
Answer Set Programming for Judgment Aggregation

Ronald de Haan1 and Marija Slavkovik2

1Institute for Logic, Language and Computation (ILLC), University of Amsterdam
2University of Bergen

me@ronalddehaan.eu, Marija.Slavkovik@uib.no

Abstract
Judgment aggregation (JA) studies how to aggregate
truth valuations on logically related issues. Comput-
ing the outcome of aggregation procedures is notori-
ously computationally hard, which is the likely rea-
son that no implementation of them exists as of yet.
However, even hard problems sometimes need to be
solved. The worst-case computational complexity
of answer set programming (ASP) matches that of
most problems in judgment aggregation. We take
advantage of this and propose a natural and modular
encoding of various judgment aggregation proce-
dures and related problems in JA into ASP. With
these encodings, we achieve two results: (1) paving
the way towards constructing a wide range of new
benchmark instances (from JA) for answer set solv-
ing algorithms; and (2) providing an automated tool
for researchers in the area of judgment aggregation.

1 Introduction
Judgment aggregation (JA) is a general framework for mod-
eling the aggregation of individual opinions over a set of—
typically logically related—issues into one collective value
judgment on these issues [Grossi and Pigozzi, 2014; Lang
et al., 2017]. This framework can be used to express a wide
range of aggregation scenarios, including preference aggrega-
tion and voting [Endriss, 2018; Lang and Slavkovik, 2013],
graph aggregation problems [Endriss and Grandi, 2017], and
various collective decision making problems in multi-agent
systems [Slavkovik, 2016].

A wide range of aggregation procedures has been studied in
the literature, both from an axiomatic and an algorithmic point
of view. These aggregation procedures essentially all have in
common that computing collective judgments is computation-
ally hard—generally Θ

p
2- or Σ

p
2-complete [Endriss et al., 2012;

Jamroga and Slavkovik, 2013; Lang and Slavkovik, 2014;
Endriss and de Haan, 2015; De Haan and Slavkovik, 2017].
This high worst-case complexity poses a significant barrier for
finding practically efficient implementations, and indeed, as
of yet, no structured implementation of judgment aggregation
methods is available.

However, various optimized algorithms exist for problems
with high worst-case complexity that work extremely well

in practice in many cases—including Boolean satisfiability
solvers [see, e.g., Biere et al. 2009] and answer set solvers
[see, e.g., Gebser et al. 2018]. Answer set solvers should be
of particular interest for judgment aggregation, since the un-
derlying language (answer set programming) is expressive
enough to encode problems that are Θ

p
2- and Σ

p
2-complete.

In this paper, we provide an encoding of JA problems into
answer set programming. The approach of solving JA prob-
lems in their full generality—by means of encodings into a
powerful solving framework as ASP—is complementary to
the investigation of efficient JA fragments [De Haan, 2016;
De Haan, 2018]. A combination of these two approaches is
needed to make JA methods available for practical use in a
wide range of settings.

1.1 Contributions
We present a general and modular encoding into answer set
programming for (i) computing the outcome of judgment ag-
gregation procedures and (ii) checking agenda and profile
properties in JA.

Our encodings are general, because they can be directly
used in combination with modern answer set solvers and be-
cause they allow for several aggregation problems to be imple-
mented by representing them as judgment aggregation prob-
lems. Judgment aggregation generalizes voting, preference
aggregation [Lang et al., 2017], graph aggregation [Endriss
and Grandi, 2017], etc. A small number of answer set im-
plementations exist for specific voting rules [Konczak, 2006;
Charwat and Pfandler, 2015], but they do not generalize to
other aggregation problems. To the best of our knowledge, this
constitutes the first implementation of JA methods.

Our encodings are modular because they allow for different
parts of the judgment aggregation problem to be implemented
as separate program components that can be reused and com-
bined as needed. Our work serves as an essential starting point
for efficient implementations of the framework of judgment
aggregation. As such, our work establishes a baseline for ex-
perimental evaluations of future implementations of judgment
aggregation methods.

We aim to achieve the following goals with our encodings.
(A) By encoding a wide range of JA problems into ASP in-
stances, we provide recipes for generating new benchmark in-
stances for ASP solving algorithms—for problems that are Θ

p
2-

and Σ
p
2-complete. These benchmark instances can be generated

from real-world data—for example, by encoding election data
from the PrefLib data set1 into JA, and subsequently using
the encodings in this paper, a multitude of new ASP bench-
marks can be constructed. Moreover, (B) our encodings serve
as a convenient tool for researchers in judgment aggregation,
and we hope and expect that they will help bring interesting
judgment aggregation problems to the attention of the auto-
mated reasoning community. The efforts of this community
are essential for finding optimisation solutions for judgment
aggregation problems. A third objective of our work is to
(C) support theoretical research in judgment aggregation: by
encoding various JA problems into one unified representation
and solving framework, we reveal properties of procedures
and problems that are otherwise not easily visible.

All encodings presented in this paper are available as online
supplementary material: https://github.com/rdehaan/ja-asp.2
For space reasons, we present some results without proof—
these results are indicated with a ?.

2 Preliminaries
We introduce the framework of judgment aggregation that we
use in this paper. Note that several (interchangeable) variations
of judgment frameworks are in use in the literature [Endriss
et al., 2016]—in this paper, we use the variant that is most
convenient for our purposes. We also briefly introduce the
syntax and semantics of answer set programming.

