7)

We show that this is strictly positive for ε ∈ (0, x1 − r1k
1+r1k

]. First note that

log
(r2

r1
· x1 − ε
x2 + ε

)
≥ log(r2k)> 0 (2.8)

This is so because x1− ε≥ r1k
1+r1k

, and it follows from and x1 +x2 ≤ 1 that x2 + ε≤ 1− r1k
1+r1k

:
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but then we have that

x1 − ε
x2 + ε

≥ r1k, and so
r2

r1
· x1 − ε
x2 + ε

≥ r2k,

establishing (2.8). Now we can write

h(xε1)− h(x)≥ g(ε) + ε log(r2k), (2.9)

with g(ε) := x1 log
(

x1
x1−ε

)
+ x2 log

(
x2
x2+ε

)
. Observe that dg

dε = ε(x1+x2)
(x1−ε)(x2+ε) is strictly positive

when ε ∈ (0, x1 − r1k
1+r1k

]. Now we have g(0) = 0 and g(ε) strictly increases on this interval: it

follows from (2.9) that h(xε)− h(x)> 0 for 0< ε≤ r1k
1+r1k

, and statement (2.5) is established.

This case suffices to prove the Lemma. To see why, consider some x ∈ D with gj(x) = 0 for

all j < i but gi(x)> 0 (i < n). This means that we have

x =
( r1k

1 + r1k
, . . . ,

ri−1k∏i−1
j=1(1 + rjk)

, xi, . . . xn

)
with xi>

rik∏i
j=1(1+rjk)

. Consider the restricted distribution y∈Rn−i+1 defined by re-normalising:

(yi, ..., yn) :=
1

1−
∑i−1

j=1 xj
(xi, . . . , xn)

Note that we have

(
1−

i−1∑
j=1

xj
)

= 1−
i−1∑
j=1

[
rjk∏j

`=1(1 + r`k)

]
=

1∏i−1
j=1(1 + rjk)

so that

ym = xm ·
( i−1∏
j=1

(1 + rjk)
)

for all m ∈ {i, . . . , n}.

Since xi >
rik∏i

j=1(1+rjk)
, this entails that yi >

rik
1+rik

. Now, consider the restricted function

h̃=
∑n

j=i xj log(rj/xj) (h restricted to the last i− 1 coordinates). We apply the proof of

(2.5) to the vector (yi, ..., yn), by taking the improvement with 0< ε≤ yi − rik
1+rik

, obtaining

y∗ =
(
yi − ε, yi+1 + ε, . . . , yn

)
with h̃(y∗)> h̃(y). Now consider

x∗ =
( r1k

1 + r1k
, . . . ,

ri−1k∏i−1
j=1(1 + rjk)

, αy∗i , . . . , αy
∗
n

)
with α=

1∏i−1
j=1(1 + rjk)
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µ µX

K∗X = τ(µX)

Max
Entropy

in τ−1(K)

Bayesian conditioning

|X

τ acceptance

∗X
AGM

(a) Recovering AGM from the strongest accepted
proposition.

µ µX

S S �X

Max Entropy

|X

Restriction to X

τ(µ) = minS τ(µX)
AGM

minmin

τ τ

(b) Recovering AGM revision from a plausibility
ordering.

Figure 2.5: AGM revision emerges from Bayesian conditioning via the maximum entropy
principle.

and observe that this corresponds to the improvement x∗=xαεi with αε∈
(

0, xi− rik∏i
j=1(1+rjk)

]
.

Since (xi, . . . , xn) = (αyi, . . . , αyn), we get

h(x∗)− h(x) = h̃(αy∗)− h̃(αy) = α[h̃(y∗)− h̃(y)]> 0

This concludes the proof of Lemma 2.4.5.

Thus we can appeal to the maximum entropy principle to pick a unique distribution

which generates an AGM revision, even when some more information about the credal state

is preserved – i.e., we have the full plausibility ordering encoded in a system of spheres.

Assume the agent’s doxastic state is specified by a given system of spheres S (or, equivalently,

the corresponding plausibility ordering); then, following MEP, the agent chooses the relevant

maximum entropy measure as a probabilistic representation of the doxastic state. From

there, Bayesian conditioning followed by the τ -rule yields the same result as using AGM

revision on the initial sphere system directly (i.e., taking the appropriate restriction of the
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system of spheres). Figure 2.5 illustrates both ways of recovering AGM revision through the

maximum entropy principle.

More explicitly, Proposition 2.4.4 and equations (2.3) and (2.4) give us an immediate

solution for the maximum entropy distribution that generates a given ranking: given a

system of spheres S with ranks R1, . . . , Rn, the maximum entropy distribution such that

St(µ) = S is the rank-uniform µ determined by:

µ(Rn) =
1∏n−1

j=1 (1 + |Rj | · t
1−t)

(2.10)

µ(Ri) =
|Ri| · t

1−t∏i
j=1(1 + |Rj | · t

1−t)
for i≤ n− 1 (2.11)

so that the probability of each state ω ∈ Ω is given by

µ(ω) =
µ(Ri)

|Ri|
=

t
1−t∏i

j=1(1 + |Rj | · t
1−t)

,

where Ri is the rank containing ω. This depends only on the threshold and the size of the

ranks. Example 2.4.6 below illustrates a simple application of this result.

Example 2.4.6

Let t= 3/4, so that k := t
1−t = 3. Suppose we have a system of spheres S given by the

following ranking:

ω1 ω2 ω3

ω4 ω5

ω6 ω7 ω8 ω9

ω10 ω11

R1

R2

R3

R4

We have (r1, r2, r3, r4) = (3, 2, 4, 2). Then equations (2.3) and (2.4) give us(
µ(R1), µ(R2), µ(R3), µ(R4)

)
=
(819

910
,

78

910
,

12

910
,

1

910

)
and so the maximum entropy distribution that generates this ranking is given by

arg max
µ∈[S]

H(µ) =
1

910
(273, 273, 273, 39, 39, 3, 3, 3, 3, 0.5, 0.5)

Now consider updating on new information X = {ω4, ω5, ω8, ω9, ω11}.
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ω1 ω2 ω3

ω4 ω5

ω6 ω7 ω8 ω9

ω10 ω11

X
µ(·|X)
7−→

0 0 0

78
169

78
169

0 0 6
169

6
169

0 1
169

ω4 ω5

ω8 ω9

ω11

S(µX) = S �X7−→

We see that S(µX) = S �X, so that τ(µX) = τ(µ)∗X = {ω4, ω5}. Note that the choice of

the maximum entropy distribution is significant here, as there also exist distributions that

generate S but do not commute with the corresponding AGM revision. Take for instance

µ= 1
4060

(
1218, 1218, 1218, 300, 80, 6, 6, 6, 6, 1, 1

)
. This also generates S, although it is not

rank-uniform since µ(ω4)> µ(ω5). Here S(µX) gives the ranking

{ω4}< {ω5}< {ω8, ω9}< {ω11}

and so τ(µX) = {ω4} 6= τ(µ)∗X.

What can we get out of these results? On the one hand, they can be seen as complementing

Lin and Kelly’s No-Go Theorem by further precisifying the sense in which AGM is too

coarse-grained to fully track Bayesian conditioning: it cannot deal with retaining too much

information about the probability measure. On the other hand, Propositions 2.4.1 and

2.4.4 do justify the slogan “AGM = τ -rule + Maximum Entropy + Bayesian Conditioning”

for situations involving information loss, or an incomplete probabilistic specification of the

credal state. An stability-driven agent who complies with the probabilistic principles of

maximum entropy and Bayesian conditioning, but who stores her information in a qualitative

form – e.g. a belief set together with a plausibility ranking – will automatically comply with

AGM revision. Thus AGM can be seen, in this sense, as actually resulting from Bayesian

conditioning. And if, for instance, one believes that such information loss is inevitable, or

if one is generally wary of the sharpness of subjective probabilities, but favourable to the

dynamics of Bayesian conditioning – then the above could indicate that AGM revision is a

very natural option, even for the staunch Bayesian22.

This approach invites more research into the information-theoretic aspects of passing

from the quantitative to the qualitative framework. For example, the No-Go theorem

shows that if no information is lost in the specification of the probabilistic credal state,

22In particular, this is to be contrasted with Lin and Kelly’s [25] theory. Their preferred acceptance/revision
duo – the Shoham-driven rule with the so-called Shoham revision – does not exhibit the same kind of regularity
under information loss: one can show that one cannot, given only the strongest accepted proposition, uniquely
recover a Shoham revision operation from the Shoham-driven rule and the MEP.
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commutativity fails. Our result shows that, when some of the probabilistic information is

forgotten, we can recover a kind of commutativity. It is then natural to wonder how much

information must be lost in order for AGM to emerge through an acceptance rule, MEP,

and Bayesian conditioning: how to measure this information loss? Further, given some

reasonably minimal structural constraints on acceptance rules, can we characterise the class

of rules that allow for AGM recovery via maximum entropy23? Is this class of rules definable

in a convenient logical framework (and if so, what is its definitional complexity)? Can we

provide a useful characterisation of the class of Leitgeb rules (with varying thresholds) as

defined by elementary information-theoretic and/or geometric constraints? We leave these

questions for another occasion.

We have argued earlier that, as it stands, we have not yet found a truly principled way

to temper the conflict between AGM revision and Bayesian conditioning; the prospects for

this look dim, at least as long as we insist on preserving our intuitions behind stability and

Lockean principles. Now we see that forgetting some information on the way provides an

interesting (and arguably less ad-hoc) bridge between the two – one built from Leitgeb’s

rule and purely probabilistic principles. There may be more to be learnt from it. Perhaps at

the root of it all lies another simple moral; agreements cannot always be forced and conflicts

cannot always be resolved by negotiation. To make peace, sometimes all it takes is to forget.

2.5 Summary

We introduced Leitgeb’s τ -rule and sketched the motivations behind it; in particular, we

showed how it derives from the Stability principle and a weakened version of the Lockean

thesis. We considered the tracking problem for Bayesian conditioning and AGM in the light

of the τ -rule, and saw the way in which Lin and Kelly’s No-Go theorem poses a problem when

one wants to render AGM revision compatible with Bayesian conditioning. Given (i) the

inherent plausibility of the principles behind the τ -rule and (ii) the rule’s close connection to

AGM revision, we considered some simple ways to approximate tracking using the τ -rule; we

found them wanting. Nonetheless, in the light of the τ -rule, we showed that AGM revision

may emerge plausibly from probabilistic principles: this happens when only an incomplete

probabilistic representation of doxastic states is available.

23Natural candidates include the geometrical constraints imposed by Lin and Kelly [25, 26], or convexity
requirements for acceptance zones, as advocated by Levi [37].
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3
Probabilistically stable revision operators

Our investigations so far highlight several points of discord between AGM-based belief

revision theory and the Bayesian model of belief dynamics. While Leitgeb’s stability rule is

partially successful in bridging the gap between AGM operators and Bayesian conditioning,

the harmony between the two is certainly less than perfect.

In this chapter, we will approach the problem from a different angle: instead of asking

which acceptance rules can bridge a chosen class of belief revision operators with Bayesian

reasoning, we will study the qualitative revisions that emerge from Bayesian dynamics

as a result of adopting a given acceptance principle. As we explained in Chapter 2, an

interesting aspect of Leitgeb’s τ -rule is that it can be justified, as an acceptance principle,

by appealing to plausible reasons (stability and Lockean principles) that do not depend

on the prior adoption of any particular qualitative revision operator. This suggests the

study of a qualitative counterpart of Bayesian reasoning generated by an independently

plausible acceptance rule. Following this idea, we shall drop the requirement that our

qualitative revision obey the AGM postulates. Instead, we will consider the case where we

keep an acceptance rule fixed, and employ it to obtain a qualitative revision from Bayesian

conditioning.

Bayesian conditioning naturally generates a qualitative revision operator via Leitgeb’s

rule (see Figure 3.1). In what follows, we will keep Leitgeb’s stability rule fixed and ask:

what is the qualitative revision generated by Leitgeb’s rule and Bayesian conditioning? In

this way, we will obtain a tracking result for Bayesian conditioning which relies on Leitgeb’s

stability-based acceptance.

A particularly useful approach to describe the resulting revision operators is to capture

their essential properties as structural rules for nonmonotonic consequence relations. There

is a well-known correspondence between AGM revision and the system R of nonmonotonic

logic due to Kraus, Lehmann and Magidor [28], whereby a revision operator generates a
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µ µX

τ(µ) τ(µX)

|X
Bayesian conditioning

Leitgeb rule τ

generated revision

τ

Resulting consequence relation: X |∼τ Y iff τ(µX) ` Y

Figure 3.1: Probabilistically stable revision generated by Leitgeb’s rule.

canonical class of nonmonotonic consequence relations through a translation based on the

Ramsey test [25]. In a similar way, it is natural to ask what the nonmonotonic logic generated

by Leitgeb’s rule is, and how it is related to well-known systems for nonmonotonic reasoning.

This perspective offers a helpful starting point towards characterising probabilistically stable

revision operators.

After defining the notion of Ramsey-test probabilistic acceptance models (introduced in

[26]) (§3.1), we will discuss the non-monotonic logic of probabilistic stability generated by

Leitgeb’s rule (§3.2). We will first observe certain distinctive properties of the consequence

relations generated by the stability rule: notably, the fact that they satisfy the rule of

Rational Monotonicity for non-monotonic logics, while violating the (Or) rule. We will then

explain how probabilistically stable revision operators can be described via selection function

models from nonmonotonic logic. The problem of characterising this class of models amounts

to finding an axiomatic description of strongest-stable-set operators, which send every event

X to the strongest stable set given X (that is, they map the update input X to the logically

strongest event in the probability space that is probabilistically stable once the prior has

been updated by X).

In order to achieve this, we first discuss the geometry of the stability rule: a simple

geometric analysis highlights some structural properties of the stability rule that play an

important role in the axiomatic description of strongest-stable-set operators. We then prove

the main result of this chapter: a representation theorem for strongest-stable-set operators

(§3.3). This result, which builds on the theory of comparative probability orders, gives

necessary and sufficient conditions for a selection function to capture the behaviour of a

strongest-stable-set operator on a finite probability space. These selection functions capture

exactly the revision operators generated by the stability rule. This solves the characterisation

problem for representable selection structures, and we thus obtain an interesting revision

operation which serves as a qualitative representation of Bayesian reasoning.

We then connect this result to work in game theory and combinatorics on the numerical
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representations of simple voting games [57]: our representation theorem gives a solution to a

problem concerning the weighted representation of simultaneous voting games.

Lastly, we discuss the problem of giving a complete axiomatisation for the logic of

probabilistically stable belief (§3.4).

3.1 The Ramsey test and τ-models

As explained above, we can employ Leitgeb’s rule to obtain qualitative revisions from Bayesian

conditioning. Starting from a probability distribution µ and new update input X (with

µ(X)> 0), consider the (restricted) revision operator ∗τ that takes as input the proposition

X and the current belief state τ(µ), and outputs the revised belief state τ(µ)∗τX := τ(µX),

as illustrated in Figure 3.1. We call these operators probabilistically stable revision operators.

The general form of our problem is as follows: given an acceptance rule α, what is

the class of revision operators ∗α :X 7→ α(µX) generated by it? What is its resulting non-

monotonic logic – i.e., the logic of Bayesian conditional belief generated by α? We can

describe such revision operators by studying their associated nonmonotonic consequence

relations |∼M understood via a Ramsey-test semantics. That is, we say that ϕ |∼M ψ holds

if and only if, given the agent’s (probabilistic) credal state given by a probabilistic structure

M, conditioning on ϕ leads, through the acceptance rule α, to a new doxastic state where

the agent believes ψ. Equivalently, this means that applying the generated revision ∗α on

input ϕ leads the reasoner to accept ψ. More precisely, the models of such a logic are given

by the following structures [26]:

Definition 3.1.1 (Probabilistic α-models)

Fix an acceptance rule α. Define an α-model as a structure M := (Ω,A, µ, [[·]], α), where

(Ω,A, µ) is a probability space and [[·]] : L→ A is a valuation24. Set

ϕ |∼M ψ if and only if α(µ[[ϕ]])⊆ [[ψ]] or µ([[ϕ]]) = 0

Here L is a classical propositional language. Given an acceptance rule α, the consequence

relations of the form |∼M (where M is an α-model) provide a description of α-generated

revision in the sense above: they characterise conditional belief statements of the form

ϕ |∼ ψ, expressing that ψ is believed after applying α-generated revision by ϕ.

At this point, it is useful to recall some key elements of the nonmonotonic logic framework,

as introduced by Kraus, Lehmann and Magidor [28]. Here, ‘logics’ are identified with a

class of consequence relations, and the idea is to classify consequence relations |∼ via the

collection of inference rules under which |∼ is closed.

24Here we take a valuation to be a homomorphism from the boolean language L to the set-algebra A: the
exact class of models of interest to us will be defined more precisely in section 3.4.
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Definition 3.1.2 (KLM-style nonmonotonic logics)

System C consists of the rules (Ref), (Left Equivalence), (Right Weakening), (Cut) and (CM)

below. System P consists of all the rules of inference below except for Rational Montonicity

(RM). System R is obtained from P by adding (RM). (Note that ` denotes classical entailment

here).

ϕ |∼ ϕ
(Ref)

ϕ a` ψ ϕ |∼ γ
ψ |∼ γ

(Left Equivalence)
ϕ |∼ ψ ψ ` γ

ϕ |∼ γ
(Right Weakening)

ϕ ∧ β |∼ γ ϕ |∼ β
ϕ |∼ γ

(Cut)

ϕ |∼ ψ ϕ |∼ γ
ϕ |∼ ψ ∧ γ

(And)
ϕ |∼ γ ψ |∼ γ
ϕ ∨ ψ |∼ γ

(Or)

ϕ |∼ ψ ϕ |∼ γ
ϕ ∧ ψ |∼ γ

(CM)
ϕ |∼ γ ϕ 6 |∼ ¬ψ

ϕ ∧ ψ |∼ γ
(RM)

In this setting, we say that an acceptance rule α validates an inference rule if and only if,

for any α-model M, the consequence relation |∼M is closed under the inference rule. We have

a basic notion of derivability: let Γ ∪ {Φ} a finite set of flat conditionals of the form ϕ |∼ ψ.

Given a system of inference rules S, the notation Γ `S Φ means that the conditional Φ is

derivable from Γ using (finitely many applications of) the rules from the system S. Similarly,

we say that a class of probabilistic models M validates this inference (written Γ �M Φ)

whenever it is the case that, for any model M in M, if |∼M validates all conditionals in Γ,

it also validates the conditional Φ.

In this framework, it is natural to ask what the logic of a fixed acceptance rule is. The

non-monotonic logic generated by an acceptance rule α can be characterised through a

completeness result: the completeness problem amounts to characterising the consequence

relation �M, where M is the class of all α-models. In other words, it consists in finding a

system of inference rules S such that `S and �M coincide.

For an example of such a completeness theorem, it is worth reminding a result by Lin

[38] and Lin and Kelly [25, 26], who provide a completeness theorem for their preferred

acceptance rule – Shoham-driven acceptance – which we will here denote by κ. Lin and

Kelly define the κ-rule as follows. If (Ω,P(Ω), µ) is a discrete probability space and q ∈ R
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(q ≥ 1), we have:

κq : ∆A→ A, , defined as

κq(µ) :=
{
ωi ∈ Ω

∣∣∣∣ µ(ωi)

maxω∈Ω µ(ω)
≥ 1

q

}
Alternatively, they show we can characterise the acceptance rule and the resulting revision

as an order-minimisation operation:

κq(µ) = min(≺µ), where ωi ≺µ ωj if and only if
µ(ωi)

µ(ωj)
> q

κq(µ)∗X := κq(µX) = min(≺µ(· |X)) = min(≺µ�X) for all X with µ(X)> 0

Lin and Kelly obtain the following completeness result for κ-models:

Theorem 3.1.3 (System P completeness, Lin [38], Lin and Kelly [26])

Let Γ ∪ {Φ} a finite set of flat conditionals of the form ϕ |∼ ψ, and K the class of κ-models.

Then,

Γ `P Φ if and only if Γ �K Φ.

System P has been a long-time favourite amongst the systems of nonmonotonic logic

[28]. A probabilistic semantics for it was already present in Adams’ early work deriving

from his Ph.D. thesis [1]. Lin’s result provides a semantics for system P that is significantly

less cumbersome than Adams’ original ‘δ − ε’ account, and more intuitive: it employs the

Ramsey test to directly relate conditional probabilities to conditional beliefs. It is interesting

to see that we can obtain simple probabilistic semantics for system P in a relatively natural

way, via a well-chosen acceptance rule.

Naturally, an analogous question arises in the context of Leitgeb’s acceptance principle.

What is the logic of Bayesian reasoning based on the τ -rule – the logic of probabilistically

stable revision? It would be particularly interesting to see if we can identify the resulting

logic as a known member of the well-studied family of KLM-style nonmonotonic logics

[28, 49]. As we shall see, however, the logic of stability-based acceptance is a rather unusual

beast.

