
Majorizability Types, Assmeblies, and the Fan Theorem

MSc Thesis (Afstudeerscriptie)

written by

Tao Gu
(born June 22, 1994 in Shanghai, China)

under the supervision of Dr. Benno van den Berg, and submitted to the Board of Examiners
in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
August 22, 2018 Dr Benno van den Berg

Prof Ronald de Wolf
Dr Jaap van Oosten
Dr Piet Rodenburg

1

Abstract

In this thesis we introduce the notion of majorizability types, and the category MMAsm
of majorizability modified assemblies. The MMAsm has the vdBB model as the interpretation
of finite types. The internal logic of MMAsm captures certain version of modified realizability.
Besides, both the Special Fan Functional and the Fan Recursor provably exist in the internal logic
of MMAsm. Therefore the Fan Theorem holds in MMAsm. And this provides a computational
and categorical justification of the Fan Theorem.

2

1 Introduction

The constructivism in mathematics is nowadays perhaps no longer an alien to logicians, mathe-
maticians, and computer scientists. The basic observation behind the constructivism is that, in
classical mathematical practices, the proofs can be divided into two classes: constructive and non-
constructive proofs. The difference is most explicit in those disjunctive and existential statements.
For example, to prove

∃x(x ≥ 210 ∧ Prime(x)) (†)
one can use his computer and use a few lines of code to find the smallest prime number n such that
n ≥ 210. In the constructivism terminology, such n is often called a witness of the statement (†).
Next we take a well-known example in analysis:

Every open cover U of [0, 1] has a finite subcover

This is normally proved by contradiction: suppose not, then one can construct an infinite sequence
of In ⊆ [0, 1] that cannot be finitely covered. By Cantor Intersection Theorem,

⋂
n→∞ In is a

singleton {x}, so there is some U ∈ U that covers {x}, and also covers slim enough In, contradiction
to the assumption of In’s.

One may already feel some slight difference in these two examples. In the first example when
we prove the existence of certain x, we do find such natural number x. In the second however, we
don’t know what a finite subcover is: though denying is existence bring us into problem. In this
sense, we say that the first proof is constructive and the second is non-constructive. In general,
constructivism in mathematics denies unrestricted use of the Excluded Middle Axiom, and use the
intuitionsitic logic as underlying logic for mathematical systems. And in such logic, to prove a
disjunctive statement one needs to prove one of its disjuncts; and to claim an existential statement
one has to find such an element that one claims to exist.

The intuitionistic logic, however, requires a new interpretation of the logical connectives to make
good sense. One of the approach is the BHK interpretation. Basically every formula is interpreted
as a proof of it. For example, a proof for the atomic formulas are trivial; a proof for ϕ→ ψ requires
a function F mapping a proof of ϕ to a proof of ψ; and a proof for ∃xϕ(x) consists of some n and
a proof of ϕ(n).

Kleene’s numerical realizability and its variations can be seen as a reminiscent of the BHK
interpretation [2]. The numerical realizability defines, for each formula ϕ, a notion of “number n
realizes ϕ”. The n is called a realizer of ϕ. In the numerical realizability, all the realizers are natural
numbers, intuitively thought of Gödel numbering of Turing machines. And it’s unsurprising that
the Gödel numbering of Turing machines is a model of the numerical realizability. This already
incorporates the idea of applying computation concepts into constructivism mathematics. Such
idea is more explicit in some later variations. For example, in the modified realizability introduced
by Kreisel, every formula is assigned a unique type of its potential realizers, depending on its logical
form.

From a categorical logic point of view, there are various categories whose internal logic captures
certain notion of realizability. Define assemblies to be (X,E) where X is a set and E : X → Powi(N)
assigns to each x ∈ X an inhabited subset of N. Here N can be understood as the Gödel’s numbering
of Turing machines. A morphism (X,E)→ (Y, F) is a function f : X → Y that is witnessed: ∃r ∈ N
s.t. ∀x ∈ X and ∀a ∈ E(x), r · a is defined and ra ∈ F (fx). Thus we get a category of assemblies
Asm, where the morphisms are recursive functions. It’s a good category in that its internal logic
captures Kleene’s numerical realizability [15].

Intuitionism, one school of constructivism mathematics, was founded by L.E.J. Brouwer. His
philosophy of intuitionistic mathematics can be dated back to the early 1900’s [16], which later

3

generated two of Brouwer’s most influential idea in intuitionism. Firstly one has the skepticism
and ban of the Excluded Middle Principle. Secondly one has the Brouwer’s Thesis, consisting of
the axioms he proposed after a close examination of (the construction of) the continuum. Among
them are the Bar Theorem and the Fan Theorem, and the latter is a corollary of the former. One
interesting observation is that, the Fan Theorem itself suffices for many of Brouwer’s results. In
particular, from the Fan Theorem one can derive the Uniform Continuity Theorem, claiming that
every continuous function [0, 1]→ R is uniformly continuous [13]. Therefore the Fan Theorem and
its related mathematical principles are of special interest to us. And the thesis has to be seen in
the context of Brouwer’s philosophy of mathematics.

In this thesis, we have constructed a category of assemblies MMAsm that is expected to capture
certain version of realizability (conjectured to be the monotone modified realizability).

Besides, MMAsm matches well with the vdBB structure. In [14], van den Berg and Briseid
introduced vdBB as a model for Gödel’s T, in which the Fan Theorem holds. In our category
MMAsm, the interpretation of the finite types coincide (up to isomorphism) with the vdBB model.
This means that vdBB are the finite types in some cartesian closed category with natural number
object. And we conjecture that, MMAsm characterizes the monotone modified realizability w.r.t.
the vdBB terms.

Finally MMAsm provides a constructive categorical model for the Fan Theorem. The Fan
Theorem fails in the famous effective topos Eff [15]. Relying the strong majorizability relation in
the MType, MMAsm validates the Fan Theorem, the Special Fan Functional Principle, and the
Fan Recursor Principle. And since MMAsm is a category of assemblies, it provides a computable
justification of the Fan Theorem.

4

2 Preliminaries

2.1 Gödel’s T and HAω

Recall that Gödel’s T is a term rewriting system which admits lambda abstraction and application.
However, in order to fit our application better, let’s regard the Gödel’s T as a logical system where
the axioms are those of intuitionistic logic and the correspondence of the term rewriting rules.
Regarding T as a quantifier-free claculus of functionals also works; we do it just for convenience.
Then HAω is the many-sorted intuitionisitic logic based on T.

First, we construct the set of finite types T inductively from the base type 0 and type constructor
× and →. And T will be the set of types for the language of T and HAω. To be succinct, we shall
sometimes write στ as abbreviation of σ → τ , with the convention that operators associate to the
right; also we adopt the convention that the type n denote the type (n− 1)0, so for example type 2
is (0→ 0)→ 0. We will use : or superscript to indicate the type. Next, the language L consists of:

• For each type σ ∈ T , infinitely many variables for that type xσ, yσ, zσ, . . . ;

• The zero element 0 of type 0, and the successor element S of type 0(0). Write n̄ for Sn0;

• For any type σ, τ, ρ ∈ T , constants kσ,τ , k̄σ,τ , sσ,τ,ρ, pσ,τ , pσ,τ0 , pσ,τ1 ;

• For each type σ, a combinator (recursor) Rσ : σ → (0→ (σ → σ))→ (0→ σ);

• For any type σ ∈ T , a binary relation symbol =σ;

• For any type σ, τ ∈ T , a function symbol appσ,τ : (σ → τ)× σ → τ .

For simplicity, we abbreviate app(t, t′) as tt′, and pab as 〈a, b〉 or even (a, b), when no confusion
arises. n-ary tuples 〈a1, . . . , ak〉 are consequently abbreviations of nested pairings, where the arity is
explicitly encoded. Now the L terms are constructed from the variables and constants by applying
suitable (w.r.t. the types) terms to function symbols. And axioms for T are as follows:

1. Axioms for intuitionsitic propositional logic, and the rule of universal substitution.

2. Axioms for equality of all types, saying that =σ is an equivalence relation:

(a) ∀xσ(x =σ x)

(b) ∀xσyσ(x =σ y → y =σ x)

(c) ∀xσyσzσ(x =σ y ∧ y =σ z → x =σ z)

(d) ∀xστyστ∀uσvσ(x =στ y ∧ u =σ v → xu =τ yv)

3. Axioms for combinators:

(a) ∀xσyτ (kσ,τxy) = x, ∀xσyτ (k̄σ,τxy) = y

(b) ∀xσ(τρ)yσ(τ)zσsσ,τ,ρxyz = xz(yz)

(c) ∀xσ0xτ1(pσ,τi (pσ,τx0x1)) = xi, for i = 0, 1

(d) ∀xσf0(σσ)(Rσxf0 = x); ∀∀xσf0(σσ)(Rσxf(Sn) = f(Rxfn))

To achieve the system HAω, we add further:

4. Axioms for the natural number type 0:

5

(a) ∀x0(¬0 = Sx)

(b) ∀x0y0(Sx = Sy → x = y)

(c) Induction schema:
ϕ(0)→ (∀x0(ϕ(x)→ ϕ(Sx))→ ∀x0ϕ(x))

where ϕ(x) is any formula in the language.

In HAω, all the prime formulas with only =0 are decidable. However, one cannot prove that
everything of type 0 is of the form n̄ for some n ∈ N (in fact this cannot be expressed in our
language). Still, one can prove by induction on the formula structure that the substitution holds
for any σ ∈ T : HAω ` ∀xσyσ(x =σ y ∧ ϕ(x)→ ϕ(y)).

If we take as primitive only equality symbol =0 for type 0 and regard the rest =σ’s as abbrevi-
ations:

∀xσ×τyσ×τ (x =σ×τ y ↔ p0x = p0y ∧ p1x = p1y)

∀xστyστ (x =στ y ↔ ∀uσxu =τ yu)

Then every =σ is extensional, and we call the resulting system E-HAω. By the above discussion,
all atomic formulas in E-HAω are decidable.

2.2 Realizability

The notion of (numerical) realizability was first raised by Kleene [6], under his intuition that there
should exist some connection between Intuitionism and the theory of recursive functions. By
defining the notion of “number n realizes formula ϕ”, Kleene intended to “capture some essential
aspects of the intuitionistic meaning of ϕ” [2], namely ϕ is constructively true. And the result is
the numerical realizability as a constructive semantics for intuitionistic arithmetic.

One well-known and intuitive variation of realizability is the modified realizability introduced
by Kreisel [9], where the realizers are terms in typed lambda calculus. In brief, given a formula ϕ,
its realizers share a specific type given by the logical form of formula ϕ. Given the system HAω,
we define HAω formula (x mr ϕ) inductively on the structure of formula ϕ:

x0 mr ϕ := ϕ, where ϕ is atomic

x mr (ϕ ∧ ψ) := (p0x mr ϕ) ∧ (p1x mr ψ)

x mr (ϕ ∨ ψ) := (p0x = 0→ p1x mr ϕ) ∧ (p0x = 1→ p1x mr ψ)

x mr (ϕ→ ψ) := ∀y(y mr ϕ→ xy mr ψ)

x mr (∃zϕ) := p1x mr ϕ[p0x/z]

x mr (∀zϕ) := ∀z(xz mr ϕ)

where in the → case ∀y is typed quantification with the type given by the structure of ϕ, and in
the ∃ case ϕ[p0x/z] is the result of substituting all the free occurrence of z in ϕ with p0x. For our
purpose, it’s sometimes more convenient to consider the realizability notions in the metatheory. One
first observation is that, x mr ϕ is ∃-free. And for any ∃-free formula ϕ, x mr ϕ (thus ∃x(x mr ϕ))
is equivalent to ϕ itself. Though in this paper we shall focus on the system HAω, there is no reason
to be restricted to it. One can make similar definitions in other typed systems with Gödel’s T.

The formula ∃x(x mr ϕ) is also referred to (e.g. [12]) as the modified realizability interpretation
of ϕ, and x mr ϕ as the modified realizability predicate. Indeed, from the very beginning, Kleene [6]
introduced numerical realizability as “a semantics for ’intuitionistic arithmetic” [12]. The following
is a basic result saying that the mr interpretation is a sound semantics for HAω:

6

Theorem 2.1 (Soundness). For any sentence ϕ, HAω ` ϕ⇒ HAω ` ∃x(x mr ϕ).

However, the inverse is not true: not every realized sentence is provable. Consider the following
schemata (instances):

(ACσ,τ) ∀xσ∃yτϕ(x, y)→ ∃fσ(τ)∀xσϕ(x, fx)

(IPef
σ) (ϕ→ ∃yσψ(y))→ ∃yσ(ϕ→ ψ(y)), where y 6∈ FV(ϕ) and ϕ is ∃-free.

where AC stands for “Axiom of Choice” and IPef for “Independence of Premise (for existence-free
formulas)”1. And the following is a well-known characterization of modified realizability [11]:

Lemma 2.2. Both AC and IPef are modified realized in HAω.

Proof. It’s straightforward to verify that t′ := λr.p(λm.p0(rm))(λm.p1(rm)) realizes AC.
For a term t to realize IPef , one should have:

∀r[∀a(ϕ→ p1(ra) mr ψ(p0(ra)))→ ∀a(ϕ→ p1(tr)a mr ψ(p0(tr)))]

Then we can pick 0σ of the type σ of a, and t := λr.p(p0(r0σ))(λa.p1(r0σ)) does the trick.

However, E-HAω 6` AC, IPef [2]. And this somehow suggests that, E-HAω thinks that modified
realizability is as strong as E-HAω plus AC, IPef and possibly something else, and fortunately it
turns out that these two suffice:

Theorem 2.3 (Characterization). The following hold for any HAω formula ϕ:

1. HAω + AC + IPef ` ϕ↔ ∃x(x mr ϕ)

2. HAω + AC + IPef ` ϕ ⇐⇒ HAω ` ∃x(x mr ϕ)

Proof. Proof for both can be found in [11] (Theorem 3.4.8). For (1), consider a nontrivial case
ϕ→ ψ as an example. In HAω + AC + IPef , one can prove:

(ψ → χ)↔ ∃x(x mr ψ)→ ∃y(y mr χ)

↔ ∀x(x mr ψ → ∃y(y mr χ))

↔ ∀x∃y(x mr ψ → y mr χ) (IPef)

↔ ∃Y ∀x(x mr ϕ→ Y x mr χ) (AC)

↔ ∃Y (Y mr (ψ → χ))

where for the use of (IPef), we use the fact that x mr ϕ is always in the negative fragment (thus
∃-free). As for (2), simply note that any instance of AC and IPef is realized (though not provable)
in HAω.

If we work in a variation of HAω where the atomic propositions are decidable, for example
E-HAω, then the IPef can be replaced by the following Independence Principle for negated formulas
as characterization of E-HAω:

(IP¬σ) (¬ϕ→ ∃yσψ(y))→ ∃yσ(¬ϕ→ ψ(y)), where y 6∈ FV(ϕ) and ϕ is ∃-free.

Basically this is because that if the atomic formulas are decidable, then they admit the Excluded
Middle; or in other words, E-HAω treat them and their ¬¬ correspondence as equivalent. Then an
easy induction shows that all ϕ in the negative fragment satisfies E-HAω ` ϕ↔ ¬¬ϕ.

1In some references, for example [4] the schemata are written as ACω and IPω. The superscript ω, as that in HAω,
stands for all finite types. But to avoid cluster we will omit them throughout the thesis, and simply use AC, IP, etc.m

7

One variation based on the modified realizability is the monotone realizability [7]. Basically it
is Kreisel’s modified realizability equipped with Bezem’s strong majorizability. To be more formal,
first of all one can define the strong majorizability relation ≤∗σ in HAω [1] as follows (we will discuss
more on the strong majorizability relation ≤∗ in Chapter 2.4):

∀x0y0(x ≤∗0 y ↔ x ≤0 y)

∀xσ×τyσ×τ (x ≤∗σ×τ y ↔ p0x ≤∗σ p0y ∧ p1x ≤∗τ p1y)

∀xστyστ (x ≤∗στ y ↔ ∀uσvσ(u ≤∗σ v)→ xu ≤∗τ yv ∧ yu ≤∗τ yv)

Then tρ mmr ϕ (reads “t monotone modified realizes formula ϕ”) is an abbreviation of

∃x ≤∗ρ t(x mr ϕ)

where ∃x ≤∗ tϕ(x) is the standard abbreviation for ∃x(x ≤∗ t∧ ϕ(x)). For soundness, we have the
following theorem from [8]:

Theorem 2.4. Let Hω = HAω + AC + IPef , and ϕ be an E-HAω sentence. Then

Hω ` ϕ⇒ E-HAω ` ∃x ≤∗ t∗(x mr ϕ)

2.3 Models for HAω

Before interpreting HAω, we first think of how to interpret the terms. The idea is to interpret
Gödel’s T by Turing machines. Further, recall from recursion theory that one can encode Turing
machines with natural numbers (called their Gödel numbering), in such a way that there is a
universal machine U , and it can simulate any other TM given their encoding (and inputs). In this
interpretation, however, the combinators are interpreted regardless of their types. For example we
have a TM p which does the job for any σ and τ , and similar for the others. Then the application
is interpreted as taking the second code as inputs for the first code. Besides, we can and do fix one
such encoding so that 0 plays a special role: 0a = 0 and p00 = 0, for any a ∈ N. More generally, if
we consider the Turing machines as Kleene’s first model K1 for partial combinatory algebra, than
this possibility is guaranteed by the fixed-point theorem [15].