2.1 Judgment Aggregation
A judgment aggregation problem consists of a finite set Φ of
propositions called the agenda, a propositional formula Γ over
the variables from Φ called the constraint, and a profile P (of
judgments)—defined as follows. Let La be a set of atomic
propositions. A pre-agenda [Φ] is a finite set of issues ϕ ∈ La
that has Φ = {ϕ,¬ϕ : ϕ ∈ [Φ] } as corresponding agenda. A
literal is either an atom ϕ ∈ Φ or its negation ¬ϕ. We assume
that Γ is a formula given in conjunctive normal form (CNF).
A profile of judgments P = (J1, . . . , Jn) is a sequence of judg-
ment sets Ji each representing one voter (or opinion source).
A judgment set is a subset of the agenda J ⊆ Φ. It is typically
required that each judgment set is consistent and complete. A
judgment set J is complete if for each issue ϕ ∈ [Φ] either
ϕ ∈ J or ¬ϕ ∈ J. A judgment set J is consistent if J ∪ {Γ} is a
consistent set of formulas. We let J(Φ, Γ) denote the set of all
complete and consistent judgment sets. A JA procedure selects
as outcomes for a given profile a nonempty set of complete
and consistent judgments sets. We use the following running
example—borrowed from Lang et al. (2017).
Example 1. Let Φ = {i1, i2, i3, i4, i5,¬i1,¬i2,¬i3, ¬i4,¬i5}
and Γ = {(i3 ∨ ¬i4) ∧ (¬i1 ∨ ¬i3 ∨ i4) ∧ (¬i2 ∨ ¬i3 ∨ i4)}.
An example profile P is depicted in Table 1.

2.2 Answer Set Programming
We firstly define the core syntax and semantics of answer
set programming (ASP)—before discussing various exten-

1http://www.preflib.org/data
2The online supplementary material contains more than what we

present in this paper. In Section 7, we indicate some ways in which
the supplementary material goes beyond the encodings in the paper.

P i1 ¬i1 i2 ¬i2 i3 ¬i3 i4 ¬i4 i5 ¬i5

J1 � J6 + � + � + � + � + �
J7 � J10 + � + � � + � + + �
J11 � J17 � + � + + � � + � +

Majority i1 i2 i3 ¬i4 i5

Kemeny score sum 10 7 10 7 13 4 6 11 10 7
Reversal score sum 10 14 10 14 19 8 12 15 10 7

Table 1: Profile P from Example 1.

sions to the syntax and semantics. A disjunctive logic pro-
gram Π is a finite set of rules of the form h1 ∨ · · · ∨ hk
D b1, . . . , bl, not bl+1, . . . , not bt, where h1, . . . , hk, b1, . . . , bt
are propositional atoms. A rule is a fact if t = 0, and a con-
straint if k = 0. A model M of the program Π is a truth
assignment to the atoms occurring in Π that satisfies the rules
of Π (when seen as propositional logic statements). For the
sake of convenience, we often equate a model M with the set
of atoms that it sets to true. We are interested in a particular
subset of models—called answer sets. Given a model M of Π,
the reduct ΠM of Π w.r.t. M is obtained by removing from Π
every rule where b j ∈ M for some 1 ≤ j ≤ t, and removing
all literals not b j from the remaining rules. A model M is an
answer set of Π if is a subset-minimal model of ΠM .

To increase the convenience and expressivity of ASP, var-
ious extensions of the basic syntax and semantics have been
considered. We briefly discuss the variant of the ASP language
that we use in this paper, using which extensions3—for more
details, we refer to other resources, e.g., [Calimeri et al., 2013;
Gebser et al., 2017]. We use ; to express disjunctions. We
use a variant of the syntax that uses variables—rules with
variables represent the set of ground instances of these rules.
We use - as a built-in unary predicate (we use no special
interpretation for this predicate in this paper). We often use
shorthand to succinctly write a range of atoms—e.g., a(1..3)
stands for a(1), a(2) and a(3); and b(2;4) stands for b(2)
and b(4). The language that we use contains built-in arithmetic
operations—such as = and <. It also contains arithmetic aggre-
gates, such as #sum, #max, and #count—these are followed by a
set of atoms, and evaluate to an integer; e.g., #count {a,b,c}
evaluates to 3. We use conditional statements—e.g., c(X):d(X)
represents the conjunction of c(X) for all X for which d(X)
holds. We use choice rules—e.g., 1 {a,b,c} 2 expresses that
at least one and at most two atoms among a, b and c must
be true. Finally, we use optimization statements that select a
subset of answer sets that minimize or maximize a weighted
sum of atoms over different (lexicographical) priority levels—
e.g., #minimize {A@L,e(A):e(A)} expresses minimization of
atoms e(A) weighing A, at priority level L.

3 General Encoding of the Setting of JA
We present how to encode some general aspects of JA into
ASP—the encodings in this section are built upon in further
sections. Individuals are declared with voter(i) facts, and
issues with issue(x) facts. Moreover, the clauses of the in-

3The variant of the language that we use is that used by the
Potsdam Answer Set Solving Collection [Gebser et al., 2011b; Gebser
et al., 2017]. This language is a superset of the ASP-Core-2.0 standard
[Calimeri et al., 2013].

https://github.com/rdehaan/ja-asp
http://www.preflib.org/data

tegrity constraint are encoded using the predicate clause/2.4
For instance, the 5 issues and 17 voters in Example 1 can
be declared by voter(1..17) and issue(i1;i2;i3;i4;i5),
and the constraint can be encoded by clause(1,(i3;-i4)),
clause(2,(-i3;i4;-i1)) and clause(3,(-i3;i4;-i2)).