Firstly, as we will see next, probabilistically stable revision validates certain strong

monotonicity principles, while failing even mild instances of case-reasoning. This already

places the resulting logic outside the main classical systems of non-monotonic reasoning.

Importantly, this logic does not admit preferential semantics, whereby the revision operation

is represented as a minimisation operator for an underlying plausibility order (see [28];

we shall discuss this more in detail in §3.2.3). This is in sharp contrast with Lin and

Kelly’s κ-rule: their completeness result relies on a characterisation of the κ-rule as an
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order-minimisation operator, which allows them to associate the class of κ-models with

preferential structures with partial orders, known to provide semantics for system P [28].

As we cannot associate probabilistically stable revision operators with preferential

models based on plausibility orders, no such translation into preferential semantics is readily

available. Thus preferential models are of no help our main task of giving a qualitative

structural description of probabilistically stable revision; in what follows, we shall instead

solve the problem by appealing to selection function semantics and the theory of comparative

probability orders. This being said, a useful starting point consists in investigating various

salient patterns of inference validated by stable revision operators: we turn to this now.

3.2 The logic of Leitgeb acceptance

We begin with a brief comparison of the logic generated by the τ -rule with well-known

systems from the nonmonotonic logic literature. We note two properties of the τ -rule which

make the resulting logic rather unusual: the τ -generated consequence relations validate

Rational Monotonicity, while they do not validate the (Or) rule. We briefly discuss the

significance of these facts and compare probabilistically stable revision with AGM revision.

We then turn to a discussion of the representation problem. Our task is to find a class

of purely ‘qualitative’ (non-probabilistic) structures that capture the behaviour of the τ -

generated revision operators, so as to reveal the key structural properties of probabilistically

stable reasoning. We introduce strongest-stable-set operators – a convenient way to conceive

of probabilistically stable revision – and motivate the use of selection structures to describe

their behaviour. In the remainder of the section, we clarify certain straightforward, but

informative geometrical aspects of the representation problem and make a first connection

to the theory of comparative probability orders.

3.2.1 Some preliminary observations

We want to capture the following relation. Take some probability space of the form (Ω,A, µ),

and consider the consequence relation |∼µ defined directly on A as:

A |∼µ B if and only if τ(µA)⊆B or µ(A) = 0,

i.e., the strongest stable proposition conditional on A entails B or, in other words, the

agent’s belief set contains B after learning A. Each relation |∼µ (or, equivalently, each

qualitative revision generated by τ) represents a doxastic state together with ‘contingency

plans’. The current unconditional beliefs τ(µ) are given by all A such that Ω |∼µ A – that

is, all propositions that |∼µ-follow from the tautology. All other entailments of the form

A |∼µ B specify the agent’s contingency plan for revision.
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Here, we work with a finite sample space Ω (size n) and an algebra A over it, which we

assume to be the whole powerset. Note that we also avoid issues concerning valuations and

the definability of sets of states in Ω via Boolean formulae: we carry on treating propositions

as subsets of Ω.

We can immediately note some interesting features of the resulting consequence relation.

First of all, it directly follows from this setup that (Left Equivalence) and (Right Weakening)

hold, as the τ -rule operates directly on an algebra of propositions. Since belief states are

always closed under deduction, it follows that (And) is validated, as well. Next, it follows

from the definition of stability that τ(µA)⊆A, and so (Ref) is validated, too. But now there

are two particularly interesting aspects to this version of nonmonotonic consequence. Firstly,

note that Rational Monotonicity is validated:

Observation 3.2.1

The τ -rule satisfies (RM): that is, for any measure µ, we have that

If A 6 |∼µ Bc and A |∼µ C, then A ∩B |∼µ C.

Proof. We need to show

If τ(µA) 6⊆Bc, and τ(µA)⊆ C, then τ(µA∩B)⊆ C.

Assume τ(µA) 6⊆Bc and τ(µA)⊆C. This entails τ(µA)∩B 6= ∅, and moreover τ(µA)∩B⊆C.

We prove that τ(µA∩B)⊆ τ(µA) ∩ B. It is enough to show that τ(µA) ∩ B is stable with

respect to µA∩B : the desired inclusion then follows since τ(µA∩B) is the ⊆-least µA∩B-stable

set. So let Y ∈ A such that (τ(µA) ∩B) ∩ Y 6= ∅ and µA∩B(Y )> 0. We need to show that

µA∩B

(
τ(µA) ∩B

∣∣Y )> t.

Note that µA∩B(Y )> 0 entails µA(B∩Y )> 0, and since τ(µA)∩ (B∩Y ) 6= ∅, the µA-stability

of τ(µA) entails µA(τ(µA) |B ∩ Y )>t. But then

µA

(
τ(µA)

∣∣B ∩ Y )= µA

(
τ(µA) ∩B

∣∣B ∩ Y )
= µA∩B

(
τ(µA) ∩B

∣∣Y )> t,

as desired. So the set τ(µA)∩B is µA∩B-stable, and therefore τ(µA∩B)⊆ τ(µA)∩B⊆C.

Note that nothing in the proof of Observation 3.2.1 relies on our specific choice of threshold:

as the proof shows, (RM) continues to hold for any choice of threshold.

Secondly, τ -acceptance does not satisfy the (Or) rule.
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Observation 3.2.2

For any discrete set algebra (Ω,A) with |Ω| ≥ 3, there is a measure µ on it such that |∼µ
fails the (Or) rule.

Proof. A simple counterexample: let Ω = {ω1, ω2, ω3, . . . , ωn}. Let µ= (0.4, 0.3, 0.3, 0, . . . , 0),

and set A= {ω3}, B := {ω1, ω2}, and C := {ω1, ω3}. For a threshold t= 1/2, we can easily

compute τ(µA) =A, τ(µB) = {ω1}, and τ(µA∪B) =A∪B. So we have A |∼µ C and B |∼µ C,

but A ∪B 6 |∼µ C.

Restricting attention to the space {ω1, ω2, ω3} in the example above, C is |∼µ-entailed

by both A and its complement Ac, but is not |∼µ-entailed by the tautological disjunction

A∪Ac. In logical terms, this means that the τ -rule fails an even weaker principle, capturing

the restriction of (Or) to mutually exclusive and exhaustive propositions:

ϕ |∼ ψ ¬ϕ |∼ ψ
T |∼ ψ (exOr)

Given an algebra of propositions, how common are measures that fail the (Or) rule?

Building on counterexamples like the above, one can rather easily show that for any discrete

set algebra (Ω,A) and any threshold t, there is an open neighbourhood of distributions N in

the probability simplex such that, for any µ ∈N , |∼µ fails the (Or) rule. In this sense, the

failure of (Or) is a non-negligible aspect of how the τ rule behaves25.

These characteristics of τ -generated consequence relations are rather unusual, and they

make it difficult to place, be it very approximately, the resulting logic of probabilistic stability

on the family tree of known nonmonotonic logics. To begin with, most known nonmonotonic

25There is a natural connection between the (Or) rule and the oft-discussed principle of conglomerability
(notably discussed – and rejected – by De Finetti [16]). We say a probability measure µ is (countably)
conglomerable if, for any countable partition Π of the underlying probability space, we have

µ(X) ∈
[

inf
E∈Π

µ(X |E), sup
E∈Π

µ(X |E)
]

for any X ∈ A. In other words, conglomerability requires that the unconditional probability of an event
remains within the bounds fixed by the most extreme values its probability could take when conditioning on
cells from the partition. That is, conglomerability requires the following: if learning any event E ∈Π yields a
probability µ(· |E) such that µ(X |E) ∈ [a, b] (for some fixed a, b ∈ [0, 1] with a≤ b), then we should already
have µ(X) ∈ [a, b] unconditionally. The analogy with the (Or) rule is rather immediate (but see Howson [22]
who defends the view that the analogy with an infinitary Or-introduction rule is ‘merely illusory’ [22, p. 12],
if this Or-rule is considered as a purely deductive inference rule).

Non-conglomerability can only occur if the measure µ fails countable additivity [51] and, with a few extra
assumptions, Seidenfeld et al. have shown that this phenomenon generalises to higher cardinalities [52] (that
is, whenever the measure is not κ-additive, conglomerability fails for partitions of cardinality at most κ). The
failure of the (Or) rule can be seen as showing that the stability rule forces a finite, qualitative counterpart of
non-conglomerability, even though the underlying measures are always assumed to be conglomerable; for we
can have a partition Π = {A,Ac} and an event X ∈ A such that X has a µA-stable subset and a µAc -stable
subset, but no µ-stable subset.
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systems in the literature, like McCarthy’s circumscription logics [39], Reiter’s default logics

[40], systems P and R [28], as well as most logics of conditionals, extend system C. But a

small modification of the counterexample to (Or) used in the proof of Observation 3.2.2

shows that the τ -generated consequence relations do not in general satisfy (Cut); hence,

we are not dealing with a C-complying class of consequence relations (and of course, our

consequence relations of the form |∼µ do not extend system P). Further, τ -consequence

is always closed under (RM); but the (RM)-complying systems presented in the literature

usually also satisfy the (Or) rule, which τ -consequence violates. This means that we are

dealing with a notion of consequence which is, in one sense, unusually weak, in that it

does not validate very common (and, arguably, rather intuitive) rules like (Or) or (Cut). In

another sense, however, this notion of consequence is rather strong, for it validates (RM),

itself considered a strong requirement on nonmonotonic consequence. All this indicates that

we need to do some more work to isolate the correct rules of stability-based reasoning. Before

we address this problem, however, let us very briefly point out two interesting differences

between τ -generated revision and AGM-compliant operators.

3.2.2 AGM and τ-generated revision

In Chapter 2, we studied the AGM revision operators obtained via the τ -rule, which consisted

in generating a system of stable sets from the prior, and then revising the doxastic state via

the resulting ordering on states. There is a sense in which this procedure does not exploit

much of the dynamics of probabilistic credences: revisions depend entirely on this initial

ordering. By contrast, τ -generated revision operators faithfully describe the dynamics of

probabilistically stable reasoning under Bayesian conditioning: the τ -rule is applied at each

conditioning step, and the changes in the agent’s beliefs closely mirror the changes that

conditioning brings to the structure of stable sets – such as, crucially, the formation of new

stable sets (spheres).

The most evident distinction between those two revision mechanisms is of course that

τ -generated revisions, by their very design, commute with Bayesian conditioning, while the

AGM procedure above does not, as we discussed at length in the previous chapter.

On the logical side, another difference between AGM and τ -generated revision is that

the latter fails the (Or) rule, while our AGM-driven revision always satisfies (Or) (it is a

straightforward exercise to show that this holds for any AGM operator). This failure is

somewhat troubling, and some may see it as quite a damning feature of τ -generated revision.

The usual arguments for the (Or) rule present it as a commonsense desideratum for

handling case reasoning. The rationale for case reasoning is best illustrated in the context of

arguments for the (weaker) rule (exOr). Suppose we have ϕ |∼ ψ and ¬ϕ |∼ ψ, while also

having ϕ∨¬ϕ 6 |∼ ψ. This means that the agent believes ψ conditionally on learning either ϕ
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or ¬ϕ, but does not currently accept ψ. This seems to run counter to the following intuitive

principle, expressed by Lin and Kelly:

if you know that you will accept a proposition regardless what you learn, you

should accept it already. [25, p. 960]

The rule can also be seen as analogous to Savage’s decision-theoretic sure-thing principle

[48]: if, in a decision problem, the agent knows she would select action a conditional on

event X being true, and she would select action a conditional on its negation Xc, then she

ought to select action a outright.

A natural way to excuse the failure of the (Or) rule consists in marking the distinction

between hypothetical conditionals and actual update conditionals. On the first reading, the

expression ϕ |∼ ψ captures a contingency plan that is transparent to the agent herself: under

this reading, the agent knowingly commits to accepting ψ in both cases ϕ and ¬ϕ. Refusing

to accept ψ appears incongruous, since she also knows that one of ϕ and ¬ϕ already obtains

(even though she may not know which).

On the second reading, in the conditional ϕ |∼ ψ, the antecedent ϕ ought to be read as a

truly dynamic operator: in a spirit closer to dynamics logics [45, 5], we could conceive of

learning ϕ as an event taking place. Following the dynamic tradition, we can suggestively

write this informational event as [!ϕ] to distinguish it from ϕ, the mere proposition that ϕ

holds. Then the formula ϕ |∼ ψ – properly read as [!ϕ]ψ – expresses that the informational

state of the agent is such that, after actually, truthfully learning ϕ, she accepts ψ. It may

be the case that the information events [!ϕ] and [!¬ϕ] both lead her to accept ψ; but, at

the current stage, neither event actually happened, so nothing prompted the agent to adopt

that belief. On this reading, there is no rationality failure on the part of the agent: for one

thing, she need not believe that either event [!ϕ] or [!¬ϕ] will occur (even though she knows

that either ϕ or ¬ϕ is the case). For another, the outcomes of learning events need not be

transparent to her.

In what follows, we will remain neutral on this interpretative issue. In particular, we will

not pursue in detail this second reading here: it is most fruitful to first understand the be-

haviour of basic stability-induced conditionals, regardless of matters of interpretation, before

we can resort to more expressive logics that capture the distinction between propositions

ϕ and their corresponding learning events [!ϕ]. In any case, while the failure of (Or) may

be unsettling, it also renders the logic of probabilistic stability an unusual and interesting

object of study.

On the other hand, probabilistically stable revision can outperform AGM revision

in probabilistic learning tasks. This important difference between AGM operators and

probabilistically stable revision emerges when considering simple statistical learning scenarios.

Consider the following:
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Example 3.2.3

There are two urns: one urn with only white balls (call it W), and one with black and white

balls in equal proportions (call it BW). The learner is presented with urn W, but she does

not know which of the two urns she was given: her priors assign probability 1/2 to each

urn, and assumes the draws are independent and identically distributed (with the obvious

Bernoulli distribution corresponding to each urn: the urn W corresponds to the parameter

p= 1 for the probability of a white ball, and BW corresponds to the parameter p= 1/2). She

repeatedly draws balls from the urn, with replacement, and adjusts her credences accordingly

via conditioning. In this context, the learner can select a belief revision procedure to be

followed in parallel to the updating of her subjective probability measure. Here we compare

two such procedures.

The first procedure is the one discussed in Chapter 2, which consists in generating a

system of spheres form the prior, and then revising her doxastic state via the resulting AGM

revision operation. The second one is τ -generated revision: at each draw of a ball from

the urn, the agent conditions on the current evidence, after which she applies the τ -rule to

determine her doxastic state. Now, the question is: which of those two procedures will allow

the agent to learn the correct urn? That is, as the agent draws white ball after white ball,

is there a time at which she will come to believe that the urn is W, and stick to this belief

forever after?

We represent each possible sequence of draws as a binary sequence, with a draw of a

white ball denoted by 0 and a black ball by 1. We assume that each experiment involves a

finite number k of draws, and we consider what happens when we increase the number of

draws in the experiment26. At each stage k, our space contains basic propositions of the form

(U, x), with U ∈ {W,BW} and x ∈ {0, 1}k, representing the draw of sequence x from urn U.

Thus, the hypothesis W is identified with {(W, x) |x ∈ {0, 1}k}.
Now, consider the AGM reasoner. Note that, given her prior distribution µ, there exist

no stable sets X of measure less that 1. This is because, in order to exceed the threshold

t, any stable set S would have to contain at least one state of the form (BW, x), for some

x ∈ {0, 1}k, where

µ(BW, x) = µ(BW) · µ(x |BW) =
1

2
· 1

2k
=

1

2k+1
.

26This is a cumbersome way of modeling the learning process here. Of course, it is much more natural
to model this example using a single infinite space, e.g. by taking a sample space {W,BW} × 2ω and an
algebra generated by basic opens of the form (S, [[x]]) with S ∈ {W,BW} and [[x]] = {X ∈ 2ω |X extends x}.
However, in the infinite case there are some subtleties to address concerning the fact the space is nonatomic,
which trivialises the notion of stability (as any set with measure below one has defeaters – see brief discussion
in Chapter 4). There is also no least set of measure 1, and so we need to modify the notion of acceptance
slightly. In order to avoid those difficulties, it is more convenient here to model the scenario as involving
increasingly large but finite spaces representing increasing numbers of draws.

55



Since µ(S)< 1, there must also be a state of the form (BW, y) in Sc, where we also have

µ(BW, y) = 1/2k+1. But then

µ(S |Sc ∪ {(BW, x)})≤ µ(BW, x)

µ(BW, x) + µ(BW, y)
= 1/2,

and so the proposition Sc ∪ {(BW, x)} is a defeater for S.

Thus, the AGM-complying reasoner starts by believing only the strongest probability 1

proposition, which is consistent with (BW, 0 . . . 0) (that is, it is consistent with the proposition

that only white balls are drawn from the mixed urn BW). But then the BW hypothesis will

never be eliminated by AGM revision, since any piece of information received by further

draws – namely, any sequence of 0’s – remains logically consistent with BW. Thus, the

mixed-urn hypothesis is never set aside and so W cannot be learnt.

Using the τ -generated revision, on the other hand, allows the reasoner to learn that the

urn is W. After n trials, the learner observes a sequence 0(n) := (0, . . . , 0) of n white balls.

Her credence in W is then

µ(W | 0(n)) =
1/2

1/2 + 1/2n+1
=

1

1 + 1/2n

and thus, limn→∞ µ(W | 0(n)) = 1. At some point, we will pass the stability threshold t

and have µ(W, 0(k))> t
1−t · µ(BW, 0(k)): the agent comes to believe W, her strongest stable

proposition being the singleton set {(W, 0(k))}.

As this example illustrates, there exist cases where AGM-driven revision never learns

the correct outcome, while stability reasoning does.

3.2.3 Towards a representation theorem: qualitative models

The τ -generated revisions take the form τ(µ) 7→ τ(µX), where µ is the agent’s subjective

probability distribution and X a new revision input. Keeping the initial doxastic state τ(µ)

implicit in the background, we can fully characterise each such revision as a map X 7→ τ(µX)

(sending a proposition X ∈ A – the revision input – to another proposition τ(µX) – the

strongest accepted proposition, representing the updated belief state). Each such map can

be seen as a strongest-stable-set operator, sending each X to the strongest (⊆-least) stable

set given X. An important step towards solving the representation problem is to characterise

those revisions in a purely qualitative way: that is, to describe all maps X 7→ τ(µX) in a

way that does not depend on the underlying probability measures µ.

A natural and rather prominent model for qualitative revision operators is given by order-

based revisions: these are revisions that are defined by order-minimisation and “qualitative”

conditioning. Starting from an order ≤ defined on Ω, the agent’s accepted propositions are
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given by the set min(≤). Revision by an event X amounts to restricting ≤ to X and taking

the collection of all ≤-minimal elements of the restricted order. In short, order-based revisions

are of the form min(≤) 7→min(≤�X), where ≤ is an order defined on Ω, and X the event

learnt by the agent. Many qualitative revision operators admit natural characterisations

in terms of order-based revisions – not least among which are AGM operators as well

as Lin and Kelly’s κ-generated revision. It is natural to ask if one could give such an

order-based characterisation for the class τ -generated revision operators: that is, whether

each map taking X to τ(µX) can be described as an operation of the form X 7→min(≤�X).

Unfortunately, it is easy to see that this cannot be done:

Example 3.2.4

Let t=1/2, Ω={ω1, ω2, ω3} with µ given by (0.4,0.35,0.25) – that is, µ(ω1)=0.4, µ(ω2)=0.35

and µ(ω3) = 0.25. Let X :={ω1, ω2}. Note that τ(µ) =X: the hypothesis X is already accepted

by the agent. Now suppose the agent now learns X with certainty: we have the updated

probabilities given by (0.53̄, 0.46̄, 0) and the the new belief set is given by {ω1} 6=X. But any

order ≤ on Ω for which min(≤) =X will also satisfy min(≤�X) =X, and so the order-based

revision by X will not change the belief set.

What this example illustrates is that τ -generated revision cannot be tracked using

order-based revision: that is, there is no way to translate each probability measure µ into

an order ≤ on Ω so that each operation min(≤) 7→min(≤�X) coincides with the revision

τ(µ) 7→ τ(µX).

This is one reason why here we follow a more fruitful approach, which consists in

employing selection structures. Selection structures are of the form M = (Ω,A, σ), with

(Ω,A) a set-algebra of propositions, and a map σ : A→ A called a selection function. The

problem consists in imposing the right axioms on σ so that it behaves like a τ -generated

revision map. Then, for any A, σ(A) represents the strongest probabilistically stable

proposition after conditioning on A (so that we can say that σ selects the strongest accepted

proposition conditional on A).

To each selection structure M = (Ω,A, σ) corresponds a relation |∼σ defined as:

A |∼σ B if and only if σ(A)⊆B.

