Corrections to some publications Anne S.Troelstra

December 10, 2018

Preface

This report contains corrections to some of my books and one longer paper, and combines earlier lists posted on my profile page at the University of Amsterdam, with some more recent additions.

The most important correction concerns the recurion theory for continuous function application. Such a theory was outlined in Troelstra-van Dalen, Constructivism in Mathematics in the subsections 3.7.9-15, but the sketch was inadequate, since the strictness conditions for theories based on logic with partially defined terms had not been takern into account. An improved version was given in section 2.6 of my Handbook of Proof Theory article, 'Realizability', but as Joan Moschovakis found out, this version was still not general enough; jointly we worked out an improved version.

The report contains:

1. Corrections to volume 1 of A.S. Troelstra and D. van Dalen, *Constructivism in Mathematics*, Amsterdam: Elsevier 1988.

2. Corrections to volume 2 of A.S. Troelstra and D. van Dalen, *Constructivism in Mathematics*, Amsterdam: Elsevier 1988. The last part of these corrections is a renewed discussion of the theory of the 'creative subject'. I am not putting forward a new theory, but only correct some deficinceies in my earlier expositions.

3. Corrections to A.S. Troelstra (editor), *Metamathematical investigation of intuitionistic arithmetic and analysis*, Springer Lecture Notes 344, Heidelberg: Springer Verlag 1973.

4. Corrections to the second edition of A.S. Troelstra and H. Schwichtenberg, *Basic Proof Theory*, Cambridge, U.K.: Cambridge University Press 2000.

5. A few important corrections (list not complete) to the Chapter VI, 'Realizability', of S. Buss (editor), *Handbook of Proof Theory*, Amsterdam: Elsevier 1998.

> Anne S. Troelstra December 2018

A.S. Troelstra, D. van Dalen, Constructivism in Mathematics – Corrections

Corrections to Volume 1

compiled by Anne S. Troelstra and Joan Rand Moschovakis 19 July 2018

- 32 Add to E1.3.1: "*Hint.* A good notation helps in bookkeeping. For example, use (q, r) for the pair of proofs q, r; π_1, π_2 for the projections (unpairing functions); for a proof p of $A \lor B$ from a proof of A or a proof q of B we write $\langle 0, p \rangle$ and $\langle 1, q \rangle$ respectively. The lambda notation can be used to describe functions: $\lambda x.t$ is the function described by the term t as function of x."
- 32, line 1 of E1.3.3 read "...König's lemma in 2.4 for decidable trees"
- 32, E1.3.3 Change the hint to: "*Hint*. Use a decidable predicate A such that $\forall n(A(n) \lor \neg A(n))$, the n such that A(n), if existing, is unique, but ? $(\exists nA(n) \rightarrow \exists k(A(2k) \lor \exists kA(2k+1))$."
- 38 in the first and second group of displayed proof trees, interchange $\wedge E_r$ and $\wedge E_l.$
- 41² change "y not free in A." into "y not free in A; y must be free for x in A."
- 41⁴ change "y not free in A." into "y not free in A; y must be free for x in A."
- 53_{12} change "(by (1))" to "(by (2))".
- 58^7 read "left to right" for "right to left".
- 60_{15} for "context" read "contexts".
- 64_1 read "I-isolating (I-spreading)".
- 65^2 read "IQC" for "MQC".
- 68₅ read " $\forall x(A \rightarrow B)$ " in place of " $\exists x(A \rightarrow B)$ ".
- 68₁ " $x \notin FV(B)$ " in place of " $x \in FV(B)$ ".
- 69_7 " \forall I" in place of " \exists I".
- 728 replace "or $y \notin FV(B)$ " by "(or $y \notin FV(B)$ and y free for x in B)".
- 87₃ read "C-saturated" for " $\mathcal{L}(C)$ -saturated".
- 88¹⁶ " $\Gamma^{k+1} = \Gamma^k$ " in place of " $\Gamma_{k+1} = \Gamma_k$ ".
- 899 " C_{n+2}^* -saturated" instead of " C_{n+1}^* -saturated".
- 90 in the diagram on the right, replace "(0, 1, 2)" by "(0, 1, 3)".
- 91^2 read "of [finite] tree models".

- 91₂ read " $S(k) = S(k') \lor S(k') = S(t_{k,i})$ ".
- 91, line 3 of 6.11, insert " $k_0 \in K^*$ ", after " $K^* \subset K$ ".
- 92^{8,9} read " $k \Vdash B_1 \to B_2$ iff $\forall k' \ge k(k' \Vdash B_1 \Rightarrow k' \Vdash B_2)$, which implies $\forall k' \ge^* k(k' \Vdash^* B_1 \Rightarrow k' \Vdash^* B_2)$, hence $k \Vdash$ ".
- 103_6 delete the first (.
- 108¹¹ " $x \notin FV(P)$ " instead of " $x \notin FV(A)$ ".
- 109₈ " $k_0 \nvDash' P$ for P prime" should be "for P prime, $k_0 \Vdash' P$ iff for all $i \ \mathcal{K}_i \Vdash P$ ".
- $109_{6.5}$ delete "or an existential formula".
- 113⁹ read " Π_2^0 ".
- 122_{14} "y 0 = y" instead of "y 0 = 0".
- 130 just above (4) read "so assume".
- 133^9 read "upper bound".
- 1334 insert space between " (\vec{z}) " and "(the".
- 1388 drop "D" before " \vdash ".
- $141^{2,4}$ change " \vdash " to " \mid ".
- 142_{11} read "**5.12.**" for "**5.1.2.**".
- 143 Correct the proof of 5.16, by replacing the lines 2–6 of the proof by:

PROOF. The proof of (i) follows, under the assumption $C \in \mathcal{RH}$, by showing that, if D is a s.p.p of C, then $C \vdash D \Rightarrow C|D$, using induction on D. It suffices to show:

- (a) if $C \vdash A \land B$ and $C \vdash A \Rightarrow C | A, C \vdash B \Rightarrow C | B$, then $C | (A \land B)$;
- (b) if $C \vdash A \rightarrow B$ and $C \vdash B \Rightarrow C|B$, then $C|(A \rightarrow B)$;
- (c) if $C \vdash \forall xA$ and for all $n, C \vdash A[x/\bar{n}] \Rightarrow C[A[x/\bar{n}]]$, then $C[\forall xA;$
- (d) if P is prime and $C \vdash P$ then C|P.
- 157-158 Subsections 3.7.9 3.7.13 have to be replaced; see the corrected version at the end of the list of corrections for volume 1.
- 160⁷ read $\Lambda^1 x.\varphi$ for $\Lambda^1 x.t$ and read $\Lambda^0 \alpha.t$ for $\Lambda^0 \alpha.\varphi$.
- 179² read "Let $\psi, \chi, \theta, \ldots$ ".
- 179_7 read "5.13" for "5.12".
- 179 replace in E3.5.3 " \vdash " everywhere by " $\Gamma \vdash$ ".

202¹⁰ for " $(x \simeq_1 x)$ " read " $\forall y(x \simeq_1 x')$ ", and for " $(\exists y A(x,y))$ " read " $\exists y(A(x,y))$ ".

- 202^{17} for " \approx_1 " read " \simeq_1 ".
- 210₁₅ for " $\neg \exists y (\delta' y = 0)$ " read " $\neg \exists x (\delta' x = 0)$ " and for " $\neg \exists y (\delta'' y = 0)$ " read " $\neg \exists x (\delta'' x = 0)$ ".
- $202_{11,12,14}$ "MP_{PR}" instead of "MR_{PR}" (four times).
- 242, in second line of exercise 4.2.2 , replace "DC-D" by "DC- $\mathbb{N}\times\mathbb{D}$ ".
- 245₃ read " $\beta \in \bar{\alpha}x$ " for " $\beta \in \bar{\alpha}y$ ".
- 247¹ for " $\forall m \leq n$ " read " $\forall m \prec n$ ".
- 262⁹ for " $\alpha k + 1$ " read " αk " and read " \leq " for "<".
- 264₁₁ read " $x \neq 0$ ".
- 274, line 4 in 5.10 read "order-isomorphic".
- 274_{14} read "and ϕ leaves all rationals".
- 276^8 for "IR" read "Q".
- 287₃ " \exists -PEM" should be " \forall -PEM".
- 293 Remark concerning the proof of 6.1.3. The property of covering is interpreted as: there is an operation which from a sufficiently good approximation of a point d in the interval tells us either $d \in A$ or $d \in B$. (Both may be true, but the operation makes a choice.)
- 297⁸ read "m|x-y|" for "m".
- 300^{11} read " $a_{n-1}x^{n-i-1}$ " for " $a_{n-i}x^{n-i-1}$ ".
- 300^{13} read "2⁻¹" for "2⁻ⁱ".
- 303, line 4 of 3.2, for " $U(2^{-n-1})$ " read " $U(2^{-n})$ ".
- 306^1 replace " 2^{-m} " by " 2^{-m+1} " (twice).
- 306^{10} replace "2^{-m}" by "2^{-m+1}".
- 306^{12} replace "2^{-m}" by "2^{-m+1}".
- 308_5 read "k + m + 1 points".
- 309_{10} for " $\frac{1}{2}(r_n s_n)$ " read " $\frac{1}{2}(s_n r_n)$ ".
- 310 in (i) of 4.5 read " $J_m \subset I_n^{-}$ " for " $J_n \subset I_n^{-}$ ".
- 310₁₃ delete "from $\langle I_n \rangle_n$ ".
- 311 in the picture the left end of I_n^- should coincide with the left end of J_{p+3} .
- 312 in the first proof of 6.4.8, the appeal to 6.4.5 is not needed; a singular cover by means of intervals with rational endpoints suffices.

- 312^1 for "quasi-order" read "quasi-cover".
- 312^2 " I_2 " should be " I_1 ".
- 313₁ for " $\geq |I_n|$ " read " $\geq |J_m|$ ".
- 313₂ read " $J_m \subset I_n$ for some m".
- 317¹³ read " $\neg \exists n' \forall mn$ " for " $\neg \exists n'mn$ ".
- 317₃ displayed formula (1) should end with " $< 2^{-n-1}$)".
- 319, 3 lines below (6), for " $-q_y$ |" read " $-q_{\{z\}}(y)$ |", and " $q_{\{z\}\phi(y,\psi y)}$ |" for " $q_{\phi(y,\psi y)}$ |".
- 320^1 read "From (9)" for "From (7)".
- 338 correct Rasiowa (1954), replacing "1, 229–231" by "2, 121–124"
- pages I-IX from all page numbers of the preliminaries, in lower case roman numerals, one has to subtract 4 ("xv" becomes "xi" etc.) (the preliminaries ought to have been inserted after the table of contents and numbered accordingly).

Corrected version of subsections 3.7.9–15

3.7.9. DEFINITION. In EL we introduce abbreviations

$$\begin{aligned} \alpha(\beta) &= x &:= \quad \exists y(\alpha(\beta y) = x + 1 \land \forall y' < y(\alpha(\beta y') = 0) \\ \alpha|\beta &= \gamma &:= \quad \forall x(\lambda n.\alpha(\hat{x} * n)(\beta) = \gamma x) \land \alpha 0 = 0, \text{ or equivalently} \\ \forall x \exists y(\alpha(\hat{x} * \bar{\beta} y) = \gamma x + 1 \land \forall y' < y(\alpha(\hat{x} * \bar{\beta} y') = 0)) \land \alpha 0 = 0. \end{aligned}$$

We may introduce $|, \cdot(\cdot)$ as primitive operators in a conservative extension **EL**^{*} based on E⁺-logic, also called LPT, the logic of partial terms. \Box DEFINITION. **EL**^{*} is a conservative extension of **EL** based on the logic of partial terms, to which $\lambda \alpha \beta . \alpha | \beta$ and $\lambda \alpha \beta . \alpha (\beta)$ have been added as primitive operations. Numerical lambda-abstraction satisfies:

$$s \downarrow \land (\lambda x.t) \downarrow \rightarrow (\lambda x.t) s = t[x/s], \ (\lambda x.t) \downarrow \leftrightarrow \forall x(t \downarrow).$$

For function application we require strictness:

 $\phi t \downarrow \leftrightarrow \phi \downarrow \land t \downarrow .$

(The implication from right to left must hold since $\phi \downarrow$ is supposed to imply totality of the function denoted by ϕ .) For Rec we have

 $\operatorname{Rec}(t,\phi)\downarrow\leftrightarrow t\downarrow\wedge\phi\downarrow$.

