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Abstract

An abstract argumentation framework can be used to model the argumentative stance of an agent
at a high level of abstraction, by indicating for every pair of arguments that is being considered in
a debate whether the first attacks the second. When modelling a group of agents engaged in such
a debate, we may wish to aggregate their individual argumentation frameworks to obtain a single
such framework that reflects the consensus of the group. While agents typically will not agree on
every single attack, there may well be high-level agreement on semantic properties, such as whether a
given argument should be accepted or whether there are any acceptable arguments at all. Using tech-
niques from social choice theory, we analyse the circumstances under which such semantic properties
agreed upon by the individual agents will be preserved under aggregation. Our results cover semantic
properties formulated in terms of six of the most widely used extension-based semantics for abstract
argumentation and range from positive results that show that certain aggregation rules can provide
the desired preservation guarantees to impossibility theorems that show that certain combinations of
requirements cannot be met by any reasonable aggregation rule.

Keywords: argumentation theory, social choice theory

1. Introduction

Formal argumentation theory provides tools for modelling both the arguments an agent may wish
to employ in a debate and the relationships that hold between such arguments [2, 3, 4, 5, 6]. This
applies both to human agents and to intelligent software agents. In the widely used model of abstract
argumentation, introduced in the seminal work of Dung [7], we abstract away from the internal
structure of arguments and only model whether or not one argument attacks another argument.
Thus, arguments are vertices in a directed graph, with edges representing attacks. This is a useful
perspective when we require a high-level understanding of how different arguments relate to each
other. When several agents engage in a debate, they may differ on their assessment of some of the
arguments and their relationships. How best to model such scenarios of collective argumentation is
a question of considerable interest, not only in AI. Over the past decade or so, several authors have
started to contribute to its resolution [see, e.g., 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

Specifically, when agents differ on their assessment of which attacks between the arguments are in
fact justified, i.e., when they put forward different attack-relations, we may wish to aggregate these
individual pieces of information to obtain a global view. In this paper we analyse the circumstances
under which a given aggregation rule will preserve relevant properties of the individual attack-relations,

IThis is an extended version of a paper first presented at TARK-2017 [1]. We would like to thank Sirin Botan,
Umberto Grandi, Ronald de Haan, Zoi Terzopoulou, and Shengyang Zhong for numerous enlightening discussions on
this material and the anonymous TARK and Artificial Intelligence reviewers for their constructive feedback.
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particularly properties that relate to the various semantics that have been proposed for abstract
argumentation. For example, if all agents agree that argument A is acceptable, either because it
is not attacked by any other argument or because it can be successfully defended against any such
attack, then we would like A to also be considered acceptable relative to the attack-relation returned
by our aggregation rule. Thus, argument acceptability is an example for a property that, ideally,
should be preserved under aggregation. Our objective is to analyse what kind of simple aggregation
rules can guarantee that this will be the case. Our approach is grounded in social choice theory, the
formal study of collective decision making [18, 19, 20]. In particular, we apply the so-called axiomatic
method [21, 22, 23] and make use of recent results on graph aggregation [24].

Related work. Coste-Marquis et al. [8] were the first to address the question of how best to aggregate
several abstract argumentation frameworks, but without making explicit reference to social choice
theory. Instead, they focus on a family of sophisticated aggregation rules that minimise the distance
between the input argumentation frameworks and the output argumentation framework.

Tohmé et al. [9] were the first to explicitly use social choice theory to analyse the aggregation
of argumentation frameworks. Their focus is on the preservation of the acyclicity of attack-relations
under aggregation. Acyclicity is an important property in the context of abstract argumentation,
because it greatly simplifies the evaluation of arguments (in an acyclic argumentation framework, it
is unambiguous which arguments to accept and which to reject). Tohmé et al. show that qualified
majority rules will always preserve this property.1

Bodanza and Auday [25] were the first to give a completely general definition of an aggregation rule
mapping any set of individual argumentation frameworks into a collective argumentation framework.
In contrast to this, all earlier authors restrict attention to specific aggregation rules or specific classes
of aggregation rules. Bodanza and Auday compare two different scenarios of collective argumentation
that both combine abstract argumentation with social choice theory. In the first scenario, we assume
that every agent reports an argumentation framework and we need to find a good way of aggregating
this input into a single collective argumentation framework. This is the scenario we study in this
paper. In the other scenario, every agent is presented with the same argumentation framework but
reports a (possibly) different set of arguments she considers acceptable given that argumentation
framework, i.e., every agent reports her own extension of the common argumentation framework. This
latter scenario—which is equally interesting but technically very different from the one we investigate
here—has later been studied in more depth by a number of authors, including Caminada and Pigozzi
[10] and Rahwan and Tohmé [11], as well as the present authors [17]. Other authors, such as Gabbay
and Rodrigues [26] and Delobelle et al. [27], work with models that are hybrids between these two
scenarios. In these hybrid models each agent comes equipped an individual argumentation framework,
but we also have access to some additional information to exploit during aggregation. For instance,
for Delobelle et al. this additional information specifies the argumentation semantics adopted by all
agents, which allows the mechanism performing the aggregation to compute extensions for all agents,
which can then feed into the aggregation process.

While Tohmé et al. [9] had made the important step of introducing the methodology of social
choice theory into the study of collective argumentation, their work in fact was largely a study within
social choice theory that made little reference to the specifics of the domain of argumentation, the
only exception being the focus on the property of acyclicity. A few years later, Dunne et al. [13]
succeeded in bringing abstract argumentation and social choice theory closer together by defining
several preservation requirements on aggregation rules that directly refer to the semantics of the argu-
mentation frameworks concerned. This includes the requirement that an argument that is acceptable
to all individual agents should also be acceptable in the argumentation framework returned by the
aggregation rule (“credulous σ-acceptance unanimity”) and the requirement specifying that, when all

1A qualified majority rule accepts a given attack between two arguments if (i) a majority of the agents accept that
attack and (ii) none of a subset of the agents with a special status (the right to “veto”) reject it.
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agents agree on what the acceptable arguments are, then this agreement should be preserved under
aggregation (“σ-unanimity”).2 The focus of their technical contribution, however, is on analysing the
computational complexity of deciding whether a given aggregation rule has a given property, rather
than on the axiomatic method. In follow-up work, Delobelle et al. [14] establish for several concrete
rules whether or not they satisfy the preservation requirements introduced by Dunne et al. [13].

In further related work, employing a similar model and making more explicit use of the axiomatic
method of social choice theory to analyse scenarios of collective argumentation, Li [28] discusses a
variant of Sen’s famous Paradox of the Paretian Liberal [29] in the context of aggregating abstract
argumentation frameworks. He shows that granting some agents “expert rights”, i.e., the right to
autonomously decide on certain attack relations that are within the scope of their special expertise, is
incompatible with basic efficiency requirements when we require aggregation rules that always return
an argumentation framework that has at least one stable extension.

While Endriss and Grandi [24] explicitly mention abstract argumentation as a possible domain of
application for the model of graph aggregation they develop, they do not present any technical results
related to argumentation.

Let us also briefly mention a small number of contributions a little further afield. Bonzon and
Maudet [30] define an interaction protocol for agents intent on persuading each other about the
acceptability of a given argument and compare the outcomes of such persuasion dialogues with the
results obtained by applying an aggregation rule to the argumentation frameworks initially held by
these agents. Leite and Martins [12] introduce social abstract argumentation frameworks, which are
abstract argumentation frameworks enriched with a function mapping each argument to the numbers
of agents voting in favour and against it. In particular the enriched model proposed by Eğilmez et al.
[31], which also allows for votes in favour of and against attacks, bears some relation to the scenario
we study here. For instance, if an aggregation rule aggregates individual positions separately on
each individual attack (i.e., if it satisfies the axiom of independence to be introduced in the sequel),
then we can use such an enriched social abstract argumentation framework as an intermediate form
of representation. Airiau et al. [15] introduce the concept of the rationalisability of a profile of
argumentation frameworks. A profile is rationalisable if the diversity of views it contains can be
explained in terms of (i) an underlying factual argumentation framework shared by all agents and
(ii) everyone’s individual preferences. Thus, their work is concerned with understanding what kind
of profiles a good aggregation rule should be able to deal with, rather than with aggregation itself.

For a detailed review of research on collective argumentation beyond this small selection we refer
to the recent survey by Bodanza et al. [16].

Contribution. Our first contribution is the formulation of a clear and simple model for the axiomatic
study of the preservation of semantic properties during the aggregation of attack-relations over a
common set of arguments. Our technical results delineate how fundamental axiomatic properties
of aggregation rules interact with such preservation requirements. These results range from char-
acterisation theorems that indicate what kind of aggregation rule can satisfy certain combinations
of desiderata, to impossibility theorems that show that only aggregation rules that are clearly un-
acceptable from an axiomatic point of view (namely, so-called dictatorships) can preserve the most
demanding semantic properties.

In terms of methodology, we show how techniques originally developed for the more general domain
of graph aggregation [24] can be applied in the context of abstract argumentation. At the same time,
we identify a number of properties of graphs that are of interest in the specific context of abstract
argumentation that cannot be analysed with existing techniques and the novel technique we develop

2Dunne et al. [13] refer to these requirements as “axioms”, while we prefer to distinguish axioms (normative properties
of aggregation rules that typically encode some notion of fairness) from the “collective rationality” requirement that
certain properties of argumentation frameworks should be preserved under aggregation.
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to handle these properties—which we call k-exclusive properties—likely will find future application in
other domains where graphs need to be aggregated.

Finally, while we restrict attention to the aggregation of argumentative positions that can be
modelled using Dung’s system of abstract argumentation, the idea of collective argumentation is
more general than that and we believe that our approach can, at least in principle, be extended to
richer models of argumentation that also account for the internal structure of arguments. This is
important, given that—despite the enormous popularity and widespread use of Dung’s model in the
literature on argumentation in AI and other disciplines [2, 3, 5, 6]—there is broad consensus that
the expressive power of this model is limited and can only account for certain high-level aspects of
argumentation [32, 33, 34].

Paper overview. The remainder of this paper is organised as follows. Section 2 is a brief review of
relevant concepts from the theory of abstract argumentation. Section 3 introduces our model and
Section 4 presents our technical results on the preservation of semantic properties of argumentation
frameworks under aggregation. We conclude in Section 5 with a brief summary of the insights obtained
as well as suggestions for future work. This includes opportunities for applying our approach to richer
models of argumentation than Dung’s classical model of abstract argumentation as well as applying
some of the methodological tools we develop, particularly regarding the analysis of k-exclusive graph
properties, in other domains of aggregation—possibly unrelated to the study of argumentation.

2. Abstract argumentation

In this section we recall some of the fundamentals of the model of abstract argumentation as originally
introduced by Dung [7]. An argumentation framework is a pair AF = 〈Arg,⇀〉, where Arg is a finite
set of arguments and ⇀ is an irreflexive binary relation on Arg.3 If A ⇀ B holds for two arguments
A,B ∈ Arg, we say that A attacks B. The internal structure of individual arguments and thus the
reasons for why one argument attacks or does not attack another are explicitly left unspecified in this
model of argumentation. This approach has both advantages and disadvantages, which have been
discussed at length in the literature [see, e.g., 32, 33, 34].

