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Abstract

This thesis investigate the modal and first-order model theory of the class of models over
descriptive general frames. Descriptive general frames are Stone spaces with a suitable
relation over which every modal logic is complete. The main theorem of this thesis is
the van Benthem Characterisation Theorem for the class of descriptive general models.
Moreover, a model-theoretic analysis is given to prove that many important results from
classical model theory, including the Compactness Theorem for first-order logic and the
upward Löwenheim-Skolem Theorem, fail on the class of descriptive general models. The
main tool developed in this thesis is the descriptive unravelling, a version of the unravel-
ling tree that is modified to be descriptive. A careful analysis of the operation is provided
and three isomorphic constructions are given: a construction through duality theorems,
a construction through a topological toolkit based on nets that is also developed, and an
explicit construction in terms of finite and infinite paths.
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1 Introduction

Modal logic extends propositional logic with modal operators that lend themselves to a
wide variety of interpretations. Among the diversity, modal logic is used to represent
knowledge and belief (known as epistemic modalities), possibilities and necessities (known
as alethic modalities), duties and permissions (deontic modalities), for statements about
the future and past (known as temporal modalities) and many more applications [8, 11,
26, 4]. The language and its abstractions have also been found widely applicable in
theoretical computer science and artificial intelligence [8, 29, 30, 36].
The conventional structures on which modal logic is interpreted are Kripke models.

Bisimulations are relations on Kripke models that are indistinguishable by modal logic,
in the sense that the truth of modal formulae is preserved under these relations. The
celebrated van Benthem Characterisation Theorem states that in fact, any first-order
formula that is invariant under bisimulations must be equivalent to a modal formula [1, 8].
This is often formulated more succinctly by saying that modal logic is the bisimulation-
invariant fragment of first-order logic. The theorem has inspired many generalisations
and alternative versions, including a similar characterisation for intuitionistic logic [31,
32], neighbourhood models [21], and numerous coalgebraic generalisations [34]. Another
famous result is the Janin-Walukiewicz Theorem [23], showing that the modal µ-calculus
is the bisimulation-invariant fragment of monadic second-order logic.
A result that is of particular importance to this thesis was given in [33], showing

that over finite models, too, modal logic is the bisimulation-invariant fragment of first-
order logic. The reason why this is particularly remarkable is that the Compactness
Theorem of first-order logic features prominently in the proof of the original van Benthem
Characterisation Theorem, while the class of finite models crucially lacks the compactness
property. The result for finite models has in turn been generalised to multiple other
classes lacking the compactness property, including the classes of rooted finite models,
rooted transitive models, and in well-founded transitive models [14].
The main result of this thesis will be the van Benthem Characterisation Theorem for

the class of models over descriptive general frames. These are totally separated, compact
topological spaces, commonly known as Stone spaces, with a suitable relation, whose
models have valuations restricted to clopen sets.
Descriptive general frames are an important class of frames with respect to which every

modal logic is complete. This is due to a topological duality known as Jónsson-Tarski
duality [25], establishing a dual equivalence between the category of descriptive general
frames and the category of modal algebras. This duality makes them a crucial tool to
study modal algebras.
Apart from this, descriptive general frames are a natural generalisation of finite frames.

Topological compactness is a common generalisation of finiteness and the classes of finite
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and descriptive general frames are both closed under many of finite disjoint unions and
p-morphic images, they both are not closed under infinite disjoint unions and they both
have the Hennessy-Milner property (see [5, Corollary 3.10]). Moreover, in this thesis, it
will be shown that they have a similar model theory.
Finally, descriptive general frames can be viewed as coalgebras for the Vietoris functor

on the category of Stone spaces [27], just like Kripke frames are coalgebras for the power-
set functor and finite Kripke frames are coalgebras for the powerset functor restricted to
finite sets. As far as we are aware, the result in this thesis is the first van Benthem-style
characterisation theorem for coalgebras over a category of topological spaces. This may
pave the way for generalisations of the theorem for coalgebras of other Vietoris-like func-
tors. These potential generalisations are discussed in Chapter 6.

The following will be a detailed description of the contents of the thesis.

In Chapter 2, descriptive general frames and their models are discussed and analysed,
providing background theory and an important topological toolkit. Algebraic duality
for general frames is presented and a “descriptive completion”-operation is introduced
to turn every general frame into a descriptive general frame. Moreover, the topology of
general frames is examined and nets are discussed as a useful tool with which to grapple
with descriptive general frames, including two topological constructions of the descriptive
completion.

Chapter 3 focuses on the model theory of descriptive models and proves the failure of
a number of important results from classical model theory, like the Compactness The-
orem for first-order logic and the upward Löwenheim-Skolem Theorem, on the class of
descriptive general models. The topological tools presented in Chapter 2 are used to
develop a lemma that provides the failure of the different results.

Inspired by the model-theoretic similarities between the classes of finite and descriptive
models, Chapter 4 uses the approach from [33] to prove the main result of the thesis: the
van Benthem Characterisation Theorem for descriptive models. The first section is ded-
icated to providing a proof for the classical van Benthem Characterisation Theorem. The
section after that discusses the role of the Compactness Theorem for first-order logic in
the proof of the classical van Benthem Characterisation Theorem, and how the approach
in [33] gets around this. Then a preview will be given for how this approach should be
modified for descriptive models, after which the third section produces the complete and
detailed proof. The central tool in the proof is the “descriptive unravelling”, the descript-
ive completion of the unravelling tree commonly seen and used in modal logic. Roughly
speaking, we add new points to the standard unravelling at “infinite distance” from the
points of unravelling, yet guaranteeing that the new model is descriptive. Proving a
number of important qualities of this construction then allows for its use in the proof
through an Ehrenfeucht-Fraïssé argument.
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Chapter 5 is dedicated to a careful examination of the descriptive unravelling, produ-
cing an explicit construction of the operation in terms of finite and infinite paths on the
original frame and a visualisable classification of the possible shapes that it may take.
The equivalent topological construction of the descriptive completion is used to examine
what exactly changes when the unravelling of a descriptive general frame is compactified
in the descriptive completion and the topological toolkit from Chapter 2 is used to give
an explicit isomorphic construction to better understand the structure of the descriptive
unravelling. The final result of the chapter is a concrete classification of the possible
relational structures of the descriptive unravelling, and it is concluded with a discussion
on the uses of the different constructions for the descriptive unravelling.

Finally, Chapter 6 discusses future research directions in which to take these results and
how the tools developed in the thesis might be applied in different contexts.

The main original contributions of this thesis are:

• The van Benthem Characterisation Theorem for descriptive models;

• The descriptive unravelling as a tool to understand bisimulation-invariant phenom-
ena on descriptive models;

• A topological toolkit, specifically using nets, to understand descriptive general
frames better and two alternative constructions of the descriptive unravelling;

• Failure of a number of model-theoretic results on the class of descriptive models,
including specifically the Compactness Theorem for first-order logic, the upward
Löwenheim-Skolem Theorem, and the Beth Definability Theorem.
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2 Modal logic, general frames, and
bisimulations

2.1 The language of modal logic

As stated in the introduction, this thesis will revolve around the language of modal logic,
which extends propositional logic with additional “modal operators”.

2.1.1 Syntax and semantics of modal logic

In this thesis, only the uni-modal language will be considered. This choice is made mainly
to improve legibility.

Definition 2.1. The modal language over propositional variables from a set P of any
cardinality is defined as all formulae that may be constructed in the recursive schema

ϕ ::= p > ⊥ ¬ϕ ϕ ∧ ϕ ϕ ∨ ϕ ♦ϕ �ϕ

where p ∈ P. This set of formulae will be referred to as ML(P) or ML, if the set of
propositional variables is clear from context. J

Modal formulae are interpreted on relational structures through the standard Kripke
semantics.

Definition 2.2. A Kripke frame is a pair F = (W,R) of a non-empty set W and a
relation R ⊆ W ×W . A Kripke model over a set of propositional variables P is a triple
M = (W,R, V ) where (W,R) is a Kripke frame and V : P →P(W ) is a function. The
class of all Kripke models will be denoted by K. Sometimes Rwv or wRv will be used
as alternative notation for (w, v) ∈ R. J

Definition 2.3. Let (W,R) be a Kripke frame and let X ⊆W . Define

〈R〉X := {w ∈W | ∃x ∈ X : Rwx};
[R]X := {w ∈W | ∀v ∈W : Rwv =⇒ v ∈ X}.

These are dual notions in the sense that 〈R〉X = ([R]Xc)c and therefore also [R]X =
(〈R〉Xc)c, where Xc := W \X is the set-theoretic complement. J
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Definition 2.4. For a Kripke model M = (W,R, V ) the truth function J·KM from ML(P)
to P(W ) is defined through recursion on the complexity of formulae by

J>KM := W ; J⊥KM := ∅;
JpKM := V (p) J¬ϕKM := W \ JϕKM;

Jϕ ∧ ψKM := JϕKM ∩ JψKM; Jϕ ∨ ψKM := JϕKM ∪ JψKM;

J♦ϕKM := 〈R〉JϕKM; J�ϕKM := [R]JϕKM.

If M = (W,R, V ) is a model and ϕ ∈ ML(P), then for each point w ∈ W the formula ϕ
is said to be satisfied at w or at M, w if w ∈ JϕKM. J

Convention 2.5. The standard models on which to evaluate modal formulae are pointed
Kripke models. That is, pairs of the form (M, w) where M = (W,R, V ) is a Kripke model
and w ∈W is a point. The brackets will be included only if omitting them is ambiguous.
Then M, w  ϕ is understood to mean that M, w satisfies ϕ, that is w ∈ JϕKM. Contrast
this with the symbol for semantic consequence for first-order logic (FOL), where a model
A validating a formula α is written as A |= α.
The modal theory of a pointed model M, w is the set of modal formulae satisfied by

it and is written as ThML(M, w). The equality ThML(M, w) = ThML(N, v) is abbreviated
as M, w! N, v, which is to be contrasted with the symbol for first-order equivalence,
A ≡FOL B, where the label of FOL is left explicit to avoid confusion.
Finally, for a given language L, and a formula ξ (not necessarily in the same language),

one can write ThCL(ξ) for the set of all formulae ζ in L such that if A is a model in C that
validates ξ, then A also validates ζ. Observe that this makes sense only if ξ and ζ have
the same type of models, and C consists of such models. If the class C is obvious from
context, it may be omitted from the notation.
For a final notational convention, if ξ ∈ ThCL(ζ) and ζ ∈ ThCL′(ξ), then one can write

ξ ≡C ζ, where again C may be omitted if it is redundant.
With this notion of equivalence of formulae from different languages, it turns out that

ML can be thought of as a sublanguage of first-order language, FOL. There exists a
standard inclusion of the former into the latter, known as the standard translation.

Definition 2.6. Given two distinct variables x0 and x1 in FOL, the standard translation
STxi : ML→ FOL for i ∈ {0, 1} is defined through the joint recursive schema

STxi(p) = Pxi; STxi(¬ϕ) = ¬STxi(ϕ);

STxi(ϕ ∨ ψ) = STxi(ϕ) ∨ STxi(ψ); STxi(ϕ ∧ ψ) = STxi(ϕ) ∧ STxi(ψ);

STxi(♦ϕ) = ∃x1−i[Rxix1−i ∧ STx1−i(ϕ)]; STxi(�ϕ) = ∀x1−i[Rxix1−i → STx1−i(ϕ)].

The variables x0 and x1 are also often replaced by x and y. J

The proposition below will show why this is a meaningful translation.

Proposition 2.7. For any pointed model M, w the two formulae ϕ ∈ ML and STx0(ϕ)
are equivalent in the previously described sense:

M, w  ϕ ⇐⇒ M |= STx0(ϕ)
[
w/x0

]
.
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Proof. The proof is a simple induction on the complexity of formulae.

Borrowing notation from topology and writing K∗ for the class of pointed Kripke mod-
els, and using Convention 2.5, this becomes ϕ ≡K∗ STx0(ϕ), where first-order formulae
in one free variable are interpreted on pointed Kripke models in the obvious way.

2.1.2 Finitary modal logic

A pointed Kripke model M, w validates a modal formula such as
m times︷ ︸︸ ︷
♦ · · ·♦ϕ (usually ab-

breviated to ♦mϕ) if and only if there exists an R-path from w in M of length m at the
end of which ϕ is satisfied. As there is no restriction on the size of m, sets of modal
formulae can be used to characterise behaviour of all points that can be reached from w,
in the entire connected component.
While this expressive power is extremely useful, it hinders the analysis of the lan-

guage. In particular, as will be demonstrated in Proposition 2.12, it means the language
contains infinitely many non-equivalent formulae. However, the modal language can be
decomposed in finitary sublanguages that are more well-behaved. This tool will be vital
to proof of the main theorem of this thesis.

Definition 2.8. The finite modal language up to depth n over propositional variables P,
written as MLn(P), will be constructed by the recursive schema

ϕ ::= p > ⊥ ¬ϕ ϕ ∧ ϕ ϕ ∨ ϕ ♦ψ �ψ

where p ∈ P and ψ ∈ MLk(P) for k < n. Formulae in MLn(P) \
⋃
i<n MLi(P) are said to

have modal depth n. J

As the next proposition will show, this is indeed a decomposition of the full language.

Proposition 2.9. For any set of propositional variables P the equality

ML(P) =
⋃
n∈N

MLn(P) (2.1)

holds.

Proof. Induction on n immediately gives that MLn(P) ⊆ ML(P) for all n. Induction on
the complexity of formulae in ML gives the other inclusion.

All these languages contain infinitely many syntactically different formulae.

Corollary 2.10. |ML(P)| = |MLn(P)| = ℵ0 · |P|.

Proof. The second equality is given by induction on n. There are ℵ0 · κ Boolean expres-
sions over κ propositional variables, so |ML0(P)| = ℵ0 · |P|. Viewing MLn+1(P) as Boolean
expressions over P and {♥ϕ | ϕ ∈ MLn,♥ ∈ {♦,�}}, the cardinality is given by

|MLn+1| = ℵ0 · (|MLn(P)|+ |P|) = ℵ0 · (ℵ0 · |P|+ |P|) = ℵ2
0 · |P| = ℵ0 · |P|
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by the induction hypothesis. Moreover,

ℵ0 · |P| = |ML0(P)| ≤ |ML(P)| =

∣∣∣∣∣⋃
n∈N

MLn(P)

∣∣∣∣∣ ≤∑
n∈N
|MLn(P)| = ℵ2

0 · |P| = ℵ0 · |P|,

concluding the proof.

However, while there are infinitely many syntactically different formulae in these lan-
guages, the next proposition will show that the finitary modal languages only have finitely
many formulae up to equivalence. This means that theories in these languages can be
reduced to a single formula, providing much stronger results.

Proposition 2.11. If P is a finite set of propositional variables, and n ∈ N is a finite,
natural number, then MLn(P) contains only finitely many formulae up to equivalence as
in Convention 2.5. That is, there is a finite set of formulae {ϕ0, . . . , ϕk} ⊆ MLn(P) with
the property that for any ϕ ∈ MLn(P) there is a non-negative i ≤ k such that ϕ ≡ ϕi.

Proof. By induction on n. Suppose that the statement is true for all ` < n. Observe
that MLn(P) consists of all Boolean polynomials in P∪{♦ψ,�ψ | ψ ∈ ML`(P), ` < n}. By
assumption and the induction hypothesis, this is finite up to equivalence, and since there
are only finitely many Boolean expressions up to equivalence over a finite set, it follows
that MLn(P) is finite up to equivalence.

Contrast this with the original modal language, which does not have this property.

Proposition 2.12. The language ML(P) contains ℵ0 ·|P| many formulae that are pairwise
non-equivalent over the class of pointed Kripke models.

Proof. Corollary 2.10 implies immediately that there are at most ℵ0 · |P| many such
formulae. To see that there are at least so many non-equivalent formulae, note first
that the formulae p and q are evidently non-equivalent for distinct p, q ∈ P. Secondly,
any model M based on N with the predecessor relation, illustrated in Figure 2.1, has
the property that M, n  ♦n>, but M, n 6 ♦n+1>, implying that {♦n>}n∈N are all
non-equivalent. This guarantees that there are at least max{ℵ0, |P|} = ℵ0 · |P| many
non-equivalent formulae in ML.

0 1 2 3
. . .

n
. . .

Figure 2.1: The frame given by N equipped with the predecessor relation.

Equivalence on these finitary languages will come back often in this thesis.

Definition 2.13. Let ` ∈ N. Two pointed models M, w and N, v will be called modally
`-equivalent if for all ϕ ∈ ML`(P):

M, w  ϕ if and only if N, v  ϕ.

This is denoted by M, w!` N, v or M, w ≡ML
` N, v over P. If the set of propositional

variables is clear from context, it may be omitted. J
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2.2 General frames

Investigating the class of models based on frames with a fixed set of graph-theoretic or
relational properties has yielded a rich theory of normal modal logics [8, 11, 26]. These
are sets of modal formulae closed under reasonable rules and axioms, see also [8, Def.
1.39] for more details. Typical soundness and completeness results in modal logic state
that a normal modal logic Λ is sound and complete with respect to all models based
Kripke frames in a fixed class.
There are some normal modal logics, however, which are not sound and complete with

respect to any class of Kripke frames [9, 2, 38]. In fact, some are not even sound with
respect to any Kripke frame [3]. In these cases, requiring validity on all models based
on frame is too strict. A weaker requirement is to demand validity on all models whose
valuations are restricted to a given collection of “admissible sets”.

Definition 2.14. A triplet g = (W,R,A) is a general frame if (W,R) is a Kripke frame
and A is a field of sets1 over W that is closed under the operation 〈R〉 (i.e. for every
a ∈ A also 〈R〉a ∈ A). The underlying frame of g will be denoted by g# := (W,R).
A quadruplet m = (W,R,A, V ) is a general model based on g = (W,R,A) over a set

of propositional variables P if V : P→ A is a function. The definition of J·Km is the same
for general models as it is for Kripke models. J

Now soundness and completeness with respect to a class of general frames is validity
on all models whose valuations are contained in the collection of admissible sets. With
this notion of soundness and completeness, it turns out that in fact all normal modal
logics are sound and complete with respect to some class of general frames.
To motivate the closure conditions on the collection of admissible sets, the next pro-

position will show that the truth set of any formula is in fact an admissible set.

Proposition 2.15. Let m = (W,R,A, V ) be a general model and ϕ ∈ ML a formula.
Then JϕKm ∈ A.

Proof. By induction on the complexity of ϕ.

When algebraic notions are introduced in Section 2.4, it will become clear that some
specific types of general frames are of special importance. It will be useful to define a
few important classes of general frames that are relevant to this thesis.

Definition 2.16. Let g = (W,R,A) be a general frame. Then

• g is called differentiated if for all distinct w, v ∈W there exists an a ∈ A such that
v ∈ a but w /∈ a;

• g is tight if for all w, v ∈ W with (w, v) /∈ R there exists an a ∈ A such that v ∈ a
and w /∈ 〈R〉a;

1That is, a non-empty collection of sets that is closed under union, intersection and complementation.
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• g is called compact if all collections A ⊆ A with empty intersection have a finite
subcollection A0 ⊆ A with empty intersection.