We also require strictness for the operations $\cdot | \cdot$ and $\cdot (\cdot)$, that is to say

$$\phi|\psi\downarrow\rightarrow\psi\downarrow\wedge\phi\downarrow,\quad\phi(\psi)\downarrow\rightarrow\psi\downarrow\wedge\phi\downarrow$$

3.7.10. DEFINITION. (*The class of neighbourhood functions*)

$$\alpha \in K^* := \alpha 0 = 0 \land \forall nm(\alpha n > 0 \to \alpha n = \alpha(n * m)) \land \forall \beta \exists x(\alpha(\bar{\beta}x) > 0).$$

Crucial is the following

3.7.11. PROPOSITION. To each function term ϕ of **EL**^{*}, and each numerical term t of **EL**^{*} and free function variable α , we can construct function terms $\Phi_{\phi}^{\alpha} \in K^*$, $\Phi_t^{\alpha} \in K^*$ of **EL** such that if γ is free for α in ϕ or t respectively (and does not occur in ϕ or t unless γ is α):

- (i) $\Phi^{\alpha}_{\phi} | \gamma \simeq \phi[\alpha/\gamma]$ and in particular $\Phi^{\alpha}_{\phi} | \alpha \simeq \phi$;
- (ii) $(\Phi_t^{\alpha}|\gamma) \downarrow \text{ iff } t[\alpha/\gamma] \downarrow;$
- (iii) $t[\alpha/\gamma] \downarrow \rightarrow (\Phi_t^{\alpha}|\gamma) = t[\alpha/\gamma]$ and in particular $t \downarrow \rightarrow (\Phi_t^{\alpha}|\alpha) = t;$
- (iv) $\operatorname{FV}(\Phi_t^{\alpha}) \subset \operatorname{FV}(t) \setminus \{\alpha\}, \operatorname{FV}(\Phi_{\phi}^{\alpha}) \subset \operatorname{FV}(\phi) \setminus \{\alpha\}, \Phi_t^{\alpha}, \Phi_{\phi}^{\alpha}$ primitive recursive in their free variables.

PROOF. (i)–(iv) are proved by simultaneous induction on the construction of numerical and function terms. Instead of taking exactly the numerical and function terms as specified for \mathbf{EL}^* , we give the proof, for reasons of convenience, for a slightly different set interdefinable with the set generated by the primitives of \mathbf{EL}^* . In particular, instead of taking r as a primitive, we take its special case It ("iterator") satisfying

$$It(t, \psi)0 = t, \quad It(t, \psi)(Sz) = \psi(It(t, \psi)z).$$

From It we can easily define Rec satisfying

$$\operatorname{Rec}(t,\phi)0 = t, \ \operatorname{Rec}(t,\phi)(Sz) = \phi(\operatorname{Rec}(t,\phi)z,z),$$

by taking

$$\operatorname{Rec}(t,\phi) := \lambda z.j_0(\operatorname{It}(j(t,0),\lambda u.j(\phi u, S(j_1u)))z),$$

and from Rec we can readily define r.

The reason that we need a function term with partial continuous application | to represent a numerical term (instead of application $\cdot(\cdot)$) is that a numerical term t may contain function-terms as subterms, which all have to be defined by the strictness condition of the logic of partial terms; this is a Π_2^0 -condition and cannot be expressed by definedness of a numerical term.

We consider a few typical cases. In all cases we put $\Phi_{\phi}^{\alpha}0 = 0$, $\Phi_t^{\alpha}0 = 0$. If $u \neq 0$ then $u = \hat{z} * \bar{\gamma}n$ for $z = (u)_0$ and every γ such that $(u)_{i+1} = \gamma(i)$ for all i < n, where |u| = n + 1. For easier comprehension, for $u \neq 0$ we state the definitions of $\Phi_{\phi}^{\alpha}u$, $\Phi_t^{\alpha}u$ in terms of $\hat{z} * \bar{\gamma}n$ (for fresh variables z, n and γ) instead of u.

Case 1. $t \equiv x$. Take $\Phi_t^{\alpha}(\hat{z} * \bar{\gamma}n) = x + 1$. Similarly for $t \equiv 0$. Case 2. $\phi \equiv \alpha$. Take

$$\Phi^{\alpha}_{\alpha}(\hat{z} * \bar{\gamma}n) = \begin{cases} \gamma z + 1 \text{ if } z < n, \\ 0 \text{ otherwise.} \end{cases}$$

Case 3. $\phi \equiv \beta, \beta \not\equiv \alpha$. Put

$$\Phi^{\alpha}_{\beta}(\hat{z} * \bar{\gamma}n) = \beta z + 1 \text{ for all } n.$$

Case 4. $\phi \equiv S$. Put

$$\Phi_S^{\alpha}(\hat{z} * \bar{\gamma}n) = Sz + 1$$
 for all n .

Case 5. $t \equiv \phi t'$. Put

$$\Phi_t^{\alpha}(\hat{z}*\bar{\gamma}n) = \begin{cases} \Phi_{\phi}^{\alpha}(\langle \Phi_{t'}^{\alpha}(\hat{0}*\bar{\gamma}n) - 1 \rangle * \bar{\gamma}n) \text{ if } \Phi_{t'}^{\alpha}(\hat{0}*\bar{\gamma}n) > 0 \\ \land \Phi_{\phi}^{\alpha}(\langle \Phi_{t'}^{\alpha}(\hat{0}*\bar{\gamma}n) - 1 \rangle * \bar{\gamma}n) > 0 \\ \land \Phi_{t'}^{\alpha}(\hat{z}*\bar{\gamma}n) > 0 \land \Phi_{\phi}^{\alpha}(\hat{z}*\bar{\gamma}n) > 0, \\ 0 \text{ otherwise.} \end{cases}$$

Case 6. $\phi \equiv \lambda x.t.$ Put

$$\Phi^{\alpha}_{\phi}(\hat{z}*\bar{\gamma}n) = \begin{cases} \Phi^{\alpha}_{t[x/z]}(\hat{0}*\bar{\gamma}n) \text{ if } \Phi^{\alpha}_{t[x/z]}(\hat{0}*\bar{\gamma}n) > 0 \land \Phi^{\alpha}_{t[x/j_0z]}(\langle j_1z \rangle * \bar{\gamma}n) > 0, \\ 0 \text{ otherwise.} \end{cases}$$

Case 7. $\phi \equiv It(t, \psi)$. We put

$$\Phi^{\alpha}_{\phi}(\hat{0} * \bar{\gamma}n) = \begin{cases} \Phi^{\alpha}_t(\hat{0} * \bar{\gamma}n) \text{ if } \Phi^{\alpha}_t(\hat{0} * \bar{\gamma}n) > 0 \land \Phi^{\alpha}_{\psi}(\hat{0} * \bar{\gamma}n) > 0, \\ 0 \text{ otherwise.} \end{cases}$$

$$\Phi^{\alpha}_{\phi}(\langle Sz \rangle * \bar{\gamma}n) = \begin{cases} \phi^{\alpha}_{\psi}(\langle \Phi^{\alpha}_{\phi}(\hat{z} * \bar{\gamma}n) - 1 \rangle * \bar{\gamma}n) \text{ if } \\ \phi^{\alpha}_{\psi}(\langle \Phi^{\alpha}_{\phi}(\hat{z} * \bar{\gamma}n) - 1 \rangle * \bar{\gamma}n) > 0 \land \\ \Phi^{\alpha}_{\phi}(\hat{z} * \bar{\gamma}n) > 0 \land \Phi^{\alpha}_{\psi}(\langle Sz \rangle * \bar{\gamma}n) > 0 \land \\ \Phi^{\alpha}_{t}(\langle Sz \rangle * \bar{\gamma}n) > 0, \\ 0 \text{ otherwise.} \end{cases}$$

Case 8. $\phi \equiv j, j_1, j_2$. Easy and left to the reader. Case 9. $t \equiv \phi(\psi)$. Take

$$\Phi^{\alpha}_{\phi(\psi)}(\hat{x}*\bar{\gamma}n) = \begin{cases} z+1 \text{ if } \exists u < n \forall y < \mathrm{lth}(u) (\Phi^{\alpha}_{\psi}(\hat{y}*\bar{\gamma}n) = (u)_y + 1 \land \\ \Phi^{\alpha}_{\phi}(u) = z+1) \land \Phi^{\alpha}_{\phi}(\hat{x}*\bar{\gamma}n) > 0 \land \Phi^{\alpha}_{\psi}(\hat{x}*\bar{\gamma}n) > 0, \\ 0 \text{ otherwise.} \end{cases}$$

Case 10. $\phi \equiv \psi | \xi$. Take

$$\Phi^{\alpha}_{\psi|\xi}(\hat{x}*\bar{\gamma}n) = \begin{cases} z+1 \text{ if } \exists u < n \forall y < \operatorname{lth}(u)(\Phi^{\alpha}_{\xi}(\hat{y}*\bar{\gamma}n) = (u)_y + 1) \land \\ \Phi^{\alpha}_{\psi}(\hat{x}*u) = z+1) \land \Phi^{\alpha}_{\psi}(\hat{x}*\bar{\gamma}n) > 0 \land \Phi^{\alpha}_{\xi}(\hat{x}*\bar{\gamma}n) > 0, \\ 0 \text{ otherwise }. \end{cases}$$

Note that in Cases 5, 7 (for Sz), 9, 10 of this definition the last two conjuncts, and in Case 6 the last conjunct, are needed to guarantee strictness. \Box

3.7.12. DEFINITION. Let

$$\alpha|(\beta_0,\ldots,\beta_{n-1}):=\alpha|\nu_n(\beta_0,\ldots,\beta_{n-1}),$$
$$\alpha(\beta_0,\ldots,\beta_{n-1}):=\alpha(\nu_n(\beta_0,\ldots,\beta_{n-1})).$$

We are now ready to build an analogue of ordinary recursion theory with partial continuous function application instead of partial recursive application. The preceding lemma has as consequence a version of the smn-theorem:

3.7.13. THEOREM. (smn-theorem)

(i) There is a primitive recursive binary functional \wedge_n such that

$$(\alpha \wedge_n \beta_0)|(\beta_1, \dots, \beta_n) \simeq \alpha|(\beta_0, \dots, \beta_n)|$$

(ii) There is a primitive recursive binary functional \wedge'_n such that

$$(\alpha \wedge'_n \beta_0)(\beta_1, \ldots, \beta_n) \simeq \alpha(\beta_0, \ldots, \beta_n).$$

PROOF. Straightforward by the preceding lemma. \Box

3.7.14. (No change from 3.7.14.)