We want to impose axioms on selection functions such that, for each selection structure

M = (Ω,A, σ), there is a probability measure µ on (Ω,A) such that |∼µ= |∼σ. This means

that µ represents σ, in the sense that:

∀A ∈ A, σ(A) = τ(µA) if µ(A) 6= 0,

and σ(A) = ∅ if µ(A) = 0.
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Yet another description of our problem is as follows: for each probability space (Ω,A, µ)

taken together with τ , consider the map τ(µ(·)) : A→ A taking each proposition X to

τ(µX), the strongest accepted proposition conditional on X (here we can slightly change

the definition of τ and conveniently assume that τ(µX) = ∅ whenever µ(X) = 0). We

want to show that the class of selection structures (Ω,A, σ) coincides with the class of

structures (Ω,A, τ(µ(·))). Identifying the representable selection structures amounts to

fully characterising probabilistically stable revision operators, in the following sense. Each

probability measure generates a particular epistemic state (K(µ), ∗) where K(µ) := τ(µ)

represents the current belief set of the agent and ∗ :A→A is a revision operator mapping each

revision input X to the revised state K∗X := τ(µX). Each such epistemic state (K(µ), ∗) can

be described by a single selection structure (Ω,A, σ), where σ(Ω) represents the unconditional

beliefs K(µ) and σ(X) the revised state K∗X. We want to find an axiomatic description of

the class of selection structures that correspond exactly to epistemic states (K(µ), ∗), where

∗ is a strongest-stable-set operator.

In what follows, we will build our way towards such a representation result:

• We begin by providing a geometric characterisation of consequence relations, which

establishes that each τ -generated consequence relation can be uniquely identified by

a specific system of linear inequalities. This allows to identify certain important

properties that the selection function σ must satisfy in order to be probabilistically

representable.

• Next, we focus on a representation for the special case of Leitgeb’s rule with strict

threshold t= 1/2. This case is a natural choice form the logical side, since it can

be seen as the most ‘qualitative’ version of stability-based acceptance, as advocated

by Leitgeb [32]. We will see that the representation problem for the case t= 1/2

bears a close connection with the theory of comparative probability orders. We

exploit this connection in our representation theorem. We first prove a useful lemma

giving sufficient conditions for the (simultaneous) probabilistic representability of two

comparative probability orders (one strict, and one non-strict) on a finite algebra; then,

we derive from this lemma our desired representation result for selection structures. As

we will see, the key condition allowing the probabilistic representability of a selection

rule is a special version of the Scott axiom from the theory of comparative probability

[50].

3.2.4 The geometry of τ-generated revision.

We consider the case of finite probability spaces of the form (Ω,P(Ω), µ), with Ω =

{ω1, . . . , ωn} a finite sample space. We provide a geometric characterisation of the represen-
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tation problem, which helps isolate relevant structural properties of selection functions. We

begin with the following observation:

Proposition 3.2.5

Let (Ω,P(Ω), µ) a finite probability space, and t ∈ [0.5, 1) a threshold. Then for any A such

that µ(A)> 0, we have that τ(µA) =B if and only if the following hold:

(i) ∀ω ∈B, µ(ω)> t
1−t · µ(A \B)

(ii) ∀X ⊂B, ∃ω ∈X, µ(ω)≤ t
1−t · µ(A \X).

Proof. We sketch it only, as it easily follows from the definition of stability (a proof is implicit

in Leitgeb’s discussion of an algorithm for generating stable sets in [30, p.1363]). The key

fact is that a proposition X is (µ, t)-stable exactly when there are no defeater states – that

is, ω ∈X such that µ(ω |Xc ∪ {ω})≤ t. Then we use the fact that µ(ω)≤ t
1−t · µ(A \X)

is equivalent to µA(ω |Xc ∪ {ω})≤ t. Condition (i) says that no ω ∈B is a defeater w.r.t

A: so B is indeed µA-stable. Condition (ii) says that each strict subset of B has at least

one defeater w.r.t A: so no strictly smaller subset is µA-stable. The two conditions together

mean that B is indeed the ⊆-least µA-stable set.

Note that either side of the biconditional entails B ⊆A, so we can rewrite Proposition

3.2.5 in the following equivalent form:

τ(µA) =B if and only if B ⊆A and

(i) ∀ω ∈B, µ(ω)> t
1−t · µ(A \B);

(ii) ∀X ⊂B, ∃ω ∈X, µ(ω)≤ t
1−t · µ(A \X).

This very elementary observation will be useful in building the bridge with qualitative

models.

Proposition 3.2.5 points to an important fact about the behaviour of the τ -rule. By

definition, each |∼µ is clearly determined by the values of τ(µA) for each A. In essence,

Proposition 3.2.5 reduces the problem of determining τ(µA) to that of comparing inequalities

of the form µ(ω)> t
1−t · µ(X) and µ(ω)≤ t

1−t · µ(X) for certain sets X.

This reasoning gives us a useful geometric characterisation of the |∼µ relations. Consider

the simplex ∆n−1 of all distributions over Ω. For any µ, ρ ∈∆n−1, we would like to know

when |∼µ= |∼ρ – i.e., when two distributions generate the same consequence relations. Write

µ∼ ρ whenever this is the case. Since we want each selection function σ to represent one

particular consequence relation, this means that we want axioms for selection functions such

that, for any σ, the set of distributions in ∆n−1 representing σ is an equivalence class of ∼.
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What do those equivalence classes look like, and how do we find the selection functions that

pick out exactly those classes?

The proposition above allows to visualise each ∼-equivalence class as a certain convex

polytope in ∆n−1. Define the following:

Definition 3.2.6 (Fixed-odds hyperplanes)

Let Hn be the collection of hyperplanes in Rn defined by equations of the form

xi =
t

1− t

( ∑
xj∈X

xj

)
, where X is a set of variables such that xi 6∈X.

We call Hn the collection of fixed-odds hyperplanes.

We are interested in the way that Hn partitions the probability simplex ∆n−1. For each

µ ∈∆n−1, it is enough to look at equalities of the form µ(ωi) = t
1−t · µ(X) for sets X ⊆ Ω

not containing ωi. We have:

Observation 3.2.7

Let µ, ρ ∈∆n−1. We have |∼µ= |∼ρ if and only if µ and ρ lie in the same region of the

hyperplane arrangement Hn and have the same support27.

Proof. Suppose µ and ρ do not lie in the same region of Hn. Then there is some hyperplane

with equation xi = t
1−t

(∑
xj∈X xj

)
, xi 6∈X, that separates them. In terms of probabilities,

this means that there is some ωi and set X with ωi 6∈X such that (wlog):

µ(ωi)>
t

1− t
µ(X) and ρ(ωi)≤

t

1− t
ρ(X)

This entails that µ(ωi |X ∪ {ωi})> t, which in turn entails that X ∪ {ωi} |∼µ {ωi}, while by

the same reasoning X ∪ {ωi} 6 |∼ρ {ωi}, which means |∼µ 6= |∼ρ. Conversely, suppose µ and ρ

lie in the same region of Hn. This means that they lie on the same side of every hyperplane

in Hn. We then have that for every state ωi and set X such that ωi 6∈X, we have

µ(ωi)>
t

1− t
µ(X) iff ρ(ωi)>

t

1− t
ρ(X) (3.1)

This just means that µ(ωi |X ∪ {ωi})> t holds if and only if ρ(ωi |X ∪ {ωi})> t. Now let

propositions A, B ⊆ Ω such that A |∼µ B. We assume µ(A) 6= 0 (otherwise, we immediately

have A |∼ρ B – this is because µ and ρ have the same support, and therefore if µ(A) = 0

entails ρ(A) = 0). Thus A |∼µ B means τ(µA)⊆B. Suppose towards a contradiction that

τ(ρA) 6⊆B. Then, by Proposition 3.2.5, either property (i) or (ii) must fail for ρ. If (i) fails,

27That is, µ and ρ agree on which propositions have measure 0.
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then

∃ω ∈B, ρ(ω)≤ t

1− t
· ρ(A \B).

But, by (1), this means that µ(ω)≤ t
1−t ·µ(A\B), and so (i) does not hold for µ, contradicting

the fact that τ(µA)⊆B. Similarly, if (ii) fails, then we have

∃X ⊂B, ∀ω ∈X, ρ(ω)>
t

1− t
· ρ(A \X).

But then (1) entails that, for all ∀ω ∈X, µ(ω)> t
1−t · µ(A \X), which by Proposition 3.2.5

again contradicts the fact that τ(µA)⊆B. So both (i) and (ii) hold for ρ, and therefore we

have τ(ρA)⊆B, hence A |∼ρ B as required. This concludes the proof.

Thus we have characterised the way in which |∼µ relations divide the probability simplex:

each is determined by hyperplane equations of the form given above28. Thus:

• For each sample space of size n, we get a hyperplane arrangement Hn, given by

n× (2n−1−1) equations of the form µ(ω) = t
1−t ·µ(X) for pairs (ω,X) such that ω 6∈X.

• Each relation |∼µ can be identified uniquely by checking in which region of Hn the

point µ is.

The significance of this characterisation is that it gives us a strategy for finding the right

axioms for selection functions.

3.2.5 Representing selections

Knowing, for each pair (ω,X) with ω 6∈X, which of µ(ω)> t
1−t · µ(X) or µ(ω)≤ t

1−t · µ(X)

holds amounts to knowing what |∼µ is. But this simply corresponds to checking whether

µ(ω |X ∪ {ω})> t or not. In turn, it is straightforward to see that µ(ω |X ∪ {ω})> t if and

only if τ(µX∪{ω}) = {ω} (that is, {ω} is the strongest stable proposition with respect to

distribution µX∪{ω}). This immediately suggests the following desiderata.

Firstly, we want to define selection functions that mirror the behaviour of the τ -rule

shown in Proposition 3.2.5. That is, we want σ such that σ(A) =B if and only if B ⊆A and

(i′) ∀b ∈B, σ((A \B) ∪ {b}) = {b};

(ii′) ∀X ⊂B, ∃x ∈X, σ((A \X) ∪ {x}) 6= {x}.
28Regions of hyperplane arrangements (chambers) do not contain points on the hyperplanes themselves

(they are open regions). What of distributions that lie on the hyperplanes? We simply add all distributions µ
satisfying µ(ωi) = t

1−tµ(X) to the adjacent regions satisfying µ(ωi)<
t

1−tµ(X). Then Observation 3.2.7 still
holds for this extended notion of ‘regions’ (via the same argument). This takes care of all distributions: we
have fully partitioned the simplex by ∼-equivalence classes.
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Ω

{w1,w2}

{w2,w3}

{w1,w3}

{w1}

{w2} {w3}

Figure 3.2: Fixed-odds lines for Leitgeb’s τ -rule with t= 2/3 and |Ω|= 3. Each region of
the hyperplane arrangement determines a specific consequence relation |∼. As before, the
colored regions represent acceptance zones – here, they correspond to sets of probability
distributions which agree on the unconditional strongest stable set.

Secondly, given σ, we want to be able to translate all statements of the form σ((A \B)∪
{b}) = {b} into a set of linear inequalities that admits a solution in ∆n−1. We construct a

system of linear inequalities Lσ as follows: for each pair (ω,X) as above,

• whenever σ(X ∪ {ω}) = {ω}, add the constraint µ(ω)> t
1−t · µ(X),

• otherwise, add the constraint µ(ω)≤ t
1−t · µ(X) .

We need to ensure that the resulting system of linear inequalities Lσ, together with the

constraint that µ lie in the simplex ∆n−1, admits a solution.

If these desiderata are satisfied, then we have fully characterised the class of τ -generated

revision maps, and therefore the class of consequence relations |∼µ. We can argue as follows:

suppose a measure µ satisfies all linear inequalities in the resulting system Lσ. Then, in

particular, whenever σ(A) =B, the properties (i′) and (ii′) hold, and since µ satisfies the

resulting inequalities, the corresponding properties (i) and (ii) hold as well on the probabilistic

side; hence, τ(µA) =B. Conversely, if τ(µA) =B, then B⊆A, and both (i) and (ii) hold. Via

our translation, this means that properties (i′) and (ii′) hold as well, which yields σ(A) =B.

Thus, if we can show that Lσ always admits a solution for any σ, we are done.

Here are some axioms for selection functions which are sound with respect to this

probabilistic interpretation29:

29Axiom (S1) may look surprising here, since we should allow nonempty sets X such that σ(X) = ∅,
representing sets of measure 0. The idea is that we can exclude all such propositions from the domain of σ,
restrict attention to what σ does on this restricted domain, represent it via a regular probability measure µ
on this smaller algebra, and simply let µ(X) = 0 for all such X. So, without loss of generality, we can focus
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(S1) σ(X) = ∅ only if X = ∅;

(S2) σ(X)⊆X;

(S3) If σ(A) ∩B 6= ∅, then σ(A ∩B)⊆ σ(A) ∩B;

(S4n) For any n: if σ(A ∪Xi) =Xi for all i≤ n, then σ(A ∪
⋃
i≤nXi)⊆

⋃
i≤nXi;

(S5) For any A,B,C which are pairwise disjoint, if σ(A ∪B)⊆A and σ(B ∪ C)⊆B, then

σ(A ∪ C)⊆A.

Note that (S2) and (S3) suffice for σ to validate (Ref) and (RM), respectively. Now, the

axioms (S1)-(S4) suffice for selection functions to mirror Proposition 3.2.5 on the qualitative

side:

Proposition 3.2.8

If σ : A→ A satisfies (S1)-(S4), then σ(A) =B if and only if B ⊆A and

(i′) ∀b ∈B, σ((A \B) ∪ {b}) = {b};

(ii′) ∀X ⊂B, ∃x ∈X, σ((A \X) ∪ {x}) 6= {x}.

Proof. Suppose σ(A) =B. Then B ⊆A because of (S2). If A= ∅, then by (S1) so is B, and

then (i′) and (ii′) hold vacuously as B contains neither elements nor strict subsets. So we

can assume A, B 6= ∅. We show (i′). Take b ∈B. Now we have σ(A) ∩
(
(A \B) ∪ {b}

)
6= ∅,

since it is equal to B ∩
(
(A \B) ∪ {b}

)
= {b}. So by (S3), we must have

σ
(
A ∩

(
(A \B) ∪ {b}

))
⊆ σ(A) ∩ ((A \B) ∪ {b})

σ
(

(A \B) ∪ {b}
)
⊆B ∩ ((A \B) ∪ {b}),

so σ
(

(A \B) ∪ {b}
)
⊆ {b}.

Now by (S1), σ
(
(A \B) ∪ {b}

)
6= ∅, so it is equal to {b}, as desired.

To show that (ii′) holds, proceed by contradiction. Suppose that ∃X ⊂B, ∀x ∈X,

σ((A \X) ∪ {x}) = x. X is a finite set, so write X = {x1, . . . , xk}. We then have ∀i≤ k,

σ((A \X) ∪ {xi}) = xi. So, by (S4k), we have that

σ((A \X) ∪
⋃
i≤k
{xi})⊆

⋃
i≤k
{xi}.

The left-hand side then is simply σ((A \X) ∪X) = σ(A)(by (S2) we have B ⊆A, hence

X ⊂ A), while the right-hand side is X. So we have σ(A)⊆X. But we know σ(A) =B and

X ⊂B, which contradicts σ(A)⊆X. So (ii′) holds after all.

on representing |∼µ for regular measures µ.
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For the other direction, suppose (i′) and (ii′) hold. We show this entails σ(A) =B. First,

list elements b1, ..., bk of B and use (S4k) as before to conclude σ(A ∪ B)⊆B, and since

B ⊆A we have σ(A)⊆B. Now assume B 6⊆ σ(A). Since we already know σ(A)⊆B, this

means σ(A)⊂B. By (ii′), we have that

∃a ∈ σ(A), σ
(

(A \ σ(A)) ∪ {a}
)
6= {a}

But this is impossible, since – as we have just shown above using (S3) – in general σ(A) = S

entails ∀s ∈ S, σ((A \ S) ∪ {s}) = {s}. So B ⊆ σ(A) after all, and since we know σ(A)⊆B
we can conclude σ(A) =B.

The question of ensuring the consistency of the system of linear inequalities Lσ that we

obtain from σ is more involved. It can be seen as a special and somewhat more intricate case

of a representation problem for comparative probability orders. We consider the particular

case for a threshold t= 1/2.

3.2.6 Connection with comparative probability orders

From now on, we deal with the case of the τ -rule with threshold t= 1/2. To make the

comparison with comparative probability more salient, we employ here a more suggestive

notation. Define the relation �σ between states ω ∈ Ω and sets X ⊆ Ω as follows: for each

pair (ω,X) with ω 6∈X, let

ω �σ X if and only if σ(X ∪ {ω}) = ω.

(When the selection function σ is clear form the context, we will omit the subscript). We are

given a system of inequalities as follows: for each pair (ω,X), we have that either ω �σ X
or ¬(ω �σ X). Each expression ω �σ X translates into the constraint µ(ω)> µ(X), while

each expression ¬(ω �σ X) translates into µ(ω)≤ µ(X). The question is: what axioms do

we need to impose on �σ for it to be probabilistically representable?

The problem we have to solve is one of representation of a partial comparative probability

order. In the theory of comparative probability, one usually starts with a full ordering �
on an algebra of events P(Ω), and the task consists in finding a probability measure which

represents �. We say that a measure µ represents � if and only if, for any A,B ⊆ Ω,

A�B⇔ µ(A)≤ µ(B).

Under what circumstances is such an order representable? One of the most important

classical results in the early theory of comparative probability is a general answer to this

question.
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Theorem 3.2.9 (Kraft-Pratt-Seidenberg [27], Scott [50])

Let (Ω,P(Ω)) a finite set algebra, and � a reflexive total order on P(Ω). There is a probability

measure µ on (Ω,P(Ω)) representing � if and only if the following hold for all A, B, C ⊆Ω:

(Q1) Ω 6� ∅;

(Q2) ∅ �A;

(Q3) If (A ∪B) ∩ C = ∅, then (A�B⇔A ∪ C �B ∪ C);

(Q4) If (Ai)i6n and (Bi)i6n are balanced sequences and ∀i < n, Ai �Bi, then An �Bn.

The last requirement plays a crucial role, and it is worth taking a moment here to explain

its meaning. The notion of two sequences of events being balanced is to be understood as

follows: given two such sequences (Ai)i6n and (Bi)i6n, we write (Ai)i6n≥0 (Bi)i6n whenever∑
i6n

1Ai >
∑
i6n

1Bi .

This means that for each ω ∈ Ω, ω is in at least as many Ai’s as Bi’s: in other words, we

have
∣∣{i6 n |ω ∈Ai}∣∣> ∣∣{i6 n |ω ∈Bi}∣∣.

When (Ai)i6n ≥0 (Bi)i6n and (Ai)i6n ≤0 (Bi)i6n, we write

(Ai)i6n ≡0 (Bi)i6n

and we say that (Ai)i6n and (Bi)i6n are balanced sequences. That is, (Ai)i6n and (Bi)i6n

are balanced whenever for each ω ∈Ω, |{i6 n |ω ∈Ai}|= |{i6 n |ω ∈Bi}|. This means that

for each state ω, the number of occurrences of ω in the Ai sets is the same as the number of

occurrences of ω in the Bi sets. To put it in terms of indicator functions:

Definition 3.2.10 (Balanced sequences)

Let (Ω,A) a finite set algebra, and (Ai)i6n and (Bi)i6s two sequences of events from A. The

sequences are balanced if and only if∑
i6n

1Ai =
∑
i6n

1Bi .

We then write (Ai)i6n ≡0 (Bi)i6n.

Scott’s well-known proof of Theorem 3.2.9 [50] appeals to a hyperplane-separation

theorem. Scott identifies each set X with its characteristic vector 1X and shows, via a

crucial application of Scott’s axiom (Q4), that the sets {1A−1B |A�B} and {1A−1B |A�
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B and B �A} can be separated by a hyperplane with equation −→v · x = 0. Then, letting

µ(X) :=
−→v · 1X
−→v · 1Ω

gives the desired probability representation.

Our case, however, is a little more intricate. We have an ordering �σ that is of a very

specific kind: it is non-total, and its domain is restricted: it relates singletons (more generally,

atoms in the event algebra) on one side to sets on the other. Furthermore, we need to deal

with strict and non-strict constraints simultaneously – both of which are given as primitives

– rather than deriving one set of constraints from the other (as it is usually done for total

probability orders).

We can begin by observing some plausible candidates for representability conditions.

The following properties of the relation � are sound with respect to our desired probabilistic

interpretation.

(No-swap) If ω �X and Y ⊆X, then ω � Y .

(Sub) If ω �X and v ∈X, v � Y then ω � (X \ {v}) ∪ Y .

(Sum−) If ω1 6�B1 and ω2 6�B2 for B1 ∩B2 = ∅, then ∀ω(ω �B1 ∪B2→ ω � {ω1, ω2}).

(Sep) If ∃X,∃ω such that ω 6�X ∪ {v1} and ω �X ∪ {v2}, then v1 � {v2}.

(Scott′) If (Ai)i≤m and (Bi)i≤m are balanced sequences and (ωi)i≤m a sequence of

states, then (∀i≤m, ωi �Ai)→ (∃i≤m, ωi �Bi).

In what follows, we apply the hyperplane separation techniques form the theory of

comparative probability orders, and rely a method analogous to Scott’s proof from [50].

Given that we are dealing with a mixed-constraints case, the relevant hyperplane-separation

result to be employed here is the Motzkin Transposition Theorem30 [42]. Here, one should

also expect a Scott-like axiom to do most of the work: as it turns out, this is indeed the

case, but what is needed is an axiom stronger than the property (Scott′) listed above. In

what follows, we employ this strategy to prove a probabilistic representation theorem for

selection structures.

