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Abstract

We present a framework for epistemic logic, modeling the logical aspects of System 1 (“fast”)

and System 2 (“slow”) cognitive processes, as per dual process theories of reasoning. The

framework combines non-normal worlds semantics with the techniques of Dynamic Epistemic

Logic. It models non-logically-omniscient, but moderately rational agents: their System 1

makes fast sense of incoming information by integrating it on the basis of their background

knowledge and beliefs. Their System 2 allows them to slowly, step-wise unpack some of

the logical consequences of such knowledge and beliefs, by paying a cognitive cost. The

framework is applied to three instances of limited rationality, widely discussed in cognitive

psychology: Stereotypical Thinking, the Framing E↵ect, and the Anchoring E↵ect.
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1 Econs, Logons, and Humans

2017 Nobel laureate in economics Richard Thaler dubbed “Econs” and “Humans” two di↵erent
species studied, respectively, by mainstream economists and by behavioral and cognitive scientists
(Thaler and Sunstein, 2008).1 Econs are the agents of classical economic theory: fully consistent
and endowed with well-ordered preferences as per Bernoulli’s expected utility theory. Of course,
the terminology implies that Humans, unlike Econs, are the real thing. The discrepancies between
the two kinds of agents have sparked a well-known “rationality debate” (Cohen, 1981; Kahneman
and Tversky, 1983; Cherniak, 1986; Evans and Over, 1996; Gigerenzer, 1996; Kahneman and
Tversky, 1996; Stein, 1996; Stanovich and West, 2000; Stenning and van Lambalgen, 2008). As
2002 Nobel laureate in economics Daniel Kahneman has it:

[Assume] rationality is logical coherence – reasonable or not. Econs are rational by
this definition, but there is overwhelming evidence that Humans cannot be. [...] The
definition of rationality as coherence is impossibly restrictive; it demands adherence
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to rules of logic that a finite mind is not able to implement. Reasonable people cannot
be rational by that definition, but they should not be branded as irrational for that
reason. (Kahneman, 2011, p. 411)

Now just as mainstream economics has forgotten Humans to focus on Econs, so has main-
stream logic forgotten them to focus on Logons. We name this way the ideal agents studied
in ‘static’ epistemic logic with possible worlds semantics (Hintikka, 1962) and in AGM belief
revision theory (Alchourrón et al., 1985). These agents are logically omniscient : perfectly con-
sistent, closed under classical logical consequence in their beliefs, and free from framing e↵ects
in their belief revision policies (Hintikka, 1975; Fagin and Halpern, 1987; Moses, 1988; Parikh,
2008; Halpern and Pucella, 2011). In fact, Econs may just be Logons engaged in rational choice.
The focus on Logons has opened a rift between logic and cognition, similar to the one between
the latter and economics. Experiments like the Wason Selection Task (Wason, 1968) or the Sup-
pression Task (Byrne, 1983) have had in deductive reasoning roles similar to the Framing E↵ect
and Anchoring Bias (Tversky and Kahneman, 1974, 1985): they have exhibited widespread, per-
sistent fallacies leading various cognitive scientists to conclude that logic is utterly peripheral to
Humans’ reasoning (Cosmides, 1989).

We think that such a conclusion has been distorted by the interpreters’ understanding of
“logic” as normal, static modal logic. The goal of this paper is to present a system of epistemic
logic that does more justice to Humans by modeling the logical aspects of a distinction, which
has played a key role in the rationality debate: the one between System 1 and System 2 or, in
Kahneman’s more colorful terminology, fast and slow thinking. We briefly present this distinc-
tion, and explain the sense in which we claim to logically model it, in the following Section. The
Section after that recaps the logical foundation of this paper, namely the worlds semantics of
normal modal-epistemic logics and its development into Dynamic Epistemic Logic (DEL). These
will serve as the background for our model of the two Systems’ logic, in Section 4. In Section
5, the framework is put to work in the modeling of three kinds of phenomena: Stereotypical
Thinking, the Framing E↵ect, and the Anchoring E↵ect. We close with a philosophical coda
in Section 6, where we wonder whether our model is normative. We answer that it is, but its
rational “ought”, unlike the “ought” of normal, static epistemic logic, implies “can”.

2 Dual Process Theories of Reasoning

The talk of System 1 and System 2, introduced by Stanovich and West in their dual process
view, had a key role in countering the picture of agents as Econs in economics.2 It may have
a key role in countering the picture of agents as Logons in static epistemic logic. Systematic
errors in reasoning and choice are not to be taken as corruption of rationality. Rather, they are
grounded in the ordinary workings of the machinery of cognition – specifically, in a combination
of mistakes due to System 1 – which, however, conforms to logic most of the time: (Bago and
De Neys, 2017) – and System 2 – which can run out of cognitive resources, or be lazy when it
should take over from System 1.

Dual process theories characterize the operations of System 1 as fast, automatic, and asso-
ciative, governed by habit, biases, and evolutionary heuristics. They typically have no cognitive
cost. System 1’s task is to make sense of the continuously incoming new information, integrating

2There are concerns regarding the use of the term “system”, raised by Stanovich himself. Kahneman (2011),
pp. 27-9, observes that Systems 1 and 2 are not systems in some standard sense. We stick to the terminology,
thinking of it as a label for families of processes. Such fictions are convenient for formal modeling at a certain
level of abstraction.
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it with our background beliefs and building a coherent picture starting from minimal clues (Paul
is French: does he like red wine?). In Kahneman’s words:

The main function of System 1 is to maintain and update a model of your personal
world, which represents what is normal in it. [...] System 1 excels at constructing the
best possible story that incorporates ideas currently activated, but it cannot allow
for information it does not (cannot) have. (Kahneman, 2011, p. 71 and p. 85)

The operations of System 2 are slower, stepwise, rule-based, deliberately controlled, and have
cognitive costs (What is 19× 26 = ?). System 2 exploits the workings of System 1 to generate its
own outputs, following an orderly application of steps:

I describe System 1 as e↵ortlessly originating impressions and feelings that are the
main sources of the explicit beliefs and deliberate choices of System 2. The automatic
operations of System 1 generate surprisingly complex patterns of ideas, but only the
slower System 2 can construct thoughts in an orderly series of steps. (Kahneman,
2011, p. 21)

When System 2 takes over, it engages in reasoning processes, of which deductive reasoning is
a key example, based on the available information. Its slow, step-wise and rule-adhering workings
generate our – now explicit – knowledge and beliefs. To unpack information, System 2 breaks
larger tasks into parts:

We normally avoid mental overload by dividing our tasks into multiple easy steps,
committing intermediate results to long-term memory or to paper rather than to an
easily overloaded working memory. We cover long distances by taking our time and
conduct our mental lives by the law of least e↵ort. (Kahneman, 2011, p. 38)

Given that the process is e↵ortful, and our resources are bounded, it must eventually halt,
whether it succeeds or not. This is in accordance with our experience of occasionally failing in
demanding tasks due to cognitive overload.

As clarified in (Evans, 2018), one should not take System 1 as merely descriptively repre-
senting what people, as a matter of fact, do most of the time, and System 2 as embedding the
normative standards of rationality. On the contrary, System 2 can occasionally fail to do its
job in correcting the mistaken outputs of System 1, which, on the other hand, can display good
logical intuitions and get things right on most occasions: see (Bago and De Neys, 2017).

Dual process theories have been mostly neglected by formal modelers in logic (relevant ex-
ceptions are Stenning and van Lambalgen (2008), Balbiani et al. (2016)). We aim to contribute
to filling the gap by modeling the logical aspects of System 1 and System 2 reasoning activities:
those that are connected to logical inferences – a most classical topic of logical investigation –
and the formation and revision of beliefs – a core topic of doxastic-epistemic logic and belief
revision theory.3

3The o�cial dual process doctrine has it that the two systems engage in a range of further activities: System 1
deals with face recognition, orientation, perception, etc. System 2 deals with probabilistic estimates, the weighing
of options, etc. An expansion of the model proposed below in the direction of probabilistic reasoning may be
especially interesting, as our setting can be combined with a probabilistic framework and as dual process theories
have been developed in relation to the new Bayesian approaches in the psychology of reasoning (Elqayam, 2018);
this is left for further work.

