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Abstract The theory BCZF is obtained from constructive Zermelo-Fraenkel set the-
ory CZF by restricting the collection schemes to bounded formulas. We prove that
BCZF has the de Jongh property with respect to every intermediate logic that is
characterised by a class of Kripke frames.
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1 Introduction

De Jongh’s classical theorem states that the propositional logic of Heyting arithmetic
is intuitionistic logic (for a precise mathematical statement of de Jongh’s theorem, cf.
Theorem 8). The de Jongh property is a generalisation of this theorem (Definition 10;
for an extensive exposition of the history of the de Jongh property, cf. [8, section 2]).

Inspired by the Kripke model constructions used for independence proofs in con-
structive or intuitionistic set theory (e.g., Lubarsky [11,12], Lubarsky and Rathjen
[14], Lubarsky and Diener [13]), Iemhoff [5] introduced a class of models for subthe-
ories of constructive set theory CZF based on classical models of ZF set theory and
their generic extensions.
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In this work, we will use Iemhoff’s construction to give a model-theoretic proof
of the fact that the set theory satisfied by the class of Iemhoff models, namely,
bounded constructive Zermelo-Fraenkel set theory BCZF, has the de Jongh property.
We cannot strengthen this result to full CZF with the method presented in this paper
as the Iemhoff models that involve forcing non-trivially cannot be models of the
exponentiation axiom (a constructive consequence of the axiom of subset collection;
cf. Corollary 32). As an aside, we will also define an Iemhoff model that forces the
negation of the exponentiation axiom.

The paper is organised as follows: In the second section, we will introduce Kripke
models for set theory and show how to use them to prove the de Jongh property in a
general setting. We present Iemhoff’s construction in the third section and provide a
failure of the exponentiation axiom. The final section is devoted to proving the main
result.

2 Kripke Models for set theory and the de Jongh property

The language of propositional logic consists of the logical symbols ∨, ∧, → and ⊥,
and a fixed countable set Prop of propositional variables. The negation of a formula
¬φ is defined as an abbreviation for φ → ⊥. Furthermore, the language of predicate
logic extends the language of propositional logic with the logical symbols ∀ and ∃,
and a countable set of variables, but has no propositional variables. The language L∈
of set theory extends the language of predicate logic with a binary relation symbol ∈.
Given any language L, we denote the set of L-sentences (i.e., L-formulas without
free variables) by Lsent.

As usual, we denote intuitionistic propositional logic with IPC and classical propo-
sitional logic with CPC. An intermediate logic J is a logic with IPC ⊆ J ⊆ CPC.
Note that propositional logics are sets of propositional formulas. For axiomatisations
and descriptions of proof-calculi of these logics, we refer the reader to [18].

We work in ZFC as our meta-theory and, additionally, we assume the existence of
a countable transitive set M such that (M,∈) ⊨ ZFC.

2.1 Kripke models for set theory

A Kripke frame (K,≤) is a set K equipped with a partial order ≤. A Kripke model for
IPC is a triple (K,≤,V) such that (K,≤) is a Kripke frame and V : Prop → P(K) a
valuation that is persistent, i.e., if w ∈ V(p) and w ≤ v, then v ∈ V(p). We can then
define, by induction on propositional formulas, the forcing relation for propositional
logic at a node v ∈ K in the following way:

(i) K,V, v ⊩ p if and only if v ∈ V(p),
(ii) K,V, v ⊩ φ ∧ ψ if and only if K,V, v ⊩ φ and K,V, v ⊩ ψ,
(iii) K,V, v ⊩ φ ∨ ψ if and only if K,V, v ⊩ φ or K,V, v ⊩ ψ,
(iv) K,V, v ⊩ φ → ψ if and only if for all w ≥ v, K,V,w ⊩ φ implies K,V,w ⊩ ψ,
(v) K,V, v ⊩ ⊥ holds never.
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We will write v ⊩ φ instead of K,V, v ⊩ φ if the Kripke frame or the valuation are
clear from the context. We will write K,V ⊩ φ if K,V, v ⊩ φ holds for all v ∈ K . A
formula φ is valid in K if K,V, v ⊩ φ holds for all valuations V on K and v ∈ K , and
φ is valid if it is valid in every Kripke frame K .

We can now define the logic of a Kripke frame and of a class of Kripke frames.

Definition 1 If (K,≤) is a Kripke frame for IPC, we define the propositional logic
L(K,≤) to be the set of all propositional formulas that are valid in K . For a class K of
Kripke frames, we define the propositional logic L(K) to be the set of all propositional
formulas that are valid in all Kripke frames (K,≤) in K. Given an intermediate logic
J, we say that K characterises J if L(K) = J.

We will sometimes write L(K) for L(K,≤). The next result is proved by induction
on the complexity of formulas; it shows that persistence of the propositional variables
transfers to all formulas.