• g is called (pre)image-compact if for any point w ∈ W , a collection A ⊆ A whose
intersection is disjoint from R[w] (R−1[w] = 〈R〉{w}), the set of successors (prede-
cessors) of w, has a finite subcollection A0 ⊆ A whose intersection is also disjoint
from R[w] (R−1[w]).

• g is called descriptive if it is differentiated, tight, and compact. The class of models
based on descriptive frames will be denoted by D.

Models based on such a general frame are called differentiated, tight, compact, or de-
scriptive models. J

Image-compact frames and models will show up regularly in this thesis.
Remark 2.17. From the De Morgan laws and the fact that A is closed under comple-
mentation, it is easy to see that a general frame (W,R,A) is compact if and only if each
collection A ⊆ A such that

⋃
A = W has a finite subcollection A0 ⊆ A with

⋃
A0 = W .

J

Example 2.18. To perhaps clarify some of these notions, it might be useful to consider
some examples and counterexamples.

• The most trivial example of a descriptive frame are the unique general frame con-
sisting of a single reflexive point and the unique general frame of a single irreflexive
point. These are unique, because there is only one field of sets on a singleton set.

• A less trivial common example of a descriptive frame is (ω+1,≥) or (ω+1,≤) with
admissible sets all finite subsets of ω and their complements in ω + 1 = N ∪ {ω}.
The properties are easily checked. They are schematically illustrated in Figure 2.2a
and 2.2b. Note that not all arrows in N are displayed to avoid clutter.

• An example of a compact and differentiated frame that is not tight is (ω+1, >), as
schematically displayed in Figure 2.2c (again with only successor arrows in N), with
the same admissible sets. This is not tight, because any admissible set containing ω
also contains finite numbers by construction, so that ω is again in the >-preimage.
In Section 2.6.1, it will turn out that there is a much more intuitive reason why this
frame is not tight. The frame (ω+ 1, <) with these admissible sets is not a general
frame, because the <-preimage of the whole set is N, which is not admissible.

• For a non-compact frame that is tight and differentiated, one can take any infinite
frame with the powerset as collection of admissible sets.

• To get a non-differentiated frame, one can take any (differentiated) general frame,
pick an arbitrary point and copy it, where both copies inherit the relations of the
original and each admissible set gets both copies if and only if it had the original
point, otherwise it contains neither. This operation preserves both tightness and
compactness, but the result will never be differentiated, because the two copies
cannot be distinguished.

10



...

...

ω

N

(a) Schematic illustration
of (ω + 1,≥).

...

...

ω

N

(b) Schematic illustration
of (ω + 1,≤).

...

...

ω

N

(c) Schematic illustration
of (ω + 1, >).

Figure 2.2: Schematic illustrations of ω+ 1 with relations ≥, ≤ and > respectively. Note
that only the successor relations are drawn in the points from N to avoid
cluttering. However, the relation intended is the total order.

2.3 Topology of general frames

An extremely useful lens through which to view general frames is that of topology. Gen-
eral frames can be equipped with an extremely natural topology which provides an im-
mense toolbox for analysing them. References for this subject can be found in [8, 11].
For the sake of keeping this thesis self-contained, all relevant theory is formally stated in
this section.

Definition 2.19. Let g = (W,R,A) be a general frame. Then the topological space
T (g) with universe W and topology whose basis2 is A will be called the g-space. J

Note that A is closed under intersections, so that it is in fact a basis. Moreover,
because A is closed under complementation, this is in fact a basis of clopens (sets that
are both closed and open). It turns out that this topological view of general frames is
very powerful, and it will be used extensively throughout the thesis. The distinction
between a general frame g and the associated g-space will not always be made explicitly,
and topological properties of general frames are to be understood as properties of the
associated space.
To understand why the topology is a meaningful construction on a general frame, it

is instructive to turn to the morphisms. The morphisms on topological spaces are called
continuous functions.

2Recall that a basis is a collection of sets B such that for each x ∈ B0 ∩ B1 with B0, B1 ∈ B there is
a B2 with x ∈ B2 ⊆ B0 ∩ B1. The topology generated by a basis B is given by the collection of all
unions of subsets of B.
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Definition 2.20. Let X = (X, T ) And X ′ = (X ′, T ′) be two topological spaces. A
function f : X → X ′ is called continuous if for each open U ∈ T ′ its inverse image under
f is open, i.e. f−1[U ] ∈ T . J

The connection with general frames is then understood through the action of continu-
ous functions on the admissible sets.

Proposition 2.21. Let g = (W,R,A) and g′ = (W ′, R′, A′) be two general frames. If
f : W → W ′ generates a morphism of fields of sets Popf : A′ → A sending a to f−1[a],
then f is continuous as map from T (g) to T (g′). If A is also the collection of all clopen
sets on T (g), then the converse implication holds, too.

Proof. If U =
⋃
A is open for A ⊆ A′, then

f−1[U ] = f−1
[⋃
A
]

=
⋃
{f−1[a] | a ∈ A}

is open, as {f−1[a] | a ∈ A} ⊆ A by assumption.
Moreover, f is continuous and a ∈ A′, then a and ac are both open by construction of

the topology so that f−1[a] and f−1[ac] = f−1[a]c are both open, implying that f−1[a]
is clopen. If A is the collection of all clopens, this means Popf maps to A and thus that
is a morphism of fields of sets.

This topological perspective provides a good reason for redefining classes of general
frames in topological terms.

Definition 2.22. A topological space is called totally separated if every two distinct
points have disjoint, clopen neighbourhoods. J

Proposition 2.23. Let g be a general frame. Then g is differentiated if and only if the
g-space is totally separated.

Proof. The implication from left to right is obvious. For the implication from right to
left, consider two distinct points, w and v. There must be a clopen set C such that
w ∈ C and v /∈ C. A clopen set is in particular open, so that there is a basis element
a ⊆ C with w ∈ a. From v /∈ C we infer v /∈ a so that a is an admissible set containing
one but not the other, proving differentiatedness.

Definition 2.24. A topological space is called Hausdorff if every two distinct points
have disjoint open neighbourhoods. J

Corollary 2.25. If a general frame g is differentiated, then the g-space is Hausdorff.

Proof. This follows immediately from Proposition 2.23 and the fact that clopen sets and
their complements are open.

Definition 2.26. Let X = (X, T ) be a topological space. The space X is said to be
compact if for every collection of open sets U ⊆ T such that

⋃
U = X there is a finite

subcover U0 ⊆ U such that
⋃
U0 = X. A subset C ⊆ X is said to be compact if the

subspace it induces is compact. J

12



Proposition 2.27. Let g = (W,R,A) be a general frame. Then g is compact if and only
if the g-space is compact in the topological sense.

Proof. For the left to right implication, U is an open cover of W . Then each element
U ∈ U is a union of basis elements U =

⋃
AU for some AU ⊆ A. Consider the collection

A :=
⋃
{AU | U ∈ U} ⊆ A.

Then evidently
⋃
A =

⋃
U = W . By compactness, there is a finite subset A0 ⊆ A =⋃

{AU | U ∈ U} that covers W . So for each element a ∈ A0, there is a Ua ∈ U such
that a ∈ AU , implying that a ⊆ Ua. From finite choice, this gives a finite subcover
U0 = {Ua | a ∈ A0} ⊆ U .
For the right to left implication, it is sufficient to note that all a ∈ A are open.

Corollary 2.28. A general frame g = (W,R,A) is (pre)image-compact if and only if for
each w ∈W the subset R[w] (R−1[w]) is compact as subset of the g-space.

Proof. This follows immediately from Proposition 2.27 when viewing R[w] (R−1[w]) with
the restricted relation and admissible sets as a general frame.

Definition 2.29 ([13, 24]). A topological space is called a Stone space if it satisfies one
of the following equivalent properties:

• It is compact and totally separated.

• It is compact, Hausdorff, and has a basis of clopen sets. J

Remark 2.30. As can be seen immediately from Propositions 2.23 and 2.27, a general
frame g is differentiated and compact if and only if the g-space is a Stone space. J

This topological terminology provides the opportunity to talk about subsets of W
being compact.
For sufficiently well-behaved topological spaces, there is a convenient correspondence

between closedness and compactness of subsets.

Lemma 2.31. If X = (X, T ) is a Hausdorff space, then any compact subset C ⊆ X is
closed. If a (not necessarily Hausdorff) topological space X is compact, then any closed
subset is also compact.

This is a well-known result in topology, but the proof will be stated briefly in an effort
to keep the thesis more self-contained.

Proof of 2.31. Let C be compact. By the Hausdorff property, for every x ∈ C and y /∈ C,
there exist disjoint open neighbourhoods Uyx and V x

y such that x ∈ Uyx and y ∈ V x
y . Fix

a y /∈ C and consider Uy := {Uyx | x ∈ C}. As x ∈ Uyx , it follows that
⋃
Uy ⊃ C, so Uy

is an open cover of C. By compactness, it has a finite subcover {Uyx1 , . . . , U
y
xn}. This

13



implies that Vy := V x1
y ∩ · · · ∩ V xn

y is disjoint from Uyx1 ∪ · · · ∪U
y
xn ⊇ C, so that y has an

open neighbourhood Vy disjoint from C. As y ∈ V x
y for all y, x, it follows that

X \ C =
⋃

y∈X\C

Vy

must be open, making C closed.
If X is compact and C ⊆ X is a closed subset, then any open cover of C can be turned

into an open cover of X by adding X \ C. Compactness of X means this has a finite
subcover, which must then also cover C. As clearly X \ C does not cover C, this must
be a finite subcover of the original cover of C.

As such, in compact Hausdorff spaces, closed and compact subsets are interchangeable.

Lemma 2.32. If g = (W,R,A) is a tight general frame, then g is preimage-closed.

Proof. Let w ∈W be a point. Then

R−1[x] =
⋂
a∈A
x∈a

〈R〉a.

The left to right inclusion is obvious, since {x} ⊆ a =⇒ R−1[x] = 〈R〉{x} ⊆ 〈R〉a.
Tightness provides the other inclusion through contraposition: suppose that y /∈ R−1[x],
then there exists an a ∈ A such that x ∈ a but y /∈ 〈R〉a ⊇

⋂
{〈R〉b | b ∈ A, x ∈ b}.

Proposition 2.33. If g is a compact and tight general frame, then g is preimage-
compact. In particular, all descriptive frames are preimage-compact.

Proof. Let w be a point. Then R−1[w] is closed by the above lemma, implying that
it is compact, because a closed subset of a compact space is again compact by Lemma
2.31.

Lemma 2.34. If (W,R,A) is a descriptive frame and X ⊆ W is closed, or equivalently
compact, then R[X] is closed, and therefore compact.

Proof. Note that descriptive frames are compact and Hausdorff by Proposition 2.27 and
Corollary 2.25, so that Lemma 2.31 shows that closed and compact are the same. It is
thus sufficient to show that the R-image of a closed set is closed. To this end let X be
closed. The following argument will show that R[X] is equal to its closure, that is

R[X] = R[X] :=
⋂
{a ∈ A | R[X] ⊆ a}.

As all sets are included in their closure, the left to right inclusion is trivial. For the other
inclusion, assume that w /∈ R[X]. Let x ∈ X. By tightness, there exists an ax ∈ A
such that w ∈ ax but x /∈ 〈R〉ax. In particular, x ∈ W \ 〈R〉ax = [R]acx. Hence there is
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an open cover of X given by {[R]acx | x ∈ X}. Because X is compact, there is a finite
subcover {[R]acxi}

n
i=1 for some n. Then

X ⊆
n⋃
i=1

[R]acxi ⊆ [R]
n⋃
i=1

acxi =⇒ R[X] ⊆
n⋃
i=1

acxi .

Note that the latter is a finite union of clopen sets, hence clopen. As such, it follows that
also R[X] ⊆

⋃n
i=1 a

c
xi . Since w /∈ acx for any x ∈ X, it follows that w /∈ R[X].

Proposition 2.35. Descriptive frames are image-compact.

Proof. Note that singletons are finite, hence compact. Then Lemma 2.34 gives the con-
clusion.

In fact, this is an exact characterisation of descriptive frames.

Definition 2.36 ([7, 27]). A modal space is a triple (X,R, T ) such that (X, T ) is a Stone
space, R is image-compact and the R-preimage set of clopen sets is clopen. If R is a
partial order, then this is also called an Esakia space. J

Proposition 2.37. There is a one-to-one correspondence between descriptive frames
and modal spaces given by taking the topology generated by the admissible sets on the
one hand, and taking the clopen sets of the topology in the other direction.
That is, if TA is the topology generated by a basis A and Clop(T ) is the clopens of

a topology T then sending a descriptive frame (W,R,A) to (W,R, TA) and sending a
modal space (X,R, T ) to (X,R,Clop(T )) provide a one-to-one correspondence in the
sense that Clop(TA) = A and TClop(T ) = T .

Proof. Given a descriptive frame g = (W,R,A), the g-space is a Stone space from Remark
2.30, the R-image of a point is compact by Lemma 2.34, and the preimage of a clopen
set is clopen. The last claim follows because any clopen set is an admissible set, since
closed subsets of a compact space are compact, and being open they must be a union of
basis elements. As such, any clopen set is a finite union of admissible sets, making it an
admissible set, which are clopen and closed under R-preimages.
On the other hand, if (X, T , R) is a modal space and A := Clop(X, T ) is the set of

clopens in (X, T ), then closure of A under R-preimage guarantees that (X,R,A) is a
general frame. Clearly, it is compact and differentiated, and if (w, v) /∈ R, then v /∈ R[w],
which is compact by hypothesis. Moreover, v can be separated from any point t ∈ R[w]
by a clopen set Ct 3 t as (X, T ) is totally separated. By compactness, this has a finite
subcover whose union then produces a clopen set C containing all of R[w] but not v. As
v ∈ X \ C but R[w] ⊆ C, tightness follows.
Finally, note that by definition Stone spaces have a basis of clopens, so TClop(T ) = T

and note that any clopen set in TA is open, so a union of elements in A, and a closed
subset of a compact space, so compact. This means that it must be a finite union of those
elements in A. A finite union of admissible sets is admissible, so Clop(TA) = A.
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2.4 Algebraic duality

The previous section ended with Proposition 2.37, which showed that there is a mean-
ingful correspondence between descriptive frames and modal spaces. This leads back to
an important motivation for considering descriptive frames. Stone duality is a celebrated
contravariant category equivalence between Stone spaces and Boolean algebras, which
are the algebraic models of classical propositional logic.

2.4.1 Stone duality

An extraordinarily rich theory exists around topological duality of algebraic structures,
only a small portion of which will be relevant to this thesis. In the interest of brevity,
only the bare necessities of this theory will be mentioned. First, there is the classic Stone
duality, establishing a dual equivalence between the category of Boolean algebras and
the category of Stone spaces.

Definition 2.38. The category BA of Boolean algebras has an object class consist-
ing of all Boolean algebras and as morphisms all maps preserving the meet, join and
complementation operations. J

The next relevant category is that of the Stone spaces mentioned above.

Definition 2.39. The category Stone of Stone spaces consists of all totally separated,
compact topological spaces (see Definition 2.29) with corresponding morphisms the col-
lection of all continuous maps between them. J

It turns out that these two categories can then be linked by a contravariant functor.

Definition 2.40. The Spec-functor, denoted Spec or (−)∗, goes from BA to Stone
by mapping a Boolean algebra B to the Stone space Spec(B) = B∗ on Uf B, the set
of ultrafilters3 on B, with a topology generated by all sets b̂ := {F ∈ Uf B | b ∈ F}
for b in B. A morphism f ∈ HomBA(B1,B2) is mapped to Spec(f) = f∗ defined by
f∗ := Popf : Spec(B2)→ Spec(B1) with f∗(F ) = f−1[F ]. J

Definition 2.41. The Clop-functor, written as (−)∗ maps objects X in Stone to the
field of sets of clopens, X∗ := (Clop(X ),∩,∪, ·c) in obBA. Morphisms f : X → Y
in Stone, being continuous functions between the topological spaces, are mapped to
f∗ := Popf , so that again any clopen A in Y is mapped to f∗(C) = f−1[C]. J

Stone duality is the dual category equivalence established by these two functors.

Theorem 2.42 (Stone duality [8, 24, 35]). The functors Spec and Clop establish a dual
equivalence between BA and Stone.

3An ultrafilter of a Boolean algebra is an upwards subset F of the universe that is closed under meet
and contains b or its complement for each b.
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2.4.2 Jónsson-Tarski duality

Stone duality is important for this thesis, because a similar duality holds for the category
of modal algebras and the category of descriptive frames. As Proposition 2.37 shows,
descriptive frames are simply Stone spaces with extra structure. Similarly, modal algebras
are Boolean algebras with extra structure, as seen in the next definition.

Definition 2.43. A modal algebra is a pairM = (B,♦) where B = (B,∨,∧,¬, 0, 1) is a
Boolean algebra, and ♦ : B → B is an operator satisfying ♦0 = 0 and ♦(a∨b) = ♦a∨♦b.

The category MA has as objects all modal algebras and as morphisms the Boolean
morphisms f such that f(♦a) = ♦f(a) for all a. J

Definition 2.44. The category DF is the category with all descriptive frames as objects,
and as morphisms the continuous4 bounded morphisms.5 J

The functors Spec and Clop can be extended to incorporate these expansions of the
structures.

Definition 2.45. Let M = (B,♦) be a modal algebra. Then let M∗ = (W,R,A) be
the descriptive frame with (W,A) = SpecB, and R a relation on the ultrafilters given
by FRF ′ if and only if for every b ∈ F ′ also ♦b ∈ F . The morphisms are mapped in the
same way as under Stone duality. J

Remark 2.46. Note that the definition of the relation, given by (F, F ′) ∈ R ⇐⇒ ∀b ∈
B[b ∈ F ′ =⇒ ♦b ∈ F ] is equivalent to the definition (F, F ′) ∈ R ⇐⇒ ∀b ∈ B[�b ∈
F =⇒ b ∈ F ′]. After all,(

b ∈ F ′ =⇒ ♦b ∈ F
)
⇐⇒

(
♦b /∈ F =⇒ b /∈ F ′

)
⇐⇒

(
¬♦b ∈ F =⇒ ¬b ∈ F ′

)
⇐⇒

(
�¬b ∈ F =⇒ ¬b ∈ F ′

)
.

Quantifying over all b and using that ¬¬b = b in modal algebras then implies that these
two universal statements are equivalent. J

Definition 2.47. Let g = (W,R,A) be a descriptive frame. Then the associated modal
algebra is g∗ = (A, 〈R〉). The morphisms are again mapped as under Stone duality. J

Remark 2.48. For both of these functors, note that when converting the descriptive frames
back to Stone spaces as per Proposition 2.37 produces again the Spec- and Clop-functor
from the Stone duality. J

Theorem 2.49 (Jónsson-Tarski duality [8, 25, 26]). These two functors present a dual
category equivalence between MA and DF.