Below are listed three basic models for HAω introduced in [12]. To demonstrate the main idea,
we focus on the structures 〈Mσ〉σ∈T for the finite types.

1. The first structure is the naive model FTS (Full Type Structure). Every Mσ consists of
functionals of type σ. This is not constructive at all.

2. HRO, the model of Hereditarily Recursive Operations is based on the Gödel numbering

HRO0 := N
HROσ×τ := {z ∈ N|p0z ∈ HROσ and p1z ∈ HROτ}

HROστ := {z ∈ N|∀x ∈ HROσ, z • x ∈ HROτ}

where • is the application in pca. To be precise, for HRO0 we take the Church numerals
(namely a canonical encoding of the natural numbers) rather than the natural numbers. As
for the constants, app is interpreted as •, and =σ as equalities between numbers, while the
rest have their natural interpretations.

3. HEO, the model of Hereditarily Effective Operations, is also based on Gödel’s numbering of
TM. Define HEOσ and partial equivalence relations ∼σ on HEOσ as follows.

8

(a) HEO0 := N;

(b) ∼0:= equality on natural numbers;

(c) HEOσ×τ := {z ∈ N|p0z ∈ HEOσ and p1z ∈ HEOτ};
(d) For any x, y ∈ HEOσ×τ , x ∼σ×τ y := p0x ∼σ p0y ∧ p1x ∼τ p1y;

(e) For any x, y : HEOσ → HEOτ , x ∼σ(τ) y := (∀uu′ ∈ HEOσ)(u ∼σ u′ → xu ∼τ xu′∧yu ∼τ
yu′ ∧ xu ∼τ yu);

(f) HEOσ(τ) := {x ∈ HEOσ → HEOτ |x ∼στ x}.

The conditions (e) and (f) can also be replaced by:

(e’) For any x, y : HEOσ → HEOτ , x ∼σ(ρ) y := (∀u ∈ HEOσ)(xu ∼ yu)

(f’) HEOστ := {x ∈ HEOσ → HEOτ |(∀uu′ ∈ HEOσ)(u ∼σ u′ → xu ∼τ xu′) }

In words, ∼σ(τ) is defined extensionally, and the type structure HEOσ(τ) consists of those
functionals x : HEOσ → HEOτ preserving the partial equivalence relation ∼. To be precise,
the two ∼σ(τ)’s are not equivalent in the two definitions: in the latter, not every x with x ∼ y
for some y is reflexive. But the two HEOσ(τ)’s are equivalent, since in the latter case we
precisely restrict ourselves to those reflexive functionals.

To finalize the definition for typed structures, let equality =σ be interpreted as ∼σ, for any
finite type σ. The rest are interpreted as that in HRO.

One can easily see that, in HRO, =σ for higher order type σ is decidable (simply the equality
of natural numbers); however, in HEO, =σ for higher order type is no longer decidable: this would
entail the decidability of whether two numbers encode the same partial recursive functions. Though
undecidable, equality in HEO is extensional:

x =στ y ⇐⇒ ∀uσ(xu ∼τ yu)

x =σ×τ y ⇐⇒ p0x = p0y ∧ p1x = p1y

for any σ, τ ∈ T , as observed in the alternative definition (e′). Recall adding the above extensional-
ity axioms to HAω results in E-HAω. Therefore HEO is also a model for E-HAω. We are interested
in the HEO model. In Chapter we present the vdBB structure for E-HAω, which incorporates the
idea of HEO and Bezem’s strong majorizability ≤∗.

2.4 Strong Majorizability

The notion of strong majorizability was introduced by Bezem [1] to provide a model M for bar-
recursion which admits discontinuous functions. The type structure M =

⋃
Mσ is defined by

simultaneous induction on both Mσ and the strong majorizability relation ≤∗σ∈ Pow(Mσ ×Mσ) as
follows:

1. M0 := N, and ≤∗0 is simply the less or equal to relation ≤0 on natural numbers.

2. For x, x′ in Mσ → Mτ , x ≤∗(σ)τ x
′ iff for any u, u′ ∈ Mσ with y ≤∗σ y′, xu ≤∗τ x′u′ and

x′u ≤∗τ x′u′. Then the structure

Mσ(τ) := {x ∈MMσ
τ |∃y ∈MMσ

τ x ≤∗(σ)τ y}

9

Each M(σ)τ consists of those strongly majorized functionals of type σ → τ . For any finite type σ,
one can naturally construct a maximal functional maxσ : σ → σ → σ as follows:

1. max0(x, y) = max(x, y);

2. maxσ(τ)(x, y) = λu.maxτ (xu, yu).

For convenience, we say y is a majorant of x if x ≤∗ y, and simply say y is a majorant, or that
y is monotone if such x exists. Indeed, if x ≤∗στ y, then y ≤∗στ , and by definition we have that for
any u ≤∗σ v, yu ≤∗τ yv. This explains why we call a majorant “monotone”. One can prove some
handy properties for the strong majorizability:

Proposition 2.5. Consider arbitrary finite type σ, and x ≤∗σ x′, y ≤∗σ y′, the following holds:

1. max(x, y) ≤∗σ max(x′, y′);

2. x′ ≤∗σ max(x′, y′);

3. max ≤∗σ(σσ) max

Unsurprisingly, one can induce from maxσ the n-ary λx1 . . . xn.maxσ(x1, . . . , xn) by finite it-
eration. Besides, one can prove that the combinators k, s, R (thus p, p0, p1, i) for any finite
types are self-majorizing, thus in M (see [1] for more details). So we can do λ-abstraction in M,
and M contains all primitive recursive functions. Note that the essential difference between the
weak majorizabillity ≤σ and the strong majorizability ≤∗σ is that, in the former we don’t require a
majorant to be monotone, but only:

x ≤σ(τ) y ↔ ∀uσvσ(u ≤σ v → xu ≤ yv)

In general one cannot compute a strong majorant from a weak majorant. But for types of the
form 0 → σ this is possible, by “taking the maximum of the first n values”. Given arbitrary
F : M0 → Mσ, define F+ := λn0.maxi≤n F (i). And this is indeed the construction of strong
majorant one wants [1]:

Lemma 2.6. Suppose functionals G,F : M0 → Mσ satisfy that Gn ≤∗σ Fn for all n ∈ N, then
G,G+ ≤∗ F+.

Proof. First note that Fn is self-majorized, which immediately entails that F+(n) is self-majorized,
for any n0. Consider any m ≤0 n,

G(m) ≤∗σ F (m) ≤∗σ max
i≤n

F (i) = F+(n) (†)

So G ≤∗0(σ) F
+. And since (†) holds for any m ≤ n, maxi≤nG(i) ≤∗σ F+(n) as well. Therefore

G+ ≤∗0(σ) F
+.

Moreover, the type space M0(σ) for types of the form 0(σ) are all-included:

Corollary 2.7. MM0
σ = M0(σ). That is, every functional F : M0 →Mσ is strongly majorized.

Proof. For any n ∈ N, Fn ∈ Mσ, so there is some an ∈ Mσ s.t. Fn ≤∗ an. Then λn0.an satisfies
that, for any n ∈ N, Fn ≤∗σ (λn0.an)(n). And by Lemma 2.6 we have F ≤∗0(σ) (λn0.an)+.

Theorem 2.8. Bar induction holds in M.

Not on bar induction but also bar recursion holds in M. Both rely crucially on the majorizability
structure: one shrinks each Mσ by throwing away those unmajorized; so the proof always requires
showing that the constructed “good” functionals are majorized, thus inhabits in the structure M.

10

2.5 Model vdBB

One of the motivating idea for our majoriazability type and majorizability modified realizability
assembly is the following van den Berg & Briseid’s structure (called vdBB model) 〈Ms

σ〉σ∈T for
finite types [14]. We define, simultaneously, two typed structuresMt,Ms for finite types. Both are
constructed in the HEO flavor, where we take the Gödel numbering of the Turing machines, thus
of partial reccursive functions. The idea is to assign an explicit majorant for each functional, which
cannot be applied directly in extensional operations. For example, we cannot compute a majorant
by simply taking this explicit majorant, since pairs of the form (r, r∗) and r, r∗∗ where r∗ 6= r∗∗ are
extensionally equal, but taking the explicit majorant result in different output. Still, they turned
out to be useful in contexts where existence of a majorant rather than the precise majorant itself
is demanded.

The inductive construction of Ms and Mt depend on each other. Mt
0 is simply the (Gödel

numbering of) natural numbers, where ≤t0 and =t
0 are the ≤0 and =0 on natural numbers. For any

finite type σ, define Ms
σ based on Mt

σ as:

Ms
σ = {(x, x∗)|x, x∗ ∈Ms

σ, x ≤tσ x∗}

with = and ≤ defined pointwisely on the first component

• (x, x∗) =s
σ (y, y∗) ⇐⇒ x =t

σ y

• (x, x∗) ≤sσ (y, y∗) ⇐⇒ x ≤tσ y

For the functional type, define Mt
σ(τ) = {codes for functions f :Ms

σ →Mt
τ}. And for f, g ∈ Mt

τ ,
say:

• f =t
σ(τ) g ⇐⇒ ∀(x, x∗) ∈Ms

σ(f(x, x∗) =t
τ g(x, x∗))

• f ≤tσ(τ) g ⇐⇒ ∀(x, x∗) ∈Ms
σ(f(x, x∗) ≤ g(x∗, x∗) ∧ g(x, x∗) ≤ g(x∗, x∗))

An immediate consequence is that f =t
σ(τ) g ⇐⇒ ∀(x, x∗)(y, y∗), (x, x∗) = (y, y∗) → f(x, x∗) =

g(y, y∗), since equivalence in Ms only considers the first component. In another word, =t
σ(τ) is

extensional equality.
In Ms the application app is naturally interpreted as the following operation ⊗:

(f, f∗)⊗ (x, x∗) := (f(x, x∗), f∗(x∗, x∗))

and ⊗ can be easily verified to be an extensional function Ms
σ(τ) ×M

s
σ →Ms

τ . For simplicity we
will often omit ⊗, when it’s clear from the context that that we are talking about the application
in Ms. We can then express the = and ≤ conditions on Ms

στ totally in terms of Ms structure as
follows:

(s1) (x, x∗) =s
στ (y, y∗) ⇐⇒ (∀(u, u∗) ∈Ms

σ)(x, x∗)⊗ (u, u∗) = (y, y∗)(u, u∗)

(s2) (x, x∗) ≤sστ (y, y∗) ⇐⇒ (∀(u, u∗) ∈ Ms
σ)(x, x∗) ⊗ (u, u∗) ≤sτ (y, y∗) ⊗ (u∗, u∗) ∧ (y, y∗) ⊗

(u, u∗) ≤sτ (y, y∗)⊗ (u∗, u∗)

In short, =s
σ is extensional equality, and ≤sσ is the strong majorizablity relation.

Now that we have two typed structures
〈
Mt

σ

〉
σ∈T and 〈Ms

σ〉σ∈T . The latter is of main interest
for us, while the former is more for the convenience of construction. In fact, careful readers
will notice that we even haven’t defined application operation in Mt, which is a necessity for

11

interpretation of the terms in Gödel’s T. To have a more intuitive picture ofMs, let’s conclude how
Ms

σ(τ)’s look like. Every element inMs
σ(τ) is a pair (f, f∗) ofMt

σ(τ) elements (thus functionsMs
σ →

Mt
τ), such that f∗ is aMt

σ(τ)-majorant of f . In particular,Ms
σ→τ is not the function spaceMs

σ →
Ms

τ under ordinary application; rather it’s the function space w.r.t. ⊗. The relation betweenMs
σ →

MS
τ andMs

στ is as follows. Given a function f :Ms
σ →Ms

τ , f̃ := (λ(x, x∗).(fx)0, λ(x, x∗).(fx)1) ∈
Ms

σ(ρ) satisfies that for any (x, x∗) ∈Ms
σ, f̃ ⊗ (x, x∗) = f(x, x∗).

Definition 2.9 (Combinators). Define for any finite types σ, τ, ρ:

k̂σ,τ := (λ(x, x∗)σ(y, y∗)τ .x, λ(x, x∗)σ(y, y∗)τ .x∗)

ŝσ,τ,ρ := (λ(x, x∗)σ(τρ)(y, y∗)σ(τ)(z, z∗)σ.x(z, z∗)((y, y∗)(z, z∗)),

λ(x, x∗)σ(τρ)(y, y∗)σ(τ)(z, z∗)σ.x∗(z, z∗)((y, y∗)(z, z∗)))

Proposition 2.10. k̂σ,τ , ŝσ,τ,ρ ∈Ms.

Proof. Consider ŝ, and the case for k̂ is easier. It suffices to show that ŝ0 ≤ ŝ1 inMt
(στρ)(στ)σρ. By

definition, this is equivalent to saying that, given any (x, x∗), (y, y∗), (z, z∗) of appropriate types,

x(z, z∗)((y, y∗)(z, z∗)) ≤ x∗(z∗, z∗)((y∗, y∗)(z∗, z∗))
⇐⇒ x(z, z∗)((y, y∗)(z, z∗)) ≤ x∗(z∗, z∗)((y∗, y∗)(z∗, z∗))
⇐⇒ x(z, z∗)(y(z, z∗), y∗(z∗, z∗)) ≤ x∗(z∗, z∗)(y∗(z∗, z∗), y∗(z∗, z∗))

which can be now easily reduced to the fact that x ≤ x∗, t ≤ y∗, z ≤ z∗.

As for the recursor, one cannot trivially use the recursor R; there are mainly two difficulties. The
first problem lies in the monotonicity of the second component. Essentially, if f, f∗ : 0→ X → X
satisfies that f ≤ f∗ (where ≤ is strong majorizability relation), then the monotonicity of R
requires that Rx0f(n + 1) = f(n + 1, Rx0fn), which is not guaranteed by that f∗ is a majorant.
The second trouble is that the recursor R is only for natural number but not for objects (n, n∗) in
Ms

0. We solve the two difficulties in order, by introducing Lσ :Mt
0 →Ms

σ →Ms
0(σσ) →M

s
σ which

does recursion on natural numbers and realizes the monotonicity; then we construct a recursor in
〈Ms

σ〉σ∈τ based on L.

Definition 2.11. Define Lσ :Mt
0 →Ms

σ →Ms
0(σσ) →M

s
σ to be that, for any (y, y∗) ∈ Ms

σ and

(z, z∗) ∈Ms
0(σσ),

• L0(y, y∗)(z, z∗) := (y, y∗);

• L(n+ 1)(y, y∗)(z, z∗) := (z(n, n)(Ln(y, y∗)(z, z∗)), t),

where t = max{(Ln(y, y∗)(z, z∗))1, z
∗(n, n)([L(n)(y, y∗)(z, z∗)]1, [L(n)(y, y∗)(z, z∗)]1)}, and

the max function is defined inductively onMt
σ: maxσ→τ{x, y} = λ(u, u∗) maxτ{x(u, u∗), y(u, u∗)}.

That such Lσ exists is guaranteed by the recursion schema on natural numbers. What’s more,
we claim that for any n ∈ Mt

0, and (y, y∗), (z, z∗) of appropriate types, Ln(y, y∗)(z, z∗) ∈ Ms
σ.

The main issue is showing that the second component majorizes the first, with a simply proof by
induction of n. For n = 0, y ≤t0 y∗ is assumed. For n+ 1, the IH tells us that [Ln(y, y∗)(z, z∗)]0 ≤t
[Ln(y, y∗)(z, z∗)]1, so we have the required majorizability conditions:

• z ≤ z∗

12

• Ln(y, y∗)(z, z∗) ≤ ([Ln(y, y∗)(z, z∗)]1, [Ln(y, y∗)(z, z∗)]1)

• z(n, n)Ln(y, y∗)(z, z∗) ≤ z∗(n, n)([Ln(y, y∗)(z, z∗)]1, [Ln(y, y∗)(z, z∗)]1)

Besides, Ln(y, y∗)(z, z∗) is monotone. So the maximum of Ln(y, y∗)(z, z∗) and z∗(n, n)([Ln(y, y∗)(z, z∗)]1, [Ln(y, y∗)(z, z∗)]1)
is a majorant of z(n, n)(Ln(y, y∗), (z, z∗)).