Proposition 2 Let (K,≤,V) be a Kripke model for IPC, v ∈ K and φ be a proposi-
tional formula such that K, v ⊩ φ holds. Then K,w ⊩ φ holds for all w ≥ v. ⊓⊔

By extending the Kripke models introduced above, we can obtain models for
intuitionistic predicate logic. Instead of developing this theory in full generality, we
will focus on the subcase of Kripke models for set theory.

Definition 3 A Kripke model (K,≤,D, e) for set theory is a Kripke frame (K,≤)
for IPC with a collection of domains D = {Dv | v ∈ K} and a collection of set-
membership relations e = {ev | v ∈ K}, such that the following hold:

(i) ev is a binary relation on Dv for every v ∈ K , and,
(ii) Dv ⊆ Dw and ev ⊆ ew for all w ≥ v ∈ K .

Examples of Kripke models for set theory are not only the Iemhoff models that
we will introduce in Section 3, but also the Kripke models introduced in [11,12] by
Lubarsky, [13] by Diener and Lubarsky and [14] by Lubarsky and Rathjen.

We can now extend the forcing relation to Kripke models for set theory, interpreting
the language of set theory L∈. For the following definition, we tacitly enrich the
language of set theory with constant symbols for every element of the domains of the
Kripke model at hand.

Definition 4 Let (K,≤,D, e) be a Kripke model for set theory. We define, by induction
on L∈-formulas, the forcing relation at every node of a Kripke frame in the following
way, where φ and ψ are formulas with all free variables shown, and ȳ = y0, . . . , yn−1
are elements of Dv for the node v considered on the left side:

(i) (K,≤,D, e), v ⊩ a ∈ b if and only if (a, b) ∈ ev ,
(ii) (K,≤,D, e), v ⊩ a = b if and only if a = b,
(iii) (K,≤,D, e), v ⊩ ∃xφ(x, ȳ) if and only if there is some a ∈ Dv

with (K,≤,D, e), v ⊩ φ(a, ȳ),
(iv) (K,≤,D, e), v ⊩ ∀xφ(x, ȳ) if and only if for all w ≥ v and a ∈ Dw

we have (K,≤,D, e),w ⊩ φ(a, ȳ).
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The cases for →, ∧, ∨ and ⊥ are analogous to the ones in the above definition of the
forcing relation for Kripke models for IPC. We will write v ⊩ φ (or K, v ⊩ φ) instead
of (K,≤,D, e), v ⊩ φ if the Kripke model is clear from the context. An L∈-formula φ
is valid in K if v ⊩ φ holds for all v ∈ K , and φ is valid if it is valid in every Kripke
frame K . Finally, we will call (K,≤) the underlying Kripke frame of (K,≤,D, e).

Persistence also holds in Kripke models for set theory.

Proposition 5 Let (K,≤,V) be a Kripke model for set theory, v ∈ K and φ be a
formula in the language of set theory such that K, v ⊩ φ holds. Then K,w ⊩ φ holds
for all w ≥ v. ⊓⊔

Theorem 6 A propositional formula φ is derivable in IPC if and only if it is valid
in all Kripke models for IPC. In particular, a propositional formula φ is derivable in
IPC if and only if it is valid in all finite Kripke models for IPC. Moreover, if a formula
φ of predicate logic is derivable in IQC, then it is valid in all Kripke models for set
theory.

A detailed proof of a more general version of this theorem can be found in [17,
Theorem 6.6], where also completeness of IQC is proved for a class of models that is
not restricted to set theory.

2.2 The de Jongh property

In this section, we will introduce the de Jongh property and provide a framework for
proving it.

Definition 7 Let φ be a propositional formula and let σ : Prop → Lsent
∈ an assign-

ment of propositional variables to L∈-sentences. By φσ we denote the L∈-sentence
obtained from φ by replacing each propositional variable p with the sentence σ(p).

The de Jongh property is a generalisation of de Jongh’s classical result [7] con-
cerning Heyting arithmetic HA and intuitionistic propositional logic IPC.

Theorem 8 (de Jongh) Let φ be a formula of propositional logic. Then HA ⊢ φσ for
all σ : Prop → Lsent

HA if and only if IPC ⊢ φ.

Given a theory based on intuitionistic logic, we may consider its propositional
logic, i.e., the set of propositional formulas that are derivable after substituting the
propositional letters by arbitrary sentences in the language of the theory.

Definition 9 Let T be a theory in intuitionistic predicate logic, formulated in a lan-
guage L. A propositional formula φ will be called T-valid if and only if T ⊢ φσ for
all σ : Prop → Lsent. The propositional logic L(T) is the set of all T-valid formulas.

Given a theory T and an intermediate logic J, we denote by T(J) the theory
obtained by closing T under J.
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Definition 10 We say that a theory T has the de Jongh property if L(T) = IPC.
The theory T has the de Jongh property with respect to an intermediate logic J if
L(T(J)) = J.

De Jongh’s theorem is equivalent to the assertion that Heyting arithmetic has the
de Jongh property.