4Recall Definition 2.20
5A bounded morphism from between Kripke frames F = (W,R) and F′ = (W ′, R′) is a map f : W →W ′

with the property that if wRv then f(w)Rf(v) and if f(w)R′v′ then there is a v ∈W such that wRv
and f(v) = v′.
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An interesting and vitally important note is that nothing prevents the use of the ·∗-
functor to be restricted to descriptive frames. For the entire class of general frames, one
may define the exact same operation. Combining it with the other functor results in an
operation that turns every general frame into a descriptive frame. This may be called
the double dual, the dual completion, or the descriptive completion of the general frame.

Definition 2.50. Let g = (W,R,A) be a general frame. Then its descriptive completion
is (g∗)∗ =: (W∗, R∗, Â), where Â = {â | a ∈ A}. This is always a descriptive frame. If
m = (g, V ) is a general model, there is an induced descriptive model m∗ := ((g∗)∗, V∗)
where V∗ is a valuation such that if originally V (p) = a, then V∗(p) = â. This will be
called its completed model. J

In the special case that g is a Kripke frame, meaning that A = P(W ) is the powerset,
then (g∗)∗ is known as the ultrafilter extension of g, see also [8, Section 2.5].

Proposition 2.51. Let g = (W,R,A) be a general frame. There is a canonical relation-
preserving map (crucially not necessarily a bounded morphism) from W to W∗ given by
sending a world w to the ultrafilter generated by w, given by Fw := {a ∈ A | w ∈ a}. If g
is tight, then two related points in the image were also related in g. If g is differentiated,
this morphism is an embedding, denoted by ιg or ι if the relevant general frame is clear
from context.

Proof. Suppose that v is a successor of w. Then in particular, if v ∈ a, it follows that
w ∈ 〈R〉a. From this, we infer that by definition Fv is a successor of Fw. If in addition
g is tight and v is not a successor, then there exists an a such that v ∈ a but w /∈ 〈R〉a
from which it follows that Fv is also not a successor of Fw. Finally, if g is differentiated,
then for any two distinct points w and v there exists an admissible set a ∈ A such that
w ∈ a but v /∈ a, so that a ∈ Fw and a /∈ Fv, implying Fw 6= Fv.

2.5 Bisimulations

An important notion in modal logic that is central to main theorem of this thesis is the
concept of bisimulations. Intuitively, if two pointed models M, w and N, v are bisimilar,
they are impossible to distinguish by walking from w and v through the models and
looking only at the propositional variables that are true at the points reached.

2.5.1 Kripke and Vietoris bisimulations

Definition 2.52. Let M and M′ be (general) models on frames (W,R) and (W ′, R′)
with valuations V and V ′. A relation Z ⊆ W ×W ′ is a called (Kripke) bisimulation if
for all (w,w′) ∈ Z the following three conditions hold:

(prop) If p ∈ P then w ∈ V (p) ⇐⇒ w′ ∈ V ′(p);

(forth) If v ∈ R[w] then there exists a v′ ∈ R′[w′] such that (v, v′) ∈ Z;

(back) If v′ ∈ R′[w′] then there exists a v ∈ R[w] such that (v, v′) ∈ Z.
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Another way to think of these conditions is in terms of disjointness conditions:

(prop) If p is a propositional variable, then

Z ∩ (V (p)× V ′(p)c) = Z ∩ (V (p)c × V ′(p)) = ∅;

(forth) For all sets X ⊆W and Y ⊆W ′

X × Y ∩ Z = ∅ =⇒
(
〈R〉X × [R′]Y

)
∩ Z = ∅;

(back) For all sets X ⊆W and Y ⊆W ′

X × Y ∩ Z = ∅ =⇒
(

[R]X × 〈R′〉Y
)
∩ Z = ∅.

These conditions can easily be seen to be equivalent and will turn out to be a useful way
to look at these relations. J

As will be shown in Corollary 2.60, two points linked by a bisimulation satisfy the
same modal formulae. This is key to their importance in modal logic.

Definition 2.53 ([5, 17]). Let m and m′ be general models and Z a Kripke bisimulation
between them. If Z is closed in the product topology of the two associated topological
spaces, then it is called a Vietoris bisimulation. J

If two points are linked by a Kripke bisimulation this is denoted by m, w ↔ m′, w′ and
if they are linked by a Vietoris bisimulation this will be written as m, w � m′, w′.

Discussion 2.54. This definition is motivated by a coalgebraic perspective on descriptive
frames, in which it is the coalgebraic definition of a bisimulation on descriptive frames
as coalgebras for the Vietoris functor. However, on descriptive frames this is equivalent
to the definition provided above. A detailed exploration of the coalgebraic notion of
descriptive frames can be found in [5, 27, 37] and an extensive treatment of Vietoris
bisimulations, including this equivalence, can be found in [5, 17].

Proposition 2.55. [5, theorem 5.2] If (F, A, V ) and (F′, A′, V ′) are image-compact gen-
eral models and Z is a Kripke bisimulation between (F, V ) and (F′, V ′), then its closure
in the product topology, Z, is a Vietoris bisimulation.

Proof. To see that Z is a Kripke bisimulation, consider the disjointness conditions.
Suppose w and w′ disagree on a propositional variable p. Then without loss of gener-

ality (w,w′) ∈ V (p) × V ′(p)c is an open neighbourhood disjoint from Z, from which it
follows that (w,w′) /∈ Z.

For the forth condition, the approach will be different from [5] and more similar to
the argument for the propositional condition. Suppose that Rwv and (v, v′) /∈ Z for
all v′ ∈ R′[w′]. Then for each v′ ∈ R′[w′] there are av′ ∈ A and bv′ ∈ A′ such that
(v, v′) ∈ av′ × bv′ and av′ × bv′ ∩ Z = ∅, because the pair is not in the closure.
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Then U = {bv′ | v′ ∈ R′[w′]} is an open cover of R′[w′], which was compact per
assumption. So there is a finite subcover. Define b to be the finite union of that sub-
cover and a the intersection of the corresponding av′ . Then a × b ⊇ {v} × R′[w′] is a
product of clopens that is disjoint from Z and thus (〈R〉a)× ([R′]b) 3 (w,w′) is an open
neighbourhood that is disjoint from Z. So (w,w′) /∈ Z. The back condition is proven
identically.

Corollary 2.56. If m, w and n, v are two pointed image-compact general models, then
the following are equivalent:

1. m, w ↔ n, v;

2. m, w � n, v.

Proof. The implication (2) =⇒ (1) is immediate from the fact that all Vietoris bisimu-
lations are a forteriori Kripke bisimulations. The implication (1) =⇒ (2) follows from
proposition 2.55 and the fact that Z ⊆ Z.

2.5.2 Finite bisimulations

Crucial for this thesis will be the notion of finite (approximations to) bisimulations. Like
the finitary modal language, the finite number of steps involved makes them much easier
to deal with.

Definition 2.57. Let k ∈ N be a natural number, P a set of propositional variables
and M and M′ be two (general) models with frames (W,R) and (W ′, R′) and valuations
V and V ′ over P respectively. Then a k-bisimulation over P is a ⊆-decreasing (k + 1)-
sequence (Z`)0≤`≤k of relations Z` ⊆ W ×W ′ such that for all natural numbers ` ≤ k
and (w,w′) ∈ Z`:

(prop) If p ∈ P then w ∈ V (p) if and only if w′ ∈ V ′(p);

(forth) If v ∈ R[w] then there exists a v′ ∈ R′[w′] such that for all non-negative
m < ` the pair (v, v′) is an element of Zm;

(back) If v′ ∈ R′[w′] then there exists a v ∈ R[w] such that for all non-negative
m < ` the pair (v, v′) is an element of Zm.

Once more, these could all be rephrased in terms of disjointness conditions:

(prop) If p is a propositional variable, then

(V (p)× V ′(p)c) ∩
⋃

0≤`≤k
Z` = (V (p)c × V ′(p)) ∩

⋃
0≤`≤k

Z` = ∅;

(forth) For all sets X ⊆W and Y ⊆W ′ and ` ≤ k

X × Y ∩
⋂

0≤m<`
Z` = ∅ =⇒

(
〈R〉X × [R′]Y

)
∩ Z` = ∅;
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(back) For all sets X ⊆W and Y ⊆W ′ and ` ≤ k

X × Y ∩
⋂

0≤m<`
Zm = ∅ =⇒

(
[R]X × 〈R′〉Y

)
∩ Z` = ∅.

One could also define finite Vietoris bisimulations when all Z` are closed, but this notion
will not be useful for this thesis.
If there exists an k-bisimulation (Z`)0≤`≤k with (w, v) ∈ Zk, this is denoted by

M, w ↔k N, v. J

Remark 2.58. If Z is a bisimulation, then for any k ∈ N the sequence (Z)0≤`≤k is a
finitary bisimulation. As such, M, w ↔ N, v implies M, w ↔k N, v for any k. J

Lemma 2.59. Let k ∈ N and M, w and N, v be two pointed (general) models and P a
set of propositional variables. Then

If M, w ↔k N, v over P then M, w!k N, v over P

and if P is finite, then the converse implication holds, too.

Proof. Let M = (W,R, V ) and N = (W ′, R′, V ′) be two Kripke models. The statement
follows by induction on k. For the induction hypothesis, suppose that it is true for all
` < k. Assume that M, w ↔k N, v and let p ∈ P. Then there is a (k + 1)-sequence
(Z`)0≤`≤k with (w, v) ∈ Zk satisfying the relevant conditions, implying in particular

M, w  p ⇐⇒ w ∈ V (p) ⇐⇒ v ∈ V ′(p) ⇐⇒ N, v  p.

Now suppose ♦ψ,�ψ ∈ MLk(P), for ψ ∈ ML`(P) with ` < k. Remark that this assumption
is vacuous if k = 0. Then M, w  ♦ψ if and only if there is a w̃ ∈ R[w] such that
M, w̃  ψ. Then there must exist a ṽ ∈ R′[v] such that (w̃, ṽ) ∈ Z` so that M, w̃ ↔` N, ṽ
via (Zm)0≤m≤`, from which the induction hypothesis gives N, ṽ  ψ and thus M, v  ♦ψ.
The other direction is completely symmetric and the case for �ψ can be seen immediately
from the duality � = ¬♦¬.
So M, w and N, v agree on all propositional variables and on formulae with a box or

diamond, implying that they agree on all Boolean combinations, which comprise MLk(P)
in its entirety, so that M, w!k N, v.
For the final addition, suppose that P is finite. Once again we perform induction on k.

Let the induction hypothesis state that the right to left implication holds for all ` < k.
From proposition 2.11 it follows then that all ML`(P) are finite up to equivalence. Choose
a set of non-equivalent representations {ϕ0, . . . , ϕn} such that each of the formulae in⋃
`<k ML`(P) is equivalent to one of them and consider (!`)0≤`≤k as finitary bisimulation.

Suppose that M, w!k N, v. Then certainly

w ∈ V (p) ⇐⇒ M, w  p ⇐⇒ N, v  p ⇐⇒ v ∈ V ′(p).

For the forth condition, suppose that w̃ is a successor of w. Consider then I ⊆
{0, . . . , n} such that M, w̃  ϕi ⇐⇒ i ∈ I. Then in particular, since w̃ is a successor
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of w, it follows that M, w  ♦
(∧

i∈I ϕi ∧
∧
i/∈I ¬ϕi

)
, which is a formula in MLk(P) by

construction, so that N, v  ♦
(∧

i∈I ϕi ∧
∧
i/∈I ¬ϕi

)
. As such, v has a successor ṽ with

N, ṽ  ϕi ⇐⇒ i ∈ I. These were representatives of all formulae in
⋃
`<k ML`(P), so

that w̃!` ṽ for all ` < k. The back condition is checked identically. This implies that
(!`)0≤`≤k is indeed a finitary bisimulation. So M, w ↔k N, v.

Corollary 2.60. For any two pointed (general) models M, w and N, v and set P of
propositional variables

M, w ↔ N, v over P =⇒ M, w! N, v over P.

Proof. This follows immediately from Lemma 2.59 and Remark 2.58.

An important note to make is that these are equivalence relations, in particular trans-
itive.

Lemma 2.61. Assume that M0, w0 ↔` M1, w1 and M1, w1 ↔k M2, w2 for ` ≤ k.
Then M0, w0 ↔` M2, w2. In particular, if M0, w0 ↔ M1, w1 and M0, w0 ↔` N, v, then
M1, w1 ↔` N, v.

Proof. Let (Zm)0≤m≤` be an `-bisimulation betweenM0, w0 andM1, w1 and let (Z̃n)0≤n≤k
be a k-bisimulation between M1, w1 and M2, w2. Then consider (Zm; Z̃m)0≤m≤` as an
`-bisimulation between M0, w0 and M2, w2, where ; denotes composition of relations.
Suppose that (v0, v2) ∈ Zm; Z̃m for some m ≤ `. Then there exists a v1 such that
v0Zmv1 and v1Z̃mv2. Consequently, v0 satisfies the same propositional variables as v1,
which in turn satisfies the same propositional variables as v2, verifying that v0 and v2

satisfy the same propositional variables.
For the forth condition, if v0 has a successor x0, then there is a successor x1 of v1 such

that x0Znx1 for all n < m. Then from v1Z̃mv2 it follows that there is a successor x2 of
v2 such that x1Z̃nx2 for all n < m. Therefore (x0, x2) ∈ (Zn; Z̃n) for all n < m. The
back condition is identical. The final observation then follows from Remark 2.58.

2.6 Nets as topological toolkit

This section will develop nets as a tool to analyse general frames more carefully from a
topological perspective. Nets are a fairly advanced tool in general topology and are not
extremely widely used because they do not always behave as one might expect. However,
they will prove a strong and intuitive tool for the purposes of this thesis, remaining very
well-behaved for the purposes of this thesis. Mostly, they will be used to give the reader
a feeling for the behaviour of general frames.
This means that they are not crucial for an understanding of the main results of this

thesis, and a reader not interested in this intricate topological development can skip this
section without concern for their understanding of the main theorem of the thesis. Care
was taken to avoid including them in the most important lines of reasoning. However,
readers with a background in topology could consider the section a formal framework for
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intuitions they may already have or develop along the section and as an potential tool
for further research.
In the Chapter 3 they are used to demonstrate failures of model-theoretic theorems on

the class of descriptive models, necessitating different techniques in Chapter 4. However,
in an effort not to alienate readers with a weaker background in topology, alternative
reasoning is presented, but these proofs will be much less intuitive.
They will also be a vital tool in Chapter 5, where the contributions of this thesis will

be developed further in preparation for future research. These proofs will be supplied
with alternative reasoning.

2.6.1 Nets: basic definitions

This section will explore topological notions of convergence and continuity and tie this
back to general frames. The concepts introduced here will also come back in Section
2.6.2 as an alternative and hopefully enlightening point of view. The definitions and
basic results will mostly be following [10].

Definition 2.62. Let X = (X, T ) be a topological space, α an ordinal, x ∈ X and
(xβ)β∈α be an α-sequence in X. Then the sequence converges to x if for every open
neighbourhood U 3 x there is a γ ∈ α such that β ≥ γ implies xβ ∈ U . This is often
abbreviated to saying that xβ is eventually in U . The sequence is then called convergent.
For the set of points to which a sequence (xβ)β∈α converges, one writes limβ∈α xβ . If this
is a singleton {x}, one may also write

lim
β∈α

xβ = x

and call x the limit of the sequence. J

Sequences are extremely useful for well-behaved topological spaces like metrisable
spaces, but almost any interesting result for sequences requires the space to be at least
first-countable. However, there exists a more general notion: nets. Instead of a well-
order, they have a directed order. This makes them slightly less intuitive, but greatly
increases their expressive power.

Definition 2.63. Let D = (D,≺) be a directed order6. A D-net is a D-labeled set
(xd)d∈D. A net (xd)d∈D is said to be eventually in a set Y if there is a d0 ∈ D such that
d � d0 implies xd ∈ Y . Moreover, if for every d0 ∈ D there is a d � d0 such that xd ∈ Y ,
then (xd)d∈D is said to be frequently in Y .
If ∆ = (∆,C) and D = (D,≺) are directed orders and (xd)d∈D is a net, then a subnet

of (xd)d∈D is characterised by a cofinal and monotone7 map h : ∆ → D and given by
(xh(δ))δ∈∆.
Letters used for nets are ν or n. J

6A directed order is a preorder in which every two elements have a common upper bound.
7Recall that cofinal means that for every d ∈ D there is a δ ∈ ∆ such that h(δ) ≥ d and monotone
means that for every two δ, δ′ if δ C δ′ then h(δ) � h(δ′).
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Subnets should be treated with some care, as they may occasionally prove counter-
intuitive. An important detail to keep in mind is that a subnet of a sequence is not
necessarily a sequence.

Remark 2.64. A net (xd)d∈D on X is frequently in a set Y ⊆ if and only if it is not
eventually in Y c. J

Definition 2.65. A net (xd)d∈D converges to a point x if for every open neighbourhood
U of x, the net (xd)d∈D is eventually in U . If the limit point is unique, one writes

lim
d∈D

xd = x

and x is called the limit point of (xd)d∈D. J

Remark 2.66. Every net in a Hausdorff space (recall Definition 2.24) converges to at most
one point. After all, any two distinct points have disjoint neighbourhoods U and V , and
a net cannot eventually be in both. After all, if xd is in U for d � d0 and xd ∈ V for
d � d1, then for d2 a common upper bound for d0 and d1, the element xd2 ∈ U ∩ V = ∅,
which is a contradiction.
In particular, by Corollary 2.25, every net on the g-space of a differentiated general

frame g must converge to at most one point. J

It turns out that nets capture many important topological concepts. In fact, nets can
be used to identify open and closed sets.

Proposition 2.67. [10, Proposition 6.7] Let X be a topological space. Then the following
hold for all subsets Y of the carrier:

1. Y is closed if and only if every convergent net that is eventually in Y has its limit
points in Y ;

2. Y is open if and only if every convergent net with limit points contained in Y is
eventually in Y .

It should be obvious from this result that nets have great expressive power. For
example, one may express topological compactness in the terms of nets.

Proposition 2.68. [10, Theorem 7.14] A topological space X = (X, T ) is compact if
and only if all nets on X have convergent subnets.

Another important notion expressible in terms of nets is the continuity of functions.

Proposition 2.69. [10, Proposition 6.6] Let f : X → Y be a function. Then the
following are equivalent:

1. f is continuous (recall Definition 2.20);

2. For every net (xd)d∈D converging to x, the net (f(xd))d∈D converges to f(x).
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Inspired by this, one may define continuity for relations, too. However, there are
two plausible definitions, both important corresponding notions in point-set topology
and general frames. These will be full and functional continuity. In the most general
context, neither one is stronger than the other.