3.3 Representation

In this section, we solve the representation problem for selection structures: that is, we give

necessary and sufficient conditions for a selection function to be representable by a (regular)

30See, for instance, [49, p. 33] or [55].
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probability measure. We begin by proving a general result which gives sufficient conditions

for two partial orders on a finite algebra (one strict and one non-strict) to be simultaneously

weakly representable by a probability measure (Proposition 3.3.2). We briefly discuss the

relation between our conditions and those given by Fishburn [17] for the weak representation

of strict comparative probability orders. We then use this general representation result to

prove the representation theorem for selection structures (Theorem 3.3.8).

3.3.1 Weak representation of comparative probability orders

We begin by proving Proposition 3.3.2, which gives sufficient conditions for the joint weak

representability of two relations on a finite algebra (one strict, one non-strict). We shall

appeal to the following result:

Theorem 3.3.1 (Motzkin Transposition Theorem, Motzkin [42])

Let M1 be a matrix in Qk×n, and M2 a matrix in Qp×n. Then, either there is a vector

~µ ∈ Rn such that

M1 · ~µ>~0
M2 · ~µ >~0

or else there exist vectors α ∈Qk, β ∈Qp such that

(a) αTM1 + βTM2 =~0;

(b) α>~0, β >~0 and βi > 0 for some coordinate i6 p.

We now prove our proposition:

Proposition 3.3.2 (Weak representation)

Let (Ω,A) a finite algebra, and let < and 6 be two partial relations on P(Ω) such that for

any A, B ⊆ Ω:

(A0) ∀ω ∈ Ω, {ω}> ∅;
(A1) A6B⇒A 6>B;

(A2) A<B⇒A6B;

(Scott) If (Ai)i6n ≡0 (Bi)i6n and ∀i6 n, Ai >Bi, then ∀i6 n, Ai 6Bi.

Then, there is a regular probability measure µ on A such that, for all A, B ⊆ Ω,

• A<B⇒ µ(A)< µ(B);

• A6B⇒ µ(A)6 µ(B).

Proof. Let Ω = {ω1, . . . , ωn}. Consider the following two sets of vectors representing inequal-

ities:
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Γ := {1A − 1B |A>B}
Σ := {1A − 1B |A>B},

and we write |Γ|=k and |Σ|=p. Take the following two matrices: MΓ has as rows (transposes

of) vectors in Γ, while the rows of matrix MΣ are (transposes of) vectors in Σ. We write

them as

MΓ =


(1A1 − 1B1)T

...

(1Ak − 1Bk)T

 and MΣ =


(1Ak+1

− 1Bk+1
)T

...

(1Ak+p
− 1Bk+p

)T


We now prove that there is a vector ~µ ∈ Rn such that

MΓ · ~µ>~0

MΣ · ~µ >~0
(3.2)

Assume towards a contradiction that there is no such ~µ. The matrices MΓ and MΣ are

rational valued, since they only contain entries in {−1, 0, 1}. Then by Motzkin’s Transposition

Theorem, there exists vectors α, β with non-negative rational entries such that

αTMΓ + βTMΣ =~0 (3.3)

and β has at least one positive coordinate. Now, we can in fact assume those are vectors in

N, by multiplying the entries by a common denominator. We can then rewrite the above in

full as

(
α1, . . . , αk

)
(1A1 − 1B1)T

...

(1Ak − 1Bk)T

+
(
β1, . . . , βp

)
(1Ak+1

− 1Bk+1
)T

...

(1Ak+p
− 1Bk+p

)T

=~0

A piece of notation: given an integer m, let us write mA to denote the sequence consisting

of the set A repeated m times. Given this, the sequence of sets

(α1A1, . . . , αkAk, β1Ak+1, . . . βpAk+p)

contains exactly α1 copies of the set A1, followed by α2 copies of the set A2, etc. (respectively,

βj copies of Ak+j). Now we claim that

(α1A1, . . . , αkAk, β1Ak+1, . . . βpAk+p)≡0 (α1B1, . . . , αkBk, β1Bk+1, . . . βpBk+p). (3.4)

The two sequences in (3.4) both have length l =
∑

i αi +
∑

j βj . So let us write the two

sequences in (3.4) as (A∗i )i6l and (B∗i )i6l.
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The fact that those two sequences are balanced follows from the equality (3.3). Note that

αTMΓ + βTMΣ =
∑
i6k

αi(1Ai − 1Bi)T +

p∑
j=k+1

βj(1Aj − 1Bj )T

=
(∑
i6k

αi1
T
Ai +

p∑
j=k+1

βj1
T
Aj

)
−
(∑
i6k

αj1
T
Bj +

p∑
j=k+1

βj1
T
Bj

)
=~0

In this last equality, the vector
(∑

i6k αi1
T
Ai

+
∑p

j=k+1 βj1
T
Aj

)
is a (1 × n) vector v =

(v1, . . . , vn) where vj = |{i6 l |ωj ∈A∗i }|: that is, the j-th entry of v counts the number of

A∗i ’s in which the state ωj occurs. By this reasoning, the last line above states that, for

any ω ∈Ω, we have |{i6 l |ω ∈A∗i }|= |{i6 l |ω ∈B∗i }|. So the sequences in (3.4) are indeed

balanced.

Now not only are the two sequences in (3.4) balanced, but by design of the matrices,

we also have that for any Ai in the sequence, we have Ai >Bi: this is obvious for all pairs

Ai, Bi with i6 k – i.e., the pairs taken from Γ (that is, such that 1Ai − 1Bi ∈ Γ). This also

holds for pairs Aj , Bj for j > k (pairs from Σ): this is because we know that Ai >Bi by

choice of Σ, so by axiom (A2) we also have Ai >Bi. So we have:

For any Ai occuring in the left-hand side sequence in (3.4), the corresponding Bi on the

right-hand side is such that Ai >Bi.

Now we can appeal to (Scott) to conclude that we also must have Aj 6Bj for all coordinates

j. But remember that MΣ was non-empty, because we know from axiom (A0) that the

relation > admits strict inequalities of the form ω >B. Furthermore, at least one such strict

inequality must occur on the right-hand side in (3.4) since we know that β admits at least

one strictly positive coordinate (by (b) of Motzkin’s Transposition Theorem). This means

that there is a pair A, B such A>B, the set A occurs somewhere on the left-hand side of

(3.4), and B occurs at the same coordinate on the right-hand-side. In particular then, the

application of (Scott) above entails that we must have A6B. But, by axiom (A1), A6B

entails A 6>B, contradicting the fact that A>B.

Thus, the assumption that such vectors α and β exist leads to contradiction. By Motzkin’s

theorem, we can conclude that there is some vector ~µ∈Rn solving MΓ ·~µ>~0 and MΣ ·~µ>~0.

Now, because of axiom (A0), we know that the vector ~µ satisfies

~µ · (1ω − 1∅)> 0

for any ω ∈ Ω; but this simply means ~µ · ei = ~µi > 0 for all i. So all coordinates of ~µ are

strictly positive. We can then define the following function µ∗ on A:
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for any X ⊆ Ω, let µ∗(X) :=
~µ · 1X
~µ · 1Ω

.

Then µ∗ is the desired probability distribution. It is function µ∗ : A→ [0, 1] since we have

re-normalised by dividing by ||~µ||. Additivity follows from the definition: for disjoint sets A,

B we have

µ∗(A ∪B) =
~µ · 1A∪B
~µ · 1Ω

=
~µ · (1A + 1B)

~µ · 1Ω
=
~µ · 1A + ~µ · 1B

~µ · 1Ω
= µ∗(A) + µ∗(B).

Lastly, we have already checked that it is a regular distribution using axiom (A0). That

µ∗ respects both the strict and non-strict inequalities imposed by the orderings > and >

follows immediately from (3.2).

This result will be the key step in our representation theorem for selection functions.

Before we move on to the representation problem for selection structures, it is instructive

to compare Proposition 3.3.2 with a theorem by Fishburn from [17]. There, Fishburn

gives necessary and sufficient conditions for the weak representation of a strict qualitative

probability order on a finite algebra.

Theorem 3.3.3 (Fishburn [17])

Let Ω a finite set and A an algebra over it, and ≺ a binary relation on A. Then there is a

measure µ on (Ω,A) which weakly represents the relation ≺, meaning

∀A,B ∈ A, A≺B⇒ µ(A)< µ(B)

if and only if the following holds:

(F) If (Ai)i≤n ≥0 (Bi)i≤n (with n > 0) and Ai ≺Bi for all i < n, then An 6≺Bn.

The conditions given in Proposition 3.3.2 ensure the weak representation of the < relation

on A. In particular then, conditions (A0)-(A2) and Scott must entail (F). We can verify ‘by

hand’ this is indeed true:

Proposition 3.3.4

Let A an algebra over a finite set Ω, and < a binary relation on A which satisfies (A0)-(A2)

and (Scott). Then < satisfies (F).

Proof. Suppose towards a contradiction that (F) fails: that is, we have some Ai, Bi such

that (Ai)i≤n ≥0 (Bi)i≤n and Ai <Bi for all i6 n. We derive a contradiction. For any ω ∈Ω,

let

ηA(ω) :=
∣∣{i6 n |ω ∈Ai}∣∣

ηB(ω) :=
∣∣{i6 n |ω ∈Bi}∣∣
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Since (Ai)i≤n ≥0 (Bi)i≤n, this means that for any ω ∈ Ω, we have

ηA(ω)> ηB(ω).

We construct a sequence (a1, ..., ak) of states in Ω, as follows: for each ω ∈ Ω, whenever

ηA(ω) = ηB(ω) + p for some integer p > 0, add p copies of ω to the sequence (in whatever

order). Then the sequence (a1, ..., ak) contains exactly ηA(ω)− ηB(ω) copies of each state

ω ∈ Ω.

Writing (A∗i )i≤n+k := (A1, . . . , An, ∅, . . . , ∅) and (B∗i )i≤n+k := (B1, . . . , Bn, {a1}, . . . , {ak}),
we immediately have that the two sequences are balanced: we have

ηB∗(ω) = ηB(ω) +
(
ηA(ω)− ηB(ω)

)
= ηA(ω) = ηA∗(ω),

so that each ‘extra’ occurrence of a state in the sets A∗i is matched by an occurrence in one

of sets B∗i . Thus we know:

(A∗i )
i≤n+k

≡0 (B∗i )
i≤n+k

.

From (A0) we know that for each ai in (a1, ..., ak), we have {ai}> ∅. We then have the

following: (
A1, . . . , An, ∅, . . . , ∅

)
<

. . .

< <

. . .

<(
B1, . . . , Bn, {a1}, . . . , {ak}

)
We can use (A2) and write:

(A∗i )
i≤n+k

≡0 (B∗i )
i≤n+k

and ∀i≤ n+ k, A∗i 6B
∗
i .

Now, by (Scott) we have that

∀i≤ n+ k, A∗i >B
∗
i .

But now, since we have A1 =A∗1 and B1 =B∗1 , we obtain both A1 <B1 and A1 >B1,

contradicting (A1).

This verifies that we can easily derive Fishburn’s axiom (F) directly from our conditions

(A0)-(A2) and Scott.

Proposition 3.3.2 extends Fishburn’s result by giving sufficient conditions for the simul-

taneous weak representation of two relations, one strict and one non-strict. We can now

move on to giving the solution to our representation problem.
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3.3.2 Representation theorem for selection structures

We begin by defining an order relation induced by selection functions.

Definition 3.3.5 (The <∗σ order)

Given a selection structure (Ω,A, σ) and X ∪{ω} ⊆Ω, write ω�σ X whenever σ(X ∪{ω}) =

{ω} ∩Xc, and X �σ ω whenever σ(X ∪ {ω}) 6= {ω} ∩Xc. Extend this to a relation <∗σ given

by the condition:

A<∗σ B⇔A�σ B or A�σ B.

A few words about this order. First note that we have

<∗σ =
{

({ω}, X)
∣∣ω �σ X} ∪ {(X, {ω})

∣∣ω 6�σ X}
with ω ∈ Ω, X ⊆ Ω. This means that A<∗σ B is defined exactly when at least one of A, B

is a singleton (atom) in the algebra. It is undefined otherwise. Intuitively, A<∗σ B means

that either A is a singleton ‘dominating’ the set B31 or that B is a singleton which fails

to dominate A. An alternative way to define this ordering is by means of the following

equivalences:

ω �σ X ⇐⇒ ω 6∈X and σ(X ∪ {ω}) = {ω},

X �σ ω⇐⇒ σ(X ∪ {ω}) 6= {ω} or ω ∈X

(The notation for all special order relations can be found summarised in the Appendix.) The

following is immediate:

Proposition 3.3.6

Let σ be a selection function. Then the following holds:

(A1) A4∗σ B⇒A 6�σ B.

(A2) A≺σ B⇒A4∗σ B.

The Scott axiom plays a key role in the representation theorem above. In the context of

selection rules, it is indeed a very powerful property: firstly, we check that it is sound with

respect to our probabilistic interpretation.

Proposition 3.3.7

The (Scott) axiom for <∗σ is probabilistically sound. That is, given any finite probability

space (Ω,P(Ω), µ), define σ : P(Ω)→P(Ω) by σ(A) := τ(µA) for threshold t= 1/2. Then the

(Scott) property holds for σ.

31In the sense that µ(A)> µ(B) for any measure that represents σ.

72



Proof. Let <∗σ an order obtained from the selection function σ as above, so that µ weakly

represents both �σ and <∗σ. We assume the measure µ is regular (recall we are only interested

in regular measures, as we can restrict attention to supp(µ) without loss of generality).

Assume that (Ai)i6n ≡0 (Bi)i6n and ∀i6 n, Ai <∗σ Bi. We show that ∀i6 n, Ai 4∗σ Bi
32.

First, note that we cannot have any strict relation Ai �σ Bi, as it would immediately

entail
n∑
i=1

µ(Ai)>
n∑
i=1

µ(Bi).

But this would contradict the fact that (Ai)i6n≡0 (Bi)i6n, since the fact that these sequences

are balanced entails

n∑
i=1

∑
ω∈Ai

µ(ω) =

n∑
i=1

µ(Ai) =

n∑
i=1

µ(Bi) =

n∑
i=1

∑
ω∈Bi

µ(ω).

By definition of <∗σ above, we can have Ai 6�σ Bi and Ai <∗σ Bi only if Bi is a singleton

Bi = {bi} such that σ(Ai ∪ {bi}) 6= {bi}. So all Bi’s must be singletons.

Next we note that all Ai’s must be singletons as well. Firstly, all Ai’s must be nonempty,

by regularity of µ: for otherwise ∅=Ai<∗σ {bi} means that σ(∅∪{bi}) 6= {bi}, while regularity

enforces σ({ω}) = {ω} for any state. Now suppose that some Ai contains different states

{a1, ..., ak}. We have {a1, ..., ak}<∗σ bi and since the sequences are balanced, each of those

ai’s must appear as a singleton {bi} in the sequence (Bi)i6n. Now a contradiction follows by

a counting argument: count all occurrences of elements in the sets Aj and do the same the

sets Bj . Since all Bj ’s are singletons we have∑
ω∈Ω

|{j 6 n |ω ∈Bj}|=
∑
j6n

|Bj |= n.

Each occurrence of a state ω in any of the Aj must be matched by an occurrence in one of

the Bj . But there is at least one such occurrence for each Aj , since they are nonempty, and

strictly more than one occurrence for Ai = {a1, ..., ak}, so
∑

ω∈Ω |{j 6 n |ω ∈ Aj}|> n. This

entails ∑
i6n

1Ai >
∑
i6n

1Bi ,

contradicting the fact that (Ai)i6n and (Bi)i6n are balanced. So all Ai’s must indeed be

32Here the only subtlety is the following: given the premises, it is immediate that we must have µ(Ai)6µ(Bi)
for all i6 n. This in itself does not entail Ai 4∗σ Bi, however: we only have that A<∗σ B entails µ(A)> µ(B),
but the converse direction may not hold. For instance, it could be that µ(An) = µ(Bn) and Bn is an atom in
the algebra while An is not, in which case we cannot have An 4∗σ Bn, as we can have neither An �σ Bn (due
to the domain restrictions of �, which only allow this to hold when An is a singleton) nor An ≺σ Bn (as this
contradicts µ(An) = µ(Bn)). Thus we must make sure that his never occurs in balanced sequences.
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singletons as well.

So the sequences (Ai)i6n and (Bi)i6n are really sequences of singletons (ai)i6n and (bi)i6n

such that µ(ai)> µ(bi) for all i> n, and since they are balanced it follows that µ(ai)6 µ(bi).

Now note that, given the definition of <∗σ, whenever ai and bi are singletons then µ(ai)6µ(bi)

entails ai 4∗σ bi: for if ai 64∗σ bi, then σ({ai, bi}) = ai \ {bi} 6= ∅, which means ai �σ bi and, by

weak representation, µ(ai)> µ(bi). So, we can conclude that Ai 4∗σ Bi holds for all i6 n, as

desired.

One may also verify, although we omit the argument here, that the (Scott) axiom imposed

on <∗σ, together with properties (S1) and (S2) as introduced in Proposition 3.2.8, entails

all of the desired properties for selection functions introduced in the previous section (page

66)33.

We can now prove the representation theorem:

Theorem 3.3.8

Representation theorem for selection structures

Let (Ω,P(Ω), σ) be a selection structure satisfying the following:

(S1) σ(X) = ∅ only if X = ∅

(S2) σ(X)⊆X

(S3) If σ(A) ∩B 6= ∅, then σ(A ∩B)⊆ σ(A) ∩B

(S4n) For any n: if σ(A ∪Xi) =Xi for all i≤ n, then σ(A ∪
⋃
i≤nXi)⊆

⋃
i≤nXi

(Scott) If (Ai)i6n ≡0 (Bi)i6n and ∀i6 n, Ai <∗σ Bi, then ∀i6 n, Ai 4∗σ Bi.

Then there is a (regular) probability measure representing σ. Conversely, for any probability

space (Ω,P(Ω), µ) with µ a regular measure, the strongest stable set operator σµ :X 7→ τ(µX)

satisfies axioms (S1) – (S4n) and (Scott).

Proof. The second part – the probabilistic soundness of the axioms – is straightforward (and

has, for the most part, been verified in this chapter; the only remaining scheme to check,

(S4n), is indirectly shown to be sound in section 3.3.3). We show that the axioms suffice

for probabilistic representability. Let (Ω,P(Ω), σ) a selection structure as above. Observe

that the relations �σ and <∗σ satisfy all of the conditions in Proposition 3.3.2: the (Scott)

property is given. Next, (S1) ensures that σ({ω}) 6= ∅ for all ω ∈ Ω, so that (S2) ensures

σ({ω}) = {ω}, so the following holds:

(A0) ∀ω ∈ Ω, ω �σ ∅.
33That is, if σ satisfies (S1) and (S2), and the induced order <∗σ satisfies the (Scott) axiom, then �σ satisfies

(No-swap), (Sub), (Sum−), (Sep) and (Scott−): further, the property (S5), introduced just before Proposition
3.2.8, also follows.
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Further, by Proposition 3.3.6, we have

(A1) A4∗σ B⇒A 6�σ B

(A2) A≺σ B⇒A4∗σ B

Given this, Proposition 3.3.2 entails that there exists a regular probability measure µ such

that for any A, B ⊆ Ω:

• A≺σ B⇒ µ(A)< µ(B)

• A4∗σ B⇒ µ(A)6 µ(B)

By definition of ≺σ and �σ, this entails that we have, for any ω ∈ Ω and X ⊆ Ω with ω 6∈X:

• If σ(X ∪ {ω}) = {ω} (equivalently, X ≺σ ω) then µ(X)< µ(ω)

• If σ(X ∪ {ω}) 6= {ω}, then ω 4∗σ X and so µ(ω)6 µ(X)

This means that the measure µ agrees with σ on all pairs (ω,X) ∈ Ω× A, and so solves the

system consisting of all σ-generated inequalities in Lσ. By Observation 3.2.7, the system

Lσ uniquely identifies a consequence relation |∼µ. The selection function σ satisfies all of

(S1)− (S4) so, by Proposition 3.2.8 (and the discussion immediately preceding it), we have

that σ(A) =B if and only if τ(µA) =B, and thus µ represents the selection function σ.

This gives the solution to our representation problem: the selection function σ is a

strongest-stable-set operator (generated by some probability measure) if and only if it

satisfies the properties (S1), (S2), (S3), (S4n) and (Scott). Thus Theorem 3.3.8 gives a full

qualitative description of strongest-stable-set operators on finite probability spaces.

This concludes our discussion of the representation of the strongest-stable-set operator

by means of selection functions. Before we move on, let us conclude with a few remarks

about the axioms.

Scott axioms and Fishburn axioms for comparative probability. Firstly, note that

none of the results in this section section relied on the fact that we worked with full powerset

algebras on Ω: this simply made our notation more convenient, as we could refer to singleton

sets {ω} for ω ∈ Ω, instead of talking about atoms in the underlying algebra. All of the the

above results – and Theorem 3.3.8 in particular – hold for any pair (Ω,A) where A is a

subalgebra of P(Ω), as long we work in finite spaces and replace any mention of ‘singletons

in P(Ω)’ with ‘atoms in A’.