3.7.15. NOTATION $(\Lambda^0 x, \Lambda^1 x, \Lambda^0 \alpha, \Lambda^1 \alpha)$. On the basis of Proposition 3.7.11, for each numerical term t and each function term ϕ of **EL**^{*} we can now define function terms of **EL**:

$$\begin{split} \Lambda^0 \alpha.t &= \Phi^\alpha_t, \\ \Lambda^1 \alpha.\phi &= \Phi^\alpha_\phi, \\ \Lambda^1 x.\phi &= \Phi^\alpha_{\phi'}, \end{split}$$

where $\phi'[\alpha] := \phi[x/\alpha 0]$, and with the properties $(\Lambda^0 \alpha. t)|\alpha)(0) \simeq t$, $(\Lambda^1 \alpha. \phi)|\alpha \simeq \phi$ and $(\Lambda^1 x. \phi)|\lambda y. x \simeq \phi$.

Using Theorem 3.7.14, for each numerical term t of **EL**^{*} there is a term t' (which we will denote by $\Lambda^0 x.t$) of **EL**, primitive recursive in the parameters of t minus x, such that $\{t'\}(x) \simeq t$ for all x.

Corrections to Volume 2

compiled by Anne S. Troelstra and Joan Rand Moschovakis 19 July 2018

 357^{10} read " $\forall y \neg \neg A$ " for " $\forall y A$ ".

- 357^{11} read "and so for $[x]_M$ a point of M, using Markov's principle" for "and so".
- 360 Delete formula (5) and replace the next line (line 11) by "(exercise).".
- 360^{16} read "(4)" for "(5)".
- 360_9 delete "For a ... see E7.3.2".
- 381 Delete exercise 7.3.2.
- Due to an oversight, the axioms for \mathbf{HA}_0^{ω} as stated are too weak. Instead of 452the equality axioms as stated, one should use the formulation of in section 1.6.15 of A.S. Troelstra (editor), Metamathematical Investigation of intuitionistic Arithmetic and Analysis, Berlin 1973. The system \mathbf{HA}_{0}^{ω} is there called simply \mathbf{HA}^{ω} . The equality axioms there required replacement in an arbitrary context, for example $t[\mathbf{k}t_1t_2] = t[t_1]$ and $t[\mathbf{s}t_1t_2t_3] = t[t_1t_3(t_2t_3)]$. Another solution was proposed by Benno van den Berg in (A note on arithmetic in finite types, arXiv 1408.3557v2 [math.LO] 20 Sep 2016) namely adding to the axioms of \mathbf{HA}_0^{ω} one new congruence law $x =_0 y \to fx =_0 fy$, together with the axioms $\mathbf{b}xyz = x(yz)$ and $\mathbf{q}xyz = x(zy)$ for two new combinators \mathbf{b} and \mathbf{q} , and defining equality at higher types in terms of equality at type 0 according to the principle of observational equivalence: $x =_{\sigma} y := \forall f^{\sigma \to 0}(fx =_0 fy).$ The congruence laws for equality at all finite types are provable in this version of \mathbf{HA}_{0}^{ω} , correcting a circularity in the proof on pages 452-453. Then \mathbf{HA}^{ω} proves $\mathbf{b} = \mathbf{s}(\mathbf{ks})\mathbf{k}$ and $\mathbf{q} = \mathbf{b}(\mathbf{s}(\mathbf{bbs})(\mathbf{kk}))\mathbf{b}$.
- 476, 477 See at the end of this list.
- 478₁₂ read " $h := \lambda \bar{x} \cdot \mathbf{r}(f\bar{x})(\lambda uv.g\bar{x}(Pv)u)$ ".
- 542⁷ read " $\Gamma \setminus \{A\} \vdash$ " for " $\Gamma \setminus \{A\} \vdash$ ".
- $543^{14}\,$ Read "S-successor" for "S-successor set".
- 543¹⁵ replace " $\theta \equiv$ " by "The set $\theta \equiv$ ".
- 543_{17} delete "set".
- 543₁ read " $(P \to Q) \to P$ " for " $P \to (Q \to P)$ ".
- 544 The first line of formulas should end with "... $P \vdash P$ }".
- 547 line 7 of 5.6, read " $Et_0 \lor Et_1$ " for " $Et_0 \land Et_1$ ".
- 565 last line of 9.4 read "maps" for "mappings".
- 566₁ Interchange " \cap " and " \cup ".

- 583 line 5 of 2.11, read "FV (A_{i+j}) " for "FV (A_n) ".
- 656^{13} read " $\bar{\alpha}$ " for " $\vec{\alpha}$ ".
- 660₁₀ read " $(\#(\alpha_1,\ldots,\alpha_p) \rightarrow)$ " for " $((\alpha_1,\ldots,\alpha_p) \rightarrow)$ ".
- 660₆ read " $A(\vec{\alpha}, x)$)" for " $A(\vec{\alpha}, x)$ ".
- 660₃ read " $A(\vec{\alpha}, \vec{\beta})$ " for " $A(\alpha, \beta)$ ".
- 661₆ read " $\dot{\forall}$ " for " $\dot{\exists}$ ".
- 663^{10} read " \lor " for " \land ".
- 663₃ read " $\vec{n} \circledast \vec{m}$ " for " $\vec{n} \ast \vec{m}$ ".
- 680, line 1 of 1.5, insert after "Beth model": "The definition of Beth model obviously extends to the case where (K, \leq_K) is a collection of spreads".
- 680, line 3 of 1.5, insert before "as follows": ", where (K', \preceq') is a set of spreads,".
- 680, line 4 of 1.5, read "finite, inhabited, nondecreasing".
- 680₂ read " $(\bar{\alpha}x \Vdash A \text{ or" for "}(\bar{\alpha}x \Vdash \text{ or"})$.
- 681 remark concerning the proof of the theorem in 1.5. If the Kripke model has no root, the corresponding Beth model becomes rather a collection of spreads instead of a single spread, which is more general than permitted by our definition of Beth model. But this does not otherwise affect the proof.
- 681 add at the end of 1.5: REMARK. The construction permits many slight variations. If we restrict attention to Kripke models with a root, and restrict K' to finite inhabited nondecreasing sequences starting with a root, the construction works equally well; this variant has been illustrated in fig. 13.1".
- 681^{17} read " k_n " for "k".
- 683_4 LS_K, in a degenerate case, may consist of a single sequence, i.e., lawlike and lawless coincide. But this does not affect the argument.
- 687 replace line 4 of 2.4. by " $k \Vdash P := \exists z \forall k' \succeq_z k (\vdash \Gamma_{k'} \to A)$.".
- 687 replace line 4 of 2.5. by "Case 1. For A prime apply lemma 2.3."
- $689^6 \vdash_{x+lth(k)}$ instead of \vdash_x (twice).
- 6899 for "lemma 2.3" read "the covering property (lemma 1.2(i))".
- 853^4 read "recovered" for "removed".
- 872 correct Rasiowa (1954), replacing "1, 229–231" by "2, 121–124"
- XXX under "Howard, W.A. 1980" read "565" for "564".

Corrections to pages 476, 477.

It is not generally true that if $x \notin FV(t'), y \not\equiv x$, then

 $\lambda x.(t[y/t']) \simeq (\lambda x.t)[y/t'],$

(consider e.g. $t \equiv y, t' \equiv kk$), but if $x \notin FV(t'), y \notin FV(t''), y \neq x$, then

$$\boldsymbol{E}t'' \to ((\lambda x.t)[y/t'])t'' \simeq t[x/t''][y/t'] \simeq t[y/t'][x/t''].$$

The failure of the first equation is due to the fact that $\lambda x.t$ has been defined by induction on the complexity of t. This necessitates some repairs. For example, the argument in 476^{1,2} should read:

" $\chi \chi \simeq (\lambda z y. x(zz)y) \chi \simeq (\lambda y. x(zz)y)[z/\chi]$, and since an expression $\lambda x...$ always exists, uniformly in the parameters, i.e. remains "existing" if we substitute existing objects for the free variables, we see that $\boldsymbol{E}(\operatorname{fix}(x))$; also ...".

Corresponding corrections (i.e. postponement of substitution in a defined lambdaterm) has to be made in $476_{6,4}$ and 477_{10} . Lines 476_{6-3} are to be replaced by:

$$\begin{array}{rcl} \boldsymbol{r}tt'0 &\simeq & \phi\rho 0 \simeq \rho(\phi\rho) 0 \simeq \\ &\simeq & \boldsymbol{d}(\boldsymbol{k}t)((\lambda z.y(\phi\rho(Pz))z)[y/t'])000 \\ &\simeq & \boldsymbol{d}(\boldsymbol{k}t)(t'(\phi\rho(P0))00 \\ &\simeq & \boldsymbol{k}t0 \simeq t. \end{array}$$

If $n \in \mathbb{N}$, $n \neq 0$, then

$$\begin{aligned} \boldsymbol{r}tt'n &\simeq \phi\rho n \simeq \rho(\phi\rho)n \\ &\simeq \boldsymbol{d}(\boldsymbol{k}t)((\lambda z.y(\phi\rho(Pz))z)[y/t'])n0n \\ &\simeq \boldsymbol{d}(\boldsymbol{k}t)(t'(\phi\rho(Pn))n)0n \\ &\simeq t'(\phi\rho(Pn))n \simeq t'(\boldsymbol{r}tt'(Pn))n \quad \Box \end{aligned}$$

Lines 477_{10-7} are to be replaced by

$$\mu f \simeq \phi M f \simeq M(\phi M) f \simeq M \mu f \simeq d(\mathbf{k}0)((\lambda g.S(xg))[x/\mu])(f0)0f^+,$$

and this latter expression is equal to

$$k0f^+ = 0$$
 if $f0 = 0$, and
 $(\lambda g.S(xg)[x/\mu])f^+ \simeq S(\mu f^+)$ if $f0 > 0$.

Some remarks on the theory of the 'creative subject'

The terms 'creative subject', or 'idealized mathematician', hitherto commonly used are perhaps not very felicitous. Henceforth, in this note, I will use 'creating mathematician', abbreviated as CM. The sole purpose of this note is to emend my earlier presentation of this topic in *Principles of Intuitionism* (1969) and *Constructivism* in Mathematics (1988). Hence I shall not go into the details of recent papers on the topic by J.M. Niekus and M. van Atten. For Niekus approach, see his papers 'Brouwer's incomplete objects', History and Philosophy of Logic 31 (2010), p.31-46; 'The method of the creative subject', Proceedings of the KNAW A90 (1967), 431-443; 'What is a choice sequence? How a solution of Troelstra's paradox shows the way to an answer to this question' (*To appear*). It suffices here to say that it was Joop Niekus who convinced me that the theory of the creative mathematician as proposed by G.Kreisel assumed much more than is actually needed for L.E.J. Brouwer's counterexamples (at least the simpler ones), and that it was Mark van Atten who spotted a slight flaw in the original presentation of the so-called 'paradox' presented in Principles of Intuitionism and again in Constructivism in Mathematics. This flaw will be corrected in this note, along with other corrections.

The theory CM0–4. So let me first state (again) the theory of the CM as proposed by Kreisel. The starting point is the assumption CM0:

CM0 All actions of the CM are arranged in an ω -sequence of discrete stages

We write [n]A for: 'at stage n the CM has evidence (proof, constructed as true) for statement A'. Three further principles are assumed:

$$CM1 \qquad \forall nm([n]A \to [n+m]A)$$

That is to say, the evidence is cumulative: what the CM knows at stage n, remains available at all later stages.

CM2 $\forall n([n]A \lor \neg [n]A)$

In words, at any stage the CM knows whether he has already obtained evidence for A or not.