Now we are ready to define a real recursor in Ms. Define

R̂σ = (λ(n, n∗)(y, y∗)(z, z∗).[Ln(y, y∗)(z, z∗)]0, λ(n, n∗)(y, y∗)(z, z∗).[Ln(y, y∗)(z, z∗)]1)

where (n, n), (y, y∗), (z, z∗) are of types 0, σ, 0 → σ → σ, respectively. And we claim that R̂σ is a
recursor in our typed structure Ms. This boils down to two things: (1) R̂σ ∈ Ms, (2) R̂σ acts as
a recursor. The first item is obvious by the construction of R̂σ from Lσ, and the relation between
function space Ms

σ →Ms
τ and Ms

στ . So we verify the second item as follows:

Proposition 2.12. For arbitrary (n,m) ∈Ms
0, (y, y∗) ∈Ms

σ and (z, z∗) ∈Ms
0(σσ),

• R̂(0,m)(y, y∗)(z, z∗) = (y, y∗)

• R̂(Sn,m)(y, y∗)(z, z∗) = (z, z∗)(n,m)[R̂(n,m)(y, y∗)(z, z∗)]

Proof. The first item is quite obvious: note that L0(y, y∗)(z, z∗) = (y, y∗). For the second case,
note that in Ms it suffices to show that the first components coincide.

(R̂σ(Sn,m)(y, y∗)(z, z∗))0 = (L(Sn)(y, y∗)(z, z∗))0

= z(n, n)(Ln(y, y∗)(z, z∗))

((z, z∗)(n,m)[R̂(n,m)(y, y∗)(z, z∗)])0 = z(n,m)[R̂(n,m)(y, y∗)(z, z∗)]

= z(n,m)(Ln(y, y∗)(z, z∗))

Since (n, n) =s
0 (n,m), the above two results are equivalent. Note that the second components may

not be equivalent, but that does not matter:

(R̂σ(Sn,m)(y, y∗)(z, z∗))1 = (L(Sn)(y, y∗)(z, z∗))1

= max{(Ln(y, y∗)(z, z∗))1,

z∗(n, n)([Ln(y, y∗)(z, z∗)]1, [Ln(y, y∗)(z, z∗)]1)}
((z, z∗)(n,m)[R̂(n,m)(y, y∗)(z, z∗)])1 = z∗(m,m)([R̂(n,m)(y, y∗)(z, z∗)]1, [R̂(n,m)(y, y∗)(z, z∗)]1)

= z∗(m,m)([Ln(y, y∗)(z, z∗)]1, [Ln(y, y∗)(z, z∗)]1)

even though both are majorants of the first component, say z(n,m)(Ln(y, y∗)(z, z∗).

Remark 2.13. Later we will see that the trick of constructing R̂σ from Lσ can be seen as a special
case of the above process, in proving that MType has a natural number object.

Therefore we can conclude that 〈Ms
σ〉σ∈T is a model for Gödel’s T. What’s more, recall our

earlier claim that 〈Ms〉σ∈T is designed to be a combination of Bezem’s strong majorizability relation
and HEO. This is clear once we observe that the conditions (s1), (s2) for =s and ≤s can be
equivalently stated as follows:

(s1’) (x, x∗) =s
ρ(τ) (y, y∗) ⇐⇒ (∀(u, u∗)(v, v∗) ∈ Ms

σ(τ))(u, u
∗) =s

σ (v, v∗) → (x, x∗) ⊗ (u, u∗) =

(y, y∗)⊗ (v, v∗)

13

(s2’) (x, x∗) ≤sρ(τ) (y, y∗) ⇐⇒ (∀(u, u∗)(v, v∗) ∈ Ms
σ)(u, u∗) ≤sσ (v, v∗) → (x, x∗) ⊗ (u, u∗) ≤

(y, y∗)⊗ (v, v∗) ∧ (y, y∗)⊗ (u, u∗) ≤ (y, y∗)⊗ (v, v∗)

In other words, =s
σ(τ) is defined extensionally, while ≤sσ(τ) is defined in Bezem’s style.

As introduced in the beginning of this section, one of the basic observation is that, for some
propositions to hold in a constructivism setting, one requires only the existence of certain majorants
rather than the majorants themselves. Indeed, we can prove that the Fan Theorem holds in the
vdBB structure 〈Ms

σ〉σ∈T .

14

3 Majorizability Types

From a categorical point of view, the HEO model for finite types are exactly the finite types in
the category PERS of partial equivalence relations. In the above discussion, we have seen the vdBB
model as a computational model for the Fan Theorem. In this chapter, we define a category MType
of majorizability types. The finite types in MType are exactly those in vdBB. Therefore, MType
preforms the same role to vdBB, as that of PERS to HEO.

Definition 3.1 (WPO). A relation≤ on set A is called a weak partial order if it’s majorant-reflexive
and transitive in the following sense:

1. x ≤ y ⇒ y ≤ y

2. x ≤ y ∧ y ≤ z ⇒ x ≤ z

This notion of WPO is extracted from Bezem’s strong majorizability relation [1]. So we adopt
the same notion of the majorant and being monotone. One of the motivation is that, for y to be
a majorant, we require some extra condition. For example in the strong majorizability relation we
require monotonicity. We often uses a∗ for majorant of a, in Bezem’s flavour.

This definition has some results in some routine concepts for ordered structures. For example,
it’s unwise to define the least element under a WPO ≤A totally, since that would imply reflexivity
for all elements and turns the WPO into a trivial one (namely a preorder). And it’s more natural
to have the following definition of the partial least element:

Definition 3.2. Given a WPO (A,≤A), and we say x ∈ A is the partial smallest element on A if
for any a ∈ A with a ≤A a, we have x ≤A a.

Definition 3.3. A majorizability type (maj-type as abbreviation) is a triple (A,≤A,∼A), where:

• 0 ∈ A ⊆ N

• ≤A is a WPO on A with 0 the partial smallest element

• ∼A is an equivalence relation on A

• there is a computable function µA : A→ A such that a ≤ µAa for any a ∈ A

• there is maxA ∈ N such that:

1. a ≤ a, b ≤ b =⇒ a, b ≤ maxA(a, b)

2. a ≤ a∗, b ≤ b∗ =⇒ maxA(a, b) ≤A maxA(a∗, b∗)

such that ≤A is extensional w.r.t ∼A: if a ∼ a′, b ∼ b′ and a ≤ b, then a′ ≤ b′.

Note that the computable function µA guarantees that every element has a majorant, and we
can even compute it. However, we need to point out that it’s not required that µA is defined
extensional. Sometimes we shall refer to this µA as a “computable majorant function”, since it’s a
computable function that computes the majorants.

Remark 3.4. The computable majorant function µA is a bit artificial here, and can be some
inconvenient. As an alternative, one can define maj-types as above except that the existence of
µA is replaced by that every element is a pair (a, a∗) ∈ A such that a ≤ a∗. Then it’s not hard
to see that these two definitions are equivalent. Given a maj-type of this form, the computable

15

µA is simply λ(x, x∗).x∗. On the other hand, given a maj-type with majorant function µA, we can
rewrite the elements as (a, µA(a)), thus of the above form.

In fact, later we shall see that the exponentials and finite types in the category of majorizability
types are exactly of the form.

Next we start to construct a category MType of majorizability types. This is not that straight-
forward: to define the morphisms in MType, we go through the concepts of quasi-morphisms and
pre-morphisms. A quasi-morphism (A,≤A,∼A) → (B,≤B,∼B) is some r ∈ N that encodes a
function A → B that preserves ∼ (or extensional). A pre-morphism (A,≤A,∼A) → (B,≤B,∼B)
is a pair of quasi-morphisms, where r∗ majorizes r (denoted as r �A,B r∗) in the following sense:
for any a ≤A a∗, we have ra ≤B r∗a∗ and r∗a ≤B r∗a∗. And it’s easy to verify that �A,B is
also a WPO. Two pre-morphisms (r0, r

∗
0) and (r1, r

∗
1) are equivalent: r0a ∼B r1a for any a ∈ A.

And this is denoted as (r0, r
∗
0) ≈A,B (r1, r

∗
1). When the context is clear, we will always omit the

subscripts in �A,B and ≈A,B. One remark is that, later one shall see that � and ≈ corresponds to
the majorizability structure of the exponentials.

A morphism (A,≤A,∼A) → (B,≤B,∼B) is an equivalence class of the pre-morphisms over ≈.
Since every pre-morphism is at least ≈ with itself, it suffices to find a pre-morphism for the existence
of a morphism. In particular, for any directed type (A,≤A,∼A), i : A→ A is a monotone function
that trivially preserves ∼A and ≤A. So (i, i) is a pre-morphism A → A. Given two morphisms
[(r, r∗)] : B → C and [(s, s∗)] : A → B, we have a morphism [(r ◦ s, r∗ ◦ s∗)] : A → C as their
composition, where r ◦ s := λx.r(sx). So the directed types and the morphisms between them form
a category of directed types, called MType.

For the commutativity in MType, it also suffices to check the pre-morphisms. Given [(s, s∗)] :
B → C and [(r, r∗)] : A → B, and [(t, t∗)] : A → C, then the triangle commutes means that the
two morphisms fall in the same pre-morphism equivalence class: (s, s∗) ◦ (r, r∗) ≈ (t, t∗). That is
to say, for any a ∈ A, (s ◦ r)a ∼B ta holds.

Now we show some basic properties of the category MType:

Proposition 3.5. MType is has finite products.

Proof. The final object is 1 = ({0},≤1,=), where ≤1 is trivial. That there exists a unique morphism
(A,≤A,∼A)→ ({0},≤1,=) is because that the constant function is computable, self-majorized, and
the equivalence relation on 1 is trivial.

The product is computed pointwise. Given directed types (A,≤A,∼A) and (B,≤B,∼B), their
product is (A × B,≤A × ≤B,∼A × ∼B), where A × B = {pab|a ∈ A, b ∈ B}, and the relations
taken pointwise. Obviously we can compute the majorants by pairing the respective majorant
functions, so this is again computable. The max function on A × B is also constructed pairwise.
As for the projections, (p0,p0) : A × B → A is a pre-morphism: p0 preserves ∼ and ≤, and it’s
monotone since ∼ on the product A×B is defined pairwise. So [(p0,p0)] is a MType morphism.

In both cases, the UMP is easy to verify. For example, given (X,≤X ,∼X), morphisms [(rA, r
∗
A)] :

X → A and [(rB, r
∗
B)] : X → B, one can take arbitrary (sA, s

∗
A) and (sB, s

∗
B) from the equivalence

class and construct a pre-morphism (λx.p(sAx)(sBx), λx.p(s∗Ax)(s∗Bx)). What’s more, such pre-
morphisms are all equivalent. So one can construct the morphism:

[(λx.p(rAx)(rBx), λx.p(r∗Ax)(r∗Bx))]

whose uniqueness is guaranteed by the commutativity condition.
Therefore we can conclude that MType has finite products.

Proposition 3.6. MType has binary coproduct.

16

Proof. Given (A,≤A,∼A) and (B,≤B,∼B), their coproduct is (A+B,≤A + ≤B,∼A + ∼B), where
A + B := {pka,pk̄b|a ∈ A, b ∈ B}, and the rest structure follows naturally. The morphisms are
τA := [(λa.pka, λa.pka)] and τB := [((λb.pka, λa.pka))]

Given any (X,≤X ,∼X) and morphisms [(rA, r
∗
A)] : A → X, [(rB, r

∗
B)] : B → X, the unique

morphism A + B → X is represented by (λm.(p0m)rArB(p1m), λm.(p0m)r∗Ar
∗
B(p1m)). This is

because any m ∈ A+B is either pka or pk̄b, and w.l.o.g. if m = pka then

(λm.(p0m)rArB(p1m))(pka) = krArBa

= rAa

and rAa ∈ X since (rA, r
∗
A) is a premorphism A→ X. Besides it’s obvious that

λm.(p0m)rArB(p1m) � λm.(p0m)r∗Ar
∗
B(p1m)

so the pair is a premorphism A+B → X. Finally, for the uniqueness, note that any premorphism
(s, s∗) : A+B → X commuting the diagram requires that for any a ∈ A and b ∈ B,{

(s ◦ τA)a = rAa

(s ◦ τB)b = rBb

which implies that {
s(pka) = rAa

s(pkb) = rBb

Note that elements inA+B are exhausted by pka and pkb, so by definition s ≈ λm.(p0m)rArB(p1m).
That they lie in the same equivalence class means that the represented morphism is unique.

Remark 3.7. MType has neither equalizer nor initial object.

Proposition 3.8. MType has exponentials.

Proof. The exponential is simply the pre-morphism space. Given MType objects (A,≤A,∼A) and
(B,≤B,∼B), to keep the morphisms natural numbers (rather than equivalence classes of natural
numbers), we cannot take arbitrary representatives in the equivalence classes. Instead we take just
the pre-morphisms. Define the exponential BA to be (BA,≤BA ,∼BA), where:

• BA = PreMor(A,B), namely the set of MType pre-morphisms A→ B.

• ≤BA is simply �: (r, r∗) ≤BA (s, s∗) ⇐⇒ ∀a ≤A a∗ in A, ra ≤B sa∗ and sa ≤B sa∗

• ∼BA is simply ≈; that is, (r, r∗) ∼ (s, s∗) ⇐⇒ ∀a ∈ A, ra ∼B sa

First of all, it’s easy to verify that ≤BA is WPO on BA, and ∼BA is an equivalence relation on BA.
To see that ≤BA is extensional, suppose (r0, r

∗
0) ∼ (r1, r

∗
1), (s0, s

∗
0) ∼ (s1, s

∗
1), and (r0, r

∗
0) ≤ (s0, s

∗
0).

Then for any a, a∗ ∈ A with a ≤A a∗, we have r1a ∼B r0a, r0a ≤B s0a
∗, s0a ∼B s1a, s0a

∗ ∼B s1a
∗.

By the extensionality of ≤B, we know that r1a ≤ s0a
∗ ≤ s1a

∗; similarly s0a ≤B s0a
∗ implies

s1a ≤B s1a
∗.

Besides, we have a computable function µBA to compute a majorant for every pre-morphism
(r, r∗) ∈ BA, by simply taking the second component.

What’s more, the maxBA function on BA can be defined as:

max
BA
{(r, r∗), (s, s∗)} := (λx.max

B
{rx, sx}, λx.max

B
{r∗x, s∗x})

17

and it suffices to check three conditions: (1) it’s a MType pre-morphism, (2) maxBA is monotone,
(3) maxBA is a maximal function for monotone elements.

Now let’s consider the UMP of exponentials. First of all let the evaluation morphism ev :
BA ×A→ B be the morphism represented by the pairing of

(ev0, ev1) := (λy.(p0(p0y))(p1y), λy.(p0(p0y))(p1y))

which, in words, is applying the second component to the first one). Consider an arbitrary pre-
morpihsm (r, r∗) : X×A→ B. It’s not hard to verify that the pairing of r̃ := λx.p(λa.r(pxa))(λa.r∗(pxa))
and r̃∗ := λx.p(λa.r∗(pxa))(λa.r∗(pxa)) is a pre-morphism X → BA, thus a representative for
some morphism X → BA. To check that (r̃, r̃∗) commutes the exponential triangle, we just check
the pre-morphism level. For any pxa ∈ X ×A,

[ev0 ◦ (r̃ × idA)](pxa) = (λy.(p0(p0y))(p1y))(p(r̃x)a)

= (λa.r(pxa))a

= r(pxa)

As for the uniqueness, it suffices to verify that for any pre-morphism (s, s∗) : X → BA that
commutes the triangle, (r̃, r̃∗) ≈ (s, s∗) holds, so they represent the same morphism. By the
definition of ≈,

(s, s∗) ≈ (r̃, r̃∗)

⇐⇒ s ∼ r̃ as quasi-morphism

⇐⇒ ∀x ∈ X, sx ∼BA r̃x
⇐⇒ ∀x ∈ X, a ∈ A, ev0(psx)a ∼B ev0(pr̃x)a = r(pxa)

⇐⇒ commutativity of the exponential diagram

We can finally conclude that BA is the exponential.

Proposition 3.9. MType has a nno.

Proof. We claim that (N,≤N,∼N) where ≤N is ≤ relation on N and ∼N is natural number equality,
is a natural number object in MType. The successor morphism is represented simply by the pre-
morphism (S, S), where S can easily be verified to be monotone.

Consider an arbitrary majorizability type (X,≤X ,∼X), an endomorphism [(rX , r
∗
X)], and a

morphism [(x0, x
∗
0)] : 1→ X. One demand the existence of a unique morphism [(t, t∗)] : N→ X:

1

(x0,x∗0) &&

(0,0) // N
(S,S) //

(t,t∗)
��

N
(t,t∗)
��

X
(rX ,r

∗
X)

// X

As one can imagine, we use the recursor r to form the pre-morphism (t, t∗) : N→ X. However,
we cannot apply r naively: the monotonicity will cause problem. For example, consider the pair:

(λn.rx0(λkx.rXx)n, λn.rx∗0(λkx.r∗Xx)n)

though the first component works perfectly well, we cannot guarantee that the second component
is monotone. Intuitively, for this we need the computable majorant function µX .