In [15], we introduced the notions of loyalty and faithfulness to capture the
agreement or discrepancy between the propositional logic of (a class of) models
of set theory and the logic of their underlying Kripke frames. Here, we will only focus
on their connections with the de Jongh property.

First, we need to introduce some notation. Given a class C of Kripke models for
set theory, let KC be the class of all underlying Kripke frames of C. Then, if K ∈ KC ,
we let CK ⊆ C consist of all Kripke models in C with underlying Kripke frame K . If
K ⊆ KC is a class of Kripke frames, let CK consist of all Kripke models in C with
underlying frame K such that K ∈ K.

Definition 11 Let (K,≤,D, e) be a Kripke model for set theory. The propositional
logic L(K,≤,D, e) of (K,≤,D, e) is the set of all propositional formulas φ such that
for all substitutions σ : Prop → Lsent

∈ we have that (K,≤,D, e), v ⊩ φσ for all v ∈ K .
If C is a class of Kripke models for set theory, we let L(C) be the propositional logic
of C, i.e., the set of all formulas φ such that φ ∈ L(K,≤,D, e) for all (K,≤,D, e) ∈ C.

Proposition 12 The propositional logic L(K,≤,D, e) is an intermediate logic for any
Kripke model for set theory (K,≤,D, e), and so is L(C) for any class C of Kripke
models for set theory. ⊓⊔

Let us call JφK(K ,≤,D,e) = {v ∈ K | v ⊩ φ} the truth set of a sentence in the
language of set theory in a Kripke model for set theory (K,≤,D, e). When the model
is clear from the context, we will also write JφKK .

Proposition 13 Let (K,≤,D, e) be a Kripke model for set theory, then L(K,≤) ⊆
L(K,≤,D, e).

Proof Given any translation σ : Prop → Lsent
∈ , we define a valuation V : Prop →

P(K) by taking V(p) = Jσ(p)K for all p ∈ Prop. In this situation, a straightforward
induction on the complexity of propositional formulas φ shows that (K,≤,V), v ⊩ φ if
and only if (K,≤,D, e), v ⊩ φσ . This shows that if (K,≤) ⊩ φ, then (K,≤,D, e) ⊩ φσ

for all translations σ. Hence, if φ ∈ L(K,≤), then φ ∈ L(K,≤,D, e). ⊓⊔

The notion of loyalty is obtained by strengthening this inclusion to an equality.

Definition 14 Let (K,≤,D, e) be a Kripke model for set theory. We will say that
(K,≤,D, e) is loyal if L(K,≤,D, e) = L(K,≤). A class C of Kripke models for set
theory is called loyal if every model in C is loyal; C is called weakly loyal if L(C) =
L(KC).

Definition 15 Let (K,≤,D, e) be a Kripke model for set theory. We will say that
(K,≤,D, e) is faithful if for every valuation V : Prop → P(K), and every proposi-
tional letter p ∈ Prop, there is a sentence φ in the language of set theory such that
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JφK(K ,≤,D,e) = V(p). A class C of Kripke models for set theory is called faithful if
every model in C is faithful.

We will say that C is finitely faithful if for every valuation V : Prop → P(K),
where (K,≤) ∈ KC , and every finite collection {pi | i < n} of propositional variables,
there are some (K,≤,D, e) ∈ CK and a collection {φi ∈ Lsent

∈ | i < n} of L∈-sentences
such that JφiK(K ,≤,D,e) = V(pi) for all i < n.

Note that these definitions of loyalty and faithfulness are slightly stronger, but
more natural, than the notions introduced in [15].

Proposition 16 If a Kripke model for set theory (K,≤,D, e) is faithful, then it is loyal.

Proof We have to show that L(K,≤,D, e) = L(K,≤). The inclusion from right to left
holds by Proposition 13 without making use of the assumption of faithfulness. For
the converse direction, let φ ∈ L(K,≤,D, e) be given, i.e., (K,≤,D, e) ⊩ φσ for all
translations σ : Prop → Lsent

∈ . Now, take any valuation V : Prop → P(K) and let
{pi | i < n} be the collection of propositional variables appearing in φ. By faithfulness,
there is a collection of sentences {φi | i < n} such that V(p) = JφiK(K ,≤,D,e). Let
σ : Prop → Lsent

∈ be any translation with σ(pi) = φi . An easy induction on the
complexity of formulas ψ with propositional variables among {pi | i < n} shows that
(K,≤,D, e), v ⊩ ψσ if and only if (K,≤), v ⊩ ψ. In this situation, it follows from our
assumption (K,≤,D, e) ⊩ φσ that (K,≤) ⊩ φ. ⊓⊔

Note that the the loyalty of a class of Kripke frames is strictly weaker than
its faithfulness (cf. [15] for a broader introduction to these notions). A study of
algebra-valued models of intuitionistic and paraconsistent set theories that violate
these conditions was conducted by Löwe, Passmann and Tarafder in [10].