3



3 Background: Dynamic Epistemic Logic

3.1 Epistemic Logic

Possible-worlds semantics has been used in epistemic logic since Hintikka (1962). Epistemic
logic is here conceived as a propositional logic, supplemented with two modal operators K and
B where K� reads “the agent knows that �” and B�, “the agent believes that �”. In knowing
or believing something, one obtains a way of determining which among a range of possibilities
is the way things actually are, i.e., the actual world. In this representation, possible worlds
represent the alternative ways things could be. The semantic interpretations are then given in
terms of these possible worlds: an agent knows(/believes) that � if and only if, in all possible
worlds compatible with what the agent knows(/believes), it is the case that �. More concretely,
the modeler captures the compatibility among the agent’s epistemic or doxastic alternatives via
binary relations on a set of possible worlds, that represent the agent’s epistemic or doxastic
accessibility. The set of worlds and the accessibility relations, augmented by a valuation function
to indicate which propositional atoms are true at each world, provide us with the formal model
in which every sentence of the new language is interpreted recursively with respect to a world.
As standard, a formula is said to be valid in a model whenever it is true at each world of
the model. Algebraic properties of the accessibility relations are associated with the validity
of certain formulas that capture epistemologically desirable properties of knowledge and belief.
Requiring that a model satisfies these properties leads to the definitions of epistemic and doxastic
models as in the received view (e.g., Fagin et al. (1995); van Ditmarsch et al. (2007)).

The standard epistemic logical system is static: it doesn’t represent the constant changes
in our knowledge and beliefs triggered by both our internal mental processes (e.g., performing
inferences) and our external interactions (e.g., the integration of information provided by an
interlocutor). To capture such processes, we have to move to a dynamic setting.

3.2 Tools of Dynamic Epistemic Logic

Dynamic Epistemic Logic (DEL) (Baltag et al., 1998; Baltag and Moss, 2004; van Ditmarsch
et al., 2007; van Benthem, 2011) is the name for a class of logical systems enriching the language
of static epistemic logic by modal operators that encode actions capable of altering an agent’s
epistemic or doxastic state. Such actions are understood as triggering model transformations:
they take us from a model representing one’s epistemic/doxastic state to a new model representing
the updated epistemic/doxastic state. Given action ↵, a formula of the form [↵]�, where [↵] is
a dynamic operator, is then evaluated in a model by examining what the truth value of � is at
the model obtained by transforming the original model when carrying out the action encoded by
↵.

While the first logical systems within DEL were designed to model epistemic updates, more
sophisticated theories have been developed to represent a variety of informational changes in-
cluding epistemic updates, doxastic changes, preference change, etc. The tools that we need to
represent an agent’s beliefs are called plausibility models (Grove, 1988; van Benthem, 2007; Bal-
tag and Smets, 2008b). Such models allow the study of nuanced epistemic and doxastic attitudes
and facilitate the introduction of a repertoire of epistemic and doxastic actions. They will be the
background for our representation of fast and slow thinking, and we provide the definition here:

Definition 3.1 (Plausibility model). A plausibility model M is a structure �W,≥, V � where:
• W is a non-empty set of possible worlds.
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• ≥ is a locally well-preordered (plausibility) relation on W , such that w ≥ u reads “w is
considered no more plausible than u”.

• V is a valuation such that each propositional atom from a given set � is assigned to the
set of worlds where it is true.

Between any two possible worlds entertained by the agent as ways things could be, there
is a (relative) plausibility ordering. The ordering is a local well-preordering, which means that≥ is reflexive, transitive, locally connected, and converse wellfounded, i.e., there is no infinite
ascending ≥-chain, thus a set of most plausible worlds can always be retrieved (Baltag and
Renne, 2016). A pair (M,w) consisting of a model M and a designated world w of the model,
taken as the actual world from the perspective of the modeler, is called a pointed model.4

Plausibility models allow us to characterize a variety of epistemic and doxastic attitudes
(Baltag and Smets, 2011, 2013) including, besides the strong concept of Knowledge mentioned
above in the context of static epistemic logic (i.e., knowledge as truth in all possible worlds), also
weaker epistemic attitudes. In Baltag and Smets (2008b), one such weaker attitude is coined
“safe belief” or “ (in)defeasible knowledge” referring to the epistemic concept described in (Lehrer
and Paxson, 1969; Lehrer, 2000; Stalnaker, 2006). If we explain defeasible knowledge in terms
of the extra ingredients one needs to add to belief, the most straighforward way is to refer to
a ‘stability’-account (Rott, 2004): defeasible knowledge is justified true belief stable when new
true information is received.5 We follow in this paper the literature of DEL in Baltag and Smets
(2008b) and represent Defeasible knowledge by a modal operator �. The truth conditions for��, when evaluated at a world in a plausibility model, ask for � to hold at all worlds that are at
least as plausible as the point of evaluation. The truth conditions for B� require that � holds
at the set of most plausible worlds of the model, denoted by min(W ).6

The cognitive workings of System 1 and System 2 are aligned with this more graded outlook
of di↵erent attitudes. Our attitude towards a piece of information uncovered by one of the two
systems is oftentimes not as strong as the strong concept of infallible knowledge requires, nor as
weak as plain belief.

As for the dynamic operators in this plausibility setting, Baltag and Smets (2008b); van Ben-
them (2007, 2011) introduce a number of di↵erent ones, transforming a given plausibility model
into a new one. Three specific operators can be matched to three di↵erent policies of integrating
external information, depending on the level of trust one has over the information source (van
Benthem, 2011). A radical upgrade with  , denoted by [ ⇑], stands for a communicative action
whereby the source is mostly, but not entirely, trusted; the updated model triggered by [ ⇑]
is one where the  -satisfying worlds are prioritized in terms of plausibility over the non- ones,
leaving the ordering intact in the two zones. The ways the two cognitive systems shape our
epistemic/doxastic state will be expressed precisely as model-changing actions on plausibility
models.

4Plausibility orderings make for a qualitative representation of belief entrenchment and dispositions to belief
revision. However, the DEL framework can also be extended to a quantitative setting, representing degrees of
belief and embedding probabilistic insights: see (van Benthem, 2003; Kooi, 2003; Baltag and Smets, 2008a; van
Benthem et al., 2009). Such a framework makes for a plausible basis for the aforementioned promised extension
of our logic of fast and slow thinking to a probabilistic setting.

5If, as Floridi (2005) claims, information is factive, then there cannot be false information. Works on belief
revision, however, generally adopt a weaker sense of information, whereby (declarative) information is taken to
be meaningful data, not perforce truthful: see e.g. van Benthem (2011).

6One can further define conditional belief in terms of the two forms of knowledge we discussed, i.e., both
the strong and weaker notion, see van Ditmarsch et al. (2015); Baltag and Renne (2016). This is instrumental
in capturing so-called static belief change, as it expresses what we believe conditional to some other piece of
information.
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3.3 The Problem of Logical Omniscience

The described DEL models use only possible worlds, which are closed under logical consequence:
if a world makes � true, it makes true any logical consequence of �. Since the interpretations for
formulas involving propositional attitudes quantify over sets of possible worlds, the corresponding
agents know or believe everything that follows from what they already know or believe. In logic
and Artificial Intelligence (AI), this situation is labeled as the problem of logical omniscience
(Fagin et al., 1995, Chapter 9): such agents will not be susceptible to the logical errors that
might have been generated by System 1, and they are not subjected to the cognitive limitations
of System 2.

To deal with the problem of logical omniscience, the logic and AI literature contains a number
of di↵erent proposals (Halpern and Pucella, 2011). We will focus on one in particular. Starting
with (Hintikka, 1975), a number of authors (Rantala, 1982; Wansing, 1990; Priest, 2001; Kiourti,
2010; Berto, 2012; Nolan, 2013; Jago, 2014; Rasmussen and Bjerring, 2018) have suggested to
supplement the usual possible-worlds models with non-normal or impossible worlds : worlds that
represent logical impossibilities, i.e., that are not closed under logical consequence. If these
worlds are epistemically accessible by the agent, the closure properties of knowledge and belief
that generate the problem are invalidated. But a naive impossible worlds approach faces an
issue of ‘bounded rationality’: how should one constrain the accessible worlds, so as to model a
moderately rational, though not omniscient, agent, which manages to unpack some, though not
all, of the logical consequences of its beliefs or knowledge? The model we present below answers
the question by combining non-normal worlds semantics with DEL techniques.7

4 Modeling Fast and Slow Thinking

In this section we introduce a new logical system, define its syntax and semantics in order to use
them to represent and model agents capable of fast and slow thinking. Overall our logic-technical
aims are to:

• Enrich the standard possible worlds semantics of epistemic logic with non-normal worlds
to encode the beliefs of a Human, logically competent but not omniscient, agent.

• Use tools from DEL to model how incoming information is automatically incorporated by
System 1 into the currently held beliefs.

• Use tools from DEL to capture the agent’s stepwise deductive reasoning via System 2.

• Allow for the interaction of the two systems.

• Account for how the two systems di↵er in terms of cognitive resource consumption.