Definition 2.70. Two nets (xd)d∈D and (yδ)δ∈∆ are said to be frequently (R-)related if
for all d0 ∈ D and δ0 ∈ ∆ there are d and δ greater than d0 and δ0 such that Rxdyδ. J

An equivalent, but less symmetric way of saying this is that for any d0 ∈ D the net
(yδ)δ∈∆ is frequently in R[{xd}d�d0 ].

Definition 2.71. Let X and Y be topological spaces on carriers X and Y , and let
R ⊆ X × Y be a relation. Then R is called fully continuous if for any two frequently
R-related nets (xd)d∈D and (yδ)δ∈∆ converging on X and Y, any two respective limit
points x and y are R-related.
We say moreover that R is functionally continuous if for any two any two frequently

related nets (xd)d∈D and (yδ)δ∈∆ on X and Y respectively, if (xd)d∈D converges to x, then
there must be a limit point y of (yδ)δ∈∆ such that Rxy. That is, instead of demanding
that all limit points are related, each limit point of (xd)d∈D has to be related to at least
one limit point of (yδ)δ∈∆. J

These distinct notions of continuity are comparable for sufficiently separated spaces:
in a Hausdorff space, there is at most one limit point and functional continuity becomes
strictly stronger than full continuity. In the context of Hausdorff spaces, then, it is
enough to speak only of weak and strong continuity.
The next proposition justifies the name functionally continuous.

Proposition 2.72. A function is continuous if and only if the associated relation is
functionally continuous.

Proof. Immediate from Proposition 2.69.

The next obvious step is to relate this topological material to general frames. It turns
out that continuity of relations fits corresponds to a previously discussed concept.

Proposition 2.73. Let g = (W,R,A) be a general frame. Then R is fully continuous
on the g-space if and only if g is tight.

Proof. For the implication from right to left, assume the frame is tight, and let (xd)d∈D
and (yδ)δ∈∆ converge to x and y respectively. Suppose for contraposition that (x, y) /∈ R.
From tightness, there must exist an a ∈ A such that y ∈ a but x /∈ 〈R〉a.

Since admissible sets are clopen, (yδ)δ∈∆ is eventually in a, but (xd)d∈D is eventually
in W \ 〈R〉a = [R]ac. So there exist d0 and δ0 such that d � d0 implies xd ∈ [R]ac and
δ � δ0 implies yδ ∈ a. As such, for sufficiently large d and δ, xd and yδ are not related,
so that the nets are certainly not frequently related. Continuity of R then follows from
contraposition.

25



For the other direction, suppose that the frame is not tight. Then there is a pair
(w, v) /∈ R such that for each a 3 v also w ∈ 〈R〉a. Now consider the directed orders Dw

and Dv defined by

Dw := {(x, b) | x,w ∈ b ∈ A}

ordered by (x, a) � (y, b) if and only if a ⊆ b and similar for Dv. They naturally define
nets by projection on the first coordinate. Note that these nets converge by construction
to w and v. Moreover, let (x, b) ∈ Dw and let (y, a) ∈ Dv. Then w ∈ 〈R〉a, so (w, 〈R〉a) ∈
Dw. Thus there must be a (z, b ∩ 〈R〉a) ∈ Dw. This means in particular that there is
a z′ ∈ a such that zRz′. As (z′, a) � (y, a), this demonstrates that the two nets are
frequently related.
Therefore, since the assumption was that (w, v) /∈ R, the relation cannot be fully

continuous.

This provides a new characterisation of modal spaces from Definition 2.36.

Proposition 2.74. A triple (X,R, T ) is a modal space if and only if (X, T ) is a Stone
space, R is fully continuous on it, and the inverse image under R preserves clopen sets.

Proof. This is immediate from Propositions 2.73 and 2.37. The preservation of clopen sets
under inverse R-images is needed to ensure that the basis of clopens can be a collection
of admissible sets that is closed under 〈R〉.

As an illustration of the usefulness of nets in this context, the following will be a visual
rewording of Example 2.18.

Example 2.75. Recall from Example 2.18 that the frame (ω,≥) (see Figure 2.3a) with
collection of admissible sets consisting of finite subsets of N and their complements in
N ∪ {ω} was a tight (in fact descriptive) frame, while (ω,>) (see Figure 2.3b) with the
same admissible sets was not. With Proposition 2.73 this can be seen visually in two
ways.
Note that in the induced topology, the sequence (n)n∈N converges to ω. After all, any

open neighbourhood of ω must contain an admissible set with ω as element. Any such
admissible set must be cofinite in N so that (n)n∈N is eventually in this admissible set
and hence in the open neighbourhood.
Noting that also the constant net at ω (over any directed set) must converge to ω, it

follows that for any tight relation R with Rωn for any n the sequence (n)n∈N is eventually
(and thus certainly frequently) related to the constant sequence at ω. By Proposition
2.73, tightness of R then implies that their limits, both ω, must be related as well, so
that ω is reflexive. This argument is visually illustrated in Figure 2.3c.
Alternatively, let R be a tight relation such that (n + 1, n) ∈ R for all n. Then the

same trick can be applied with both sequences equal to (n)n∈N. For any numbers N and
N ′, the components n = max{N,N ′} and n + 1 are both larger than N and N ′, and
(n+ 1)Rn. Thus the sequences are frequently related, so that, again from tightness, the
limit, ω, must be related to itself. This argument is visually illustrated in Figure 2.3d.

26



...

...

ω

N

(a) Schematic illustration
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(b) Schematic illustration
of (ω + 1, >).
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(c) Illustration of how the convergence
of the sequence (0, 1, 2, . . . ) to ω
implies any tight frame on this to-
pology in which ω sees all natural
numbers must have ω reflexive.
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(d) Illustration of a similar conver-
gence conclusion, this time show-
ing that any relation including the
successor relation must have ω re-
flexive.

Figure 2.3: Visual illustrations of convergences on the structure ω+1 of natural numbers
to ω showing that any tight relation on this structure containing either (ω, n)
for all n or (n+ 1, n) for all n must have (ω, ω) as well.

Visual reasoning of this type is helpful in developing intuitions of the behaviour of
descriptive frames. It is useful both in understanding specific structures and classes of
structures. In the latter case care must be taken that nets do not always behave exactly
like sequences but thinking in terms of sequences is still in all cases a helpful guide.
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2.6.2 Topological construction of descriptive completion

The suggestive use of the name descriptive completion from Definition 2.50 implies that
in some sense it undergoes the minimal number of adjustments to become a descriptive
frame. There is a topological sense in which this is exactly right. Each “gap” that
undermines compactness is filled and tightness and differentiatedness are enforced with
minimal adjustments.
To see this first requires some definitions.

Definition 2.76. Let (xd)d∈D and (yδ)δ∈∆ be two nets on a set X. Then they are
equivalent nets (denoted by (xd)d∈D ∼ (yδ)δ∈∆) if for every Y ⊆ X the net (xd)d∈D is
eventually in Y if and only if (yδ)δ∈∆ is eventually in Y . J

Definition 2.77. A net (xd)d∈D on a set X is called universal or an ultranet if for every
Y ⊆ X either (xd)d∈D is eventually in Y or it is eventually in X \ Y . J

The name ultranet is of course suggestive of ultrafilters. It turns out that there is a
direct correspondence to be found.

Proposition 2.78. [16, Theorem 1.6.13] Let X be a topological space on a carrier X.

1. Each net on X canonically generates a filter on P(X) such that two nets are
assigned the same filter if and only if they are equivalent as in Definition 2.76.

2. Each ultranet in this way canonically generates an ultrafilter on P(X).

3. Each filter F has a natural associated net that generates it.

4. There is a bijection between the set of equivalence classes of nets of size at most
|X ×P(X)| and the set of filters of P(X).

5. There is a bijection between the set of equivalence classes of universal nets of size
at most |X ×P(X)| and the set of ultrafilters of P(X).

Proof. These items can be proven one by one.

1. Let ν = (xd)d∈D be a net. Then define its generated filter as

Fn := {Y ∈P(X) | ν eventually in Y }.

This is a filter. After all, if ν is eventually in Y ⊆ Y ′, then obviously ν is also
eventually in Y ′. Moreover, if ν is eventually in Y0 and eventually in Y1, then there
exist d0 and d1 such that d � d0 =⇒ xd ∈ Y0 and d � d1 =⇒ xd ∈ Y1. As D is
directed, there is a d2 larger than both d0 and d1. Now if d � d2, then d � d0 and
d � d1, so xd ∈ Y0 ∩ Y1. So ν is eventually in Y0 ∩ Y1.
Moreover, if Fν = Fν′ , then for every set Y ∈P(X), the net ν is eventually in Y
if and only if ν ′ is eventually in Y , meaning exactly that they are equivalent.

2. This follows immediately from the definition of universal nets.
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3. Let F be a filter. Construct the net

DF := {(x, Y ) | x ∈ Y ∈ F};
(x, Y ) � (x′, Y ′) :⇐⇒ Y ⊇ Y ′;

xd := π0(d) where d ∈ DF and π0(x, Y ) = x;

nF := (xd)d∈DF
(2.2)

Let Y ∈ F . Then Y is non-empty, so that there is an x ∈ Y . Let d = (x′, Y ′) �
(x, Y ) ∈ DF . Then xd = x′ ∈ Y ′ ⊆ Y , so nF is eventually in Y .
Moreover, suppose that nF is eventually in Y . Then there is a d0 = (x0, Y0)
such that d � d0 =⇒ xd ∈ Y . In particular, for any y ∈ Y0, it follows that
d := (y, Y0) � (x0, Y0), so that y = xd ∈ Y . Thus Y ⊇ Y0 ∈ F , meaning Y ∈ F .
Thus nF generates F .

4. Injectivity of the map given by the generation is immediate from item 1. Surjectiv-
ity follows from the fact that DF ⊆ X × F ⊆ X ×P(X), so that nF satisfies the
size requirement.

5. This follows immediately from items 2 and 4, combinded with the fact that nF is
by construction a universal net for each ultrafilter F .

The connection between universal nets and the descriptive completion will emerge from
this correspondence. The filters used to construct the descriptive completion should in
some way be coupled to the nets. It is important to first investigate the connection to
compactness.

Proposition 2.79. [10, Theorem 7.14] Let X be a topological space. The following are
equivalent.

1. X is compact;

2. Every universal net is convergent.

Proof. Towards a contradiction for the implication (1) =⇒ (2), assume that X is
compact but (xd)d∈D is a universal net that is not convergent. Then for every x there
exists an open neighbourhood Ux such that (xd)d∈D is not eventually in Ux, meaning
(xd)d∈D is eventually in U cx.
The collection {Ux | x ∈ X} is an open cover and hence has a finite subcover,
{Ux1 , . . . , Uxn}. Since (xd)d∈D is eventually in U cxi for all i, it follows that

(xd)d∈D is eventually in U cx1 ∩ · · · ∩ U
c
xn =

(
Ux1 ∪ · · · ∪ Uxn

)c
= Xc = ∅,

an obvious contradiction.
Next, assume that every universal net is convergent and let C be a collection of closed

sets with the finite intersection property. Then C can be extended to an ultrafilter F on
P(X). Consider the directed set {(x, Y ) | x ∈ Y ∈ F} with preorder

Y ⊆ Y ′ =⇒ (x, Y ) � (y, Y ′) ∀x ∈ Y, y ∈ Y ′.
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Note that this is directed by virtue of the finite intersection property. By Proposition
2.78, this is a universal net. Hence it converges to some point x0.

For any C ∈ C, the subnet given by {(x, Y ) | Y ⊆ C} is contained entirely in C and
non-empty due to C being non-empty. Since a subnet of a convergent net converges to
the same points, Proposition 2.67 implies that x0 ∈ C. Since this was true for all C, it
follows that x0 ∈

⋂
C 6= ∅. So any collection of closed sets with the finite intersection

property has a non-empty intersection, implying compactness.

Using this, we see that universal nets have a distinctive connection to the properties
associated with descriptive frames.

• A general frame g is differentiated if and only if every universal net on the g-space
has at most one limit point.

• A general frame g is compact if and only if every universal net on the g-space has
at least one limit point.

• A general frame g is tight if and only if every two universal nets (xd)d∈D and
(yδ)δ∈∆ converge to R-related points if they are frequently related.

This inspires another notion of a descriptive completion. One can compactify a frame
by adding a limit for each universal net, differentiate a frame by identifying limit sets to
a single point and tighten a frame by adding relations between limit points of eventually
related universal nets.
However, universal nets are not the right notion. As Proposition 2.78 shows, universal

nets correspond to ultrafilters on the powerset algebra, not on the admissible sets. A
consequence of this is that non-equivalent ultranets, according to Definition 2.76, may
converge to the same points. As such, they do not pose the right notion to construct the
descriptive completion, but they do hint at one.
To accomplish such a construction, the notion of universal nets must be weakened. On

topological spaces with a basis of clopens, the property that makes ultranets so powerful,
being eventually in all subsets or their complements, can be reduced to eventually being
in all “topologically relevant” sets or their complements.

Definition 2.80. Let X be a topological space with a basis B of clopens. A net (xd)d∈D
is semi-universal if for each B ∈ B either (xd)d∈D is eventually in B or it is eventually
in Bc. J

For many common topological spaces, this notion makes very little sense, as it is quite
rare for clopen sets to generate the topology. However, in the context of general frames,
this is always guaranteed. As one would hope, this captures the topology in the same
way.

Proposition 2.81. Let X = (X, T ) be a topological space with a basis B of clopens.
Then the following are equivalent

1. X is compact;
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2. Any universal net on X is convergent;

3. Any semi-universal net on X is convergent.

Proof. The equivalence (1) ⇐⇒ (2) is given by Proposition 2.79, and the implication
(3) =⇒ (2) is obvious, as any universal net is also semi-universal. To complete the
equivalence, the implication (1) =⇒ (3) is sufficient. The proof is essentially identical
to the one for Proposition 2.79.
Suppose for contradiction that X is compact and there is a semi-universal net (xd)d∈D

on X that is not convergent. For each point p ∈ X, there must then be an open
neighbourhood Up of p such (xd)d∈D is not eventually in Up. Because B was a basis
of clopens, there is a clopen Bp ∈ B such that p ∈ Bp ⊆ Up, so that (xd)d∈D is not
eventually in Bp, meaning by definition it is eventually in Bc

p. As p ∈ Bp, it follows
that {Bp | p ∈ X} is an open cover of X so that compactness gives a finite subcover
{Bp1 , . . . , Bpn}. As (xd)d∈D is eventually in Bc

pi for each i ≤ n, it follows that (xd)d∈D is
eventually in Bc

x1 ∩· · ·∩B
c
xn = (Bx1 ∪· · ·∪Bxn)c = Xc = ∅, which is a contradiction.

Comparable to the equivalence in Definition 2.76, there is a notion of semi-equivalence
that is particularly important for semi-universal nets.

Definition 2.82. Let X = (X, T ) be a topological space generated by a basis of clopens
B. Two nets (xd)d∈D and (yδ)δ∈∆ are semi-equivalent with respect to B if for every B ∈ B
the net (xd)d∈D is eventually in B if and only if (yδ)δ∈∆ is eventually in B. This will
be denoted by (xd)d∈D ∼B (yδ)δ∈∆. The equivalence class of (xd)d∈D is then written as
[(xd)d∈D]B. J

The advantage of this equivalence relation is that on these spaces the superfluous
non-topological information present in ultranets up to equivalence that allowed non-
equivalent nets to converge to the same point, is no longer present in semi-universal nets
up to semi-equivalence.

Proposition 2.83. Let X be a topological space with a basis B of clopens and let
(xd)d∈D be a net and x a point. Then (xd)d∈D converges to x if and only if for every
B ∈ B

(xd)d∈D is eventually in B if and only if x ∈ B

Proof. The right to left implication is immediate from the definition. The left to right
implication follows quite swiftly from contraposition, because if x /∈ B, then x ∈ Bc,
which is also clopen, so that (xd)d∈D is eventually in Bc, and thus certainly not eventually
in B.

This means that on these spaces, there is an intricate link between semi-equivalence
and convergence.

Corollary 2.84. Let X be a topological space with a basis of B clopens and let (xd)d∈D
and (yδ)δ∈∆ be convergent nets. Then they are semi-equivalent with respect to B if and
only if they converge to the same points.
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Proof. The left to right direction is immediate from the definition. For the other direc-
tion, let x be a shared limit point. Then for each clopen basis element

(xd)d∈D is eventually in B ⇐⇒ x ∈ B ⇐⇒ (yδ)δ∈∆ is eventually in B,

where both equivalences are given by Proposition 2.83.

Like universal nets up to equivalence had a natural correspondence to ultrafilters on
the powerset algebra in Proposition 2.78, so do semi-universal nets up to equivalence
have a natural correspondence with ultrafilters on admissible sets.

Remark 2.85. It is not hard to see that there is a correspondence between semi-universal
nets up to semi-equivalence are in the same correspondence to ultrafilters on the admiss-
ible sets as universal nets were with ultrafilters on P(W ). This will be made explicit in
Theorem 2.88. J

The upshot of Proposition 2.81 and Corollary 2.84 is that semi-universal nets up to
semi-equivalence capture exactly all failures of compactness on topological spaces with a
clopen basis, like g-spaces.
As Remark 2.66 suggested how nets capture differentiatedness of g-spaces as the

uniqueness of limit points and Proposition 2.73 showed that tightness is captured by
nets through the relation of limit points of frequently related nets, this means that a
general frame being descriptive is wholly captured by semi-universal nets. Consequently,
semi-universal nets can be used to construct a new descriptive completion of general
frames by adding, identifying, and relating limit points.
The construction should put to one’s mind the construction of the real numbers from

Cauchy sequences of rational numbers. The two are not the same, but they resemble one
another.

Definition 2.86. The topological descriptive completion g• of g = (W,R,A) is the gen-
eral frame on all semi-universal nets on W up to semi-equivalence, R-relating all fre-
quently related sets and with admissible sets ã for each a ∈ A consisting of all semi-
universal nets eventually in a.
Formally, the universeW• is the set of all semi-universal nets on the g-space up to semi-

equivalence, written [n]A for all such nets n over directed sets of size at most |W ×A|.8
The relation R• is given by relating equivalent classes of eventually related nets and
the collection of admissible sets A• is given by {ã | a ∈ A} where ã is the collection of
equivalence classes of universal nets that are eventually in a. J

As should be expected, this is a general frame.

Proposition 2.87. If g is a general frame, then g• is also a general frame.

Proof. If A is the collection of admissible sets of g, then observe that ã ∪ b̃ = ã ∪ b, as
being eventually in a or eventually in b implies being eventually in a ∪ b. Moreover, by
definition of semi-universal nets, they are either eventually in a or ac for each a ∈ A.