Proposition 17 Let C be a class of Kripke models for set theory, T an L∈-theory,
and suppose that A ⊨ T holds for all A ∈ C. Then T has the de Jongh property with
respect to the intermediate logic L(C).

Proof Let J = L(C). We need to show that L(T(J)) = J, and the inclusion from right
to left is clear. To prove the other direction, assume that φ < J = L(C). Then there is
A ∈ C and σ : Prop → Lsent

∈ such that A ⊮ φσ . Hence, T ⊬ φσ , i.e., φ < L(T(J)). ⊓⊔

To prove that a particular theory has the de Jongh property, it will be enough to
construct finitely faithful classes of models.

Proposition 18 If a class C of Kripke models for set theory is finitely faithful and
K ⊆ KC is a class of Kripke frames, then CK ⊆ C is finitely faithful.

Proof When restricting from C to CK , we keep all Kripke models that are based on a
frame in K. Hence, all witnesses for finite faithfulness required by Definition 15 are
still available. ⊓⊔

Proposition 19 If a class C of Kripke models for set theory is finitely faithful, then it
is weakly loyal.
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Proof Assume that C is finitely faithful. We need to show that L(C) = L(KC). To
do so, it suffices to prove L(C) ⊆ L(KC) by Proposition 13. Given φ < L(KC), there
is a Kripke frame (K,≤) and a valuation V : Prop → K such that (K,≤),V ⊮ φ. By
finite faithfulness, we can obtain set-theoretical sentences ψi and a Kripke model for
set theory (K,≤,D, e) ∈ C such that JψiK(K ,≤,D,e) = JpiK(K ,≤) for all propositional
variables pi appearing in φ. By essentially the same induction as in the proof of
Proposition 16, we obtain that JφK(K ,≤,D,e) = JφσK(K ,≤), where σ is the assignment
pi 7→ ψi . Therefore, (K,≤,D, e) ⊮ φ and φ < L(C). ⊓⊔

Proposition 20 If a class C of Kripke models for set theory is weakly loyal and C ⊨ T
for an L∈-theory T, then T has the de Jongh property with respect to L(KC).

Proof By Proposition 17, T has the de Jongh property with respect to L(C). Because
C is weakly loyal, we have L(C) = L(KC) by Definition 14. ⊓⊔

Now, we can derive our main tool for proving the de Jongh property.

Corollary 21 If a class C of Kripke models for set theory is finitely faithful with
C ⊨ T for an L∈-theory T, and K ⊆ KC a class of Kripke frames, then T has the de
Jongh property with respect to L(K).

Proof If the class C is finitely faithful with C ⊨ T and K ⊆ KC a class of Kripke
frames, then, by Proposition 18, CK is finitely faithful. Hence, CK is weakly loyal by
Proposition 19. Note that KCK = K. Therefore, Proposition 20 implies that T has the
de Jongh property with respect to L(K). ⊓⊔

In fact, all of the above can be straightforwardly generalised to arbitrary theories
and languages (cf. [15]). Let us remark here that the last propositions encapsulate one
of the typical methods of proving the de Jongh property: For example, many of the
results of de Jongh, Verbrugge, and Visser [8] that establish results concerning the
de Jongh property of Heyting arithmetic HA can be construed as providing instances
of finitely faithful or weakly loyal classes of models for HA. Similarly, Ardeshir and
Mojtahedi [2] construct a finitely faithful class of models for basic arithmetic to prove
that basic arithmetic has the de Jongh property with respect to the basic propositional
calculus.

3 Kripke models for bounded constructive Zermelo-Fraenkel set theory

In this section, we will introduce bounded constructive set theory BCZF, present the
Iemhoff models and exhibit a failure of the axiom of exponentiation in models that
involve forcing non-trivially.

3.1 Bounded constructive Zermelo-Fraenkel set theory

To begin with, let us introduce bounded constructive Zermelo-Fraenkel set theory
BCZF as well as constructive Zermelo-Fraenkel set theory CZF. To do so, we list the
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relevant axioms and axiom schemes. As usual, the bounded quantifiers ∀x ∈ a φ(x)
and ∃x ∈ a φ(x) are abbreviations for ∀x(x ∈ a → φ(x)) and ∃x(x ∈ a ∧ φ(x)),
respectively.

∀a∀b(∀x(x ∈ a ↔ x ∈ b) → a = b) (Extensionality)
∃a ∀x ∈ a ⊥ (Empty Set)
∀a∀b∃y∀x(x ∈ y ↔ (x = a ∨ x = b)) (Pairing)
∀a∃y∀x(x ∈ y ↔ ∃u(u ∈ a ∧ x ∈ u)) (Union)
(∀a(∀x ∈ a φ(x) → φ(a))) → ∀aφ(a) (Set Induction)

Moreover, we have the axiom scheme of bounded separation, where φ ranges over the
bounded formulas:

∀a∃y∀x(x ∈ y ↔ x ∈ a ∧ φ(x)) (φ is ∆0-formula) (Bounded Separation)

In the following strong infinity axiom, Ind(a) is the formula denoting that a is an
inductive set: Ind(a) abbreviates ∅ ∈ a ∧ ∀x ∈ a∃y ∈ a y = {x}.