4.1 Language

Besides operators for (defeasible) knowledge, �, and belief, B, our language has dynamic op-
erators to express (1) System 1’s fast upgrades in the arrangement of our beliefs – policies of

7Jago (2009) already used insights from AI for a logic of rule-based agents, whose beliefs expand via transitions
between states obtained whenever a logical inference rule is fired. Velázquez-Quesada (2011) discerns implicit and
explicit information and constructs logical systems in DEL that capture how deductive inferences enrich the agent’s
explicitly held information. Building on (Duc, 1997), Rasmussen (2015) and Rasmussen and Bjerring (2018) track
the agent’s deductive reasoning via dynamic operators that stand for the agent’s applications of inference rules.
The latter work also has a semantics using non-normal worlds, and is the closest antecedent of our proposal below.
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automatic integration of new information – and (2) System 2’s cognitively costly choices and
applications of logical inference rules.

Definition 4.1. (Language) Given a set P of propositional atoms and a set of inference rules
R available to the agent, the language L is inductively defined from:

� ∶∶= p � ¬� � � ∧ � � � � � B� � [↵]�
where:

● p ∈ P
● �� reads “the agent defeasibly knows that �”.

● B� reads “the agent believes that �”.

● [↵] is schematic for a model-changing action performed in thought. These can be of the
two aforementioned kinds:

(1) [ ⇑], where  is a propositional formula, denotes a fast upgrade with  : given incom-
ing information  , the agent automatically makes plausible sense of the situation in
the light of its background knowledge and beliefs. Then [ ⇑]� reads “after upgrading
with  , � is true”.

(2) �Rk�, where Rk ∈ R, that is, an inference rule available to the agent.8 The agent can
deliberately choose one of them, apply it to some available information and, as we
shall see, pay some cognitive cost for it. Then �Rk�� reads “after some application of
inference rule Rk, � is true”.9

4.2 Semantics

We supplement the possible worlds apparatus with non-normal or impossible worlds, but we
don’t aim at a modeling of thought where anything goes. In particular, we adopt the principle
of Minimal Rationality, put forward by Cherniak (Cherniak, 1986) as a realistic alternative to
the notions of perfect rationality. According to Minimal Rationality, the agent undertakes some,
but not necessarily all, of those actions that are apparently appropriate. This, in turn, translates
to the ability of the agent to eliminate inconsistencies: the agent eliminates some, but not
necessarily all, of the inconsistencies arising in her belief set. As a result, our agent is fallible
and entertains inconsistencies, for example due to inputs of System 1; this fallibility is witnessed
by the impossible worlds of the model. On the other hand, the agent should be endowed with
the ability to eliminate some of them. To start with, we introduce a Minimal Consistency (MC)
requirement on our model: none of the impossible worlds accessible to an agent will at least
represent a blatant contradiction of the form �, ¬�. An implicit contradiction arising in her
belief set can be eliminated, e.g. because the agent resorts to System 2, but only provided that
certain conditions are met.

8One can, in principle, build dynamic models with rules representing various kinds of rule-based System 2
reasoning. For the purposes of this paper, however, we will take R as comprising just rules of elementary logic,
such as Modus Ponens or Conjunction Introduction.

9The idea of such operators comes from Rasmussen (2015); Rasmussen and Bjerring (2018), themselves drawing
on Duc (1997). We should note here that, as clarified by recent literature (Bago and De Neys, 2017; Ball and
Thompson, 2018), also System 1 is capable of detecting and appreciating simple logical forms. The key twofold
di↵erence between System 1 and System 2 in this respect is that the latter, but not the former, can choose which
logical rules to apply, and must pay a cognitive cost for it. Thanks to an anonymous Referee for pressing us to
clarify this point.
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We further impose a plausibility ordering on worlds, encoding the agent’s background be-
liefs: the more plausible a world looks given the agent’s experience, biases, etc., the better it is
ranked (the ordering is qualitative, mirroring belief entrenchment). Plausibility is instrumental
in modeling, as we will see, the changes induced by both (1) the fast incorporation of external
information by System 1, (2) the slow reasoning processes of System 2.

We need ways to represent which cognitive resources are explicitly depleted during System 2
reasoning (time, memory, etc.), what each reasoning step costs, and what the agent can a↵ord
with respect to them. Each step corresponds to an application of an inference rule. Yet not
all inference rules require equal cognitive e↵ort, as indicated by experimental evidence. For
example, Johnson-Laird et al. (1992); Rips (1994); Stenning and van Lambalgen (2008) claim
that the asymmetry in performance observed when a subject uses Modus Ponens and Modus
Tollens is suggestive of an increased di�culty to apply the latter. Similarly, Rijmen and De Boeck
(2001) also provide experimental evidence to support the claim that di↵erent costs should be
assigned to di↵erent basic rules. Cherniak (1986) also argues for a “well-ordering of inferences”
in terms of their di�culty. Concrete assignments of the di↵erent cognitive costs and capacity
rely on empirical research that sheds light on the units that best describe resources, the values
corresponding to each inference rule, etc. We adopt a simple numerical approach to the values of
resources because this seems convenient in terms of capturing the availability and cost of time,
and it is also supported by psychologists’ research on memory (Miller, 1956; Cowan, 2001).10

Definition 4.2 (Dual-process plausibility model). Fix R, the set of inference rules available to
the agent, and Res, a finite set of resources, such as memory, time etc. Let r ∶= �Res�, i.e., the
number of resources. A dual-process plausibility model is a tuple M = �WP ,W I , ord, V,C, cp�
where:

● WP ,W I are countable non-empty sets of possible and impossible worlds respectively.

● ord ∶W → ⌦ is a function from W ∶= (WP ∪W I) to the class of ordinals ⌦, assigning one
to each world. Intuitively: the smaller the ordinal is, the more plausible the world.

● V ∶ W → P(L) is a function assigning to each world in W a set of sentences in L. The
function assigns to each w ∈ WP the set of atomic formulas true at w. It assigns to each
w ∈ W I all formulas, atomic or composite, true at w.11 Thus, V maps logically complex
formulas to truth values directly at impossible worlds, in a non-recursive fashion: this allows
such worlds to break any (non-trivial, i.e., di↵erent from ‘If �, then �’) logical principle
(they can, e.g., be such that � is true at them while � ∨  isn’t, or they can make both �
and  true without making true their conjunction.) However, according to our (MC), we
stipulate that {�,¬�} �⊆ V (w) for all w ∈W I .

● C ∶ R → Nr is a function such that every inference rule Rk ∈ R is assigned a particular
cognitive cost for each resource.

● cp denotes the agent’s cognitive capacity, i.e., cp ∈ Nr, intuitively standing for what the
agent is able to a↵ord with regard to each resource.

We will work with pointed plausibility models (M,w), where M is a dual-process plausibility
model and w a designated-base world in it. The ord extracts a plausibility ordering in the usual

10Numerical assignments might be connected to the use of pupil assessment and eye-tracking as measures of
attention and indicators of cognitive e↵ort (Kahneman and Beatty, 1967; Kahneman, 1973; R Sears and Pylyshyn,
2000; Xu and Chun, 2009).

11We will assume that worlds are unique valuation-wise: the valuation function can be taken as V ∶= Vp ∪ Vi,
where Vp and Vi, taking care of possible and impossible worlds respectively, are injective. This serves simplicity:
we avoid a multiplicity of worlds unnecessary for our purposes.
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sense, i.e., a binary relation on W : w ≥ u if and only if ord(w) ≥ ord(u). The ranking of worlds
is reflected in the ordering of ordinals. The intended reading is “w is no more plausible than u”.
The ordering satisfies reflexivity, transitivity, connectedness, and converse wellfoundedness.

Fast and slow thinking will be reflected in the interpretation of the sentences involving the
operators for upgrades and inference rule application. We thus have to define how the model
changes through these actions.

4.3 Model Transformations, Fast and Slow

4.3.1 The Fast Updater

Each transformation is governed by its corresponding system: thus, System 1’s actions of inte-
grating new information will be a↵ected by the agent’s stereotypes, biases, experience, etc., as
these are hardwired in the initial plausibility ordering. Based on this, the system incorporates
new information by prioritizing the worlds satisfying it. That is, an upgrade with  changes
the plausibility ordering as follows:  -worlds become more plausible than non- ones (i.e., those
that do not satisfy  ) keeping the previous ordering intact within the two zones. Moreover, as
fast thinking, this activity requires no e↵ort; therefore the relevant components of the model
should be una↵ected by the upgrade.

Definition 4.3 (Plausibility model transformation by a System 1 upgrade). Given a model M =�WP ,W I , ord, V,C, cp�, its transformation by  ⇑ is a model M ⇑ = �WP ,W I , ord ⇑, V,C, cp�
where ord ⇑ can be any function from the set12 {f ∶W → ⌦ � for any w,u ∈W ∶ f(w) ≥ f(u) if
and only if w ≥ ⇑ u}.