Secondly, in order to get a better grasp on the connection between selection functions

and the theory of comparative probability orders, it will be useful to think about what
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selection functions can tell us about the underlying probability comparisons. Consider

a representable selection structure (Ω,A, σ) (that is, a selection structure satisfying the

necessary and sufficient conditions from the representation theorem given above). Given a

representable selection function σ, which probability inequalities of the from µ(A)> µ(B)

must hold for any measure µ representing σ? In what ways can we express the fact that

µ(A)> µ(B), using only the selection function σ? The following is immediate:

Observation 3.3.9

For any representable selection function σ and measure µ representing σ, we have that

σ(A ∪B)⊆A \B entails µ(A)> µ(B).

Proof. For any ω ∈ σ(A ∪B), by Proposition 3.2.5 we have µ(ω)> µ
(
(A ∪B) \ σ(A ∪B)

)
.

Since σ(A ∪B)⊆A ∩Bc, we have B ⊆ (A ∪B) \ σ(A ∪B) which entails µ(ω)> µ(B) for

any ω ∈ σ(A∪B). So µ
(
σ(A∪B)

)
> µ(B), and we have σ(A∪B)⊆A, so µ(A)> µ(B).

Of course, we know that representable selection functions always satisfy σ(A)⊆A, and

so the condition σ(A ∪B)⊆A ∩Bc can be rewritten as σ(A ∪B)⊆Bc.

Now, in order to understand the relation between selection structures and their underlying

comparative probability orders, we would like to express the fact that µ(A)> µ(B) using

only the language of selection functions34. The above gives us one sufficient condition; but

we can say more. Consider the following case.

Definition 3.3.10 (Separation order)

Let (Ω,A, σ) a selection structure with A,B,D ∈ A. We say that D separates A from B

(written A .D B) whenever the following conditions hold:

• D ∩ (A ∪B) = ∅
• σ(D ∪B)⊆Bc

• σ(D ∪A) 6⊆Ac

In other words, D separates A from B whenever D is disjoint form both A and B, and

in addition D dominates B, but does not dominate A. It is immediate then that we have:

Proposition 3.3.11

Let (Ω,A, σ) a representable selection structure and µ a probability measure representing σ.

Then for any A,B,D ∈ A, if A .D B then µ(A)> µ(B).

We can combine the two observations above and define the following relation.

Definition 3.3.12 (Dominance relation)

Let (Ω,A, σ) a selection structure. We define the relation .⊆ A× A as follows:

34This is meant informally; we have not yet introduced a formal language. We will do so in the next section,
at which point the present observations will become useful.
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A . B if and only if σ(A ∪B)⊆Bc or A .D B for some D ∈ A.

This gives us another way to express the fact that µ(A)>µ(B) holds for any representing

probability function: namely A . B entails µ(A)> µ(B) for any µ representing the selection

function σ. Thus the extended ordering . indeed entails that one event must have higher

probability than another.

In Proposition 3.3.4, we showed that the Scott axioms entailed the Fishburn axiom (F)

for comparative probability orders. Here, since the Fishburn axiom (F) from Theorem 3.3.3

is necessary for any measure weakly representing the comparative ordering on propositions

forced by σ, the resulting order relation must satisfy the corresponding form of the Fishburn

axiom. In particular then, a generalised version of the Fishburn axiom must also hold for

the order ..

Definition 3.3.13 (Generalised Fishburn Axiom)

A selection structure (Ω,A, σ) satisfies the Generalised Fishburn Axiom if and only if, for

any A,B ∈ A, we have:

Whenever (Ai)i≤n ≤0 (Bi)i≤n and Ai . Bi for all i6 n− 1, then ¬(An . Bn).

And indeed, we can verify directly that the required properties for representation (namely

(S1), (S3), (S4n) and (Scott)) entail the Generalised Fishburn Axiom.

Proposition 3.3.14

Any representable selection structure (Ω,A, σ) satisfies the Generalised Fishburn Axiom.

Proof. Let (Ω,A, σ) a structure satisfying (S1), (S2), (S3), (S4n) and (Scott). In what

follows we shall continue to treat the algebra A as a full powerset algebra, so that we can

conveniently refer to A-atoms as singleton sets.

It is convenient now to introduce notation for the ordering relations that we will use in

what follows. We write:

A�B if and only if σ(A ∪B)⊆Bc,

so that we also have

A . B if and only if either A�B or A .D B for some D ∈ A.

Recall also the relation of dominance for singletons (atoms in the algebra), where for

ω ∈ Ω and A ∈ A we write

ω �σ A if and only if σ(A ∪ {ω}) = {ω} \A,

and A�σ ω otherwise. See the Appendix for a summary of all order relations employed here.

We begin by showing the following Lemma:
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Lemma 3.3.15

If A .D B then there exists some d ∈ σ(D ∪ B) such that d�σ B ∪
(
D \ σ(D ∪ B)

)
and

A ∪
(
D \ σ(D ∪B)

)
�σ d.

Proof. Suppose that for all d∈ σ(D∪B), we have A∪
(
D \σ(D∪B)

)
6�σ d. List all elements

of σ(D ∪B) as σ(D ∪B) = {d1, ..., dl}. By definition of the �σ relation, we then have

σ
(
A ∪

(
D \ σ(D ∪B)

)
∪ {di}

)
= {di} for all i≤ l.

By (S4n), we can write

σ
(
A ∪

(
D \ σ(D ∪B)

)
∪
⋃
i≤l
{di}

)
⊆
⋃
i≤l
{di},

which simply means

σ(A ∪D)⊆ σ(D ∪B),

so that we get σ(A ∪D)⊆ σ(D ∪ B)⊆D ⊆Ac, and σ(A ∪D)⊆Ac contradicts the third

separation condtion; so A 6 .DB. The supposition is thus false and we can conclude that

there exists a d? ∈ σ(D ∪B) such that A ∪
(
D \ σ(D ∪B)

)
�σ d?.

Next, we need to show ∃d ∈ σ(D ∪B) s.t. d�σ B ∪
(
D \ σ(D ∪B)

)
. In fact this holds

for any d ∈ σ(D ∪ B), as can be seen by a simple argument from property (S3) (rational

montonicity)35. In particular, this holds of the d? that we have chosen above: so d? is our

desired witness.

Here is what the Lemma says: suppose D directly dominates B but does not directly

dominate A. Then there is some ‘witness’ A-atom d ∈ σ(D ∪ B) that directly dominates

B ∪
(
D \ σ(D ∪B)

)
, but does not dominate A ∪

(
D \ σ(D ∪B)

)
36.

Now assume that the Generalised Fishburn Axiom does not hold. We show that the

(Scott) axioms fails too. The failure of the Fishburn axiom means that there exist two

sequences of events (Ai)i≤n, (Bi)i≤n such that

35We have
d ∈ σ(D ∪B) ∩ (B ∪ {d}) 6= ∅,

so by (S3) we get
σ
(
(D ∪B) ∩ (B ∪ {d})

)
⊆ σ(D ∪B) ∩ (B ∪ {d}) = {d};

by (S1), we know the set on the left-hand side is nonempty, so

σ
(
(D ∪B) ∩ (B ∪ {d})

)
= σ

(
B ∪ (D \ σ(D ∪B))

)
= {d}.

Thus we have d�σ B ∪
(
D \ σ(D ∪B)

)
, for any d ∈ σ(D ∪B).

36Note what this means in terms of probabilistic representation: d is an atom such that

µ(B) + µ
(
D \ σ(D ∪B)

)
< µ(d)≤ µ(A) + µ

(
D \ σ(D ∪B)

)
,

so in this sense d is an ‘atomic’ witness to the fact that µ(B)< µ(A).
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• (Ai)i≤n ≥0 (Bi)i≤n (that is,
∑n

i=1 1Ai ≥
∑n

i=1 1Bi), and

• ∀i≤ n, Bi . Ai.

We can write down the two sequences of events as follows:(
A1, . . . , Ak, Ak+1 . . . , An

)

� . . . �
/ Dk+1 . . .

/ Dn

︸ ︷︷ ︸
I

(
B1, . . . , Bk, ︸ ︷︷ ︸

II

Bk+1 . . . , Bn
)

We group the pairwise comparisons as follows: group I consists of those pairs Aj , Bj

where Bj directly dominates Aj , while group II consists of those pairs where some Dj ∈ A

separates Aj from Bj (and Bj does not directly dominate Aj). We transform this into a

sequence of events violating the Scott axiom.

Step 1: for each pair Aj , Bj in group II, pick a witness dj as given by the Lemma: i.e,

dj ∈ σ(Dj ∪Bj) such that

dj �σ Aj ∪
(
Dj \ σ(Dj ∪Aj)

)
and

Bj ∪
(
Dj \ σ(Dj ∪Aj)

)
�σ dj .

Then, in the array of comparisons above, replace each inequality of the form Bj .Dj Aj by

two comparisons by means of the following transformation:

Aj {dj} Aj ∪
(
Dj \ σ(Dj ∪Aj)

)
/ Dj  � σ �σ

Bj Bj ∪
(
Dj \ σ(Dj ∪Aj)

)
{dj}

Let (A1
i )i≤m and (B1

i )i≤m be the two sequences of events obtained after each such replacement:

namely, each Aj in group II has been replaced by two events ({dj}, Aj ∪
(
Dj \ σ(Dj ∪ Aj)

)
)

and each Bj with the corresponding (Bj ∪
(
Dj \ σ(Dj ∪Aj)

)
, {dj}). It is easy to see that we

still have (A1
i )i≤m ≥0 (B1

i )i≤m: at each replacement we simply added one copy of dj and one

copy of Dj \ σ(Dj ∪Aj) to each side of the sequence, and so the balance of occurrences of

each ω ∈ Ω in the two sequences of events remains the same.

Step 2: we carry out a balancing argument analogous to the proof of Proposition 3.3.4. For

each ω ∈ Ω that has more occurrences in the sequence (A1
i )i≤m we add exactly

ηA1(ω)− ηB1(ω) = |{i≤m |ω ∈A1
i }| − |{i≤m |ω ∈B1

i }|
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copies of a singleton {ω} to the sequence B1, and add a corresponding occurrence of ∅ to

the sequence A1 with the same index. Let (A∗i )i≤p and (B∗i )i≤p the new sequences thus

obtained. For each such added pair A∗i := ∅ and B∗i := {ω}, the inequality {ω} �σ ∅ holds in

the selection structure by (S1), and so we have B∗i �σ A∗i for all added sets. Further, the

balancing step ensures that the sequences are balanced: (A∗i )i≤p ≡0 (B∗i )i≤p.

Step 3: we now have balanced sequences (A∗i )i≤p and (B∗i )i≤p such that for all i≤ p, either

B∗i �σ A∗i or σ(A∗j ∪B∗j )⊆B∗j \A∗j , and the latter holds for for some j ≤ p37. To conclude

the proof, we only need to show that this entails the failure of the (Scott) axiom.

Once again, we divide these two sequences in two groups as follows:(
A∗1, . . . , A∗k, A∗k+1 . . . , A∗p

)
� . . . � � σ . . . � σ

︸ ︷︷ ︸
I′

(
B∗1 , . . . , B∗k, ︸ ︷︷ ︸

II′

B∗k+1 . . . , B∗p
)

Group I′ contains all A∗j , B
∗
j with σ(A ∪B)⊆B∗j \A∗j : we know that there is at least

one such pair (in particular, note that it includes all comparisons of the form {dj} �σ
Aj ∪

(
Dj \ σ(Dj ∪ Aj)

)
obtained from the transformation performed in Step 1). Group

II′ contains all non-strict �σ-inequalities of the form A∗j �σ B∗j : in particular, given the

procedures performed in Step 1 and Step 2, this is exactly the collection of all and only

comparisons of the form Bj ∪
(
Dj \ σ(Dj ∪Aj)

)
�σ {dj} obtained at the previous step.

Given each A∗j , B
∗
j in group I′, choose an arbitrary bj ∈ σ(A∗j ∪B∗j ). Given the fact that

σ(A∗j ∪ B∗j )⊆B∗j \ A∗j , an application of (S3) shows that we have {bj} �σ A∗j . Next, list

(without repetitions) the elements of B∗j \ {bj} as {ω1, . . . , ωl}: for each ωi we have ωi �σ ∅.
So we can perform the following transformation on the sequences

A∗j A∗j ∅ . . . ∅

�  � σ �σ . . . �σ

B∗j {bj} {ω1} . . . {ωl}

In other words, we replace each A∗j with a sequence
(
A∗j , ∅, . . . , ∅

)
and the corresponding

B∗j with the sequence ({bj}, {ω1}, . . . , {ωl}). The sequences (A2
i )i≤k and (B2

i )i≤k thus

obtained are evidently balanced: the transformation only rearranged the positions of each

element of Ω in the sequence, but did not modify their total number of occurrences. Now

we have

• (A2
i )i≤k ≡0 (B2

i )i≤k

37To see why: note that even if group I above is empty, the splitting process carried out in Step 2 adds a
strict �σ comparison between a A∗-set and a B∗-set.
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• ∀i≤ k, B2
i �σ A2

i

• ∃j ≤ k, B2
i �σ A2

i

The second statement holds because we already have A∗j �σ B∗j for all sets A∗i , B
∗
i in group

II′; and for any pair A2
i , B

2
i introduced Step 3, we evidently have B2

i �σ A2
i . The last

statement holds because we know that group I′ above is non-empty, so that at least one of

the comparisons is strict. Those three properties violate the (Scott) axiom. So the failure of

the Generalised Fishburn axiom entails the failure of (Scott).

While entirely elementary, the argument is instructive in as much as it illustrates how

the qualitative axioms for selection structures can be put to use to directly derive (without

appealing to a geometric or algebraic argument) the condition on systems of linear inequalities

that is implicitly captured by the Fishburn axiom. Note that the proof uses all the properties

(S1), (S2), (S3), (S4n) and (Scott).

The Generalised Fishburn Axiom can be employed to characterise an interesting class of

structures that approximate probabilistically stable revision.

Definition 3.3.16 (Fishburn structures)

A Fishburn structure is a selection structure (Ω,A, σ) satisfying the following for all X,A,B∈
A:

(S1) σ(X) = ∅ only if X = ∅

(S2) σ(X)⊆X

(S3) If σ(A) ∩B 6= ∅, then σ(A ∩B)⊆ σ(A) ∩B

(S4n) For any n: if σ(A ∪Xi) =Xi for all i≤ n, then σ(A ∪
⋃
i≤nXi)⊆

⋃
i≤nXi

(GFA) Whenever (Ai)i≤n ≤0 (Bi)i≤n and Ai . Bi for all i6 n− 1, then ¬(An . Bn).

We can observe the following:

Observation 3.3.17

Let (Ω,A, σ) a Fishburn structure. There exists a measure that weakly represents the induced

order .. If µ is any such measure, we have that for any A ∈ A, the event σ(A) ∈ A is

µ(· |A)-stable (for threshold t= 1/2).

Proof. Given the Generalised Fishburn Axiom (GFA), by Theorem 3.3.3, there exists a

measure µ on A such that for any X, Y ∈ A we have that X . Y entails µ(X)> µ(Y ). Let

A ∈ A with A 6= ∅. We have σ(A) 6= ∅ by (S1). We show that σ(A) is µA-stable. Firstly,

σ(A)⊆A by (S2). All we need to show is the following: for every ω ∈ σ(A), we have
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µA(ω |A\σ(A))> 1/2. Let ω ∈ σ(A). Write B := (A\σ(A))∪{ω}. Then σ(A)∩B = {ω} 6= ∅
so by (S3) we have σ(A ∩B)⊆ σ(A) ∩B, which means

σ
(
[A \ σ(A)] ∪ {ω}

)
= {ω}.

This entails {ω} . [A \ σ(A)], so µ(ω)> µ(A \ σ(A)). We get µA(ω |A \ σ(A))> 1/2, as

desired. Note that the argument does not rely on the axiom (S4n).

The upshot is that Fishburn structures capture a class of revision operators that respect

probabilistic stability : given any (nonempty) revision input A, the strongest accepted

proposition σ(A) is stable with respect to the updated measure µ(· |A). However, it need not

be the logically strongest stable set, and the selection functions do not capture probabilistically

stable revision in the form of strongest-stable-set operators.

Fishburn structures thus comply with the non-reductionistic stability rule discussed in

the previous chapter (§ 2.3.1). There, the only criterion imposed on revisions was simply

that the strongest accepted proposition be probabilistically stable with respect to the

updated measure. In our discussion we noted the stability constraint alone was too weak to

identify interesting revision operators (and to rule out trivial revisions which always select

the least set with probability 1 after conditioning). By contrast, the revision operators

captured by Fishburn structures constitute a relatively well-behaved family that complies

with the stability requirement: Fishburn structures approximate probabilistically stable

revision, in that they satisfy the strong monotonicity principle (S3) corresponding to Rational

Monotonicity, as well as the axiom (S4n). Moreover, they are partially representable by a

probability measure, in that the strict dominance order generated by the selection function

is numerically representable. This wider class of revision operators also admits a simpler

axiomatisation, as the . relation – as opposed to the relation <σ employed in the (Scott)

axiom – does not depend on the property of being an atom in the algebra. We discuss next

the role of the scheme (S4n) in our representation theorem and its relation to the (Or) rule.

3.3.3 Minimisation operators and the Or rule again

As we pointed out in Section 3.2.3, strongest-stable-set operators cannot be represented as a

map X 7→minR(X) for some order relation R⊆ Ω2. In other words, probabilistically stable

revision cannot be tracked using a minimisation operator for a plausibility relation. We also

observed that strongest-stable-set operators, treated as selection functions, do not validate

the (Or) rule. The former fact easily follows from the latter. As noted by e.g. van Benthem

[60] and Rott [47] the following conditions are necessary and sufficient for representability as

a minimisation operator.
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Proposition 3.3.18 (van Benthem [60])

Let Ω a finite set. Given a function σ : P(Ω)→P(Ω), the following are equivalent:

• σ satisfies the following properties for any Xi ⊆ Ω:

(1) σ(X)⊆X

(2) σ(
⋃
i≤nXi)⊆

⋃
i≤n σ(Xi)

(3)
⋂
i≤n σ(Xi)⊆ σ(

⋃
i≤nXi)

• There is an asymmetric binary relation R⊆ Ω2 such that for all X:

σ(X) = min
R

(X) := {ω ∈X | ¬∃v ∈X, R(v, ω)}

As a quick verification reveals, strongest-stable-set operators validate both (1) and (3),

but fail (2). The failure of (2) is unsurprising: interpreting Xi |∼Xj as σ(Xi)⊆Xj , the

property corresponds to the (Or) rule.

It is worth noting, however that a weaker form of the (Or) rule does obtain for proba-

bilistically stable revision:

Observation 3.3.19

For any representable selection function σ on an algebra A, we have that the following holds

for any finite collection of events Xi (i≤ n) in A:

If Xi \Xj ⊆ σ(Xi) for all i 6= j, then σ(
⋃
i≤n

Xi)⊆
⋃
i≤n

σ(Xi). (wO)

Proof. Let µ be a probability measure representing the selection function σ, so that σ(X) =

τ(µX) for all X ∈ A. Assume Xi \Xj ⊆ σ(Xi) for all i, j ≤ n with i 6= j. It is enough to

show that
⋃
i≤n σ(Xi) is stable with respect to the measure µ(· |

⋃
i≤nXi): this suffices,

since σ(
⋃
i≤nXi) is the strongest stable set w.r.t µ(· |

⋃
i≤nXi). Let ω ∈

⋃
i≤n σ(Xi)

38,

and consider the relative complement
⋃
i≤nXi \

⋃
i≤n σ(Xi). Since Xi \Xj ⊆ σ(Xi) for all

distinct i, j, this means that
⋃
i 6=j(Xi \Xj)⊆

⋃
i≤n σ(Xi). So we get

⋃
i≤nXi \

⋃
i≤n σ(Xi)⊆

(
⋃
i≤nXi) \

⋃
i 6=j(Xi \Xj) =

⋂
i≤nXi.

This establishes that
⋃
i≤nXi \

⋃
i≤n σ(Xi)⊆

⋂
i≤nXi; we can then also write⋃

i≤n
Xi \

⋃
i≤n

σ(Xi)⊆Xj \ σ(Xj)

38Here again, we take a singleton to represent an atom for simplicity, but this is immaterial: the argument
applies for any choice of A-atom in

⋃
i≤n σ(Xi) instead of {ω}.
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for all j ≤ n. But evidently, since ω ∈
⋃
i≤n σ(Xi) we have ω ∈ σ(Xj) for some j: this means

that µ(ω)> µ(Xj \ σ(Xj). In particular,

µ(ω)> µ
( ⋃
i≤n

Xi \
⋃
i≤n

σ(Xi)
)

where ω was arbitrary in
⋃
i≤n σ(Xi). This establishes that

⋃
i≤n σ(Xi) is stable.

Since the condition σ(
⋃
i≤nXi)⊆

⋃
i≤n σ(Xi) captures the (Or) rule, we can see (wO)

as a substantially weaker form of (Or)-style reasoning: it specifies that the (Or) rule can

be applied to a set of antecedents X1, ...,Xn provided that they satisfy the side condition

Xi \Xj ⊆ σ(Xi) for all i 6= j. This weak (wO) rule can be written in semantic form as follows

(here we write its two-premise version):

Xi \Xj ⊆ σ(Xi) for i 6= j X1 |∼A X2 |∼A
X1 ∪X2 |∼A

(wO2)

The side constraints Xi \Xj ⊆ σ(Xi) give conditions under which Or-type inferences are

valid: all of the Xi \Xj states must be typical given Xi, in the sense of being in the selected

subset. It is perhaps more informative to see this as a constraint on atypical states: namely,

all of the atypical Xi states – those in Xi \ σ(Xi) – must be in Xj .

In addition to outlining a very modest extent to which probabilistic stability obeys a

version of case reasoning (or the sure thing principle), this rule can be used to obtain an

alternative characterisation of Leitgeb structures: it is enough to replace the axiom S4n by

the property (wO). This is because the property already entails S4n.

Observation 3.3.20

Suppose a selection function σ satisfies the property (wO). Then it also satisfies S4n.

Proof. Suppose σ has property (wO). Suppose we have sets A, Xi (i≤ n), such that ∀i≤ n,

σ(A∪Xi) =Xi. Writing Di :=A∪Xi, we have, for each i 6= j, Di \Dj =Xi \ (A∪Xj). Now

σ(Di) = σ(A ∪Xi) =Xi, and so we can write Di \Dj ⊆ σ(Di). By (wO), we can conclude

σ(
⋃
i≤nDi)⊆

⋃
i≤n σ(Di), which is equivalent to σ(

⋃
i≤nA∪Xi)⊆

⋃
i≤nXi. We have shown

(S4n).

This observation entails the following reformulation of our representation theorem

(Theorem 3.3.8):

Proposition 3.3.21

Let (Ω,A, σ) a selection structure. The following conditions are necessary and sufficient for

σ to be a strongest-stable-set operator for some underlying (regular) probability measure on

A:
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(S1) σ(X) = ∅ only if X = ∅

(S2) σ(X)⊆X

(S3) If σ(A) ∩B 6= ∅, then σ(A ∩B)⊆ σ(A) ∩B

(wO) If Xi \Xj ⊆ σ(Xi) for all i 6= j, then σ(
⋃
i≤nXi)⊆

⋃
i≤n σ(Xi).

(Scott) If (Ai)i6n ≡0 (Bi)i6n and ∀i6 n, Ai <∗σ Bi, then ∀i6 n, Ai 4∗σ Bi.

This reformulation of the representation theorem is slightly more perspicuous: proba-

bilistically stable revision operations are characterised by reflexivity, rational monotonicity,

a weaker form of the (Or) rule, and the (Scott)-type axiom for representability (which

guarantees that the ‘preference’ ordering between atomic and other events implied by σ

can be captured quantitatively). Next, we note an interesting connection between our

representation problem and the theory of simple voting games.

3.3.4 Connection with simple voting games

Simple voting games are (simple) structures with various interesting properties, studied in

game theory and combinatorics [11, 57]. A simple voting game is a pair (P,W), where P

usually represents a finite set of voters, and W ⊆ 2P the set of winning coalitions, required

to be closed under taking supersets. The game admits a quota representation whenever

there is a quota q ∈ R and a weight function m : P → R+ such that

A ∈W ⇔
∑
a∈A

m(a)≥ q,

which means that there is a way to assign a weight to each player, in such a way that a

coalition is winning exactly when the collective weight of the players in the coalition reaches

(or surpasses) the required quota q.

Our representation problem bears a close connection to the theory of simple games.

Consider a selection structure (Ω,A) with Ω = {ω1, ..., ωn}. Let Di := {X ⊆ Ω |ωi �σ X},
the collection of sets dominated by ωi. Each state ωi generates a simple voting game

Gi = (Ω,Dic), where the closure-under-superset condition is satisfied thanks to the (No-swap)

property (see page 66: the propery ensures that if X ∈ Dic, X ⊆ Y , then Y ∈ Dic). Now

suppose µ is a representation for the induced order <∗σ. Then we have, for each ωi, that

X ∈ Dic iff µ(X)≥ µ(ωi).

In other words, if µ is a probabilistic representation for <∗σ, it is also weight representation

of each game Gi. More specifically, µ simultaneously represents all games Gi, where the

quota for each Gi is µ(ωi). Conversely, each such simultaneous quota representation of the
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associated system of games {Gi}i≤n gives rise to a probability distribution representing the

order <∗σ (it suffices to normalise each weight by the weight of the grand coalition Ω). Thus,

finding necessary and sufficient conditions for <∗σ to be representable is equivalent to finding

the exact conditions for the collection of games {Gi}i≤n to be simultaneously representable

in this sense (note that an important aspect of simultaneous representations is that the

quotas themselves depend on the weight function).

We can give this problem a possible game-theoretic interpretation in terms of what we

could call ‘coordinated blocking games’. We first identify each state ωi ∈ Ω with a player.

Each game Gi tells us which coalitions can block any decision that player ωi supports. If

the collection of games {Gi}i≤n is simultaneously representable as in the above, we can say

that the voting system is at least minimally coherent, in the sense that one can attribute

weights to all players in a uniform manner39.

In the context of simple games, the (Scott′) axiom above (p. 66) entails that one cannot

transform a collection A1, ...., An of winning coalitions into a collection of losing coalitions

by a sequence of pairwise exchanges of players from one coalition to another. We know from

classical results on simple games (see [57]) that axioms (No-swap) and (Scott′) suffice for each

individual game {Gi}i≤n to be weight-representable. The method should be straightforward

to those familiar with the comparative probability literature: we identify each coalition with

its characteristic function, and the (Scott′) axiom guarantees that there is a hyperplane

separating the winning from the losing coalitions. The normal vector to the separating

hyperplane determines the desired weight function.

In our case, the full (Scott) axiom on <∗σ suffices to ensure that there is a way of

constructing representations of all the games Gi that are consistent with each other; e.g.,

that no separating hyperplane for Gi lumps together some winning and losing coalitions

from another game Gj .

We can also interpret strongest-stable-set operators in the context of voting games.

Consider a weighted voting game (P,W) with weight representation m : P → R+. For

each player p ∈ P , the projected game Gp = (P \ {p},Wp) is given by Wp := {X ⊆ P \
{p} |

∑
q∈X m(q)≥m(p)}. The probability function obtained by normalising m gives rise to

a selection function σ : P(P )→P(P ). Given any subset of players A⊆ P , the function σ

outputs the minimal X ⊆A such that A \X is a losing coalition in every reduced game Gp

(with p ∈X). The set σ(A) represents the minimal coalition of players such that individual

39We can illustrate this with the following scenario. Imagine that you are a historian researching the voting
protocols of an ancient civilization. You know that each province sent a delegate to vote in a national council,
but you have no explicit information about how exactly the outcomes of the votes were determined. The only
information available is records of some results of the votes which specify which coalitions were able to block
which delegate (that is, you have a collection of games {Gi}i≤n like the above). The working hypothesis
is that the vote of each delegate was accorded a fixed weight – proportional, say, to the population of the
delegate’s province. In order to check if this hypothesis is at least consistent with your data, you must check
if the games {Gi}i≤n are simultaneously representable.
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player p ∈ σ(A) can block (or ‘veto’) the coalition A \ σ(A). Suppose, for instance, that we

play the following game. First, we restrict attention to a subset A of players. Then we play

a champion game on A: a champion p is picked at random from some pre-selected subset

X ⊆A. The champion then votes against the entire opposition A \X. Different choices

of possible champion sets X yield different chances of winning against the opposition. A

decisive team is a subset of players X ⊆A such that, no matter who is chosen from X as a

champion, the opposition A \X loses against the champion. We can think of σ(A) as the

minimal decisive team in the champion game on A.

3.4 Axiomatising logics of stability

With our representation theorem at hand (Theroem 3.3.8), we now have a full characterisation

of strongest-stable-set operators: we have thus identified key properties of structures encoding

the behaviour of τ -generated revision – or alternatively, τ -generated conditional belief. We

close this chapter with a few remarks on axiomatising the logic of probabilistically stable

belief.

Consider the language LKBS is given by:

ϕ, ψ ::= p | ϕ ∧ ψ | ¬ϕ | Bϕψ | Kϕ | Sϕψ

Here, aside from a standard knowledge operator K and a conditional belief operator B,

we also have a selection operator S: the formula Sϕψ is intended to capture the property

that ψ is the strongest stable proposition after conditioning on ϕ.

Conditional belief expressions of the form Bϕψ can of course be understood as a non-

monotonic conditional ϕ |∼ ψ. The departure from the simple syntax of flat conditionals of

the form α |∼β, as used in the context of non-monotonic logics, has a twofold motivation. On

the one hand, it remains closer to standard modal presentations of doxastic logics, and thus

facilitates a direct comparison with well-known systems. On the other hand, the introduction

of the S-operator allows for a direct formulation of the scheme (S4n) of representable selection

structures, for which the simple language of flat conditionals does not suffice40, thus allowing

to express this distinctive property of strongest-stable-set operators.

The semantics will be given by structures of the following form:

Definition 3.4.1 (Models and satisfaction relation)

40The difficulty lies in expressing exact equalities of the form σ(A) =B, as opposed to inclusions of the
form σ(A)⊆B. In particular, note that the scheme (S4n) is not sound if we replace, in the antecedent, the
equalities σ(A ∪Xi) =Xi with inclusions σ(A ∪Xi)⊆Xi.
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A LKBS-model is a structure of the form

M =
(

Ω,∼, {σω}ω∈Ω, [[·]]
)

where

• Ω is a set of states,

• ∼ is an equivalence relation,

• [[·]] : At(LKBS)→P(Ω) is a valuation assigning a set [[p]]⊆ Ω to each atomic formula

p ∈ LKBS,

• each σω : Aω→Aω is a selection function on Aω, where Aω is the algebra generated on

the equivalence class [ω]∼ by the valuation:

Aω :=
{

[[ϕ]] ∩ [ω]∼ |ϕ ∈ LKBS, ϕ boolean
}

Additionally, we also require:

• If ω ∼ v then σω = σv

Write [[ϕ]]ω for [[ϕ]] ∩ [ω]∼. We extend [[·]] to all of LKBS following the clauses:

[[ϕ ∧ ψ]] =[[ϕ]] ∩ [[ψ]] and [[¬ϕ]] = Ω \ [[ϕ]]

[[Bϕψ]] =
{
ω ∈ Ω

∣∣σω([[ϕ]]ω)⊆ [[ψ]]ω

}
.

[[Sϕψ]] =
{
ω ∈ Ω

∣∣σω([[ϕ]]ω) = [[ψ]]ω

}
.

[[Kϕ]] =
{
ω ∈ Ω

∣∣ [ω]∼ ⊆ [[ϕ]]
}
.

Satisfaction is defined as

M, ω � ϕ ⇔ ω ∈ [[ϕ]]

This definition gives rise to the following satisfaction relation:

M, ω � α ⇔ ω ∈ [[α]] for boolean α

M, ω � Kϕ ⇔ [ω]∼ ⊆ [[ϕ]]

M, ω � Bϕψ ⇔ σω([[ϕ]]ω)⊆ [[ψ]]ω

M, ω � Sϕψ ⇔ σω([[ϕ]]ω) = [[ψ]]ω
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For better legibility, we will sometimes write Sϕψ and Bϕψ respectively as S(ψ |ϕ) and

B(ψ |ϕ).

Note that this semantics does not truly allow to talk about nested B or S operators:

while it allows expressions of the from B(θ |Bϕψ) (that is, BBϕψθ), each such a formula

will be equivalent, in any selection structure, to either B>θ or B⊥θ, depending on whether

Bϕψ holds at the evaluation state in the model or not. With the stability operator, we can

express various interesting properties: for example Sϕϕ expresses that the proposition [[ϕ]] is

a fixpoint of the stability operator.

The structures of interest to us are Leitgeb models:

Definition 3.4.2

The class L of τ -models (or Leitgeb structures) consists of LKBS-structures of the form

(Ω,∼, {σω}ω∈Ω, [[·]])

where Ω is a finite set, and each σω is a selection function on Aω satisfying the following

properties:

(S1) σ(X) = ∅ only if X = ∅

(S2) σ(X)⊆X

(S3) If σ(A) ∩B 6= ∅, then σ(A ∩B)⊆ σ(A) ∩B

(S4n) For any n: if σ(A ∪Xi) =Xi for all i≤ n, then σ(A ∪
⋃
i≤nXi)⊆

⋃
i≤nXi

(Scott) If (Ai)i6n ≡0 (Bi)i6n and ∀i6 n, Ai <∗σ Bi, then ∀i6 n, Ai 4∗σ Bi.

In other words, in the light of Theorem 3.3.8, we know that the class L of consists of

selection structures where each σω is representable (via the acceptance rule τ): this means

that given a structure
(
Ω,∼, {σω}ω∈Ω, [[·]]

)
in L, for each ω ∈ Ω the structure of the form

([ω]∼,Aω, σω)

is probabilistically representable. This corresponds simply to having a measure µ[ω] over

each equivalence class [ω]∼ which represents the underlying selection function σω (recall

that ∼-equivalent states all have the same selection function). In purely probabilistic terms,

whenever M, ω � Bϕψ in a Leitgeb model M, the formula Bϕψ expresses that the strongest

stable set, after conditioning on the event [[ϕ]] ∩ [ω]∼, is a subset of [[ψ]] ∩ [ω]∼. The event

[[ϕ]]ω = [[ϕ]] ∩ [ω]∼ corresponds to the information available to the agent at state ω: it is the

conjunction of the received information [[ϕ]] with the agent’s background knowledge [ω]∼.
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Note also that the algebra of propositions is generated by a boolean valuation, so that each

event in the algebra Aω is definable by a boolean formula at ω. This is as it should be: as

the algebra Aω is intended to represent the internal doxastic state of an agent – the space of

hypotheses she is considering – there is no need for events that are not explicitly definable

by a formula in the agent’s language.

Axioms. The problem of obtaining a complete logic of probabilistically stable conditional

belief – or, equivalently, the non-monotonic logic of the τ rule – amounts to finding a

syntactic characterisation of all and only LKBS formulae that are valid over the class L of

Leitgeb models. In what follows, we make the first few steps towards an axiomatisation and

highlight some of the difficulties involved.

We can first observe that the notion of two sequences of events being balanced can

be captured using a boolean formula. This follows from the following observation, due to

Domotor [14]:

Proposition 3.4.3 (Domotor [14, p. 40])

Let (Ai)i≤n, (Bi)i≤n be two sequences of events in A. We have:

(A1, . . . , An)≡0 (B1, . . . , Bn)

if and only if, for any k ≤ n,⋃
1≤i1<...<ik≤n

Ai1 ∩ ... ∩Aik =
⋃

1≤i1<...<ik≤n
Bi1 ∩ ... ∩Bik

Proposition 3.4.3 allows us to express the fact that two sequences of events are balanced.

Definition 3.4.4

For αi, βi ∈ LKBS, we write

(α1, . . . , αn)E(β1, . . . , βn) :=
∧

1≤k≤n

( ∨
1≤i1<...<ik≤n

(
αi1 ∧ ... ∧ αik

)
↔

∨
1≤i1<...<ik≤n

(
βi1 ∧ ... ∧ βik

))
(α1, . . . , αn)E+(β1, . . . , βn) :=

∧
1≤k≤n

( ∨
1≤i1<...<ik≤n

(
αi1 ∧ ... ∧ αik

)
→

∨
1≤i1<...<ik≤n

(
βi1 ∧ ... ∧ βik

))
We can verify that the balancedness of two sequences is expressible:

Proposition 3.4.5

Let M an LKBS-model, and v ∈ Ω. We have

M, v � (α1, . . . , αn)E(β1, . . . , βn)
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if and only if

([[α1]]v, . . . , [[αn]]v)≡0 ([[β1]]v, . . . , [[βn]]v)

Proof. (For better legibility, we drop the subscript v henceforth). For the right to left

direction, assume towards a contradiction that∑
i≤n

1[[αi]] 6=
∑
i≤n

1[[βi]].

As before, we write ηα(ω) :=
∣∣{i≤ n |ω ∈ [[αi]]}

∣∣ for each ω ∈ Ω. Our assumption means

that there is some ω ∈ Ω such that ηα(ω) 6= ηβ(ω). Without loss of generality, we have

ηα(ω)> ηβ(ω). We write k = ηα(ω), and let j1, ..., jk the collection of all distinct j ≤ n such

that ω ∈ [[αj ]]. Clearly then ω ∈ [[αj1 ∧ ... ∧ αjk ]], and so

ω ∈
∣∣∣∣ ∨

1≤i1<...<ik≤n

(
αi1 ∧ ... ∧ αik

)∣∣∣∣.
Now ηα(ω)> ηβ(ω) entails that for any set of k distinct indices i1, ..., ik, we have ω 6∈
[[βi1 ]]∩ ...∩ [[βik ]], since ω occurs in only ηβ(ω) many of the [[βi]]’s, and ηβ(ω)< k. So we have

that for any set of k distinct indices i1, ..., ik, ω 6∈ [[βi1 ∧ ... ∧ βik ]], and so

ω 6∈
∣∣∣∣ ∨

1≤i1<...<ik≤n

(
βi1 ∧ ... ∧ βik

)∣∣∣∣.
This means that ω witnesses that one of the conjuncts in the formula (α1, . . . , αn)E(β1, . . . , βn)

does not hold in M. So we have M 6� (α1, . . . , αn)E(β1, . . . , βn).

Conversely, whenever
∑

i≤n 1[[αi]] =
∑

i≤n 1[[βi]],, meaning that we have ηα(ω) = ηβ(ω)

for each ω ∈ Ω, it is easy to see that whenever ω ∈ [[αj1 ]] ∩ ... ∩ [[αjk ]] = [[αj1 ∧ ... ∧ αjk ]] for

some collection of distinct indices j1, ..., jk, there also exists some other set of k indices

i1, ..., ik such that ω ∈ [[βi1 ∧ ... ∧ βik ]], and vice versa. This ensures that for any k ≤ n, the

biconditional ∨
1≤i1<...<ik≤n

(
αi1 ∧ ... ∧ αik

)
↔

∨
1≤i1<...<ik≤n

(
βi1 ∧ ... ∧ βik

)
holds. Thus we have M � (α1, . . . , αn)E(β1, . . . , βn).

With this characterisation at hand, we can now discuss the problem of axiomatising the

logic of Leitgeb structures. Consider the axioms in Figure 3.3. The axioms in (S5) ensure

that the K operator is a standard S5 modality (we keep the K operator as primitive for

the sake of perspicuous notation: we can in principle treat Kϕ is as definable by B¬ϕ⊥).

The axioms (Pos) and (Neg) are axioms for positive and negative introspection, respectively,
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System L

Axioms:

(S5) S5 axioms for K

(KtB) Kϕ→ Bψϕ

(PosM) Mϕψ→ KMϕψ for M ∈ {B,S}

(NegM) ¬Mϕψ→ K¬Mϕψ for M ∈ {B, S}

(Reg) (Bϕ⊥)→ K¬ϕ

(Ref) Bϕϕ

(RW)
(
Bϕψ ∧ K(ψ→ θ)

)
→ Bϕθ

(And) (Bϕψ ∧ Bϕθ)→ Bϕ(ψ ∧ θ)

(RM) (Bϕθ ∧ ¬Bϕ¬ψ)→ Bϕ∧ψθ

(LEqM) K(ϕ↔ ψ)→
(
Mϕθ↔Mψθ

)
for M ∈ {B,S}

(REqS) K(ϕ↔ ψ)→
(
Sθϕ↔ Sθψ

)
(SB) Sϕψ→ Bϕψ

(SM) (Sαθ ∧ Bαγ)→ K(θ→ γ)

(RMs)
(
Sϕ∧γψ ∧ Bϕψ

)
→ Sϕψ

(B4n)
(∧

i≤n S(ψi
∣∣ϕ ∨ ψi))→ B

(∨
i≤n ψi

∣∣ϕ ∨ (
∨
i≤n ψi)

)
(GF)

(
K
(
(ϕ1, . . . , ϕn)E+(ψ1, . . . , ψn)

)
∧
∧
i≤n−1

(
ϕi . ψi

))
→¬(ϕn . ψn)

(RT)
(
Bϕ∨(ψ∨θ)¬(ψ ∨ θ) ∧ Bψ∨η¬(ϕ ∨ η)

)
→ Bϕ∨(η∨θ)¬(η ∨ θ)

Inference rules:

ϕ ϕ→ ψ

ψ
(MP)

ϕ

Kϕ
(NecK)

Figure 3.3: System L.
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of the selection and conditional belief operators. In particular, note that they ensure that

states in the same equivalence class in a model have the same selection function. (KtB)

ensures that knowledge entails belief: that is, if a formula is true throughout the equivalence

class (or, equivalenty, is assumed to be true in the underlying probability model), it remains

believed no matter what the agent learns.