We then use the following rules to encode that each voter
must be associated with a judgment set that is consistent with
the integrity constraint—represented by the predicate js/2.

1 agent(A) :- voter(A).
2 lit(X;-X) :- issue(X).
3 1 { js(A,X) ; js(A,-X) } 1 :- agent(A),

issue(X).
4 :- agent(A), clause(C,_), js(A,-L) :

clause(C,L).

Profiles can then be encoded using the predicate js/2. For
example, the first judgment sets J1–J6 in Example 1 are en-
coded with the facts js(1..6,(i1;i2;i3;i4;i5)). We use the
predicate agent/1 for voters and for the collective outcome.
Lemma 1. Let S be an answer set of a program that contains
(i) an encoding of the issues using issue/1, (ii) an encoding
of an integrity constraint Γ using clause/2, and (iii) lines 1–
4. If agent(X) ∈ S for some X, then the set of atoms L for
which js(X,L) ∈ S corresponds to a complete and consistent
judgment set J. Moreover, without further rules and facts, this
is a one-to-one correspondence.

Proof (sketch). Line 3 (with the issue/1 facts) ensures that J
is a complete judgment set. Line 4 (with the clause/2 facts)
ensures that J is consistent with Γ. Moreover, the rules in these
lines can be satisfied by a set of atoms corresponding to any
complete and consistent judgment set J. �

4 Encoding Judgment Aggregation
Procedures

In order to generate a collective outcome, all we need to do is
to declare an agent representing the collective opinion with the
fact agent(col). We can then encode various JA procedures
from the literature as follows. In all cases, the answer sets for
the encodings represent the outcomes of the JA procedures.

That is, to compute the outcome of a judgment aggregation
procedure for a given profile, one constructs the logic pro-
gram consisting of (i) the basic encoding in lines 1–4, (ii) an
encoding of the agenda and profile using predicates voter/1,
issue/1, clause/2, and js/2, (iii) the declaration of a collec-
tive agent with the fact agent(col), and (iv) the encoding of
the desired JA procedure—as specified below. The (optimized)
answer sets of the resulting logic program then specify the
outcomes of the JA procedure for the given profile.

Throughout the remainder of this section, we will define the
different JA procedures that we discuss. For more details, we
refer to the literature (e.g., Lang et al. 2017). The encodings
in this section are specific for the problem of computing a
collective outcome for particular JA procedures.

4.1 Scoring Procedures
We begin with several JA procedures that are based on a notion
of score. A score s : J(Φ,Γ) × Φ → R+ is a function that

4We use pred/x to indicate that the predicate pred has arity x.

assigns a nonnegative value for a judgment in Φ with respect
to some J. The scoring procedure Fs for the score s is defined
as Fs(P) = arg maxJ∈J(Φ,Γ)

∑
Ji∈P
∑
ϕ∈J s(Ji, ϕ).

4.2 Kemeny
The Kemeny procedure Kem is based on the Kemeny score sK
where sK(J, ϕ) = 1 if ϕ ∈ J and sK(J, ϕ) = 0 otherwise.
For the profile P in Example 1, for instance, Kemeny se-
lects {i1, i2, i3, i4, i5}.

We can encode the Kemeny procedure by maximizing agree-
ment with the weighted majority.

5 wgt(X,N) :- lit(X), N = #count
{ A : voter(A), js(A,X) }.

6 #maximize { N@1,wgt(X,N) : wgt(X,N),
js(col,X) }.

Theorem 1. The optimal answer sets S for the ASP encoding
of the Kemeny procedure applied to a profile P are in one-to-
one correspondence with Kem(P).

Proof (sketch). Take an arbitrary optimal answer set S .
By Lemma 1, and since agent(col) ∈ S , we know
that { L : js(col,L) } corresponds to a complete and con-
sistent judgment set J∗. Lines 5–6 ensure that optimal answer
sets maximize the cumulative Kemeny score sK—thus, J∗ ∈
Kem(P). Conversely, each J∗ ∈ Kem(P) can be translated into
an optimal answer set S . �

4.3 Leximax
The Leximax procedure Lex can be defined using a score as
follows—it is more commonly defined in a procedural way
(see, e.g., Lang et al. 2017, Definition 4). The Leximax pro-
cedure is based on the (leximax) score sL where sL(P, ϕ) =
(n + m)u, where n is the number of judgment sets in the pro-
file, m is the number of issues in the agenda, and u is the
number of judgment sets in P that contain ϕ, i.e., the Kemeny
score. For the profile P in Example 1, for instance, the Lexi-
max procedure selects {¬i1,¬i2, i3,¬i4, i5}.

We can encode the Leximax procedure as follows. We reuse
the predicate wgt/2 from line 5 to do a lexicographical maxi-
mization.

7 #maximize { 1@N,wgt(X,N) : wgt(X,N),
js(col,X) }.

The above two encodings highlight an elegant symmetry
between the Leximax procedure and the Kemeny procedure—
as can be seen in the difference between lines 6 and 7.

Theorem 2. The optimal answer sets S for the ASP encoding
of the Leximax procedure applied to a profile P are in one-to-
one correspondence with Lex(P).

Proof (sketch). The proof is entirely analogous to the proof of
Theorem 1—with the prioritized maximization statement in
line 7 corresponding to maximizing the leximax score sL. �

4.4 Reversal Scoring
The reversal scoring procedure Rev is the scoring procedure
based on the reversal score sR, that is defined by sR(J, ϕ) =
minJ′∈J(Φ,Γ),ϕ<J′ dH(J, J′), where dH(J, J′) = |J \ J′| = |J′ \ J|
denotes the Hamming distance between J and J′. For the

profile P in Example 1, for instance, reversal scoring se-
lects {¬i1,¬i2, i3,¬i4, i5}.

We can encode the reversal scoring procedure as follows.
Firstly, we introduce a virtual agent vrt(A,X) for each voter A
and each issue X, and ensure that vrt(A,X) does not have X in
its judgment set.

8 agent(vrt(A,X)) :- voter(A), lit(X).
9 js(vrt(A,X),-X) :- voter(A), lit(X),

js(A,X).

Then, we do prioritized optimization, where firstly we mini-
mize the difference between the virtual agents’ judgment sets
and the corresponding judgment sets in the profile.
10 disagree(A,X,Y) :- voter(A), lit(X),

lit(Y), js(A,Y), js(vrt(A,X),-Y).
11 disagreement(A,X,D) :- voter(A), lit(X),

D = #count { Y : disagree(A,X,Y) }.
12 #minimize { D@2,disagreemt(A,X,D) :

disagreement(A,X,D) }.

Then, at a lower priority level, we maximize the score of the
collective judgment set.
13 score(A,X,D) :- js(col,X),

disagreement(A,X,D).
14 score(E) :- E = #sum { D,score(A,X,D) :

score(A,X,D) }.
15 #maximize { E@1,score(E) : score(E) }.

This encoding is in line with the algorithm for computing
outcomes of the reversal scoring procedure given by De Haan
and Slavkovik (2017).

Theorem 3. The optimal answer sets S for the ASP encoding
of the Reversal scoring procedure applied to a profile P are in
one-to-one correspondence with Rev(P).

Proof (sketch). In general lines, the proof is analogous to the
proof of Theorem 1. Lines 10–12 contain a higher priority
optimization to determine the values of sR(Ji, ϕ) for each Ji ∈

P and each ϕ ∈ Φ. Then, lines 13-15 contain (lower priority)
optimization statements for score maximization. �

4.5 Other Procedures
We continue with other procedures—including procedures
based on minimal changes to the profile and procedures based
on maximizing agreement with the (ranked) majority outcome.

4.6 Young
The Young procedure Yng selects those complete judgment
sets J∗ that are consistent with the majority outcome of those
profiles P′ obtained from P by deleting a minimum num-
ber of voters to make the majority outcome consistent. For
the profile P in Example 1, for instance, the Young proce-
dure selects as outcomes the judgment sets {¬i1,¬i2, i3,¬i4, i5}
and {¬i1,¬i2, i3,¬i4,¬i5}.

We can encode the Young procedure as follows. Firstly, we
guess a subset of voters in the profile.
16 in(A) ; out(A) :- voter(A).

We ensure that the outcome agrees with the majority outcome
(for the guessed subset of voters).
17 inwgt(X,N) :- lit(X), N = #count

{ A : voter(A), in(A), js(A,X) }.

18 inmaj(X) :- lit(X), inwgt(X,N),
inwgt(-X,M), N > M.

19 js(col,X) :- inmaj(X).

We then minimize the number of removed voters.
20 #minimize { 1@1,out(A) : out(A) }.

The explanations accompanying the above rules straightfor-
wardly lead to the following correctness result.
Theorem? 4. The optimal answer sets S for the ASP encoding
of the Young procedure applied to a profile P are in one-to-one
correspondence with Yng(P).

4.7 MSA
The MSA procedure msa (for maximum subset of the
agenda) selects the complete and consistent judgment sets J∗
that agree with a subset-maximal consistent subset of
the majority outcome. For the profile P in Example 1,
for instance, MSA selects {i1, i2, i3, i4, i5}, {i1, i2,¬i3,¬i4, i5}
and {¬i1,¬i2, i3,¬i4, i5}.

We can encode the MSA procedure as follows. Here we
reuse the predicate wgt/2 from line 5. The language of answer
set programming does not offer native commands to express
optimization w.r.t. set-inclusion. Therefore, we use the meta-
programming technique of Gebser et al. (2011a), that provides
a natural encoding of inclusion-based minimization (we refer
to their work for further details).
21 maj(X) :- lit(X), wgt(X,N), wgt(-X,M),

N > M.
22 majdisagree(X) :- lit(X), maj(X),

js(col,-X).
23 _criteria(0,1,X) :- majdisagree(X).
24 _optimize(0,1,incl).
25 #show _criteria/3. #show _optimize/3.

Theorem? 5. The optimal answer sets S for the ASP encoding
of the MSA procedure applied to a profile P are in one-to-one
correspondence with msa(P).

The meta-programming encodings of Gebser et al. (2011a)
use disjunction in the head of rules—making this a Σ

p
2-level

ASP encoding, which matches the complexity of the MSA
procedure [Lang and Slavkovik, 2014].

4.8 Ranked Agenda
The ranked agenda procedure ra is defined as follows. Take
a profile P, and let ϕ1, . . . , ϕ2m be an enumeration of the for-
mulas in the profile such that for each 1 ≤ i < j ≤ 2m it holds
that ϕi is contained in at least as many sets in P as ϕ j. Then
the sets S 0, . . . , S 2m are defined as follows: S 0 = ∅, and for
each 1 ≤ i ≤ 2m the set S i = S i−1 ∪ {ϕi} if this is consistent
with Γ, and S i = S i−1 otherwise. The ranked agenda procedure
selects as outcomes all judgment sets J∗ for which there is
an enumeration of the formulas in Φ such that J∗ = S 2m. For
the profile P in Example 1, for instance, the ranked agenda
procedure selects {¬i1,¬i2, i3,¬i4, i5}.

We can encode the ranked agenda procedure as follows.
Here we reuse the predicate wgt/2 from line 5, and we use
auxiliary facts litnum(1..2m). Firstly, we guess a suitable
enumeration of the formulas in Φ.
26 1 { order(X,Y) : litnum(Y) } 1 :- lit(X).
27 1 { order(X,Y) : lit(X) } 1 :- litnum(Y).

28 :- order(X1,Y1), order(X2,Y2), wgt(X1,N1),
wgt(X2,N2), N1 > N2, Y1 > Y2.

We then use the technique of saturation [Eiter and Gottlob,
1995] to verify that the collective outcome is obtained as S 2m.
We introduce an atom w(W) for each 1 ≤ W ≤ 2m that needs to
be derived in each answer set. For each such W, we consider
all truth assignments—represented using the predicate vrt/2—
and ensure that w(W) is derived for each truth assignment.
29 w(W) :- not w(W), litnum(W).
30 vrt(W,X) :- lit(X), w(W).
31 vrt(W,X) ; vrt(W,-X) :- var(X), litnum(W).
32 w(W) :- var(X), vrt(W,X), vrt(W,-X).

Intuitively, we selectively eliminate truth assignments (by de-
riving w(W)), and ultimately for every answer set all truth
assignments must be eliminated. We firstly eliminate all as-
signments that falsify Γ.
33 w(W) :- clause(C), litnum(W), vrt(W,-L) :

clause(C,L).

We eliminate all assignments for W whose corresponding lit-
eral X is ordered after its negation -X.
34 w(W) :- order(X,W), order(-X,Y), Y <= W.

We eliminate all assignments for W for which the corresponding
literal X can be consistently added (to the collective outcome),
and all assignments for Y < W that disagree with this literal X.
35 w(W) :- litnum(W), order(X,W), js(col,X).
36 w(W) :- litnum(W), order(X,Y), Y < W,

js(col,X), vrt(W,-X).

Finally, we eliminate all assignments for W that disagree with
the corresponding literal X.
37 w(W) :- litnum(W), order(X,W), vrt(W,-X).

If there is a W for which some assignment is not eliminated,
then, the literal X corresponding to W can be consistently added
(which is witnessed by the non-eliminated assignment). There-
fore, every literal X that does not agree with the collective
outcome must be inconsistent with the partial outcome con-
structed so far (w.r.t. the guessed order of the agenda) for
the model to be an answer set. As a result, the answer sets
correspond to the outcomes of the ranked agenda procedure.

Theorem 6. The optimal answer sets S for the ASP encoding
of the Ranked agenda procedure applied to a profile P are in
one-to-one correspondence with ra(P).

Proof (sketch). The encoding in lines 26–37 generally mir-
rors the definition of the ranked agenda procedure. One aspect
of the encoding for which the connection to the definition
is not immediately obvious is the use of atoms w(W). These
are used to employ the technique of saturation: line 29 en-
sures that these atoms must be derived in any answer set.
Lines 32, 33, 34, 35, 36, and 37 allow such atoms w(W) cor-
responding to a literal X to be derived—respectively—(i) if
the guessed truth assignment α is inconsistent, (ii) if α falsi-
fies Γ, (iii) if the complementary literal -X appears earlier in
the guessed ordering, (iv) if α agrees on X with the outcome,
(v) if α disagrees with a literal in the outcome that appears
earlier in the guessed ordering, and (vi) if α falsifies X. Then S
can only be an answer set if for every W and every truth assign-
ment guessed for W using vrt/2, one of these conditions holds.

Using conditions (i)–(vi), one can show that this is the case if
and only if S corresponds to some set in ra(P). �

4.9 Further Procedures
The encodings of many other JA procedures are similar. En-
coding the majority, quota, Slater, max-Hamming and MPC
procedures (see, e.g., Lang et al. 2017)—for instance—can
be done entirely analogously to the encodings given above.
Encodings for many further procedures can be found in the
online supplementary material.

5 Encoding Agenda Properties
In this section, we will describe how to encode various agenda
properties into answer set programs. The answer sets for these
programs will represent witnesses or counterexamples for
these properties.

To use the encodings in this section, one constructs the
logic program consisting of (i) the basic encoding in lines
1–4, (ii) an encoding of the agenda and integrity constraint
using predicates issue/1 and clause/2, (iii) where relevant,
an encoding of the profile using js/2, and (iv) the encoding
of the desired property—as specified below. The encodings
in this section work without declaring a ‘collective’ agent
agent(col). The encodings are specific for the problem of
deciding the agenda properties that we discuss.

5.1 The k-Median Property
An agenda Φ and constraint Γ satisfy the k-median property
(k-MP) if every Γ-inconsistent subset of Φ has itself a Γ-
inconsistent subset of size at most k. This property is useful for
deciding whether particular JA procedures are free from the
risk of selecting inconsistent outcomes [Endriss et al., 2012].
For example, if an agenda satisfies the 2-MP, then the majority
outcome is always consistent.

We can encode the k-MP as follows. Firstly, we encode the
agenda Φ and the constraint Γ using the predicates issue/1
and clause/2, and use the encoding of the basic JA setting
from lines 1–4 (in fact, only line 2 is needed in this case).
Secondly, we declare the constant k, e.g., #const k=2. Then
we guess a subset of Φ of size > k as follows.
38 0 { assign(X); assign(-X) } 1 :- lit(X).
39 k+1 { assign(X) : lit(X) }.

We use the technique of saturation [Eiter and Gottlob, 1995] to
verify that this subset is inconsistent. We introduce an atom w
that must be derived for the model to be an answer set, and
we ensure that this atom w is derived only if there is no truth
assignment agreeing with the guessed subset. We do this by
considering all truth assignments (to the formulas ϕ ∈ Φ).
40 w :- not w.
41 vrt(X) :- lit(X), w.
42 vrt(X) ; vrt(-X) :- var(X).
43 w :- var(X), virtual(X), virtual(-X).

For every assignment that falsifies Γ and for every assignment
that does not agree with the guessed subset, we derive w.
44 w :- clause(C), virtual(-L) : clause(C,L).
45 w :- lit(X), assign(X), virtual(-X).

We verify that the guessed subset is minimally inconsistent.

46 agent(vrt(X)) :- assign(X), lit(X).
47 js(vrt(Y),X) :- agent(vrt(Y)), lit(X),

assign(X), Y != X.

The agenda Φ then satisfies the k-median property if and only
if the constructed logic program has no answer sets. Con-
versely, any answer set corresponds to an inconsistent subset
that witnesses that Φ does not satisfy the k-MP.
Theorem 7. The answer sets S for the ASP encoding of the k-
MP applied to an agenda Φ are in one-to-one correspondence
with minimally Γ-inconsistent subset of Φ of size > k.

Proof (idea). In the encoding, we guess a subset Φ′ (Φ of
size > k, we use the technique of saturation to ensure that Φ′

is Γ-inconsistent, and we guess satisfying truth assignments
for all subsets Φ′′ (Φ′ of size |Φ′| − 1 (that satisfy Γ too). �

5.2 Agenda Separability
Let Φ be an agenda, and Γ a constraint. A partition (Φ1,Φ2)
of Φ consists of two sets Φ1,Φ2 ⊆ Φ such that (i) Φ1∪Φ2 = Φ,
(ii) Φ1 ∩ Φ2 = ∅, and (iii) for each ϕ ∈ [Φ], if ϕ ∈ Φi
then ¬ϕ ∈ Φi for both i ∈ {1, 2}. A partition (Φ1,Φ2) of Φ is
an independent partition if for all judgment sets J1 ∈ J(Φ1, Γ)
and J2 ∈ J(Φ2,Γ), J1 ∪ J2 is Γ-consistent. This concept can
be used to divide the JA process into two processes—for pro-
cedures that respect independent partitions [Lang et al., 2016].

We can encode the problem of finding independent parti-
tions of an agenda Φ as follows. We encode the agenda Φ and
the constraint Γ using the predicates issue/1 and clause/2,
and use the basic encoding from lines 1–4 (also here only line 2
is needed). Then, we declare the auxiliary facts side(1;2) and
guess a partition of Φ.
48 part(1,X); part(2,X) :- issue(X).
49 :- part(1,X), part(2,X), issue(X).
50 part(S,-X) :- issue(X), part(S,X), side(S).
51 :- side(S), part(S,X) : issue(X).

We then use the technique of saturation to verify that this
partition is independent. We consider all combinations of two
truth assignments (to the formulas ϕ ∈ Φ), for both parts of
the partition.
52 w :- not w.
53 vrt(S,X) :- lit(X), w, side(S).
54 vrt(S,X) ; vrt(S,-X) :- var(X), side(S).
55 w :- var(X), vrt(S,X), vrt(S,-X), side(S).

We eliminate all assignments that do not satisfy Γ.
56 w :- clause(C), side(S), vrt(S,-L) :

clause(C,L).

Moreover, we eliminate all combinations of assignments that—
when combined according to the guessed partition—do satisfy
the constraint Γ.
57 w(C) :- clause(C,L), part(S,L), vrt(S,L),

side(S).
58 w :- w(C) : clause(C).
59 w(C) :- w, clause(C).

Any combination of assignments that is not eliminated cor-
responds to a choice of J1, J2 that witnesses that the guessed
partition is not independent—leading to the following result.
Theorem? 8. The answer sets S for the ASP encoding of the
independent partition property applied to an agenda Φ are in
one-to-one correspondence with independent partitions of Φ.

6 Encoding Voting and Other Settings
Due to the general nature of judgment aggregation, our en-
codings can also be used to encode other aggregation settings
into ASP—by first encoding these other settings into JA, and
then applying the encodings in this paper. For example, we
can encode the settings of preference aggregation and voting
as follows. We declare candidates with the predicate cand/1,
and then use the following rule to specify issues p(X,Y) repre-
senting a preference of candidate X over candidate Y.
60 issue(p(X,Y)) :- cand(X), cand(Y), X != Y.

We then specify constraints that require preferences to be
irreflexive, total, and transitive, respectively.
61 clause(c1(X,Y),(p(X,Y);p(Y,X))) :- cand(X), cand(Y),

X != Y.
62 clause(c2(X,Y),(-p(X,Y);-p(Y,X))) :- cand(X), cand(Y),

X != Y.
63 clause(c3(X,Y,Z),(-p(X,Y);-p(Y,Z);p(X,Z))) :- cand(X),

cand(Y), cand(Z), X != Y, Y != Z, X != Z.

In combination with the Kemeny JA procedure, this directly
gives us an encoding of the Kemeny voting rule, for instance.
Moreover, our encodings can be straightforwardly adapted to
work with other encodings of voting rules into JA—e.g., using
the encodings of Endriss (2018) we can obtain ASP encodings
of the Borda, Slater, Copelandα and k-approval voting rules.
Similarly, we can slightly modify our encodings to implement
the Dodgson rule and positional scoring rules. As such, we
cover all voting rules that have been encoded in ASP—scoring
rules [Konczak, 2006] and Kemeny, Dodgson, Copelandα, k-
approval [Charwat and Pfandler, 2015]—and more.

Moreover, in a similar way, our encodings can be used for
other settings such as graph aggregation [Endriss and Grandi,
2017] and voting in combinatorial domains [Lang and Xia,
2016]—after encoding these settings into JA.

7 Conclusion and Future Research
We provided a general and modular encoding of various JA
problems into ASP—thereby providing the first structured
implementation of JA methods. Our encodings are freely avail-
able in the online supplementary material.5 The problems that
we encoded include computing outcomes for a wide range of
JA procedures and checking various agenda properties. These
encodings open up answer set programming for an even wider
range of applications than for which it has already been used—
by providing recipes for creating benchmark instances based
on JA problems, that can be used with real-world data sets.

We hope that this work sparks developments on improved
and optimized ASP encodings for JA methods. Future work
also includes ASP encodings of strategic behavior problems in
JA—such as manipulation, bribery and control [Endriss et al.,
2012; Botan et al., 2016; Baumeister et al., 2013; Baumeister
et al., 2015; De Haan, 2017]—and further agenda properties,
such as total blockedness and even negatability [Dokow and
Holzman, 2010].

5The online material—available at https://github.com/rdehaan/
ja-asp—contains encodings that go beyond those presented in this
paper. They allow auxiliary variables to express constraints in the JA
scenario—see, e.g., [Endriss et al., 2016]. Moreover, they include
encodings for more JA procedures, and for more agenda properties
(e.g., finding overlapping independent partitions [Lang et al., 2016]).

https://github.com/rdehaan/ja-asp
https://github.com/rdehaan/ja-asp

References
[Baumeister et al., 2013] D. Baumeister, G. Erdélyi, O.J.

Erdélyi, and J. Rothe. Computational aspects of manipula-
tion and control in judgment aggregation. In Proceedings
of ADT’13, pages 71–85, 2013.

[Baumeister et al., 2015] D. Baumeister, G. Erdélyi, O.J.
Erdélyi, and J. Rothe. Complexity of manipulation and
bribery in judgment aggregation for uniform premise-based
quota rules. Mathematical Social Sciences, 76:19–30, 2015.

[Biere et al., 2009] A. Biere, M. Heule, H. van Maaren, and
T. Walsh, editors. Handbook of Satisfiability, volume 185.
IOS Press, 2009.

[Botan et al., 2016] S. Botan, A. Novaro, and U. Endriss.
Group manipulation in judgment aggregation. In Proceed-
ings of AAMAS’16, pages 411–419, 2016.

[Calimeri et al., 2013] F. Calimeri, W. Faber, M. Gebser,
G. Ianni, R. Kaminski, T. Krennwallner, N. Leone, F. Ricca,
and T. Schaub. ASP-Core-2: 4th ASP competition official
input language format, 2013. https://www.mat.unical.it/
aspcomp2013/files/ASP-CORE-2.01c.pdf.

[Charwat and Pfandler, 2015] G. Charwat and A. Pfandler.
Democratix: A declarative approach to winner determi-
nation. In T. Walsh, editor, Algorithmic Decision Theory,
pages 253–269. Springer, 2015.

[Dokow and Holzman, 2010] E. Dokow and R. Holzman. Ag-
gregation of binary evaluations. J. Economic Theory,
145(2):495–511, 2010.

[Eiter and Gottlob, 1995] T. Eiter and G. Gottlob. On the
computational cost of disjunctive logic programming:
propositional case. Annals of Mathematics and Artificial
Intelligence, 15(3-4):289–323, 1995.

[Endriss and de Haan, 2015] U. Endriss and R. de Haan.
Complexity of the winner determination problem in judg-
ment aggregation: Kemeny, Slater, Tideman, Young. In
Proceedings of AAMAS’15, pages 117–125, 2015.

[Endriss and Grandi, 2017] U. Endriss and U. Grandi. Graph
aggregation. Artificial Intelligence, 245:86–114, 2017.

[Endriss et al., 2012] Ulle Endriss, Umberto Grandi, and
Daniele Porello. Complexity of judgment aggregation. J.
Artif. Intell. Res., 45:481–514, 2012.

[Endriss et al., 2016] U. Endriss, U. Grandi, R. de Haan, and
J. Lang. Succinctness of languages for judgment aggrega-
tion. In KR’16, pages 176–186, 2016.

[Endriss, 2018] U. Endriss. Judgment aggregation with ratio-
nality and feasibility constraints. In Proceedings of AAMAS’
18, pages 946–954, 2018.

[Gebser et al., 2011a] M. Gebser, R. Kaminski, and
T. Schaub. Complex optimization in answer set program-
ming. TPLP, 11(4–5):821–839, 2011.

[Gebser et al., 2011b] M. Gebser, B. Kaufmann, R. Kamin-
ski, M. Ostrowski, T. Schaub, and M. Schneider. Potassco:
The potsdam answer set solving collection. AI Communi-
cations, 24(2):107–124, April 2011.

[Gebser et al., 2017] M. Gebser, R. Kaminski, B. Kaufmann,
M. Lindauer, Ostrowski. M, J. Romero, T. Schaub, and
S Schiele. Potassco user guide (v2.1.0). https://github.com/
potassco/guide/releases/tag/v2.1.0, 2017.

[Gebser et al., 2018] M. Gebser, N. Leone, M. Maratea,
S. Perri, F. Ricca, and T. Schaub. Evaluation techniques
and systems for answer set programming: a survey. In
Proceedings of IJCAI’18, pages 5450–5456, 7 2018.

[Grossi and Pigozzi, 2014] D. Grossi and G. Pigozzi. Judg-
ment Aggregation: A Primer. Morgan and Claypool, 2014.

[de Haan and Slavkovik, 2017] R. de Haan and M. Slavkovik.
Complexity results for aggregating judgments using scor-
ing or distance-based procedures. In Proceedings of AA-
MAS’17, 2017.

[de Haan, 2016] R. de Haan. Parameterized complexity re-
sults for the kemeny rule in judgment aggregation. In
Proceedings of ECAI’16, volume 285, pages 1502–1510,
2016.

[de Haan, 2017] R. de Haan. Complexity results for manipu-
lation, bribery and control of the kemeny judgment aggre-
gation procedure. In Proceedings of AAMAS’17, 2017.

[de Haan, 2018] R. de Haan. Hunting for tractable languages
for judgment aggregation. In Proceedings of KR’18. AAAI
Press, 2018.

[Jamroga and Slavkovik, 2013] W. Jamroga and
M. Slavkovik. Some complexity results for distance-based
judgment aggregation. In LNCS Proceedings PRIMA’13,
pages 313–325, 2013.

[Konczak, 2006] K. Konczak. Voting theory in answer set
programming. In WLP, volume 1843-06-02 of INFSYS Re-
search Report, pages 45–53. Technische Universität Wien,
Austria, 2006.

[Lang and Slavkovik, 2013] J. Lang and M. Slavkovik. Judg-
ment aggregation rules and voting rules. In Proceedings of
ADT’13, volume 8176 of LNAI, pages 230–244. Springer,
2013.

[Lang and Slavkovik, 2014] J. Lang and M. Slavkovik. How
hard is it to compute majority-preserving judgment aggrega-
tion rules? In Proceedings of ECAI’14, volume 263, pages
501–506, 2014.

[Lang and Xia, 2016] J. Lang and L. Xia. Voting in combi-
natorial domains. In F. Brandt, V. Conitzer, U. Endriss,
J. Lang, and A. Procaccia, editors, Handbook of Compu-
tational Social Choice. Cambridge University Press, Cam-
bridge, 2016.

[Lang et al., 2016] J. Lang, M. Slavkovik, and S. Vesic.
Agenda separability in judgment aggregation. In Proceed-
ings of AAAI’16, pages 1016–1022, 2016.

[Lang et al., 2017] J. Lang, G. Pigozzi., M. Slavkovik,
L. van der Torre, and S. Vesic. A partial taxonomy of
judgment aggregation rules and their properties. Social
Choice and Welfare, 48(2):327–356, 2017.

[Slavkovik, 2016] M. Slavkovik. An introductory course to
judgment aggregation. CoRR, abs/1607.03307, 2016.

https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.01c.pdf
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.01c.pdf
https://github.com/potassco/guide/releases/tag/v2.1.0
https://github.com/potassco/guide/releases/tag/v2.1.0

	Introduction
	Contributions

	Preliminaries
	Judgment Aggregation
	Answer Set Programming

	General Encoding of the Setting of JA
	Encoding Judgment Aggregation Procedures
	Scoring Procedures
	Kemeny
	Leximax
	Reversal Scoring
	Other Procedures
	Young
	MSA
	Ranked Agenda
	Further Procedures

	Encoding Agenda Properties
	The k-Median Property
	Agenda Separability

	Encoding Voting and Other Settings
	Conclusion and Future Research