8The size restriction is imposed to avoid set-theoretic problems.
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This means that ãc = ãc. This shows, together with the De Morgan laws that A• is a
field of sets.
To see that A is closed under 〈R•〉, see that for a semi-universal net n the equivalence

class [n]A ∈ 〈R•〉ã if and only if n ∼A n′ frequently related to ν eventually in a, which
is true if and only if n′ is frequently in 〈R〉a. As n′ is semi-universal, this means that n′

is eventually in 〈R〉a, since it is not eventually in (〈R〉a)c. As n ∼A n′ were equivalent,
this means n is eventually in 〈R〉a. This demonstrates that 〈R•〉ã = 〈̃R〉a, proving the
proposition.

The connection from Remark 2.85 suggests a connection between the topological de-
scriptive completion from Definition 2.86 and the descriptive completion from Definition
2.50.

Theorem 2.88. Let g be a general frame. Then

g• ∼= (g∗)∗

as general frames. Consequently, g• is descriptive.

Proof. As announced, the proof will use the correspondence from Proposition 2.78. That
is, consider the map from W• to W∗ that sends an equivalence class of nets [n]A to the
filter Fn ∩ A containing all addmissible sets in which n eventually lands. This is well-
defined and injective by definition of semi-equivalence. Moreover, it is surjective, because
for any ultrafilter F ⊆ A one can construct like in Formula 2.2 the filter nF = (xd)d∈DF

over the directed order DF = (DF ,�) given by

DF := {(x, a) | a ∈ F and x ∈ a};
(x, a) � (x′, a′) if and only if a ⊇ a′;
x(y,a) := y.

By construction, for any non-empty a ∈ F , there is an x ∈ a such that if (y, a′) � (x, a)
if and only if x(y,a′) = y ∈ a′ ⊆ a, implying that nF is eventually in a for each a ∈ F .
Consequently, nF is mapped to F , proving surjectivity.

Furthermore, if [n]A is mapped to F ⊆ A, then

[n]A ∈ ã if and only if n eventually in a ⇐⇒ a ∈ F ⇐⇒ F ∈ â.

To see that the relation is preserved, suppose that n is a semi-universal net that is
frequently related to a semi-universal n′ and their equivalence classes are mapped to F
and F ′ in UfA respectively. Let a ∈ F ′. Then n′ is eventually in a, so that n is frequently
in 〈R〉a. By semi-universality, it is thus eventually in 〈R〉a, implying that 〈R〉a ∈ F ,
showing that F ′ is an R∗-successor of F .
Finally, suppose that F ′ is an R∗-successor of F . Then consider the nets n := nF

and n′ := nF ′ as defined above. Then consider any two (x, a) ∈ DF and (y, b) ∈ DF ′

for x ∈ a ∈ F and y ∈ b ∈ F ′. By the R∗-relation, 〈R〉b ∈ F , so that 〈R〉b ∩ a ∈ F is
non-empty. Therefore, there exist (z0, 〈R〉b ∩ a) � (x, a) and (z1, b) � (y, b) such that
z0Rz1. Therefore, n and n′ are frequently related, and their equivalence classes thus
R•-related. As (g∗)∗ is descriptive, g• is as well.
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3 Model theory of descriptive models

As the classes of descriptive frames and descriptive models are key to this thesis, it is
worth investigating their model theory. In particular, the main theorem of this thesis,
the van Benthem Characterisation Theorem for descriptive models, will require a funda-
mentally different proof from the classical theorem, because, as will be shown in Theorem
3.5, the Compactness Theorem of first-order logic fails on the class of descriptive models.
Apart from considerations of compactness, the model theory of descriptive models will

be examined and compared to finite model theory. Some results from classical model
theory will be discussed and investigated for the class of descriptive models.

3.1 Compactness theorems for descriptive models

Having discussed two notions of compactness in the previous chapter, both for Boolean
algebras and topologies, there is a third notion of compactness that will be of interest
for later reference.

Definition 3.1. Let L be a language and C be a class of L-models. We say that C is
compact over L if any set of formulae Φ ⊆ L is satisfiable in C if and only if every finite
subset of Φ is satisfiable in C. When the language is left unspecified, it is understood to
be the first-order language. In such a case, one might say that C has the compactness
property. J

Theorem 3.2 (Compactness Theorem for first-order logic). Let FOL(R,F) be a first-
order language with relation symbols (and predicates) R and function symbols F . Let C
denote its class of models. Then C is compact over FOL.

This famous theorem often goes by the name of The Compactness Theorem. It has an
immediate consequence for modal logic.

Corollary 3.3. The class K of all Kripke models with propositional variables P is
compact over ML(P).

Proof. This is immediate when one recalls that ML(P) can be seen as a subset of FOL(P∪
{R}, ∅) (through the standard translation from Definition 2.6) and sees that Kripke
models over P are exactly the appropriate models for this language.

This argument shows that the compactness property over FOL implies compactness
over ML. The other direction does not always hold.
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Example 3.4. Consider the class consisting only of the model M := (N, <, V ) with empty
valuation. The following will show that class is compact over ML but not over FOL.

To see that it is not compact over FOL, let x0 and x1 be two distinct variables and
define recursively a formula αn(x) stating that x has at least n predecessors:

α0(xi) := >;

αn+1(xi) := ∃x1−i[Rx1−ixi ∧ αn(x1−i)].

It is easy to see that (N, <) |= αn[m] ⇐⇒ m ≥ n. The set {αn(x0)}n∈N is therefore
finitely satisfiable, but it is not satisfiable.
However, M, n ↔ M,m for all n,m ∈ N, because the relation only points upwards.

Therefore, any finitely satisfiable set Φ ⊆ ML is finitely satisfied in M, 0, because bisimilar
states are modally equivalent. Then every formula ϕ ∈ Φ is satisfied in M, 0. Thus Φ is
satisfied in M, 0. This implies that the class consisting of M is compact over ML. J

Compactness in this sense is a powerful model-theoretic tool. As will be shown in
Section 4.1, the classical proof for the van Benthem Characterisation Theorem on the
class of all Kripke models relies heavily on Theorem 3.2, proving two powerful lemmas. In
contrast, the next theorem will show that the class of descriptive models is not compact
over FOL. This will prevent the proof of the classical van Benthem Characterisation
Theorem to apply directly to the class of descriptive models as well, and necessitate
different techniques.

Theorem 3.5. The class of descriptive models is not compact over FOL.

The proof of this theorem requires a lemma that will help reduce the model theory of
descriptive models to the model theory of finite models.

Lemma 3.6. An infinite, irreflexive, linear order cannot be given the structure of a
descrtiptive frame. Therefore, the subclass of finite, irreflexive, linear orders of the class
of descriptive models can be defined by a single first-order sentence.

There will be two proofs given for this lemma. The first proof will make use of nets.
An attempt will be made to give an intuition for the result. This proof build on intuitions
discussed in Example 2.75 and Figure 2.3.
An infinite, irreflexive, and linear order must have (N, <) or (N, >) as a suborder.

Intuitively, such a sequence of points in N must have some limit point ω similar to the
one in Figure 2.3 for the frame to remain compact. As illustrated visually in Figure
2.3, tightness, or continuity of the relation, then forces the limit point to be reflexive,
contradicting the assumption of irreflexivity.
The second proof will instead operate in basic point-set topology to make it accessible.

It is inspired by the first proof, but the nets are removed and the proof is presented in
the style of a typical point-set approach.

First proof of Lemma 3.6. Suppose that g = (W,R,A) is a descriptive structure on an
infinite, irreflexive, linear order (W,R). A standard Bolzano-Weierstrass argument will
guarantee it must have an infinite R-increasing sequence or an infinite R-decreasing
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sequence. After all, let (sn)n∈N be an infinite subsequence. If there is an infinite sub-
sequence of dominant elements (elements xn with Rxmxn for all m > n), then this
subsequence of dominants is an R-descreasing subsequence. If there are only finitely
many such elements, that means that for every xn with n sufficiently large, there is
an m > n such that Rxnxm, so that the Axiom of (Dependent) Choice guarantees an
increasing subsequence.
Assume now that (xn)n∈N is such an infinite R-sequence, either increasing or decreas-

ing. From topological compactness, it must have a convergent subnet (yd)d∈D by Pro-
position 2.68. Since n > m implies xmRxn for the increasing case and xnRxm for the
decreasing case, it follows that d � d′ implies yd′Ryd or it implies ydRyd′ . In particular,
this establishes that for any d0 ∈ D and d � d0 the points yd0 and yd are R-related. As
(D,�) is cofinal in N and thus unbounded in itself, (yd)d∈D must be frequently related to
itself. Because m was tight per assumption, R is fully continuous from Proposition 2.73
and hence the limit point of (yd)d∈D is related to itself. This is in contradiction with the
assumption that g is irreflexive.
Thus no infinite irreflexive linear order can be given the structure of a descriptive

frame. The irreflexive linear orders are definable in the single first-order sentence λ given
by

λ := ∀x∀y[(x ≡ y ∨Rxy)↔ ¬Ryx]︸ ︷︷ ︸
total, irreflexive, and antisymmetric

∧∀x∀y∀z[(Rxy ∧Ryz)→ Rxz]︸ ︷︷ ︸
transitive

. (3.1)

Since all finite irreflexive linear orders can be given the structure of a descriptive frame
(with the powerset as a collection of admissible sets) the subclass of finite, irreflexive
linear orders in the class of descriptive models can be defined by a single first-order
sentence.

Second proof of Lemma 3.6. Suppose again g = (W,R,A) is a descriptive frame such that
(W,R) is an infinite, irreflexive linear order. The sets W ⊇ R[W ] ⊇ · · · ⊇ Rn[W ] ⊇ . . .
must be non-empty for all n, otherwise g would be a finite chain. As such, C :=

⋂
nR

n[W ]
is closed and non-empty, because the Rn[W ] is closed for all n by Lemma 2.34 and the
space is topologically compact by assumption. By tightness and irreflexivity, for each
x ∈ C there must be a clopen set ax such that x ∈ ax but x /∈ 〈R〉ax. As then

C ∩
⋂
x∈C
〈R〉ax = ∅,

topological compactness of g gives a finite set {x1, . . . , xk} such that the finite intersection
C∩〈R〉ax1∩· · ·∩〈R〉axk is empty. Since the xi are linearly ordered, there must be a least
one, say x1, so that 〈R〉ax1 ⊆ 〈R〉axi for all i by transitivity, yielding C ∩ 〈R〉ax1 = ∅.

The fact that 〈R〉ax1 is clopen, hence compact, and the fact that C =
⋂
nR

n[W ],
implies that there is an n ∈ N such that Rn[W ] ∩ 〈R〉ax1 = ∅, so that x1 /∈ Rn+1[W ],
which contradicts x1 ∈ C. Thus no such descriptive frame exists.
Again, all finite, irreflexive linear orders are can be made into descriptive frames, so

Formula 3.1 defines the subclass of finite, irreflexive linear orders.
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This lemma gives Theorem 3.5 almost immediately.

Proof of Theorem 3.5. From Lemma 3.6, the compactness theorem fails almost imme-
diately. Taking λ to be Formula 3.1 and letting ϕn denote the existence of at least n
elements,

ϕn := ∃x1 · · · ∃xn
∧

1≤i<j≤n
¬xi ≡ xj ; n ∈ N

Lemma 3.6 implies directly that {λ}∪{ϕn}n∈N is not satisfiable on the class of descriptive
models. However, every finite subset is satisfied on a finite, irreflexive linear order, which
can always be given the structure of a descriptive model with the powerset as collection
of admissible sets.

As mentioned earlier, while compactness over FOL implies compactness over ML, the
other direction does not hold. The following is another such example.

Theorem 3.7. The class of descriptive models is compact over ML(P).

This is proven through the simple observation that the model often known as the
canonical model is a descriptive model. This model is usually constructed to infer com-
pleteness, but in this case it is reformulated to provide compactness. The construction is
subtly different to avoid having to include deduction systems in the thesis, which is why
the details have been included. The reader could compare this to [8, Section 4.2].

Definition 3.8. The canonical model and canonical general frame over the class K of
Kripke frames are constructed as follows:

WK := {T ⊆ ML(P) | T ∪ {ϕ} satisfiable on K ⇐⇒ ϕ ∈ T};
RK := {(T, T ′) | ∀ϕ ∈ ML(P) : ϕ ∈ T ′ =⇒ ♦ϕ ∈ T};

VK(p) := {T | p ∈ T};
MK := (WK , RK , VK);

AK := {JϕKMK | ϕ ∈ ML};
gK := (WK , RK , AK).

The sets in WK will be called maximally satisfiable. Compare [8, Definition 4.18]. J

Lemma 3.9 (Truth Lemma). For each T ∈WK the equivalence

ϕ ∈ T ⇐⇒ MK , T  ϕ

holds. Compare [8, Lemma 4.21].

This is the standard Truth Lemma, but is again included and proven because the
construction is for satisfiability and not for consistency.

Proof of Lemma 3.9. Notice that for any ϕ,ψ ∈ ML:
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• ϕ ∈ T ⇐⇒ ¬ϕ /∈ T . After all, they are not simultaneously satisfiable but any
instance satisfying T must have one or the other, so that maximality gives that one
of them must be in T .

• ϕ ∨ ψ ∈ T ⇐⇒ ϕ ∈ T or ψ ∈ T . This is immediate, because any instance of one
side must be an instance of the other, so that maximality of T is sufficient.

• ϕ ∧ ψ ∈ T ⇐⇒ ϕ ∈ T and ψ ∈ T . Again, any instance of ϕ ∧ ψ is an instance of
ϕ and of ψ and vice versa, from which maximality suffices.

A simple induction on the complexity of formulae will then show that the modal theory
of T is exactly T . That is, ThML(MK , T ) = T .
This is trivial for the propositional variables and the above observations handle the

Boolean cases. For the modal case, if MK , T  ♦ϕ, then there is an RK-successor T ′ of
T with MK , T

′  ϕ, meaning ϕ ∈ T ′ by the induction hypothesis and the construction
of RK then gives that ♦ϕ ∈ T .
In the other direction, if ♦ϕ ∈ T , a pointed model M, w satisfying T must have a

successor v such that M, v  ϕ. But then for each ψ ∈ ThML(M, v) we see that ♦ψ ∈ T .
Since ThML(M, v) is clearly maximal, it follows that ThML(M, v) is an RK-successor of T
so that MK , T  ♦ϕ.

Lemma 3.10. The canonical general frame is descriptive. Compare [8, Proposition 5.69].

Proof. It is differentiated. After all, suppose T 6= T ′. Then there is at least one ϕ ∈ T
with ϕ /∈ T ′. Thus T ∈ JϕKMK but T ′ /∈ JϕKMK by the Truth Lemma.
It is tight. Suppose that for each JϕKMK ∈ AK and two maximally satisfiable theories

T and T ′ if T ′ ∈ JϕKMK then T ∈ 〈RK〉JϕKMK = J♦ϕKMK . By the Truth Lemma, this
means that ϕ ∈ T ′ =⇒ ♦ϕ ∈ T . So (T, T ′) ∈ RK .
Finally, it is compact. This is a consequence of compactness of K over ML. Suppose

that A ⊆ AK has the finite intersection property. Write T = {ϕ ∈ ML | JϕKMK ∈ A}.
Let T0 ⊆ T be finite. Then {JϕKMK | ϕ ∈ T0} ⊆ A is a finite subset and thus has a
non-empty intersection per assumption. Thus T0 is satisfiable in MK . Therefore T is
finitely satisfiable. By compactness of K over ML, it follows that T is satisfiable. So
there is some pointed model M, w with T ⊆ ThML(M, w) =: T . The latter is a maximally
satisfiable set, so the Truth lemma gives MK , T  ϕ for all ϕ ∈ T , yielding T ∈

⋂
A.

Proof of Theorem 3.7. Let T ⊆ ML be a modal theory that is finitely satisfiable on de-
scriptive models. Then it is clearly also finitely satisfiable on Kripke models. By com-
pactness of K over ML, the theory T must then also be satisfiable in a Kripke model,
say M, w  T . Write T := ThML(M, w). Then T is a maximally satisfiable set of modal
formulae. By the Truth Lemma, MK , T  T . As MK is a descriptive model by Lemma
3.10, T is thus satisfiable on a descriptive model.

Exactly the same proof gives compactness over ML for a number of classes.

Corollary 3.11. Any subclass of K that includes the canonical model is compact over
ML. In particular,
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• The class of image-compact general models,

• The class of tight models,

• The class of differentiated models,

• The class of compact models,

• Any intersection of the above,

are all compact over ML.

3.2 Model-theoretic methods for descriptive models

The compactness theorem is a vital tool of classical model theory and classes lacking
the compactness property require fundamentally different techniques for model-theoretic
results. By far the most important such class is the class of finite models, and extensive
research has been done in this field [15, 19, 28].

Theorem 3.5 shows that, like the class of finite models, the class of descriptive models
does not have the compactness property over FOL. This means that similar model-
theoretic exploration could be conducted for the class of descriptive models.
To do this, it is useful to first consider the model-theoretic tools used in finite model

theory and see how they can be applied and extended to the class of descriptive models.
An important tool for finite model theory has been the Ehrenfeucht-Fraïssé method.

This is a game-theoretic technique that has been key to many non-expressibility results
in finite model theory. It will be important to this thesis, so it will be lined out carefully
here. The presentation will follow [19].

Definition 3.12. Let n be a natural number and A and B be two first-order structures
of the same type. The Ehrenfeucht-Fraïssé game of n moves on A and B is defined as
follows:

• The game is played between two players, commonly referred to as Spoiler and
Duplicator or ∀ and ∃.

• The positions that may occur in the game are of two types:

1. k-tuples of pairs (a, b) of elements a in A and b in B for 0 ≤ k ≤ n,
2. k-tuples of which the first k− 1 components are pairs like above and the final

component is a single element either in A or in B for 1 ≤ k ≤ n.

• In positions of type 1 of length strictly less than n, Spoiler may move to any position
of type 2 that extends the current position. That is, in a position ((a1, b1), . . . , (ak, bk)),
Spoiler may move to any position of the form ((a1, b1), . . . , (ak, bk), ak+1) or of the
form ((a1, b1), . . . , (ak, bk), bk+1).
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• In positions of type 2, Duplicator may move to any position of type 1 that completes
the final component to a pair. That is, in any position ((a1, b1), . . . , (ak, bk), ak+1),
Duplicator may play any move of the form ((a1, b1), . . . , (ak, bk), (ak+1, bk+1)), and
in any position of the form ((a1, b1), . . . , (ak, bk), bk+1), Duplicator may then move
to any position of the form ((a1, b1), . . . , (ak, bk), (ak+1, bk+1)).

• When the game reaches a position of type 1 and length n, the game stops. Then
Duplicator wins if and only if the final position ((ai, bi))1≤i≤n generates a function
{(ai, bi)}1≤i≤n that is a local isomorphism. That is, if the substructure A � {ai}ni=1

of A generated by the ai is isomorphic to the B � {bi}ni=1 by mapping ai to bi.
Substructure generation is formalised in Definition 3.13.

The initial position is always the empty tuple. J

It will be instructive to formalise the substructure construction necessary for the win-
ning condition.