CM3
$$A \leftrightarrow \exists n[n]A$$

In words, A is true if and only if the CM has evidence for A at some stage n. For this third principle also a weaker form has been proposed:

CM3*
$$(\exists n([n]A \to A) \land (A \to \neg \neg \exists n[n]A)$$

Discussion. Principle CM1 seems unproblematic, once one has accepted CM0. Principle CM2 raises questions. At any given stage, which, and how many, statements have become evident? It is tempting, for example, to assume that whenever [n]A and [n]B one also has $[n](A \wedge B)$. But once on this track, can we assume that class of statements which is evident at stage n is closed under the deduction rules of intuitionistic first-order logic? That seems an unwarranted assumption, since we have no decision procedure for derivability in first-order logic. The only available way out, as far as I can see, is to assume the 'one-conclusion at a time' principle:

CM4 At any stage at most one new conclusion is drawn

Though weakening CM3 to CM3^{*} does not block the paradox discussed below, there are other reasons to believe CM3^{*} to be a more plausible principle than CM3. For the obvious justification of CM3 in the direction from left to right runs as follows. A proof of the impication $A \to \exists n([n]A)$ requires a construction that transforms any proof p of A into a proof f(p) of $\exists n([n]A)$. But p occurs at some stage n, now take for f(p) the pair(n, p). However, is it natural to consider the number of the stage at which proof p is found to be part of p? I feel the proofs and constructions in the well-known 'BHK-interpretation' should not be time-dependent in this way.

On the other hand, suppose that we have a proof of A, and that we know that $\neg \exists n([n]A)$, then the second assumption says in fact that the CM cannot find a proof of A. But then A must be false; contradiction.

The paradox. Let us now use α , β to denote arbitrary, not necessarily predeterminate, and not necessarily infinite sequences of natural numbers, and let us consider statements of the form ' α is a total sequence'. For example, if α is defined as a primitive recursive sequence, this conclusion is immediate as soon as α is defined. If α is initially given to us as a partial recursive function, we may at a later stage conclude that α is a total sequence, nameley if we have found a proof of this fact. A lawless sequence is from the moment it is initiated a total sequence.

The original idea for the paradox was as follows. Let α^n be the *n*-th total sequence the CM encounters when running through the stages of activity; then consider a sequence β defined by

$$\beta(n) = \alpha^n(n) + 1$$

 β is total, and at some stage $m \beta$ should appear as an α^n . But then $\beta(n) = \alpha^n(n) = \alpha^n(n) + 1$, a contradiction. This is just a classical diagonalization argument. Mark van Atten observed that perhaps β is not well-defined, because, having encountered α^n , we are not certain how long we have to wait before the next total sequence appears. This can be remedied as follows. At stage 0 we take α^0 to be the constant zero function. As long as no new total sequence is declared at stage n + 1, we take α^{n+1} to be equal to α^n ; and if at stage n + 1 a new total sequence γ is found, we take α^{n+1} to be equal to γ . Then we can diagonalize as before.

Discussion. Originally, I used, instead of 'total sequence' the notion 'a total sequence determined by a recipe'. I used the word 'recipe' instead of 'lawlike', because I did not want to suggest that the sequence was recursive, only that it was fixed by a recipe relative to the activity of the CM in general. But in view of the fact that the CM is completely free in his actions, a 'sequence determined by a recipe' can be as un-predetermined as an arbitrary choice sequence.

There are several ways in which we may react to this paradox. One possibility is to note that L.E.J. Brouwer in his famous counterexamples actually assumed far less than the principles CM0–4. Another way out is to note that the notion

of a total sequence contains an impredicativity, that is to say if we allow the construction of β in the paradox above, then we cannot make the universe of all total sequences into a species in the sense of Brouwer, because Brouwer requires that the individual elements of a species can be defined before the species itself; this is a kind of predicativity requirement. To me it is not clear whether and to what extent Brouwer tolerated impredicativity: does it make sense to speak of the powerspecies consisting of *all* subspecies of a given species? Anyway, this is the direction in which Van Atten thinks the solution is to be found: see his preprint *Predicativity and parametric polymorphism of Brouwerion mplication* (July 2017).

This would mean that in the argument for the paradox either the β cannot be an element of the species of total sequences, or that the notion of a total sequence does not describe a species. In *Principles of Intuitionism* I enforced predicativity in another way: I considered a stratified universe of constructions. Constructions of level 0 were defined without explicit reference to the activity of the CM in time; constructions involving such a reference belonged to level 1, and constructions defined relative to constructions of level 1 were to have level 2, and so on. Obviously, the construction of the paradox is blocked, because the diagonalizing β always is of a level one higher than the level of the species of total functions used in its construction.

Brouwer's argument. We now present one of Brouwer's counterexamples explicitly involving the actions of the CM, and argue that this example uses less than is assumed in the theory CM0-4. Let A be a statement which has not yet been tested, that is to say the CM does not have of a proof of either $\neg A$ or of $\neg \neg A$.

The CM now constructs a sequence α_A as follows. To determine the value of α_A at n, the CM asks whether he has already evidence for either $\neg A$ of for $\neg \neg A$. If not, the value of $\alpha_A(n)$ is taken to be zero. If the value of $\alpha_A(n-1)$ is zero, and when the CM decides to produce the value of $\alpha_A(n)$ and by then has proved either $\neg A$ or $\neg \neg A$, the value of $\alpha_A(n)$ is taken to be 1. If the value of $\alpha_A(n-1)$ is 1, $\alpha_A(n) = 1$.

This argument may easily varied in several ways. Brouwer's first examples did not construct a sequence of natural numbers, but a sequence of rationals instead, which he used to show that, intuitionistically, for reals $x, y, x \neq y$ does not imply x # y.

In the example as presented here, $\neg(\alpha_A \neq \lambda x.0)$, that is to say α_A cannot be the constant zero function, for that would mean that the CM will never be able to find a proof of either $\neg A$ or $\neg \neg A$, but this can only mean that $\neg(\neg A \lor \neg \neg A)$ which is false. On the other hand, the CM cannot a priori predict when a proof of $\neg A$ or $\neg \neg A$ will be found, so the CM cannot indicate in advance a number n for which $\alpha_A(n) = 1$.

The argument does not rely on the principle CM0, which seems to say that the whole activity of the CM takes place along a single timeline; there is only a timeline associated with the generation of the values of α_A . On the other hand, statements CM1 and CM2 seem to be assumed here too as far as they relate to the timeline of α_A . Instead of CM3, only CM3* has been used.

A remark on proto-lawless sequences. The theory LS of lawless sequences has

only a single existential axiom, stating that to every initial segment there exist some lawless sequence α with that initial segment. A lawless sequence is often compared with the sequence of the casts of a die, but in that case we cannot guarantee that there is a die which produces a particular finite initial sequence of casts, specified in advance. This leads to a slight modification, proposed by G. Kreisel, of the comparison: a lawless sequence behaves like the casts of a die, where a finite initial sequence of results may be specified in advance (by deliberate placings of the die so to speak). Then it seems natural to consider of lawless sequences without any specification of initial segment; these have been called 'proto-lawless' in the literature.

That this picture of lawless sequences suggested by comparison with the cast of a die is sound, seems to be confirmed by the result that from a single lawless sequence α we may construct a an enumerable universe of sequences $\mathbf{U} := \{n * \alpha^n | n \in N\}$, such that if we assume the variables for lawless sequences in the theory **LS** to range over **U**, then all the axioms of **LS** hold.

However, this is perhaps not the most natural way of looking at the existential axiom for lawless sequences. Let **U** be any notion of choice sequence (for example, **U** may be the universe of lawless sequences). If we think of an α in **U** as given at any particular stage n in its generation as specified by an initial segment σ , together with a tree of possible continuations, then we may say that an existential statement about choice sequences in **U** is satisfied if, starting from the empty segment, there is a continuation σ such that the statement holds for any element of **U** beginning with σ .

Metamathematical Investigation of Intuitionistic Arithmetic and Analysis – Corrections, 22 June 2009

This report contains corrections and additions to "Metamathematical Investigation of Intuitionistic Arithmetic and Analysis" which appeared in 1973 as number 344 in the "Springer Lecture Notes in Mathematics" series. The book has been out of print for several years now, but is at present available in electronic form from the publisher. There the present list of corrections is also available.

This report has been typeset in Latex. Wavy underlining in the original text is now interpreted as boldface, underlining as italics. Double wavy underlining has been interpreted by a sans serif fount. However, we have retained double underlining and did not replace it by Fraktur.

A first list of Errata appeared in 1974 as a report of the Mathematical Institute of the University of Amsterdam; many more errata have been discovered since then. In particular I should like to thank Marc Bezem, Susumu Hayashi, Jane Bridge Kister, Jaap van Oosten and Jeffery Zucker for bringing corrections to my notice.

The counting of lines includes the lines in displayed formulas; for indications, e.g. a name or a number for a group of displayed lines, which are between lines so to speak, an ad hoc indication will be chosen.

Underlining in the original text has been rendered as italics in these correction; double underlining has been rendered as such, but a double wavy underlining corresponds to a sans serif letter in these corrections.

XIII Add below the summary of $\S6$:

§7 Applications: proof theoretic closure properties 258 List of rules (3.7.1) — closure under ED, DP, CR₀, ECR₀, ED', ACR, IPR'^{ω} (3.7.2–5) — closure under CR (3.7.6) — closure under ECR₁ (3.7.7–8) — extensions to analysis (3.7.9)

- 6 In 1.1.7, interchange " $\lor I_r$ " and " $\lor I_l$ ".
- 7₁₃ Read " $\exists E$ " for " $\exists I$ ".
- 8^5 Read "essentially".
- 8 In the first proof tree, " $B \to \lambda$ " should be " $B \to \lambda$ (2)" and "(2)" should be repeated at the lowest horizontal line.
- 16¹³ Read "A" for "F".
- 18 In 1.3.3 the axiom

$$x_i = x'_i \to \phi(x_1, \dots, x_i, \dots, x_n) = \phi(x_1, \dots, x'_i, \dots, x_n)$$

(for any *n*-ary function constant ϕ , $1 \leq i \leq n$) can be replaced by the corresponding axiom for S only:

$$x = y \to Sx = Sy,$$

since the general case can be established by induction (since all ϕ except S are introduced by schemas for primitive recursive functions).

- 18₁₁ Read "Defining" for "Definining".
- 19 Add at the bottom of the page rules expressing the functional character of the F_k :

$$\frac{F_k t_1 \dots t_{n-1} t_n \qquad F_k t_1 \dots t_{n-1} t'_n}{t_n = t'_n}$$

- 20⁸ Replace " F'_{k_m} " by " F_{k_m} ".
- 25 Addition to second paragraph of (D) : "Canonical" essentially means that the arithmetization provably satisfies the "same" inductive closure conditions as the predicate itself.
- 26³ Read " $\lceil t \rceil$ " for "t".
- 26⁵ Read "that $\lceil A(\bar{x}_1, \ldots, \bar{x}_n) \rceil$ stands for ...".
- 27⁸ Read " \simeq " for "=".
- 27 Add at the bottom of the page a paragraph:

We follow *Kleene 1952* and use $\Lambda x.t$, t a p-term, to indicate a gödelnumber for t as partial recursive function of x; if t contains, besides the free variables $x, x_1, \ldots, x_n, \Lambda x.t$ is a (primitive) recursive function of x_1, \ldots, x_n .

- 29₂ Read " y_0 " for "y".
- 29₁ Read " y_1 " for "y".
- 33₁₀ Read "We put $\lceil \xi t_1 \dots t_n \rceil = \dots$ ".
- 41₂ Read " $t' \neq x^{\sigma}$ " for " $t' \neq x^{\sigma}$ ".
- 44¹⁷ Replace "slightly ... is" by "seemingly stronger (but in fact equivalent) variant is".
- 44^{19-21} Delete "In ... EXT-R'."
- 44_6-45^5 Replace these lines by the following:

The following two propositions are due to M. Bezem (Equivalence of Bar Recursors in the Theory of Functionals of Finite Type, *Archive for Mathematical Logic* 27 (1988), 149–160).