Attacking and defending arguments. Let us introduce some further notation and terminology. We use
the term attack to refer to an element att ∈ Arg × Arg of an attack-relation (⇀) ⊆ Arg × Arg. That
is, these are the “individual arrows” in 〈Arg,⇀〉. For a set of arguments ∆ ⊆ Arg and an argument
B ∈ Arg, we say that ∆ attacks B, denoted as ∆ ⇀ B, if A ⇀ B holds for some argument A ∈ ∆.
We write ∆+ = {B ∈ Arg | ∆ ⇀ B} for the set of arguments attacked by ∆. We further say that ∆
defends the argument B ∈ Arg, if ∆ ⇀ A holds for all arguments A ∈ Arg such that A ⇀ B. The
characteristic function of AF is defined as the function fAF : 2Arg → 2Arg that maps any given set of
arguments ∆ ⊆ Arg to the set of arguments defended by ∆:

fAF(∆) = {B ∈ Arg | ∆ defends B}

Semantics. Given an argumentation framework AF, the question arises which arguments to accept.
For example, we may not want to accept two arguments that attack each other. A semantics specifies
which sets of arguments can be accepted together for a given argumentation framework. Any such
set of arguments is called an extension of AF under the semantics in question. For all the definitions
of specific choices of semantics that follow, consider an arbitrary but fixed argumentation framework
AF = 〈Arg,⇀〉 and a set of arguments ∆ ⊆ Arg. The following notions of conflict-freeness and
admissibility play a central role in these definitions. We say that ∆ is conflict-free, if there exist no
arguments A,B ∈ ∆ such that A ⇀ B; and ∆ is called admissible if it is conflict-free and defends

3Neither the finiteness nor the irreflexivity assumption are crucial for our results, but they simplify exposition and
clearly are natural for most applications.
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Figure 1: Relationships between argumentation semantics.

every single one of its members. We are going to work with six different types of semantics, which
are amongst the most widely studied abstract argumentation semantics in the literature. The first
four of them were introduced by Dung [7] in his original paper. The remaining two semantics were
introduced more recently, by Caminada [35] and Dung et al. [36], respectively.4

Definition 1. A stable extension of AF is a conflict-free set ∆ of arguments in Arg that attacks
all other arguments B ∈ Arg \∆, i.e., ∆ ∪∆+ = Arg.

Definition 2. A preferred extension of AF is an admissible set of arguments in Arg that is maximal
with respect to set inclusion.

Definition 3. A complete extension of AF is an admissible set of arguments in Arg that includes
all of the arguments it defends.

Definition 4. A grounded extension of AF is a least fixed point of its characteristic function fAF.

Definition 5. A semi-stable extension of AF is a complete extension ∆ of AF for which ∆∪∆+

is maximal with respect to set inclusion.

Definition 6. An ideal extension of AF is an admissible subset of the intersection of all preferred
extensions that is maximal with respect to set inclusion.

The research community has produced several tools to automatically compute the extensions for
a given argumentation framework under these semantics. One such tool is ConArg [38].5

Relationships between different semantics. Let us briefly recall some well-known facts about these
different semantics and how they relate to each other [37]. The set of stable extensions may be
empty for a given argumentation framework, while there always exists at least one extension under
each of the other five semantics. Unlike for the other four semantics, there always are exactly one

4Note that what we call the ideal extension is called the maximal ideal set in the original paper by Dung et al. [36].
This change in terminology is in line with the more recent literature [37].

5As several of the proofs in this paper rely on constructions involving certain argumentation frameworks having
certain extensions, to provide an additional level of verification of the correctness of these proofs, we have used ConArg
to recompute the relevant extensions.
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grounded extension and exactly one ideal extension. However, these extensions may be empty. We
can compute the grounded extension ∆ by initialising ∆ with the empty set ∅ and then repeatedly
executing the program ∆ := fAF(∆), until no more changes occur. Thus, the grounded extension is
nonempty if and only if there is at least one argument that is not attacked at all. The ideal extension
is always a (not necessarily proper) superset of the grounded extension. All stable extensions are
also semi-stable extensions, and all semi-stable extensions are also preferred extensions. As the ideal
extension is a subset of every preferred extension, it also is a subset of every semi-stable and every
stable extension. The grounded, the ideal, and all preferred extensions are also complete extensions.
Indeed, the grounded extension is the (unique) complete extension that is minimal with respect to
set inclusion, while every preferred extension is a (not necessarily unique) complete extension that
is maximal with respect to set inclusion. Furthermore, the grounded extension is a subset of every
complete extension, and thereby also a subset of every preferred, every semi-stable, and every stable
extension. Most of these relationships are summarised in Figure 1. Finally, any extension under any
of the six semantics considered here is admissible and thus also conflict-free.

Example 1. Consider an argumentation framework AF = 〈Arg,⇀〉 with an isolated cycle of length 3.
Thus, (⇀) ⊇ {A ⇀ B,B ⇀ C,C ⇀ A} for three arguments A,B,C ∈ Arg and there are no further
attacks on either A, B, or C. Then none of A, B, and C can be part of a complete extension ∆: if
we include two or more of them in ∆, then ∆ is not conflict-free; if we include just one of them in
∆, then ∆ does not defend itself. Hence, by the relationships between the different semantics shown
in Figure 1, none of A, B, and C can be part of an extension under any of the other five semantics
either. We are going to make use of this kind of reasoning—which also works for longer isolated
odd-length cycles—several times in this paper. M

An interesting question is under what circumstances the extensions determined by different seman-
tics coincide. Probably the clearest example for when they do coincide is the case of argumentation
frameworks with an acyclic attack-relation: if ⇀ does not include any cycles, then the grounded
extension coincides with the ideal extension and it is the only stable extension, the only semi-stable
extension, the only preferred extension, and the only complete extension. Indeed, for an acyclic ⇀ it
is entirely uncontroversial which arguments to accept. A condition of this kind that is weaker than
acyclicity is what is known as coherence in the literature [7]: the argumentation framework AF is
called coherent if every preferred extension of AF is stable, i.e., if the two semantics coincide.

3. The model

Fix a finite set Arg of arguments and a set N = {1, . . . , n} of n agents. Suppose each agent i ∈ N
supplies us with an argumentation framework AFi = 〈Arg,⇀i〉, reflecting her individual views on
the status of possible attacks between arguments. Thus, we are given a profile of attack-relations
⇀ = (⇀1, . . . ,⇀n).6 What would be a good method of aggregating these individual argumentation
frameworks to arrive at a single argumentation framework that appropriately reflects the views of
the group as a whole? This is the central question we address in this paper. An aggregation rule
is a function F : (2Arg×Arg)n → 2Arg×Arg mapping any given profile of attack-relations into a single
attack-relation. Thus, we are interested in understanding what makes a good aggregation rule.

Example 2. The first aggregation rule that comes to mind is the majority rule: include attack A ⇀ B
in the outcome if and only if a (weak) majority of the individual agents do. If we apply this rule to the
profile shown in Figure 2, then we obtain the argumentation framework consisting of the three attacks
A ⇀ B, B ⇀ C, and C ⇀ A. M

6Note that we assume that all agents report an attack-relation over the same set of arguments Arg. As argued by
Coste-Marquis et al. [8], generalisations, where different agents may be aware of different subsets of Arg, are possible
and interesting, but—in line with most existing work in the area—we shall not explore them here.
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Figure 2: Example for a profile with Arg = {A,B,C,D}.

Section overview. In the remainder of this section we first define a number of specific aggregation
rules. We then define several properties of aggregation rules, usually referred to as axioms, and briefly
discuss which of the rules defined satisfy which of these properties. Finally, we review several properties
of argumentation frameworks, particularly properties relating to their semantics, and formulate the
question of whether a given rule will preserve such a property when all individual agents report
argumentation frameworks that satisfy the property in question.

3.1. Specific aggregation rules

Recall that an aggregation rule is a function F , mapping any given profile ⇀ = (⇀1, . . . ,⇀n) ∈
(2Arg×Arg)n of attack-relations on Arg to a single attack-relation F (⇀) ⊆ Arg × Arg. We sometimes
write (A ⇀ B) ∈ F (⇀) for (A,B) ∈ F (⇀). We use N⇀

att := {i ∈ N | att ∈ (⇀i)} to denote the set
of supporters of the attack att in profile ⇀.

We now introduce two families of aggregation rules, the quota rules and the oligarchic rules.
These are simple rules that are adaptations of well-known rules used in the social choice literature,
particularly in judgment aggregation [39] and graph aggregation [24].

Definition 7. Let q ∈ {1, . . . , n}. The quota rule Fq with quota q accepts all those attacks that are
supported by at least q agents:

Fq(⇀) = {att ∈ Arg×Arg | #N⇀
att > q}

The weak majority rule is the quota rule Fq with q = bn+1
2 c and the strict majority rule is the

quota rule Fq with q = dn+1
2 e. Two further quota rules are also of special interest. The unanimity

rule only accepts attacks that are supported by everyone, i.e., this is Fq with q = n. The nomination
rule is the quota rule Fq with q = 1. Despite being a somewhat extreme choice, the nomination rule
has some intuitive appeal in the context of argumentation, as it reflects the idea that we should take
seriously any conflict between arguments raised by at least one member of the group.

Definition 8. Let C ∈ 2N \ {∅} be a nonempty coalition of agents. The oligarchic rule FC accepts
all those attacks that are accepted by all members of C:

FC(⇀) = {att ∈ Arg×Arg | C ⊆ N⇀
att}

Thus, any member of the oligarchy C can veto an attack from being accepted. Observe that the
unanimity rule can also be characterised as the oligarchic rule FC with C = N . A subclass of the
oligarchic rules are the dictatorships. The dictatorship of dictator i ∈ N is the oligarchic rule FC with
C = {i}. Thus, under a dictatorship, to compute the outcome, we simply copy the attack-relation of
the dictator. Intuitively speaking, oligarchic rules, and dictatorships in particular, are unattractive
rules, as they unfairly exclude everyone not in C from the decision process.

Some rules combine features of the quota rules and the oligarchic rules. For example, we may
choose to accept an attack only if it is accepted by (i) a weak majority of all agents and (ii) a small
number of distinguished agents to which we want to give the right to veto the acceptance of attacks.
Such rules (sometimes called qualified majority rules) are certainly more attractive than the oligarchic
rules, but they are still unfair in the sense of granting some agents more influence than others.
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Definition 9. Agent i ∈ N has veto powers under aggregation rule F , if F (⇀) ⊆ (⇀i) for every
profile ⇀.

Thus, under an oligarchic rule FC the agents in C, and only those, have veto powers. With the
exception of the unanimity rule, under which all agents have veto powers, a quota rule does not grant
veto powers to any agent.

3.2. Axioms: Properties of aggregation rules

Next, we introduce several basic axioms, each of which encodes an intuitively desirable property of an
aggregation rule F . All of these axioms are direct adaptations of axioms formulated in the literature
on graph aggregation [24], which in turn are very similar to axioms used in both the literature on
judgment aggregation [39] and that on preference aggregation [19].

Definition 10. An aggregation rule F is said to be anonymous, if F (⇀) = F (⇀π(1), . . . ,⇀π(n))
holds for all profiles ⇀ = (⇀1, . . . ,⇀n) and all permutations π : N → N .