Definition 3.13. Let A be a first-order structure and S a subset of its universe. Write
F for its collection of functions and constants and af ∈ N for the arity of f ∈ F . The
universe generated by S, written Gen(S), is recursively defined by

Gen0(S) := S;

Genn+1(S) := Genn(S) ∪ {f(s1, . . . , saf ) | s1, . . . , saf ∈ Genn(S) and f ∈ F};

Gen(S) :=
⋃
n∈N

Genn(S).

The substructure generated by S, written A � S, is then defined to be the structure with
universe Gen(S) and predicates and functions given by restricting those from A. J

Example 3.14. Two quick examples of the substructure generation might be useful.

• For structures without function symbols, the substructure generated by a set is
simply the predicates restricted to that set. For example, the substructure of Z
with the successor relation generated by {0, 1, 2, 4} is the structure displayed in
Figure 3.1.

0 1 2 4

Figure 3.1: The substructure of Z with the successor relation generated by {0, 1, 2, 4}.

• For the structure N with universe N, constant 0 and the successor function, the
substructure generated by the empty set is the whole structure. That is, N �
∅ = N . Following the definitions, Gen1(∅) = {0} and by induction Genn+1(∅) =
{0, 1, . . . , n}.
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Discussion 3.15. The analysis of Ehrenfeucht-Fraïssé games, as with all game-theoretic
methods in model theory, focuses on winning strategies. Winning strategies are formalised
in [19, Definition 2.3.4], but will not be explicitly defined in this thesis. It is our view
that the value of game-theoretic methods lies in their intuitive nature and that working
with strategy-defining functions undermines this intuition. Instead, the strategies will be
carefully verbally explained, trusting that any reader desiring a formal winning strategy
can transform these explanations into precise functions.
The Ehrenfeucht-Fraïssé method can be used to prove negative results about the ex-

pressivity of first-order logic. That is, it can be used to show that certain structures
cannot be distinguished by the language or by parts of the language. An Ehrenfeucht-
Fraïssé game of length n can be used to prove equivalence up to “quantifier depth” n.

Definition 3.16. Let α be a first-order formula. The quantifier-depth of α, denoted as
q(α) is given recursively by

q(t1 ≈ t2) = q(Rt1, . . . , tn) = 0; for any n-ary relation R and terms ti
q(α ∧ β) = q(α ∨ β) = max{q(α), q(β)};
q(¬α) = q(α);

q(∃xα) = q(∀xα) = q(α) + 1.

Write FOLn := {ϕ ∈ FOL | q(ϕ) ≤ n}. Two structures A andB are said to be n-equivalent,
notation A ≡FOL

n B, if any ϕ ∈ FOLn has A |= ϕ if and only if B |= ϕ. J

This definition allows for the formulation of the Ehrenfeucht-Fraïssé Theorem, which
demonstrates the power of these games.

Theorem 3.17 (Ehrenfeucht-Fraïssé). Let n be a natural number and A and B two
first-order structures. If Duplicator has a winning strategy for the Ehrenfeucht-Fraïssé
game of n moves, then A ≡FOL

n B.

This method is so powerful because it reduces the abstract and hard to grasp notion of
n-equivalence to intuitive reasoning about the similarity between two structures. Argu-
ments about such equivalence usually require complicated inductions on the complexity
of formulae, while winning strategies for games can often be formulated intuitively as a
reaction plan for Duplicator.
An important application of the Ehrenfeucht-Fraïssé method is Hanf’s Lemma, a result

showing that the first-order theory of a Kripke model depends only on the local beha-
viours. The exact meaning of local is given by the notion of the Gaifman-neighbourhood.

Definition 3.18. Let F = (W,R) be a frame, M = (F, V ) a model and S ⊆ W . Then
the Gaifman neighbourhood of size ` of S is defined recursively by

NF
0 (S) = S;

NF
`+1(S) = NF

` (S) ∪ 〈R〉NF
` (S) ∪R

[
NF
` (S)

]
;

NF
` (S) = (NF

` (S), R � NF
` (S)) where R � A := R ∩A×A;

NM
` (S) = (NF

` (S), V ∩NF
` (S)) where V ∩NF

` (S) :=
(
p 7→ V (p) ∩NF

` (S)
)
.
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That is, the `-neighbourhood of S is the set of points that can be reached in ` steps along
or against R. The letter N is used for the set, and N is used for the subframe and the
submodel. J

Theorem 3.19 (Hanf’s Lemma [20], presented after [15]). Let M and N be Kripke
models and let n ∈ N. Define ` = 3n. Suppose that the cardinality of the `-neighbourhood
of each point in M and N is bounded from above by m ∈ N and for each Kripke model
M one of the following two conditions hold:

1. M and N have the same number of points whose `-Gaifman-neighbourhood is iso-
morphic to M;

2. M and N both have at least m · n points whose `-Gaifman-neighbourhood is iso-
morphic to M.

Then M ≡FOL
n N.

With these tools in place some results from classical modeltheory can be investigated.

3.3 Failure of classical model-theoretic results on
descriptive models

An important consequence of the failure of the compactness theorem on the class of
descriptive models is that standard syntactical deduction systems cannot adequately
describe semantic consequence relations on the class of descriptive models.

Theorem 3.20 (Failure of Completeness Theorem). No first-order deduction system in
which the inference rules have a finite number of formulae as input is sound and complete
for the class of descriptive models.

Proof. If it were, then by completeness any semantic consequence Ψ |= ψ could be inferred
in this deduction system. If the rules of the deduction system have a finite input, then
each step can only use a finite number of previous steps, implying that a derivation of
finitely many steps can only use finitely many premises. This means that a ψ can also
be deduced from a finite subset Ψ0 ⊆ Ψ in this system. But then Ψ0 |= ψ by soundness.

However, the proof of Theorem 3.5 gave a set of formulae Φ such that Φ |= ⊥, but no
finite subset Φ0 ⊆ Φ entails ⊥.

As announced in the introduction, there is a strong similarity between finite model
theory and the model theory of descriptive models. As the Compactness Theorem for
first-order logic fails on both, many theorems from classical model theory that are proven
through compactness fail on these classes.
One such result is an important theorem in classical model theory known as Beth’s

Definability Theorem. This theorem involves the definability of relations added to a
language. The treatment here will follow [15, Section 3.5] for finite model theory.

43



Definition 3.21. Consider the first-order language FOL(R,F) with a set of relation
symbols R and function symbols F , and let C be some class of models for this signature.
Let R /∈ R be an n-ary relation symbol and ϕ ∈ FOL(Rt{R},F) be a formula, where t
denotes disjoint union.
The formula ϕ implicitly defines R over C if for each structure A over R and F , there

is a at most one relation RA such that if (A, RA) expands A to a structure over Rt{R}
and F , then (A, RA) |= ϕ.

If ϕ ∈ FOL(Rt{R},F) implicitly defines the relation R, then formula ψ(x1, . . . , xn) ∈
FOL(R,F) explicitly defines R relative to ϕ over C if

ϕ |=C ∀x1 · · · ∀xn[Rx1 . . . xn ↔ ψ(x1, . . . , xn)].

A class C has the Beth property if these two notions of definability coincide. J

Theorem 3.22 (Beth’s Definability Theorem). Let R and F be collections of relation
symbols and function symbols respectively, and suppose that R /∈ R is an n-ary relation
symbol. Let C be the class of all models over this signature. If ϕ ∈ FOL(R t {R},F)
implicitly defines R over C, then there exists a formula ψ(x1, . . . , xn) ∈ FOL(R,F) that
explicitly defines R relative to ϕ over C.

In [15, Proposition 3.5.1], it is shown that this theorem does not hold when C is instead
taken to be the class of finite models. Following the strategy of this proof shows that
the theorem also fails for the class of descriptive models. Lemma 3.6 will allow the proof
from [15] to be transferred to the class of descriptive models.

Theorem 3.23 (Failure of Beth Definability Theorem on descriptive models). Let R
be a binary relation symbol and let P be a unary predicate symbol. Then there exists a
formula ϕ that implicitly defines P over the class D of descriptive models such that there
is no formula ψ ∈ FOL({R,P}, ∅) that explicitly defines P relative to ϕ over D.

Proof. Let λ be Formula 3.1 defining the finite, irreflexive linear orders over the class
of descriptive models as per Lemma 3.6. Then take ϕ to be the formula saying that R
is an irreflexive linear order, the R-minimum does not have P and any two immediate
successors disagree on P . Formally, ϕ is

λ ∧ (∀x[¬∃y Ryx→ ¬Px]︸ ︷︷ ︸
minimum does not have P

∧∀x∀y[¬∃z[(Rxz ∧Rzy) ∨ (Rzx ∧Ryz)]→ (Px↔ ¬Px)])︸ ︷︷ ︸
successors disagree on P

.

The models of λ are precisely finite linear orders that assign P to exactly the even points.
Suppose now that there were a formula ψ(x) ∈ FOL({R}, ∅) that explicitly defined P .

Then the formula ε stating that R is an irreflexive linear order and the maximum has
the property ψ, given explicitly by

λ ∧ ∀x[¬∃y Rxy → ψ(x)]

would be a formula in FOL({R}, ∅) that characterises exactly the finite, even, linear orders.
With the Ehrenfeucht-Fraïssé method, this will be shown to be impossible.
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Any two finite linear orders A and B of size larger than 2n+1 are n-equivalent. Finite
linear orders are discrete, and one can thus speak reasonably about distance. The winning
strategy for Duplicator is as follows: for a position ((a1, b1), (a2, b2), . . . , (ak−1, bk−1), ak),
if ak is at distance strictly less than 2n−k from the maximum, minimum, or another ai,
then place it on the same side at the same distance from the corresponding point in B.
Otherwise, place it between the bi as it is between the corresponding ai at distances all
greater than 2n−k. The response to a position ((a1, b1), (a2, b2), . . . , (ak−1, bk−1), bk) is
symmetric.
Inductively, one can see that this is well-defined, because by the triangle inequality, if

ak is at distance less than 2n−k from both ai and aj for i, j < k, then ai is at distance
less than 2n−k + 2n−k = 2 · 2n−k = 2n−(k−1) from aj . So bi is at the same distance from
bj by the induction hypothesis, so that bk can be chosen at the corresponding distances
from both.
Moreover, if there is no point of distance at least 2n−k from both bi and bj , then

similarly they are at distance at most 2n−(k−1) − 1 for i, j < k. Inductively, ai and aj
are at the same distance, so that ak cannot have been placed at a distance at least 2n−k

from both.
This induction works for models larger than 2n+1, because the induction basis, that

the minimum and the maximum are at distance at least 2n, is then true.
After n moves, this ensures that aiRaj if and only if biRbj . Because there are no

function symbols, this is a local isomorphism, winning the game for Duplicator.

The same technique can be used to show the failure of the Craig Interpolation Theorem.

Theorem 3.24 (Craig Interpolation Theorem [12]). Let ϕ ∈ FOL(R0,F0) and ψ ∈
FOL(R1,F1) be formulae and let for i equal to 0 or to 1, the class Ci contain all structures
over Ri and Fi and C2 the class of all structures over R0 ∪R1 and F0 ∪F1. If ϕ |=C2 ψ
then there exists a θ ∈ FOL(R∩R′,F ∩ F ′) such that ϕ |=C0 θ and θ |=C1 ψ.

The Craig Interpolation Theorem fails on the class of descriptive models for essentially
the same reason that the Beth Definability Theorem fails. Usually, the Beth Definability
Theorem is stated as a consequence of the Craig Interpolation Theorem, so that the
failure of former immediately implies failure of the latter, but a direct proof will be
informative.

Theorem 3.25 (Failure of Craig Interpolation Theorem on descriptive models). Let R
be a binary relation symbol, let P0, P1 be unary predicate symbols, and let D0,D1, and
D01 denote the class of descriptive models over predicate sets {P0}, {P1} and {P0, P1}
respectively. Then there exist formulae ϕ ∈ FOL({R,P0}, ∅) and ψ ∈ FOL({R,P1}, ∅) such
that ϕ |=D01

ψ, but there is no formula θ ∈ FOL({R}, ∅) such that ϕ |=D0
θ and θ |=D1

ψ.

Proof. Let ϕ state that R is an irreflexive linear order, P0 occurs only on the even points
like in the proof of Theorem 3.23, as well as that the maximum satisfies P0. Let ψ state
that R is an irreflexive linear order and if P1 occurs only on the even points, then the
maximum has P1.
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The formula ϕ is true on the finite, even, irreflexive linear orders with P0 on the even
points. Similarly, for ψ to be true, a structure must be a finite, irreflexive linear order
with P1 true on an odd point or false on an even point, or it must be even. From this,
it is easily seen that ϕ |=D01

ψ.
Suppose now for contradiction that there is an interpolant θ ∈ FOL({R}, ∅) such that

ϕ |=D0
θ and θ |=D1

ψ. Then in particular θ must be true on all finite, even, irreflexive
linear R-orders. By the Ehrenfeucht-Fraïssé previously presented, this means that θ is
true on all sufficiently large finite, irreflexive linear R-orders. But an odd linear order
among these can be expanded with a predicate P1 on the even points, from which it
follows that θ 6|=D1

ψ. This is a contradiction.

These two results use Lemma 3.6 to reduce a model-theoretic problem for the class of
descriptive models to the corresponding result in finite model theory. This reasoning can
resolve model-theoretic problems on descriptive models that have an analogue on finite
models, but does not help when considering results that have no sensible corresponding
statement in finite model theory.
For an example of such results, consider the celebrated upward Löwenheim-Skolem

Theorem. It states that any first-order theory T with an infinite model has arbitrarily
large models.

Theorem 3.26 (Upward Löwenheim-Skolem Theorem). Let T be a set of first-order
formulae that is satisfiable on an infinite model A. Then for every cardinal κ larger than
the size of A there exists a model B of T with cardinality at least κ.

Proof. Introduce to the language a set of constants cα for any α ∈ κ and define a theory

T ′ := T ∪ {¬cα ≡ cβ | α, β ∈ κ}.

This theory is finitely satisfiable on A since it is infinite and hence satisfiable by the
compactness theorem for first-order logic. A model of T ′ is a model of T and has at least
size κ.

The upward Löwenheim-Skolem theorem has no meaningful interpretation in finite
model theory, because the hypothesis of the implication is trivially false. However, as the
theorem is an immediate consequence of the compactness theorem, it is natural to wonder
if it holds on the class of descriptive models on which this the compactness property fails.
Indeed this class turns out to lack the upward Löwenheim-Skolem property. In fact, it
even fails when the theorem is restricted to speak only about formulae.

Theorem 3.27 (Failure of Upward Löwenheim-Skolem Theorem for descriptive models).
There exists a first-order formula that is satisfiable on an infinite descriptive model, but
not satisfiable on any uncountable descriptive model.

Proof. Let ϕ be a formula encoding a linear order with a reflexive minimum and no other
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reflexive points. That is, ϕ is the formula

∀x∀y[x ≡ y ∨ (Rxy ∧ ¬Ryx) ∨ (Ryx ∧ ¬Rxy)] (antisymmetric & total)
∧ ∀x∀y∀z[(Rxy ∧Ryz)→ Rxz] (transitive)
∧ ∀x∀y[Rxx ∧Ryy → x ≡ y] (at most one reflexive point)
∧ ∃x[Rxx ∧ ∀y Rxy] (there is a reflexive minimum).

First, consider the Kripke frame (ω + 1, R) with Rab if and only if a > b or a = b = ω,
equipped with the collection of admissible sets given by the finite subsets of N and
cofinite subsets of N with ω. See Figure 3.2 for the underlying Kripke frame. This is
easily checked to be a descriptive frame.Then any model based on this frame satisfies
ϕ, because the relation is a linear order, has a reflexive minimum and no other reflexive
points.
Now suppose that m is a descriptive model of cardinality higher than ℵ0 whose under-

lying frame is a linear order with exactly one reflexive point that is also its minimum.
By the pigeon hole principle, there is at least one point w that is not the minimum
with infinitely many successors. Then R[w] is a compact subspace (recall Lemma 2.34)
and hence induces another infinite descriptive model. By Lemma 3.6, it follows that
R[w] contains another reflexive point, which means that m contains at least two reflexive
points, implying that m 6|= ϕ.

...

...

ω

N

Figure 3.2: Schematic illustration of (ω+1, R) for R the ≥-relation without reflexivity on
the natural numbers. Note that not all arrows between the natural numbers
are drawn to avoid cluttering, but the relation should be understood to be
transitive.
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4 The van Benthem Characterisation
Theorem for descriptive models

This chapter will prove the main result of this thesis: the van Benthem Characterisation
Theorem for the class of descriptive models. The first section will briefly discuss the
classical van Benthem Characterisation Theorem. The section after that will discuss
the proof strategies for the contexts of Kripke models, finite models and descriptive
models. In particular, the failure of the Compactness Theorem for first-order logic will
be discussed. It will outline roughly the techniques used in [33] for the class of finite
models to avoid the use of the Compactness Theorem and how these will be modified
to obtain the result for descriptive models. Finally, the third section of the chapter will
develop the constructions announced in the second section and use them to prove the
main result.

4.1 The classical van Benthem Characterisation Theorem

This section is intended to provide the reader with insight into the classical van Benthem
Characterisation Theorem and the techniques used to prove it. It will not provide a
complete proof, but will instead focus on what properties of the class of Kripke models
are used to show an explicit contrast with later incarnations of this theorem and their
proofs.

Theorem 4.1. The classical van Benthem Characterisation Theorem
Let α be a first-order formula in one free variable and let K∗ denote the class of all
pointed Kripke models. Then the following are equivalent:

1. For all pointed models M, w and N, v in K∗,

if M, w ↔ N, v then M |= α[w] ⇐⇒ N |= α[v];

2. There exists a modal formula ϕ such that for all pointed models M, w in K∗

M, w  ϕ if and only if M |= α[w].

The first statement will in future be abbreviated by saying that the first-order formula
α is (Kripke-)bisimulation-invariant over K. Observe that the implication 2 =⇒ 1 is
both common knowledge and follows from Corollary 2.60. All that is left is to prove the
other implication.

49



The proof illustrated here will be a carefully presented version of the one given in [8,
Section 2.6,p. 103] with explicit comments made on matters of relevance to the later
results.
The proof follows from two lemmas. The first lemma requires a fair amount of preceding

theory on saturation, which will not be useful in the theory to come, and as such will
remain unproven.

Lemma 4.2. Let M, w and N, v be two modally equivalent pointed Kripke models.
Then there exist elementary extensions1 M∗, w∗ of M, w and N∗, v∗ of N, v such that
M∗, w∗ ↔ N∗, v∗.

This lemma and the relevant theory can be found in [8, Section 2.6, p. 101] as the
“Detour lemma”. However, the techniques of the proof cannot be transferred to the case
of descriptive models due to the heavy reliance on the Compactness Theorem for first-
order logic (see Theorem 3.2), so it will not be helpful to repeat it here. Instead, it
is stated without proof. All that matters for this discussion is that the proof uses the
compactness property of K over first-order logic.
The next step towards Theorem 4.1, however, will be instructive to later incarnations

of the van Benthem Characterisation Theorem. As such, the proof, using Lemma 4.2,
will be spelled out explicitly.