The axioms (Reg) through (RM) correspond to all the KLM-style axioms that we

discussed at the start of this chapter, and verified the soundness of. It is worth remarking

here that conditional belief operators Bϕ are normal: from (And) and (RW) we can derive

Bϕ(ψ→θ)→ (Bϕψ→Bϕθ); and from ϕ we can deduce Kϕ (by (NecK)), and (KtB) then entails

Bψϕ. Axioms (LEqM) and (REqS) capture straightforward syntax-insensitivity properties of

the B and S operators. Axioms (SB) and (SM) ensure that the S-operator captures exactly

the strongest stable set (that is, the logically strongest accepted proposition in the algebra).

Together they allow to derive the following:

Sϕψ ∧ Sϕθ→ K(ψ↔ θ)

That is, they jointly guarantee that, conditional on a given event, the strongest stable set is

unique.

Axiom (RMs) expresses the following property: if ψ is believed conditional of ϕ, but it is

also the strongest stable belief conditional on some proposition stronger than ϕ, then ψ is

already the strongest stable belief conditional on ϕ. This is intuitive, and not as redundant as

it may first appear: for while its semantic version follows from (S3) (Rational Monotonicity),

this particular form seems required nonetheless. To see why, a motivating example is the

following: note the following valid implication over Leitgeb models: {¬S>p,B>p} �L ¬Sp p.
Semantically, this again follows from the property (S3) of the selection function. But the

argument relies on applying the property directly to the set σ([[>]]): without the scheme

(RMs), this reasoning cannot be readily carried out proof-theoretically unless we already

have some formula γ defining the set: [[γ]] = σ([[>]]). What is interesting to note is that

adding to S>γ to {¬S>p,B>p}, for any γ whatsoever, would allow to derive ¬Sp p by using

(RM). However, the axioms do not guarantee that for every ϕ, we have some ψ with Sϕψ: in

other words, they do not directly capture the fact that each σ(A) is definable by a formula.

With the axiom (RMs), we can remedy this41. A special case of that axiom scheme is

41This also suggests an important step in proving completeness: ensuring that we can obtain a maximal
consistent set that is S-closed: that is, for every formula ϕ, there is some ψ such that the set contains Sϕψ.
Since we are building finite models, we must make sure that this can be done for some ‘logically finite’
fragment of the language. The set {¬S>p,B>p, Spp} illustrates that, without axiom (RMs), we can have sets
that are L-consistent but have no model because they cannot be extended to an S-closed set. This is because
adding S>γ, for any γ, would make this set L-inconsistent (use (RM)).
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(
S>∧pp ∧ B>p

)
→ S>p, so that

`L ¬S>p ∧ B>p→¬Sp p,

and the worry is avoided.

The remaining three axioms are less usual and require more attention. First, the axiom

scheme (B4n) corresponds to the scheme (S4n) of Leitgeb structures. Of particular interest

is the scheme (GF):(
K
(
(ϕ1, . . . , ϕn)E+(ψ1, . . . , ψn)

)
∧
∧

i≤n−1

(
ϕi . ψi

))
→¬(ϕn . ψn)

In this statement, the formula ϕ . ψ is meant to capture the semantic notion of a dominance

relation, as introduced in Definition 3.3.12. Recall that the dominance relation between

events in a selection structure is defined as follows:

A . B if and only if σ(A ∪B)⊆Bc or A .D B for some D ∈ A.

where A .D B asserts that D separates A from B in the sense of Definition 3.3.10. Formally,

the expression ϕ . ψ is an abbreviation defined as follows. First we introduce the following

notation:

ϕ .γ ψ ⇔
(
K
(
γ→¬(ϕ ∨ ψ)

)
∧ ¬Bγ∨ϕ¬ϕ ∧ Bγ∨ψ¬ψ

)
This formula asserts that γ separates ϕ from ψ. Then we define

ϕ . ψ ⇔
((

Bϕ∨ψ¬ψ
)
∨ ϕ .γ ψ

)
With this definition, a moment’s reflection yields that (GF) captures the Generalised Fishburn

axiom as discussed in the previous section:

Whenever (Ai)i≤n ≤0 (Bi)i≤n and Ai . Bi for all i6 n− 1, then ¬(An . Bn).

Note that each instance of (GF) can contain various γ’s as separators inside the formula

ϕi . ψi. The expression ϕi . ψi does not capture a single formula but is itself a scheme, with

one instance for each possible separator γ in the subformula ϕi .γi ψi
42.

What does this Generalised Fishburn mean for selection structures? Recall that an

event [[ϕ]] directly dominates another event [[ψ]] whenever we have σ([[ϕ]] ∪ [[ψ]])⊆ [[ψ]]c:

this relation is easily captured by the formula Bϕ∨ψ¬ψ. Then, the formula ϕ .γ ψ entails

42So, even for a fixed sequence of formulas (ϕ1, . . . , ϕn, ψ1, . . . , ψn), there is still a separate instance of the
scheme (GF) for each way of plugging in various possible γi’s inside the expressions ϕi . ψi; and for each way
of plugging the n− 1 separators γi (i≤ n− 1) in the premise of the conditonal, there are infinitely many
instances of the scheme, one for each distinct γn that can occur in the conclusion ¬(ϕn . ψn). All in all,
resorting to the (GF) scheme yields a rather complex axiomatisation.
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that any probability measure representing the underlying selection function must satisfy

µ([[ϕ]])> µ([[ψ]]): this is witnessed by a separator [[γ]] – an event which directly dominates

[[ψ]] but not [[ϕ]] (again, see our discussion of the Fishburn axiom above). By Fishburn’s

Theorem 3.3.3, (GF) ensures that the disjunctive order generated by either direct domination

or the existence of separators is weakly probabilistically representable, in the sense that

there exists a probability measure µ such that

if M, ω � ϕ . ψ then µ([[ϕ]]ω)> µ([[ψ]]ω).

In short, (GF) ensures that the dominance relation . on the underlying algebra of events is

probabilistically representable.

Next, (GF) does not guarantee the transitivity of the induced order. But a (weaker) form

of transitivity does hold for the domination relation. Consider the axiom (RT):

(RT)
(
Bϕ∨(ψ∨θ)¬(ψ ∨ θ) ∧ Bψ∨η¬(ϕ ∨ η)

)
→ Bϕ∨(η∨θ)¬(η ∨ θ)

Informally, this axiom expresses the following: If [[ϕ]] dominates [[ψ ∨ θ]], and [[ψ]] domi-

nates [[η]] in a part that does not intersect [[ϕ]], then [[ϕ]] dominates [[η ∨ θ]]. In other words,

we have transitivity under substitution of dominated sets. Starting from the set [[ψ]] ∪ [[θ]],

we can replace the dominated subset [[ψ]] by a set [[η]] that has even smaller probability,

given that [[ψ]] dominates it; and since [[ϕ]] dominated [[ψ]] ∪ [[θ]] already, it still dominates

the resulting set [[η ∨ θ]] = [[η]] ∪ [[θ]]. This however works only under the condition that the

part of [[ψ]] that witnesses the domination of [[ψ]] over [[η]] – the part where the probability is

concentrated – does not intersect [[ϕ]]. The corresponding property of the strongest-stable-set

operator is the following:

If σ(A ∪B ∪ C)⊆ (B ∪ C)c and σ(B ∪D) ∩ (A ∪D) = ∅, then σ(A ∪D ∪ C)⊆ (D ∪ C)c

Writing the direct domination relation σ(A ∪B)⊆Bc as A�B, we can express the same

property in the following form:

A� (B ∪ C) and B�D entail A� (D ∪ C), provided that σ(B ∪D)⊆Ac.

A clearer form of the axiom (RT) can be written in the form of a non-monotonic inference

rule, which puts in evidence the fact that (RT) is a Horn rule.

ϕ ∨ (ψ ∨ θ) |∼ ¬(ψ ∨ θ) ψ ∨ η |∼ ¬(ϕ ∨ η)

ϕ ∨ (η ∨ θ) |∼ ¬(η ∨ θ)

By picking θ => in our axiom scheme, we get an intuitive instance of restricted transitivity

of the domination relation:

(
Bϕ∨ψ¬ψ ∧ Bψ∨η¬(ϕ ∨ η)

)
→ Bϕ∨η¬η
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This concludes our presentation of system L. An immediate observation is that none of the

axioms seem to directly capture the (Scott) property of Leitgeb structures: we discuss this

issue next.

The problem with atoms. We notice an immediate difficulty with expressing, in LKBS,

the (Scott) axiom for Leitgeb structures. Recall that the (Scott) property is expressed in

terms of the order <∗σ, where A<∗σ B holds if and only if one of the following obtains:

(1) A is a A-atom and σ(A ∪B)⊆Bc

(2) B is a A-atom and σ(A ∪B) 6⊆Ac

Expressing this relation in LKBS poses a challenge, as the property of being an atom

in the underlying algebra of propositions is not definable in LKBS. To what extend can we

express the required property without explicit reference to atoms?

From the point of view of the underlying system of linear inequalities, if σ(A ∪B)⊆Bc

obtains, then we know that µ(A)> µ(B) for any measure µ representing σ, regardless of

whether or not A is an atom in the underlying algebra. So it is straightforward to see that

we get an equivalent axiomatisation if we remove the atom condition from (1), replacing the

condition A<∗σ B with the statement that either

(1′) σ(A ∪B)⊆Bc, or

(2) B is a A-atom and σ(A ∪B) 6⊆Ac

Then the first disjunct becomes expressible by a formula of the form Bα∨β¬β, which

ensures σ([[α]]∪ [[β]])⊆ [[β]]c. However, we cannot in the same way remove the atom condition

from (2): while σ(A ∪B) 6⊆Ac entails the inequality µ(B)≤ µ(A) if B is indeed a A-atom,

this entailment does evidently not hold in general if B is an arbitrary event in A (for a

counterexample, consider a uniform measure over two disjoint sets A and B with 1< |A|< |B|).

Some remarks on completeness. We leave the problem of a complete axiomatisation for

the class of Leitgeb models as an open question. It is worth noting that while the semantics

given here is a little unusual (consider, in particular, the S operator), it has the advantage

of employing a language close to well-studied modal doxastic logics, while being expressive

enough to capture the characteristic properties of the stability operator.

The S modality can be seen as an exact belief operator: Sϕψ means that ψ captures

exactly all and only the agent’s beliefs, after updating on ϕ. A similar modality has appeared

in various contexts in the literature: a related operator has been used in artificial intelligence

to capture the logic of ‘only knowing’ in nonmonotoning reasoning [36, 62], as well as

in epistemic game theory – particularly in logical analyses of the Brandenburger-Keisler
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paradox [10, 43], where the operator is used to model assumptions of players in a game

model (understood as total descriptions of their belief sets). In both cases the modality

simply expresses the fact that a formula holds in all and only successors of a state in a

Kripke model: the logics resulting from its addition to a basic modal language admit a

simple axiomatisation (see [23, 19]).

The main difference with our setup is that Leitgeb structures capture conditional

beliefs, while known axiomatisations of this exact belief operator only consider the static,

unconditional case. Here it is worthwhile to point out that the logics of exact conditional

belief for selection functions – such as the one employed here – do not seem to have been

studied. The conditional logic of probabilistic stability is a fitting domain of application43.

A natural question is whether system L captures the conditional doxastic logic of Fishburn

structures, with the axiom (GF) ensuring the partial representability of the selection function

(in the sense of 3.3.17). Going further, a completeness result for Leitgeb structures will

require particular care in constructing countermodels: for one, we would need to guarantee

that the (finite) countermodel satisfies the (Scott) property to ensure full representability.

Lastly, we may of course have resort to more (or less) expressive languages for describing

Leitgeb structures and its associated probabilistically stable revision operators. We sketch

alternative semantics for the logic of probabilistic stability in the concluding chapter.

3.5 Summary

We explored the class of revision operators generated by Bayesian conditioning and Leitgeb’s

stability rule. We first studied the nonmonotonic consequence relations that the τ -rule

generates and noted certain salient properties of τ -consequence that demarcate it from the

standard systems proposed in the nonmonotonic logic literature. We addressed the problem

of characterising probabilistically stable revision operators through selection function models.

We gave a representation theorem for the class of selection function models corresponding to

strongest-stable-set operators on finite probability spaces. This axiomatisation of strongest-

stable-set operators helps identify important qualitative aspects of stability-based dynamics

43The axiomatisation of unconditional ‘exact’ modalities are made straighforward by the introduction of a
complementary modality which quantifies over all inaccessible states in a Kripke model [19]. In the same way,
it may be helpful to appeal to a complementary modality Bwhich quantifies over the complement of selected
states:

M, ω � Bϕψ ⇔ [[¬ψ]]ω ⊆ σ([[ϕ]]ω)

Each operator Sϕψ is then definable by the formula Bϕψ ∧ Bϕ¬ϕ. Note then that we can replace axiom (B4n)
by the following scheme directly corresponding to the (wOR) property, as explained in Observation 3.3.20:( ∧

i≤n, i6=j

Bϕi(ϕi→ ϕj)
)
→
( ∧
i≤n

B(θ |ϕi)→ B
(
θ
∣∣ ∨
i≤n

ϕ
))

.
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of belief. We also noted a connection between the representation result and voting games.

With the representation theorem at hand, we also have a full description of the class of

selection function models that can provide the semantics for a conditional doxastic logic of

the stability rule. From the logical perspective, it appears that a richer syntax is needed in

order to formulate interesting properties of the underlying conditional belief structures. As

is common in probabilistic logics, the logical modeler is faced here with a trade-off between,

one the one hand, a language expressive enough to capture what is distinctive about the

stability rule and, on the other, a reasonably well-behaved and well-understood (modal)

syntax that would keep the complexity of the resulting logic to a minimum. In any case, it is

to be expected that standard canonical-model methods for proving modal completeness here

will require additional transformation steps, particularly in order to enforce properties like

the (Scott) axiom which, being algebra-dependent, is inexpressible in virtually any standard

doxastic logic.

Various discussions about bridging probabilistic and qualitative accounts of belief have

focused on the static representation of credal states, and many disputes among proponents

of either models have focused on which kind of representation is too coarse- or fine-grained.

Despite its faults and idiosyncrasies – such as the failure of (Or) – stability-generated revision

not only allows to respect probabilistic dynamics by tracking Bayesian conditioning, but

it does so by representing doxastic states at an interesting ’medium’ level of granularity:

specifying a consequence relation |∼µ (or, equivalently, a representable selection function)

does not require, of course, the full specification of a distribution (nor even a full comparative

probability ordering), but it is also less ‘qualitative’ than most simple models of qualitative

revision. In this regard, we noted that τ -generated revision is not representable (or ‘trackable’)

via preferential structures and order-minimisation operators. It crucially relies on capturing

specific properties of comparative probability orders, of a more combinatorial flavour.

There is another bridging role that strongest-stable-set operators can play in the represen-

tation of uncertain inference. One may note en passant that each set of probability measures

corresponding to a given strongest-stable-set operator – or, equivalently, a µ-consequence

relation, encoding a ‘belief state with contingency plan’ – is a convex set of probability

distributions (a ‘credal set’, in Bayesian parlance). By contrast, regions on the probability

simplex corresponding to the distributions that agree only on unconditional beliefs are not

necessarily convex. Since Bayesian authors often advocate the convexity requirement for

credal sets [37], this may indicate that a Bayesian would be more inclined to see the full

conditional belief structure generated by the τ rule – as given by a representable |∼ or a

selection function σ – as a legitimate ‘qualitative’ representation of an agent’s belief state

(rather than simply taking the raw belief set of the agent). In this sense, the τ -rule and its

associated revision operator may be good point to start a conversation between Bayesian
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and ’qualitative’ reasoners.
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4
Further directions and concluding remarks

Here ends our exploration of probabilistic stability, and the stability rule for acceptance.

We studied the tracking problem for the stability rule and showed how an information-

theoretic perspective on the stability rule yields a simple yet satisfying bridge between AGM

revision and Bayesian conditioning. This analysis restored a modest degree of harmony

between probabilistic and qualitative dynamics of information states: a stability-complying

agent who – through information loss or storage limitations – stores her information in a

qualitative form, but accepts certain probabilistic norms for update (Bayesian conditioning)

and the quantification of uncertainty (maximum entropy) will always comply with AGM

revision operators.

Secondly, we examined in some detail the behaviour of probabilistically stable sets on

finite spaces, and gave a complete characterisation of strongest-stable-set operators through

our representation theorem. This result identifies exactly the selection function models

for conditional belief operators induced by the stability rule (for threshold t= 1/2). We

identified several important properties of the resulting non-monotonic logic. Along the way,

we proved a useful theorem giving sufficient conditions for the joint representation of a pair

of (respectively, strict and non-strict) comparative probability orders, and we pointed out

an application of the representation theorem to simple voting games.

Throughout the text we have pointed out various natural and interesting questions that

would deserve further investigation. We now close with several remaining topics and loose

themes around acceptance rules that may pique the reader’s curiosity.

Other logics of probabilistic stability. Other languages can be used to capture the

logic of probabilistic stability. One particularly attractive option is to consider a logic

with a typicality operator ∇ (see [8]), which we can interpret on a selection function

model M = (Ω, σ,∼, [[·]]) as capturing exactly the selected states (the strongest stable event
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conditional on the input). More precisely, we set

M, ω �∇ϕ if and only if ω ∈ σω([[ϕ]])

Then the B and S operators are definable: we can write Bϕψ↔ K(∇ϕ→ ψ) and Sϕψ↔
K(∇ϕ↔ ψ). This is an expressive language that can capture various interesting properties

over Leitgeb models. For instance, consider the formula

K(∇ϕ↔∇ψ)

which states that σ([[ϕ]]) = σ([[ψ]]): any hypothesis that is accepted after learning ϕ is also

accepted after learning ψ. Or, in other words: ϕ and ψ have the same non-monotonic

consequences.

Another useful fact about typicality operators – and one that may render the axiomati-

sation problem quite interesting – is that they can directly express iterations of the selection

function. As a consequence, we can describe, in quite some detail, various fine features of

the probability measure generating the selection function σ. For example: given A ∈ A, we

define the σ-depth of A as d(A) := min{n ∈ N |σn(A) =A}. This gives us an approximate

way to asses how concentrated the underlying probability measure is in A. Very roughly, an

event of low σ-depth is one on which the measure is spread rather uniformly: a set of high

σ-depth is one on which the measure is closer to being ‘big-stepped’ (to use terminology

from [7]), i.e., with large probability gaps between individual atoms. Typicality operators

can express the fact that an event [[ϕ]] has depth n, through the formula

¬K(∇n−1ϕ→∇nϕ) ∧ K(∇nϕ→∇n+1ϕ)

What is the typicality logic of Leitgeb structures? We leave this as a task for another

occasion. More generally, we note that typicality logics have been chiefly studied for selec-

tion functions that are representable as order-minimisation operators: there remain many

open questions about axiomatising more general classes of selection functions, such as the

strongest-stable-set operator, which are not ‘trackable’ by order-minimisation (for instance,

they do not validate the axiom ∇ϕ→∇∇ϕ).

The definitional complexity of probabilistic acceptance rules. Acceptance rules can

be classified by their definitional complexity in a sufficiently expressive language. A rough

outline of how this can be done is as follows. Suppose we have a first-order language to

talk about probability spaces, in which we can quantify over events in the algebra, and with

enough resources to contain a modest amount of real arithmetic. For instance, take the

first-order language of boolean algebras LBA with a function symbol µ to be interpreted as a
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measure on the algebra (as well as the usual boolean inclusion relation v, boolean operations,

and constants ⊥ and > for the bottom and top elements of the algebra). Additionally, we

take function symbols for basic arithmetical operations to be interpreted over the ordered real

field (R,×,+,≤, 0, 1). Aside from ordinary LBA formulas, we also allow formulas that are

recursively built from basic expressions of the form p1(~t1)≤ p2(~t2), where pi’s are polynomial

expressions in the signature (×,+, 0, 1) (with, say, constants for rationals) and the terms ti

consists of expressions µ(q), with q a term in LBA (this is similar to the system of Fagin,

Halpern and Meggido [15]).

We can interpret these expressions over structures of the form (B,P) where B is a (finite)

boolean algebra and P a probability measure on it. Formulas in LBA are evaluated in B, and

expressions of the form p1

(
µ(q1)

)
≤ p2

(
µ(q2)

)
hold if the resulting inequalities are true once

each µ(q) has been replaced by P([q]) (here [q] ∈ B is the interpretation of the LBA term q).

As an example: (B,P) � ∀x
(
(x 6=⊥)→ µ(x)> 0

)
means that the measure P is regular: for

all a ∈ B, if a is not the bottom element ⊥B in B, then P(a)> 0.

Acceptance rules can then be classified by the definitional complexity of the set of

accepted elements in the underlying algebra. For instance, the Lockean rule λ can be

uniformly captured by an atomic formula:

Bλ
µ(x)⇔ µ(x)≥ t

where we take the parameter t as a constant symbol for t ∈Q. The τ rule can be captured

by the following formula:

Bτ
µ(x)⇔∃y(y v x ∧ St(y))

where St(y) is a stability predicate defined as

St(y) = ∀z
(
(z 6=⊥ ∧ z v y)→ (1− t)µ(z)> t(1− µ(y)

)
,

so that is Bτ
µ(x) is equivalent to

∃y
(
y v x ∧ ∀z

(
(z 6=⊥ ∧ z v y)→ (1− t)µ(z)> t(1− µ(y)

))
.