∃a(Ind(a) ∧ ∀b(Ind(b) → ∀x ∈ a(x ∈ b))) (Strong Infinity)

Finally, we have the schemes of strong collection and subset collection for all formulas
φ(x, y) and ψ(x, y,u), respectively.

∀a(∀x ∈ a∃y φ(x, y) →
∃b(∀x ∈ a∃y ∈ b φ(x, y) ∧ ∀y ∈ b∃x ∈ a φ(x, y))) (Strong Collection)

∀a∀b∃c∀u(∀x ∈ a∃y ∈ b ψ(x, y,u) →
∃d ∈ c(∀x ∈ a∃y ∈ d ψ(x, y,u) ∧ ∀y ∈ d∃x ∈ a ψ(x, y,u)))

(Subset Collection)

Definition 22 The theory CZF of constructive Zermelo-Fraenkel set theory consists
of the axioms and rules of intuitionistic predicate logic for the language L∈ extended
by the axioms of extensionality, empty set, pairing, union and strong infinity as well as
the axiom schemes of set induction, bounded separation, strong collection and subset
collection.

In the statement of the following axiom of exponentiation, f : x → y is an
abbreviation for the ∆0-formula φ( f , x, y) stating that f is a function from x to y.

∀x ∀y ∃z ∀ f ( f ∈ z ↔ f : x → y) (Exponentiation, Exp)

The axiom of exponentiation is a constructive consequence of the axiom of subset
collection over CZF (cf. [1, Theorem 5.1.2]). Hence, a failure of exponentiation implies
a failure of subset collection. We will see in Section 3.3 that the Iemhoff models do
not satisfy the axiom of exponentiation in general, and therefore, they cannot satisfy
full CZF. Hence, we need to consider a weakened version of CZF.

The axiom scheme obtained from strong collection when restricting φ to range
over ∆0-formulas only will be called Bounded Strong Collection. Similarly, we obtain
the axiom scheme of Set-bounded Subset Collection from the axiom scheme of subset
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collection when restricting ψ to ∆0-formulas such that z is set-bounded in ψ (i.e., it
is possible to intuitionistically derive z ∈ t for some term t that appears in ψ from
ψ(x, y, z)).

Definition 23 The theory BCZF of bounded constructive Zermelo-Fraenkel set theory
consists of the axioms and rules of intuitionistic predicate logic for the language L∈
extended by the axioms of extensionality, empty set, pairing, union and strong infinity
as well as the axiom schemes of set induction, bounded separation, bounded strong
collection and set-bounded subset collection.

3.2 Iemhoff models

The idea is to obtain models of set theory by assigning classical models of ZF set
theory to every node of a Kripke model for intuitionistic predicate logic. We will
closely follow Iemhoff’s [5], but give up on some generality that we do not need for
our purposes. We will start by giving a condition for when an assignment of models
to nodes is suitable for our purposes.

Definition 24 Let (K,≤) be a Kripke frame. An assignment M : K → V of nodes
to transitive models of ZF set theory is called sound for K if for all nodes i, j ∈ K
with i ≤ j we have that M(i) ⊆ M( j), and the inclusion map is a homomorphism of
models of set theory (i.e., it preserves ∈ and =).

For convenience, we will writeMv forM(v). Of course, this could be readily gen-
eralised to homomorphisms of models of set theory that are not necessarily inclusions,
but we will not need this level of generality here.

Definition 25 Given a Kripke model (K,≤) and a sound assignment M : K → V ,
we define the Iemhoff model K(M) to be the Kripke model for set theory (K,≤,M, e)
where ev = ∈ ↾ (Mv ×Mv).

Persistence for Iemhoff models is a special case of persistence for Kripke models
for set theory.

Proposition 26 If K(M) is an Iemhoff model with nodes v,w ∈ K such that v ≤ w,
then for all formulas φ, K(M), v ⊩ φ implies K(M),w ⊩ φ. ⊓⊔

We will now analyse the set theory satisfied by these models.

Definition 27 We say that a set-theoretic formula φ(x0, . . . , xn−1) is evaluated locally
if for all Iemhoff models K(M), where M is a sound assignment, we have that
K(M), v ⊩ φ(a0, . . . ,an−1) if and only if Mv ⊨ φ(a0, . . . ,an−1) for all a0, . . . ,an−1 ∈
Mv .

Proposition 28 If φ is a ∆0-formula, then φ is evaluated locally.
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Proof This statement can be shown by actually proving a stronger statement by
induction on ∆0-formulas, simultaneously for all v ∈ K . Namely, we can show that for
all w ≥ v it holds that w ⊩ φ(a0, . . . ,an) if and only if Mv ⊨ φ(a0, . . . ,an). To prove
the case of the bounded universal quantifier and the case of implication, we need that
the quantifier is outside in the sense that our induction hypothesis will be:

∀w ≥ v(w ⊩ φ(a0, . . . ,an) ⇐⇒ Mv ⊨ φ(a0, . . . ,an)).