Lemma 4.3. Let α be a first order formula in one free variable and let K∗ be the class
of all pointed Kripke models. Suppose that α is bisimulation-invariant over K∗. Then
ThK∗

ML (α) |=K∗ α.

Proof. Write T := ThK∗
ML (α) = {ϕ ∈ ML : α |=K∗ ϕ} for the modal theory of α and

assume M, w satisfies T . Then in particular ThML(M, w) ∪ {α} is satisfiable. After all,
suppose it is not, then by the Compactness Theorem for first-order logic there would
be a finite subset T0 ⊆ ThML(M, w) such that T0 ∪ {α} is not satisfiable. In particular,
α |=K∗ ¬

∧
T0 and hence ¬

∧
T0 ∈ T , implying M, w  ¬

∧
T0 in obvious contradiction

to T0 ⊆ ThML(M, w). So there exists a pointed model N, v that is modally equivalent
to M, w and which satisfies α. Using Lemma 4.2, the pointed Kripke models N, v and
M, w have bisimilar elementary extensions N∗, v∗ and M∗, w∗ respectively. In particular,
N∗ |= α[v∗] using the elementary embedding, and bisimilation-invariance of α gives that
M∗ |= α[w∗] yielding M |= α[w] by the elementary embedding again. It follows that
ThK∗

ML (α) |=K∗ α.

From this lemma, the Compactness Theorem implies the van Benthem Characterisa-
tion Theorem almost immediately.

Proof of Theorem 4.1. Suppose that α is a first order formula and bisimulation-invariant
over the class K∗ of all models. Then Lemma 4.3 gives that ThK∗

ML (α) |=K∗ α. Com-
pactness now immediately tells us that there is a finite subset T0 ⊆ ThK∗

ML (α) such that
1A first-order structure A∗ is an elementary extension of A if there exists an injective homomorphism
h : A → A∗ such that A |= ϕ(a1, . . . , an) if and only if A∗ |= ϕ(h(a1), . . . , h(an)) for all first-order
formulae ϕ. The map h is called an elementary embedding.
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∧
T0 |=K∗ α. Since also α |=K∗ T by construction, the modal formula

∧
T0 is equivalent

to α on K∗.

4.2 Modifying the proof structure

The proof from the previous section relies heavily on the Compactness Theorem for first-
order logic. Three separate steps in the argument make use of the theorem. However,
Theorem 3.5 from the previous chapter stated that the class of descriptive models does
not have the compactness property over first-order logic. This means that the techniques
used to prove the classical theorem cannot be transferred. A new proof for this class
should thus be based on a careful analysis of the structure of the proof and this structure
must be modified to not rely on the Compactness Theorem.
In [33], this is done for the class of finite models, which also lacks the compactness

property. The approach taken in this thesis will be very close to the one taken there. As
such, the proof structure from [33] will be explained, and the idea of proof of the main
theorem of this thesis will be announced. The similarities and differences between these
approaches will be made explicit.

4.2.1 Proof structure of classical van Benthem Characterisation
Theorem

Consider once more the structure of the proof presented for Theorem 4.1. The first lemma
that was used was the Detour Lemma. It can be visualised by the following diagram

M, w ≡ML N, v

F
O
L

|||

F
O
L

|||

M∗, w∗ ↔ N∗, v∗

(4.1)

where the top line is assumed and the existence of the rest is inferred. While the first order
formula α cannot a priori be “transferred” through the relation of modal equivalence, it
is preserved under first-order equivalence and, by assumption, bisimulation. This allows
nonetheless the conclusion that if M |= α[w], then N |= α[v] by taking the alternative
route through the diagram.
From there, the important steps are Lemma 4.3 and the finishing remarks below that.

The former implies that any formula satisfying the requirements of Theorem 4.1 is, at
least, modally expressible. That is, there is some set of modal formulae that is exactly
equivalent to the formula in question. The remarks that follow then reduce this theory
to a single formula.
These three steps are exactly the separate uses of the Compactness Theorem.

• The proof of Lemma 4.2, giving the existence of diagram 4.1, requires a claim that
follows from the compactness property.
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• If M, w satisfies the modal theory of α, the satisfiability of ThML(M, w) ∪ {α}
requires the compactness property.

• The final conclusion, that the modal theory of α can be reduced to a single formula,
also requires the Compactness Theorem for first-order logic over the class of Kripke
models.

When considering classes without the compactness property, these claims have to be
replaced by ones that do not rely on the Compactness Theorem.

4.2.2 Proof structure of the van Benthem Characterisation Theorem
for finite models

A vital inspiration to this thesis is Lemma 4 from [33], proving the van Benthem Char-
acterisation Theorem for finite models.

Theorem 4.4 (Van Benthem Characterisation Theorem for finite models [33]). Let α
be a first order formula in one free variable. Then the following are equivalent:

1. There exists a modal formula ϕ such that for all finite pointed Kripke models m, w

m, w  ϕ if and only if m |= α[w].

2. For any two finite pointed Kripke models m, w and n, v

If m, w ↔ n, v then m |= α[w] if and only if n |= α[v].

The following will be a sketch of the proof. Although the presentation will not be
exactly the same as in [33], it will be equivalent.
Again, the implication 1 =⇒ 2 is immediate from Corollary 2.60 and only the converse

implication requires thought. The proof in [33] avoids the usage of the Compactness
Theorem by considering a language that is finite up to equivalence. To this end, fix a
first-order formula α in one free variable that is invariant under bisimulations between
finite models. Recall from Proposition 2.11 that for a finite set of propositional variables
P0 and a natural number ` ∈ N the language ML`(P0) has this property. Choosing this
finite set and number appropriately based on the first-order formula α that is under
consideration then allows the author to reduce its finite modal theory to a single formula
that can be shown to be equivalent to α.
It stands to reason that the finite set of predicates used to make sure the modal

language under consideration is finite up to equivalence, will be the set of all predicates
occurring in α. This is made precise in the next definition.

Definition 4.5. Let α be a first-order formula. The predicate set of α, denoted P(α) is
defined recursively as

P(Px) = {P}; P(Rx1x2 . . . xn) = P(x ≈ y) = ∅;
P(α ∨ β) = P(α ∧ β) = P(α) ∪P(β); P(∀xα) = P(∃xα) = P(¬α) = P(α)

J
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Then ML`(P0) for P0 = P(α) and ` = 3q(α) will be the language used in the argument.
The reasoning then rests on the following lemma.

Lemma 4.6. If α is a first order formula in one free variable that is invariant under bisim-
ulations over the class of finite models. Then α is also invariant under `-bisimulations
over the same class, for ` = 3q(α)+1.

As the finite number of propositional variables makes ≡ML
` and ↔` coincide (recall

Lemma 2.59), this implies that α is preserved under ≡ML
` . Through the finiteness of the

language, this then makes it possible to reduce α to a single modal formula. Towards
this lemma, fix finite models m and n such that m, w ↔ n, v and m |= α[w]. The diagram
used to prove that n |= α[v] will not be of the form 4.1, but instead of the form 4.2

m, w ↔` n, v

↔ ↔

m∗, w∗ ≡FOL
n n∗, v∗

(4.2)

for some yet to be specified models m∗ and n∗. Once again, while the formula α can a
priori not be assumed to be preserved under ↔ML

` , it is by assumption preserved under
bisimulation and for n ≥ q(α) it will be preserved under ≡FOL

n . Note that full first-order
equivalence could never be achieved, because they are not even guaranteed to be modally
equivalent.
The relation ≡FOL

n will be established through the Ehrenfeucht-Fraïssé method from
Section 3.2. The exact construction of m∗ is designed specifically to make the applica-
tion of this tool possible. These will be treelike structures, which have a much simpler
structure, allowing for the application of Ehrenfeucht-Fraïssé arguments.
The obvious candidate for such a tree would be the unravelling tree: the tree of all

paths through the model given the obvious structure of linking paths that extend one
another, in this thesis denoted by T(m). A more exact construction can be found in
Definition 4.9, but for the purposes of this discussion the intuition behind the structure
is much more important than the details. However, this is not in general a finite structure.
Any cycles in the original model will produce arbitrarily long paths and thus an infinite
unravelling tree. As the hypothesis of the theorem is only that the first-order formula
is preserved under bisimulations between finite models, the tree must be in some sense
“pruned”.
What this means is that the tree is artificially shortened by at some finite distance

away from the starting point, putting the original model back into the tree. A sketch of
this process can be found in Figure 4.1. This creates what the author calls a pseudotree
that has a treelike structure in the initial segment, but breaks this at some sufficient dis-
tance from the starting point. This pseudotree based on m will for now be called FinT(m).

Note that a model is always bisimilar to its unravelling, and the construction of the
pseudotree guarantees that the unravelling is bisimilar to the final result. Since m and
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Original model m

w 7→

w

T(m)

...
...

...

7→

w

m

FinT(m)

Figure 4.1: Schematic illustration of the pruning process that turns a finite model into
a finite pseudotree whose initial structure is treelike.

FinT(m) are finite, bisimilar structures, bisimulation-invariance of α on finite structures
means validity of α[w] in m guarantees validity of α[w] in FinT(m). The exact same
construction can be performed on n, so that diagram 4.2 can be updated to

T(m), w ↔ m, w ↔` n, v ↔ T(n), v

↔ ↔ ↔ ↔

FinT(m), w↔ m∗, w∗ ≡FOL
n n∗, v∗ ↔ FinT(n), v

(4.3)

with a still unspecified construction m∗ and n∗. Recall that the aim was to perform an
Ehrenfeucht-Fraïssé argument on these two models.
From the fact that m, w ↔` n, v and Lemma 2.61, this finitary bisimulation may be

carried to the pseudotrees to give FinT(m), w ↔` FinT(n), v. This means that up to the
exact number of successors, the first ` layers of the treelike part of the pseudotrees will
be isomorphic. To illustrate this point, consider the following: if M, w ↔1 N, v, then
any successor of w must have a matching successor of v with the same propositional type
and vice versa. There may of course be more, but there must be at least one. We could,
then, in principle, duplicate the points until they had the same number of each type, at
which time their successor sets should be isomorphic. The analogous statement is true
for ↔`.
By appropriately duplicating points, the pseudotrees can be modified to F̃inT(m) and

F̃inT(n) with isomorphic `-neighbourhoods around w and v, while still remaining finite.

For ` sufficiently large compared to n, the Ehrenfeucht-Fraïssé game of n moves cannot
establish that the non-isomorphic parts are actually in the same connected component.
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If there are not enough moves to establish the path, the connection cannot be expressible
with n quantifiers. That means intuitively that, for the purposes of Ehrenfeucht-Fraïssé
games, the model M := F̃inT(m) ] F̃inT(n) can be thought of as the disjoint unions of
a neighbourhood of w, an isomorphic neighbourhood of v and some points away from
both. This establishes the final diagram

T(m), w ↔ m, w ↔` n, v ↔ T(n), v

↔ ↔

FinT(m), w

↔ ↔ FinT(n), v

↔ ↔

F̃inT(m), w↔ M, w ≡FOL
n M, v ↔ F̃inT(n), v

(4.4)

It now follows that, since m |= α[w], also M |= α[w], from which equivalence up to quan-
tifier depth n ≥ q(α) implies M |= α[v] as well, so that finally n |= α[v] by bisimulation-
invariance on the class of finite models. Note that, while there are bisimulations in
the diagram that are not between finite models, the only bisimulations relevant to this
argument are between finite models.

4.2.3 Proof structure of the van Benthem Characterisation Theorem
for descriptive models

Now we formulate for the first time the van Benthem Characterisation Theorem for
descriptive models.

Theorem 4.7 (Main theorem: van Benthem Characterisation Theorem for descriptive
models). Let α be a first order formula in one free variable. Then the following are
equivalent:

1. There exists a modal formula ϕ such that for all pointed, descriptive models m, w

m, w  ϕ if and only if m |= α[w].

2. If m, w and n, v are two Kripke-bisimilar pointed, descriptive models, then

m |= α[w] ⇐⇒ n |= α[v];

3. If m, w and n, v are two Vietoris-bisimilar pointed, descriptive models, then

m |= α[w] ⇐⇒ n |= α[v].
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This section should be read as a preview sketch of how Section 4.3 will prove this
theorem, mentioning explicitly variations on and similarities to the proof for finite models
as discussed in the previous section.
The equivalence 2 ⇐⇒ 3 is immediate from Corollary 2.56. Again, the implication

1 =⇒ 2 is immediate from Corollary 2.60. The only implication that requires work
is 2 =⇒ 1. Fix a first-order formula α satisfying 2 and consider again the language
ML`(P(α)) for ` = 3q(α)+1. Again the argument relies on a lemma similar to 4.6.

Lemma 4.8. If α is a first order formula in one free variable that is invariant under
bisimulations over the class of descriptive models. Then α is also invariant under `-
bisimulations over the same class, for ` = 3q(α)+1.

After proving this lemma, the argumentation is identical to the argumentation from
the previous subsection. For the lemma, fix descriptive models m and n with m, w↔` n, v
and m |= α[w].
Proving the lemma for descriptive models will be very similar to the approach for

finite models. Again, the unravelling tree will be taken and, although it is not in general
descriptive, it will be modified to become descriptive. Moreover, a duplication process
will be undertaken to turn `-bisimilarity into a isomorphism of neighbourhoods. In this
case, the duplication is an indiscriminate copying process making κ many copies of each
point with κ an infinite cardinal at least larger than the universes of both m and n. They
will be denoted by m⊗κ and n⊗κ, whose precise meaning will be explained later. Then the
disjoint union will enable an Ehrenfeucht-Fraïssé argument that finishes the argument.
A difference, however, will be the order of these operations. This is not vital, but simply
makes matters easier.

m⊗κ, (w, 0) ↔ m, w ↔` n, v ↔ m⊗κ, (v, 0)
↔ ↔

T(m⊗κ), ((w, 0))

↔ ↔

T(n⊗κ), ((v, 0))

↔ ↔

m̂⊗κ, ŵ ↔ m̂⊗κ ] n̂⊗κ, ŵ ≡FOL
n m̂⊗κ ] n̂⊗κ, v̂ ↔ n̂⊗κ, v̂

(4.5)

Then again, from m |= α[w] and the fact that α is preserved under bisimulations
between descriptive frames, it follows that m̂⊗κ ] n̂⊗κ |= α[ŵ]. First-order equivalence
for n ≥ q(α) gives m̂⊗κ ] n̂⊗κ |= α[v̂], so that bisimulation-invariance again provides
n |= α[v].
Noting then that this means α is preserved under ≡ML

` and ML`(P(α)) is finite up to
equivalence will provide a single modal formula equivalent to α.
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The exact details of the consructions have purposefully been left out, because this was
meant to illustrate how the proof will be performed. In this way, the motivation for the
constructions in the next section will be more obvious.

4.3 The van Benthem Characterisation Theorem for
descriptive models

This section will tackle the proof of the van Benthem Characterisation Theorem for
descriptive models, stating that modal logic is the Kripke-bisimulation-invariant fragment
and the Vietoris-bisimulation-invariant fragment of first-order logic (see Theorem 4.7).
This is the main theorem of the thesis.

4.3.1 Unravelling for descriptive frames

Towards proving the van Benthem theorem for descriptive frames, it will be necessary to
modify the notion of unravelling trees and unravelling forests to descriptive frames.

Definition 4.9. Let F = (W,R) be a frame. Define the unravelling forest of F as follows:

WT := {(wi)i≤n ∈Wn | n ∈ N,∀i < n : wiRwi+1};
RT := {((wi)i≤n, (wi)i≤n+1) : (wi)i≤n+1 ∈WT

w};
T(F) = (WT, RT).

In words, WT is the set of all paths in F, with two paths connected if one extends the
other by one step.
For a specific world w ∈W , write Tw(F) = (WT

w , R
T
w) for the connected component of

T(F) of all paths starting at w.
For the unravelling forest, there exists a surjective bounded morphism π : T(F) � F

by sending each path to its endpoint.
Write l((wi)0≤i≤n) = n for the length of a path and I = {~w ∈ WT : l(~w) = 0} for the

set of initial paths. J

Now this classical construction must be modified to incorporate the admissible sets of
the general frames. The most canonical way of doing that, pulling back the admissible
sets through the projection map π, does not offer a useful solution. The resulting frame
would not inherit differentiatedness nor tightness. To accomplish this inheritance, RT-
closure and I will be added.

Definition 4.10. Let g = (F, A) be a general frame. Define the unravelling cover T(g) of
g to be T(g) := (T(F), AT), the forest with as underlying frame the classical unravelling
forest of g# (recall Definition 2.14 for notation) and with collection of admissible sets
AT, a subalgebra of (P(WT), 〈RT〉) defined through the surjective bounded morphism
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π : T(F)� F by the following recursive schema:

I ∈ AT; (1)

a ∈ A =⇒ π−1[a] ∈ AT; (2)

b ∈ AT =⇒ RT[b] ∈ AT; (3)

b, b′ ∈ AT =⇒ b ∪ b′, b ∩ b′ ∈ AT. (4)

Note the double usage of T for both frames and general frames. This should not be caus-
ing too much confusion, but it is worth paying attention to. The unravelling subcovering
tree at w ∈W will be Tw(g) = (Tw(F), AT

w) with

AT
w := {a ∩WT

w | a ∈ AT}.

Note that this is not necessarily a cover of g as it is not necessarily surjective.
In a similar vein, for a general model m = (g, V ), the unravelling cover will be T(m) :=

(T(g),Popπ ◦ V ). J

Despite these extra additions, the resulting frame is always a general frame.

Proposition 4.11. Let g = (W,R,A) be a general frame. Then T(g) is a general frame.

Proof. All to be checked is that AT is a field of sets and closed under the 〈RT〉-operation.
Closure under binary union and intersection is immediate. Closure under complements
can by checked by induction on the construction of AT. The complement of the initial
points Ic = RT[WT] is the set of points with a predecessor, and is in AT because WT =
π−1[W ] is in AT.
Moreover, (π−1[a])c = π−1[ac] ∈ AT and if b0, b1 ∈ AT have bc0, bc1 ∈ AT, then (b0 ∪

b1)c = bc0 ∩ bc1 ∈ AT and (b0 ∩ b1)c = bc0 ∪ bc1 ∈ AT.
The final case, the RT-image of an admissible set, requires a minor observation about

RT: distinct points have disjoint image-sets. After all, two distinct paths cannot have
the same extension. An alternative way of saying this is that each point has at most one
RT-predecessor. As such, we have for all a ⊆WT that

(RT[a])c = RT[ac] ∪ I ∈ AT,

because each point with no predecessor in a either has a its unique predecessor in ac or
has no predecessor.
For closure under 〈RT〉, note that every element in AT can be written as a finite union

of finite intersections of elements of the form π−1[a] for a ∈ A admissible, RT[b] for b ∈ AT

or I. This is evident for elements of the forms (1), (2) or (3) and follows by induction
on the construction for elements of the form (4), as intersection distributes over union.
As 〈RT〉 distributes over unions, it is sufficient to show closure for finite intersections.