Let ` ∈ N encodes the function X → (0 → X → X) → (0 → X) recursively refined as follows.
Given any y ∈ X and s : 0→ X → X, define ` as:

18

• `ys0 = y;

• `ys(n+ 1) = maxX{µX(`ysn), s(`ysn)n}

Then let the second component t∗ of the pre-morphism be λn.`x∗0(λkx.r∗Xx)n, and it suffices to
verify that:

1. t∗ is extensional

2. t∗ majorizes t

Item (1) is trivial since ∼N is natural number equality. Note that ` is not extensional, but this
does not affect the extensionality of t∗. For item (2), given any (m,m∗) ≤s0 (n, n∗), we show that
t(m,m∗) ≤ t∗(n, n∗) and t∗(m,m∗) ≤ t∗(n, n∗). Both are done by induction on n. For n = 0, m
must also be 0, and t(m,m∗) = x0 ≤X x∗0 = t∗(n, n∗). For n + 1, we can prove the following two
items in sequence: (a) t∗(n, n∗) ≤ t∗(n+ 1, n∗), (b) t(n+ 1, n∗) ≤ t∗(n+ 1, n∗). Then by IH we can
easily derive that t∗(m,m∗) ≤ t∗(n+ 1, n∗) and t(m,m∗) ≤ t∗(n+ 1, n∗), for any m ≤ n+ 1. Recall
that by definition,

t∗(n+ 1, n∗) = max{µX(t∗(n, n∗)), r∗X(t∗(n, n∗))}

For item (a), note that µX(t∗(n, n∗)) ≥ t∗(n, n∗) (by definition of µX) and r∗X(t∗(n, n∗)) is monotone
(by IH). For item (b), note that rX ≤ r∗X and t(n, n∗) ≤ t∗(n, n∗) implies that t(n + 1, n∗) =
rX(t(n, n∗)) ≤ r∗X(t∗(n, n∗)).

So far we have constructed a pre-morphism (t, t∗) : N → X. Now we check the correctness of
(t, t∗):

Commutativity For the triangle, simply note that t0 = x0. For the square, we can prove by
induction on n ∈ N that (rX ◦ t)n = t(Sn).

Uniqueness Suppose pre-morphism (u, u∗) : N → X commutes the diagram. Then by the same
analysis as above, {

u0 = x0

u(Sn) = (rX ◦ u)n n ∈ N

So u and t = λn.rx0(λkx.rXx)n are extensionally equivalent, and (t, t∗) ≈ (u, u∗).

Therefore we can conclude that (N,≤N,∼N) is a nno in the category MType.

Corollary 3.10. MType is a cartesian closed category with nno. it does not have equalizers

The monomorphisms and epimorphisms in MType do not correspond to (codes of) injective
and surjective functions. This is essentially because that two pre-morphisms represent the same
MType morphism iff they are extensionally equal. So it’s natural to guess that monomorphisms
and epimorphisms in MType corresponds to (codes of) injective and surjective functions w.r.t.
extensionality. Let’s first give the formal definition:

Definition 3.11. A MType pre-morphism (r, r∗) : X → Y is injective w.r.t. extensionality if
∀x0, x1 ∈ X, rx0 ∼Y rx1 implies x0 ∼X x1; is surjective w.r.t. extensionality if ∀y ∈ Y , ∃x ∈ X
such that rx ∼Y y.

19

And the definition can be naturally generalized to MType morphisms: [(r, r∗)] is injective (sur-
jective) w.r.t extensionality if every pre-morphism (r0, r

∗
0) ∈ [(r, r∗)] is injective (surjective) w.r.t.

extensionality. In fact, suppose (r0, r
∗
0) and (r1, r

∗
1) are both in equivalence class [(r, r∗)]. Then:

(r0, r
∗
0) is extensionally surjective ⇐⇒ ∀y ∈ Y,∃x ∈ Xs.t.r0x ∼Y y

⇐⇒ ∀y ∈ Y,∃x ∈ Xs.t.r1x ∼Y y

⇐⇒ (r1, r
∗
1) is extensionally surjective

and similarly for injectivity. Now we can formalize the above intuition of characterizing monomor-
phisms and epimorphisms in MType. However, this intuition is only partly correct, as shown by
the following proposition:

Proposition 3.12. That an MType morphism [(r, r∗)] is extensionally injective (surjective) implies
that it’s monic (epic).

Proof. [(r, r∗)] is epic iff for any morphisms [(u, u∗)] and [(v, v∗)] (of appropriate domains and
codomains), [(u, u∗)] ◦ [(r, r∗)] = [(v, v∗)] ◦ [(r, r∗)] implies [(u, u∗)] = [(v, v∗)]. In terms of pre-
morphisms, iff for any pre-morphism (u, u∗) and (v, v∗), (u, u∗) ◦ (r, r∗) ≈ (v, v∗) ◦ (r, r∗) implies
(u, u∗) ≈ (v, v∗).

Suppose (r, r∗) : X → Y is extensionally surjective, then for any y ∈ Y there exists x ∈ X s.t.
rx ∼Y y. If pre-morphisms (u, u∗), (v, v∗) : Y → Z satisfy that (u, u∗) ◦ (r, r∗) ≈ (v, v∗) ◦ (r, r∗)
while (u, u∗) 6≈ (v, v∗), then there exists some y ∈ Y s.t. uy 6∼Z vy. For this y there also exists some
x ∈ X such that rx ∼ y. Then we have found some x such that (u ◦ r)x 6∼ (v, r)x, contradictory to
the assumption that (u, u∗) ◦ (r, r∗) ≈ (v, v∗) ◦ (r, r∗).

Applying a similar reasoning, [(r, r∗)] is mono iff for any pre-morphisms (u, u∗) and (v, v∗),
(r, r∗) ◦ (u, u∗) ≈ (r, r∗) ◦ (v, v∗) implies (u, u∗) ≈ (v, v∗). Suppose (r, r∗) : X → Y is extensionally
injective, namely for any x0, x1 ∈ X with rx0 ∼ rx1, we have x0 ∼ x1. Further suppose that
pre-morphisms (u, u∗), (v, v∗) : W → X satisfy that (v, v∗), (r, r∗) ◦ (u, u∗) ≈ (r, r∗) ◦ (v, v∗) but
(u, u∗) 6≈ (v, v∗). Then there exists w ∈ W such that uw 6∼X vw. However, (r ◦ u)w ∼ (r ◦ v)w,
which implies uw ∼ vw, contradiction.

And we can conclude that being extensionally injective (surjective) is sufficient condition of
being monic (epic).

However, the reverse is false, namely
We claim that for [(r, r∗)] : X → Y to be (part of) isomophism, it suffices to show that

the extensionally injective and surjective morphism [(r, r∗)] has a computable extensional inverse
[(s, s∗)] : Y → X: for any x ∈ X, (s◦r)x ∼X x. To see this, we prove that s◦r and r◦s respectively
represent idX and idY .

Given arbitrary x ∈ X, (s ◦ r)x ∼X x, so (s ◦ r) ≈ idX . Given arbitrary y ∈ Y , the extensional
surjectivity entails that there exists x ∈ X s.t. y ∼Y rx. Then s(rx) ∼ x and that r is extensional
imply that (r ◦ s)y ∼ r(s(rx)) ∼ rx ∼ y.

Remark 3.13. When talking about natural number objects in MType, one might immediately
think of the finite typeMs

0 in the 〈Ms
σ〉σ∈T structure: there is a WPO relation ≤sσ and equivalence

relation =s
σ which behave well with each other. So it’s unsurprising that from every Ms

σ one can
construct a majorizability type; in particular, the majorizability type (Ms

0,≤s0,=s
0) is also a nno.

Given arbitrary finite type σ ∈ T , (Ms
σ,≤sσ,=s

σ) is a majorizability type. The computable
majorant function is simply taking the second component of a pair, and the maximal function
maxσ is defined inductively from max0. Besides, Ms

σ×τ is the binary product of Ms
σ and Ms

τ in

20

MType. The case for Ms
σ(τ) and Ms

σ →Ms
τ is a bit tricky. They are not precisely identical: note

that Ms
σ(τ) consists of pairs of functions Ms

σ → Mt
τ , while the exponential is composed of pairs

of quasi-morphisms Ms
σ →Ms

τ (as MType objects). However, they are still very alike: in MType,
Ms

σ(τ)
∼=Ms

σ →Ms
τ . Recall the underlying sets for each majorizability type:

• Ms
σ(τ) = {(m,m∗)|m,m∗ :Ms

σ →Mt
τ and ∀(x, x∗) ∈Ms

σ,m(x, x∗) ≤tτ m∗(x, x∗)}

• Ms
σ →Ms

τ = {(r, r∗)|r, r∗ ∈ PreMor(Ms
σ,Ms

τ) and r ≤ r∗}

Consider the quasi-morphisms t0 and t1, where:

• t0 := λ(r, r∗).(λ(x, x∗).p0(r(x, x∗)), λ(x, x∗).p0(r∗(x, x∗)))

• t1 := λ(m,m∗).(λ(x, x∗).m(x, x∗), λ(x, x∗).m∗(x∗, x∗))

We have the following claims:

1. t0 is quasi-morphism (Ms
σ →Mt

τ) →Ms
σ(τ); t1 is quasi-morphism Ms

σ(τ) → (Ms
σ →Mt

τ).
One mainly needs to check the extensionality.

2. t0 ≤ t0. For any (r, r∗) ≤ (s, s∗) in the exponential Ms
σ →Mt

τ ,

t0(r, r∗) = (λ(x, x∗).p0(r(x, x∗)), λ(x, x∗).p0(r∗(x, x∗)))

t0(s, s∗) = (λ(x, x∗).p0(s(x, x∗)), λ(x, x∗).p0(s∗(x, x∗)))

and λ(x, x∗).p0(r(x, x∗)) ≤ λ(x, x∗).p0(s(x, x∗)) implies that t0(r, r∗) ≤ t0(s, s∗)

3. t1 ≤ t1. Proof is similar.

So far we can conclude that (t0, t0) and (t1, t1) are MType pre-morphisms.

4. Both (t0, t0) and (t1, t1) are extensionally injective and surjective. We simply prove two cases
among the four.

(a) For any (r, r∗), (s, s∗) ∈ Ms
σ →Ms

τ , suppose t0(r, r∗) ∼ t0(s, s∗) as elements in Ms
σ(τ).

Then λ(x, x∗).p0(r(x, x∗)) ∼ λ(x, x∗).p0(s(x, x∗)) inMτ
t , so for any (x, x∗), p0(r(x, x∗)) ∼

p0(s(x, x∗)), and r(x, x∗) ∼ s(x, x∗) by definition of∼sσ(τ). So (r, r∗) ∼ (s, s∗), and (t0, t0)
is injective.

(b) For any (r, r∗) ∈Ms
σ →Ms

τ , we take t0(r, r∗), then

t1(t0(r, r∗)) = (λ(x, x∗).p0(r(x, x∗)), λ(x, x∗).p0(r∗(x, x∗)))

and since (t1(t0(r, r∗)))(x, x∗) = p0(r(x, x∗)), we know that t1(t0(r, r∗)) ∼ (r, r∗). So
(t1, t1) is extensionally surjective.

5. [(t0, t0)] and [(t1, t1)] form an isomorphism. By the above discussion, it suffices to show that
(t1, t1) is a computable inverse of (t0, t0). But this is already shown above: (t1 ◦ t0)(r, r∗) ∼
(r, r∗) for any (r, r∗) ∈Ms

σ →Ms
τ .

Therefore we know that the finite type structures 〈Ms
σ〉σ∈T are, up to isomorphism, the products

and exponentials in MType constructed from the natural number object. Later when we talk about
the internal logic of the category of assemblies and interpret the finite types, we shall use this
observation to use both the intuition of the 〈Ms

σ〉 structure and categorical construction of the
exponentials.

21

4 Majorizability Assembly

Definition 4.1. Define assemblies based on the directed types. A majorizability modified assembly
(sometimes simply called assembly) is a tuple (X,PX ,≤X ,∼X , αX), where:

• X is a set

• (PX ,≤X ,∼X) forms a directed type

• αX : X → Powi(PX), where Powi(PX) is the set of nonempty subsets of PX

such that every αX(x) is closed under ∼X . The set PX ⊆ N is called the set of potential realizers,
while αX(x) is called the (set of) actual realizers for x ∈ X.

For simplicity, we shall sometimes refer to an assembly simply by its underlying set, and the as-
sembly structure with corresponding subscripts, when no confusion arises. Defining the morphisms
is, as that for majoriability type, a bit tricky. A map f : X → Y is witnessed if there exists some
MType pre-morphism (r, r∗) : PX → PY such that for any x ∈ X and a ∈ αX(x)s, ra ∈ αX(fx).
But for a MMAsm morphism f , we require it to be not only witnessed but also majorant: there
exist pre-morphism (r, r∗) : PX → PY such that r witnesses f 2. We shall use (r, r∗) f to denote
that r witnesses f with r∗ majorizing r, or simply r f when we don’t need the majorant to be
explicit. Given any assembly A, the identity function idA : A → A is always witnessed by (i, i).
And given two morphisms f, g, their composition g ◦ f is witnessed by the composition of their
witnesses (rg ◦ rf , r∗g ◦ r∗f), where r ◦ s is abbreviation of λx.r(sx).

So the assemblies and morphisms form the category of majorizability modified assembly MMAsm.
The category MType embeds into MMAsm by the inclusion functor I : MType→ MMAsm defined

as follows. For the objects, let I((A,≤A,∼A)) be (A/ ∼A, A,≤A,∼A, αA), with αA mapping an
equivalence class to the set of its members, and it’s obviously an assembly. For the morphisms,
given a MType morphism [(r, r∗)] : A → B, I([(r, r∗)]) is the function fr mapping [a] ∈ A/ ∼A to
[ra] ∈ B/ ∼B. First of all, fr is well-defined since r is extensional. And for the same reason, fr is
witnessed by (r, r∗) (in fact by any (s, s∗) ≈ (r, r∗)).

Note that any morphism in MMAsm requires a witness with majorant, which generates a MType
pre-morphism. And any pre-morphisms witnessing the same MMAsm morphism should be in the
same equivalence class, namely they represent the same MType morphism. Thus the functor I is
full and faithful. Besides, I preserves finite products. In particular, the final object in MMAsm is
simply 1 = ({∗}, {0},≤,=, α1). What’s more, we will see that I also preserves nno. But before
proving that, let’s first list some basic properties of MMAsm. And one shall note that MMAsm has
some categorical structures, e.g. equalizer, that MType lacks.

Proposition 4.2. MMAsm has finite limits.

Proof. The terminal object 1 is already given. The binary product of (A,PA,≤A,∼A, αA) and
(B,PB,≤B,∼B, αB) is (A×B,PA×PB,≤×,∼×, α×), where ≤×, ∼× and α× are all defined point-
wise. The projection morphisms are respectively witnessed by p0 and p1, and since they are
monotone, they are covered by themselves. The UMP is trivial.

As for the equalizers, unlike the above case for binary products, we don’t have equalizers in
MType. To construct the equalizer of two MMAsm morphisms f, g : A→ B, we take the underlying
set to be the corresponding equalizer in Sets, say E = {a ∈ A|f(a) = g(a)}. Then take PE
simply be PA, ≤E and ∼E be respectively the restriction of ≤A and ∼A on E. And the morphism

2There are other alternatives

22

ιE : E → A is the inclusion map witnessed by [(i, i)]. It’s easy to see that the diagram commutes
f ◦ ιE = g ◦ ιE . Finally let’s check the UMP. Given any assembly X and morphism h : X → A
such that f ◦ h = g ◦ h. Then h′ : X → E such that h′(x) = h(x) for any x ∈ X is a well-defined
function. What’s more, (rh′ , r̂h′) := (rh, r̂h) witnesses h′, so h′ is a pre-morphism that commutes
the whole equalizer diagram. The uniqueness follows immediately from that for Sets.

Proposition 4.3. MMAsm has exponentials.

Proof. The MMAsm exponentials also relies on the MType exponentials. Given two assemblies
(A,PA,≤A,∼A, αA) and (B,PB,≤B,∼B, αB), their exponential is (BA,PPA

B ,≤BA ,∼BA , αBA), where:

• BA = MMAsm(A,B), namely the morphism space

• (PPA
B ,≤BA ,∼BA) is the exponential PA → PB in MType;

• αBA maps a morphism f to those pre-morphisms (r, r∗) in MType such that (r, r∗) � f .

Since every morphism f : A→ B is witnessed with majorant, this is a well-defined MMAsm object.
We go on to verify the UMP property of the exponentials.

The evaluation map ev : BA × A → B is simply the application function, witnessed by the
monotone element λz.(p0(p0z))(p1z) (which is also the evaluation arrow in the category MType).
Suppose f : X × A → B is an MMAsm morphism, witnessed by (rf , r̂f). We claim that f̃ =
λxa.f(x, a) is an MMAsm morphism X → BA. If so, then the commutativity of the exponential
triangle and the uniqueness are trivial. For this, one needs to show that f̃ is witnessed with cover.
Let

sf̃ := λrx.(λra.rf (prxra), λra.r̂f (prxra))

ŝf̃ := λrx.(λra.r̂f (prxra), λra.r̂f (prxra))

and they are MType quasi-morphisms PX → PBA . Note that (sf̃ , ŝf̃) � f̃ means that given any x ∈
X and rx ∈ αX(x), sf̃rx ∈ αBA(f̃(x)). And this in turn equals to saying that (p0(sf̃rx),p1(sf̃rx))

witnesses the MMAsm morphism f̃(x) : A→ B. Since the majorizability relation is quite obvious,
it suffices to show that, for any a ∈ A and ra ∈ αA(a), rf (prxra) ∈ αB(f̃(x)(a)).

Proposition 4.4. MMAsm has a natural number object.

Proof. One can simply take the image of the nno in MType along functor I. Recall that (N,≤N,∼N)
is a natural number object in MType. And its image under I is (N,N,≤N,∼N, αN), where αN(n) =
{n̄}. And the successor morphism suc : N→ N is witnessed by MType pre-morphism (S,S).

Suppose X is an assembly, x0 : 1 → X and f : X → X are two MMAsm morphisms, witness
respectively by (r0, r

∗
0) and (rf , r

∗
f). So x0(∗) ∈ X is witnessed by r00. Then the function h : N→ X

inductively defined by

h(0) = x0

h(n+ 1) = f(h(n))

is witnessed by (r(r00)(λks.rfs), r(r∗00)(λks.r∗fs)). The uniqueness follows from that of h in Sets.

23

Since MMAsm has finite limits, it has pullbacks. Since the pullbacks will play an important
role in interpreting logic in the category, it’s worthwhile to have a closer look at the pullbacks
in MMAsm. Unsurprisingly, the pullbacks consist of those in Sets with extra MType and witness
structure. Given MMAsm morphisms f0 : X0 → Y and f1 : X1 → Y , witnessed respectively
by (r0, r̂0) and (r1, r̂1). The pullback is X0 ×Y X1 = (X0 ×Y X1,P×Y ,≤×Y ,∼×Y , α×Y), where
X0 ×Y X1, is the pullback of f0 and f1 in the category of Sets, the potential realizer set P×Y is
simply PX0 ×PX1 , and ≤×Y , ∼×Y and α×Y are restriction on those for the product X0×X1. And
the projection map πi : X0 ×Y X1 → Xi is witnessed with cover by the monotone pi.

There is a forgetful functor U : MMAsm→ Sets which extracts the underlying set of the assem-
bly and the functions for the morphisms. U is not full as there are uncomputable functions, which
cannot be tracked. But U does preserves some basic categorical notions. U creates monomorphisms
and epimorphisms. Consequently, an MMAsm morphism X → A is a subobject of A iff its underly-
ing function is injective. And every subobject X of A is isomorphic to one whose underlying set is
a subset of A: take the image of X under the subobject morphism, and keep the MType structure.
So it suffices to consider only those subobjects whose underlying sets are subsets of A. Also U
creates isomorphism.

Recall that a cover is a morphism that cannot factor through a strict subobject of its codomain.
And a good factorization is the so-called “image-cover factorization”. Before showing that in our
category MMAsm there is also such good factorization, we shall first give a characterization of
the covers in MMAsm. Then we will show that in MMAsm, there is a standard cover for every
morphism, which is achieved by the “image-cover factorization”.

Definition 4.5. We say an MMAsm morphism f : X → Y is effectively epic if there exists MType
pre-morphism (s, s∗) satisfying:

∀y ∈ Y , ∀my ∈ αY (y), ∃x ∈ f−1(y) such that smy ∈ αX(x)

∀y ∈ Y , ∃x ∈ f−1(y) such that ∀my ∈ αY (y), smy ∈ αX(x)

If one notes that the definition of an effectively epic morphism is nothing but listing the essential
conditions for finding an “inverse” for a factorization, then it’s straightforward to prove that, in
MMAsm the covers are precisely those effectively epic morphisms. Before that, we first present a
standard construction of cover from arbitrary morphism:

Proposition 4.6. MMAsm admits “image-cover factorization”.

Proof. Let f : X → Y be an MMAsm morphism, witnessed by a MType pre-morphism (rf , r̂f).
The image of f is (Imf (X),PX ,≤X ,∼X , αIm), where Imf (X) is the set-theoretical image and αIm

witnesses the “source”. In another word, Imf (X) = f [X], and αIm(y) =
⋃
f(x) = αX(x). And it’s

an assembly, since the directed type structure is inherited from that of X. Then we can commute
the diagram with the MMAsm morphism ι : Imf (X)→ Y : just note that ι is witnessed by (rf , r̂f)
as well. The diagram is as follow, where f̄ is set-theoretically the same as f but categorically
different (w.r.t. the codomains).

X
f //

f̄ ##

Y

Imf (X)

ι

;;

To see that f̄ is a cover, suppose g0 : X → Z and g1 : Z � Imf (X) is a factorization of f̄ , where
(s0, s

∗
0) � g0. We claim that g1 is a bijection, and the inverse map g−1

1 : Imf (X) → Z is witnessed

24

by (s0, s
∗
0) as well: ∀y ∈ Imf (X) and my ∈ αIm(y), there is some x ∈ X with f(x) = y such that

my ∈ αX(x), so s0my ∈ αZ(g0(x)). By commutativity, g−1
1 (y) = g0(x), and the above becomes

that for any my ∈ αIm(y), s0my ∈ αZ(g−1(y)). So (s0, s
∗
0) witnesses g−1. Therefore g1 is (part of)

an isomorphism.

Next we extend the above proof to show that in MMAsm the covers are exactly those effectively
epic morphisms.

Proposition 4.7. In MMAsm, the covers are exactly the effectively epic morphisms.

Proof. Suppose f : X → Y is a cover. By definition Y is isomorphic to Imf (X), and ι : Imf (X)→
Y is oart of the isomorphism. This means that there exists an inverse of ι witnessed by pre-
morphism (s, s∗). This means that, for any y ∈ Y , my ∈ αY (y), smy ∈ αIm(y). Since αIm(y) =⋃
x∈f−1(y) αX(x), we know that there exists x ∈ X such that smy ∈ αX(x). So f is effectively epic.

Suppose f : X → Y is effectively epic, with the pre-morphism (s, s∗). Then it suffices to
show that Y is isomorphic to the canonical cover Imf (X). Note that we already have a morphism
ι : Imf (X) → Y , so it remains to find another morphism Y → Imf (X) such that they two form
an isomorphism. For this, let g : Y → X select, for any y ∈ Y , some x ∈ X that satisfies the
effectively epic condition. Then it’s immediate that g : Y → X is a MMAsm morphism (witnessed
by (s, s∗)). And the composition f ◦ g : Y → Imf (X) is the demanded morphism.

Recall that a category is regular if it’s finitely complete and has pullback-stable image factoriza-
tion. Now, for MMAsm to be regular, it only remains to be tested whether the image factorization
above is stable under pullbacks. In other words,

A1
//

��

++A0
//

��

B

g

��
X

f̄ //

f

33Imf (X)
ι // Y

suppose A0 and A1 are respectively the pullbacks of ι and f along g, while A1 → A0 is the unique
morphism induced by the pullback A0, then A1 → A0 → B is an image factorization.

For every MMAsm morphism f : Y → X, one can induce a pullback functor f∗ : Sub(X) →
Sub(Y) by taking the pullback along f . And functor f∗ has both left and right adjoints, say ∃f
and ∀f . Recall the image and dual image in Sets are defined as:

• Imf (B) := {x ∈ X|∃y ∈ B, f(y) = x}

• DImf (B) := {x ∈ X|∀y ∈ B, f(y) = x⇒ y ∈ B}

The left adjoint ∃f : Sub(Y) → Sub(X) maps a subobject ιB : B � Y to its image through
f . That is, ∃f (B) = Imf◦ιB (B), and the . And it’s action on morphisms is evident. And the
adjointness is straightforward to be verified.

The rightadjoint ∀f : Sub(Y) → Sub(X) maps a subobject ιB : B � Y to its dual image
through f . The MType structure is a bit tricky, where for every x ∈ DImf (B) we require not
only an actual realizer of it in X but also a track of the inclusion map f−1(x) → B. That is,
∀f (B) = (DImf (B),PX × (PY → PB),∼∀,≤∀, α∀), where:

• ∼∀ and ≤∀ are defined pointwise from that for PX and the exponential PY → PB

25

• α∀(x) = αX(x) × {actual realizer for f−1(x) → B}, and f−1(x) → B is the set of MMAsm
morphisms between (f−1(x),PY ,≤Y ,∼Y , αY �) and B.

Since in this paper we will focus on interpreting logic in the categories, those projections πY :
X × Y → X are of main interest to us. In this case, given a subobject ιB : B → X × Y we can
slightly simplify the potential realizers (consequently the actual realizers) in ∀πY (B). By the above
definition, the potential realizer set is PX × (PX×Y → PB) = PX × (PX ×PY → PB), and an actual
realizer for x ∈ DIm(B) consists of a witness of it in X, together with a function PX×PY → PB such
that works for any a ∈ PX . So we may simplify the potential realizer set to be PX × (PY → PB),
and

All the above argument entails that MMAsm is a Heyting category. So every category of sub-
objects Sub(X) is a Heyting algebra, where morphisms are interpreted as the ≤ relation. Suppose
f0 : X0 → X and f1 : X1 → X are two subobjects of X. Their meet X0 ∧ X1 is simply the
pullback in MMAsm, or equivalently the product in the subobject category. Their join X0 ∨X1 is
the image of the universal morphism X0 +X1 → X. The Heyting implication X0 → X1 is defined
as ∀f0(f∗0 (X1)), and can be verified as below:

A ≤ ∀f0(f∗0 (X1))

⇐⇒ f∗0 (A) ≤ (f∗0 (X1)

⇐⇒ f∗0 (A) ≤ X1

where ≤ is the relation in the algebra Sub(X).
To be more explicit, the X0 → X1 has the underlying set {x ∈ X,x 6∈ X0} ∪ (X0 ∩ X1), the

potential realizers PX × (P0 → (P0 × P1)). The rest are defined accordingly. In fact, the potential
realizers set can be simplified as PX × (P0 → P1).

In particular, since the negated formulas x.¬ϕ(x) are defined as x.ϕ(x)→ ⊥, its interpretation
in MMAsm is [x.¬ϕ(x)] = [x.ϕ(x) → ⊥], whose potential realizer set is P[ϕ(x)] → P[⊥] = P[ϕ(x)] →
{0̄}, and an actual realizer for x̄ ∈ [¬ϕ(x)] is trivial (any potential realizer works, in particular
0̄ ∈ P¬ϕ(x)).

The functor I : MType→ MMAsm preserves natural number objects. Suppose (X,PX ,≤X ,∼X
, αX) is an assembly, x0 : 1 → X is a morphism mapping ∗ to x0 ∈ X and witnessed by (t0, t̂0),
and f : X → X is a morphism witnessed by (rf , r̂f). The morphism h : N → X is recursively
defined as h(0) = x0 and h(n + 1) = f(h(x)), so g : Ms

0 → X defined as g(n, n∗) = h(n) is a
function witnessed by (λr.R(t00)(λk.rf), λr.R(t̂00)(λk.r̂f)) (this witness is rubbish, need to
be verified later).

Corollary 4.8. MMAsm is a Heyting category with a natural number object.

Later we will see that, a category’s being regular means that we can interpret many-sorted
first-order logic in out category MMAsm. In particular, we can interpret all the finite types. As a
result, MMAsm is a model for HAω.

4.1 Basic Properties for Finite Types

We have a look at some basic properties of the finite types in MMAsm:

Proposition 4.9. Let σ be a finite type.

1. For any x, x′ ∈ X, if ασ(x) ∩ ασ(x′) 6= ∅, then x = x′.

26

2. Suppose a, a′ ∈ Pσ satisfies that a ∼σ a′ and a ∈ ασ(x) for some xσ, then a′ ∈ αX(x).

3. For any a ∈ Pσ, there is some x ∈ σ such that a ∈ ασ(x).

4. Suppose a, a′ ∈ Pσ satisfies that a, a′ ∈ ασ(x) for some xσ, then a ∼X a′.

Proof. 1. Suppose αστ (f)∩αστ (f ′) 6= ∅, say (r, r∗) lies in the intersection. Then for any xσ and
its witness rx, rrx lies in both ατ (fx) and ατ (f ′x). By IH this implies f(x) = f ′(x). And
since this holds for any xσ, we have f =στ f

′.

2. Suppose a, a′ ∈ Pστ , a ∼στ a′ and a ∈ ασ(f) for some f : σ → τ . We shall prove that a′

witnesses f as well. For any xσ and rx ∈ ασ(x), a′rx ∼τ arx by the definition of a ∼ a′. And
IH tells us then that a′rx ∈ ατ (fx). So a′ witnesses f as well.

3. An element in Pσ→τ is of the form (r, r∗) where both r, r′ are extensional functions Pσ → Pτ ,
and r ≤ r∗. Then the underlying function f : σ → τ does the following: given arbitrary xσ

and rx ∈ ασ(x), f(x) is the y such that rrx ∈ ατ (y) (whose existence guaranteed by item 1).
To see that this f is well-defined, note that for other r′x ∈ ασ(x), rx ∼σ r′x so rrx ∼τ rr′x, and
r′x ∈ ατ (y) for the same y (item 2).

4. Suppose a, a′ ∈ αστ (f) for some f : σ → τ . To show that a ∼στ a′, one requires that ar ∼ a′r
for any r ∈ Pσ. Since every r ∈ Pσ witnesses some xσ, it suffices to consider those rx, and
the rest is obvious.

So the finite type objects in MMAsm behave well: every potential realizer is an actual realizer
for exactly one functional of the type; the equivalence relation ∼σ is encoding the same functional;
the WPO ≤σ is the strong majorizability relation. Later when dealing with some mathematical
principle, we will see that these properties turn out to be crucial. For convenience, we offer the
following definitions:

Definition 4.10 (Modest Assembly). An assmebly (X,PX ,≤X ,∼X , αX) is modest if for any dif-
ferent x, x′ ∈ X, αX(x) ∩ αX(x′) = ∅.

Definition 4.11 (Full Assembly). An assembly (X,PX ,≤X ,∼X , αX) is full if every a ∈ PX sits
in some αX(x).

27

5 Logic in MMAsm

From a mathematical logic point of view, categories are interesting in that they provide structures
for various logical systems. On one hand one can find suitable categories to interpret a given logic;
on the other hand a category C, one has its so-called internal logic. But the guideline is the same.
The objects A in C are regarded as (interpretation of) types. The arrows A → B are taken as
function symbols of type A → B, or terms of type B with free variables of type A. If C has
subobjects, then X � A can be seen as a predicate on type A, or collections of those objects
of type A such that the formula (corresponding to) X is true. If C admits finite products and
coproducts, then one can interpret conjunction and disjunction.

For further logical structures, let’s start from C being regular. A regular category is a finitely
complete category with pullback-stable image factorization. Then for any morphism f : Y → X,
the pullback functor f∗ : Sub(X) → Sub(Y) has a left adjoint ∃f (by taking the image), which
serves to interpret the existential quantifier. Since Sub(X) has the greatest element, and products
in Sub(X) are essentially pullbacks in C, we can interpret logics with truth, conjunction and
existential quantifier. In another word, the internal logic of regular categories is the regular logic.
Moving a step forward, if in each subobject category Sub(X) one has finite unions that are stable
under pullbacks, then one can interpret disjunction and false (empty union) in C. Such categories
are called coherent categories, whose internal logic is coherent logic. So far, we still haven’t included
∀ quantifiers into our language. And one way to achieve this is by requiring right adjoint for each f∗.
The result is that each Sub(X) is now a Heyting algebra, which gives the name Heyting category,
and one can interpret many-sorted first-order logic.

5.1 General framework

First of all, we will present a standard interpretation of many-sorted first order logic in any Heyting
category. Next we will prove some handy lemmas for doing logic in MMAsm. In this chapter are
listed well-known results, and one can find further details in [5].

Consider a language L consisting of:

• A set of basic types X,Y, Z, . . . , and type constructors ×, →;

• An infinite set of variables xX1 , x
X
2 , . . . for each type X;

• A set of relation symbols R,S, . . . each of a unique type. If R is of type X1 × · · · ×Xk, we
call sg(R) = (X1, . . . , Xk) its signature;

• A set of function symbols f, g, h, . . . each of a unique type. Given function f : X1×· · ·×Xk →
Y , call sg(f) = (X1, . . . , Xk) its signature, while tp(f) = Y its type;

• A specific relation =X for any type X.

The L-terms are defined as routine. And each term t has a unique type denoted as tp(t). The
L-formulas consists of:

• Constants > and ⊥;

• Atomic formulas Rt1 · · · tn, where tp(ti) = Xi and sg(R) = (X1, . . . , Xk);

• Formulas constructed from atomic formulas with logical connectives ∧,∨,→ and quantifiers
∀xX and ∃xX .

28

As usual, ¬ϕ will be taken as abbreviation of ϕ → ⊥, and ϕ ↔ ψ of (ϕ → ψ) ∧ (ψ → ϕ). A
sequence of distinct variables ~x = (x1, . . . , xn) is called a context. Following [3], we say a context
is appropriate for a term t or a formula ϕ if all its free variables appear in ~x, while no bounded
variable does so. Sometimes we want to make the context salient, and following [3] we use ~x.t and
~x.ϕ to denote that term t and the formula ϕ is in context ~x, respectively.

Now we are ready to interpret L-formulas in a regular category C. Every basic type (i.e.
not built by type constructor) X is interpreted as an object [X] of C, and composed types are
interpreted inductively by taking products and/or exponentials, depending on their structures. A
tuple of types (X1, . . . , Xk) is also interpreted as the product [X1] × · · · × [Xk]. Each relation
symbol R is interpreted as a subobject [R] � [sg(R)], and each function symbol f as a morphism
[f] : [sg(f)] → [tp(f)]. In particular, =X is interpreted as ∆X : X � X ×X. Recall that for a C
morphism f : Y → X, f∗ is the pullback functor Sub(X)→ Sub(Y) given by “pulling along f”.

On the term level, the idea is to interpret each term ~x.t of type Y a morphism

[~x.t] : [X1]× · · · × [Xn]→ [Y]

where X1 × · · · × Xn is the type of the context ~x. So for each variable ~x.xi, define [~x.x] := πi :
[X1] × · · · × [Xn] → [Xi]. A constant aX is interpreted as [a] : 1 → [X]. Given a function symbol
f : X1 × · · · × Xn → Y and terms tX1

1 , . . . , tXnn , then the term ~z.ft1 · · · tn is interpreted as a
morphism:

[~z.ft1 · · · tn] := 〈[~z.t1], . . . , [~z.tn]〉∗ ([f])

in C([tp(z)], [Y]).
On the formula level, each formula is interpreted as a subobject of (the object associated with)

its context. In particular, sentences are interpreted as subobjects of the terminal object 1. Recall
that in a Heyting category, every Sub(A) has a HA structure. Assume that ~x is of type X, and y
of type Y . The constants ~x.> and ~x.⊥ are interpreted as the top and bottom element of Sub([X]).
The boolean connectives are interpreted in accordance with counterparts in the HA structure. As
for the quantified formulas, we use the adjunctions. Let π : [X] × [Y] → [X] be the projection,
then:

• [~x.∃yϕ] := ∃π[(~x, y).ϕ]

• [~x.∀yϕ] := ∀π[(~x, y).ϕ]

We say ϕ `~x ψ is a sequent if ~x is appropriate type for both ϕ and ψ. And ϕ `~x ψ is satisfied
in category C if [ϕ] ≤ [ψ] in Sub([X]). In particular, when ϕ is >, we simply write C � ψ, and
read “ψ is valid in C”. Now we fix a certain Heyting category C.

Lemma 5.1 (Substitution). Suppose ~x.ϕ is a C-typed formula, and ~y.t1, . . . , tn is a sequence of
terms such that ~x and ~t share the same arity and types: tp(ti) = tp(xi). Then

[~y.ϕ(~t/~x)] = 〈[~y.t1], . . . , [~y.tn]〉∗ [~x.ϕ]

Theorem 5.2 (Soundness). Suppose Σ is a set of L formulas and ϕ an L formula such that Σ ` L.
If C � Σ, then C � ϕ. In particular, if Σ is empty, then C � ϕ.

And there are some tricks in playing around with the internal logic of Heyting categories [5]:

Lemma 5.3. Given a Heyting category C,

1. C � ϕ→ ψ iff [ϕ] is a subobject of [ψ]

29

2. C � ∀xϕ iff [ϕ] ∼= X in C.

Now let’s apply the general framework to our category MAsm. Given an assembly (X,PX ,≤X
,∼X , αX), recall that the canonical subobjects are (A,PA,≤A,∼A, αA) where A ⊆ X. So suppose
ϕ and ψ are formulas of type X, then they are interpreted as subobjects [ϕ] and [ψ] of X. So we
may assume that their underlying set are X0, X1 ⊆ X. By the definition, for C � ϕ→ ψ one needs
to show that [ϕ] is a subobject of ψ. In this case, it suffices to show that: (1) X0 ⊆ X1, namely
any ~x : X satisfying ϕ also satisfies ψ, (2) The inclusion map ι : X0 → X1 is witnessed. This
means that there exists a premorphism (r, r∗) : P0 → P1 such that for any x ∈ X0 and m0 ∈ α0(x),
rm0 ∈ α1(x).

As for the universal sentence ∀xϕ(x), one requires the isomorphism [ϕ] ∼= X. Since the inclusion
ι : [ϕ] → X is trivial, it remains to show that one has the identity map [ϕ] → X and it’s also
witnessed.

Finally let’s have a look at the existential statements. Suppose ϕ(x, y) is of type (X,Y). Then
to prove C � ∃yϕ(x, y), one needs to find a MMAsm morphism X → [ϕ(x, y)].

5.2 MMAsm and Monotone Modified Realizability

First of all we show that MMAsm is a model for extensional modified realizability mr. This means
that MMAsm validates E-HAω and the characterization of mr, namely AC and IP¬.

Proposition 5.4. MMAsm E-HAω

Proof. In addition to HAω, we need to verify functional extensionality. For any MMAsm object
X,Y ,

MMAsm � ∀fY XgY X (∀xX(fx =Y gx)→ f =Y X g)

By definition, this requires a computation from [∀x(fx = gx)] to [f = g], both as subobjects of
Y X × Y X . This is essentially by Lemma 5.5. Note that ()the underlying set of) S consists of
those functionals f, g : X → Y together with x ∈ X on which they coincide. So ∀π(S) is exactly
[f, g.∀x(fx = gx)]. And by Lemma 5.5, [f, g.∀x(fx = gx)] factors through ∆ : Y X → Y X × Y X ,
we know that there is morphism [f, g.∀x(fx = gx)]→ [f, g.f = g], which is demanded.

The following lemma for extensionality can be found in [5], [3]:

Lemma 5.5. Let C be a Cartesian closed Heyting category, then C internal extensionality. To be
precise, let X,Y be arbitrary C objects, and

S
k1 //

k0
��

Y

∆
��

Y X × Y X ×Xev0,2,ev0,1

// Y × Y

is a pullback. Then ∀π(k0) : ∀π(S) → Y X × Y X factors through ∆ : Y X → Y X × Y X , where
projection π : Y X × Y X ×X → Y X × Y X .

Proof. This is equivalent to showing that the compositions ti = πi ◦ ∀π(k0)

∀π(S)
∀π(k0)// Y X × Y X πi // Y X

30

for i = 0, 1, are equal. And this, since C is c.c., is again the same as the equivalence of their
transposes:

∀π(S)×X
(ti,idX) //

t̃i
))

Y X ×X

ev

��
Y

Note that the pullback of (t0, t1) : ∀π(S) → Y X × Y X along π : Y X × Y X × X → Y X × Y X is
simply (t0, t1, idX) : ∀π(S)×X → Y X × Y X ×X. Then by the adjunction f∗ a ∀π, we know that
∀π(S)×X = π∗ ◦ ∀π(S) factors through S. Therefore ∀π(k0) factors through ∆ : Y X → Y X × Y X

as in the following diagram:

∀π(S)×X //

((

S //

��

Y

��
Y X × Y X ×X // Y × Y

where the left triangle is by the adjunction UMP, and the right square is the pullback diagram.

For MMAsm to be a category for monotone modified realizability, one needs the following
statement:

Conjecture 5.6. For any HAω sentence ϕ,

MMAsm � ϕ ⇐⇒ there exists vdBB term t s.t. t mmr ϕ

Due to the limit of time and energy, we haven’t yet formally (dis)proved the conjecture.

5.3 Some Constructivism Principles in MMAsm

Proposition 5.7. MMAsm IP¬σ,τ

Proof. Recall that

IP¬σ,τ ≡ ∀xσ((¬P (x)→ ∃yτR(x, y))→ ∃yτ (¬P (x)→ R(x, y)))

and for simplicity let’s denote it as ∀x(ϕ(x) → ψ(x)). For this to hold in MMAsm, we need an
algorithm (universal in rx ∈ α[σ](x̄)) that computes from a witness of ϕ(x̄) to a witness of ψ(x̄).

For the antecedent,

P[ϕ(x)] = P[¬P (x)→∃yR(x,y)]

= P[σ] × (P[¬P (x)] → P[∃yR(x,y)])

= P[σ] × (P[x.¬P (x)] → P[R(x,y)])

= P[σ] × (P[x.P (x)→⊥] → PR[x,y])

= P[σ] × (P[σ] × (P[P (x)] → P[⊥])→ P[R])

And the actual realizer for x̄ in [ϕ(x)] is a pair (rx, (rϕ, r̂ϕ)), where rx ∈ α[σ](x), and (rϕ, r̂ϕ) is a
pre-morphism that computes a witness of R(x̄, ȳ) for some ȳ from a witness of ¬P (x̄). So we shall
first have a look at how the two assemblies, [ϕ(x)] and [ψ(x)] looks like.

31

For the descendant, we have:

P[ψ(x)] = P[∃y(¬P (x)→R(x,y))]

= P[¬P (x)→R(x,y)]

= P[σ] × P[τ] × (P[x,y.¬P (x)] → P[R])

= P[σ] × P[τ] × (P[x,y.P (x)→⊥] → P[R])

= P[σ] × P[τ] × (P[σ] × P[τ] × (P[x,y.P (x)] → P[⊥])→ P[R])

The actual realizer for ψ(x̄) is a triple (rx, ry, (rψ, r̂ψ)), where rx ∈ α[σ](x̄), ry ∈ α[τ](ȳ) for some ȳ,
and (rψ, r̂ψ) is a pre-morphism such that rψ tracks a computation from arbitrary witness of ¬P (x̄)
to some witness of R(x̄, ȳ).

Essentially, a witness of ϕ(x̄) → ψ(x̄) should be able to compute a ȳ for the descendant. And
this is (partly) fulfilled by a witness for the projection [R]→ [τ]. So let’s assume that [R]→ [τ] is
witnessed by (ry, r̂y). We claim that (rIP, r̂IP) defined as:

rIP := λ(rx, (rϕ, r̂ϕ)).(rx, (ry ◦ rϕ)(prx0), (λ(sx, sy, t).rϕ(prx0), λ(sx, sy, t).r̂ϕ(prx0)))

r̂IP := λ(rx, (rϕ, r̂ϕ)).(rx, (r̂y ◦ r̂ϕ)(prx0), (λ(sx, sy, t).r̂ϕ(prx0), λ(sx, sy, t).r̂ϕ(prx0)))

The first observation is that, if everything goes on well, then rIP ≤ r̂IP is trivial. And the verification
boils down to the two levels of potential realizers and actual realizers.

Potential Given (rx, (rϕ, r̂ϕ)) ∈ P[ϕ(x)], rIP(rx, (rϕ, r̂ϕ)) is a triple consisting of rx, ry(rϕ(prx0)),
and a pair (λ(sx, sy, t).rϕ(rx,p0t), λ(sx, sy, t).r̂ϕ(rx,p0t)). It’s obvious that rx ∈ P[σ]; note
that 0 ∈ P[P (x)] → P[⊥], and one knows that ry(rϕ(prx0)) ∈ Pσ. And to see that

(λ(sx, sy, t).rϕ(prx0), λ(sx, sy, t).r̂ϕ(prx0))

is an element of P[σ] × P[τ] × (P[x,y.P (x)] → P[⊥]) → P[R], it only remains to check the majo-
riability relation, which is derived from that rϕ ≤ r̂ϕ. That r̂IP(rx, (rϕ, r̂ϕ)) lies in P[ψ(x)] is
similar. And it’s easy to see that rIP ≤ r̂IP as MType quasi-morphisms.

Actual Suppose (rx, (rϕ, r̂ϕ)) is a witness of ϕ(x̄) (i.e. in α[ϕ(x)](x̄)). rIP is still a triple, whose
first component rx is trivial. For the other two, we make a case distinction:

x̄ ∈ [x.¬P (x)] Then α[¬P (x)](x̄) = α[σ](x̄) × (P[P (x)] → P[⊥]), and in particular, prx0 ∈
α[¬P (x)](x̄). So rϕ(prx0) ∈ α[∃yR(x,y)](x̄) =

⋃
ŷ∈[τ] α[R](x̄, ŷ), and there is some ȳ such

that rϕ(prx0) ∈ α[R](x̄, ȳ). What’s more, ry(rϕ(prx0)) ∈ α[τ](ȳ) for this very same ȳ.

x̄ 6∈ [x.¬P (x)] . Then (x̄, ŷ) 6∈ [x, y].¬P (x) for any ŷ ∈ [τ], which implies that actual realizers
for [x, y.¬P (x, y)]→ [R(x, y)] are trivially those computing the potential realizers.

α[ψ(x)](x̄) =
⋃
ŷ∈[τ]

α[x,y.¬P (x)→R(x,y)](x̄, ŷ)

=
⋃
ŷ∈[τ]

α[σ](x̄)× α[τ](ŷ)× (P[x,y.¬P (x)] → PR(x,y))

rϕ(prx0) certainly lies in P[R(x,y)], and consequently (ry ◦ rϕ)(prx0) lies in P[τ]. By the
basic property of finite types in MMAsm, there exists some ȳ such that (ry ◦ rϕ)(prx0) ∈
α[τ](ȳ). So (rx, (ry ◦ rϕ)(prx0), rϕ(prx0)) ∈ α[ψ(x)](x̄).

32

Now that (rIP, r̂IP) witnesses [ϕ(x)]→ [ψ(x)]. So given any x̄ ∈ [σ] and rx ∈ α[σ](x̄), (rx, (rIP, r̂IP))
witnesses [ϕ(x̄) → ψ(x̄)]. This computation is universal in rx. Therefore we can conclude that
MMAsm � IP¬σ,τ .

Remark 5.8. Note that IP¬ also holds for more types than the finite types. A closer look at the
proof above tells us that we only used the fact that in [τ], every potential realizer is an actual
realizer for some ȳτ . Therefore MMAsm � IP¬X,Y , for arbitrary X, and those Y satisfying: ∀a ∈ PY ,
∃y ∈ Y such that a ∈ αY (y).

Proposition 5.9. MMAsm ACσ,τ for any σ, τ ∈ T .

Proof. Recall that
ACσ ≡ ∀aα(∀xσ∃yτR(x, y, a)→ ∃fστ∀xσR(x, fx, a))

For simplicity let’s denote the above sentence as ∀a(ϕ(a) → ψ(a)).To prove that ACστ holds in
MMAsm, we need to find a universal computation from ā ∈ [α] and a witness ra of a to [ϕ(ā) →
ψ(ā)]. And that means a witness of [ϕ(ā)] → [ψ(ā)]. So we first have a look at how [ϕ(ā)] and
[ψ(ā)] look like.

First let’s deal with the antecedent. [R] is a subobject of [σ]× [τ]× [α]. By definition,

P[∀x∃yR(x,y,α)] = P[α] × (P[σ] → P[∃yR(x,y,a)])

= P[α] × (P[σ] → P[R])

And an actual realizer of ā in [∀x∃yR(x, y, a)] is a pair (ra, (rϕ, r̂ϕ)), where ra ∈ α[α](ā), and (rϕ, r̂ϕ)
is a pre-morphism such that rϕ computes, from every x̄ and actual realizer rx of x̄, a witness of
R(x̄, ȳ, ā) for some ȳ ∈ τ .

Turning to the descendant, note that [R(x, fx, a)] is the subobject of [σ] × [σ → τ] × [α],
constructed by the pullback of [R] � [σ]×[τ]×[α] along the natural evaluation [σ → τ]×[σ]×[α]→
[σ]× [τ]× [α].

P[∃f∀xR(x,fx,a)] = P[∀xR(x,fx,a)]

= P[α]×[σ→τ] × (P[σ] → P[R(x,fx,a)])

= P[α]×[σ→τ] × (P[σ] → P[R])

An actual realizer of ā in [∃f∀xR(x, y, a)] is a pair ((ra, rf), (rψ, r̂ψ)), where ra ∈ α[α](a), rf ∈
α[σ→τ](f̄) for some f̄ ∈ [σ → τ], and (rψ, r̂ψ) is a pre-morphism such that rψ computes, from
rx ∈ α[σ](x̄), a witness of R(x̄, f̄ x̄, ā).

Now let’s turn to the proof of AC in MMAsm. Essentially one needs to be able to compute the
choice function f̄ . The idea is that, note that one has the projection π : [R] → [σ × τ × α] → [τ]
witnessed by some (ry, r̂y), and so (ry ◦ rϕ, r̂y ◦ r̂ϕ) witnesses a morphism [σ] → [τ], and this is
indeed what we want. That is, (rAC, ˆrAC) defined as:

rAC := λ(ra, (rϕ, r̂ϕ)).((ra, (ry ◦ rϕ, r̂y ◦ rϕ)), (λrx.rϕrx, λrx.r̂ϕrx,))

r̂AC := λ(ra, (rϕ, r̂ϕ)).((ra, (r̂y ◦ rϕ, r̂y ◦ rϕ)), (λrx.r̂ϕrx, λrx.r̂ϕrx))

witnesses [ϕ(ā)]→ [ψ(ā)] (it is universal in ra [α] ā, and the majorizability relation is also obvious).
And the proof boils down to the potential realizer and actual realizer levels.

33

Potential Suppose (ra, (rϕ, r̂ϕ)) ∈ P[ϕ(ā)], i.e. ra ∈ P[α], (rϕ, r̂ϕ) ∈ P[σ] → P[R]. Then

rAC(ra, (rϕ, r̂ϕ)) = ((ra, (ry ◦ rϕ, r̂y ◦ r̂ϕ)), (λrx.rϕrx, λrx.r̂ϕrx))

Note that both ry ◦ rϕ and r̂y ◦ r̂ϕ are quasi-morphisms P[σ] → P[τ] and the latter majorizes
the former, so their pairing is an element in P[σ→τ]. Besides, λrx.rϕrx and λrx.r̂ϕrx are both
quasi-morphisms P[σ] → P[R] with the majorizability relation, so their pairing is an element
of P[σ] → P[R].

Actual Suppose (ra, (rϕ, r̂ϕ)) is an actual witness of [ϕ(ā)]. Then ra witnesses ā in [α], and rϕ ≤ r̂ϕ
(in P[σ→R]) while rϕ computes, from any x̄ ∈ [σ] and a witness rx, a witness of [R(x̄, ȳ, ā)] for
some ȳ ∈ [τ]. Again,

rAC(ra, (rϕ, r̂ϕ)) = ((ra, (ry ◦ rϕ, r̂y ◦ r̂ϕ)), (λrx.rϕrx, λrx.r̂ϕrx))

First, given any x̄ ∈ [σ] and rx ∈ α[σ](x̄), both ry(rϕ ◦ rx) and r̂y(r̂ϕrx) are in P[τ], so
(ry ◦ rϕ, r̂y ◦ r̂ϕ) is a pre-morphism P[σ] → P[τ]. And by the property of the finite types in

MMAsm we know that it witnesses some f̂ : [σ] → [τ]. Next, given the same rx, λrx.rϕrx
computes, for exactly the same x̄ and f̂ , a witness of [R(x̄, f̂ x̄, ā)]. And the majorizability
(λrx.rϕrx) ≤ (λrx.r̂ϕrx) is also obvious. So rAC(ra, (rϕ, r̂ϕ)) is a witness of [ψ(ā)].

Since rAC ≤ r̂AC, the above argument show that pair (rAC, r̂AC) witnesses [ϕ(ā)] → ψ(ā) (the
inclusion map). So MMAsm ∀a(ϕ(a)→ ψ(a)).

But there is a price to pay. CT and CONT fail in MMAsm. In fact they conflict with E-HAω+AC.
The Church’s thesis CT basically claims that every total function is computable. This is formalized
as follows [13]:

(CT) ∀f∃e∀y∃z(Teyz ∧ Uz = fy)

Here T is the Klenne’s T-predicate, where Teyz basically says that z encodes a terminating compu-
tation of inputting y for the program encoded by e. U is the so-called “result-extracting function”
that Uz returns the result from the code of a terminating computation z. The detailed proofs can
be found in [13].

Proposition 5.10. E-HAω + AC ` ¬CT, ¬CONT

Proof. Let’s scratch the proof of ¬CT. AC and ∀f∃e∀y∃z(Teyz∧Uz = fy) implies that ∃E∀f∀y∃z(T (Ef)yz∧
Uz = fy). Then extensionality implies that, for any extensionally equivalent functions f and g, E
computes their codes Ef and Eg which are identical. Contradiction.

34

6 The Fan Theorem and Related Mathematical Principles

Besides the general mathematics principles discussed above, in this section we have a look at some
more specific constructivism principles, such as Fan Theorem.

6.1 Notations

Throughout the rest of this paper, we shall use the following notation:

• For a type X, X∗ denotes the set of finite sequences of X objects, and XN the set of infinite
sequences of X objects.

• For a finite sequence s = 〈x1, . . . , xn〉 : X∗, |s| denotes the length of s, which in this case is n.

• Given finite sequences s, t : X∗, we use s ∗ t for their concatenation. For an object x ∈ X, we
use s ∗ x as abbreviation of s ∗ 〈x〉. Also, s ∗ α denotes the concatenation where α : XN is an
infinite sequence.

• For an infinite sequence α : XN, α(i) denotes its i-th object, and ᾱ(n) denotes the initial
sequence 〈α(0), . . . , α(n− 1)〉.

• A set S ⊆ X∗ is a cover (of XN) if for any α : XN, there exists s ∈ S such that s = ᾱ(|s|)
(i.e. s is an initial segment of α).

• For an object a : X, we shall use ā to denote the infinite X sequence consisting solely of a.

• The canonical extension ŝ : XN of s : X∗ is defined by ŝ(i) = s(i) if i < |s|, and ŝ(i) = 0X
otherwise. Use the notation above, ŝ = s ∗ 0̄X .

• Given s, t : σ∗, we say s is an initial sequence of t if s(i) = t(i) for any i < |s|, and denote
this as s v t. And this definition is naturally generalized to where t : σN.

• In this chapter, we will use ≤ instead of ≤∗ for the majorizability relation. This will not
cause confusion since ≤∗0 is just ≤0.

Next we list out a few conditions that we will frequently refer to later. For predicate P on σ∗:

Dec(P) := ∀uσ∗(Pu ∨ ¬Pu) Decidable

Bar(P) := ∀ασN∃kNP (ᾱ(k)) Bar

Mono(P) := ∀uσ∗vσ∗(u v v ∧ Pu→ Pv) Monotone

Back(P) := ∀uσ∗(∀xσ(P (u ∗ x))→ Pu) Backwards Induction

Back′(P) := ∀uσ∗(¬Pu→ ∃xσ¬P (u ∗ x)) Backwards Induction’

Uni(P) := ∃mN∀ασ∗P (ᾱ(m)) Uniform Bar

Uni′(P) := ∃mN∀α2N(∃kN ≤ m)P (ᾱ(k)) textitUniformBar′

Triv(P) := ∀uσ∗P (u) Trivial Bar

To work on these structure in MMAsm, we should be able to interpret all the types. In particular
we need to interpret 2∗ in MMAsm. For any natural number m, the object m in MMAsm is
({0, . . . ,m − 1},Pm,≤m,∼m, αm), where Pm = {0̄, . . .m− 1}, and the rest defined as restriction

35

of object N on Pm. In particular, 2 in MMAsm has the underlying set {0, 1}. Then 2m is the
exponential object in MMAsm. The quasi-morphisms are computable functions {0, . . . ,m − 1} →
{0, 1} (since preservation of ∼ is trivial); the equivalence of quasi-morphisms are simply extensional
equivalence; and two quasi-morphisms u ≤ v if ∀k, k∗ ∈ m with k ≤2 k

∗, uk ≤2 vk
∗ and vk ≤2 vk

∗.
In particular, the witness λi.1̄ of 1m ∈ 2m is the greatest quasi-morphism Pm → P2, where 1m(i) = 1
for any i < m.

Another approach is to build 2∗ from scratch. Take the underlying set simply as 2∗, and the
coding ru for each finite sequence u ∈ 2∗ is a pair ru = 〈k,m〉, where k is the length, and m the
coding of the elements. Then we naturally have pi to extract from ru (a witness of) the i-th element
in the sequence.

6.2 Fan Theorem

Let’s first discuss the Fan Theorem. And in this thesis we shall focus on the that for binary
sequences, namely Σ = 2 = {0, 1} (not to be confused with the coproduct 2 = 1 + 1). Let Tree2

be the set of binary trees, namely T ⊆ 2∗ such that T 6= ∅, ∀u, v ∈ 2∗(u ∈ T ∧ v v u → v ∈ T)
and ∀α ∈ 2N∀v ∈ 2∗(α ∈ T ∧ v v u → v ∈ T). Here by α ∈ T where α ∈ T , we mean that
∀w ∈ 2∗(w v α→ w ∈ T).

(FT) (∀P ∈ Tree2)(Bar(P)→ Uni′(P))

Adding the condition Dec, one gets the Decidable Fan Theorem (FTD). In brief, FT says that
every bar has a uniform upper bound. The following is another commonly version of Fan Theorem,
which we call the Monotone Fan Theorem:

(FTMon) (∀P ∈ Tree2)(Bar(P) ∧Mono(P)→ Uni(P))

That FT ⇒ FTMon is obvious. And the inverse direction requires Mono(P). The Fan Theorem
holds classically, and since Dec is trivial classically, it implies that FTD holds as well. And to see
this, note that FT is classically equivalent to the Weak König’s Lemma which claims that every
infinite tree has an infinite path. This is formalized as follows:

(WKL) (∀T ∈ Tree2)[∀nN∃u ∈ 2∗(|u| = n ∧ u ∈ T)→ ∃α ∈ 2N∀nNᾱ(n) ∈ T]

Since WKL holds classically and it is classically equivalent to FT, we know that FT holds classically
[]. However, in an intuitionistic setting things are different. For example, since CT is incompatible
with FT, any system compatible with CT will not force FT [13]. On the other hand, E-HAω does
not force ¬FT either.

Axiom of Majorizability (MAJ) Everything has a majorant. And it’s formalized as follows:

∀σx∃yσ(x ≤σ y)

Proposition 6.1. E-HAω + AC + MAJ ` FT

Proof. By AC, ∀α∃kP (ᾱ(k)) implies ∃F 2N→N∀α2NP (ᾱ(Fα)). Then by MAJ, ∃F ∗(F ≤ F ∗). Since

∀α2N(α ≤ 1̄), ∀αFα ≤ F ∗1̄, and this F ∗1̄ is the upper bound m that we want.

We claim that our category MMAsm provides a computable justification of the Fan Theorem.
And this is not achieved, for example, by the famous effective topos Eff. The bad news is that, we
haven’t yet shown if MAJ holds in MMAsm, though we conjecture that it doesn’t:

36

Conjecture 6.2. MMAsm � ¬MAJ

If MMAsm � MAJ, then FT follows immediately from Proposition 6.1. If MMAsm � ¬MAJ,
as we conjecture, then we can still do some trick to prove that FT holds in MMAsm. Basically this
is because, even though MAJ is internally false, it is externally true: we can see from the “outside”
of the model that every element in an assembly has a majorant. We will introduce some other
mathematical principles that implies FT. Then proving them in MMAsm immediately entail that
MMAsm � FT.

6.3 Special Fan Functional

In [10] Norman and Sanders introduced the Special Fan Functional. As for the Fan Theorem, in
the thesis we only focus on the binary sequences. First we informally state the following Special
Fan Functionals Principles. Note that they do not have the demanded functional explicit in the
statement, so they are not the “real” Special Fan Functional Principles, and we use the subscript
0 to distinguish it.

Special Fan Functional Principle(SFF0) For any F : 2N → N, there exists α1, . . . , αn ∈ 2N

such that
{ᾱ1(Fα1), . . . , ᾱn(Fαn)}

is a cover.

And we have another fan functional as follows:

Special Fan Functional Principle* (SFF∗0) For any F : 2N → N, there exists m ∈ N such that

{ûF (û)|u ∈ 2∗, |u| ≤ m}

is a cover, and there is a least m for this. That is,

SFF∗0 := ∀F (2N)N∃lstmN∀α ∈ 2N∃u2∗(|u| ≤ m ∧ u ∗ 0̄F (u ∗ 0̄) v α)

Note that the real functional requires, for example in SFF∗0, the existence of Θ : (2N → N) → N.
The above statements can be directed formalized of form ∀∃, and under the Axiom of Choice the
existence of such Θ is equivalent to the above statements. We will later give the real “functional”
version of SFF, but before that these informal statements already suffices to prove some basic
properties of the Special Fan Functional.

It’s immediate that SFF∗0 implies SFF0. With the restriction of F to those continuous functions,
one also has the inverse direction:

Proposition 6.3. In E-HAω we have: for any continuous F : 2N → N, if there exists α1, . . . , αn ∈
2N such that {ᾱ1(Fα1), . . . , ᾱn(Fαn)} is a cover, then there exists m ∈ N such that {û(Fû)|u ∈
2∗, |u| ≤ m}

Proof. Consider F−1[{Fαi}]. By the continuity of F , this is an open set, thus there is some ti ∈ 2∗

such that αi ∈ ti ∗ 2N and ti ∗ 2N ⊆ F−1[{Fαi}]. Let ki = max{|ti|, F (αi)}, and βi := ᾱi(ki) ∗ 0̄.
Then we claim that the following conditions are satisfied:

1. Fβi = Fαi

2. ᾱi(ki) = β̄i(ki)

37

If so, then note that Fαi ≤ ki, and β̄i(Fβi) = ᾱi(Fαi). This implies that these β̄i(Fβi)’s form a
cover, where each βi is of the form vi ∗ 0̄. So let m = maxi |vi|, and {u ∗ 0̄|u ∈ 2∗, |u| ≤ m} contains
all βi’s, so {u ∗ 0̄(Fu ∗ 0̄)|u ∈ 2∗, |u| ≤ m} is a cover.

For item (1), note that ti is an initial sequence of β, so Fβi = Fαi. For item (2), αi and βi are
indeed constructed to coincide on the first ki elements. Finally note that all the above discussion
are valid in E-HAω.

However, in general SFF0 and SFF∗0 are not equivalent classically. And this follows immediately
from the fact that SFF0 holds classically, while SFF∗0 does not. For the former, one can basically
use the fact that the topology on 2N with the base {s ∗ 2N|s ∈ 2∗} is compact (it’s indeed a Cantor
space).

Example 6.4. We given a counter example to show that SFF∗0 does not hold classically. This is
done by offering some F : 2N → N such that even

{u ∗ 0̄(F (u ∗ 0̄))|u ∈ 2∗}

not a cover, not to say a finite subset of it.
Define F : 2N → N to be that, for any sequence of the form u ∗ 0̄, F (u ∗ 0̄) = |u| + 1. So for

any u ∈ 2∗, u ∗ 0̄(F (u ∗ 0̄)) is exactly u ∗ 0. But these finite sequences obviously cannot cover 2N:
consider 1̄, for example.

Besides, note that such F is not continuous. Suppose F is, then the inverse image F−1[{n+ 1}]
should be open in 2N. By definition, F−1[{n + 1}] at least contains those α ∈ 2N such that
α(i) = 0 for all i ≥ n. But the only open set containing these α is the whole set, which means that
F (β) = n+ 1 for any β ∈ 2N, contradiction.

Now let’s formalize the real Special Fan Fucntionals SFF, SFF∗ as follows:

Special Fan Functional Principle (SFF) ∃Θ(2NN)(2N)∗∀F 2NN∀α2N∃β2N [β ∈ Θ(F) ∧ β̄(Fβ) v α]

Special Fan Functional Principle* (SFF∗) ∃Θ(2NN)N∀F 2NN∀α2N∃u2∗ [|u| = Θ(F) ∧ u ∗ 0̄F (u ∗
0̄) v α]

And in both statements, the Θ are the Special Fan Functionals. In SFF, Θ selects a finite
sequence of infinite binary sequences {β1, . . . , βk} such that {β̄i(Fβi)|1 ≤ i ≤ k} forms a cover of
2N. Similar to that of SFF0 and SFF∗0, SFF0 immediately implies SFF∗0 by taking m to be the greatest
length of the sequences in Θ(F). Besides, SFF and SFF∗ respectively imply SFF0 and SFF∗0. Then
the failure of SFF∗0 classically implies that SFF∗ fails classically. And AC holds classically implies
that SFF holds classically as well.

Now we prove that SFF holds in MMAsm by showing that MMAsm � SFF∗. The idea is to make
use of the fact that for any MMAsm object X and (x, x∗) ∈ X, (x, x∗) has a majorant, namely
(x∗, x∗).

Proposition 6.5. E-HAω + AC + MAJ ` SFF∗

Proof. By MAJ, every F : 2N → N has a majorant F ∗, and AC tells us that there is a selection
function for such F ∗ from F . And one can prove that in 2N, 1̄ is the greatest element, namely:

∀y2N(∀iN(y(i) = 1)→ ∀x2N(x ≤ y))

So by the definition of ≤, one has Fx ≤ m∗ := F ∗1̄ for any x2N .

38

We claim that A = {u ∗ 0̄(F (u ∗ 0̄))|u ∈ 2∗, |u| = F ∗(1̄)} is a cover. To see this, given arbitrary
α ∈ 2N, ᾱ(m∗) has length F ∗(1̄), and satisfies the condition for A. Besides, since F (ᾱ(m∗)∗0̄) ≤ m∗,
we know that

ᾱ(m∗) ∗ 0̄F (ᾱ(m∗) ∗ 0̄) v ᾱ(m∗) ∗ 0̄(m∗) = ᾱ(m∗) v α

which means that every α ∈ 2N is covered. Therefore we can define Θ : (2N → N) → N as
Θ(F) = F ∗(1̄).

However, as mentioned above we don’t expect to have MAJ in the internal logic of MMAsm.
We can do the following trick. For any F : (2N → N)→ N, we know it has a majorant F ∗, and the
above argument shows that there exists some M ∈ N such that {u ∗ 0̄F (u ∗ 0̄)|u ∈ 2∗, |u| ≤M} is a
cover. Then we can do the following algorithm: starting from m = 1, one checks if {u ∗ 0̄F (u∗0̄)|u ∈
2∗, |u| ≤ m} is a cover. Such check terminates, since it suffices to check 2m = {u ∈ 2∗||u| = m}.
This algorithm terminates no later than m = M , and it computes the smallest such m.

Theorem 6.6. MMAsm � SFF∗

Proof. Let’s abbreviate SFF∗ as ∀F∃nϕ(F, n), and ϕ(F, n) := ∀α∃uψ(F, n, α, u), then

P[∀F∃nϕ(F,n)] = P[2N(N)] → P[∃nϕ(F,n)]

= P[2N(N)] → P[ϕ(F,n)]

As for the actual realizers, note that [∀F∃nϕ(F, n) is a subobject of 1. And α[∀F∃nϕ(F,n)](∗) consists

of those pre-morphisms (rϕ, r̂ϕ) : P[2N(N)] → P[ϕ(F,n)], such that given any F : 2N → N and a witness
(rF , r̂F) of it, rϕrF is a witness of ϕ(F, n) for some n ∈ N. Also note that P2N(N) is full in the sense

that every a ∈ P2N(N) is an actual witness of some functional 2N → N (so the potential realizer is
not a matter here).

Again, ϕ(F, n) = ∀α∃uψ(F, n, α, u) is interpreted as a subobject of [2N(N)× N], and

P[ϕ(F,n)] = P[2N(N)] × P[N] × (P[2N(N)] × P[N] × P[2N] → P[∃uψ(F,n,α,u)])

= P[2N(N)] × P[N] × (P[2N(N)] × P[N] × P[2N] → P[ψ(F,n,α,u)])

As for the actual realizer, α[ϕ(F,n)](F̄ , n̄) are those triples ((rF , r̂F), (n̄, n̄∗), (rψ, r̂ψ) where (rF , r̂F) ∈
α[2N(N)](F̄), (n̄, n̄∗) ∈ α[N](n̄), and (rψ, r̂ψ) is a pre-morphism P[2N(N)]×P[N]×P[2N] → P[ψ] such that,

given any (rF , r̂F) ∈ α[2N(N)](F̄), (n̄, n̄∗) ∈ α[N](n̄), and an actual realizer (rα, r̂α) for an arbitrary

α ∈ 2N, rψ computes a realizer of ψ(F̄ , n̄, ᾱ, ū), for some u ∈ 2∗. We let rψ encode the following

computation: one checks every u ∈ 2n in sequence, and outputs the first u such that u ∗ 0̄(F (u∗ 0̄))
covers α. And such rψ is majoraized, for example, by r̂ψ := λrFnrα.1

n.
Now let’s turn to SFF∗ itself. By definition, r̂F is a majorant of rF , and it’s a MType quasi-

morphism P2N → PN. So r̂F indeed encodes a function, say F̄ ∗ : 2N → N. Then that F̄ ≤ F̄ ∗ implies
F̄ (α) ≤ F̄ ∗(1̄), for any α ∈ 2N. Let m = F̄ ∗(1̄), and {u ∗ 0̄(F (u ∗ 0̄))|u ∈ 2∗, |u| ≤ m} is apparently
a cover. Then we simply starts from k = 0 and check if {u ∗ 0̄(F (u ∗ 0̄))|u ∈ 2∗, |u| ≤ k} is a cover.
First, checking whether it’s a cover is decidable, since one only needs to check whether the finite
set 2k is covered. Second, this procedure always terminates since we already have an upper bound
m for k. In short, we can compute the least n such that {u ∗ 0̄(F (u ∗ 0̄))|u ∈ 2∗, |u| ≤ k} forms a
cover. Note that this procedure is extensional, so we have a computation encoded by some rϕ ∈ N.
Now it only remains to find a majorant r̂ϕ of rϕ. And we claim that r̂ϕ := λrF .rF 1̄ does the job,
where 1̄ is the encoding for 1̄ ∈ 2N. In fact, for any F ≤ F ∗ and witness rF and rF ∗ of them (let’s
omit their majorants here), rϕrF ≤ r̂ϕrF ∗ = rF ∗ 1̄ by the definition of rϕ.

Therefore we can conclude that SFF∗ holds in MMAsm.

39

As the name “special fan functional” suggests, SFF is closely related with FT. One can indeed
think of statement Bar(P) as “P is a cover”: for any α ∈ 2N, there exists k ∈ N such that α(k) ∈ P .
Then if one thinks of, for any α ∈ 2N, F (α) as the value such that ᾱ(Fα) ∈ P , the finite cover
given by SFF immediately generates an upper bound for the bar.

Proposition 6.7. E-HAω + AC + SFF ` FT

Proof. Assuming Bar(P), then we have:

Bar(P)→ ∃F ∈ 2N(N)∀α ∈ 2NP (ᾱ(Fα)) (AC)

→ ∃α1 . . . αn ∈ 2N, {ᾱi(Fαi)|i = 0, . . . , n} forms a cover (SFF)

→ ∀α ∈ 2N∃k ≤ max{|αi|}, P (ᾱ(k))

→ ∃n ∈ N∀α ∈ 2NP (ᾱ(k))

Therefore one can immediately derive that FT holds in MMAsm.

6.4 Fan Recursor

In this section we discuss the Fan Recursor. The Fan Recursor can be seen as a “baby” version of
the fame Bar Recursor.

Definition 6.8 (Fan Recursor). A Fan recursor FR is a functional (2N → N) → 2∗ → N defined
as follows:

FR(N, u) =

{
0 N(û) < |u|
1 + max{FR(N, u ∗ 0),FR(N, u ∗ 1)} otherwise

where N : 2N → N, u ∈ 2∗, and û denotes the canonical extension u ∗ 0̄ of u.

Example 6.9. The first thing to point out is that, in the classical setting this definition may not
even make sense. Think of the following N : (N→ 2)→ N:

N(α) =

{
k #1’s in α is finite, say k

0 otherwise

Then consider u = 1. N(û) = 1 ≥ |u|, so one goes to the recursive case. In general, one meets
FR(N, 1k+1 ∗ 0̄) at the k-th recursion, and N(1k+1 ∗ 0̄) = k + 1 ≥ |1k+1| means an extra recursion.
So N(u) is no well-defined (→∞).

Note that if N(û) < u, then ¯̂uN(û) v u. Intuitively, FR(N, u) gives a length m of extension
of u, such that for all v ∈ 2∗ of length |v| ≤ |u| + m, their canonical extension under N : 2N → N
forms a cover. This shall remind one of the special fan functional SFF. Let C ⊆ 2∗, α0 ∈ 2N and
M ⊆ 2N, then we say C covers α0 if there exists u ∈ C such that u v α0, and C covers M if for
any α ∈M , there exists u ∈ C such that u v α. In particular, for some u ∈ 2∗, we use C covers u
as abbreviation of A covers u ∗ 2N. And their counterparts in the formal language are respectively
Cov(C,M) and Cov(C, u) Besides, let Ext(u, n,N) := {v ∗ 0̄N(v ∗ 0̄)|u v v ∈ 2∗, |v| ≤ |u|+ n}.

Lemma 6.10. Let m = FR(N, u), then Ext(u,m,N) forms a cover of u.

Proof. Prove by induction on m.

40

• m = 0. It can only be the case that N(u ∗ 0̄) < |u|. Then u ∗ 0̄N(u ∗ 0̄) v u, and Ext(u, 0, N)
covers u.

• m+ 1. By definition we know that

max{FR(N, u ∗ 0),FR(N, u ∗ 1)} = m

And IH tells us that Ext(u∗0,FR(N, u∗0), N) and Ext(u∗1,FR(N, u∗1), N) cover u∗0 and u∗1
respectively. Note two things: firstly for any k0 ≤ k1, Ext(u, k0, N) ⊆ Ext(u, k1, N); secondly
Ext(u,m+1, N) = Ext(u∗0,m,N)∪Ext(u∗1,m,N). So Ext(u∗0,m,N) and Ext(u∗1,m,N)
cover u ∗ 0 and u ∗ 1 respectively, and their union covers (u ∗ 0) ∗ 2N ∪ (u ∗ 1) ∗ 2N = u ∗ 2N.
That is, Ext(u,m+ 1, N) covers u.

Therefore Ext(u,FR(N, u), N) covers u.

However, as will be shown by the following example, FR(N, u) does not return the least m such
that Ext(u,m,N) covers u.

Example 6.11. Let functional N : 2N → N be defined as:

N(α) =

{
0 α ≡ 0̄

99 otherwise

Consider the empty sequence 〈〉, then it’s easy to verify that

FR(N, 〈〉) = 100 + max {FR(N, v)||v| = 100, v 6= 0100}

But obviously Ext(u, 0, 〈〉) is a cover of the empty sequence 〈〉.

However, the existence of FR(N, u) guarantees the existence of a least such m. More importantly
in our context, this least m is computable: fix u and N , one can simply start from m = 0 and check
if Ext(u,m,N) covers u, by verifying whether every v ∈ u ∗ 2m is covered. Define Fan Recursor

Principle FRP as:

Fan Recursor Principle FRP := ∃FR2N(N)→2∗→N∀F 2N(N)∀u2∗ [Base(FR, F, u)∧Ind(FR, F, u)], where:

Base(FR, F, u) := F (u ∗ 0̄) < |u| → FR(F, u) = 0

Ind(FR, F, u) := F (u ∗ 0̄) ≥ |u| → FR(F, u) = max{FR(F, u ∗ 0),FR(F, u ∗ 1)}

Proposition 6.12. E-HAω ` FRP→ SFF.

Proof. Given F : 2N → N. Consider the empty sequence 〈〉. By Lemma 6.10, the set

Ext(〈〉 ,FR(F, 〈〉), F) = {v ∗ 0̄F (v ∗ 0̄)|v ∈ 2∗, |v| ≤ FR(F, 〈〉)}

is a cover for 〈〉, or simply a cover.

Note that SFF holds classically while FRP does not. While both are compatible with E-HAω, FRP
is strictly stronger than SFF. And such strong FRP also holds in MMAsm:

Proposition 6.13. MMAsm � FRP

41

Proof. For simplicity, let’s abbreviate FRP as ∃FRϕ(FR), and ϕ(FR) := ∀N∀uψ(FR, N, u) (where
we omit the sorts here). Then we have:

P[FRP] = P[∃FRϕ(FR)]

= P[ϕ(FR)]

= P[∀N∀uψ(FR,N,u)]

= P[(2N→N)→2∗→N] × (P[2N→N] × P[2∗] → P[ψ(N,u,FR)])

And an actual realizer of P[FRP] is a pair ((rFR, ˆrFR), (rψ, r̂ψ)) such that (rFR, r̂FR) witnesses some
FR, and (rψ, r̂ψ) computes, from a witness of any N and u, a witness of ψ(N, u,FR). So to show
that MMAsm � FRP, one needs to find some FR : (2N → N) → 2∗ → N with the aforementioned
witnesses.

Recall that the potential problem of finding such an FR is that FR(N, u) might diverge for some
N, u. And for every FR(N, u) to converge, it suffices that, for any u ∈ 2∗, there is some “uniform
bound” m ∈ N such that for any v ∈ u∗2m, there exists v′ with u v v′ v v such that N(v′∗0̄) ≤ |v′|.
Then FR(u) ≤ m. Since functional N is majorized, say by N∗, N(α) ≤ N∗(1̄). And this means
that we have a trivial upper bound N∗(1̄). Then we know that the computation FR(N, u) always
converges, for any computable N and u. Let rFR be (one of) its codes. Besides, it’s easy to see
that rFR is majorized by r̂FR := λN∗u∗.N∗(1̄). So (rFR, r̂FR) majorizes FR.

Careful readers might have noticed that rFR does exactly what we require for a witness of
∀N∀uψ(FR, N, u): given rN and ru respectively witnessing N and u, rFR returns 0 if N(u∗0) < |u|;
otherwise returns the maximum of rFR(rN , ru∗0) and rFR(rN , ru∗1). And this algorithm terminates
for the existence of the majorant.

42

7 Discussion

7.1 Conclusion

In this thesis we have constructed the category MType of majorizaibility types, whose interpretation
of finite types are computably equivalent to the vdBB model for Gödel’s T. Based on MType, we
introduce the category MMAsm of majorizability modified assemblies.

As a Heyting category with nno, MMAsm provides a model for E-HAω + AC + IP¬. We expect
it to characterize the monotone modified realizability, but this is not yet verified.

In the last part, we reviewed Brouwer’s Fan Theorem, as well as some of its related principles.
We have shown that not only the Fan Theorem, but also the Special Fan Functional Principle and
the Fan Recursor Principle hold in our category MMAsm.

7.2 Future Work

The first work is, of course, to check the unproven conjectures in this thesis. That consists of:

1. MAJ fails in MMAsm.

2. MMAsm is a category for monotone modified realizability.

Item (2) shouldn’t be too hard, and one mainly do induction on the structure of ϕ. For item (1),
the very first idea is try to find a counterexample in type 2.

Next, we would like to follow the “assembly to tripos to topos” procedure, and construct a topos
based on the category MMAsm. However, the routine procedure encounters an immediate problem.
For the left and right adjoints in the tripos construction, one needs to take union/intersection of
the potential realizers. But every potential realizer is of the form (a, a∗), and we are not sure what
to take in the union/intersection of X 3 (a, a∗) and Y 3 (a, a∗∗).

Thirdly, Ferreira and Nunes introduced the bounded modified realizability in [4]. The basic
idea is that one does not care about the precise witnesses for arithmetic statements; rather, one
extract majorants of potential witnesses. Its difference with the monotone modified realizability is
tiny: in the latter case the precise witness always exists, while in the former case a constructive
witness may not exists (but still majorized).

Last but not least, there are lots of other constructivism mathematical principles to be consid-
ered in the internal language of MMAsm. For example the Bar Induction and the Bar Recursion.

43

References

[1] M. Bezem. Strongly majorizable functionals of finite type: A model for barrecursion containing
discontinuous functionals. The Journal of Symbolic Logic, 50(3):652–660, 1985.

[2] S. R. Buss. Handbook of proof theory, volume 137. Elsevier, 1998.

[3] M. de Vries. An extensional modified realizability topos. 2016.

[4] F. Ferreira and A. Nunes. Bounded modified realizability. The Journal of Symbolic Logic,
71(1):329–346, 2006.

[5] P. T. Johnstone. Sketches of an elephant: A topos theory compendium, volume 2. Oxford
University Press, 2002.

[6] S. C. Kleene. On the interpretation of intuitionistic number theory. The journal of symbolic
logic, 10(4):109–124, 1945.

[7] U. Kohlenbach. Relative constructivity. The Journal of Symbolic Logic, 63(4):1218–1238, 1998.

[8] U. Kohlenbach. Applied proof theory: proof interpretations and their use in mathematics.
Springer Science & Business Media, 2008.

[9] G. Kreisel. Interpretation of analysis by means of constructive functionals of finite types. 1959.

[10] D. Normann and S. Sanders. The strength of compactness in computability theory and non-
standard analysis. arXiv preprint arXiv:1801.08172, 2018.

[11] A. S. Troelstra. Metamathematical investigation of intuitionistic mathematics, volume 344 of.
Lecture Notes in Mathematics.

[12] A. S. Troelstra. Realizability. Handbook of proof theory, 1998.

[13] A. S. Troelstra and D. van Dalen. Constructivism in mathematics, volume 2. Elsevier, 2014.

[14] B. van den Berg and E. M. Briseid. The vdbb model. Unpublished manuscript.

[15] J. van Oosten. Realizability: an introduction to its categorical side, volume 152. Elsevier, 2008.

[16] W. P. van Stigt. Brouwer’s intuitionism. North-Holland Amsterdam, 1990.

	Introduction
	Preliminaries
	Gödel's T and HA
	Realizability
	Models for HA
	Strong Majorizability
	Model vdBB

	Majorizability Types
	Majorizability Assembly
	Basic Properties for Finite Types

	Logic in MMAsm
	General framework
	MMAsm and Monotone Modified Realizability
	Some Constructivism Principles in MMAsm

	The Fan Theorem and Related Mathematical Principles
	Notations
	Fan Theorem
	Special Fan Functional
	Fan Recursor

	Discussion
	Conclusion
	Future Work