Definition 11. An aggregation rule F is said to be neutral, if N⇀
att = N⇀

att′ implies att ∈ F (⇀) ⇔
att′ ∈ F (⇀) for all profiles ⇀ and all attacks att, att′.

Definition 12. An aggregation rule F is said to be independent, if N⇀
att = N⇀′

att implies att ∈
F (⇀)⇔ att ∈ F (⇀′) for all profiles ⇀, ⇀′ and all attacks att.

Definition 13. An aggregation rule F is said to be monotonic, if N⇀
att ⊆ N⇀′

att (together with
N⇀

att′ = N⇀′

att′ for all attacks att′ 6= att) implies att ∈ F (⇀) ⇒ att ∈ F (⇀′) for all profiles ⇀, ⇀′

and all attacks att.

Definition 14. An aggregation rule F is said to be unanimous, if F (⇀) ⊇ (⇀1)∩ · · · ∩ (⇀n) holds
for all profiles ⇀ = (⇀1, . . . ,⇀n).

Definition 15. An aggregation rule F is said to be grounded, if F (⇀) ⊆ (⇀1) ∪ · · · ∪ (⇀n) holds
for all profiles ⇀ = (⇀1, . . . ,⇀n).

Anonymity is a symmetry (and thus fairness) requirement regarding agents, and neutrality is a
symmetry requirement regarding attacks. Independence expresses that whether an attack is accepted
should only depend on its supporters. Monotonicity says that additional support for an accepted
attack should never cause it to be rejected. Unanimity postulates that an attack supported by everyone
must be accepted, while groundedness means that only attacks with at least one supporter can be
collectively accepted.7

Observe that all quota rules and all oligarchic rules are easily seen to be unanimous, grounded,
neutral, independent, and monotonic.8 The quota rules furthermore are also anonymous. In fact, it
is not difficult to adapt a well-known result from judgment aggregation due to Dietrich and List [40]
to our setting, so as to see that the quota rules are the only aggregation rules that satisfy all of these
six axioms (refer to Endriss and Grandi [24] for a formulation of this result in the context of graph
aggregation).

Note that, if an aggregation rule F is independent, then we can represent it by listing for every
potential attack att = (A ⇀ B) the coalitions of agents that would be sufficient to get that attack
accepted if exactly the members of that coalitions were to support it. Formally, if F is independent,
then for every attack att ∈ Arg×Arg there exist a family of coalitions Watt ⊆ 2N such that for every

7Note that, in line with the existing literature in argumentation theory on the one hand and social choice theory on
the other, we use the term “grounded” in two unrelated ways (grounded extensions vs. grounded aggregation rules).

8Thus, in particular the unanimity rule satisfies the unanimity axiom, but so do all other quota and oligarchic
rules. Note that, while the unanimity axiom requires that all unanimously accepted attacks need to be returned by an
aggregation rule, the unanimity rule returns only those unanimously accepted attacks.
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profile ⇀ it is the case that att ∈ F (⇀) if and only if N⇀
att ∈ Watt. The elements of Watt are called

winning coalitions. If F is both independent and neutral, then the family of winning coalitions must
be the same for all attacks, i.e., in that case there exists a single family W ⊆ 2N such that for every
profile ⇀ and every attack att it is the case that att ∈ F (⇀) if and only if N⇀

att ∈ W.

3.3. Preservation of semantic properties of argumentation frameworks under aggregation

Typically, agents will disagree on whether certain attacks between arguments in Arg are in fact justified
(if not, aggregation becomes trivial). But even when they disagree on the details, there may be high-
level agreement on certain features. For example, maybe all agents agree that, under a particular
semantics, argument A is acceptable. Whenever we observe such agreement on semantic features in
a profile, we would like those features to be preserved under aggregation. Thus, for our example,
under the same semantics, we would like A to be acceptable also in the argumentation framework
computed by our aggregation rule. In other words, we are interested in the preservation of properties
of argumentation frameworks (i.e., of the attack-relations that define them) under aggregation.

An example for a property is antisymmetry (i.e., the absence of mutual attacks between argu-
ments). Another example is the existence of an argument that is not attacked by any other argument.
But in some cases, what we are really interested in is the preservation of entire collections of properties.
For example, for every argument A, we may want the acceptability of A under a certain semantics to
be preserved under aggregation.

Formally, an AF-property P ⊆ 2Arg×Arg is simply the set of all attack-relations on Arg that
satisfy P . But in the interest of readability, we write P (⇀) rather than (⇀) ∈ P . A collection of
AF-properties P is a set of such AF-properties. Typically, the elements of P will be indexed by either
the arguments A ∈ Arg or the sets ∆ ⊆ Arg. Technically, every single AF-property P can also be
thought of as a collection of AF-properties, namely P = {P}.

Definition 16. Let F be an aggregation rule and let P be a collection of AF-properties. We say that
F preserves P, if for every profile ⇀ and every AF-property P ∈ P we have that P (⇀i) being the
case for all agents i ∈ N implies P (F (⇀)).

Thus, F preserves the single AF-property P if for every profile ⇀ we have that P (⇀i) being the
case for all agents i ∈ N implies P (F (⇀)). This notion of preservation (of a single property) is known
under the name of collective rationality in other parts of social choice theory [41, 42, 24].

Properties of interest. We now review the specific AF-properties for which we study preservation in
this paper. Two of them we have already introduced in Section 2, namely acyclicity and coherence.
Recall that these are attractive properties, because—if satisfied by an argumentation framework—
they ensure that several different semantics will coincide and result in the same recommendations
about which arguments to accept, thereby making decisions less controversial.

Both the grounded and the ideal semantics are attractive for two reasons. First, they encode a
notion of scepticism in the sense of only accepting arguments we can have high confidence in [37].
Second, unlike the other extensions we have defined, the grounded and the ideal extension are always
unique. On the downside, that unique extension may be empty, i.e., these semantics will sometimes
not suggest any arguments to be accepted. Thus, argumentation frameworks that satisfy the AF-
property of nonemptiness of the grounded extension or nonemptiness of the ideal extension are of
particular interest.

Collections of properties of interest. Next, we turn to collections of AF-properties we may wish to
preserve. Let A ∈ Arg be one of the arguments under consideration. Then, for any given argumenta-
tion framework, A may or may not belong to the grounded extension. Thus, every A ∈ Arg defines an
AF-property, namely the property of membership of A in the grounded extension, i.e., of acceptance of
A under the grounded semantics. This in itself would be too narrow a property to be of much interest
for our purposes. However, what is of interest is whether membership is preserved for all arguments.
We say that F preserves argument acceptability under the grounded semantics, if it is the case that,
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for all arguments A ∈ Arg, whenever A belongs to the grounded extension of 〈Arg,⇀i〉 for all agents
i ∈ N , then A also belongs to the grounded extension of 〈Arg, F (⇀)〉. Thus, argument acceptabil-
ity under the grounded semantics is a collection of AF-properties, consisting of one AF-property for
every argument A ∈ Arg. The collection of AF-properties of argument acceptability under the ideal
semantics is defined accordingly.

For the stable, semi-stable, preferred, and complete semantics, we require a more refined definition,
given that extensions under these semantics need not be unique. We say that F preserves credulous
argument acceptability under the stable semantics, if it is the case that, for all arguments A ∈ Arg,
whenever A belongs to some stable extension of 〈Arg,⇀i〉 for all agents i ∈ N , then A also belongs
to some stable extension of 〈Arg, F (⇀)〉. Analogously, F preserves sceptical argument acceptability
under the stable semantics, if it is the case that, for all arguments A ∈ Arg, whenever A belongs to
all stable extensions of 〈Arg,⇀i〉 for all agents i ∈ N , then A also belongs to all stable extensions
of 〈Arg, F (⇀)〉.9 The corresponding concepts for the semi-stable, the preferred, and the complete
semantics are defined accordingly. All of these are also collections of AF-properties, one for every
argument A ∈ Arg.

Rather than just preserving the acceptability status of a single argument, we may also be interested
in preserving entire extensions. For example, we say that F preserves extensions under the stable
semantics, if it is the case that, for all sets ∆ ⊆ Arg, whenever ∆ is a stable extension of 〈Arg,⇀i〉
for all agents i ∈ N , then ∆ is also a stable extension of 〈Arg, F (⇀)〉. So this again concerns the
preservation of a collection of AF-properties, one for every set ∆ ⊆ Arg. The corresponding concept
can be defined analogously for the other five semantics.

Similarly, we say that F preserves conflict-freeness, if it is the case that, for all sets ∆ ⊆ Arg,
whenever ∆ is conflict-free in 〈Arg,⇀i〉 for all agents i ∈ N , then ∆ is also conflict-free in 〈Arg, F (⇀)〉.
Finally, preservation of admissibility is defined accordingly.

Summary. To summarise, we have identified the following AF-properties that, in case all agents agree
on one of them being satisfied, we would like to see preserved under aggregation:

• acyclicity and coherence (reducing semantic ambiguity),

• nonemptiness of the grounded extension and the ideal extension (enabling a sceptical approach
to argument evaluation),

• argument acceptability under different semantics (allowing for agreement on arguments even in
the face of disagreement on the attacks between them), and

• the property of a set being an extension under different semantics or of being either conflict-free
or admissible (also allowing for semantic agreement despite disagreement on attacks).

The latter two items concern collections of AF-properties (rather than single AF-properties), one
for every argument A ∈ Arg and every set ∆ ⊆ Arg, respectively.

Example 3. Consider again the profile of Figure 2 and recall that the (weak or strict) majority rule
will return the argumentation framework with A ⇀ B, B ⇀ C, and C ⇀ A. Thus, the majority rule
does not preserve acyclicity.10 What about some of the other AF-properties? The grounded extension
of AF1 is {A,C,D}, that of AF2 is {B,D}, that of AF3 is {A,D}, and that of the majority outcome
is {D}. Thus, preservation of the property of nonemptiness of the grounded extension is not violated
by this particular example, given that the grounded extension of the majority outcome is nonempty.
Preservation of argument acceptability under the grounded semantics also is not violated: the only
argument contained in the grounded extension of all three individual argumentation frameworks is D,

9Recall that a stable extension need not exist, so sometimes this will hold vacuously.
10This observation is closely related to the famous Condorcet Paradox in the theory of preference aggregation [43].
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and D is also included in the extension of the argumentation framework returned by the majority rule.
Of course, this is not to say that these two properties might not be violated for other profiles. Finally,
observe that also preservation of being the grounded extension is not violated by this example, given
that the three agents do not agree on the grounded extension to begin with. M

While we believe that this is the first time that the notion of preservation of a semantic property
has been developed systematically in the literature on collective argumentation, there are—as already
noted in the introduction—some specific instances of this idea that have been discussed in earlier
work, notably by Dunne et al. [13]. These authors define the notions of an aggregation rule preserving
the nonemptiness of certain extensions (termed “σ-weak nontriviality” by Dunne et al.), of extension
preservation (“σ-unanimity”), and of preserving either credulous or sceptical argument acceptability
(“caσ-unanimity” and “saσ-unanimity”, respectively). A few years earlier, Tohmé et al. [9] further-
more studied the preservation of acyclicity during the aggregation of argumentation frameworks.