PROPOSITION. The rule EXT-R' is derivable in qf-WE-HA $^{\omega}$.

PROOF. Assume EXT-R, and let $\vdash P \to s_1 = s_2$, $\vdash Q[x/t_1]$ Here $s_1 = s_2$ as usual is shorthand for an equation between terms of type $0 \ s_1x_1x_2...x_n = s_2x_1x_2...x_n$, where $x_1, x_2, ..., x_n$ are variables not free in P, s_1, s_2 . Without loss of generality we can assume $P \equiv (t_1 = 0), Q[x] \equiv (t[x] = 0)$ (x not free in P, s_1, s_2 . Below we shall abbreviate t[x/s], for arbitrary s, as t[s]. So we have

(1) $\vdash t_1 = 0 \rightarrow s_1 = s_2, \quad \vdash t[s_1] = 0.$

Define

$$s_i' := \mathbf{R}_{\sigma} s_i 0^{(\sigma)(0)\sigma}, \quad s_i \in \sigma.$$

Then, with $x \notin FV(s_i), i = 1, 2$:

$$\vdash x = 0 \to s'_i x = s_i, \qquad \vdash x \neq 0 \to s'_i x = 0^{\sigma}.$$

Applying EXT-R to $s'_i 0 = s_i$ yields $\vdash t[s_i] = t[s'_i 0]$. By replacement (i.e. $x = y \to t[x] = t[y]$) we obtain

$$\vdash t_1 = 0 \to t[s'_i 0] = t[s'_i t_1].$$

Since also (1) holds, and $t_1 = 0$ is decidable $\vdash s'_1 t_1 = s'_2 t_1$, so again using EXT-R

$$\vdash t[s_1't_1] = t[s_2't_1],$$

hence

$$\vdash t_1 = 0 \to t[s_2] = t[s'_2 0] = t[s'_2 t_1] = t[s'_1 t_1] = t[s'_1 0] = t[s_1] = 0$$

Q.e.d.

PROPOSITION. The deduction theorem holds for qf-WE-HA^{ω} + EXT-R^{\prime}, hence also for qf-WE-HA^{ω}.

PROOF. It suffices to prove the deduction theorem for the system with EXT-R', and in this case the deduction theorem is easy.

 $45_{16,17}$ Delete these lines.

- 55₁ Read "z < x" for "z < z".
- 56₁₂ Read " $Q(x, \underline{v})$ " for " $Q(0, \underline{v})$ ".
- 56₆ Read " T " for "T".
- 58₁₂ Read "T" for "T".
- 59 Add at the bottom: "Cf. also Luckhardt 73, pp. 66–67."
- 63^{10} Delete the first equation.
- 67_{11} At end of line we add "assumed to be provably linear in **HA**".
- 71¹⁵ Read " $\sigma((Q_2 V_n)A) \equiv (Q_1 v_{m+n+1})\sigma(A), \dots$ ".
- 74 In comparing section 1.9.14 with more recent literature (such as A.S. Troelstra, D. van Dalen, *Constructivism in Mathematics*, Amsterdam 1988), it is to be noted that definedness of a term containing functions and numbers with partial application is here supposed to be defined in the sense of *Kleene* 1969, that is to say a function applied to an argument is defined if we can sufficiently many values of the function to find its value at the argument; this convention does not agree with the logic of partial terms with its strictness condition.

- A.S. Troelstra, Corrections to Publications
- 75⁴ Read "U(lth(u)) = y" for "U(lth(u) = y)".
- 75₅ Read "x" for " α ".
- 80_{13} Addition to 1.9.23: "Cf. also *Kreisel 1967*, page 249, where the role of generalized bar induction in proving the continuous functionals to be a model of bar recursion is mentioned."
- 83_{18,13} Read " 0_{σ} " for " 0^{σ} ".
- 83₁₀ Read " $B_{\sigma}yzu(c * \hat{v}))c$ " for " $B_{\sigma}yzuc(c * \hat{v}))c$ ".
- 91¹² Add "In *Friedman B* it is shown that for r.e. axiomatizable extensions of HA, DP implies ED.".
- $94_{4,5}$ Replace by: "In Luckhardt A it is shown that the principle is equivalent to M. "
- 95 Add at the end of 1.11.6:

It has been noted by C.A. Smorynski that, for theories with decidable prime formulas, IP + M together amount to the principle of the excluded third. E.g. for **HA**, **HA** + IP + M = **HA**^c, which is seen as follows. Assume $A \lor \neg A$ to be proved already in **HA** + IP + M, and consider $\exists xAx$. By M, $\forall x(Ax \lor \neg Ax)\&\neg\neg\exists xAx \to \exists xAx$; by the induction hypothesis and IP, this implies $\exists xAx \lor \neg\exists xAx$. Application of propositional operators preserves decidability, and $\forall xAx \leftrightarrow \neg \exists \neg Ax$ by the decidability of A, hence ($\forall xAx \lor \neg \forall xAx) \leftrightarrow$ ($\neg\exists x\neg Ax \lor \neg \neg\exists x\neg Ax) \leftrightarrow \neg\exists x\neg Ax \lor \exists x\neg Ax$, hence $\forall xAx \lor \neg \forall xAx$.

- 954 Replace " $\alpha x = Uz$ " by " $\alpha y = Uz$ ".
- 98⁶ Read " $x_1^{(\sigma)\tau}$ " for " $x^{(\sigma)\tau}$ ".
- 111⁹ Read " $t_1 \equiv t'_1$ " for " $t_1 \equiv t'$ ".
- 1134 Read " $\mathbf{H} \vdash t = \bar{n}$ ".
- $114^{21,22}$ Delete the sentence beginning "For yet another ...".
- 1176 Read "and t is" for "and τ is".
- 119⁴ Read "... representing αn).".
- 1251 Read " $(\sigma)(\tau)\sigma$ " for " $(\sigma)(\tau),\sigma$ ".
- $126^{10}~{\rm Read}$ "of" for "if".
- 128^{12,13} The open problem has been solved by M. Bezem, in the sense that the two structures are isomorphic: J.S.L. 50 (1985), pp. 359–371.
- 129 Add between lines 6 and 7:

If we replace in the right hand side of this equivalence A by a predicate letter X, we have the inductive condition B(X, x, y) characterizing A.

- 132^{18,20} Replace "I-HA^{ω}" by "I-HA^{ω} + IE₀".
- $133^4\,$ Delete ", CTM', CTNF' ".
- $133^{10,11}$ Replace final comma by stop in line 10 and delete " CTM', CTNF' " in line 11.
- $133_{5,4}\,$ Read " CTNF' " for " CTNF ".
- 141¹⁰ Read " W_{σ}^{1} " for " I_{σ}^{1} ".
- 144^8 Read "(4)" for "(1)".
- 147₁,148¹ Read " p_q " for " p_k ".
- 148¹ Insert before comma "& $\{z\}(p_q) = \{z\}(y)$ (since $z \in E(V), y \in V^*$)".
- 158¹³ Read " $t =_{e} s$ " for "t = s".
- $158^{16}\,$ Read " CTNF " for " CTNF' ".

158₁₁ Read " $x^2[\Sigma(\Pi x^2)\Pi]$ ".

- 1589 Read ", that $\Sigma(\Pi x_1^2)\Pi$ and ".
- 1588 Read " $\Sigma(\Pi x_2^2)\Pi$ in the model".
- 159¹² Read "... which $x^1 \bar{n}_i$ contr $\overline{\alpha n_i}$ has".
- 159₁₄ Read " $t' \in 2$ " for " $t' \in z$ ".
- $159_{1,2} 160^{1-4}$ Replace these lines by:

$$t^{2}\alpha = \begin{cases} 0 \text{ if } \exists i(1 \le i \le k \& \bar{\alpha}_{1}(k+1) = \bar{\alpha}(k+1) \\ m+1 \text{ otherwise, where } m = \max\{\alpha_{i}(y) \mid 1 \le i \le k, \ 0 \le y \le k\}. \end{cases}$$

Now $Ft^2 \neq 0$; for, $\overline{(\pi_{0,0}0)}(k+1), \ldots, \overline{(\pi_{0,0}k)}(k+1)$ are all distinct, hence one of them, say $\overline{(\pi_{0,0}k_0)}(k+1)$ $(0 \leq k_0 \leq k)$ is distinct from all $\overline{\alpha}_1(k+1), \ldots, \overline{\alpha}_k(k+1)$, and therefore $t^2(\pi_{0,0}k_0) = m+1$; but then $\overline{(\lambda x^0.t^2(\pi_{0,0}x))}(k+1)$ differs from all $\overline{\alpha}_1(k+1), \ldots, \overline{\alpha}_k(k+1)$, and thus Ft^2 takes the value m+1.

- 160₁ Read " = " for " \equiv ".
- 161^{12} Delete "not".
- 164 Remark to be added at the end of 2.8.5: J.M.E. Hyland showed in his thesis that Scarpellini's model coincides with the model ECF ".
- 1677 Read "establishing" for "establish".
- 173 Remark to be added in 2.9.10:

If a coding by functions is given for the elements of σ , such that there are continuous Φ_0 , Φ with $\Phi_0\xi$ the length of the sequence coded by ξ , $\Phi(n,\xi)$ the *n*-th component extracted from ξ , then one can construct a bijection between two codings of this kind."

A.S. Troelstra, Corrections to Publications

- 179^{17} Read " **HA**^c + G₁.
- 180^6 Read " | F holds " for " | holds ".
- 180_{13} read " P " for " D ".
- 183₂ Read "PCA)." for "P A).".
- 184¹⁷ Add after "terms": "satisfying $(t \in V \text{ and } t' = t \Rightarrow t' \in V)$ ".
- $188^{17}~{\rm Read}$ "mathematical".
- 189¹² Read "& $P(B(j_1x))$ " for "& $P(A(j_1x))$ ".
- 190₁₇ Delete ", and $P(F_1^*), \ldots, P(F_n^*)$ ".
- 190₁₂ Delete "Also $\forall x P(Bx)$ ".
- 1904 Delete "It follows that ... hence P(C).", and replace "Also" by "Then".
- 192¹ Add after "hence": "! $t \& t r_P A$ is an abbreviation for $(\exists x (t \simeq x \& x r_P A))$.)".
- 192_{1-7} The argument given in the first edition is not correct. The result is a consequence of the unprovability in **HA** of the DP, which has been proved by J. Myhill (A note on indicator functions, Proc. Amer. math. Soc. 29 (1973), 181–183) and by Friedman in a stronger form (On the derivability of instantiation properties, J.S.L. 42 (1977), 506–514).
- 194₁₀ Insert "**HA** \vdash " between "(ii) " and " $A(\underline{a}) \rightarrow !\psi(\underline{a})\&...$ ".
- 194_9 Replace this line by

Proof. The "only if" part is established as follows. Assume $\vdash \underline{A\underline{a}} \leftrightarrow \underline{B\underline{a}}$, B almost negative. Then there is a recursive ϕ such that $\vdash \forall u(u \, \mathsf{r}\underline{A\underline{a}} \to !\{j_1\phi\underline{a}\}(u) \& \{j_1\phi\underline{a}\}(u) \, \mathsf{r}\underline{B\underline{a}})$, and $\vdash \forall u(u \, \mathsf{r}\underline{B\underline{a}} \to !\{j_2\phi\underline{a}\}(u) \& \{j_2\phi\underline{a}\}(u) \, \mathsf{r}\underline{A\underline{a}})$, which together with 3.2.11 for B readily yields the desired conclusion.

- 1942 Read " $Uv \operatorname{r} A\underline{a}$ " for " $v \operatorname{r} A\underline{a}$ ".
- 198 Add after 3.2.22:

Remark. In the writings of the Russian constructivist school (cf. e.g. Dragalin 1969) one finds the following extension of CT_0 :

$$CT' \qquad \forall x(\neg Ax \to \exists y Bxy) \to \exists u \forall x(\neg Ax \to \exists v(Tuxv \& B(x, Uv))).$$

However, in the presence of M this is equivalent to ECT_0 , i.e.

$$\mathbf{HA} + \mathrm{ECT}_0 + M = \mathbf{HA} + \mathrm{CT}' + M.$$

To see this, let us first assume CT', M, and let Ax be almost negative. then by M $Ax \leftrightarrow A'x$, A' negative, and hence $\neg \neg A'x \leftrightarrow Ax$ (1.10.8); thus an instance of ECT₀ can be interpreted as an instance of CT'. Conversely, if ECT₀ and M are assumed, and we let $\forall x(\neg Ax \rightarrow \exists yBxy)$, then by ECT₀, 3.2.8 $\neg Ax \leftrightarrow \exists z(z \mathsf{r} \neg Ax) \leftrightarrow \forall z(z \mathsf{r} \neg Ax) \leftrightarrow 0 \mathsf{r} \neg Ax$; $0 \mathsf{r} \neg Ax$ is almost negative. Replacing $\neg Ax$ by $0 \mathsf{r} \neg Ax$ we have $\forall x(0 \mathsf{r} \neg Ax \rightarrow \exists yBxy)$ to which we can apply ECT₀ etc.

200–201 The claim of 3.2.26 is correct, but the proof given is incorrect. The attempted proof in list of Errata from 1974 is also flawed, but J. van Oosten presented me with a proof that IP_0 is derivable from ECT_0 and MP.

Here follows the proof: Assume

$$\forall x (Ax \lor \neg Ax), \ \forall x Ax \to \exists y B.$$

By ECT_0 there is a number *n* such that

$$\forall x(\{n\}x=0 \leftrightarrow Ax), \text{ hence } \forall x(\{n\}x=0) \rightarrow \exists y B.$$

Again by ECT_0 there is a number m such that

$$\forall x(\{n\}x=0) \rightarrow !\{m\}0 \land B(\{m\}0).$$

Let k be a number such that

$$\{k\}j(a,b) = \min_{x}[\{a\}x \neq 0 \lor Tb0x.]$$

Since

 $\neg \neg (\exists x(\{n\}x \neq 0) \lor \forall x(\{n\}x = 0)), \text{ it follows that} \\ \neg \neg (\exists x(\{n\}x \neq 0) \lor !\{m\}0, \text{ therefore} \\ \neg \neg !\{k\}j(n,m); \text{ hence with MP } !\{k\}j(n,m).$

From this we see, that by the definition of k

$$\begin{aligned} &\{n\}(\{k\}j(n,m)) \neq 0 \to \neg \forall x \, Ax, \\ &T(m,0,\{k\}j(n,m)) \to (\forall x \, Ax \to B(U(\{k\}j(n,m)))). \end{aligned}$$

Hence

$$\exists y (\forall x \, Ax \to By).$$

- 203 Add after 3.2.29: "Friedman has shown (*Friedman B*) how to extend q-realizability by a similar trick.".
- 203₄ Read "Cellucci".
- 214₅ Replace "negative" by " \exists -free (i.e. not containing \lor, \exists)".
- $214_{4,3}$ Delete "on the convention ... omitted,".
- 215¹ Replace "negative" by " \exists -free".
- 215⁹ Add "**N-HA** $^{\omega}$," after "**HA** $^{\omega}$,".
- 215¹¹ Read "... sequence \underline{t} of ...".

- A.S. Troelstra, Corrections to Publications
- 215₁₅ Replace "negative" by " \exists -free".
- 216²⁰ Read " $y \operatorname{mr}_P A$ " for " $y \operatorname{mr}_P A$ ".
- 217^{1,2,17} Read " \underline{T} " for "T" (4 times).
- 217^{13} Replace this line by:

$$IP^{-} \qquad (A \to \exists y^{\sigma} B) \to \exists y^{\sigma} (\neg A \to B)$$

 $(y^{\sigma} \text{ not free in } A, A \exists \text{-free, i.e. not containing } \lor, \exists)$

217_{16,15} Delete ", taking for . . . into account". Add after 3.4.7: Remark. The schema

$$\operatorname{IP}^{\omega} \qquad (\neg A \to \exists y^{\sigma} B) \to \exists y^{\sigma} (\neg A \to B) \ (y^{\sigma} \text{ not free in } B).$$

is readily seen to be modified-realizable, hence $\mathbf{H} + \mathbf{IP}^- + AC \vdash \mathbf{IP}^{\omega}$. Since in systems with decidable prime formulae negative and \exists -free formulas coincide, and for negative $A \neg \neg A \leftrightarrow A$, we have in such cases also that \mathbf{IP}^{ω} implies \mathbf{IP}^- .

- $217_{10,9,4,2,1}$ Replace "IP^{ω}" by "IP⁻".
- 217₁₀ Read " \mathbf{H} + " for " \mathbf{H} \vdash ".
- 217₈ Add after line: "For $\mathbf{H} = \mathbf{H}\mathbf{A}^{\omega}$, \mathbf{I} - $\mathbf{H}\mathbf{A}^{\omega}$, $\mathbf{H}\mathbf{R}\mathbf{O}^{-}$, \mathbf{E} - $\mathbf{H}\mathbf{A}^{\omega}$, $\mathbf{I}\mathbf{P}^{-}$ may be replaced by $\mathbf{I}\mathbf{P}^{\omega}$.".
- 2175 Read " \exists -free" for "negative".
- $221_7~{\rm Read}$ " $M_{\rm PR}$ " for " $MP_{\rm PR}$ ".
- 221_2 Read "3.4.14" for "3.4.4".
- 222 Add after 3.4.14:

Remark. V.A. Lifschitz has shown (Proceedings of the American Mathematical Society 73 (1979), 101–106) that also $\mathbf{HA} + CT_0! \not\vdash CT_0$, where

 $CT_0! \quad \forall x \exists ! y A(x, y) \rightarrow \exists u \forall x \exists v (Tuxv \& A(x, Uv)).$ ".

- 2222 Read " $\forall \alpha \neg \neg \exists x$ " for " $\forall \alpha \neg \neg \exists z$.
- 223^1 Read "... was suggested by results contained in".
- 224₁,225¹ Read " IP⁻ " for " IP^{ω} ".
- 226_{16} Replace " for " by " . For ".
- 226₈ Insert after "... numbers" "(provably linear in **HA**)".
- 227 Add "(\prec provably linear in **HA**)".

A.S. Troelstra, Corrections to Publications

- 228₁₆ Read " $U_{j(n,i)}^1 x$ " for " $U_{j(n,i)}^1$ ".
- 228_{7,6} These lines must read respectively "... $\equiv \forall X^* \forall D_X(x \operatorname{mr} A(X))$ " and "... $\equiv \exists X^* \exists D_X(x \operatorname{mr} A(X))$ ".
- 229_{11} Read " of s^1 in HRO ".
- 230^5 Read "eliminating" for elementary".
- 233₅ Read " Π_2^0 " for " Π_z^0 ".
- $238^{4,6,7}$ Delete "]^D".
- 2394 Read " $(\underline{x}, \underline{v}, \underline{Zv})$ " for " $(\underline{x}, \underline{vZ}, \underline{v})$ ".
- 240³ Read " \underline{y} " for " $\underline{\underline{Yx}}$ ".
- 242¹² Read " $\vdash F^{\mathrm{D}}$ " for " $+F^{\mathrm{D}}$ ".
- $242^{17}~{\rm Read}$ "now" for "not".
- 244_{7,6} Replace these lines by: If we take everywhere X to be identically 1, we obtain the Dialectica interpretation.
- 245^{10} "Shoenfield" should be underlined.
- 251₄ Delete "**N-HA**^{ω}," and add "; (**N-HA**^{ω} + IP⁻ + AC) \cap $\Gamma_1 =$ **N-HA**^{ω} \cap Γ_1 " (cf. the corrections to page 217).
- 2556 Read "... & A^*y]".
- $264^{16}~{\rm Read}$ " ${\bf HA}$ " for " ${\rm HA}$ ".
- 264₈ Read " $\rightarrow \exists x^{\sigma} A$ " for " $\rightarrow \neg \exists x^{\sigma} A$ ".
- 265¹ Read " $(z \neq 0 \rightarrow \neg A)$ " for " $(z \neq 0 \rightarrow A)$ ".
- 267₂ Read " $\exists y(y p)$ " for " $\exists (y p)$ ".
- $273_{17}\,$ Read " 3.9.13 " for " 3.9.11 ".
- 274^1 Read " 3.9.14 " for " 3.9.12 ".
- $274_4\,$ Read " 3.9.15 " for " 3.9.13 ".
- 275₆ Delete " (".
- 278 Second proof tree under 4), read " Π " for the highest " Π_i ".
- 279 Replace in the first four proof trees exhibited the occurrences of "A" (but not the A in "A₁", "A₂", "Aa" or " $\exists xAx$ ") by "B" (7 occurrences).
- 280 Replace under "13)" "A0" by "Aa".

A.S. Troelstra, Corrections to Publications

- 282⁷ Read " $\Pi' \succ_1 \Pi''$, (without ... ".
- 282^{23} Add " of $\lambda_{\rm I}$ " at the end.
- 282 In the display at the bottom of the page, the first two lines should be

$$\begin{array}{ccc} \Pi & & \Pi \\ \underline{A} & 0 = 0 & & \underline{A} & sa = sa \end{array}$$

- 283 In the displayed proof tree read " $\&_1 E$ " for " & E ".
- 284^1 read "form (*Prawitz*" for "(from *Prawitz*".
- 285 Immediately above the paragraph starting with "This makes it" read

Π'		Π
[A]	for	[A]
Π		Π
B		B

286 Replace last paragraph of 4.1.7. by:

For applications, we need only a normalization theorem (not a strong normalization theorem) relative to $\mathcal{R}_{c,\lambda}$; so if the reader wishes, he may use the preceding remark and delete everything in the proof below referring to λ -contractions.

- 287^{16} Read " $Prd_1(\Pi)$, $Prd_2(\Pi)$, ... ".
- 287₅ Read "SV(Sub($A, \Pi, Prd(\Pi), Ass(\Pi)$))".
- 287₂ Read " Π " for " Π_1 ".
- 288^9 Insert ", Ass(Π) " after " Prd₂(Π) ".
- 288 Directly above footnote, read

$$\frac{\Pi_i'}{A}$$
 for $\frac{\Pi_i}{A}$.

- 290¹⁷ Read " $\Pi' \in PRD(\Pi)$ ".
- 290 In the first displayed prooftree, replace "At" by "At'".
- 291 The second displayed prooftree should read:

$$\frac{\Pi_1' \ldots \Pi_n'}{A}$$

- $292^1\,$ Read "condition IV " for " condition II ".
- 293 Second line of paragraph starting with "Condition IV for $\Pi'...$ ", read "for Π " instead of "for \exists ".

- 294 Replace in the second display " Π_3 " by " Π_4 ", and in the line under this display, replace " Π_4 " by " Π_5 ".
- 294 Replace in the third display " Π_3 " by " Π_4 ". In the line under the third display, insert after "reduces to": "the left subdeduction of".
- 295⁶ Read " Π_6 " for " Π_3 ".
- 295 In the third display, place in the second proof tree " Π_0 " above " $\exists xBx$ ".
- $295_{12}\,$ Insert between "condition" and "I": "IV, and hence".
- 295 In the line below the third display, insert before "is SV": "and also

"

- 297^{17} Read " 2.2.25 " for " 2.2.31 ".
- 299^{15} Add " (major) " at the end.
- 300^6 Add after the comma "which may be empty,".
- $300^{9,10}$ Replace "preceding" by "succeeding".
- 301^2 Read "were" for "would be".
- 301¹⁰ Add before ") ": "; also, A_i cannot be discharged by IND, since no application of IND lies below A_1 ".
- $301_6\,$ read " 4.2.8 " for " 2.8 ".
- 302^5 Read "normal" for "formal".
- $302^{14}\,$ Add " σ " at the end.
- 304^3 Insert "(by 4.2.7)" before " ; ".
- 304^{10} Read "were" for "would be".
- 304¹¹ Read "or IND-application occurring" for "occurring".
- 304^{14} Replace "IND-application" by "begin with a conclusion of an IND-application".
- 304_{19} Read "Let Φ denote the ".

304 The proof in subsection 4.2.16 in the first edition contains a gap. Much simpler is the following argument:

PROOF. Note that Ψ is equivalent to a set of Harrop formulas: if $\exists x P x \in \Psi$, then we may replace this formula by $P\bar{n}$ for some \bar{n} such that $\mathbf{HA} \vdash P\bar{n}$. Then we can apply 4.2.12.

- 305_1 delete ", or A_1 is a basic axiom ".
- 305^5 Read " $A_1 \in \Psi$, i.e. *B* is prime ".
- 305 Remark at 4.2.17: instead of referring to 3.6.7(ii), it suffices to note that only true closed Σ_1^0 -formulae are provable in **HA** and **HA**^c.
- 306, proof of 4.2.18. This proof is incorrect as it stands, since the conclusion of an IND-application is not necessarily atomic, only quantifier-free. The proof is correct if we replace in the statement of the theorem **H**, qf-**HA** by the corresponding systems with induction for atomic formulas only.

To establish the theorem as stated, we can e.g. proceed as follows: define a path of order 0 to be a path A_1, \ldots, A_n with A_n conclusion of the deduction, and define a path of order m + 1 to be a path A_1, \ldots, A_n such that either A_n is minor premiss of an \rightarrow E-application the major premiss of which belongs to a path of order m, or premiss of an IND-application the conclusion of which belongs to a path of order m.

In a strictly normal derivation, every formula occurrence belongs to some path of order m, for suitable m (since redundant applications of $\forall E$, $\exists E$ have been removed). Then one readily proves, by induction on m, that for a strictly normal derivation of a quantifier-free formula in **H** all formula occurrences on a path of order m are quantifier-free. (Note that here normalization also w.r.t. permutative reductions is necessary, in contrast to other applications. This could have been avoided by reduction of qf-**HA** to a logic-free calculus, which is not a very elegant solution, however.)

 306_{16} Read " 2.5.7 " for " 2.5.6 ".

- 307, line 2 below second display. Read " $\mathcal{R}_{\rm c}$ " for " $\mathcal{R}_{\rm C}$ ".
- 307_2 Read " 4.1.16 " for " 4.1.15 ".
- 308 Last line of first display, replace in proof tree Π'' " $\neg A \rightarrow Bx$ " by " $\neg A \rightarrow \exists x Bx$ ".
- 309 Replace second sentence of the statement of 4.3.5 by:

Then a spine of Π not ending with an introduction does not contain IP-applications, and ends with an application of a basic rule or an atomic instance of $\lambda_{\rm I}$.

Delete the third sentence.

The proof of 4.3.5. should be reformulated as follows:

Let A_1, \ldots, A_n be a spine of Π not ending with an introduction. Then, by 4.3.4(iii) there are two cases:

(1°) A_1 is a basic axiom. So the spine coincides with its minimum part, hence A_n is atomic.

 (2°) A_1 is of the form $\neg B$, to be discharged by $\rightarrow I$, followed by IP. this case is excluded, for the sort of inference following A_1 can be (not IP, or $\rightarrow I + IP$, but) $\rightarrow E$ only, leaving us with $A_2 \equiv \lambda$, and a minimum part A_2, \ldots, A_n .

- 311^8 read "any one".
- 311^{17} Read "Red₁" for "Red".
- 311_{19} Read "of" for "from".
- 311₁₂ Read " $\lor I_r$ " for " $\lor I_l$ ".
- 311₁₁ Read " \lor I_l" for " \lor I_r".
- 311₇ Read " $SV_{d-1}(Subst(Param(\Pi), x, Prd_1(\Pi)))$]".
- 313¹ Read "(ii)" for "(iii)".
- 313_{12} Read " 4.4.3 " for " 4.4.2 ".
- 313_{10} Insert "(1.5.6)" before ":".
- 314⁴ Read " $Proof_n$ " for " Proof ".
- 314_5 Read " 4.4.3 " for " 4.4.2 ".
- 314₃ Read " $\mathbf{HA} \vdash \forall x \exists yz (\operatorname{Proof}_n(y, \lceil A(\bar{x}, \bar{z}) \rceil \& A(x, z))$ ".
- 321 As observed by S.Hayashi, (On derived rules of intuitionistic second order arithmetic, Commentarii Mathematici Universitatis Sancti Pauli 26 (1977), 77–103), the proof of 4.5.8 indicated in the text of the first edition establishes a result which is too weak, e.g.

$$\forall n \forall A \in \operatorname{Fm}^{(n)}(\vdash \operatorname{Sat}^{(n)}(X, \ulcorner \forall x A x \urcorner) \leftrightarrow \forall x \operatorname{Sat}^{(n)}(X, \ulcorner A(\bar{x}) \urcorner))$$

instead of

$$\forall n (\vdash \forall A \in \operatorname{Fm}^{(n)}(\operatorname{Sat}^{(n)}(X, \ulcorner \forall x A x \urcorner) \leftrightarrow \forall x \operatorname{Sat}^{(n)}(X, \ulcorner A(\bar{x}) \urcorner))).$$

Following Hayashi, the desired stronger conclusion can be established as follows.

We first define the notion of a formation sequence of a formula A in $Fm^{(n)}$.

DEFINITION. A formation sequence (fs) of $A \in \text{Fm}^{(n)}$ is a finite sequence of quadruples $\langle a_0, b_0, c_0, t_0 \rangle, \ldots, \langle a_m, b_m, c_m, t_m \rangle$ such that

(1) $t_m = \lceil A \rceil$; t_0 , and c_i for $1 \le i \le m$ are codes of formulas of complexity $\le n$.

- (2) $a_i \in \mathbb{N}$ for $0 \le i \le m$, $a_{i+1} \le i$ for $0 \le i < m$.
- (3) $b_i, c_i \in \mathbb{N}$ for $0 \le i \le m$; t_{i+1} is the code of the term which is the result of substituting the term with code $t_{a_{i+1}}$ for the second-order variable $V_{b_{i+1}}^p$ in the formula (with index) c_{i+1} and logical complexity $\le n$, where p is the number of free variables in $t_{a_{i+1}}$ (end of definition).

Now $\operatorname{Sat}_n(X, \lceil A \rceil)$ is constructed as before. Let f, g, h range over formation sequences. We then define, similar to $\operatorname{Sat}^{(n)}(X, \lceil A \rceil)$ of the text, and with help of Sat_n , the formula $\operatorname{Sat}_f^{(n)}(X, \lceil A \rceil)$, where f is an fs for A with $t_m = \lceil A \rceil$, and $\operatorname{Sat}_f^{(n)}$ is constructed parallel to the substitutions of f. Then one proves LEMMA. In **HAS**

(i)
$$\forall f \forall A, B \in \operatorname{Fm}^{(n)} \exists g, h \forall X (\operatorname{Sat}_{f}^{(n)}(X, \ulcorner A \circ B \urcorner) \\ \leftrightarrow \operatorname{Sat}_{g}^{(n)}(X, \ulcorner A \urcorner) \circ \operatorname{Sat}_{h}^{(n)}(X, \ulcorner B \urcorner))$$

for $\circ \in \{ \rightarrow, \&, \lor \}.$

- (ii) $\forall f \forall A \in \operatorname{Fm}^{(n)} \exists g \forall X(\operatorname{Sat}_{f}^{(n)}(X, \ulcorner Qv_{i}A(v_{i})\urcorner) \leftrightarrow (Qv_{i})\operatorname{Sat}_{g}^{(n)}(X, \ulcorner A(\bar{v}_{i})\urcorner))$ for $Q \in \{\forall_{1}, \exists_{1}\}.$
- (iii) $\forall f \forall A \in \operatorname{Fm}^{(n)} \exists g \forall X (\operatorname{Sat}_{f}^{(n)}(X, \ulcorner QV_{i}^{p}A(V_{i}^{p}) \urcorner) \leftrightarrow$ $(QY^{p}) \forall Z^{1}(\forall y_{1}, y_{2}(j(y_{1}, y_{2}) \neq j(p, i) \rightarrow Z^{1}_{(y_{1}, y_{2})} = X_{(y_{1}, y_{2})}) \land Z^{1}_{(p, i)} =$ $Y \rightarrow$ $\operatorname{Sat}_{a}^{(n)}(Z, \ulcorner A(V_{i}^{p}) \urcorner)$

for
$$Q \in \{\forall_2, \exists_2\}.$$

(iv) $\forall X, f, g, n(\text{FS}(f, n) \land \text{FS}(g, n) \to \text{Sat}_{f}^{(n)}(X, n) \leftrightarrow \text{Sat}_{g}^{(n)}(X, n))$, where FS(f, n) expresses "f is a formation sequence of a formula A with $\lceil A \rceil = n$ ".

Proof. The proof of (i)–(iii) by induction on the length of f; the proof of (iv) uses (i)–(iii) and induction on n.

We may then put

$$\operatorname{Sat}^{(n)}(X, \lceil A \rceil) \leftrightarrow \exists f \operatorname{Sat}_{f}^{(n)}(X, \lceil A \rceil)$$

and can then establish a stronger version of 4.5.8, namely

$$\forall n(\mathbf{HAS} \vdash \forall A \in \mathrm{Fm}^{(n)}(\mathrm{Sat}^{(n)}(X, \ulcorner \forall x A x \urcorner) \leftrightarrow \forall x \mathrm{Sat}^{(n)}(X, \ulcorner A \bar{x} \urcorner)))$$

etc. etc.

- 322^{13} read "choice" for "hoice".
- 375₁₇ Read " $\alpha > \alpha_0$ &" for " $\alpha > \alpha_0$ ".
- 389 Subsection 5.7.3: more information about Kripke models for second-order intuitionistic arithmetic may be found in: D.H.J. de Jongh, C.A. Smoryński, Kripke models and the intuitionistic theory of species, Annals of Mathematical Logic 9 (1977), 157–186.

- 391₃ read " $(\alpha x \neq 0)$ " for " $(\alpha x \neq 0)$ ".
- 391₁ Add after ")" "in the presence of continuity axioms".
- 398_{12} Read " $\mathcal{L}[x]$ " for " \mathcal{L} ".
- 414₁₁ Read " $S_2 f \in Y$ " for " $S_1 f \in Y$ ".
- 422₁₀ Read " \mathbf{ID}_{ν}^{c} " for " \mathbf{ID}_{ν}^{C} ".
- 435¹⁰ Read " $|\mathbf{ID}_{\nu}^{c}|$ " for " $|\mathbf{ID}^{c}|$ ".
- 438⁵ Read " $P_1(Xn, n)$]" for " $P_1(Xn, x)$]".
- 439_{16} Read "type-0-valued".
- 440₆ Read "Max₁(α , 0) = α " for "Max₁(α , 0)".
- 448_{13,14} The equality in (7) of 6.9.1 was proved for all recursive ν by 1977, independently by Buchholz, Pohlers and Sieg, using various sophisticated prooftheoretic techniques (see W. Buchholz, S. Feferman, W. Pohlers, and W. Sieg, Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies. Springer Verlag, Berlin 1977). Hence the equalities

$$|\mathbf{ID}_2^c| = |\mathbf{ID}_2| = |\mathbf{T}_2|$$

hold (end of 6.8.9). Hence also the equalities (5) and (6) of 6.9.1 are true.

- 451^{12-17} See the remark to page 448.
- 457₁₄ Read " $(\lambda n. X_1 \dots X_k)$ " for " $(\lambda X_1 \dots X_k)$ ".
- 462¹ Insert before the second line "Corrections in the bibliography consist sometimes in replacements, sometimes in added information between square brackets."
- 462^{8,9} Replace by "LMPS IV: P.Suppes, L.Henkin, Gr.C. Moisil, A. Joja (eds.), North-Holland Publ. Co., Amsterdam 1973."
- 462¹⁷ Read "Cambridge Summer School in Mathematical Logic"
- 462¹⁸ Read: H.Rogers, A.R.D. Mathias (eds.), 1973.
- 462^{19} Add at the end ", 1973".
- 462^{20} Delete.
- 462₁₅ Add "[Zeitschrift für mathematische Logik und Grundlagen der Mathematik 20 (1974), 289–306.]"
- 462₁₄ Add: "[cf. H.P. Barendregt, Combinatory logic and the axiom of choice, Indagationes Mathematicae 35(1973), 203–221.]"
- 462_{10,11} Replace by: "Theoretical Computer Science 3 (1977), 225–242.

- A.S. Troelstra, Corrections to Publications
- 462₅ Add "[J.S.L. 41 (1976), 328–336]".
- 462₃ Add "[J.S.L. 40 (1975), 321–346]".
- 462₁ Add "[J.S.L. 41 (1976), 18–24]".
- 463^1 Read " Cellucci".
- 463^{15} Read "Cambr. Proc. 1–94."
- 463₂₅ Add "[Did not appear]"
- 463₂₁ Read "Archiv für mathematische Logik 16 (1974), 49–66."
- 464^5 Read "Cambr. Proc. 113–170."
- 464₂3 Read "Schliessen."
- 464₁ Add ", 232–252".
- 465^{21} Read "Cambr. Proc. 274–298."
- 465^{24} Read "J.S.L. 38 (1973), 453–459."
- 465^{26} Add "[Did not appear]"
- 465^{28} Add "[Did not appear]"
- 465³⁰ Read "J.S.L. 41 (1976), 574–582."
- 466^{26} Read "Section VI" for "Section IV".
- 466₁₄ Add: "[Appeared in: J.P.Seldin, J.R.Hindley (eds.), To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic Press, New York 1980, 480–490.]"
- 467²² Add: "[Never published]"
- 467²⁴ Add: "[Appeared in: A.S. Troelstra, D. van Dalen (eds.), The L.E.J Brouwer Centenary Symposium. North-Holland Publ. Co., Amsterdam 1982, 51–64.]"
- 468^8 Read "Philosophica".
- 469^9 Read "in" for "in:".
- $469^{12}\,$ Read "Zentralblatt".
- 469²⁶ Read "IPT" for Oslo Proc."
- 469₂₄ Read " Π_1^{1} " for " Π ".
- 469₈ Read "1" for "I".
- 470₁₂ Add: "[Cf. paper under this title in: S. Kanger (ed.), Proceedings of the 3rd Scandinavian Logic Symposium, North-Holland Publ. Co., Amsterdam 1975, 81–109.]"

- $471^{10}\,$ Read: "Compositio Mathematica 26 (1973), 261–275."
- 472^5 Insert before stop: ", 225–250".
- 472₁ Replace by "Archiv für Mathematische Logik 16 (1974), 147–158."
- 473^{11} Add "[Unpublished]".
- 474_{11} Read "1970" for "170".
- 475^{13} Read "Cambr. Proc. 171–205."

Basic Proof Theory, 2nd edition Corrections, 31 August 2009

The list includes a list of corrections brought to our notice by Yiorgios Stavrinos of the University of Athens, Greece, July 2003.

- 9¹¹ replace "linearly" by "well-ordered".
- 11₅ replace "FV(x^A) = x^A " by "FV(x^A) = { x^A }"
- 15₆ replace the first "=" by " \succeq ".
- $19^{3,6}\,$ the rules for ${\bf k},\,{\bf s}$ should have been given for terms instead of variables.
- 19₆ add " $\lambda^* x^A \cdot c^B := \mathbf{k}^{B,A} c^B$ for c a constant"
- 39 in the first proof tree the second rule is $\rightarrow E$, not $\rightarrow I$.
- 42 remove * after exercise 2.1.8B, add * after 2.1.8D.
- 47 in the case of the intuitionistic absurdity rule \perp_i read $FV_a(E_A^{\perp}(t)) := FV_a(t)$.
- 52^{12} read for "and $\rightarrow I$ and $\rightarrow E$ " instead " $\rightarrow I$, $\forall I$ and $\rightarrow E$ ".
- 52_{1,2} read: "and the rules $\rightarrow I$, $\forall I$ and $\rightarrow E$ only".
- 63 in the last line above the second group of prooftrees delete ", in the right deduction $x \notin FV(B)$ ".
- 69^{5,6} read "Set(Γ') \subset Set(Γ)" for "Set(Γ') \subset Γ ".
- 69¹⁰ read "Set(Γ') \subset Set(Γ)" for " $\Gamma' \subset$ Set(Γ)".
- 70 the last inference in the second prooftree, a series of contractions marked by a double horizontal line, is in fact redundant. Similarly in the case dealing with \rightarrow E.
- 71¹⁰ read "we have $\vdash \neg \neg A \rightarrow A, \Gamma \Rightarrow A \text{ if } \vdash \Gamma, \neg A \Rightarrow,$ ".
- in the second proof tree in the proof of the lemma, a double line should appear below the axiom $A \Rightarrow A$.
- 71 replace in the fourth proof tree in the proof of the lemma the axiom $\perp \Rightarrow$ by

$$\frac{\bot \Rightarrow}{A, \bot \Rightarrow}$$

- 88₁₂ replace Γ by $\Gamma \Rightarrow \Delta$.
- 88₉ replace Γ' by $\Gamma' \Rightarrow \Delta'$.
- 925 read " $\vdash A\Gamma' \Rightarrow \Delta'$ " for " $A\Gamma' \Rightarrow \Delta'$ ".
- 96²⁰ middle of page, read "produces a deduction \mathcal{D}'' such that".

- A.S. Troelstra, Corrections to Publications
- 97¹⁹ "This is transformed into a deduction \mathcal{D}^* :".
- 97 in the lines above the second prooftree from below, delete the first sentence "The new cut ... remove this cut."
- 100^{21} read "rank" for "degree".
- 100 in the proof rees at the bottom read " \mathcal{D}_{00} " for " $\mathcal{D}_{00}[y]$ ".
- 101 delete B in the conclusion of the rule Multicut.
- $103^8~\mathrm{read}$ "R
∀" for "R∃".
- 103^8 read "dp-invertible" for "invertible".
- 103^9 add "and under "depth-preserving weakening".
- 1037 read " Γ, Γ' " for " Γ ".
- $104^2\,$ delete Δ in the second line of the first displayed proof tree.
- 105_{6,5} read "in $\bigwedge \Gamma \to \bigvee \Delta$ where \bigwedge and \bigvee are used for iterated conjunction and disjunction respectively.".
- $116_{4.3}$ the negation sign is actually redundant in these lines.
- 117⁸ read " \perp " for " $\perp \rightarrow \perp$ ".
- 117₂ read " $\Gamma A \Rightarrow \Delta BC$ " for " $\Gamma A \Rightarrow \Delta C$ ".
- 118₉ read " $\Gamma, B, C \Rightarrow D$ " for " $\Gamma, A \rightarrow B, C \Rightarrow D$ ".
- 137^{13,15,18,20,21} replace S everywhere by S, N by F and \mathcal{P} by G. This change brings the notation here in line with the notational conventions of subsection 1.1.4 (pages 5–6).
- 158₁₆ add " $A_1 := \neg P_1, B_1 := \neg Q_1$ ".
- $182^{25}\,$ read "and is the only critical cut in \mathcal{D} " for "and is the only maximal segment in \mathcal{D} "
- 200_{15} replace "At" by "A(t)".
- 200_{14} replace "As" by "A(s)".
- 210_{11} the first line of the lemma should end with "Comp_A:".
- 211⁹ read "We prove $ts \in \text{Comp}_C$ ".
- 211_4 delete "strongly".
- 212⁷ read "Let $FV(t_1) \subset \{y:B, x_1:A_1, \dots, x_n:A_n\}$ ".
- 212₁2 read " $\psi(\forall xA) := (Q \to Q) \to \psi A$ " for " $\psi(\forall xA) := (Q \to Q) \to A$ ".
- 214^2 read " $\mathcal{D}_n(P^n, Q^n)$ " for " $\mathcal{D}_n(P, Q)$ ".

 $261_{7,6}$ types do not match in definitions of evcur, curev: switch A and B.

- 294^{5,6} interchange " $(L \land, R \land)$ " with " $(L \land', R \land')$ ".
- $300^{12,17}$ read "G1i $\vdash !\Gamma \Rightarrow A$ " for "G1i $\vdash \Gamma \Rightarrow A$ ".
- $300^{18} \text{ read } "\mathbf{S4} \vdash \Box GG^{\circ} \Rightarrow A^{\circ}" \text{ for } "\mathbf{S4} \vdash \Gamma^{\circ} \Rightarrow A^{\circ}".$
- 317 The definition of $Ind(A, x)^*$ should read

 $\operatorname{Ind}(A, x)^* \quad \forall x (\forall y < x A[x/y] \to A) \to \forall x A.$

- 341 $\overline{\alpha}(x)$ is defined as usual, as $\langle \alpha 0, \alpha 1, \alpha 2, \dots, \alpha(x-1) \rangle$.
- 341^{15} for "{ $\alpha | Q(\overline{\alpha}x)$ }" read "{ $\alpha | \forall x Q(\overline{\alpha}x)$ }".
- 341^{23} for "≤" read "<".
- 367 read "2.1.8D" for "2.1.8B".

Chapter VI, 'Realizability' in Handbook of Proof Theory – Some corrections, 1 December 2018

- 410¹⁵ This is not literally what one gets by spelling out the clause for disjunction using the definition in terms of \exists , \land and \rightarrow , but it is equivalent in the sense specified under (ii) below.
- 411₆ As its stands, it is not obvious that $\forall x(x = x)$ holds. This is remedied by correcting EQ as follows:

$$EQ \qquad \begin{cases} \forall xy(x=y \to y=x), \quad \forall xyz(x=y \land y=z \to x=z), \\ \forall \vec{x}\vec{y}(\vec{x}=\vec{y} \land F\vec{x} \downarrow \to F\vec{x}=F\vec{y}), \quad \forall \vec{x}\vec{y}(R\vec{x} \land \vec{x}=\vec{y} \to R\vec{y}) \end{cases}$$

By taking in the transitivity clause y for x, we see that $\forall xy(x = y \rightarrow y = x)$ becomes derivable.

- 412₄ Instead of looking at Troelstra-van Dalen [1988, 3.6, 3.7], see the emended and expanded version in the present report, headed **Corrected version of subsections 3.7.9–15**.
- 413^{15–23} The definition of <u>rn</u>, <u>rnt</u> is better formulated for an arbitrary term t instead of the variable x.
- 426, section 2.6 This contains an early, not yet quite adequate version of the corrections to subsections 3.7.9–15 mentioned before; for a better version see the present report.