By induction on n, it will be shown that for b1, . . . , bn of the forms (1),(2) and (3), the
set 〈RT〉(b1 ∩ · · · ∩ bn) is in AT.
For n = 1, note that 〈RT〉I = ∅ = π−1[∅] ∈ AT and if a ∈ A then 〈RT〉π−1[a] =

π−1[〈R〉a] ∈ AT because π is a bounded morphism.
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Moreover, 〈RT〉(RT[b]), again because each point has at most one predecessor, is the
subset of b given by points with at least one successor. After all, x ∈ 〈RT〉(RT[b]) if
and only if there is a y such that y ∈ RT[b] and xRTy. That is equivalent y being a
successor to x and having a predecessor in b, and since predecessors in this frame are
unique, this predecessor must be x. So 〈RT〉(RT[b]) = 〈RT〉WT∩b = π−1[〈R〉W ]∩b ∈ AT.

Now suppose that 〈RT〉(b1∩· · ·∩bn) when all bi are of the forms (1),(2) or (3). Consider
then b0∩b1∩· · ·∩bn for n ≥ 1. If one of the bi is of the form I, then it follows immediately
that 〈RT〉(b0∩ b1∩ · · · ∩ bn) ⊆ 〈RT〉I = ∅. If one of them, without loss of generality b0, is
of the form RT[b′], then observe that x ∈ 〈RT〉(RT[b′] ∩ b1 ∩ · · · ∩ bn) if and only if ∃y ∈
RT[x] : y ∈ RT[b′] ∩ b1 ∩ · · · ∩ bn. By the uniquenss of predecessors, this is equivalent to
having x ∈ b′ and x ∈ 〈RT〉(b1 ∩ · · · ∩ bn). As the latter was admissible by the induction
hypothesis, it follows that 〈RT〉(RT[b′]∩ b1 ∩ · · · ∩ bn) = b′ ∩ 〈RT〉(b1 ∩ · · · ∩ bn), which is
admissible by closure under intersection.

Finally, if none of the bi are of the form I or RT[b′] for some b′ ∈ AT, then they must
all be of the form bi = π−1[ai], from which it follows that

〈RT〉(b0 ∩ b1 ∩ · · · ∩ bn) = 〈RT〉(π−1[a0] ∩ · · · ∩ π−1[an]) = 〈RT〉π−1[a0 ∩ · · · ∩ an]

= π−1[〈R〉(a0 ∩ · · · ∩ an)] ∈ AT,

because 〈R〉(a0 ∩ · · · ∩ an) ∈ A.

Now towards the main result of the thesis, it is useful to find out which properties of
the general frame are transferred to its unravelling cover.

Remark 4.12. For all a ∈ AT and n ∈ N, the set (RT)n[a] is admissible. J

To get the van Benthem result for descriptive models, it would be reasonable to hope
that properties defining descriptive frames are preserved under this construction. As was
hinted to above, this construction in fact does preserve differentiatedness and tightness.

Proposition 4.13. If g = (F, A) is differentiated, then so is T(g).

Proof. Let ~x = (xi)i≤n, ~y = (yj)j≤m ∈ WT be distinct paths. If n > m, then ~y /∈
(RT)n[WT] 3 ~x. So assume n = m. Then their distinction must mean there is some
k ≤ n such that xk 6= yk. Then by differentiatedness of g there is an a ∈ A such that
yk /∈ a 3 xk. But then (yi)i≤k /∈ π−1[a] 3 (xi)i≤k, meaning ~y /∈ (RT)n−k[π−1[a]] 3 ~x.

Proposition 4.14. If g = (F, A) is differentiated, then T(g) is tight.

Proof. Let (~x, ~y) /∈ RT. If the length l(~y) of ~y is not l(~x) + 1, then ~y ∈ (RT)l(~y)[I], but
~x /∈ 〈RT〉(RT)l(~y)[I] ⊆ (RT)l(~y)−1[I], because all paths in (RT)n[I] have length n.

If n := l(~y) = l(~x) + 1, then there must be a k ≤ l(~x) such that xk 6= yk. By
assumption, g was differentiated, so there exists an a ∈ A with xk /∈ a 3 yk, meaning
~y ∈ (RT)n−k[π−1[a]] ∈ AT but ~x /∈ (RT)n−k−1[π−1[a]] ⊇ 〈RT〉(RT)n−k[π−1[a]].
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Although surprising, it may be understandable that tightness is not required, as the
structure of the forest itself already separates unconnected points automatically.

Proposition 4.15. Let g = (W,R,A) be a general frame and T(g) its unravelling cover.
Take ~x ∈ WT. Then π � RT[~x] : RT[~x] → R[π(~x)] is a homeomorphism between the
subspace topologies.

Proof. It is obviously a continuous bijection as π−1[a] ∈ AT for all a ∈ A, which is the
basis of the topology on g. To prove continuity of the inverse, it is sufficient to show that
all basis elements in the subspace topology of RT[~x] are of the form π−1[a] ∩RT[~x].
By induction on the recursion schema for AT. It is obvious for the restriction of π−1[a]

and I. If b ∈ AT, then

RT[b] ∩RT[~x] =

{
∅ if ~x /∈ b,
RT[~x] if ~x ∈ b,

by using again that distinct points have disjoint RT-successor sets.
Finally, π−1 distributes over intersection and union, completing the induction.

Corollary 4.16. Let g be an image-compact general frame. Then T(g) is image-compact.

Corollary 4.17. Let g be a descriptive frame. Then T(g) is a differentiated, tight, and
image-compact.

4.3.2 The descriptive unravelling

The unravelling cover of a compact frame is not necessarily compact, as the following
example demonstrates.

Example 4.18. Consider the descriptive frame consisting of a single, reflexive point with
the only field of sets possible. Its unravelling cover is N with the finite and cofinite sets
as admissible sets, which is not compact.

This shows that while differentiatedness of g implies T(g) is differentiated and tight,
compactness may not be preserved. In fact, no collection of admissible sets can be
constructed with which an unravelling forest of a descriptive frame with arbitrarily long
paths is descriptive.

Proposition 4.19. Let g = (F, A) be a descriptive frame. If the path lengths in g are
unbounded, then T(F) cannot be made into a descriptive frame.

Proof. For contraposition, let (T(F),A) be descriptive. Then in particular from Lemma
2.34 and induction it follows that (RT)n[WT] is closed for all n. Clearly,

⋂
n∈N(RT)n[WT] =

∅, as any paths is of finite length. By compactness, then, there exists an n such that
(RT)n[WT] = ∅. Therefore, there exist no paths of length n or more in g.
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Like for the finite models, the unravelling must be modified to become descriptive.
In principle, this could be done in the same way as was done in [33]. Putting the
original frame at a sufficiently long distance from I would suffice for a reproduction of
the argument. However, for descriptive frames, there exists an alternative construction
that will be used in this thesis: through Jónsson-Tarski duality.
Recall from Definition 2.50 that every general frame has a “descriptive completion”, its

double dual under the functors Spec and Clop.

Definition 4.20. Let g be a general frame. Then let its compactified unravelling or
descriptive unravelling be the descriptive completion of the unravelling cover of g. Write

ĝ := ((T(g))∗)∗

to abbreviate. J

This will turn out to be a very well-behaved construction for descriptive frames and will
be key to the approach taken in this thesis. Moreover, this construction of the descriptive
completion should be much more applicable to related future research. In particular, as
will be discussed in Chapters 5 and 6, it will likely be conveniently applicable to achieve
results in the modal µ-calculus and coalgebraic constructions. For coalgebraic purposes,
too, the cleaner functorial construction of the descriptive completion should be much
easier to work with. Section 5.1 will also show that has a very well-behaved underlying
frame, in an attempt to pave the way for future research.
For now the focus will be on showing that this construction is well-behaved. In par-

ticular, the unravelling forest had a number of useful preservation properties as shown
in Section 4.3.1, and the following results will show that these are maintained for the
descriptive unravelling.

Lemma 4.21. Let g = (W,R,A) be image-compact. Let Fx, F ∈ UfA, where Fx is the
ultrafilter generated by x. Then in the double dual descriptive frame FxR∗F if and only
if F = Fy for some y ∈ R[x].

Proof. For the implication from right to left, assume that y ∈ R[x]. To prove that
FxR∗Fy, let a ∈ Fy. Then y ∈ a. From xRy it follows that x ∈ 〈R〉a, yielding 〈R〉a ∈ Fx.
Since a was arbitrary, this holds for all a ∈ Fy, so that FxR∗Fy.
For the implication from left to right, assume FxR∗F . By definition, if a ∈ F then
〈R〉a ∈ Fx, implying x ∈ 〈R〉a. Therefore, there exists an x′ ∈ a such that xRx′.
So for every a ∈ F , we have a ∩R[x] 6= ∅. Since F is closed under finite intersections,

we find that {a ∩ R[x] : a ∈ F} has the finite intersection property. By compactness of
R[x], the set

⋂
{a ∩ R[x] : a ∈ F} = R[x] ∩

⋂
F is non-empty. Therefore, there exists a

y ∈ R[x] such that for all a ∈ F we have y ∈ a. So F = Fy for some y ∈ R[x], because it
is an ultrafilter.

Remark 4.22. One might have expected tightness to show up in the proposition above
to prove that FxR∗Fy =⇒ xRy, but tightness is an immediate consequence from
image-compactness and differentiability, so it may be reasonable to expect that image-
compactness is strong enough to prove something not quite as strong as tightness. J
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Remark 4.23. While this result may be surprising from the algebraic construction, it
is in fact quite natural from the topological construction of the descriptive completion
presented in Definition 2.86. After all, if (yd)d∈D is a semi-universal net that is frequently
related to the constant net at x, then it must be frequently in R[x]. Then there is a
semi-univeral subnet (zδ)δ∈∆ that is eventually in R[x] and semi-equivalent to (yd)d∈D,
because if a net is eventually in Y , then any subnet is also eventually in Y . This is
a semi-universal net in a compact space, so that it converges to a point z ∈ R[x] by
Proposition 2.81. By Corollary 2.84, it must be semi-equivalent to a constant at z. J

Proposition 4.24. Let g be a differentiated and image-compact frame. Then g� (g∗)∗
is a generated subframe2 through a topological embedding ιg : x 7→ Fx. That is, g is
homeomorphic to its image under ιg.

Proof. Lemma 4.21 gives immediately that it is a bounded morphism. From the fact
that g is differentiated, it follows that ιg injective, making g a generated subframe. To
see that it is a homeomorphism on its image, let a be an admissible set on g. Then

ιg(x) = Fx ∈ â ⇐⇒ a ∈ Fx ⇐⇒ x ∈ a,

so that ιg and ι−1
g preserve the basis elements of the topology, ensuring continuity for

both it and its inverse restricted to the image.

Theorem 4.25. Let g be a descriptive frame. Then ι̂ : T(g)� ĝ continuously.

Proof. Note that descriptive frames are in particular, image-compact and differentiated,
so Corollary 4.16 and Proposition 4.13 gives that T(g) is image-compact and differenti-
ated. Proposition 4.24 then gives the theorem.

In fact, an even stronger claim is true.

Theorem 4.26. Let g be a descriptive frame. Then ĝ# = T(g)#]L for some unspecified
frame of limit points L, where the #-operation takes the underlying Kripke frame of a
general frame.

Proof. Let g = (W,R,A). From Theorem 4.25, it is sufficient to show that two points in
ĝ can only be (RT)∗-related if they are both inside or both outside T(g)#. Theorem 4.25
implies that if w is in the image of ι̂ : T(g) � ĝ, then the (RT)∗-successor set of w is,
too. To complete the theorem, the predecessor set has to be, as well. This means that if
F (RT)∗Fx for some ultrafilter F and the ultrafilter Fx generated by x, then F = Fy for
y ∈ (RT)−1[x].
Towards contraposition, assume that F 6= Fy for any y ∈ (RT)−1[x]. In T(g), each

point has at most one predecessor, so (RT)−1[x] ⊆ {y} for some y. In particular, this
means there exists some a ∈ F ⊆ AT such that x /∈ RT[a], either because it has no
predecessor or because y /∈ a. By construction of AT, the set RT[a] is in AT, so that
a ⊆ [RT]RT[a] ∈ F by monotonicity of filters. Since x /∈ RT[a], also RT[a] /∈ Fx, implying
that (F, Fx) /∈ (RT)∗ .

2Generated subframes are given by injective bounded morphisms
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As such, there is is an isomorphic copy of T(g)# in ĝ#. A topologically flavoured and
more intuitive proof of this fact will be given in Corollary 5.12. The next step is to
upgrade the descriptive unravelling to a descriptive model.

Corollary 4.27. Let m = (g, V ) be a descriptive model. Define m̂ := (ĝ, V̂ ) with
V̂ (p) = ̂π−1[V (p)]. Then πT ; ι̂, where ; denotes composition of the relations, is a Kripke
bisimulation, and hence its closure is a Vietoris bisimulation.

Proof. Note that π and ι̂ are bounded morphisms, so they satisfy the back and forth
conditions by construction. The propositional requirements is satisfied because

π(~x) ∈ V (p) ⇐⇒ ~x ∈ π−1[V (p)] ⇐⇒ π−1[V (p)] ∈ F~x ⇐⇒ F~x ∈ ̂π−1[V (p)] = V̂ (p).

The final remark is then given by Proposition 2.55.

4.3.3 Preservation under finite bisimulations

The previous section provides a tool with which to show invariance under bisimulation
implies invariance under some finite bisimulation. This tool will now be used to achieve
this through Ehrenfeucht-Fraïssé methods. To this end, there is a final combinatorial
construction that will prove useful: a duplication process. It will be useful to copy points
in a manner that preserves preserves compactness.

Definition 4.28. Let A and B be fields of sets over universes X and Y . Write A ⊗ B
for the field of sets over the universe X × Y generated by {a× b | a ∈ A, b ∈ B}. J

Proposition 4.29. Let A and B be fields of sets generating topological spaces X and
Y as bases. Then A⊗B is a basis for the product space X × Y.

Proof. To see that A⊗B generates a finer topology, note that the basis of X ×Y consists
of all U × V where U and V are open subsets of X and Y respectively. This means that
U =

⋃
α∈I aα and V =

⋃
β∈J bβ for aα ∈ A and bβ ∈ B and index sets I and J . But then

it is immediate that

U × V =

(⋃
α∈I

aα

)
×

⋃
β∈J

bβ

 =
⋃

α∈I,β∈J
aα × bβ

is generated by A⊗B.
To see that it is coarser, remark that all elements of A⊗ B are products of sets open

in X with open sets of Y.

Corollary 4.30. Let A and B be compact fields of sets. Then A⊗B is compact.

Corollary 4.31. Let A andB be differentiated fields of sets. Then A⊗B is differentiated.

Proof of Corollaries 4.30 and 4.31. This follows immediately from Proposition 4.29 and
the fact that the product of two compact spaces is compact and the product of totally
separated spaces is totally separated (recall Definition 2.22).
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Definition 4.32. Let g = (W,R,A) be a general frame and let F be a field of sets over
a universe X. Define the F-multiplier of g by

R⊗X := {((w, x1), (v, x2)) ∈ (W ×X)2 | (w, v) ∈ R, x1, x2 ∈ X};
g⊗F := (W ×X,R⊗X,A⊗F).

If m = (g, V ) is a general model, then define V (·)×X by p 7→ V (·)×X) and

m⊗F := (g⊗F , V (·)×X),

which will be called the F-multiplier of m. J

Remark 4.33. There is an obvious surjective continuous bounded morphism π0 : F⊗X � F
given by projection on the first coordinate. J

Lemma 4.34. Let g = (W,R,A) be a descriptive frame and let F over X be a compact
and differentiated field of sets. Then g⊗F is a descriptive frame.

Proof. Compactness and differentiatedness follow immediately from Corollaries 4.30 and
4.31. To see tightness, let ((w, x1), (v, x2)) /∈ R ⊗X. Then (w, v) /∈ R. From tightness
of g follows the existence of a ∈ A such that v ∈ a but w /∈ 〈R〉a. Then in particular,
(v, x2) ∈ a×X, but (w, x1) /∈ (〈R〉a)×X. It is a general frame in the first place, because

〈R⊗X〉(a×X) = {~s ∈W ×X | ∃~t ∈ a×X : ~s(R⊗X)~t}
= {(s, x) ∈W ×X | ∃(t, y) ∈ a×X : sRt}
= {s ∈W ×X | ∃t ∈ a : sRt} ×X = (〈R〉a)×X,

completing the proof.

As mentioned before, this construction will be used to apply Ehrenfeucht-Fraïssé
method. Multiple constructions are conceivable, but the approach taken here is ad-
opted for its convenience. It will be inspired by Hanf’s Lemma [20, Lemma 2.3], see also
Theorem 3.19. Like Hanf’s Lemma, it relies on the notion of the Gaifman neighbourhood
as introduced in Definition 3.18. Recall that the `-neighbourhood NM

` of a point w in
a model M is the submodel of all points that can be reached from w through a path of
length at most ` in which each step moves either to an R-successor or R-predecessor.

Lemma 4.35. Let M = X ]
⊎
α∈I Bα and N = X ]

⊎
ρ∈J Cρ be two (general) models

such that

• Bα ∼= Bβ for all α, β ∈ I;

• Cρ ∼= Cπ for all ρ, π ∈ J ;

• I and J are infinite.

Taking ` = 3n, suppose that for each point w in Bα there exists a point v in a Cρ such
that NM

` (w) ∼= NN
` (v) and vice versa. Then for w0 in M and v0 in N

NM
` (w0) ∼= NN

` (v0) =⇒ M, w0 ≡n N, v0.
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Proof. The proof uses the Ehrenfeucht-Fraïssé method (recall Definition 3.12 and The-
orem 3.17). By induction on the number of rounds played so far, it will be shown that
Duplicator can counter any move by Spoiler. To this end, write `(k) := 3n−k.

More precisely, let the induction hypothesis denote that for any (ai)i<k and (bi)i<k
such that

X ∪N`(k)

(
{w0} ∪ {ai}i<k

)
∼= X ∪N`(k)

(
{v0} ∪ {bi}i<k

)
where


ai 7→ bi,

w0 7→ v0,

x 7→ x if x ∈ X.

a move ak can be countered with a move bk such that the above condition holds with k
replaced by k+ 1. In particular, there will be a local isomorphism between the elements
chosen. From symmetry, the response of an ak to a bk can be given similarly. Inductively
performing this until k = n then gives victory for Duplicator.
Suppose that there have been k turns and the inductive hypothesis holds. When

Spoiler makes a move ak, there are two cases to consider:

1. ak ∈ N2·`(k+1)

(
{w0} ∪ {ai}i<k

)
∪X,

2. ak /∈ N2·`(k+1)

(
{w0} ