
Temporal Logics for Representing Agent
Communication Protocols

Ulle Endriss

Institute for Logic, Language and Computation
University of Amsterdam, 1018 TV Amsterdam, The Netherlands

Email: ulle@illc.uva.nl

Abstract. This paper explores the use of temporal logics in the con-
text of communication protocols for multiagent systems. We concentrate
on frameworks where protocols are used to specify the conventions of
social interaction, rather than making reference to the mental states of
agents. Model checking can be used to check the conformance of a given
dialogue between agents to a given protocol expressed in a suitable tem-
poral logic. We begin by showing how simple protocols, such as those
typically presented as finite automata, can be specified using a fragment
of propositional linear temporal logic. The full logic can also express con-
cepts such as future dialogue obligations (or commitments). Finally, we
discuss how an extended temporal logic based on ordered trees can be
used to specify nested protocols.

1 Introduction

Communication in multiagent systems is an important and very active area of
research [15, 29, 37]. While much work has been devoted to so-called mentalistic
models of communication (see in particular [15]), where communicative acts
are specified in terms of agents’ beliefs and intentions, recently a number of
authors have argued for a convention-based approach to agent communication
languages [9, 23, 29, 31]. Mental attitudes are useful to explain why agents may
behave in certain ways, but (being non-verifiable for an outside observer) they
cannot serve as a basis for specifying the norms and conventions of interaction
required for building open systems that allow for meaningful communication. In
the convention-based approach, protocols specifying the rules of interaction play
a central role.

This paper explores the use of temporal logics in the context of agent com-
munication protocols. Rather than using a form of deontic logic to specify what
agents ought to do, we use temporal logic formulas to specify the class of all dia-
logues (sequences of utterances) that are legal according to a given protocol. The
notion of what an agent ought to do is then implicit: the social conventions of
communication are fulfilled, if the generated dialogue satisfies the protocol spec-
ification. In particular, we propose to use propositional linear temporal logic [16,
18] to specify protocols and generalised model checking [7] to decide whether an
actual dialogue conforms to such a protocol.

Checking conformance at runtime, which is what we are concerned with here,
can be distinguished from a priori conformance checking which addresses the
problem of checking whether an agent can be guaranteed to always conform
to a given protocol, on the basis of its specification [12, 19]. Being able to check
conformance at runtime is a minimal requirement for systems that operate with a
convention-based communication protocol; if violations cannot be detected then
the use of such a protocol will be of little use (but how to react to an observed
violation is an issue that lies outside the scope of this paper).

The remainder of the paper is structured as follows. Section 2 provides an in-
troduction to agent communication protocols and Section 3 covers the necessary
background on temporal logic. In Section 4 the basic ideas of representing dia-
logues as models, using formulas to specify protocols, and applying (generalised)
model checking to verify conformance are introduced. These ideas are then ap-
plied to protocols that can be represented as finite automata (in Section 5) and
to the modelling of dialogue obligations (in Section 6). Section 7 discusses ideas
on the specification of nested protocols using an extended temporal logic based
on ordered trees, and Section 8 concludes with a brief discussion of related work.

2 Background on Protocols

An agent communication protocol lays down the conventions (or norms, or rules)
of communicative interaction in a multiagent system. Agents communicate with
each other by sending messages, which we refer to as dialogue moves (or commu-
nicative acts, or simply utterances). A dialogue is a sequence of such moves. A
dialogue move will typically have, at least, the following components: a sender, a
(list of) receiver(s), a performative determining the type of move, and a content
item defining the actual message content [12, 15, 37]. An example for a perfor-
mative would be inform; an example for a content item would be “the city of
Utrecht is more than 1300 years old”. Indeed, the content language may be highly
application-dependent, which means we cannot hope to be able to develop gen-
eral tools for dealing with this particular aspect of communication. In addition,
a dialogue move may also include a time-stamp.

The role of a protocol is to define whether a dialogue is legal, i.e. whether it
conforms to the social rules governing the system to which the protocol in ques-
tion applies. A variety of mechanisms for the specification of protocols have been
put forward in the literature. Pitt and Mamdani [28], for instance, discuss several
protocols based on deterministic finite automata. One of these, the continuous
update protocol, is shown in Figure 1. This protocol may be used to regulate a
dialogue where an agent A continuously updates another agent B on the value of
some proposition. In each round, B may either acknowledge the information or
end the dialogue. Figure 1 only specifies the performative (inform, ack , or end)
and the sender (A or B) for each move. In fact, to keep our examples simple,
throughout this paper we are going to abstract from the other components of
a dialogue move. In the context of automata-based protocols, the definition of
legality of a dialogue reduces to the definition of acceptance of a language by an

0HOINJMKL 1HOINJMKL 2HOINJMKL

3@GAFBECDHOINJMKL 4@GAFBECDHOINJMKL

+3 A: inform //

B: ack

&&

ff

A: inform

B: end

��
A: end

��

Fig. 1. The continuous update protocol

automaton in the usual sense [26]: A dialogue is legal according to a protocol iff
it would be accepted by the automaton corresponding to the protocol.

Protocols defined in terms of finite automata are complete in the sense of
clearly specifying the range of legal follow-up moves at every stage in a dia-
logue. This need not be the case, however [1]. In general, any set of rules that
put some constraints on a dialogue between agents may be considered a proto-
col (although complete protocols may often be preferred for practical reasons).
Typical examples for protocol rules that constrain a dialogue without necessarily
restricting the range of legal follow-ups at every stage are conversational com-
mitments (e.g. to honour a promise) [9], which require an agent to perform a
certain communicative act at some point in the future. We are going to consider
the specification of dialogue obligations like this in Section 6.

3 Background on Temporal Logic

Temporal logic has found many applications in artificial intelligence and com-
puter science. In fact, over the years, a whole family of temporal logics have been
developed. In this paper, we are mostly going to use propositional linear tempo-
ral logic (PLTL), which is probably the most intuitive of the standard temporal
logics [16, 18].

We briefly review the syntax and semantics of this logic. The language of
PLTL builds on a countable set L of propositional letters. The set of well-formed
formulas is the smallest set such that propositional letters are formulas and,
whenever ϕ and ψ are formulas, so are ¬ϕ, ϕ ∧ ψ, and ϕ until ψ. Formulas
are evaluated over a frame (also known as the flow of time). As we are going
to identify the points in a frame with the turns in a dialogue (which, for all
practical purposes, may be assumed to be finite), we define the semantics of
PLTL over finite frames only. A (finite) frame is a pair T = (T,<) where T =
[0, . . . , n] is an initial segment of the non-negative integers and < is the usual
ordering over integers. The elements of T are called time points. A model is a
pair M = (T , V) where T is such a frame and V (called the valuation) is a

mapping from propositional letters in L to subsets of T . Intuitively, V (p) defines
the set of points at which an atomic proposition p ∈ L is true.

We write M, t |= ϕ to express that the formula ϕ is true at time point t in
the model M. This notion of truth in a model is defined inductively over the
structure of formulas:

– M, t |= p iff t ∈ V (p) for propositional letters p ∈ L;
– M, t |= ¬ϕ iff M, t 6|= ϕ;
– M, t |= ϕ ∧ ψ iff M, t |= ϕ and M, t |= ψ;
– M, t |= ϕ until ψ iff there exists a t′ ∈ T with M, t′ |= ψ and t < t′, and
M, t′′ |= ϕ for all t′′ ∈ T with t < t′′ and t′′ < t′.

Propositional connectives other than negation and conjunction can be defined
in the usual manner; e.g. ϕ∨ψ = ¬(¬ϕ∧¬ψ). We also use > as a shorthand for
p∨¬p for some propositional letter p, i.e. > is true at any point in a model. The
symbol ⊥ is short for ¬>. Further temporal operators can be defined in terms
of the until-operator: eϕ = ⊥ until ϕ

3ϕ = > until ϕ
2ϕ = ¬3¬ϕ

The first of these is called the next-operator: eϕ is true at t whenever ϕ is
true at a future point t′ and there are no other points in between t and t′ (as
they would have to satisfy ⊥), i.e. ϕ is true at the next point in time. The
eventuality operator 3 is used to express that a formula holds at some future
time, while 2ϕ says that ϕ is true always in the future (it is not the case that
there exists a future point where ϕ is not true). Alternatively, in particular if we
are working with a fragment of PLTL that may not include the until-operator,
these modalities can also be defined directly.

4 Dialogues as Models

Given a model M and a formula ϕ, the model checking problem is the problem
of deciding whether ϕ is true at every point in M. In the sequel, we are going
to formulate the problem of checking conformance of a dialogue to a protocol as
a (variant of the) model checking problem. The extraordinary success of model
checking in software engineering in recent years is largely due to the availability
of very efficient algorithms, in particular for the branching-time temporal logic
CTL [8]. Given that the reasoning problems faced in the context of agent com-
munication will typically be considerably less complex than those encountered
in software engineering, efficiency is not our main concern. Instead, clarity and
simplicity of protocol specifications must be our main objective.

We are going to use a special class of PLTL models to represent dialogues be-
tween agents and PLTL formulas to specify protocols. For every agent A referred
to in the protocol under consideration, we assume that the set L of propositional
letters includes a special proposition turn(A) and that there are no other propo-
sitions of this form in L. Furthermore, we assume that the set of performatives

in our communication language is a subset of L, and that L includes the special
proposition initial. We say that a model represents a dialogue iff it meets the
following conditions:

– initial is true at point 0 and at no other t > 0;
– exactly one proposition of the form turn() is true at any point t > 0;
– exactly one performative is true at any point t > 0.

Note that we do not allow for concurrent moves. The following is an example for
such a model representing a dialogue (conforming to the protocol of Figure 1):

•
initial

•
inform

turn(A)
•

ack

turn(B)
•

inform

turn(A)
•

end

turn(B)
// // // //

An actual dialogue determines a partial model: It fixes the frame as well as
the valuation for initial and the propositions in L corresponding to turn-
assignments and performatives, but it does not say anything about any of the
other propositional letters that we may have in our language L (e.g. to repre-
sent dialogue states; see Section 5). We can complete a given partial model by
arbitrarily fixing the valuation V for the remaining propositional letters. Every
possible way of completing a dialogue model in this manner givens rise to a
different PLTL model, i.e. a dialogue typically corresponds to a whole classes of
models. This is why we cannot use standard model checking (which applies to
single models) to decide whether a given dialogue satisfies a formula encoding a
protocol. Instead, the reasoning problem we are interested in is this:

Given a partial model M (induced by a dialogue) and a formula ϕ (the
specification of a protocol), is there a full model M′ completing M such
that ϕ is true at every point in M′?

In other words, we have to decide whether the partial description of a model can
be completed in such a way that model checking would succeed.

The above problem is known as the generalised model checking problem and
has been studied by Bruns and Godefroid [7]. In fact, the problem they address
is slightly more general than ours, as they do not work with a fixed frame and
distinguish cases where all complete instances of the partial model validate the
formula from those where there exists at least one such instance. Generalised
model checking may be regarded as a combination of satisfiability checking and
model checking in the usual sense. If there are no additional propositions in L,
then generalised model checking reduces to standard model checking. If we can
characterise the class of all models representing a given dialogue by means of a
formula ψ, then ϕ and ψ can be used to construct a formula that is satisfiable
(has got a model) iff that dialogue conforms to the protocol given by ϕ.

Note that the generalised model checking problem is EXPTIME-complete
for both CTL and PLTL [7], i.e. there would be no apparent computational
advantages in using a branching-time logic.

Before we move on to show how PLTL can be used to specify protocols in
Sections 5 and 6, one further technical remark is in order. While we have defined
the semantics of PLTL with respect to finite frames, the standard model check-
ing algorithms for this logic are designed to check that all infinite runs through a
given Kripke structure satisfy the formula in question. This is a crucial feature of
these algorithms as they rely on the translation of temporal logic formulas into
Büchi automata [21, 34] and acceptance conditions for such automata are defined
in terms of states that are being visited infinitely often. We note here that the
problem of (generalised) model checking for finite models admitting only a single
run is certainly not more difficult than (generalised) model checking for struc-
tures with infinite runs. Furthermore, to directly exploit existing algorithms, our
approach could easily be adapted to a representation of dialogues as structures
admitting only infinite runs. Because our main interest here lies in representing
communication protocols and highlighting the potential of automated reason-
ing tools in this area, rather than in the design of concrete algorithms, in the
remainder of the paper, we are going to continue to work with finite models.

5 Automata-based Protocols

A wide range of communication protocols studied in the multiagent systems
literature can be represented using deterministic finite automata (see e.g. [12,
27–29]). As we shall see, we can represent this class of protocols using a fragment
of PLTL where the only temporal operator required is the next-operator e.

Consider again the protocol of Figure 1, which is an example for such an
automaton-based protocol. If our language L includes a propositional letter of
the form state(i) for every state i ∈ {0, . . . , 4}, then we can describe the state
transition function of this automaton by means of the following formulas:

state(0) ∧ einform → estate(1)
state(1) ∧ eack → estate(2)
state(1) ∧ eend → estate(3)
state(2) ∧ einform → estate(1)
state(2) ∧ eend → estate(4)

To specify that state 0 is the (only) initial state we use the following formula:

initial ↔ state(0)

For automata with more than one initial state, we would use a disjunction on
the righthand side of the above formula.

Next we have to specify the range of legal follow-up moves for every dia-
logue state. Let us ignore, for the moment, the question of turn-taking and only
consider performatives. For instance, in state 1, the only legal follow-up moves
would be ack and end . The seemingly most natural representation of this legality
condition would be the following:

state(1) → e(ack ∨ end)

This representation is indeed useful if we want to verify the legality of a com-
plete dialogue. However, if we also want to use (generalised) model checking to
establish whether an unfinished dialogue conforms to a protocol, we run into
problems. Take a dialogue that has just begun and where the only event so
far is a single inform move uttered by agent A, i.e. we are in state 1 and the
dialogue should be considered legal, albeit incomplete. Then the next-operator
in the above legality condition would force the existence of an additional time
point, which is not present in the dialogue model under consideration, i.e. model
checking would fail.

To overcome this problem, we use a weak variant of the next-operator. Ob-
serve that a formula of the form ¬ e¬ϕ is true at time point t iff ϕ is true at the
successor of t or t has no successor at all. For the non-final states in the protocol
of Figure 1, we now model legality conditions as follows:

state(0) → ¬ e¬inform
state(1) → ¬ e¬(ack ∨ end)
state(2) → ¬ e¬(inform ∨ end)

Next we specify that states 3 and 4 are final states and that a move taking us
to a final state cannot have any successors:

final ↔ state(3) ∨ state(4)
final → ¬ e>

Automata-based protocols regulating the communication between pairs of agents
will typically implement a strict turn-taking policy (although this need not be so;
see [27] for an example). This is also the case for the continuous update protocol.
After a dialogue has been initiated, it is agent A’s turn and after that the turn
changes with every move. This can be specified as follows:

initial → ¬ e¬turn(A)
turn(A) → ¬ e¬turn(B)
turn(B) → ¬ e¬turn(A)

Alternatively, these rules could have been incorporated into the specification of
legality conditions pertaining to performatives given earlier. Where possible, it
seems advantageous to separate the two, to allow for a modular specification.

Now let ϕcu stand for the conjunction of the above formulas characterising
the continuous update protocol (i.e. the five formulas encoding the transition
function, the formulas characterising initial and final states, the three formulas
specifying the legality conditions for non-final states, and the formulas describing
the turn-taking policy). Then a (possibly incomplete) dialogue is legal according
to this protocol iff generalised model checking succeeds for ϕcu with respect to
the partial model induced by the dialogue.

If we want this check to succeed only if the dialogue is not only legal but also
complete, we can add the following formulas, which specify that any non-final
state requires an additional turn:

non-final ↔ state(0) ∨ state(1) ∨ state(2)
non-final → e>

While our description of how to specify automata-based protocols in PLTL has
been example-driven, the general methodology is clear: It involves the specifica-
tion of both the state transition function (including the identification of initial,
final, and non-final states) and the range of legal follow-ups for any given state.

A special class of automata-based protocols, so-called shallow protocols, have
been identified in [12]. A shallow protocol is a protocol where the legality of a
move can be determined on the sole basis of the previous move in the dialogue.
Many automata-based protocols in the multiagent systems literature, including
the continuous update protocol and those proposed in [27–29], are shallow and
allow for an even simpler specification than the one presented here. In fact, these
protocols can be specified using a language L including only the special symbol
initial and propositions for performatives and turn-assignment (along the lines
of the rules for the turn-taking policy given earlier), i.e. for this class of protocols
standard model checking may be used to check conformance. Where available,
a shallow specification may therefore be preferred.

6 Modelling Future Obligations

For many purposes, purely automata-based protocols are not sufficient. For in-
stance, they do not support the specification of general future obligations on
the communicative behaviour of an agent. This is an important feature of many
classes of protocols proposed in the literature. Examples are the discourse obli-
gations of Traum and Allen [33], the commitments in the work of Singh [31] and
Colombetti [9], or the social expectations of Alberti et al. [1].

We should stress that we use the term obligation in rather generic a man-
ner; in particular, we are not concerned with the fine distinctions between, say,
obligations and commitments discussed in the literature [9, 30].

In the context of an auction protocol, for example, we may say that, by open-
ing an auction, an auctioneer acquires the obligation to close that auction again
at some later stage. Suppose these actions can be performed by making a dia-
logue move with the performatives open-auction and end-auction, respectively.
Again, to simplify presentation, we abstract from the issue of turn-taking and
only write rules pertaining to performatives. The most straightforward represen-
tation of this protocol rule would be the following:

open-auction → 3end-auction

However, in analogy to the problematic aspects of using the next-operator to
specify legal follow-ups in the context of automata-based protocols, the above
rule forces the existence of future turns in a dialogue once open-auction has been
performed. If we were to check an incomplete dialogue against this specification
before the auction has been closed, model checking would fail and the dialogue
would have to be classified as illegal. To be able to distinguish between complete
dialogues where the non-fulfilment of an obligation constitutes a violation of the
protocol and incomplete dialogues where this may still be acceptable, we have
to move to a slightly more sophisticated specification.

To this end, we first define a weak version of the until-operator, which is
sometimes called the unless-operator:

ϕ unless ψ = (ϕ until ψ) ∨2ϕ

That is, the formula ϕ unless ψ is true at point t iff ϕ holds from t onwards
(excluding t itself) either until a point where ψ is true or until the last point in
the model.

We now use the following formula to specify that opening an auction invokes
the obligation to end that auction at some later point in time:

open-auction → pending ∧ (pending unless end-auction)

The new propositional letter pending is used to mark time points at which
there are still obligations that have not yet been fulfilled. A model representing
a dialogue where open-auction has been uttered, but end-auction has not, will
satisfy this protocol rule. However, in such a model, pending will be true at the
very last time point. If we want to check whether a dialogue does not only not
violate any rules but also fulfils all obligations, we can run generalised model
checking with a specification including the following additional formula:

pending → e>
No finite model satisfying this formula can make pending true at the last time
point. That is, unless end-auction has been uttered, generalised model checking
will now fail.

In a slight variation of our example, we may require our agent to end the
auction not just at some point in the future, but by a certain deadline. Reference
to concrete time points (“by number”) is something that is typically not possible
(nor intended) in temporal logic. However, if we can model the invocation of the
deadline by means of a proposition deadline (which could be, say, the logical
consequence of another agent’s dialogue moves), then we can add the following
formula to our specification to express that end-auction has to be uttered before
deadline becomes true:

open-auction → (¬deadline unless end-auction)

The examples in this section suggest that PLTL is an appropriate language for
specifying dialogue obligations. Due to Kamp’s seminal result on the expressive
completeness of PLTL over Dedekind-complete flows of time (which include our
finite dialogue frames), we know that we can express any combination of tempo-
ral constraints over obligations expressible in the appropriate first-order theory
also in PLTL [16, 25].

Of course, protocol rules that constrain the content item in a dialogue move
(e.g. “the price specified in a bid must be higher than any previous offer”)
cannot be represented in PLTL, nor in any other general-purpose logic. Arguably,
while (temporal) logic is a suitable tool for modelling conversational conventions,
reasoning about application-specific content requires domain-specific reasoners
(even in simple cases such as the comparison of alternative price offers).

•
root

•
3ψ

• • • •
ψ

•
3ϕ

•

• • • •
ϕ

•• • •
2⊥

• • • •
3 dψtime

a
bs

tr
a
ct

io
n

ss yy %% ++

// // // // // //

// // // //zz �� �� �� $$// //�� �� ��

// // //��

 �� ��
//

OO

Fig. 2. An ordered tree model

7 Nested Protocols

In practice, a multiagent system may specify a whole range of different interac-
tion protocols, and agents may use a combination of several of these during a
communicative interaction [28, 36]. For instance, there may be different proto-
cols for different types of auctions available, as well as a meta-protocol to jointly
decide which of these auction protocols to use in a given situation. Such nesting
of protocols could also be recursive.

We propose to use OTL [10, 11], a modal logic of ordered trees (see also [4,
5]), to specify nested protocols. This is an extended temporal logic based on
frames that are ordered trees, i.e. trees where the children of each node form a
linear order. In the context of modelling dialogues, again, we may assume that
such trees are finite. OTL is the modal logic over frames that are ordered trees.
The logic includes modal operators for all four directions in an ordered tree. The
formula eϕ, for instance, expresses that ϕ is true at the immediate righthand
sibling of the current node, while 2ψ forces ψ to be true at all of its children.

We briefly summarise the syntax and semantics of OTL; details may be
found in [10]. The set of formulas of OTL is the smallest set extending the
language of classical propositional logic such that. whenever ϕ is a formula, so
are eϕ, 3ϕ, eϕ, 3ϕ, eϕ, 3ϕ, 3ϕ and 3+ϕ (we omit the discussion of until -
style operators from this short introduction [4, 10]). Formulas are evaluated over
ordered trees. An ordered tree T defines the relations of being a parent, child,
ancestor, descendant, lefthand and righthand sibling over a set of nodes T . The
first sibling to the left of a node is also called that node’s lefthand neighbour (and
righthand neighbours are defined analogously). An ordered tree model is a pair
M = (T , V) where T is such an ordered tree an V is a valuation function from
propositional letters to subsets of T . The truth conditions for atomic formulas
and the propositional connectives are defined as for PLTL. Furthermore:

– M, t |= eϕ iff t is not the root of T and M, t′ |= ϕ holds for t’s parent t′;
– M, t |= 3ϕ iff t has got an ancestor t′ such that M, t′ |= ϕ;
– M, t |= eϕ iff t has got a righthand neighbour t′ such that M, t′ |= ϕ;
– M, t |= 3ϕ iff t has got a righthand sibling t′ such that M, t′ |= ϕ;
– M, t |= 3ϕ iff t has got a child t′ such that M, t′ |= ϕ;
– M, t |= 3+ϕ iff t has got a descendant t′ such that M, t′ |= ϕ.

The truth conditions for 3 and e are similar. Box-operators are defined in the
usual manner: 2ϕ = ¬3¬ϕ, etc. The semantics explains our choice of a slightly
different notation for the downward modalities: because there is (usually) no
unique next node when moving down in a tree, we do not use a next-operator
to refer to children. Figure 2 shows an example for an ordered tree model.

This logic can be given a temporal interpretation. Time is understood to run
from left to right, along the order declared over the children of a node (i.e. not
from top to bottom as in branching-time logics such as CTL), while the child
relation provides a means of “zooming” into the events associated with a node.
In the context of dialogues and nested protocols, the righthand sibling relation
is used to model the passing of time with respect to a single protocol, while the
child relation is used to model the relationship between a dialogue state and the
subprotocol being initiated from that state.

Our example for a nested protocol is inspired by work in natural language
dialogue modelling [13, 17]. When a question is asked, besides answering that
question, another reasonable follow-up move would be to pose a clarification
question related to the first question. This latter question would then have to
be answered before the original one. This protocol rule may, in principle, be
applied recursively, i.e. we could have a whole sequence of clarification questions
followed by the corresponding answers in reverse order. In addition, we may also
ask several clarification questions pertaining to the same question (at the same
level). The corresponding protocol is shown in Figure 3. The edge labelled by
clar(B,A) represents a “meta-move”: this is not a dialogue move uttered by
one of the agents involved, but stands for a whole subdialogue following the rules
of the clarification protocol with B (rather than A) being the agent asking the
initial question. That is, the clarification protocol of Figure 3 does not belong
to the class of automata-based protocols discussed in Section 5. Indeed, this
kind of protocol cannot be specified by a simple finite state automaton. Instead
we would require a pushdown automaton [26]. The stack of such a pushdown
automaton would be used to store questions and every answer would cause the
topmost question to be popped again [13].

Suppose initial, final, and non-final states have been specified as in
Section 5 (using e in place of e). If we treat clar in the same way as we would
treat a simple performative, then the transition function for the clarification
protocol can be specified as follows:

state(0) ∧ eask → estate(1)
state(1) ∧ eclar → estate(1)
state(1) ∧ eanswer → estate(2)

clar(A,B) :

0HOINJMKL 1HOINJMKL 2@GAFBECDHOINJMKL+3 A: ask // B: answer //

clar(B,A)

��

Fig. 3. A clarification protocol

Abstracting from turn-taking issues, the legality conditions for this protocol are
given by the following formulas:

state(0) → ¬ e¬ask
state(1) → ¬ e¬(clar ∨ answer)

The next formula says that a node corresponding to a final state in a subdialogue
cannot have any righthand siblings:

final → ¬ e>
That clar requires a subdialogue to take place can be specified by a formula
that says that every node satisfying clar has to have a child satisfying initial:

clar → 3initial

The next formula specifies that a subdialogue must be completed before the
dialogue at the next higher level may continue. This is expressed by postulating
that, if a node has got a righthand sibling, then its rightmost child (if any)
cannot satisfy non-final:e> → 2(non-final → e>)

To characterise dialogues that have been completed in their entirety, we may
again add the following rule:

non-final → e>
We hope that this very simple example gives some indication of the options
available to us when specifying nested protocols using OTL. Our example has
been special in the sense that it only uses a single protocol that can be nested
arbitrarily. In general, there may be several different protocols, each associated
with its own propositions to identify initial, final, and non-final states. Observe
that, for OTL, deriving the partial (ordered tree) model induced by an observed
dialogue is not as straightforward as for PLTL. However, if the moves used
to initiate and terminate subdialogues following a particular protocol clearly
identify that protocol (which seems a reasonable assumption), then constructing
an ordered tree from a sequence of utterances is not difficult.

For OTL, to date, no model checking algorithms (or algorithms for gener-
alised model checking) have been developed. However, it seems likely that such
algorithms could be designed by adapting well-known algorithms for other tem-
poral logics. And even without the availability of tools for model checking, we
believe that the specification of nested protocols in OTL can be useful to give a
precise semantics to the intuitive “operation of nesting”.

8 Conclusion

In this paper, we have argued that temporal logic can be used to specify
convention-based agent communication protocols in a simple and elegant man-
ner. In particular, we have seen how to use propositional linear temporal logic to
specify both very simple automata-based protocols and protocols involving dia-
logue obligations. Of course, using this logic to express the kinds of properties we
have considered in our examples is not new, but the application of this technique
to the specification of conversational conventions is both novel and, we believe,
very promising. We have then outlined how nested protocols can be specified
using the ordered tree logic OTL, which is an extension of propositional linear
temporal logic, but also permits reasoning about different levels of abstraction
within a single model.

We have also identified generalised model checking as a tool for checking
protocol conformance at runtime. For simple protocol representation formalisms
(such as finite automata), this is not a difficult problem and to resort to so-
phisticated tools such a model checking may seem inappropriate. However, for
richer formalisms, in particular those that allow for the definition of complex
dialogue obligations, the problem is certainly not trivial (witness the work of
Alberti et al. [1], who develop a complex abductive proof procedure to address
conformance checking). Computational issues aside, being able to define the
conformance problem in clear logical terms already constitutes an important
advantage in its own right.

Our aim for this paper has been to promote the use of simple temporal logics
in the context of agent communication. Most of our presentation has been based
on examples, but we hope that the generality of the approach shines through. As
argued already at the end of Section 6, linear temporal logic is very expressive
and can specify a rich class of protocols. Our concrete examples merely highlight
some of the most important features of typical protocols.

The idea of using temporal logic for the representation of convention-based
agent interaction protocols is not new [32, 35]. The two cited works both use a
form of the branching-time temporal logic CTL to give semantics to the notion
of social commitment, but they do not attempt to exploit existing automated
reasoning tools developed for these logics. The logic of Verdicchio and Colom-
betti [35] also incorporates some, albeit very restricted, first-order features. In
our view, this is unfortunate as it trades in much of what is attractive about
using temporal logics (decidability, low complexity, simple semantics).

Although there has been a growing interest in model checking for multiagent
systems in recent years (examples include [3, 6, 24]), only little work has specif-
ically addressed issues of communication. An exception is the work of Huget
and Wooldridge [22], which studies model checking as a tool for verifying con-
formance to the semantics of an agent communication language in a mentalistic
framework. There has also been a certain amount of work on deductive ap-
proaches to verification in multiagent systems [14], but again without special
focus on communication protocols or conversational conventions.

In our future work, we hope to cover a wider range of protocol features and
show how they may be specified using a suitable temporal logic. For instance, it
would be interesting to explore the use of past-time operators to specify protocol
rules relating to the content of a commitment store (e.g. only challenge arguments
that have previously been asserted), as used in the context of argumentation-
based communication models [2, 13, 20].

References

1. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Specification and
verification of agent interactions using social integrity constraints. In Workshop
on Logic and Communication in Multi-Agent Systems, 2003.

2. L. Amgoud, N. Maudet, and S. Parsons. Modelling dialogues using argumentation.
In 4th International Conference on MultiAgent Systems. IEEE, 2000.

3. M. Benerecetti, F. Giunchiglia, and L. Serafini. Model checking multiagent systems.
Journal of Logic and Computation, 8(3):401–423, 1998.

4. P. Blackburn, B. Gaiffe, and M. Marx. Variable-free reasoning on finite trees. In
Mathematics of Language 8, 2003.

5. P. Blackburn, W. Meyer-Viol, and M. de Rijke. A proof system for finite trees. In
Computer Science Logic. Springer-Verlag, 1996.