The property of being an accepted proposition is a ∃∀-condition. Similarly, the property of

being the strongest stable set is a ∀∃-formula, as it is given by

LS(x)⇔ St(x) ∧ ∀y
(
(y v x ∧ y 6= x)→¬St(y)

)
.

This approach to classifying acceptance rules appears both natural and elementary. Can we

have a useful classification of acceptance rules in terms of their definitional complexity?
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As illustrated by the example above, this approach allows to state formally the more

‘global’ nature of the stability rule: for instance, as opposed to several other acceptance rules

suggested in the literature, the acceptance of a hypothesis H does not merely depend on

a local property (e.g., the value of P(H)), but takes into account its interaction with all

events consistent with H – a more general property of the probability space (B,P). Within

such a formal framework for defining acceptance rules, one can employ standard tools from

logic to investigate questions of this kind. On the one hand, we can ask how ‘local’ a given

rule is: how much information about the entire measure do we need to have access to in

order to determine whether a given hypothesis is accepted? What is the complexity of doing

so? On the other, we can try and appeal to known preservation theorems to relate various

invariance properties of an acceptance rule to the syntactic shape of its defining formula.

This approach may also allow to relate the definitional complexity of the property Bαµ to

the computational complexity of checking the condition (often, a linear program) expressed

by the definition. In this manner we might, in some cases, establish a ready connection

between the definitional complexity of an acceptance rule and the complexity of decision

problems for the resulting doxastic logic.

Of course, for more sophisticated rules, we may need a language more complex than

comparisons of polynomial expressions over R (and quantification over a boolean algebra).

Nonetheless, even this simple framework could already provide a fruitful perspective on

many acceptance rules known in the literature.

Acceptance rules and information loss. See our discussion at the very end of Section 2.4.

Observation sets and relativised stability. In section 2, we motivated probabilistic

stability as a notion of robustness under any possible (consistent) new evidence that the

agent can receive. Yet, in many learning situations, not every event in the probability space

represents information that is relevant or accessible to the agent – for instance, some pieces of

information may not be directly observable in a particular experimental setup, and so some

propositions may be unlearnable. Thus, not every proposition should count as a potential

defeater. From this perspective, stability under any possible information is too stringent

a requirement. This suggests a natural generalisation of the stability rule which relies on

weakening the requirements for what counts as stable. Rather than requiring stability with

respect to any proposition consistent with the hypothesis, we can require stability only with

respect to a distinguished set of events in the probability space. This distinguished collection

of events should correspond to the evidence that the agent considers relevant in the learning

scenario: it can for instance correspond to information that the agent can directly learn or

observe (e.g., what the agent can measure as an outcome of the experiment being carried
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out). A restriction such as this one is rather common in formal learning theory, where the

space of admissible evidence is often restricted in a similar way.

We can thus relativise the notion of probabilistic stability – and, more generally, the

notion of an acceptance rule – to an evidence set. This idea (already suggested, e.g., in

[34]) can be cashed out as follows. Define an observation space as a pair (S, E) where S

is a probability space (Ω,A,P) and E – the evidence set – is a subcollection of events in

the algebra A. The set E is the collection of propositions that count as relevant evidence:

for instance, it can consist of the class of all propositions that the agent can learn in the

learning scenario at hand – e.g., possible observational data.

For a simple example, consider a probabilistic learning problem in which data is sequen-

tially sampled form some underlying sample space Ω. In such a context, it is standard to

identify the observable data E with all possible finite data sequences that can be sampled

in the course of the experiment. For an elementary instance of an observation space, take,

e.g., the coin-tossing space ({0, 1}N with its natural Borel σ-algebra) equipped with a Borel

probability measure and the evidence set E consisting of all its cylinder sets44, corresponding

to finitary sample observations. An augmented acceptance rule is then an operator mapping

each observation space to a belief set – some collection of accepted propositions. We can

thus consider an augmented stability rule, defined in a manner analogous to the simple

stability rule, but based instead on the notion probabilistic stability relative to the evidence

set. We say that a hypothesis H is E-stable if and only if P(H |E)> t for all E ∈ E such

that E ∩H 6= ∅. For instance, if E = {Ω}, we recover the Lockean rule; if E consists of the

entire algebra of events, we recover Leitgeb’s original rule.

Defining acceptance rules relative to an observation space (S, E) yields a more fine-grained

notion of acceptance that is tailored to learning problems (rather than bare probability

spaces). This invites a variety of questions about probabilistic reasoning and uncertain

acceptance in this learning-theoretic context: how should the notion of rational acceptance

depend on the relevant evidence? Are there any augmented acceptance rules that are well-

behaved when applied to natural learning problems? In particular, how does the augmented

stability rule fare in this context?

Stability for continuous distributions and statistical learning. In this thesis we

have only investigated the behaviour of the stability rule on discrete probability spaces. This

is for a good reason: a simple argument shows that the notion of probabilistically stable

sets trivialises for continuous distributions – and more generally, on all atomless probability

44That is, we have
E := {[[s]] | s ∈ {0, 1}∗}

where, for each string s, the cylinder set [[s]] is defined as {X ∈ {0, 1}N | s@X}.
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spaces – as only sets of measure one are stable45. More generally, it is a problematic feature

of many acceptance rules that their applicability is limited to purely atomic spaces. For

distributions with a little more structure – including typical models of statistical learning,

featuring continuous distributions – the rules are either not well-behaved, or not defined at

all.

The notion of stability relativised to an evidence set, as introduced in the previous

paragraph, can be put to use here. By weakening the requirements for stability, it allows

for a non-trivial notion of acceptance that can be applied in the context of continuous

distributions and more realistic models of statistical learning. The move to observation

spaces is also helpful as it yields a generalisation of the stability rule which makes explicit

the role of the observational protocol the agents finds herself reasoning about. While the

stability rule no longer trivialises on observation spaces, it becomes a non-trivial matter to

find minimal conditions on the observation space that would guarantee the conjunctivity of

the rule. A general characterisation of conjunctivity on observation spaces is worth exploring.

It is worth mentioning, however, that the augmented stability rule also suffers from

serious difficulties. In particular, Bayesian statistical learning problems constitute one

important class of observation spaces (models of sequential learning via i.i.d sampling),

on which the generalised stability rule is stuck in a dilemma between non-triviality and

conjunctivity. In [41] we show that, in the context of a standard (parametric) Bayesian

learning model, the stability rule yields a notion of acceptance that is either trivial (only

hypotheses with probability 1 are accepted) or fails to be conjunctive (accepted hypotheses

are not closed under conjunctions). The first problem chiefly affects statistical hypotheses;

the second one chiefly affects predictive hypotheses about future outcomes. The failure

of conjunctivity for the stability rule is particularly salient, as it affects a wide class of

consistent Bayesian priors and learning models with exchangeable random variables. These

observations highlight a serious tension between (1) being responsive to evidence and (2)

having conjunctive beliefs induced by the stability rule. We also show that a similar phe-

nomenon affects probabilistic reasoners with continuous priors in a rather general context:

the generalised stability rule is trivial on the class of Borel observation spaces, which cap-

ture the structure of learning problems where the observable events constitute a topology

on the underlying Borel probability space. This severely limits the rule’s scope of applicability.

Impossibility theorems for probabilistic acceptance and voting theory. What

explains the scarcity (or, indeed, lack) of well-behaved conjunctive acceptance rules for

continuous distributions? One possible answer points to invariance properties of acceptance

45Recall a probability space (Ω,A, µ) is atomless if for any X ∈ A with µ(X)> 0 there is some measurable
Y ⊂X with 0< µ(Y )< µ(X). For any event X with 0< µ(X)< 1, we can thus easily find a defeater of the
form Xc ∪D where D is a subset of X of sufficiently small measure.

105



rules. A result by Smith [54] shows that acceptance rules obeying certain desirable closure

and invariance principles (closure under finite conjunction, invariance under coarsening and

automorphisms) face a dilemma on atomless spaces: they are bound to be either trivial (in

the sense of only accepting hypotheses that have probability 1) or inconsistent46. We show

elsewhere [41] that a related limitative result obtains for augmented stability rules on Borel

observation spaces. The result affects acceptance rules satisfying similar invariance conditions

and admits a learning-theoretic interpretation: reasonable rules (conjunctive, invariant under

coarsening and automorphisms of the observation space) cannot learn hypotheses that are,

from a topological and learning-theoretic perspective, rather tame (e.g., both verifiable and

falsifiable by the evidence available in the learning problem). This perspective partly clarifies

why, in the context of learning with continuous distributions, there seems to be no perfect

general-purpose rule for uncertain acceptance, even when acceptance depends on a relevant

evidence set: under mild invariance constraints on acceptance rules, aggregating uncertain

information leads to inconsistency.

These observations invite the quest to find a satisfactory general diagnosis of the tension

between the high-probability requirement on belief, the closure of belief under conjunction,

and invariance principles for acceptance. First, is there an appropriate weakening of the

above invariance properties that would leave space for a well-behaved acceptance principle,

at least on most common learning problems based on atomless spaces?

A broader question asks what lessons should be drawn from these results as to the

question-dependence of uncertain acceptance. Consider, for instance, the following difference

between statistical hypothesis testing and acceptance rules. Classical hypothesis testing

typically takes place within a pre-determined question: that is, a partition of our probability

space into disjoint and exhaustive hypotheses (consider, for instance, testing a null hypothesis

against an alternative hypothesis). The acceptance or rejection of a hypothesis is decided

against the backdrop of a finite (often binary) decision space (e.g., ‘is ticket number 224 the

winning ticket?’, or ‘is the bias of the coin greater than 0.5?’). No individual decision problem

of this kind poses a conjunctivity problem. Problems for conjunctive acceptance occur when

the learner asks herself what her answer would be had she asked a different question (and

repartitioned the space accordingly); for the answers given to distinct (yet isomorphic)

problems need not be logically compatible with each other, nor does their conjunction need

preserve high probability. If the space admits enough symmetries taking one problem to

another, inconsistencies easily arise. From this perspective, atomless spaces pose a particular

problem precisely because they admit many symmetries: they can be coarsened into many

distinct isomorphic partitions (‘questions’), the answers to which, taken together, yield an

46Smith’s original theorem is a little weaker, and the published proof [54] contains a minor mistake (a
misapplication of Zorn’s Lemma). See [41] for a strengthening of Smith’s result and a correction of the
original proof.
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inconsistent set of accepted hypotheses. It is worth asking whether explanations along these

lines really do get to the heart of the matter; is it fair to say that conjunctive acceptance

rules fall victim to lottery-like paradoxes because they seek to answer ‘too many’ questions

at once?

Another direction to investigate consists in comparing invariance conditions for accep-

tance rules with fairness conditions in voting and judgment aggregation. Both Smith’s

impossibility theorem and our limitative results mentioned above, while relying on specific

topological and measure-theoretic properties of the underlying probability spaces, fundamen-

tally all employ arguments of a distinct voting-theoretic flavour, reminiscent of impossibility

theorems from judgment aggregation and social choice theory. Clarifying the mathemat-

ical and conceptual relationships between these two frameworks could be a rewarding

task, from the perspectives of logic and probability, as well as social choice theory. This

is indeed an avenue pursued, in the context of finite voting scenarios, by Dietrich and List [13].

The algebra of observation sets. In the context of augmented acceptance rules defined

on observation spaces, another natural question concerns invariance properties of accepted

hypotheses under combinations of evidence (observation) sets. Many natural invariance

conditions – such as the ones used in Smith’s impossibility theorem [54] – can be formulated

as preservation under transformations of the underlying observation space; but, in studying

more refined properties of acceptance rules, we can also naturally investigate the behaviour

of acceptance rules under transformations applied to evidence sets on a fixed probability

space. Consider for instance k observation sets E1, . . . , Ek on a probability space S, and

let � an k-ary set operation on observations sets – e.g., take �(E1, E2) = E1 ∩ E2. What

are reasonable constraints on the relationship between the individual belief sets Kα(S, Ei)
and the collection Kα

(
S,�i(E1, . . . , Ek)

)
? This setting suggests a connection with evidence

dynamics in neighbourhood semantics for modal logic [58, 59]. In particular, if we see each

observation space as a model, each acceptance rule gives rise to a distinct belief modality,

obeying different invariance conditions under transformations of the evidence space. Are

there some reasonable structural restrictions on observation spaces that would allow us to

classify well-behaved acceptance rules by their invariance conditions? Can this be done in a

way that permits informative axiomatisations of the resulting doxastic logics?

Acceptance rules in game and decision theory. Aside from their logic and invariance

conditions, ye shall know good acceptance rules by their fruit : how well do Bayesian agents

perform at decision tasks, or in game-theoretic situations, by applying a particular acceptance

rule? An element of response for the stability rule is provided by Leitgeb in [35], who shows

how, in a simplified ‘qualitativised’ decision problem, following actions that the stability
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rule accepts to be useful (in a precise sense) can be rationalised as (an approximation of)

maximising expected utility. When is a given acceptance rule rationalisable as a form of

utility maximisation?

More generally, there are several contexts – decision theoretic, game-theoretic, and

learning-theoretic – where one studies the performance of broadly probabilistic agents

(guided by probabilistic credences), but which could rather naturally lend themselves to an

analysis in terms of acceptance rules. How is an agent’s performance affected by employing

an acceptance rule in making a decision under uncertainty, or choosing a strategy in a game?

Consider, for instance, iterated or extensive form games. A game proceeds in stages

where, at every stage, every player must choose an action: the sequence of actions taken

by both players determines their outcome (e.g., a numerical payoff, or a binary win/lose

outcome). Each player has a probability distribution which encodes her uncertainty about

the type of her opponents (what kind of player are they? What strategies are they likely

to choose?), which also translates into uncertainty about outcomes in future rounds of the

game. These credences can then be translated, through an acceptance rule, into downright

categorical beliefs that will guide the player’s future actions. How does the choice of an

acceptance rule affect a player’s final performance? When does an acceptance rule outperform

another? In particular, these are contexts where the hypothesis space – e.g., hypotheses

about the types of opposing players – is distinct from the evidence space (observations about

the opponent’s moves so far). Here using augmented acceptance rules, defined on observation

spaces, is appropriate.

In each of these settings, studying the performance of particular acceptance rules can

clarify what happens to agents who are not full-blooded Bayesians with access to sharp

credences, but operate on the basis of a qualitative representation of their informational state.

A note on Bayesian and frequentist acceptance. Bayesian credible intervals and (fre-

quentist) confidence intervals are two constructions closely related to a notion of acceptance:

both are designed to output reasonable hypotheses about the value of an unknown parameter

in statistical hypothesis testing. One may be tempted to see a conceptual affinity between

probabilistic stability and each of these notions. Can they be reconstructed in terms of

probabilistic stability? There is a point here that, although elementary, is worth clarifying,

as it highlights an important conceptual component of the stability rule.

Suppose we have a parametric learning problem: data is generated by i.i.d sampling from

an unknown generating distribution. The generating distribution is one of many possible

distributions of the form Qθ, each determined by a different parameter value θ. The agent

has a prior probability over a range Θ of possible values of the parameter θ, representing her

credences over which distributions Qθ she believes are more or less likely to be generating
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the data. As more samples are observed, the agent updates her prior by conditioning on the

sampling data, leading to new credences about the values of the parameter for the generating

distribution. For simplicity (and in order to avoid technical complications with continuous

distributions), let us assume that both the parameter space Θ and the sample space Ω are

finite, and that the number of samples is fixed in advance (to, say, k observations). In this

way we can model the problem using a finite product space S = (Θ×Ωk,BΘ ×B,P), with P

the joint measure over the product space BΘ × B, and a threshold t ∈ (0.5, 1) (with BΘ and

B algebras over the parameter space Θ and the sample space Ω, respectively). Sampling

data is represented by a finite sequence of samples σ ∈ Ω∗.

Both credible intervals and confidence intervals seem affiliated with a stability notion.

One way to capture this is as follows. A credible interval is a random interval I : Ωk→B(Θ)

that is ‘stable’ under any data σ ∈ Ωk: that is, for any σ ∈ Ωk, we have P(I(σ) |σ)> t. In

short: for any data that we observe, we will conjecture a range of values for the parameter

that (under our updated probability) has probability at least t.

A confidence interval is a random interval I : Ωk→B(Θ) such that the hypothesis

[θ∗ ∈ Iσ]⊆ Ωk is high conditional on any parameter value θ∗ ∈Θ: that is, for any θ∗ ∈Θ, we

have P(θ∗ ∈ Iσ | θ∗)> t. Here, for a fixed θ∗, the set [θ∗ ∈ Iσ] = {σ ∈Ωk | θ∗ ∈ I(σ)} represents

the event that we will observe data σ such that the resulting conjecture I(σ) is consistent

with θ∗. In short: for any possible value of the parameter, if that value were true, we would

have a high (> t) probability of observing data that would yield a conjecture consistent with

the true parameter value.

So there is temptation here to view credibility intervals as stable sets relative to the

evidence set Eb := {Θ × [[σ]] |σ ∈ Ωk} – possible sampling data – and confidence intervals

as stable sets relative to the evidence set Ef := {{θ} × ΩN | θ ∈Θ} – possible values of the

parameter. But this is misleading. The important difference, of course, is that the ordinary

notion of probabilistic stability is defined for fixed hypotheses, whereas credible/confidence

intervals are both random objects that depend on the data being observed.

More precisely, under the ordinary notion of E-stability for some evidence set E , a

hypothesis being E-stable is independent of any particular E ∈ E being conditioned on: we

fix a hypothesis H and, once this is done, we ask whether this H retains high probability

under conditioning on any consistent information E. But in the case of random intervals

(both for credible and confidence intervals), the hypothesis being evaluated is dependent on

the particular evidence E ∈ E that we condition on: schematically, each E that we condition

on determines a distinct hypothesis HE , and we require P(HE |E)> t. The difference can

be put in terms of a change in quantifier order: E-stability requires to pick an H such that

no matter the E ∈ E , we have P(H |E)> t. Confidence and credible intervals require that,

for any given E, we pick some HE – dependent on E – such that P(HE |E)> t.

109



In terms of acceptance rules, it is more appropriate to describe the two constructions

as conjecturing methods that are required to respect the Lockean rule: given every evi-

dence E ∈ E , we want to output a conjecture HE that is accepted by the Lockean rule

for the conditional measure P(· |E). The difference is that credible intervals require this

for hypotheses about the parameter values conditional on data, while confidence intervals

require it for hypotheses about data conditional on parameter values. However, since the

content of the hypothesis changes with the evidence we are conditioning on, there is no

sense in which either construction depends on the notion of probabilistic stability or resilience.

Conclusion. As has been pointed out by Baltag and Smets [6], capturing acceptance as

a probabilistic invariance condition aligns itself well with a suggestive view in information

dynamics – at the root of a battle-tested research tradition – that seeks to characterise salient

informational states by the transformations that leave them invariant. We saw in this thesis

that probabilistic stability, as it is with all things, can both hold promise and bring trouble.

Despite their simplicity, the notion of probabilistic stability and its associated acceptance rule

are a source of attractive logical and mathematical questions, offer a promising philosophical

program relating all-out-beliefs to numerical credences (and subjective probability to chance

[53]), and raise poignant methodological questions about logical models of statistical and

probabilistic reasoning.

It is indeed a fundamental tension in epistemology and in science that we want our

methods to be, in the face of change, both responsive and resilient. The hope is that our

investigation of the stability rule offers an instructive perspective on the risks and rewards

of resilience. We leave this – until new information comes in – as a final word.
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Appendix: order relations

Order relations on selection structures (Ω,A, σ)

Order Definition

A�B σ(A ∪B)⊆A \B

A .D B D ∩ (A ∪B) = ∅ with D�B and D 6�A

A . B A�B or A .D B

ω �σ B (ω ∈ Ω) {ω}�B, that is σ(B ∪ {ω}) = {ω} ∩Bc

B �σ ω ω 6�σ B, that is σ(B ∪ {ω} 6= {ω} ∩Bc

A<∗σ B (A�σ B or A�σ B). Equivalently: either [A is a A-atom
and A�B] or [B is a A-atom and B 6�A]

When A = P(Ω), we have

<∗σ :=
{

({ω}, X)
∣∣ω �σ X} ∪ {(X, {ω})

∣∣ω 6�σ X}

Order relations in LKBS

Abbreviation Definition Semantic property

(none) Bϕ∨ψ¬ψ [[ϕ]]� [[ψ]]

ϕ .γ ψ K
(
γ→¬(ϕ ∨ ψ)

)
∧ ¬Bγ∨ϕ¬ϕ ∧ Bγ∨ψ¬ψ [[ϕ]] .[[γ]] [[ψ]]

ϕ . ψ
(
Bϕ∨ψ¬ψ

)
∨ ϕ .γ ψ [[ϕ]] . [[ψ]]
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