With this setup, the induction follows straightforwardly. ⊓⊔
Theorem 29 (Iemhoff, [5, Corollary 4]) Let K(M) be an Iemhoff model. Then
K(M) ⊩ BCZF.

Let us conclude this section with the following curious observation.

Proposition 30 If K(M) is an Iemhoff model such that every Mv is a model of the
axiom of choice, then the axiom of choice holds in K(M).
Proof Recall that the axiom of choice is the following statement:

∀a((∀x ∈ a∀y ∈ a (x , y → x ∩ y = ∅)) → ∃b∀x ∈ a∃!z ∈ b z ∈ x). (AC)

Let v ∈ K and a ∈ Mv such that v ⊩ ∀x ∈ a∀y ∈ a (x , y → x∩ y = ∅). This is a ∆0-
formula, so we can apply Proposition 28 to derive that Mv ⊨ ∀x ∈ a∀y ∈ a (x , y →
x∩ y = ∅). As Mv ⊨ AC, there is some b ∈ Mv such that Mv ⊨ ∀x ∈ a∃!z ∈ b z ∈ x.
Again, this is a ∆0-formula, so it holds that v ⊩ ∀x ∈ a∃!z ∈ b z ∈ x. As b ∈ Mv , we
have v ⊩ ∃b∀x ∈ a∃!z ∈ b z ∈ x. But this shows that v ⊩ AC. ⊓⊔

As BCZF contains the bounded separation axiom, it follows that AC implies the
law of excluded middle for bounded formulas in the models of the proposition (cf. [1,
Chapter 10.1]).

3.3 A failure of exponentiation

In this section, we will exhibit a failure of the axiom of exponentiation in particular
Iemhoff models.

Proposition 31 Let K(M) be an Iemhoff model such that there are v,w ∈ K with
v < w. If a, b ∈ Mv and g : a → b is a function contained in Mw but not in Mv ,
then K(M) ⊮ Exp.

Proof Assume, for a contradiction, that K(M) ⊩ Exp. Further, assume that a, b ∈ Mv

and g : a → b is a function contained in Mw but not in Mv . Then,

K(M), v ⊩ ∀x ∀y ∃z ∀ f ( f ∈ z ↔ f : x → y),

and by the definition of our semantics this just means that there is some c ∈ Mv

such that K(M), v ⊩ ∀ f ( f ∈ c ↔ f : a → b). By the semantics of universal
quantification, this means that K(M),w ⊩ g ∈ c ↔ g : a → b. Since g is indeed
a function from a → b, it follows that K(M),w ⊩ g ∈ c. As c is a member of Mv

by assumption, we have g ∈ c ∈ Mv . Hence, by transitivity, g ∈ Mv . But this is a
contradiction to our assumption that g is not contained in Mv . ⊓⊔
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Of course, when adding a generic filter for a non-trivial forcing notion, we always
add such a function, namely the characteristic function of the generic filter. Therefore,
Proposition 31 yields:

Corollary 32 Let K(M) be an Iemhoff model. If there are nodes v < w ∈ K such that
Mw is a non-trivial generic extension of Mv (i.e., Mw = Mv[G] for some generic
G <Mv), then it is not a model of CZF. ⊓⊔

In Kripke semantics for intuitionistic logic, K(M) ⊩ ¬φ is strictly stronger than
K(M) ⊮ φ. The above results give an instance of the latter, now we will provide an
example of the former.

Proposition 33 There is an Iemhoff model K(M) that forces the negation of the
exponentiation axiom, i.e., K(M) ⊩ ¬Exp.

Proof Consider the Kripke frame K = (ω,<) where < is the standard ordering of
the natural numbers. Construct the assignment M as follows: Choose M0 to be any
countable and transitive model of ZFC. If Mi is constructed, let Mi+1 = Mi[Gi]
where Gi is generic for Cohen forcing over Mi (actually, every non-trivial forcing
notion does the job). Clearly, M is a sound assignment of models of set theory. Now,
we want to show that for every i ∈ ω we have that i ⊩ ¬Exp, i.e., for all j ≥ i we
need to show that j ⊩ Exp implies j ⊩ ⊥. This, however, is done exactly as in the
proof of Proposition 31, where the witnesses are the characteristic functions χGi of
the generic filters Gi . ⊓⊔

4 Bounded constructive Zermelo-Fraenkel set theory has the de Jongh property

The aim of this section is to prove that the class of Iemhoff models is finitely faithful.
By Corollary 21 this is sufficient to prove that BCZF has the de Jongh property with
respect to all logics characterised by a class of Kripke frame.