6. R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking
AgentSpeak. In 2nd International Conference on Autonomous Agents and Multi-
agent Systems. ACM Press, 2003.

7. G. Bruns and P. Godefroid. Generalized model checking: Reasoning about partial
state spaces. In 11th International Conference on Concurrency Theory. Springer-
Verlag, 2000.

8. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
9. M. Colombetti. A commitment-based approach to agent speech acts and conver-

sations. In Workshop on Agent Languages and Conversation Policies, 2000.
10. U. Endriss. Modal Logics of Ordered Trees. PhD thesis, King’s College London,

Department of Computer Science, 2003.
11. U. Endriss and D. Gabbay. Halfway between points and intervals: A temporal

logic based on ordered trees. In ESSLLI Workshop on Interval Temporal Logics
and Duration Calculi, 2003.

12. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol conformance for logic-based
agents. In 18th International Joint Conference on Artificial Intelligence. Morgan
Kaufmann, 2003.

13. R. Fernández and U. Endriss. Towards a hierarchy of abstract models for dialogue
protocols. In Proceedings of the 5th International Tbilisi Symposium on Language,
Logic and Computation. ILLC, 2003.

14. M. Fisher. Temporal development methods for agent-based systems. Journal of
Autonomous Agents and Multi-agent Systems, 10:41–66, 2005.

15. Foundation for Intelligent Physical Agents (FIPA). Communicative Act Library
Specification, 2002.

16. D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic: Mathematical Foun-
dations and Computational Aspects, volume 1. Oxford University Press, 1994.

17. J. Ginzburg. Interrogatives: Questions, facts, and dialogue. In Handbook of Con-
temporary Semantic Theory. Blackwell, 1996.

18. R. Goldblatt. Logics of Time and Computation. CSLI, 2nd edition, 1992.
19. F. Guerin and J. Pitt. Guaranteeing properties for e-commerce systems. In Agent-

Mediated Electronic Commerce IV. Springer-Verlag, 2002.
20. C. L. Hamblin. Fallacies. Methuen, London, 1970.
21. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-

neering, pages 279–295, 1997.
22. M.-P. Huget and M. Wooldridge. Model checking for ACL compliance verification.

In Advances in Agent Communication. Springer-Verlag, 2004.
23. A. J. I. Jones and X. Parent. Conventional signalling acts and conversation. In

Advances in Agent Communication. Springer-Verlag, 2004.
24. M. Kacprzak, A. Lomuscio, and W. Penczek. Verification of multiagent systems

via unbounded model checking. In 3rd International Conference on Autonomous
Agents and Multiagent Systems. ACM Press, 2004.

25. J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Uni-
versity of California at Los Angeles, Department of Philosophy, 1968.

26. H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation.
Prentice-Hall International, 2nd edition, 1998.

27. S. Parsons, N. Jennings, and C. Sierra. Agents that reason and negotiate by
arguing. Journal of Logic and Computation, 8(3):261–292, 1998.

28. J. Pitt and A. Mamdani. Communication protocols in multi-agent systems. In
Workshop on Specifying and Implementing Conversation Policies, 1999.

29. J. Pitt and A. Mamdani. A protocol-based semantics for an agent communication
language. In 16th International Joint Conference on Artificial Intelligence. Morgan
Kaufmann, 1999.

30. M. J. Sergot. A computational theory of normative positions. ACM Transactions
on Computational Logic, 2(4):581–622, 2001.

31. M. P. Singh. Agent communication languages: Rethinking the principles. IEEE
Computer, 31(12):40–47, 1998.

32. M. P. Singh. A social semantics for agent communication languages. In Issues in
Agent Communication. Springer-Verlag, 2000.

33. D. R. Traum and J. F. Allen. Discourse obligations in dialogue processing. In 32nd
Annual Meeting of the Association for Computational Linguistics, 1994.

34. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In 1st Symposium on Logic in Computer Science. IEEE, 1986.

35. M. Verdicchio and M. Colombetti. A logical model of social commitment for agent
communication. In 2nd International Conference on Autonomous Agents and Mul-
tiagent Systems. ACM Press, 2003.

36. B. Vitteau and M.-P. Huget. Modularity in interaction protocols. In Advances in
Agent Communication. Springer-Verlag, 2004.

37. M. Wooldridge. An Introduction to MultiAgent Systems. Wiley, 2002.

