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Abstract. When confronted with the same abstract argumentation framework,
specifying a set of arguments and an attack-relation between them, different agents
may disagree on which arguments to accept, i.e., they may choose different exten-
sions. In the context of designing systems to support collective argumentation, we
may then wish to aggregate such alternative extensions into a single extension that
appropriately reflects the views of the group as a whole. Focusing on a conceptu-
ally and computationally simple family of aggregation rules, the quota rules, we
analyse under what circumstances relevant properties of extensions shared by all
extensions reported by the individual agents will be preserved under aggregation.
The properties we consider are the classical properties of argumentation semantics,
such as being a conflict-free, a complete, or a preferred extension. We show that,
while for some properties there are quota rules that guarantee their preservation,
for the more demanding properties it is impossible to do so in general.
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1. Introduction

The study of collective argumentation deals with questions that arise when we need to
reason about a group of agents who each take an individual view on the merits of a num-
ber of arguments [5]. Relevant application scenarios include the moderation of online
discussion fora and the design of support systems for collective editing efforts (e.g., for
Wikipedia). Collective argumentation can (and should) be studied for any number of for-
malisms for modelling argumentation. Here we do so in the context of abstract argumen-
tation [14], a particularly simple and mathematically elegant formalism, as this allows us
to focus on fundamental principles. An abstract argumentation framework is simply a set
of arguments with a binary attack-relation defined on this set. When presented with such
an argumentation framework, each agent will choose her own extension—the subset of
arguments she accepts. We can then apply an aggregation rule, e.g., the majority rule
that accepts an argument if more than half of the agents do, to obtain a single collective
extension that, hopefully, represents a good compromise between the individual exten-
sions reported. The question we ask in this paper is whether certain high-level proper-



ties of extensions that all individual agents agree on will be preserved under aggrega-
tion. For example, if all agents report extensions that are conflict-free, will the collective
extensions returned by the majority rule be conflict-free as well?

In studying such questions, we are taking the perspective of social choice theory.
Specifically, we build on known results in judgment aggregation [19], a branch of social
choice theory that deals with the aggregation of individual points of view in the presence
of integrity constraints expressed in propositional logic. Regarding aggregation rules, we
focus on quota rules, which have been studied in depth in judgment aggregation [13].
Regarding properties to be preserved, we focus on the classical properties of argumen-
tation semantics [14], such as conflict-freeness, admissibility, or stability. To be able to
analyse the behaviour of these properties in the context of judgment aggregation, we
exploit known encodings of argumentation semantics in propositional logic [4].

Our results establish under what circumstances quota rules guarantee the preserva-
tion of fundamental semantic properties of extensions. This includes both possibility and
impossibility results. For instance, the majority rule always preserves conflict-freeness,
while no quota rule can guarantee the preservation of either admissibility or stability
unless we impose demanding restrictions on the argumentation framework in question.

The paper is organised as follows. Section 2 reviews basic notions of abstract argu-
mentation and their logical encoding. Then, Section 3 formally defines the problem of
preservation we study and Section 4 presents our results. While this is the first systematic
study of the preservation of semantic properties of extensions by quota rules, there is sig-
nificant prior work on related questions that combines ideas from abstract argumentation
and social choice theory, which we briefly review in Section 5. Section 6 concludes.

2. Abstract Argumentation

In this section, we recall some of the basic concepts of the theory of abstract argumenta-
tion first introduced by Dung [14]. We also show how to represent the constraints defin-
ing some of the classical semantics for abstract argumentation using propositional logic.

2.1. Argumentation Frameworks and Argumentation Semantics

We begin by recalling some basic terminology and notation [14]. An argumentation
framework is a pair AF = 〈Arg,⇀〉, where Arg is a finite set of arguments and ⇀ is a
binary relation on Arg. If A ⇀ B holds for two arguments A,B ∈ Arg, then we say that A
attacks B. For ∆ ⊆ Arg and B ∈ Arg, we say that ∆ attacks B in case A ⇀ B for at least
one argument A ∈ ∆. For ∆⊆ Arg and C ∈ Arg we say that ∆ defends C in case ∆ attacks
all arguments B ∈ Arg with B ⇀C. We write 2Arg for the powerset of Arg.

We are going to require some additional notation to describe high-level features of
the topology of an argumentation framework AF. First, we write MaxAtt(AF) for the
maximum number of attackers on any one argument in AF (i.e., this is the maximum
in-degree of the graph). Second, we write MaxDef(AF) for the maximum number of
attackers of an argument that itself is the source of an attack. That is, this is a measure of
the number of attempts made at defending against a given attack.

MaxAtt(AF) = max
B∈Arg
|{A | A ⇀ B}| MaxDef(AF) = max

C∈Arg
max
B∈Arg
B⇀C

|{A | A ⇀ B}|



Given an argumentation framework AF= 〈Arg,⇀〉, the question arises which subset ∆ of
the set of arguments Arg one should accept. Any such set ∆⊆ Arg is called an extension
of AF. Different criteria have been put forward for choosing an extension.

Definition 1 (Argumentation semantics). Let AF = 〈Arg,⇀〉 be an argumentation
framework and let ∆⊆ Arg be an extension of AF. We adopt the following terminology:

• ∆ is called conflict-free if there are no arguments A,B ∈ ∆ such that A ⇀ B.
• ∆ is called self-defending if ∆⊆ {C | ∆ defends C}.
• ∆ is called reinstating if {C | ∆ defends C} ⊆ ∆.
• ∆ is called admissible if it is both conflict-free and self-defending.
• ∆ is called complete if it is conflict-free, self-defending, and reinstating.
• ∆ is called preferred if it is ⊆-maximal amongst the admissible extensions.
• ∆ is called grounded if it is ⊆-minimal amongst the complete extensions.
• ∆ is called stable if it is conflict-free and ∆∪{B | ∆ attacks B}= Arg.

All of these alternative definitions for a suitable semantics of abstract argumentation
frameworks are explained, motivated, and criticised in depth in the literature [3].

Given AF = 〈Arg,⇀〉, we can think of a property σ of extensions, such as admissi-
bility, as a set σ ⊆ 2Arg. A property σ is called I-maximal (short for inclusion-maximal)
if ∆1 ⊂ ∆2 for no two extensions ∆1,∆2 ∈ σ . For instance, both the set of all preferred
extensions and that of all stable extensions are I-maximal for any choice of AF [2].

2.2. Encoding Argumentation Semantics in Propositional Logic

It can be useful to be able to represent the properties of Definition 1 in a purely syntactic
manner, using a logical language. So fix an argumentation framework AF= 〈Arg,⇀〉,
think of Arg as a set of propositional variables, and let LAF be the corresponding propo-
sitional language. Now extensions ∆⊆ Arg correspond to models of formulas in LAF:

• ∆ |= A for A ∈ Arg if and only if A ∈ ∆

• ∆ |= ¬ϕ if and only if ∆ |= ϕ is not the case
• ∆ |= ϕ ∧ψ if and only if both ∆ |= ϕ and ∆ |= ψ

Thus, for example, ∆ |= A∧¬B if and only if A ∈ ∆ and B 6∈ ∆. The semantics of other
propositional connectives (such as disjunction and implication) is defined accordingly.

Given a formula ϕ , we use Mod(ϕ) = {∆ ⊆ Arg | ∆ |= ϕ} to denote the set of all
models of ϕ . Every formula ϕ identifies a property of extensions of AF, namely σ =
Mod(ϕ). When using a formula ϕ to describe such a property of extensions, we usually
refer to ϕ as an integrity constraint. The following simple results, all of which are implicit
in the work of Besnard and Doutre [4], characterise some of the basic properties of
extensions defined earlier in terms of integrity constraints expressed in LAF.1

Proposition 1 (Besnard and Doutre, 2004). Let AF = 〈Arg,⇀〉 be an argumentation
framework and let ∆⊆ Arg be an extension. Then ∆ is conflict-free if and only if:

∆ |= ICAF
CF where ICAF

CF =
∧

A,B∈Arg
A⇀B

(¬A∨¬B)

1While the formulas we use to encode extension properties all have a very simple syntactic structure, they
are very long. This is fine for our purposes. More compact encodings, based on modal logic, exist [8, 20].



In other words, Proposition 1 states that Mod(ICAF
CF) = {∆⊆ Arg | ∆ is conflict-free}.

Proposition 2 (Besnard and Doutre, 2004). Let AF = 〈Arg,⇀〉 be an argumentation
framework and let ∆⊆ Arg be an extension. Then ∆ is self-defending if and only if:

∆ |= ICAF
SD where ICAF

SD =
∧

C∈Arg

[C →
∧

B∈Arg
B⇀C

∨
A∈Arg
A⇀B

A]

Proposition 3 (Besnard and Doutre, 2004). Let AF = 〈Arg,⇀〉 be an argumentation
framework and let ∆⊆ Arg be an extension. Then ∆ is reinstating if and only if:

∆ |= ICAF
RI where ICAF

RI =
∧

C∈Arg

[(
∧

B∈Arg
B⇀C

∨
A∈Arg
A⇀B

A)→ C]

We can now use the integrity constraints defined above to construct integrity constraints
for the properties of being admissible and complete:2

• ∆ is admissible if and only if ∆ |= ICAF
CF∧ ICAF

SD.
• ∆ is complete if and only if ∆ |= ICAF

CF∧ ICAF
SD∧ ICAF

RI .

Example 1. Consider the argumentation framework AF = 〈{A,B},{A ⇀ B,B ⇀ A}〉,
consisting of two arguments that attack each other. Then ICAF

CF = (¬A∨¬B)∧(¬B∨¬A),
which simplifies to ¬A∨¬B. The models of ICAF

CF are /0, {A}, and {B}. Indeed, these are
the only conflict-free extensions of AF. Furthermore, ICAF

SD = (A→ A)∧ (B→ B) is a
tautology, so admissible and conflict-free extensions coincide for AF. 4

3. Aggregating Alternative Extensions

In this section, we formally introduce the scenario we study in this paper and define the
central concept of the preservation of a property of extensions under aggregation.

Fix an argumentation framework AF = 〈Arg,⇀〉. Let N = {1, . . . ,n} be a finite set
of agents. Suppose each agent i ∈ N supplies us with an extension ∆i ⊆ Arg, reflecting
her individual views of what constitutes an acceptable set of arguments in the context
of AF. Thus, we are supplied with a profile ∆∆∆ = (∆1, . . . ,∆n), a vector of extensions, one
for each agent. An aggregation rule is a function F : (2Arg)n→ 2Arg, mapping any given
profile of extensions to a single extension. An example is the majority rule.

3.1. Quota Rules

Our focus in this paper is on a family of aggregation rules known as the quota rules,
which generalise the idea underlying the definition of the majority rule.

2Stable extensions can be characterised in an analogous manner (but we do not require such a characterisa-
tion for our present purposes). Characterising preferred or grounded extensions is more difficult, due to the no-
tions of maximality and minimality inherent in their definitions. But we emphasise that doing so would be pos-
sible in principle. Indeed, due to the functional completeness of the propositional calculus, for every property
σ ⊆ 2Arg of extensions of AF there exists an integrity constraint IC expressed in LAF such that Mod(IC) = σ .



Definition 2 (Quota rules). Let AF = 〈Arg,⇀〉 be an argumentation framework, let N
be a set of n agents, and let q ∈ {1, . . . ,n}. The quota rule Fq with quota q is defined as
the aggregation rule mapping any given profile ∆∆∆ = (∆1, . . . ,∆n) ∈ (2Arg)n of extensions
to the extension including exactly those arguments accepted by at least q agents:

Fq(∆∆∆) = {A ∈ Arg | #{i ∈ N | A ∈ ∆i}> q}

Such quota rules are sometimes more precisely referred to as uniform quota rules, to
stress the fact that the acceptance of each argument is subject to the same quota q. Three
quota rules with specific quotas will be of special interest to us:

• The (strict) majority rule is the quota rule Fq with quota q = d n+1
2 e.

• The nomination rule is the quota rule Fq with quota q = 1.
• The unanimity rule is the quota rule Fq with quota q = n.

Quota rules are very natural—albeit simple—rules to consider when contemplating
mechanisms to perform aggregation. They have been studied in depth in judgment ag-
gregation [13]. One attractive feature of quota rules is their low computational complex-
ity: computing outputs is straightforward. For comparison, more sophisticated distance-
based rules (another natural class to consider) give rise to intractable optimisation prob-
lems [21, 17]. Quota rules also satisfy some appealing normative properties (known as
“axioms” in social choice theory). For instance, in the context of judgment aggrega-
tion they are known to be monotonic (ensuring that additional support for a collectively
accepted view never results in that view getting rejected) and strategyproof (meaning
that—under certain assumptions on agents’ preferences—no agent can benefit from re-
porting false views).3 Having said this, there also is a significant disadvantage to using
quota rules and that is the fact that they can produce seemingly paradoxical outcomes.

Example 2. Suppose three agents evaluate the following argumentation framework:

E D C B A

They report the extensions {A,C}, {A,D}, and {A,E}, respectively, all of which are
admissible. But applying the majority rule yields {A}, which is not admissible! 4

3.2. Preservation of Properties of Extensions

Example 2 shows that an aggregation rule may not always preserve the properties shared
by the extensions in the profile. Ideally, when aggregating a profile ∆∆∆ = (∆1, . . . ,∆n) in
which every individual ∆i satisfies a given property σ , we would like the output F(∆∆∆) to
satisfy σ as well. Let us now formally define this central concept of preservation.

Definition 3 (Preservation). Let AF = 〈Arg,⇀〉 be an argumentation framework and let
σ ⊆ 2Arg be a property of extensions of AF. Then an aggregation rule F : (2Arg)n→ 2Arg

for n agents is said to preserve σ if F(∆∆∆) ∈ σ for every profile ∆∆∆ = (∆1, . . . ,∆n) ∈ σn.

3We refer to the literature on judgment aggregation for precise statements of these results [13, 12, 16].



4. Preservation Results

In this section, we present our results on the preservation of extension properties. Our
possibility results concern both simple properties and argumentation frameworks with
simple topologies. Our impossibility results apply in case of more demanding scenarios.

We investigate the question of preservation for all of the properties of Definition 1,
except for groundedness, which is preserved vacuously by every quota rule and for every
argumentation framework. To see this, note that it is well-known that every argumenta-
tion framework has a unique grounded extension [14]—so if agents report grounded ex-
tensions they in fact must all report the same extension—and all quota rules Fq with quota
q ∈ {1, . . . ,n} are unanimous in the sense that Fq(∆, . . . ,∆) = ∆ for every extension ∆.

4.1. Adaptation of Results from Binary Aggregation with Integrity Constraints

In our analysis, we are going to make use of results regarding a variant of judgment ag-
gregation known as binary aggregation with integrity constraints [18, 19]. These results
concern the conditions under which an aggregation rule will preserve (the property cor-
responding to) an integrity constraint. When adapted to our setting, the main result we
require, due to Grandi and Endriss [19, Corollary 31], reads as follows.

Lemma 4 (Grandi and Endriss, 2013). Let AF = 〈Arg,⇀〉 be an argumentation frame-
work and let ϕ be a clause in LAF with k1 positive literals and k2 negative literals. Then
a quota rule Fq for n agents preserves the property Mod(ϕ) if and only if:

q · (k2− k1) > n · (k2−1)− k1

This lemma fully characterises the conditions under which quota rules can guarantee
the preservation of properties corresponding to integrity constraints that are clauses (i.e.,
disjunctions of literals). Unfortunately, none of the integrity constraints we have put for-
ward in Section 2.2 to characterise relevant properties of extensions have this very simple
structure. However, some are conjunctions of clauses and, of course, all can be translated
into conjunctions of clauses. Can we still apply Lemma 4? Yes, if we are interested in
the “possibility direction” of Lemma 4 (if q satisfies the inequality, then we get preser-
vation). No, if we are interested in the “impossibility direction” (only if q satisfies the
inequality can we guarantee preservation). To see this, let us first consider the possibility
direction. The following result is immediate given the relevant definitions and it also is a
direct corollary to a more general result by Grandi and Endriss [19, Lemma 3].

Lemma 5 (Grandi and Endriss, 2013). Let AF = 〈Arg,⇀〉 be an argumentation frame-
work, let ϕ1 and ϕ2 be integrity constraints in LAF, and let F be an aggregation rule that
preserves both Mod(ϕ1) and Mod(ϕ2). Then F also preserves Mod(ϕ1∧ϕ2).

Now, if we combine (the possibility direction of) Lemma 4 and Lemma 5, we see that,
given some clauses ϕ1, . . . ,ϕ`, the quota rule Fq preserves Mod(ϕ1∧·· ·∧ϕ`) if q satisfies
the constraints specified in Lemma 4 for all clauses ϕi. However, the converse does not
hold, i.e., we cannot use Lemma 4 to prove impossibility results for integrity constraints
that are conjunctions of clauses. To see this, consider the following example.



Example 3. Consider an argumentation framework with Arg = {A,B} and the integrity
constraints ϕ = (¬A∨¬B) and ψ = A. Note that ϕ ∧ψ ≡ (A∧¬B). By Lemma 4, ϕ

is preserved by Fq only if q · (2− 0) > n · (2− 1)− 0, i.e., only if q > n
2 . Furthermore,

again by applying Lemma 4, ψ is preserved by every quota rule (because the condition
q · (0−1)> n · (0−1)−1 reduces to n > q−1, which is always true). So one might be
tempted to assume that the conjunction of these two integrity constraints, ϕ ∧ψ , also is
preserved only if q > n

2 . But this clearly is false: ϕ ∧ψ is preserved by every quota rule,
as under every profile in which all individual extensions satisfy ϕ ∧ψ ≡ (A∧¬B) every
agent in fact must be reporting the same extension {A}. 4

4.2. Preserving Conflict-Freeness

The following result shows that the (strict) majority rule preserves conflict-freeness, as
does every quota rule with an even higher quota. On the downside, no quota rule with a
quota of q = n

2 or lower will work.

Theorem 6. Let AF be any argumentation framework with at least one attack between
two arguments that do not attack themselves. Then a quota rule Fq for n agents preserves
conflict-freeness for AF if and only if q > n

2 .

Proof. First, pick any quota q > n
2 and consider an arbitrary argumentation framework

AF (for this direction, we do not require the restriction on AF). We need to show that Fq
preserves conflict-freeness for AF. Recall from Proposition 1 that the integrity constraint
ICAF

CF characterising conflict-freeness is a conjunction of clauses of the form ¬A∨¬B.
Most of these clauses are 2-clauses (with 0 positive literals and 2 negative literals each),
although in case of self-attacks there may also be 1-clauses (with 1 negative literal only).
In case there is not a single attack in AF, we get ICAF

CF = >. Thus, by Lemmas 4 and 5,
Fq will preserve Mod(ICAF

CF) provided the following three constraints are satisfied:
• 2-clauses: q · (2−0)> n · (2−1)−0, simplifying to q > n

2
• 1-clauses: q · (1−0)> n · (1−1)−0, simplifying to q > 0 (which always holds)
• tautology: q · (0−0)> n · (0−1)−0, simplifying to n > 0 (which always holds)

As q > n
2 by assumption, Fq will indeed preserve Mod(ICAF

CF), so we are done.
Second, pick any quota q 6 n

2 . We need to find an argumentation framework AF =
〈Arg,⇀〉 with arguments A,B ∈ Arg such that A ⇀ B but neither A ⇀ A nor B ⇀ B, and
for which Fq does not preserve conflict-freeness. Suppose d n

2e agents report the conflict-
free extension {A} and the remaining b n

2c agents report the conflict-free extension {B}.
We certainly have d n

2e > q, but as q must be an integer we also have b n
2c > q (even if q

is odd). Thus, Fq returns the set {A,B}, which is not conflict-free.

Theorem 6 has both a possibility and an impossibility component: if q > n
2 , then it is

possible to preserve conflict-freeness (whatever the argumentation framework), while it
is impossible to find a quota rule Fq with q 6 n

2 that preserves conflict-freeness—at least
when AF includes at least one attack between arguments that do not attack themselves.

4.3. Preserving Admissibility and Completeness

To analyse the preservation of admissibility, we first consider its second constituent prop-
erty, namely that of being self-defending. We start with a technical lemma.



Lemma 7. A quota rule Fq for n agents preserves the property of being self-defending
for an argumentation framework AF if q · (MaxDef(AF)−1)< MaxDef(AF).

Proof. Let AF = 〈Arg,⇀〉 be the argumentation framework under consideration. Recall
that ICAF

SD is a conjunction of formulas of the form C→
∧

B∈Arg
B⇀C

∨
A∈Arg
A⇀B

A, which we can

rewrite as
∧

B∈Arg
B⇀C

(¬C ∨
∨

A∈Arg
A⇀B

A). Let us consider one such clause ¬C ∨
∨

A∈Arg
A⇀B

A. Its
number of negative literals is 1. Its number of positive literals depends on both C and
B, so let us refer to it as kC,B. By Lemma 4, a quota rule Fq will preserve this clause if
and only if q · (1− kC,B) > n · (1− 1)− kC,B, i.e., if and only if q · (kC,B− 1) < kC,B. As
ICAF

SD is equivalent to a conjunction of such clauses, by Lemma 5, we need to satisfy this
inequality for all relevant kC,B. This requirement is most demanding for large values of
kC,B. Observe that the largest value of kC,B is MaxDef(AF), i.e., we satisfy all inequalities
(and thus preserve all clauses) in case q · (MaxDef(AF)−1)< MaxDef(AF).

Applying Lemma 7, we immediately obtain the following two possibility results (by
noting that q = 1 for the nomination rule and by recalling Theorem 6, respectively).

Proposition 8. The nomination rule preserves the property of being self-defending.

Proposition 9. Every quota rule Fq for n agents with a quota q > n
2 preserves admissi-

bility for all argumentation frameworks AF with MaxDef(AF)6 1.

But what if we cannot or do not want to make any a priori assumptions regarding the
structure of the argumentation framework (such as MaxDef(AF) 6 1)? Lemma 7 is a
positive result, but it also hints at a problem: it shows that preservation is possible for low
quotas, while Theorem 6 requires high quotas. While Lemma 7 only states a sufficient
and not a necessary condition (so while there could be hope in principle), the following
impossibility result shows that this apparent conflict cannot be resolved in general.

Theorem 10. No quota rule preserves admissibility for all argumentation frameworks.

Proof. It suffices to show that there exists a specific argumentation framework AF for
which no quota rule can preserve admissibility. So let AF be defined as follows:

D

C

B A

First, consider any quota rule Fq with a quota q > 2. Suppose one agent reports {A,C},
q−1 agents report {A,D}, and the remaining agents report /0. All of these extensions are
admissible. Yet, the outcome returned by Fq is {A}, which is not admissible.

It remains for us to show that the claim holds also for the nomination rule, i.e., for
q = 1. For the profile in which one agent reports {A,C} and all others report {A,D} (both
of which are admissible), the nomination rule returns the inadmissible {A,C,D}.

We remark that Theorem 10 is conceptually weaker than the impossibility direction of
Theorem 6. Theorem 10 only states that no quota rule will work for all argumentation
frameworks, while Theorem 6 shows that even if we know the argumentation framework
in advance we cannot design a quota rule with a low quota that will work.



Next, we provide an analogous analysis of the preservation of complete extensions.
Recall that an extension is complete if it is both admissible and reinstating.

Lemma 11. A quota rule Fq for n agents preserves the property of being reinstating for
an argumentation framework AF if q · (MaxAtt(AF)−1)> n · (MaxAtt(AF)−1)−1.

Proof. Let AF = 〈Arg,⇀〉 be the argumentation framework under consideration. Recall
that ICAF

RI is a conjunction of formulas of the form (
∧

B∈Arg
B⇀C

∨
A∈Arg
A⇀B

A)→C. For a given C,

let {B1, . . . ,Bm} be the set of attackers of C. We can rewrite as follows:

(
m∧

i=1

∨
A∈Arg
A⇀Bi

A)→ C ≡ (
m∨

i=1

∧
A∈Arg
A⇀Bi

¬A)∨C ≡
∧

A1∈Arg
A1⇀B1

· · ·
∧

Am∈Arg
Am⇀Bm

(¬A1∨·· ·∨¬Am∨C)

Thus, we obtain a conjunction of (m+1)-clauses, with m negative literals and one pos-
itive literal each (recall that m is the number of attackers of C). By Lemma 4, we can
preserve this part of the integrity constraint by ensuring q · (m−1)> n · (m−1)−1. Do-
ing so becomes harder as m increases. Hence, by Lemma 5, we can ensure ICAF

RI will be
preserved if this inequality holds for the maximal value of m, which is MaxAtt(AF).

Applying Lemma 11 immediately yields the following two possibility results. To prove
the first, note that q = n for the unanimity rule. To prove the second, recall Proposition 9
and observe that MaxAtt(AF)6 1 implies MaxDef(AF)6 1).

Proposition 12. The unanimity rule preserves the property of being reinstating.

Proposition 13. Every quota rule Fq for n agents with a quota q > n
2 preserves com-

pleteness for all argumentation frameworks AF with MaxAtt(AF)6 1.

Finally, the proof of Theorem 10 can be adapted to obtain the following impossibility
result (given that all the admissible extensions mentioned in that proof are also complete).

Theorem 14. No quota rule preserves completeness for all argumentation frameworks.

4.4. Preserving I-Maximal Properties of Extensions

Rather than focusing on the remaining two classical argumentation semantics, the pre-
ferred and the stable semantics, we provide an analysis that covers all extension proper-
ties that are I-maximal. We obtain a sweeping impossibility result.

Theorem 15. Let AF = 〈Arg,⇀〉 be an argumentation framework, let σ ⊆ 2Arg be an
I-maximal property of extensions of AF with |σ |> 2, and let n be the number of agents. If
n is even, then no quota rule preserves σ for AF. If n is odd, then no quota rule different
from the majority rule preserves σ for AF.

Proof. Consider two distinct extensions ∆1,∆2 ∈ σ . As ∆1 6= ∆2 and ∆1 6⊂ ∆2 (which
follows from I-maximality), we must have ∆1∩∆2 ⊂ ∆1 and ∆2 ⊂ ∆1∪∆2. Thus, neither
∆1∩∆2 nor ∆1∪∆2 can belong to the I-maximal σ .

Now suppose n is even. If exactly half of the agents report ∆1 and the other half
report ∆2, then the outcome will be either ∆1 ∩∆2 (for quotas q > n

2 ) or ∆1 ∪∆2 (for
q 6 n

2 ), i.e., σ will not be preserved under any quota rule.



Next, suppose n is odd. Consider a profile in which b n
2c agents report ∆1 and the

remaining d n
2e agents report ∆2. For quotas q > d n

2e the outcome is ∆1 ∩ ∆2 and for
q6 b n

2c it is ∆1∪∆2. Thus, for no quota rule with a quota different from q= d n
2e= d

n+1
2 e

(corresponding to the majority rule for odd n) will σ be preserved under aggregation.

Thus, for instance, for even n no quota rule can preserve the property of being a preferred
extension for argumentation frameworks without a unique preferred extension.

Theorem 15 applies if |σ | > 2. For |σ | = 0 every aggregation rule vacuously pre-
serves σ , and for |σ | = 1 every unanimous rule (and thus every quota rule) does. This
leaves the case of |σ | > 2 for odd n and the majority rule. For the case of exactly two
extensions we obtain a simple possibility result (not just for I-maximal properties).

Proposition 16. Let AF = 〈Arg,⇀〉 and let σ ⊆ 2Arg be a property of extensions of AF
with |σ |= 2. Then the majority rule for an odd number of agents preserves σ .

Proof. Let σ = {∆1,∆2}. In any profile satisfying σ for an odd number of agents, there
will either be a strict majority for ∆1 or a strict majority for ∆2, but not both. Thus, the
outcome under the majority rule must be either ∆1 or ∆2.

For |σ | > 3 there are examples where the majority rule (for odd n) preserves σ and
others where it does not. Together with Theorem 15, the latter kind of example can be
used to obtain impossibility results like Theorems 10 and 14 also for preferred and stable
extensions. Finally, using similar techniques as in Section 4.3, one can identify classes
of topologically simple argumentation frameworks for which the majority rule (for odd
n) preserves certain I-maximal properties. For instance, we have been able to show that
it preserves stability in case MaxAtt(AF)6 1. We omit all details for lack space.

5. Related Work

Our work contributes to the research agenda on collective argumentation recently sur-
veyed by Bodanza et al. [5]. Most prior work applying the methodology of social choice
theory in the context of abstract argumentation has dealt with the problem of aggregat-
ing alternative argumentation frameworks [see, e.g., 24, 15, 11, 10]. In contrast, here we
are concerned with the aggregation of alternative extensions of the same argumentation
framework. In this section, we briefly review recent contributions to the literature that,
like ours, deal with the problem of aggregating individual views on which arguments
to accept when confronted with a fixed argumentation framework. In all of them the
stances of individual agents are represented using Caminada’s three-valued labelling ap-
proach [7] rather than Dung’s extensions [14]. Therefore, results are not directly compa-
rable at a technical level, but there clearly are conceptual connections.

The work most closely related to ours is that of Rahwan and Tohmé [23]. These au-
thors analyse the “argument-wise plurality rule” (which is similar in spirit to the majority
rule) and show that it has a number of desirable axiomatic properties. These results are
closely related to well-known results for the quota rules in judgment aggregation [13].
Rahwan and Tohmé also observe that this rule does not preserve the completeness of
labellings and then generalise this observation to an impossibility result in the spirit of
the List-Pettit Theorem in judgment aggregation [22]. The latter result may be consid-
ered a conceptual—albeit not technical—generalisation of our Theorem 14. This line of



work has later been continued by Awad et al. [1], who also identify special classes of
argumentation frameworks that permit more favourable results.

Other prior work regarding the aggregation of alternative labellings of a given ar-
gumentation framework focuses on the design of new aggregation rules with desirable
properties. For instance, the “sceptical outcome” of Caminada and Pigozzi [9] is com-
puted by first applying a rule akin to the unanimity rule to establish which arguments all
agents agree on and then “correcting” that preliminary outcome to ensure a meaningful
final result. Booth et al. [6] introduce an approach for defining aggregation rules that
generalises both the argument-wise plurality rule studied by Rahwan and Tohmé [23]
and the rules put forward by Caminada and Pigozzi [9].

6. Conclusion

We have established a range of results on the capacity of quota rules to preserve some of
the classical properties of interest to the semantics of abstract argumentation frameworks.
For the most basic properties, we have obtained possibility results: conflict-freeness is
preserved by the majority rule (amongst others), self-defense by the nomination rule, and
reinstatement by the unanimity rule. However, most argumentation semantics involve
combinations of two or more of such basic properties and we have seen that this typically
gives rise to impossibility results: no quota rule can guarantee the preservation of such
properties in general. While for some argumentation semantics possibility results can still
be proved for specific argumentation frameworks with particularly simple topologies, for
I-maximal properties even this usually is impossible.

For our possibility results, we have exploited a simple encoding of argumentation
semantics in propositional logic [4] and built on prior work in judgment aggregation [19].
This systematic approach greatly simplifies the task of deriving proofs. This illustrates—
once more [5]—how ideas originating in social choice theory can be fruitfully applied to
the analysis of scenarios of collective argumentation.

There are at least three natural directions for future work. First, one may want to
consider further properties of extensions proposed in the literature on abstract argumen-
tation [3]. Second, one may want to consider other aggregation rules besides the quota
rules. In particular, rather than analysing specific rules we may wish to consider classes
of rules characterised by axiomatic properties [10, 16, 23]. Third, while abstract argu-
mentation is attractive due to its mathematical simplicity, it also has obvious shortcom-
ings when it comes to modelling complex real-world scenarios. Therefore, one may want
to follow a similar research agenda also for other types of argumentation formalisms.
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