4. Preservation results

In this section we present our results on the preservation of semantic properties under aggregation.
This includes both positive and negative results: some properties can be preserved by intuitively
appealing aggregation rules, while others require us to use rules that give veto powers or even dicta-
torial powers to some of the agents. Most of our results have the following form: if we look for an
aggregation rule F that satisfies a certain combination of axioms and if we would like F to preserve a
certain AF-property P (or a certain collection P of AF-properties), then F must belong to a certain
family of aggregation rules.

Section overview. We begin with two very simple properties, namely conflict-freeness and admissi-
bility. As we are going to see, the requirement of preserving admissibility is closely related to the
neutrality axiom and this connection allows us to derive neutrality (rather than having to assume it)
for several subsequent results. We then cover, in turn, results pertaining to the preservation of argu-
ment acceptability, extension preservation, preservation of the nonemptiness of uniquely determined
extensions, and acyclicity and coherence.

4.1. Conflict-freeness, admissibility, and the neutrality axiom

Recall that a set of arguments is called conflict-free if it does not contain two arguments for which it is
the case that the first attacks the second. Our first result demonstrates that this most basic property
of sets of arguments is preserved under essentially all reasonable aggregation rules.

Theorem 1. Every aggregation rule F that is grounded preserves conflict-freeness.

Proof. Let F be an aggregation rule that is grounded. Consider any set ∆ ⊆ Arg and any profile
⇀ = (⇀1, . . . ,⇀n) such that ∆ is conflict-free in 〈Arg,⇀i〉 for all i ∈ N . For the sake of contradiction,
assume ∆ is not conflict-free in 〈Arg, F (⇀)〉, i.e., there exist two arguments A,B ∈ ∆ such that
(A ⇀ B) ∈ F (⇀). Due to the groundness of F , there then must be at least one agent i ∈ N such that
also A ⇀i B, i.e., ∆ is not conflict-free in 〈Arg,⇀i〉 either. But this contradicts our assumption.

Next, we turn to admissibility. Recall that a set of arguments is admissible if it is conflict-free and
defends all of its members. Before we establish our main result regarding the preservation of admis-
sibility, we are going to prove a lemma that unveils an interesting connection between admissibility
and the neutrality axiom. It shows that every unanimous, grounded, and independent aggregation
rule that preserves admissibility must be neutral. This lemma is similar in spirit to the Contagion
Lemma in the literature on preference aggregation, which shows that any independent and Pareto
efficient preference aggregation rule that preserves the transitivity of the input must be neutral [21].
In fact, we are first going to prove a more general lemma that shows that this implication holds not
only for admissibility but for every collection of AF-properties of a certain type. This more general
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lemma is similar to a recent result by Endriss and Grandi [24, Lemma 12], which—when adapted
to our terminology—states that any unanimous, grounded, and independent aggregation rule F that
preserves some AF-property P must be neutral whenever P belongs to what they call the family of
contagious properties. We now adapt this notion of contagiousness to collections of properties.11

Definition 17. A collection P of AF-properties is called contagious if, for every distinct arguments
A,B,C ∈ Arg, there exist a property P ∈ P and a set Att ⊆ Arg×Arg of attacks such that 〈Arg,Att∪S〉
with S ⊆ {A ⇀ B,B ⇀ C} satisfies P if and only if S 6= {B ⇀ C}.

Thus, P is contagious if for every triple of arguments A,B,C ∈ Arg we can find an AF-property
P in the collection P such that satisfaction of P requires that B ⇀ C implies A ⇀ B (at least if the
rest of the argumentation framework looks as specified by Att). A single AF-property P is contagious
if P = {P} is.12 This choice of terminology is intended to convey the idea that—in the context of Att
and assuming you would like to satisfy P—accepting arguments is “contagious”, given that accepting
B ⇀ C forces you to also accept A ⇀ B.

Lemma 2. For |Arg | > 3, any unanimous, grounded, and independent aggregation rule F that pre-
serves some contagious collection P of AF-properties must be neutral.

Proof. Suppose |Arg | > 3, let P be a contagious collection of AF-properties, and let F be an ag-
gregation rule that is unanimous, grounded, and independent and that preserves P. Due to being
independent, F can be described in terms of one family of winning coalitions Watt for every poten-
tial attack att ∈ Arg × Arg. To show that F is neutral, we must prove that Watt = Watt′ for any
two attacks att, att′ ∈ Arg × Arg. Now consider any three (distinct) arguments A,B,C ∈ Arg. We
are going to prove WB⇀C ⊆ WA⇀B . As A, B, and C have been chosen arbitrarily, it then fol-
lows that Watt = Watt′ for all att, att′ ∈ Arg × Arg. To see this, suppose that att = (α ⇀ β) and
att′ = (α′ ⇀ β′). Then repeated application of the reasoning pattern we are about to establish yields
Wα⇀β ⊆ Wβ′⇀α ⊆ Wα′⇀β′ as well as Wα′⇀β′ ⊆ Wβ⇀α′ ⊆ Wα⇀β , and thus Wα⇀β =Wα′⇀β′ .

So pick an arbitrary coalition C ∈ WB⇀C . Due to P being contagious, for our choice of A,
B, and C there exist a property P ∈ P and a set Att ⊆ Arg × Arg such that 〈Arg,Att ∪ S〉 with
S ⊆ {A ⇀ B,B ⇀ C} satisfies P if and only if S 6= {B ⇀ C}. Construct a profile ⇀ in which
exactly the agents in C report the attack-relation Att ∪ {A ⇀ B,B ⇀ C} and all others report Att.
Thus, in this profile all individual attack-relations satisfy P . As F preserves P, the outcome F (⇀)
must satisfy P as well. Due to the unanimity and groundedness of F , F (⇀) must be of the form
Att ∪ S with S ⊆ {A ⇀ B,B ⇀ C}. Due to C being a winning coalition, we furthermore must have
(B ⇀ C) ∈ F (⇀). This, together with the fact that F (⇀) must satisfy P means that we must
have (A ⇀ B) ∈ F (⇀) as well. But this means that coalition C succeeded in getting attack A ⇀ B
accepted, i.e., C must be a winning coalition also for this attack. Thus, we have succeeded in deriving
C ∈ WA⇀B and are done.

Lemma 3. For |Arg | > 3, any unanimous, grounded, and independent aggregation rule F that pre-
serves admissibility must be neutral.

Proof. The claim follows from Lemma 2, provided we can show that admissibility is a contagious
collection of AF-properties. So consider any distinct A,B,C ∈ Arg. With reference to Definition 17,
let P be the property of the set {A,C} being admissible and let Att be the empty set of attacks. Now

11We stress that contagiousness is a meta-property—a property of (collections of) properties—that serves as a purely
technical device we use in some of our proofs. It is of interest to the study of argumentation only in so far as one
can show that semantic properties of argumentation frameworks (such as admissibility) that are of direct demonstrable
interest to argumentation theory turn out to be properties that are contagious. As we are going to see, this indeed is
the case. Analogous considerations apply to the meta-properties of implicativeness, disjunctiveness, and k-exclusiveness
to be introduced in the sequel.

12This definition of contagiousness of a single property P is a special case of the more complex definition given by
Endriss and Grandi [24]. We do not require the greater generality of the original definition for our purposes here.
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Figure 3: Profile used in the proof of Theorem 4.

consider the four argumentation frameworks of the form 〈Arg,Att ∪ S〉 with S ⊆ {A ⇀ B,B ⇀ C}.
By the definition of admissibility, the only argumentation framework of this kind that does not satisfy
P is the one we get for S = {B ⇀ C}. This concludes the proof.

We are now ready to state our main result regarding the preservation of admissibility. It is
significantly less broad than Theorem 1, our result for the preservation of conflict-freeness, but it still
clearly is a positive result. It shows that there exists a reasonable rule that preserves the admissibility
of arbitrary sets of arguments.

Theorem 4. For |Arg | > 4, the only unanimous, grounded, anonymous, independent, and monotonic
aggregation rule F that preserves admissibility is the nomination rule.

Proof. We first show that the nomination rule indeed preserves admissibility. So let F be the nomi-
nation rule. Consider any set ∆ ⊆ Arg and any profile ⇀ = (⇀1, . . . ,⇀n) such that ∆ is admissible
in AFi = 〈Arg,⇀i〉 for all i ∈ N . For the sake of contradiction, assume ∆ is not admissible in
〈Arg, F (⇀)〉, i.e., there is an argument A ∈ ∆ that, in F (⇀), is attacked by an argument B ∈ Arg\∆
and there does not exist a C ∈ ∆ such that (C ⇀ B) ∈ F (⇀). As (B ⇀ A) ∈ F (⇀) and as F is
grounded, we must have B ⇀i A for some i ∈ N . And as there does not exist a C ∈ ∆ such that
(C ⇀ A) ∈ F (⇀), given the definition of the nomination rule, there cannot exist an argument C ∈ ∆
such that C ⇀i A for that same agent i. Hence, ∆ is not admissible in AFi, in contradiction to our
original assumption.

We still need to show that there can be no other aggregation rule than the nomination rule that
preserves admissibility and that satisfies all of the axioms mentioned in the statement of Theorem 4.
Let F be a unanimous, grounded, independent, and monotonic aggregation rule that preserves ad-
missibility. By Lemma 3, we know that F is also neutral. So, the claim is equivalent to the claim
that for |Arg | > 4, the only unanimous, grounded, anonymous, neutral, independent, and monotonic
aggregation rule F that preserves admissibility is the nomination rule. By the characterisation result
for quota rules due to Dietrich and List [40] in the context of judgment aggregation, which has been
adapted to graph aggregation by Endriss and Grandi [24] and which we have briefly recalled near the
end of Section 3.2, this claim is equivalent to the claim that no quota rule Fq with a quota q > 1
always preserves admissibility. So let us prove this.

Consider the generic profile shown in Figure 3 (and note that q > 1 ensures q− 1 > 0, i.e., there is
at least one agent of the first kind). The set {A,B,C} is admissible in all argumentation frameworks
in such a profile. But when we aggregate using a quota rule Fq with a quota q > 1, we obtain an
argumentation framework with a single attack D ⇀ A, which means that A cannot be part of any
admissible set. Hence, no such rule can preserve admissibility.

4.2. Credulous and sceptical argument acceptability

Recall that an argument is credulously accepted under a given semantics if it is a member of at least
one extension under that semantics. It is sceptically accepted if it is a member of every extension. In
the case of the grounded and the ideal semantics, the notions of credulous and sceptical acceptability
coincide. We are going to demonstrate that preserving credulous or sceptical acceptability of an argu-
ment when using a “simple” aggregation rule is impossible, unless we are willing to use a dictatorship.
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This is true under any of the six semantics. To prove this result—and some of those that follow—we
are going to use a technique developed by Endriss and Grandi [24] for the more general framework
of graph aggregation, which in turn was inspired by the seminal work on preference aggregation of
Arrow [41]. It amounts to showing that, under certain assumptions, the families of winning coali-
tions defining an aggregation rule must form an ultrafilter. The technique developed by Endriss and
Grandi, however, greatly simplifies the process of deriving such results. We only need to show that
the properties preserved under aggregation are of a certain type.

Using our present terminology, Endriss and Grandi [24, Theorem 18] show that, for argumentation
frameworks with three or more arguments, any aggregation rule that satisfies certain basic axioms and
that is supposed to preserve some AF-property P must be a dictatorship—at least in case P belongs
to what they call the family of implicative and disjunctive properties. Let us first adapt these two
concepts to our needs.

Definition 18. An AF-property P is called implicative if there exist a set Att ⊆ Arg × Arg of
attacks and three individual attacks att1, att2, att3 ∈ Arg × Arg \ Att such that 〈Arg,Att ∪ S〉 with
S ⊆ {att1, att2, att3} satisfies P if and only if S 6= {att1, att2}.

Definition 19. An AF-property P is called disjunctive if there exist a set Att ⊆ Arg×Arg of attacks
and two individual attacks att1, att2 ∈ Arg × Arg \ Att such that 〈Arg,Att ∪ S〉 with S ⊆ {att1, att2}
satisfies P if and only if S 6= ∅.

Thus, an implicative property P requires that, in the context of Att, accepting att1 and att2
implies accepting att3 (and all seven patterns of acceptance consistent with that requirement are
possible). A disjunction AF-property P requires that, given Att, we must accept at least one of
att1 and att2 (and all three patterns of acceptance consistent with that requirement are possible).13

We call a collection P of AF-properties implicative if it includes at least one implicative property.
Disjunctive collections of properties are defined analogously. Note that these definitions are different
in nature from the definition of contagiousness. Contagiousness requires every P ∈ P to satisfy certain
requirements, and those requirements concern all triples A,B,C ∈ Arg, while for both implicativeness
and disjunctiveness we merely have to find a single pattern of the relevant kind. For this reason,
we are able to directly reuse the results of Endriss and Grandi [24] regarding implicativeness and
disjunctiveness here, while we had to prove Lemma 2 from scratch.

With all the relevant definitions now in place, we can formally restate the result of Endriss and
Grandi [24, Theorem 18] using our present terminology as follows:

Let P be a collection of AF-properties that is both implicative and disjunctive. Then, for
|Arg | > 3, any unanimous, grounded, neutral, and independent aggregation rule F that
preserves P must be a dictatorship.

We are now ready to state and prove our result on the preservation of argument acceptability.14

It relies on the following lemma, the proof of which can be found in the appendix. Like the proof of
Lemma 3, it is a simple application of Lemma 2.

Lemma 5. Let P be the collection of AF-properties representing either credulous or sceptical argument
acceptability under either the grounded, the ideal, the complete, the preferred, the semi-stable, or the
stable semantics. Then, for |Arg | > 4, any unanimous, grounded, and independent aggregation rule F
that preserves P must be neutral.

Theorem 6. Let P be the collection of AF-properties representing either credulous or sceptical argu-
ment acceptability under either the grounded, the ideal, the complete, the preferred, the semi-stable,

13Our definitions of implicativeness and disjunctiveness are special cases of the more general definitions given by
Endriss and Grandi [24]. They simplify exposition and are sufficient for our purposes here.

14Recall that for the grounded and the ideal semantics, the notions of credulous and sceptical acceptability coincide,
i.e., for them the formulation of the theorem could be simplified, by simply speaking of “argument acceptability”.
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or the stable semantics. Then, for |Arg | > 4, any unanimous, grounded, and independent aggregation
rule F that preserves P must be a dictatorship.

Proof. Let Arg = {A,B,C,D, . . .}, let P be one of the twelve collections of AF-properties of interest
(credulous or sceptical acceptability under one of the six semantics), and let F be defined as in the
statement of the theorem. By Lemma 5, F must also be neutral. Thus, by the aforementioned result
of Endriss and Grandi [24, Theorem 18], we are done if we can show that each of the twelve instances
of P is both implicative and disjunctive.

Let us first prove implicativeness. Suppose we are interested in the acceptability of argument C.
Let Att = {D ⇀ B}, att1 = (B ⇀ C), att2 = (C ⇀ D), and att3 = (A ⇀ B). This scenario is
sketched in the lefthand part of Figure 4. Now consider the argumentation frameworks of the form
〈Arg,Att ∪ S〉 with S ⊆ {att1, att2, att3}. If S ⊆ {att2, att3}, then C is not attacked by any other
argument. If S = {att1} or S = {att1, att3}, then C is defended by D, which is not attacked by
any other argument. If S = {att1, att2, att3}, then C is defended by A, which is not attacked by any
other argument. Thus, in all of these seven cases, either C is not attacked by any other argument
or it is defended by an argument that is not attacked by any other argument. This implies that C
must be part of the grounded extension. Hence, C is both credulously and sceptically accepted under
each of the six semantics. On the other hand, if S = {att1, att2}, then {B,C,D} forms an isolated
odd-length cycle. This means that C is neither credulously nor sceptically acceptable under any of
the six semantics. We have thus found a set of attacks Att and three individual attacks att1, att2, and
att3 such that P (Att∪S) if and only if S 6= {att1, att2}, where P is either the property of credulous or
of sceptical acceptability of C under either one of the six semantics. Hence, the collection P, which
includes P , is implicative.

Next, we show disjunctiveness. Suppose we are interested in the acceptability of D. Let Att =
{C ⇀ D}, att1 = (A ⇀ C), and att2 = (B ⇀ C). This scenario is depicted on the righthand side of
Figure 4. Consider all argumentation frameworks 〈Arg,Att ∪ S〉 with S ⊆ {att1, att2}. If S = {att1},
then D is defended by A. If S = {att2}, then D is defended by B. If S = {att1, att2}, then D is
defended by both A and B. In all three cases, D is defended by some argument that is not attacked
by any other argument. This implies that D must be part of the grounded extension and thus both
credulously and sceptically accepted under all six semantics. However, if S = ∅, then D is attacked by
C and not defended by any other argument, which means that D is neither credulously nor sceptically
acceptable under any of the six semantics. To summarise, we have seen that P (Att∪ S) if and only if
S 6= ∅, where P is the property of credulous or of sceptical acceptability of D under either one of the
six semantics. Hence, P is a disjunctive collection of AF-properties.

Recall that Theorem 6 applies only when |Arg | > 4. This covers all cases of practical interest, but
from a purely technical point of view one might still wonder whether the theorem could maybe be
strengthened to |Arg | > 3. We conjecture that the bound on the cardinality of Arg used in Theorem 6
and all similar bounds in later theorems are sharp, but we have no been able to verify this conjecture
in all cases. Only in some cases are there obvious counterexamples. For example, we know that for
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|Arg | = 3 argument acceptability under the grounded semantics is preserved by the strict majority
rule,15 which of course satisfies the three axioms mentioned in Theorem 6.

4.3. The property of being an extension

Next, we turn to the property of a given set of arguments being an extension under one of the six seman-
tics. We obtain impossibility results for five out of the six semantics and—somewhat surprisingly—a
positive result for the stable semantics. Our impossibility results differ very subtly for the grounded
and the ideal semantics on the one hand, and the complete, the preferred, and the semi-stable se-
mantics on the other. In all five cases, they show that the preservation of extensions is impossible by
means of a “simple” aggregation rule, unless we are willing to use a dictatorship.

Theorem 7. For |Arg | > 4, any unanimous, grounded, and independent aggregation rule F that
preserves either grounded or ideal extensions must be a dictatorship.

Theorem 8. For |Arg | > 5, any unanimous, grounded, and independent aggregation rule F that
preserves either complete, preferred, or semi-stable extensions must be a dictatorship.

Proofs of both theorems can be found in the appendix. They employ the same technique as for
the proof of Theorem 6: we first show that the relevant collections of AF-properties are contagious
(to be able to apply Lemma 2) and then that they are both implicative and disjunctive (to be able to
apply the result of Endriss and Grandi [24]).

Note that Theorem 7 and Theorem 8 differ with respect to the number of arguments required
for the result to apply. Again, we do not know whether all of these bounds are sharp, but we do
know that the same proof technique cannot be used to lower the bounds stated in the theorems. For
instance, for Theorem 8 the same kind of proof does not go through for |Arg | > 4. To verify this, we
have written a computer program that enumerates all relevant scenarios involving four arguments and
found that we cannot establish the conditions for implicativeness in this manner. On the other hand,
we also know that neither the strict majority rule nor any other quota rule can be used to construct a
counterexample to Theorem 7 for |Arg | = 3.16 So, while we still conjecture the bound stated in that
theorem to be sharp, proving that it is by finding a counterexample is more difficult in this case than
it is for Theorem 6.

Interestingly, for the preservation of stable extensions we obtain a much more positive result:

Proposition 9. The nomination rule preserves stable extensions.

Proof. Let F be the nomination rule. Consider any set ∆ ⊆ Arg and any profile ⇀ = (⇀1, . . . ,⇀n)
such that ∆ is stable in 〈Arg,⇀i〉 for all i ∈ N . According to Theorem 1, given that F is grounded,
F preserves conflict-freeness. Thus, ∆ is conflict-free in 〈Arg, F (⇀)〉.

What remains to be shown is that ∆ attacks every argument B ∈ Arg \∆. In case ∆ = Arg, the
claim holds vacuously. Otherwise, consider an arbitrary argument B ∈ Arg\∆. We need to show that
B is attacked by some argument in ∆ in F (⇀). Take the argumentation framework AFi = 〈Arg,⇀i〉
for some i ∈ N . As ∆ is stable in AFi by assumption, there exists an argument A ∈ ∆ such that
A ⇀i B. As F is the nomination rule, we also get (A ⇀ B) ∈ F (⇀) as claimed.

15To see this, suppose Arg = {A,B,C} and focus on the acceptability of C. If C is part of the grounded extension
for all individual argumentation frameworks, then in each of them either C is not attacked at all or it is defended by
a third argument that is itself not attacked. In the latter case, w.l.o.g., suppose C is attacked by B, which is attacked
by A, which is not attacked by any argument. Thus, if there is a strict majority for B ⇀ C, then there also must be a
strict majority for A ⇀ B. Hence, either C is not attacked in the outcome, or it is defended successfully.

16For example, to see that the strict majority rule does not preserve grounded extensions in all cases when |Arg | = 3
(even though, as we have seen, it does preserve acceptability of individual arguments under the grounded semantics),
consider the profile with two agents where the first agent reports {A ⇀ B,B ⇀ C} and the second reports {C ⇀ B,B ⇀
A}. Both individual grounded extensions are equal to {A,C}, but the strict majority outcome is the argumentation
framework without any attacks and thus has the grounded extension {A,B,C}.
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4.4. Nonemptiness of the grounded and the ideal extension

We have seen that preserving the grounded extension and the ideal extension is impossible for simple
yet reasonable aggregation rules (see Theorem 7). What about the seemingly less demanding require-
ment of at least preserving nonemptiness of the unique extension defined by each one of these two
semantics? First, the bad news is that for the ideal semantics this intuition fails and the same kind
of impossibility prevails.

Theorem 10. For |Arg | > 4, any unanimous, grounded, and independent aggregation rule F that
preserves nonemptiness of the ideal extension must be a dictatorship.

We prove Theorem 10 in the appendix by showing that nonemptiness of the ideal extension is an
AF-property that is contagious, implicative, and disjunctive.

For the grounded semantics, however, we can do better. For instance, it is easy to check that
the unanimity rule preserves nonemptiness of the grounded extension. Still, as we shall see next, we
cannot do much better: only rules that grant veto powers to some agents will work. Recall that
the grounded extension is nonempty if an only if at least one argument is not attacked by any other
argument. Thus, this AF-property is about the absence of attacks, while the technique we employed to
prove Theorem 7 (and all other impossibility results we have encountered so far) exploits the presence
of certain attacks (to see this, recall the definitions of implicativeness and disjunctiveness). We are
now going to present our preservation result regarding the nonemptiness of the grounded extension
as a corollary to a more general theorem about the preservation of AF-properties that require the
absence of certain attacks. We first define a suitable meta-property.

Definition 20. Let k ∈ N. An AF-property P is called k-exclusive if there exist k distinct attacks
att1, . . . , attk ∈ Arg × Arg such that (i) {att1, . . . , attk} ⊆ (⇀) for no attack-relation ⇀ with P (⇀),
and (ii) for every S ( {att1, . . . , attk} there exists an attack-relation ⇀ such that S ⊆ (⇀) and P (⇀).

Thus, you cannot accept all k attacks, but you should be able to accept any proper subset of them.
We call of collection P of AF-properties k-exclusive if at least one property P ∈ P is k-exclusive.17

We are able to prove the following powerful theorem (recall that n is the number of agents in N).

Theorem 11. Let k > n and let P be an AF-property that is k-exclusive. Then under any neutral
and independent aggregation rule F that preserves P at least one agent must have veto powers.

Proof. Let k > n, let P be an AF-property that is k-exclusive, and let F be an aggregation rule that
is neutral and independent. We need to show that, if F preserves P , then F must give some agents
the power to veto the collective acceptance of attacks.

First, observe that, if an aggregation rule F is both neutral and independent, then there exists a
(single) family of winning coalitions W ⊆ 2N such that, for all profiles ⇀ and all potential attacks
att ∈ Arg×Arg, the following relationship holds:

att ∈ F (⇀) if and only if N⇀
att ∈ W

Recall that i ∈ N having veto powers under F means that F (⇀) ⊆ (⇀i) for every profile ⇀. Let
us show that an agent i ∈ N has veto powers, if she is a member of all winning coalitions:

i ∈
⋂

C∈W

C implies F (⇀) ⊆ (⇀i) for all profiles ⇀

If
⋂

C∈W C = ∅, then the above claim holds vacuously. Otherwise, take any attack att ∈ F (⇀).
As att got accepted, N⇀

att must be a winning coalition, i.e., N⇀
att ∈ W and therefore i ∈ N⇀

att . But this
is just another way of saying att ∈ (⇀i), so we are done.

17We include this generalisation of the definition of k-exclusiveness for the sake of completeness, even though, in this
paper, we only apply the concept of k-exclusiveness to single AF-properties.
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Next, we are going to show that the fact that F preserves the k-exclusive AF-property P implies
that the intersection of any k winning coalitions must be nonempty:

C1 ∩ · · · ∩ Ck 6= ∅ for all C1, . . . ,Ck ∈ W

For the sake of contradiction, assume there do exist winning coalitions C1, . . . ,Ck ∈ W such that
C1 ∩ · · · ∩ Ck = ∅. We construct a profile ⇀ = (⇀1, . . . ,⇀n) with P (⇀i) for all i ∈ N as follows: for
every j ∈ {1, . . . , k}, exactly the agents in Cj accept attack attj (for all other attacks, it is irrelevant
which agents accept them). As, by our assumption, no agent is a member of all k winning coalitions,
no agent accepts all k attacks, so this construction indeed is possible for a k-exclusive property such
as P . However, as each of the k attacks is supported by a winning coalition, they all get accepted,
i.e., {att1, . . . , attk} ⊆ F (⇀), meaning that the outcome does not satisfy P . Thus, we have found a
contradiction to our assumption of F preserving P and are done.

Let us briefly recap where we are at this point. We know that F is characterised by a family
of winning coalitions W. We also know that C1 ∩ · · · ∩ Ck 6= ∅ for all C1, . . . ,Ck ∈ W. We need
to show that some agents have veto powers, and we know that this is the case if we can prove that
C(1) ∩ · · · ∩ C(`) 6= ∅, where {C(1), . . . ,C(`)} is some enumeration of the coalitions in W. Thus, we are
done, if we can show that C1 ∩ · · · ∩ Ck 6= ∅ for all C1, . . . ,Ck ∈ W implies C(1) ∩ · · · ∩ C(`) 6= ∅. We
are going to prove the contrapositive, namely that the following holds for some C1, . . . ,Ck ∈ W:

C(1) ∩ · · · ∩ C(`) = ∅ implies C1 ∩ · · · ∩ Ck = ∅

In words, we need to show that in case the intersection of all winning coalitions is empty, then so
is at least one intersection of just k winning coalitions.

Recall that we have assumed k > n. We construct a setW ′ ⊆ W of k (or fewer) winning coalitions
as follows. Initially, set W ′ := ∅. Then, for every j from 1 to ` in turn, add C(j) to W ′ if and only if
the following condition is satisfied:18(

C(j) ∩
⋂

C∈W′

C

)
(

( ⋂
C∈W′

C

)

Thus, every additional C(j) is selected only if it causes the removal of at least one further agent
from the intersection. As there are only n agents, we therefore will pick at most n coalitions. Hence,
we will indeed arrive at a family W ′ of n or fewer—and thus certainly at most k—winning coalitions,
the intersection of which is empty. This completes the proof.

We note that, unlike for impossibility theorems such as Theorem 6, for Theorem 11 (and the
results we are going to prove in the sequel by reference to this theorem), it is not possible to remove
the neutrality axiom from the set of assumptions and to instead derive neutrality using independence
and the requirement of preserving P . Indeed, it is easy to construct counterexamples. One such
counterexample is the rule that always rejects all attacks except for A ⇀ B, on which it decides
by majority. This rule is independent and does not grant veto powers to any of the agents, yet it
guarantees preservation of any k-exclusive AF-property.19

Let us now return to the issue of the preservation of the nonemptiness of the grounded extension.
It suffices to show that this AF-property is an |Arg |-exclusive property to obtain the following result.

Theorem 12. If |Arg | > n, then under any neutral and independent aggregation rule F that preserves
nonemptiness of the grounded extension at least one agent must have veto powers.

18By convention, let
⋂

C∈∅ C = N , i.e., the intersection of no winning coalitions is defined as the universe N of all
agents.

19For k > 1, this holds vacuously, as the outcome will at most include the single attack A ⇀ B. For k = 1 and if the
attack of interest is att1 = (A ⇀ B), then no individual agent is allowed to accept att1, so it will not be collectively
accepted either. Note that this construction crucially depends on the aggregation rule violating the neutrality axiom.
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Proof. To obtain the claim as a corollary to Theorem 11, we need to show that the property of an
argumentation framework having a nonempty grounded extension is a k-exclusive AF-property for
k = |Arg |. Recall that having a nonempty grounded extension is equivalent to the property of having
at least one argument that is not attacked by any other argument. We are going to show that the
latter property is k-exclusive for k = |Arg |.

So let k = |Arg |. If k = 1, then the claim holds vacuously. So, w.l.o.g., assume that k > 1. Take
an arbitrary enumeration {A(1), . . . , A(k)} of Arg and consider the set of attacks {att1, . . . , attk} with
atti = (A(i) ⇀ A(i+1)) for i < k and attk = (A(k) ⇀ A(1)). Clearly, this set of attacks meets our
requirements: (i) if {att1, . . . , attk} ⊆ (⇀), then ⇀ does not have the property of leaving at least one
argument without an attacker and (ii) for every S ( {att1, . . . , attk} there exists an attack-relation
⇀ with S ⊆ (⇀), namely S itself, that does leave one or more arguments without an attacker.

We note that it is not difficult to prove that the converse of Theorem 12 holds as well: all rules that
grant veto powers to at least one agent preserve nonemptiness of the grounded extension. To see this,
observe that, if we start with an argumentation framework with a nonempty grounded extension (and
thus at least one unattacked argument) and remove some of the attacks, then the grounded extension
will remain nonempty (as that same argument remains unattacked). Therefore, as long as at least
one agent with veto powers submits an argumentation framework in which at least one argument is
unattacked, the same will be true for the outcome.

4.5. Acyclicity and coherence

The final group of AF-properties for which we wish to analyse the conditions under which they
can be preserved under aggregation are properties that guarantee that several of the argumentation
semantics agree on what arguments are (credulously or sceptically) acceptable. Recall that acyclicity
guarantees that all six semantics agree with the grounded semantics and thus unambiguously define
which arguments to accept. Also recall that coherence is a weaker property that ensures that the
stable, the semi-stable, and the preferred semantics coincide. It is defined as the AF-property of every
preferred extension being a stable extension (the rest follows from the known relationships between
these three semantics).

Acyclicity is a prime example for a k-exclusive property, so we immediately obtain the following
result as another simple corollary to Theorem 11.20

Theorem 13. If |Arg | > n, then under any neutral and independent aggregation rule F that preserves
acyclicity at least one agent must have veto powers.

For the sake of completeness, the straightforward proof is given in the appendix. We note that,
just as for Theorem 12, the converse of Theorem 13 is immediately seen to hold as well, i.e., all
aggregation rules that grant veto powers to some agents clearly preserve acyclicity. This includes the
qualified majority rules studied by Tohmé et al. [9].

Finally, regarding the preservation of the coherence of argumentation frameworks, we obtain the
following impossibility result.

Theorem 14. For |Arg | > 4, any unanimous, grounded, and independent aggregation rule F that
preserves coherence must be a dictatorship.

Thus, somewhat surprisingly, even though acyclicity is a stronger property than coherence, it is
easier to preserve under aggregation. The proof of Theorem 14 can be found in the appendix. It
amounts to showing that coherence is an AF-propert that is contagious, implicative, and disjunctive,
i.e., this is yet another application of the technique of Endriss and Grandi [24].

20Theorem 13 was anticipated in the work of Tohmé et al. [9], who make a similar claim, but without appealing
to the neutrality axiom. We stress that Theorem 13 cannot be strengthened by dropping neutrality from the set of
assumptions. Indeed, there are rules that preserve acyclicity, that are independent (but not neutral), and that do not
give veto powers (regarding all potential attacks) to any of the agents. An example, for N = {1, 2} and Arg = {A,B},
is the rule that accepts A ⇀ B if at least one agent does and that accepts B ⇀ A if both agents do.
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5. Conclusion

Using a variety of techniques, we have attempted to paint a clear picture of the capabilities and
limitations of simple aggregation rules regarding the preservation of properties related to the semantics
of abstract argumentation frameworks. While the significance of this issue and the promise of social
choice theory for its resolution have previously been emphasised in the work of several authors [9,
13, 14, 16], this is the first systematic analysis of its kind. Our results show that only the most
basic of properties, namely conflict-freeness, is preserved by essentially all rules. More demanding
properties require either the nomination rule, a rule granting some agents veto powers, or a rule that
is dictatorial. Thus, the rules imposed on us by these results range from the positive, to the highly
restrictive, to the clearly unacceptable.

We stress that these results only apply to simple rules, in particular, to rules that satisfy the axiom
of independence. Using aggregation rules that are independent has the advantage that we can focus on
one attack at a time when we determine the outcome, thereby simplifying the process of aggregation in
both conceptual and computational terms. On the other hand, requiring independence clearly limits
the design space for aggregation rules we can explore and prevents us from incorporation complex
dependencies in the aggregation process. An alternative route, the one chosen by Coste-Marquis et al.
[8], is to use distance-based rules (which violate independence). Such rules can be designed so as to
guarantee specific properties of the outcome, so the question of preservation does not arise. On the
downside, distance-based rules are computationally intractable [44, 45, 46]. We also stress that our
results are based on the assumption that all agents report attack-relations over a single common set
of arguments. Richer models, where different agents may choose to put forward of different sets of
arguments [see, e.g., 8, 15], are clearly of great interest as well and should be studied in future work.
Finally, we stress that our results apply to one specific and highly abstract model of argumentation
only [7], albeit one that that has been exceptionally well received by the scientific community. Future
work should also be directed at understanding to what extent our approach can be applied to models
other than Dung’s classical model of abstract argumentation. Natural candidates for such models
are, first and foremost, those that are relatively close to Dung’s model, such as bipolar abstract
argumentation systems [47] or Bench-Capon’s value-based argumentation frameworks [48]. In the
long run, we recommend to attempt also going beyond such abstract models of argumentation and to
consider structured forms of argumentation that account for the internal logical structure of individual
arguments and thereby come closer to accurately modelling features of argumentation found in debates
occurring in the real world [see, e.g., 4, 33].

At the methodological level, we believe that Theorem 11, which shows that simple rules that
preserve k-exclusive properties must give some agents veto powers, is of particular interest as it likely
will find application also beyond the confines of abstract argumentation, in the same way as the results
of Endriss and Grandi [24] on contagious, implicative, and disjunctive properties can be applied to
a range of domains of graph aggregation. Also of some methodological interest are our simplified
forms of the meta-properties of contagiousness, implicativeness, and disjunctiveness originally due to
Endriss and Grandi and our observation that these meta-properties can not only be applied to single
properties of graphs but also to collections of properties. For contagiousness, in particular, this makes
a significant difference, as a collection of properties can be contagious even if no single property in
that collection is contagious.

Staying with the theme of methodology for a moment, the techniques we have employed to prove
impossibility theorems reduce the task of finding a proof to the task of identifying suitable scenarios
that show that a given property (or collection of properties) is contagious, implicative, disjunctive, or
k-exclusive. Once such a scenario is found, presenting and verifying the proof is routine, but finding
such a scenario can be difficult. In some cases we have found these scenarios with the help of a
computer program (the same program we used to verify that our techniques cannot be used to lower
the bounds on the number of arguments for the theorems reported in Section 4.3) and in some cases
we have verified the correctness of the constructions on which our proofs rely using an existing tool
for computing extensions of abstract argumentation frameworks [38]. This suggests that there is room
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for applying automated reasoning tools in this domain, an approach that recently has been used very
successfully in several other areas of computational social choice [49]. Investigating this point further
constitutes another promising direction for future work.

Finally, there are natural opportunities for investigating application scenarios of our work. One
such scenario has been presented in recent work by Shi et al. [50], who propose an approach for
modelling an agent’s beliefs in which beliefs are grounded in arguments. If one were to attempt to
extend this model to also allow for the representation of groups of agents as well as their beliefs and
pieces of evidence for those beliefs, then it may be possible to use our techniques to analyse aggregation
rules for selecting the beliefs and the supporting evidence for the group. As a second example for
a promising scenario of application, it would be interesting to investigate the strategic incentives of
agents who are reporting an argumentation framework to an aggregation rule and whose objective
might be to get a certain argument accepted.21 This problem is similar to the problem of strategic
manipulation in voting [52]. Recall that it is well-known that strategyproofness is closely linked to
the independence axiom in voting [23], meaning that the insights regarding independent aggregation
rules collected in this paper may well be of direct relevance to such an investigation.
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[31] S. Eğilmez, J. Martins, J. Leite, Extending social abstract argumentation with votes on at-
tacks, in: Proceedings of the 2nd International Workshop on Theory and Applications of Formal
Argumentation (TAFA), Springer, 2014, pp. 16–31.

[32] M. Caminada, L. Amgoud, On the evaluation of argumentation formalisms, Artificial Intelligence
171 (2007) 286–310.

[33] H. Prakken, An abstract framework for argumentation with structured arguments, Argument
and Computation 1 (2010) 93–124.

[34] S. Modgil, Revisiting abstract argumentation frameworks, in: Proceedings of the 2nd Interna-
tional Workshop on Theory and Applications of Formal Argumentation (TAFA), Springer, 2014,
pp. 1–15.

[35] M. Caminada, Semi-stable semantics, in: Proceedings of the 1st International Conference on
Computational Model of Argument (COMMA), IOS Press, 2006, pp. 121–130.

[36] P. M. Dung, P. Mancarella, F. Toni, Computing ideal sceptical argumentation, Artificial Intelli-
gence 171 (2007) 642–674.

[37] P. Baroni, M. Caminada, M. Giacomin, An introduction to argumentation semantics, Knowledge
Engineering Review 26 (2011) 365–410.

[38] S. Bistarelli, F. Santini, ConArg: A constraint-based computational framework for argumentation
systems, in: Proceedings of the 23rd IEEE International Conference on Tools with Artificial
Intelligence (ICTAI), IEEE, 2011, pp. 605–612.

[39] D. Grossi, G. Pigozzi, Judgment Aggregation: A Primer, Synthesis Lectures on Artificial Intelli-
gence and Machine Learning, Morgan & Claypool Publishers, 2014.

[40] F. Dietrich, C. List, Judgment aggregation by quota rules: Majority voting generalized, Journal
of Theoretical Politics 19 (2007) 391–424.

[41] K. J. Arrow, Social Choice and Individual Values, 2nd ed., John Wiley and Sons, 1963. First
edition published in 1951.

[42] C. List, P. Pettit, Aggregating sets of judgments: An impossibility result, Economics and
Philosophy 18 (2002) 89–110.

[43] I. McLean, A. B. Urken (Eds.), Classics of Social Choice, University of Michigan Press, 1995.

[44] S. Konieczny, J. Lang, P. Marquis, DA2 merging operators, Artificial Intelligence 157 (2004)
49–79.

[45] E. Hemaspaandra, H. Spakowski, J. Vogel, The complexity of Kemeny elections, Theoretical
Computer Science 349 (2005) 382–391.

23



A B

CD

Figure 5: Scenario used in the proof of Lemma 5.

[46] U. Endriss, U. Grandi, D. Porello, Complexity of judgment aggregation, Journal of Artificial
Intelligence Research (JAIR) 45 (2012) 481–514.

[47] C. Cayrol, M. Lagasquie-Schiex, Bipolar abstract argumentation systems, in: I. Rahwan, G. R.
Simari (Eds.), Argumentation in Artificial Intelligence, Springer, 2009, pp. 65–84.

[48] T. J. M. Bench-Capon, Persuasion in practical argument using value-based argumentation frame-
works, Journal of Logic and Computation 13 (2003) 429–448.

[49] C. Geist, D. Peters, Computer-aided methods for social choice theory, in: U. Endriss (Ed.),
Trends in Computational Social Choice, AI Access, 2017, pp. 249–267.

[50] C. Shi, S. Smets, F. R. Velázquez-Quesada, Argument-based belief in topological structures,
in: Proceedings of the 16th Conference on Theoretical Aspects of Rationality and Knowledge
(TARK), 2017, pp. 489–503.

[51] I. Rahwan, K. Larson, Argumentation and game theory, in: I. Rahwan, G. R. Simari (Eds.),
Argumentation in Artificial Intelligence, Springer, 2009, pp. 321–339.

[52] A. D. Taylor, Social Choice and the Mathematics of Manipulation, Cambridge University Press,
2005.

Appendix: Remaining Proofs

In this appendix we present the proofs omitted from the body of the paper. They all have the
same structure: they show that a given collection of semantic AF-properties of interest has certain
meta-properties, which allows us to apply certain more general results. Only the first proof for each
meta-property is included in the body of the paper.

Proof of Lemma 5 (neutrality lemma for argument acceptability)

Suppose |Arg | > 4. Let P be the collection of AF-properties representing either credulous or sceptical
argument acceptability under either the grounded, the ideal, the complete, the preferred, the semi-
stable, or the stable semantics. The claim follows from Lemma 2 if we can show that P is contagious.
So consider any three arguments A,B,C ∈ Arg. As |Arg | > 4, we can pick a fourth argument
D ∈ Arg. Let Att = {C ⇀ D,D ⇀ B} and consider the four argumentation frameworks of the
form 〈Arg,Att ∪ S〉 with S ⊆ {A ⇀ B,B ⇀ C}. They are indicated in Figure 5. Now focus on the
acceptability of argument C. If S = ∅ or S = {A ⇀ B}, then C is not attacked by any other argument
and thus a member of the grounded extension and thereby credulously and sceptically accepted under
all six semantics. If S = {A ⇀ B,B ⇀ C}, then C is defended by A, which is not attacked by
any other argument. Hence, C is a member of the grounded extension and thereby credulously and
sceptically accepted under all six semantics also in this case. If S = {B ⇀ C}, on the other hand, we
obtain an isolated odd-length cycle including C, which means that C is not part of any extension under
any of the six semantics. Hence, both credulous and sceptical acceptability of C is an AF-property of
the kind we require, under all of the six semantics. �
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Figure 6: Scenarios used in the proof of Theorem 7.

Proof of Theorem 7 (extension preservation for the grounded and ideal semantics)

Suppose |Arg | > 4. Let P be either the collection of AF-properties representing a given set of
arguments being the grounded extension or that of a given set of arguments being the ideal extension.
We need to show that P is contagious, implicative, and disjunctive in both cases.

Contagiousness. Consider any four arguments A,B,C,D ∈ Arg. Suppose we are interested in the
property of {A,C,D} being the grounded or the ideal extension. We define Att as follows:

Att = {C ⇀ B} ∪ {D ⇀ X | X ∈ Arg \ {A,B,C,D}}

Consider the argumentation frameworks of the form 〈Arg,Att ∪ S〉 with S ⊆ {A ⇀ B,B ⇀ C}.
They are indicated in the leftmost part of Figure 6. The reader may verify that for S 6= {B ⇀ C}, both
the grounded and the ideal extension indeed are {A,C,D}: these are the arguments that are either
successfully defended or not attacked at all, while B is not. On the other hand, for S = {B ⇀ C},
both the grounded and the ideal extension are {A,D}. Thus, P is contagious.

Implicativeness. Let Arg = {A,B,C,D, . . .}. We focus on Arg \ {C} as the subset of arguments that
may (or may not) form the grounded or the ideal extension. We define Att = {B ⇀ C,D ⇀ C},
att1 = (C ⇀ D), att2 = (C ⇀ B), and att3 = (A ⇀ C). This scenario is depicted in the middle
part of Figure 6. Consider all argumentation frameworks of the form AF = 〈Arg,Att ∪ S〉 with
S ⊆ {att1, att2, att3}. The reader may verify that, indeed, for S 6= {att1, att2} both the grounded and
the ideal extension are equal to Arg \ {C}. On the other hand, for S = {att1, att2} both of them are
equal to Arg \ {B,C,D}. Thus, P is implicative.

Disjunctiveness. Let Arg = {A,B,C,D, . . .}. We again focus on Arg\{C} as the subset of arguments
that may (or may not) form the grounded or the ideal extension. We define Att = {C ⇀ D},
att1 = (A ⇀ C), and att2 = (B ⇀ C). This is shown on the righthand side of Figure 6. Consider
argumentation frameworks AF = 〈Arg,Att ∪ S〉 with S ⊆ {att1, att2}. As the reader can easily verify,
if S 6= ∅, then Arg\{C} is both the grounded and ideal extension of AF. But if S = ∅, then Arg\{D}
is both the grounded and the ideal extension. Thus, P is disjunctive. �

Proof of Theorem 8 (extension preservation for the complete, preferred, and semi-stable semantics)

Suppose |Arg | > 5. Let P be the collection of AF-properties representing a given set of arguments
being an extension under either the complete, the preferred, or the semi-stable semantics. We need
to show that P is contagious, implicative, and disjunctive in all three cases.
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Figure 7: Scenarios used in the proof of Theorem 8.

Contagiousness. We first consider the case of complete extensions. Consider any five arguments
A,B,C,D,E ∈ Arg. Let Arg \ {B,D,E} be the set of arguments of interest. We define Att = {D ⇀
B,D ⇀ E,E ⇀ D}. Now consider the argumentation frameworks of the form 〈Arg,Att ∪ S〉 with
S ⊆ {A ⇀ B,B ⇀ C}. This scenario is depicted in the upper lefthand corner of Figure 7. If
S 6= {B ⇀ C}, then Arg \ {B,D,E} is a complete extension. But if S = {B ⇀ C}, then it is not,
because C is attacked but not defended by A or any other argument in the set. Thus, being a complete
extension is contagious.

Next, we consider the case of preferred and semi-stable extensions, where contagiousness can be
established even for |Arg | > 4. So consider four arguments A,B,C,D,∈ Arg. Let Arg\{A,B,C,D} be
the set of interest, i.e., we ask whether it is possible that none of our four distinguished arguments will
get accepted. We define Att = {A ⇀ B,B ⇀ C,C ⇀ A,C ⇀ D}. Now consider the argumentation
frameworks of the form 〈Arg,Att ∪ S〉 with S ⊆ {B ⇀ D,D ⇀ A}. This scenario is shown in the
lower lefthand corner of Figure 7. If S 6= {D ⇀ A}, then no subset of {A,B,C,D} other than ∅ is
admissible. Hence, in these three cases, Arg \ {A,B,C,D} is the only preferred extension, and thus
also the only semi-stable extension. However, for S = {D ⇀ A} the set Arg \ {A,B,C,D} is not a
preferred extension (and thus also not a semi-stable extension), because its superset Arg \ {A,C} is
admissible as well. Thus, being either a preferred or a semi-stable extension is contagious.

Implicativeness. Let Arg = {A,B,C,D,E, . . .}. We again start with the case of complete extensions.
We focus on the set Arg \ {A,C,D,E} as a possible complete extension. Define Att = {A ⇀ D,D ⇀
A,C ⇀ D,D ⇀ C,D ⇀ E}, att1 = (B ⇀ A), att2 = (B ⇀ C), and att3 = (E ⇀ D). This
scenario is shown in the middle of the top row in Figure 7. Now consider the eight argumentation
frameworks of the form 〈Arg,Att ∪ S〉 with S ⊆ {att1, att2, att3}. In all eight cases, B is part of
every complete extension, because it is not attacked. If S 6= {att1, att2}, then (as far as our five
distinguished arguments are concerned) it is possible to accept only B, i.e., Arg \ {A,C,D,E} is
a complete extension. But for S = {att1, att2}, we also must accept D, because it is successfully
defended by B. Hence, being a complete extension is implicative.

Next, we turn to the preferred and the semi-stable semantics. Let Arg \ {A,B,C,D,E} be the set
of arguments under consideration. Define Att = {B ⇀ C,D ⇀ A,D ⇀ B,D ⇀ E,C ⇀ D,E ⇀ C},
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Figure 8: Scenarios used in the proof of Theorem 10.

att1 = (A ⇀ B), att2 = (A ⇀ E), and att3 = (A ⇀ C). This situation is sketched in the middle of
the bottom row in Figure 7. We again consider the eight argumentation frameworks 〈Arg,Att ∪ S〉
with S ⊆ {att1, att2, att3}. First, consider the seven argumentation frameworks with S 6= {att1, att2}.
The reader may verify that none of the nonempty and conflict-free subsets of {A,B,C,D,E} is
admissible. Hence, Arg \ {A,B,C,D,E} is the only preferred extension (and thus also the only
semi-stable extension) for any of these seven argumentation frameworks. On the other hand, if
S = {att1, att2}, then {A,C} is admissible and thus Arg\{A,B,C,D,E} cannot be either preferred or
semi-stable. Hence, both being a preferred extension and being a semi-stable extension are implicative
collections of AF-properties.

Disjunctiveness. To prove disjunctiveness of P we can use the same construction as in the proof
of Theorem 7 in all three cases. To see that this is possible, it is sufficient to observe that the
argumentation frameworks used in the proof are all acyclic, i.e., all our semantics coincide with the
grounded semantics. Observe that this means that disjunctiveness holds even for |Arg | > 4. �

Proof of Theorem 10 (preservation of nonemptiness of the ideal extension)

Suppose |Arg | > 4. We need to show that nonemptiness of the ideal extension is an AF-property that
is contagious, implicative, and disjunctive.22

Contagiousness. Fix four arguments A,B,C,D ∈ Arg. We define the set Att of attacks as follows:

Att = {A ⇀ B,A ⇀ C,A ⇀ D} ∪
{A ⇀ X | X ∈ Arg \ {A,B,C,D}} ∪
{B ⇀ X | X ∈ Arg \ {A,B,C,D}}

Now consider the four argumentation frameworks 〈Arg,Att ∪ S〉 with S ⊆ {B ⇀ C,C ⇀ A}.
This scenario is depicted in the leftmost part of Figure 8. If S 6= {C ⇀ A}, then the only preferred
extension is {A}. Hence, in these cases, the ideal extension is {A} as well and thus nonempty. But
if S = {C ⇀ A}, then there are two preferred extensions, namely {A} and {B,C,D}. As their
intersection is empty, the ideal extension must be empty as well. Thus, nonemptiness of the ideal
extension is a contagious AF-property.

Implicativeness. Let Arg = {A,B,C,D, . . .}. We define Att as follows:

Att = {D ⇀ B,D ⇀ C} ∪ {A ⇀ X | X ∈ Arg \ {A,B,C,D}}

Furthermore, let att1 = (A ⇀ D), att2 = (B ⇀ A), and att3 = (C ⇀ B). This scenario is
shown in the middle part of Figure 8. Now consider the eight argumentation frameworks of the form

22Note that this is the first time we are proving this for a single AF-property rather than a collection of properties.
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Figure 9: Scenarios used in the proof of Theorem 14.

〈Arg,Att ∪ S〉 with S ⊆ {att1, att2, att3}. Whenever S 6= {att1, att2}, there is only a single preferred
extension and A is part of it. Hence, the ideal extension is a superset of {A} and thus nonempty. But
if S = {att1, att2}, then the only preferred extension is the empty set and thus the ideal extension is
empty as well. Hence, nonemptiness of the ideal extension is an implicative AF-property.

Disjunctiveness. Let Arg = {A,B,C,D, . . .}. We define Att as follows:

Att = {A ⇀ B,B ⇀ C,C ⇀ D,D ⇀ A} ∪
{A ⇀ X | X ∈ Arg \ {A,B,C,D}} ∪
{B ⇀ X | X ∈ Arg \ {A,B,C,D}}

Furthermore, let att1 = (A ⇀ C) and att2 = (C ⇀ A). This scenario is shown on the righthand
side of Figure 8. Now consider the four argumentation frameworks of the form 〈Arg,Att ∪ S〉 with
S ⊆ {att1, att2}. If S 6= ∅, then the only preferred extension is {B,D}, which is also the ideal extension.
On the other hand, for S = ∅ the preferred extensions are {A,C} and {B,D}, meaning that the ideal
extension is empty. Thus, nonemptiness of the ideal extension is a disjunctive AF-property. �

Proof of Theorem 13 (preservation of acyclicity)

The claim holds vacuously for |Arg | = 1. So, w.l.o.g., let us assume that |Arg | > 1. Acyclicity is
an AF-property that is k-exclusive for every k ∈ {2, . . . , |Arg |}. To see this, consider the case where
the attack relations {att1, . . . , attk} form a cycle, and observe that the shortest (proper) cycle has
length 2, while the longest cycle visits every vertex exactly once and thus has length |Arg |. The claim
now follows from Theorem 11. �

Proof of Theorem 14 (preservation of coherence)

Recall that an argumentation framework is coherent if all its preferred extensions are also stable
extensions. Suppose |Arg | > 4. We need to show that coherence is an AF-property that is contagious,
implicative, and disjunctive.

Contagiousness. Fix four arguments A,B,C,D ∈ Arg. Let Att = {C ⇀ D,D ⇀ B}. Now consider
the argumentation frameworks of the form 〈Arg,Att ∪ S〉 with S ⊆ {A ⇀ B,B ⇀ C}. This scenario
is depicted on the lefthand side of Figure 9. If S = ∅, then Arg \ {D} is the only preferred and
the only stable extension. If S = {A ⇀ B} or S = {A ⇀ B,B ⇀ C}, then Arg \ {B,D} is the
only preferred and the only stable extension. Hence, each of these three argumentation frameworks
is coherent. On the other hand, if S = {B ⇀ C}, then {B,C,D} forms an isolated odd-length
cycle. Then Arg \ {B,C,D} is the only preferred extension, which however is not stable. Hence, this
argumentation framework is not coherent. In conclusion, we have shown that coherence is a contagious
AF-property.
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Implicativeness. Let Arg = {A,B,C,D, . . .}. We define Att = {D ⇀ B}, att1 = (B ⇀ C), att2 =
(C ⇀ D), and att3 = (A ⇀ B). This scenario is shown in the middle of Figure 9 and is identical
to the scenario used in the proof of Theorem 6. Now consider the eight argumentation frameworks
〈Arg,Att ∪ S〉 with S ⊆ {att1, att2, att3}. If S ⊆ {att1, att3}, then the only preferred extension is
Arg \ {B}, which is also stable. If S = {att2}, then the only preferred extension is Arg \ {D}, which
again is also stable. If S = {att2, att3} or S = {att1, att2, att3}, then the only preferred extension is
Arg\{B,D}, which once again also is stable. Thus, in all seven cases we obtain coherent argumentation
frameworks. However, if S = {att1, att2}, then the only preferred extension is Arg \ {B,C,D}, which
is not stable. So in this case, coherence is violated. Hence, coherence is an implicative AF-property.

Disjunctiveness. Let Arg = {A,B,C,D, . . .}. We define Att = {B ⇀ C,C ⇀ D,D ⇀ B}, att1 =
(A ⇀ B), and att2 = (A ⇀ D). This scenario is shown on the righthand side of Figure 9. Now
consider the four argumentation frameworks 〈Arg,Att ∪ S〉 with S ⊆ {att1, att2}. If S = {att1} or
S = {att1, att2}, then the only preferred extension is Arg \ {B,D}, which is also stable. If S = {att2},
then the only preferred extension is Arg \ {C,D}, which again is also stable. Thus, in all three cases
every preferred extension is stable. On the other hand, if S = ∅, then the only preferred extension is
Arg \ {B,C,D}, which is not stable. Hence, coherence is a disjunctive AF-property. �
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