4.1 Technical preliminaries

We define the relativisation φ 7→ φL of a formula of set theory to the constructible uni-
verse L in the usual way. Note, however, that in our setting the evaluation of universal
quantifiers and implications is in general not local (in contrast to classical models of set
theory). Nevertheless, we will now show that—under mild assumptions—statements
about the constructible universe can be evaluated locally.

Proposition 34 There is a Σ1-formula φ(x) such that in any model M ⊨ ZFC, we
have M ⊨ φ(x) ↔ x ∈ L.

Proof See [6, Lemma 13.14]. ⊓⊔

From now on, let x ∈ L be an abbreviation for φ(x), where φ is the Σ1-formula
from Proposition 34.
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Proposition 35 Let K be a Kripke frame and M a sound assignment of nodes to
transitive models of ZFC. Then K(M), v ⊩ x ∈ L if and only if Mv ⊨ x ∈ L, i.e., the
formula x ∈ L is evaluated locally.

Proof Recall that the existential quantifier is defined locally, i.e., the witness for the
quantification must be found within the domain associated to the current node in
the Kripke model. Then, the statement of the proposition follows from the fact that
∆0-formulas are evaluated locally by Proposition 28. ⊓⊔

The crucial detail of the following technical Lemma 37 is the fact that the con-
structible universe is absolute between inner models of set theory. We will therefore
need to strengthen the notion of a sound assignment.

Definition 36 Let K be a Kripke frame. We say that a sound assignment M : K → V
agrees on L if there is a transitive model N ⊨ ZFC + V = L such that N is an inner
model of Mv for every v ∈ K .

In particular, if K is a Kripke frame and M : K → V agrees on L, then we
are justified in referring to the constructible universe L from the point of view of all
models in M.

Lemma 37 Let K be a Kripke frame and M be a sound assignment that agrees on L.
Then the following are equivalent for any formula φ(x) in the language of set theory,
and all parameters a0, . . . ,an−1 ∈ L:

(i) for all v ∈ K , we have K(M), v ⊩ (φ(a0, . . . ,an−1))L,
(ii) for all v ∈ K , we have Mv ⊨ (φ(a0, . . . ,an−1))L,
(iii) there is a v ∈ K such that Mv ⊨ (φ(a0, . . . ,an−1))L, and,
(iv) L ⊨ φ(a0, . . . ,an−1).

Proof By our assumption, a0, . . . ,an−1 ∈ Mv for all v ∈ K as L ⊆ Mv for all v ∈ K .
The equivalence of (ii), (iii) and (iv) follows directly from the fact that L is absolute
between inner models of ZFC.

The equivalence of (i) and (ii) can be proved by an induction on set-theoretic
formulas simultaneously for all nodes in K with the induction hypothesis as in the
proof of Proposition 28. For the case of the universal quantifier, we make use of the
fact that M agrees on L (hence, that L is absolute between all models Mv for v ∈ K),
and apply Proposition 35. ⊓⊔

Friedman, Fuchino and Sakai [3] presented the family of sentences that we are
going to use to imitate the behaviour of propositional variables in a valuation of a
Kripke frame. Consider the following statements ψi:

There is an injection from ℵL
i+2 to P(ℵL

i ).

There are different ways of formalising these statements that are classically equivalent,
but differ in the way they are evaluated in a Kripke model. For our purposes, we choose
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to define the sentence ψi like this:

∃x∃y∃g((x = ℵi+2)L ∧ (y = ℵi)L

∧ g “is an injective function”
∧ dom(g) = x

∧ ∀α ∈ x∀z ∈ g(α) z ∈ y)

The main reason for this choice of formalisation is that the semantics of the
existential quantifier is local, which will allow us to prove the following crucial
observation.

Proposition 38 Let K be a Kripke frame and M a sound assignment that agrees on
L. Then K(M), v ⊩ ψi if and only if Mv ⊨ ψi , i.e., the sentences ψi are evaluated
locally.

Proof This follows from Lemma 37, Proposition 28 and the fact that the semantics
of the existential quantifier is local, i.e., the sets x, y and g of the above statement
must (or may not) be found within Mv . In this situation, it suffices to argue that the
following conjunction is evaluated locally:

(x = ℵi+2)L ∧ (y = ℵi)L ∧ g “is an injective function”
∧ dom(g) = x

∧ ∀α ∈ x∀z ∈ g(α) z ∈ y.

It suffices to argue that every conjunct is evaluated locally. For the first two conjuncts
of the form φL this holds by Lemma 37. The final three conjuncts are ∆0-formulas.
So we can apply Proposition 28 and the desired result follows. ⊓⊔

4.2 The construction of the Iemhoff model

We will now obtain a collection of models of set theory using the forcing notions from
Friedman, Fuchino and Sakai in [3]. From this collection, we define Iemhoff models
by constructing sound assignments that agree on L.

We begin by setting up the forcing construction. We start from some countable
transitive constructible universe L (that is, a countable transitive model of ZFC set
theory satisfying the axiom V = L). Let Qn be the forcing notion1 Fn(ℵL

n+2,2,ℵL
n),

defined within L. Given A ⊆ ω, we define the following forcings:

PAn =

{
Qn, if n ∈ A,
1, otherwise.

Then let PA =
∏

n<ω P
A
n be the full support product of the forcing notions PAn . Recall

that the ordering < on PA is defined by (ai)i∈ω < (bi)i∈ω if and only if ai <i bi for

1 The notation Fn(I , J , λ) is introduced by Kunen in [9, Definition 6.1] and denotes the set of all partial
functions p : I → J of cardinality less than λ ordered by reversed inclusion.
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all i ∈ ω. Now, let G be Pω-generic over L, and let Gn = πn[G] be the n-th projection
of G. Let H be the trivial generic filter on the trivial forcing 1. Now, for A ⊆ ω and
n ∈ ω define the collection of filters:

GA
n =

{
Gn, if n ∈ A,
H, otherwise,

and let GA =
∏

n<ω GA
n .

Proposition 39 The filter GA is PA-generic over L. ⊓⊔

Proposition 40 If A ⊆ B ⊆ ω and A ∈ L[GB], then L[GA] ⊆ L[GB]. Indeed, L[GA]
is an inner model of L[GB]. ⊓⊔

The additional assumption A ∈ L[GB] is necessary because there are forcing
extensions that cannot be amalgamated (see [4, Observation 35] for a discussion of
this).

Proposition 41 (Friedman, Fuchino and Sakai, [3, Proposition 5.1]) Let i ∈ ω and
A ⊆ ω. Then L[GA] ⊨ ψi if and only if i ∈ A. ⊓⊔

This concludes our preparatory work and we can now prove our main result.

Theorem 42 The class of Iemhoff models is finitely faithful.

Proof Let (K,≤) be any Kripke frame. By the definition of finite faithfulness, we need
to show that for any valuation V : Prop → P(K) on K , and every finite collection pi ,
i < n of propositional letters, there is a collection of set-theoretical sentences φi and
an Iemhoff model K(M) such that {v ∈ K | K(M), v ⊩ φi} = V(pi) for all i < n, i.e.,
the truth sets of all φi and vi coincide.

Now, let V̄ be the valuation with V̄(pi) = V(pi) for each pi , i < n, and V̄(p) = ∅
otherwise. Observe that V̄−1(v) is finite for every v ∈ K and we can define Av = {i <
ω | v ∈ V̄(pi)} for any v ∈ K . It holds that Av ∈ L as it is a finite subset of ω. Note
that v ≤ w ∈ K implies that Av ⊆ Aw by monotonicity of the original valuation V .
Therefore, we know by Proposition 40 that L[GAv ] is an inner model of L[GAw ] for
all v ≤ w ∈ K . Hence, the assignment M : K → V with Mv = L[GAv ] is sound
and agrees on L. This yields the Iemhoff model K(M). Choose φi = ψi for all i < n.
Then:

K(M), v ⊩ φi ⇐⇒ K(M), v ⊩ ψi (by the definition of φi)
⇐⇒ Mv ⊨ ψi (by Proposition 38)

⇐⇒ L[GAv ] ⊨ ψi (by definition of M)
⇐⇒ i ∈ Av (by Proposition 41)

⇐⇒ pi ∈ V̄−1(v) (by definition of Av)
⇐⇒ K, V̄, v ⊩ pi .

This shows that JφiKK(M) = {v ∈ K | K(M), v ⊩ φi} = V̄(pi) = V(pi) for all
i < n, and this finishes the proof of the finite faithfulness of the class of Iemhoff
models. ⊓⊔
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Corollary 43 The theory BCZF has the de Jongh property with respect to every logic
that is characterised by a class of Kripke frames.

Proof By Theorem 42, we know that the class C of Iemhoff models is faithful.
Moreover, C ⊨ BCZF by Theorem 29. In this situation, Corollary 21 implies that
BCZF has the de Jongh property with respect to L(K) for every class K of Kripke
frames. ⊓⊔

For example, BCZF has the de Jongh property with respect to the logics discussed
in [8], such as Dummett’s logic LC, the logic of the weak excluded middle KC, the
logic KP of Kreisel and Putnam, and the logics BDn of bounded depth and Scott’s
logic Sc. Our limiting result Proposition 32 shows that we cannot easily push this
method to obtain a proof of the de Jongh property of stronger set theories than BCZF,
such as full CZF.

Let us remark here that there is an alternative way of proving Corollary 43 for
logics that are characterised by a class of finite Kripke frames that is reminiscent of
what is sometimes called Smoryński’s trick: Given a collection of Kripke models for
Heyting arithmetic HA, one can construct a new model of HA by adding a new root
underneath the old models and attaching the standard model ω of HA to it (cf. [16]).
In our case, given a collection of Iemhoff models that are compatible in the sense
that they agree on L, one can obtain a new Iemhoff model by adding a new root to
the disjoint union of the Kripke frames, attaching L to it and leaving the rest of the
assignments unaltered.
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