The characterization via ordinals does not interfere with radical upgrades. We will not be
interested in the assigned number per se, but in the action-induced re-arrangement (i.e., plausi-
bility of worlds relative to other worlds). Thus, all functions from {f ∶ W → ⌦ � for any w,u ∈
W ∶ f(w) ≥ f(u) if and only if w ≥ ⇑ u} work for our purposes.

4.3.2 The Slow Controller

We account for the step-wise, deliberate and cognitively costly workings of System 2 via our rule-
application operators. To define the transformation induced by these operators, we will employ
the notion of Rk-accessibility. For a pointed plausibility model (M ′,w) to be Rk-accessible from
a given pointed plausibility model (M,w), the set P≥(w) ∶= {u ∈ W � w ≥ u} of worlds at least
as plausible as w is replaced by a choice of worlds reachable by an application of Rk from the
elements of P≥(w), while the remaining ordering is adapted accordingly. We focus on the more
or equally plausible worlds, as these would be prioritized whenever one applies an inference rule.
By specifying the e↵ect of each rule separately, it is possible to trace back a sequence of slow
reasoning, unravel it and verify its order-sensitivity. In addition, the agent’s cognitive capacity
should be reduced by the cost of applying this particular inference step.

To capture the change induced by applications of inference rules, we first have to encode their
e↵ect on the structure of our models. The e↵ect of applying a rule is an expansion of the agent’s
factual information. We first introduce the following, assuming that propositional formulas are
assessed as usual in possible worlds:

12To determine ord ⇑, first consider the relation ≥ that can be derived from it. As an auxiliary step take:≥ ⇑= (≥ ∩(W × [[ ]])) ∪ (≥ ∩([[ ]] ×W )) ∪ (∼ ∩([[ ]] × [[ ]])), that is the familiar re-arrangement due to a
radical upgrade as found in DEL.
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Definition 4.4 (Propositional truths). Let M be a model, w ∈W a world of the model and LP

the standard propositional language. If w ∈ WP , its set of propositional truths is V ∗(w) = {� ∈LP �M,w � �}. If w ∈W I , V ∗(w) = {� ∈ LP � � ∈ V (w)}.
V ∗ is in fact determined by V . Next, we fix a particular instance of the inference rule Rk.

This has a set of (propositional) premises, denoted by pr(Rk), and a conclusion, denoted by
con(Rk). Then we impose the condition of Succession:

For every w ∈W , if:

1. pr(Rk) ⊆ V ∗(w)
2. ¬con(Rk) �∈ V ∗(w)
3. con(Rk) ≠ ¬� for all � ∈ V ∗(w)
then there is u ∈W such that V ∗(u) = V ∗(w) ∪ {con(Rk)}.
We use V ∗(w) �Rk V ∗(u) to say that for some instance of Rk, u expands w in terms of this

condition. If pr(Rk) ⊆ V ∗(w) for no instance of Rk, we take the only Rk-expansion of w to be
itself. This is because, in that case, an application of Rk would trigger no further expansion on
w. If pr(Rk) ⊆ V ∗(w) for an instance of Rk, but condition 2 or 3 is violated, then there is simply
no Rk-expansion with regard to this instance. This is because, in that case, the application of Rk

would uncover an inconsistency in the composition of w.13 Notice that by conjoining successive
rules, such as R1, . . . ,Rn, the notation can be generalized to �R1,...,Rn .

Definition 4.5 (Rule-specific radius). Given an inference rule Rk ∈ R, the Rk-radius of a world
w ∈W is wRk = {u � V ∗(w) �Rk V ∗(u)}.

A member of wRk is therefore an Rk-expansion of w. Note that wRk = {w} for w ∈ WP

due to the deductive closure of possible worlds, while the Rk-radius of impossible worlds can
contain di↵erent Rk-expansions. Under the conditions, �Rk is such that V ∗(u) preserves V ∗(w)
and extends it just by a conclusion of Rk. This is how we obtain a monotonicity feature:
Rk-expansions (as per the name) enrich the state from which they originate, in terms of Rk;
inferences are not defeated as reasoning steps are taken, to the extent that MC is respected.
Granting a sort of monotonicity that is restricted by MC is in line with the workings of System
2 and the criterion of informational economy (Board, 2004), adapted to our framework: belief
change in light of new information should be no greater than is necessary to incorporate that
new information. As a result, applications of rules should refine the state of the agent, not only
by allowing her to know or believe more, but also by eliminating inconsistencies when spotted.
However, in light of an application of a rule Rk, an expansion should involve just the conclusion
of some instance of Rk.

Not all instances of a rule are equally informative. Compare an application of Conjunction
Introduction that allows the agent to conclude that � ∧  , from � and  , and an application
that generates � ∧ � from �. In Rips (1994), rules are classified into self-constraining and self-
promoting. Self-constraining rules, such as Modus Ponens, generate a limited number of new
sentences from their premises. Self-promoting rules, such as Conjunction Introduction, generate
an infinite number of conclusions from their premises. It is natural to aim at reducing the
space W I from the (possibly infinite) worlds corresponding to non-informative applications of
self-promoting rules. This is not to say that the conclusions of these applications should not

13Conditions 2 and 3 guarantee that there is no expansion that violates MC. In other words, “refining” a world
that violates 2 or 3 amounts not to finding an expanded world in terms of Rk, but to eliminating it altogether
once the application of the rule takes place. Therefore, in these cases, there should be no Rk-expansion.
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be available to the agent. In principle, the setting should allow for applications leading to the
agent knowing/believing such conclusions. In order to do justice to both points, the modeler
might simply assume that a world’s expansion corresponding to a non-informative instance is the
world itself. However, we abstain from imposing this as a strict condition on the general class of
our models, in order to allow for the modeling of a variety of types of agents that may require
di↵erent readings of informativeness, thus di↵erent compositions of a world’s radius.

Definition 4.6 (Choice function). Let C ∶ P(P(W )) → P(P(W )) be a choice function that
takes a set W = {W1, . . . ,Wn} of sets of worlds as input and returns the set C(W) of sets of
worlds which results from all the ways in which exactly one element can be picked from each
non-empty Wi ∈W . A member of C(W) is called a choice of W .

A choice function on a set consisting of the radii of worlds will capture how System 2 can
deliberate and choose its next step of slow thinking. Given the aforementioned remark on
informative and non-informative instances, the several choices that the function yields correspond
to the di↵erent e↵ects of applying a particular rule.

Now we can explain the e↵ect of System 2’s applications of an inference rule Rk: if a world
u was considered at least as plausible as w before an application of the rule Rk, but does not
survive such application, then the agent can rule u out as a doxastic or epistemic possibility. This
world must have been an impossible world: a possible world will always survive applications of
inference rules, as its radius amounts to itself. What was taken as an epistemic possibility has
been spotted as impossible by a slow computation of System 2. Once we rule out such worlds,
we preserve the previous ordering to the extent that it is una↵ected by the application of the
inference rule, again in agreement with informational economy. That is, there might be parts
of the model still independent of this particular application of deductive reasoning, remaining
influenced by System 1 alone.

To make this precise, we use the ordinal function and the notion of rule-specific radius. Let
M = �WP ,W I , ord, V,C, cp� a plausibility model. We spell out the transformation in steps:

Step 1 Let (M,w) be a pointed model. Then, given an inference rule Rk, let P
Rk(w) ∶= c where

c is some choice in C({vRk � v ∈ P≥(w)}). In words, a choice of Rk-expansions of the worlds
initially considered at least as plausible as w.

Step 2 Based on the argument used above, if u ∈ P≥(w) but u �∈ PRk(w), then u must be
excluded from the new model. So in any case, the Rk-accessible pointed model (M ′,w)
should be such that its set of worlds is WRk = W � {u ∈ P≥(w) � u �∈ PRk(w)}. The
elimination in fact a↵ects W I .

Step 3 We now develop the new ordering ordRk following the application of the inference rule.
Let u ∈WRk :

1. If u �∈ P≥(w)∪PRk(w), then ordRk(u) = ord(u), i.e., the assigned ranking remains the
same, for worlds that were less plausible than w and are not contained in the choice.

2. Next consider u ∈ PRk(w). This means that there is at least one v ∈ P≥(w) such that
u ∈ vRk for the particular choice c that gave rise to PRk(w). Denote the set of such
v’s by T . Then ordRk(u) = ord(z) for z ∈min(T ). Therefore, if a world is in PRk(w),
then it takes the position of the most plausible of the worlds from which it originated.
14

14As emphasized before, in certain cases there are no Rk-expansions, so it might be that a world is eliminated
without being replaced by one that preserves its propositional truths. This intuitively corresponds to those cases
where the agent uncovers an inconsistency, realizing the explicit contradiction underlying it by means of reasoning,
and therefore drops it. Thanks to an anonymous Referee whose comments helped in clarifying this.
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Step 4 Finally, for worlds u, v ∈ WRk : u ≥Rk v if and only if ordRk(u) ≥ ordRk(v), therefore
again all the required properties are preserved.

Step 5 The other components of the model remain unchanged, except from V which is restricted
to the worlds in WRk and cpRk ∶= cp − C(Rk). Reducing the value of cognitive capacity
models slow thinking as resource-consuming.15

Here’s an example to get a feel of how this model transformation works:

Example 1. Let s stand for “the odds of survival one month after surgery are 90%”, m for
“mortality within one month of surgery is 10%”, r for “the surgery is safe”. Suppose Jill entertains
the worlds depicted in the model M below, where WP = {w1} and W I = {w2,w0}. Let ord(w2) =
2, ord(w1) = 1, ord(w0) = 0. For the possible world w1, we list only the propositional atoms it
satisfies, since all the rest can be computed recursively. For the impossible worlds, we write down
all the propositional formulas satisfied there (and only those) to illustrate Succession and the
definitions involved in the model transformation. All worlds validate s→ r, s, r and s→m, but
m does not hold in the most plausible world w0: the most plausible world is such to represent
that Jill has not inferred that m follows from s 16 although she has inferred r from s. Finally,
given that we focus on the resources of time and memory, we take the cost of applying Modus
Ponens to be C(MP ) = (3,2), and the capacity of the agent to be cp = (15,9).

We then unravel step-by-step the model transformations due to applications of MP (once we
give our semantic clauses, we will see how these transformations a↵ect the development of Jill’s
epistemic and doxastic state). In search of all the ways the pointed model (M,w1) can change
following an application of the rule MP , we follow the procedure sketched above:

Step 1 First, we compute {vMP � v ∈ P≥(w1)}. It amounts to {{w1},{w0,w2}}.
As a result, C({{w1},{w0,w2}}) = {{w1,w0},{w1,w2}}.
So PMP (w1) = {w1,w0} or PMP (w1) = {w1,w2}.
1. In case PMP (w1) = {w1,w0}:
Step 2 WMP =W
Step 3 Since w2 �∈ PMP (w1) ∪ P≥(w1), ordMP (w2) = ord(w2) = 2. Next, w1 ∈ PMP (w1)

and w1 ∈ wMP
1 , so ordMP (w1) = ord(w1) = 1. Finally, w0 ∈ PMP (w1) and

w0 ∈ wMP
0 , so ordMP (w0) = ord(w0) = 0.

The MP -transformed model is in this case identified with the initial model because
it was generated by an application of MP that yielded no new information.

2. In case PMP (w1) = {w1,w2}:
Step 2 WMP =W � {u ∈ {w1,w0} � u �∈ {w1,w2}} = {w1,w2}.
Step 3 As above, ordMP (w1) = ord(w1) = 1. Then, w2 ∈ PMP (w1) and, checking

from which world(s) it originated in the particular choice, we find w2 ∈ wMP
0 ,

so ordMP (w2) = ord(w0) = 0.
15Agents can, of course, use methods like note-taking, or resort to other external devices, for the o✏oading of

cognitive resources such as memory. In terms of our quantitative assignments, this would entail an increase in
capacity. This can be easily achieved by the introduction of actions that increase the value of cp. It does not
a↵ect the crucial aspect hereby captured: the resource-consumption caused by System 2.

16This is in fact just an example of framing as discussed in (Kahneman, 2011). More specifically, it has been
shown that subjects are risk-averse when an option is presented in terms of gains and risk-seeking when presented
in terms of losses.
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The MP -transformed model is in this case di↵erent; the impossible world that did
not satisfy m, despite satisfying both s → m and s, was uncovered by Jill, precisely
because she used an application of MP that generated new information. The e↵ect
of taking this slow inferential step is now reflected in the new model.

Step 4 The new plausibility ordering is depicted in the figure.

Step 5 The new valuation is obviously restricted to the worlds that survive the application
of MP . The cognitive capacity of both MP -accessible models is reduced by the cognitive
cost of applying MP , therefore cp = (12,7).

s→ r, s
s→m,m,r

w2

MP

s,m, r

w1

s→ r, s
s→m,r

w0

MP

MP

s→ r, s
s→m,m,r

w2

s,m, r

w1

s→ r, s
s→m,r

w0

s,m, r

w1

s→ r, s
s→m,m,r

w2

Figure 1: The first figure depicts the model M , with an MP -dashed arrow from w to u denoting
that u is an MP -expansion of w. The node of w1 is thicker to show that this world is in WP .
Then, we obtain two potential transformations of the pointed model (M,w1), i.e., two MP -
accessible pointed models, based on the two ways the set of w1’s more (or equally) plausible
worlds can change due to MP .

4.4 Semantic Clauses

We have explained how the original model changes after fast upgrades and slow applications of
inference rules. Now come the truth conditions:

Definition 4.7 (Semantics). The following inductively define when a formula � is true at w in
M (notation: M,w � �) and when � is false at w in M (notation: M,w � �).

For w ∈WP :

● M,w � p if and only if p ∈ V (w), where p ∈ �
● M,w � ¬� if and only if M,w �� �
● M,w � � ∧  if and only if M,w � � and M,w �  
● M,w � �� if and only if M,w′ � � for all w′ such that w ≥ w′
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● M,w � B� if and only if M,w′ � � for all w′ ∈min(W )
● M,w � [ ⇑]� if and only if M⇑ ,w � �
● M,w � �Rk�� if and only if M ′,w � � for some (M ′,w) which is Rk-accessible from (M,w)
● M,w � � if and only if M,w �� �
For w ∈W I :

● M,w � � if and only if � ∈ V (w)
● M,w � � if and only if ¬� ∈ V (w)
Logical validity is defined in terms of possible worlds only: a sentence is valid in a model if

and only if it is true at every possible world.
In accordance to what the dual-process theories prescribe, our System 1 actions a↵ect what

is (defeasibly) known or believed without checking whether there is valid reasoning supporting
the piece of information.17 This fits manifestations of System 1 being in charge. For example,
experiments on the belief bias (Evans, 1989, 2003) demonstrate that subjects are reluctant to
believe “unbelievable” (given their prior conceptions) statements even when they logically follow
from a set of premises. They also tend to believe “believable” conclusions, even though the
underlying reasoning is problematic, due to the influence of pre-existing impressions and biases.
These are hardwired in the model’s plausibility ordering, while the fast upgrades integrate infor-
mation based on them, thus forming the agent’s epistemic or doxastic state without engaging in
the e↵ortful task of assessing what is valid. This falls under the responsibility of System 2; if the
agent comes to know or believe something new following an action of System 2, this must follow
logically from what is already known or believed.

Now we can develop our initial example into:

Example 2. Recall the scenario of Example 1. It is now easy to see that, based on our semantics,¬�m, ¬Bm, �s, Bs, �r, Br are all valid; initially, Jill does not know, nor believes that m, despite
knowing and believing that s. In addition, �MP � �m, �MP �Bm, �MP �¬ �m, �MP �¬Bm are
all valid. That is, there is some application of MP that provides Jill with knowledge and belief
of m (because she inferred it from s → m and s) and another application of MP that does not
provide her with any new information (because she merely used s → r and s as premises, which
only comes as a confirmation of her already held belief and knowledge of r).

The example shows how di↵erent applications of a rule, captured as di↵erent choices of
expansions, may lead to di↵erent developments of the agent’s knowledge and beliefs. Notice that
the reading of �Rk�� is existential: it asks that there be some application of Rk leading to �.
Di↵erent choices allow both informative and uninformative applications by a competent agent
with su�cient resources. One can have a dual [Rk]� ∶= ¬�Rk�¬�, read as “after all applications of
Rk, � is true”. This is satisfied whenever all Rk-accessible pointed models validate �. Using the
universal operator, the modeler may express the overall e↵ect of a rule to the agent’s reasoning.

The previous example illustrated a simple case where slow thinking is a↵ordable and the
reasoning step of Modus Ponens is performed. In the next example, we model a failure to apply
Conjunction Introduction (CI), following an application of Double Negation Elimination (DNE)

17But, recall the aforementioned capacity of System 1, of automatically appreciating simple logical forms of
reasoning, in contrast to the tendency to endorse believed conclusions: see Bago and De Neys (2017). Our
semantics does not prohibit System 1’s having logical cues: if there are any logical forms appreciated by it, they
can be encoded in the plausibility model.
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and Modus Ponens. This is illustrative of a depletion of resources that would halt the reasoning
processes of System 2 and make the agent fall back to System 1. It corresponds to a series of
examples o↵ered by (Kahneman, 2011, ch.2): whenever the mental e↵ort that System 2 requires
wears the agent out completely, then she retreats to default System 1 activity.

Example 3.

- Let model M = �WP ,W I , ord, V,C, cp� with R = {DNE,MP,CI}, Res = {time,memory}.
Also take C(MP ) = CI = (2,2), C(DNE) = (3,1) while cp = (5,10). In addition, suppose
that for world w ∈WP : M,w � �¬¬� ∧ �(�→  ).

- Then, M,u � ¬¬� and M,u � �→  for all u such that w ≥ u. Because of Succession, there
is a model M ′ with cp′ = cp −C(DNE) = (2,9) such that M ′,w � ��.

- Following the same procedure for MP , we get a model M ′′ with cp′′ = cp′ − C(MP ) =(2,9) − (2,2) = (0,7) such that M ′′,w � � .
- But then there cannot be any CI-accessible pointed model as the step is not a↵ordable
(compare C(CI) and cp′′).

- So finally, M ′′,w �� �CI�� (�∧ ), therefore M ′′,w � ¬�CI�� (�∧ ). But this means that
M ′,w � �MP �¬�CI� � (� ∧  ).

- In turn M,w � �DNE��MP �¬�CI� � (� ∧  ).
- As a result, indeed M,w �� [DNE][MP ]�CI� � (� ∧  ).
Before moving on to applications of the model, we introduce the following two Theorems.

These cast light on reasoning processes involving both inference rules used by System 2, provided
that they are a↵ordable, and fast upgrades by System 1. They can be generalized for more
upgrades, applications of rules, and thus number of premises. Theorem 4.2 also exemplifies the
order-sensitivity of a reasoning process that is orchestrated by both systems.

Theorem 4.1 (Reasoning from rules).

If  logically follows from {�1, . . . ,�k} by applying the rules R1, . . . ,Rn ∈ R and �‡�mi ��i
is valid for 1 ≤ i ≤ k, where each �‡�mi is a sequence of mi-many inference rules available
to the agent, then �‡�m1 . . . �‡�mk�R1� . . . �Rn� �  is valid.

Proof. Let arbitrary modelM and world w ∈WP of the model. SupposeM,w � �‡�mi��i, for 1 ≤
i ≤ k. For each �i, there is a model M i such that M i,w � ��i which has W i =W � {u ∈ P≥(w) �
u �∈ P i(w)} where

- P i(w) = c where c is some choice in C({vi � v ∈ P≥(w)})
- vi = {u � V ∗(v) ��‡�mi V ∗(u)}
- V ∗(v) ��‡�mi V ∗(u) denotes that u is a Ri1, . . . ,Rimi -expansion of v for Ri1, . . . ,Rimi

composing the sequence �‡�mi .

This means that for all u ∈W i such that w ≥ u, M i, u � �i. Due to Succession, there is some
model M∗ such that for all u ∈ P ∗(w): M∗, u � �i, for all 1 ≤ i ≤ k, where W ∗ =W �{u ∈ P≥(w) �
u �∈ P ∗(w)} with:

- P ∗(w) = c where c is some choice in C({v∗ � v ∈ P≥(w)})
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- v∗ = {u � V ∗(v) ��‡�mi ...�‡�mk V ∗(u)}
- V ∗(v) ��‡�m1 ...�‡�mk V ∗(u) denotes that u is a R11, . . . ,R1m1 , . . . ,Rk1, . . . ,Rkmk -expansion
of v.

Next, from the fact that  logically follows from {�1, . . . ,�k} through applyingR1, . . . ,Rn ∈ R,
and Succession, we get that there is a model M� such that for all u ∈ P�(w): M�, u �  , which
has W� =W � {u ∈ P≥(w) � u �∈ P�(w)} where

- P�(w) = c where c is some choice in C({v� � v ∈ P≥(w)})
- v� = {u � V ∗(v) ��‡�mi ...�‡�mk ,R1,...,Rn

V ∗(u)}
- V ∗(v) ��‡�m1 ...�‡�mk ,R1,...,Rn

V ∗(u) denotes that u is aR11, . . . ,R1m1 , . . . ,Rk1, . . . ,Rkmk ,R1, . . . ,Rn-
expansion of v.

But then clearly M�,w � � , and overall M,w � �‡�m1 . . . �‡�mk�R1� . . . �Rn� �  .
Theorem 4.2 (Reasoning from upgrades and rules).

If � logically follows from {�1,�2} by applying the rules R1, . . . ,Rn ∈ R and [ ⇑](��1 ∧�‡�m � �2) is valid, then [ ⇑]�‡�m�R1� . . . �Rn� � � is valid.

Proof. Let arbitrary model M and world w ∈ WP of the model. Suppose M,w � [ ⇑](��1 ∧�‡�m � �2). This amounts to M ⇑,w � (��1 ∧ �‡�m � �2), i.e., M ⇑, u � �1 for all u ∈ P ⇑(w) [1]
and there is a model M∗ such that M∗,w � ��2 which has W ∗ =W � {u ∈ P ⇑(w) � u �∈ P ∗(w)}
where

- P ∗(w) = c where c is some choice in C({v∗ � v ∈ P ⇑(w)})
- v∗ = {u � V ∗(v) ��‡�m V ∗(u)}
Then, M∗, u � �2, for all u ∈ P ∗(w). Due to Succession and [1], M∗, u � �1, for all u ∈ P ∗(w).

Due to � following from {�1,�2} and Succession, there is a model M� such that M�, u � �, for
all u ∈ P�(w) where

- P�(w) = c where c is some choice in C({v� � v ∈ P ⇑(w)})
- v� = {u � V ∗(v) ��‡�m,R1,...,Rn

V ∗(u)}
But then clearly M�,w � ��, and overall M,w � [ ⇑]�‡�m�R1� . . . �Rn� � �.
By making the semantic interpretations of propositional attitudes quantify over impossible

worlds, it is guaranteed that some consequences of the agent’s knowledge or beliefs are not known
or believed: logical omniscience is thus avoided. Unlike other approaches though, the problem
is escaped in a balanced manner, committed to the idea that competent agents would come to
know and believe consequences lying within a↵ordable applications of rules.

In view of considerations coming in Section 6, notice that one can read our models as nor-
mative, but realistic: an agent ought to choose and apply slow thinking rules to the extent that
she can do it, given the cognitive resources at hand, and until these are depleted. Before we get
there, in the next Section, we put the framework to work.
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5 Three Case Studies

Interaction between System 1 and System 2 (or, stereotypes gone wrong): System
1 provides its – sometimes incorrect – impressions to System 2. These impressions exemplify
biases that are often attributed to our experience, the so-called familiarity heuristic. System
2 can then unpack their logical consequences. It is not uncommon for System 2 to eventually
override System 1. To demonstrate this, we introduce and analyze a variant of the restaurant
scenario:18

Jack (agent 1) and Jill (agent 2) have entered a restaurant. They are joined by
John (agent 3) shortly after. Waiter A takes their order, which includes three dishes:
Vegan, Meat and Fish. Waiter B is supposed to serve them. Waiter B is acquainted
with Jack: he knows that Jack is a passionate animal rights activist, often arguing
against the consumption of any animal product. He has not met Jill but he has the
impression that she is pretty close to Jack and implicitly assumes that she shares his
opinion and lifestyle. On the other hand, John is a frequent customer: almost every
time he orders the same meat-based dish. As the meals are prepared, Waiter B has an
intuitive, yet incomplete, idea on their distribution. System 1 is at work. Influenced
by his stereotypes and experience, he thinks that Jack will definitely get the vegan dish,
and John the meat. For someone carefully and consciously reading the story, this
would mean that Jill ordered fish. Not for waiter B, though: due to Jill’s closeness
to Jack, he has trouble inferring this conclusion. He is also willing to consider, albeit
reluctantly, that John gets fish. Again he is subconsciously confused enough to take a
stance on Jill’s option. Finally scenarios in which Jack orders meat or fish are ruled
out by the waiter.

Denote by vi, mi, fi (i = 1,2,3) the atoms expressing which dish goes to which agent. Let
R be the set of rules containing Conjunction Introduction (CI) and Modus Ponens (MP ). The
following figure depicts the plausibility model19 for waiter B, and according to our semantics,
both Bv1 and Bm3 are valid.

v1, f3, v1 ∧ f3,
v1 ∧ f3 →m2,m2

w5

CI

v1, f3,m2

w4

v1, f3,
v1 ∧ f3,

v1 ∧ f3 →m2

w3

CI

MP

v1,m3,
v1 ∧m3,

v1 ∧m3 → f2, f2

w2

CI

v1,m3, f2

w1

v1,m3,
v1 ∧m3,

v1 ∧m3 → f2

w0

CI

MP

“John got fish this time!”, says Waiter A. Waiter B overhears the comment and
instantly incorporates this new piece of information.

18“You are in a restaurant with your parents, and you have ordered three dishes: Fish, Meat, and Vegetarian.
Now a new waiter comes back from the kitchen with three dishes. What will happen?” (van Benthem, 2008a).

19Thicker borders of nodes are used to denote possible worlds. Here, we took CI arrows to be reflexive and
wrote down only the conjunctions obtained between atoms to increase the readability of the figure. It need not
be so, as applications of CI could have been informative for this given scenario.
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The new model, following the upgrade with f3, is depicted below and is the outcome of
combining the already held opinions of the waiter and incoming information. System 1 deals
with what is believed, on the basis of incoming information and biases generated by familiarity,
experience etc., and it does not investigate what follows logically.

v1,m3,
v1 ∧m3,

v1 ∧m3 → f2, f2

w2

CI

v1,m3, f2

w1

v1,m3,
v1 ∧m3,

v1 ∧m3 → f2

w0

CI

MP

v1, f3, v1 ∧ f3,
v1 ∧ f3 →m2,m2

w5

CI

v1, f3,m2

w4

v1, f3,
v1 ∧ f3,

v1 ∧ f3 →m2

w3

CI

MP

As Waiter B prepares to serve our three agents and prompted by his curiousness, he
takes a moment to figure out what Jill actually ordered, contrary to what he would
have expected. In particular, he realizes that he should not let her relationship with
Jack interfere with his beliefs, but instead infer what follows from what he already
believes, i.e., that Jill got the meat-based dish after all! This is due to a conscious
procedure of System 2.

Following an application of CI and MP , in that order, it is easy to verify that overall[f3 ⇑]�CI��MP �Bm2 (as well as [f3 ⇑]�MP �Bm2) is valid. For example, the final pointed
plausibility model based on w1 has worlds eliminated as epistemic possibilities by slow thinking:
it exemplifies how System 2 took over System 1.

v1,m3, f2

w1

v1,m3,
v1 ∧ f2,

v1 ∧m3 → f2, f2

w2

v1,m2, f3

w4

v1, f3, v1 ∧ f3,
v1 ∧ f3 →m2,m2

w5

Framing e↵ect: Decision-making by Humans is heavily influenced by the mode of presentation
of options (Kahneman, 2011, Part 4). For instance, di↵erent responses are evoked whenever a
question on the outcome of a surgery is presented in terms of survival or in terms of mortality.
The statements “the odds of survival one month after surgery are 90%” and “mortality within
one month of surgery is 10%” are equivalent: they have the same truth conditions. But under
the first frame or mode of presentation, the situation seems somewhat more reassuring.

The framing e↵ect poses a challenge for ‘static’ epistemic logic. Propositional attitudes
towards logically equivalent statements are the same under possible worlds semantics, due to the
closure properties of possible worlds. Also, according to the AGM approach to belief revision
(Alchourrón et al., 1985), the beliefs of an agent are represented by a set of sentences in a formal
language. This set is taken as closed under logical consequence. Therefore, if two sentences p and
q are logically equivalent, then believing the one amounts to believing the other, and revising
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one’s beliefs after being informed that p gives the same outcome as revising them after being
informed that q. This too disregards the influence of the mode of presentation on Humans, as
opposed to Logons.

We will now show that framing can fit into our logical framework.20 Let s and m denote the
two statements discussed earlier (odds of survival/mortality rate). Let s ↔ m be valid in our
dual-process semantics. Suppose that the initial plausibility model for our agent is as follows,
i.e., ¬Bm and ¬Bs:

m,m→ s, s

w4

MP

s, s→m,m

w3

MP

s,m

w2

m,m→ s

w1

MP

s, s→m

w0

MP

Following an upgrade with m, based on something the agent heard at the patients’ waiting
room, we obtain the model below. Therefore [m ⇑]Bm. As a result of framing, the agent has
upgraded with m and believed in it, without simultaneously believing in s.

s, s→m

w0

m,m→ s, s

w4

MP

s, s→m,m

w3

MP

MP

s,m

w2

m,m→ s

w1

MP

Again, some slow reasoning performed by System 2 will help the agent overcome framing: by
performing an inference using Modus Ponens (assuming, as we have done so far, that the agent
believes that m→ s), the agent can come to believe that s too.

s, s→m

w0

m,m→ s, s

w4

s,m

w2

s, s→m,m

w3

Anchoring e↵ect: The anchoring e↵ect (Tversky and Kahneman, 1974) is a cognitive bias that
makes Humans rely heavily on the first piece of information they receive: this piece works as an
“anchor”, and even if it is clearly arbitrary and irrelevant, it can over-influence the formation of
subsequent beliefs. For example, suppose that an agent is interested in a new edition of a high-
end smartphone but has not made up her mind on whether to purchase it. The agent considers
three options:

20Note that in the context of this paper we model framing in an epistemic-doxastic setting but that our tools
can be aligned with dynamic preference logics (van Benthem, 2011; Liu, 2008, 2011) and hence a model of
framing-e↵ects on an agent’s preferences instead of on beliefs can be accounted for.
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● r1: the new edition falls in the price range [1000-1100).

● r2: the new edition falls in the price range [1100-1200).

● r3: the new edition falls in the price range [1200-1300).

Suppose that the agent visits a store. She entertains the following options:

● q1: the store’s o↵er is in the price range [1000-1100).

● q2: the store’s o↵er is in the price range [1100-1200).

● q3: the store’s o↵er is in the price range [1200-1300).

In the store, there is a tag indicating that the original price of the desired item is 1200, but
the store o↵ers it for 1100. As a result, the agent performs a fast System 1 upgrade with the
formula [(r3 ∧ q2) ⇑]. The value 1200 works as the anchor, because it is indicated by the store’s
tag as the market price of the new phone. As a result the formula [(r3 ∧ q2) ⇑]B(r3 ∧ q2) is
verified.

Next, the agent activates System 2, which performs a reasoning step that allows her to
believe that she saves a certain amount of money, which makes the bargain good (denote “good
bargain” by b; also note that whenever ri ∧ qi, we consider the di↵erence of prices negligible and
thus not substantial enough to make the agent consider it a bargain). Therefore, we obtain a
new validity: [(r3 ∧ q2) ⇑]�MP �Bb. Based on that belief, she eventually acts accordingly and
buys the smartphone. If there was no indication of an original market price of the smartphone
or if the anchor was an initial value that the agent had set (i.e., deciding that only prices in
the range [1000-1100) are acceptable/a↵ordable), the evolution of the scenario would have been
di↵erent and no purchase would have been made. Below, there is a depiction of the initial
model, succeeded by the model following the anchoring upgrade, and one final model after the
application of Modus Ponens.

r1, q1,¬b

w0

r2, q1,
r2 ∧ q1,

r2 ∧ q1 → b

w1

r2, q1,
r2 ∧ q1,

r2 ∧ q1 → b, b

w2

MP r3, q1,
r3 ∧ q1,

r3 ∧ q1 → b

w3

r3, q1,
r3 ∧ q1,

r3 ∧ q1 → b, b

w4

MP

r1, q2,
r1 ∧ q2,

r1 ∧ q2 → ¬b

w5

r1, q2,
r1 ∧ q2,

r1 ∧ q2 → ¬b,¬b

w6

MP
r2, q2,¬b

w7

r3, q2,
r3 ∧ q2,

r3 ∧ q2 → b

w8

r3, q2,
r3 ∧ q2,

r3 ∧ q2 → b, b

w9

MP

r1, q3,
r1 ∧ q3,

r1 ∧ q3 → ¬b

w10

r1, q3,
r1 ∧ q3,

r1 ∧ q3 → ¬b,¬b

w11

MP r2, q3,
r2 ∧ q3,

r2 ∧ q3 → ¬b

w12

r2, q3,
r2 ∧ q3,

r2 ∧ q3 → ¬b,¬b

w13

MP
r3, q3,¬b

w14
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r1, q1,¬b

w0

r2, q1,
r2 ∧ q1,

r2 ∧ q1 → b

w1

r2, q1,
r2 ∧ q1,

r2 ∧ q1 → b, b

w2

MP r3, q1,
r3 ∧ q1,

r3 ∧ q1 → b

w3

r3, q1,
r3 ∧ q1,

r3 ∧ q1 → b, b

w4

MP

r1, q2,
r1 ∧ q2,

r1 ∧ q2 → ¬b

w5

r1, q2,
r1 ∧ q2,

r1 ∧ q2 → ¬b,¬b

w6

MP
r2, q2,¬b

w7

r1, q3,
r1 ∧ q3,

r1 ∧ q3 → ¬b

w10

r1, q3,
r1 ∧ q3,

r1 ∧ q3 → ¬b,¬b

w11

MP

r2, q3,
r2 ∧ q3,

r2 ∧ q3 → ¬b

w12

r2, q3,
r2 ∧ q3,

r2 ∧ q3 → ¬b,¬b

w13

MP
r3, q3,¬b

w14

r3, q2,
r3 ∧ q2,

r3 ∧ q2 → b

w8

r3, q2,
r3 ∧ q2,

r3 ∧ q2 → b, b

w9

MP

r1, q1,¬b

w0

r2, q1,
r2 ∧ q1,

r2 ∧ q1 → b, b

w2

r3, q1,
r3 ∧ q1,

r3 ∧ q1 → b, b

w4

r1, q2,
r1 ∧ q2,

r1 ∧ q2 → ¬b,¬b

w6

r2, q2,¬b

w7

r1, q3,
r1 ∧ q3,

r1 ∧ q3 → ¬b,¬b

w11

r2, q3,
r2 ∧ q3,

r2 ∧ q3 → ¬b,¬b

w13

r3, q3,¬b

w14

r3, q2,
r3 ∧ q2,

r3 ∧ q2 → b, b

w9

6 Coda: “Ought Implies Can”

We conclude with a general philosophical issue: is our model merely descriptive of some of the
cognitive workings of Humans, or rather normative? In the latter case, how so, since it aims to
avoid the idealisation of agents as logically omniscient?

One may take the logical approach proposed above as roughly standing to ‘static’ (S5) epis-
temic logic and AGM belief revision theory as Kahneman and Tversky (1979)’s prospect theory
of rational choice stands to expected utility theory. Just like prospect theory, our logic of fast
and slow thinking is more complex than its mainstream counterpart: it adds operators and
parameters to the standard framework for epistemic logic, in order to provide a more realistic
account of reasoning by Humans. Complexity is generally taken as a theoretical cost, to be
justified by a gain in explanatory and predictive power. Here we have an unavoidable trade-o↵.
Any framework for epistemic logic needs to strike a balance between two desiderata. The pull
towards simplicity and idealization leads in the direction of Logons. The pull towards modeling
realistic Humans can easily lead to conceptually gerrymandered frameworks, or to logics that
are too weak to be of serious interest. Take Human Jill, who knows that � ∧ . What epistemic
facts follow? She may fail to unpack her knowledge, so she need not know that  . She may also
not know that �, although � turns out to be logically equivalent to the conjunction of � and  .

The trade-o↵ between simplification and realism overlaps that between description and pre-
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scription. Prospect theory was justified as a descriptive theory of rational decision, in opposition
to the normative status of classical expected utility theory. We have a more nuanced stance
with respect to the logic proposed above. We aim at a normative logical theory; but, one whose
rational “ought”, unlike the “ought” of static epistemic logic, implies “can”.

To unpack: the mainstream approach in both static (S5) epistemic logic and choice theory is
most commonly defended on the basis of its normative status. It tells us how rational agents ought
to reason and act. The experimental deviations don’t threaten the e↵ectiveness of this normative
model; they do not, according to its apologists, contradict the claims on human rationality. They
are merely attributed to unsystematic performance errors, momentary failures that do not say
much about the rational behavior agents are actually capable of achieving (Cohen, 1981; Stein,
1996). This view is at times defended by drawing analogies with other disciplines, such as the
use of frictionless planes in physics. With respect to the idealized models, the observed fallibility
of agents is merely a kind of negligible cognitive friction. Besides, such models are claimed
to serve an evaluative purpose with respect to the performance of imperfect human agents.
However Humans fail, their ultimate goal should be to approximate the standard predicted by
the mainstream proposals: the closer, the better.

We find these arguments unsatisfactory. The internal coherence of Human subjects (Stanovich
and West, 2000; Stenning and van Lambalgen, 2008) shows that the errors are not just random
and unsystematic slips in one’s reasoning. Nor are the idealized models of other disciplines
suitable for an accurate analogy. Once scientists manage to account for more realistic assumptions
and complex elements, their new models are often considered more reliable. This is not in
agreement with the “as good as it gets” campaign adopted by proponents of the traditional
“ought”. Even when Humans are asked to approximate the predictions of mainstream models
of reasoning, the indeterminacy involved in what counts as a good approximation weakens the
e↵ectiveness of such choices of normative standards (Pollock, 2006).21

Forcing one to commit to models that are either merely descriptive, or representing omni-
scient agents, may be a false dilemma. Whereas the mainstream logical “ought” fails to imply
“can”, one may be interested in investigating an “ought” that does: “it seems simply perverse to
judge that subjects are doing a bad job of reasoning because they are not using a strategy that
requires a brain the size of a blimp” (Stich, 1990, p. 26). Actually, even a blimp may not be
enough: Logons know or believe the infinitely many logical consequences of what they know or
believe. But Humans’ available resources are not infinite (Cherniak, 1986), and “become infinite”
is a strange thing to ask of a finite mind.

In our approach, factual evidence can contribute in picking the appropriate normative model.
Limitations in terms of time, memory, computational power, etc., are important in adjusting the
rationality standard expected from the agents. Empirical data should be utilized in constructing
the right normative model, e.g., by filling in the right parameters for how di↵erent logical inference
rules can be resource-consuming. So we put forth our logic above as a better normative model:
one delivering a can-implying “ought”. A finite and fallible, but rational agent ought to reason
to the extent that, ceteris paribus, its limited time, memory, and computational power resources
allow. No more can be asked without violating that implication, but also no less: “Be rational

21We notice that Hintikka, who introduced standard epistemic and doxastic logics, did not presuppose a defense
of his systems due to normativity: “Logical truths are not truths which logic forces on us; they are not necessary
truths in the sense of being unavoidable. They are not truths we must know, but truths which we can know
without making use of any factual information. [...] The fact that the so-called laws of logic are not ‘laws of
thought’ in the sense of natural laws seems to be generally admitted nowadays. Yet the laws of logic are not
laws of thought in the sense of commands, either, except perhaps laws of the sharpest possible thought. Given a
number of premises, logic does not tell us what conclusions we ought to draw from them; it merely tells us what
conclusions we may draw from them – if we wish and we are clever enough.”(Hintikka, 1962, p. 37).
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until, ceteris paribus, you run out of cognitive steam”.22

7 Conclusions and Further Work

To sum up, we have built a system of dynamic epistemic logic that avoids the problem of log-
ical omniscience, which has plagued standard static logical systems. Most importantly, it does
so by taking on board a popular line of research in psychology of reasoning: dual-process the-
ories. Our system includes two di↵erent kinds of dynamic operators, one responsible for the
fast and e↵ortless integration of information and one accounting for the slow and costly steps
of deductive reasoning. In order to accommodate the respective actions, tools from DEL (plau-
sibility models, more nuanced propositional attitudes) were combined with non-normal worlds
semantics. We demonstrated that this framework successfully captures desirable properties of
reasoning processes composed by both systems. In particular, we showed that phenomena that
have been studied multiple times in the literature of various disciplines can be now formally
treated in logical terms. Our exposition was finally furnished with a philosophical discussion on
the contribution of this attempt, and more specifically, on its normative nature.

The model deals only with a fragment of the activities undertaken by the two systems. Apart
from adding probabilistic reasoning for a more elaborate modeling of System 2, other directions
of further work can be envisaged. First, the policy of upgrading with incoming information need
not be unique. More conservative System 1 actions can be modeled, sensitive to the reliability
of the source (van Benthem, 2011). Second, one may combine our work with the ideas of van
Benthem (2008b) and Velázquez-Quesada (2009), who discern implicit acts of observation (“bare
seeing”) and explicit acts of observation (“conscious realization”). This distinction can fit in
our framework by introducing additional actions representative of the two systems: the former
kind is e↵ortless and corresponds to System 1’s fast processing of incoming information. The
latter kind is resource-consuming and corresponds to System 2 activities. Third, one may model
higher-order reasoning, accounting for how the agent thinks over its own reasoning processes,
learns or forgets inference rules, that in turn a↵ect her deductive inferences. So far, we have
focused on how the agent expands her factual information without delving into the progress of
metareasoning. It seems that, in order to enrich the picture of reasoning run by System 2, we
need to impose additional constraints on the model’s structure and define suitable actions of
rule-based and e↵ortful higher-order reasoning.

22The ceteris paribus parameter matters. What amount of cognitive resources ought to be allocated to reasoning
tasks is heavily context-dependent: one should not be asked to deploy cognitive resources to perform logical
deductions when this would make it dangerous to thoughtlessly cross a busy street.
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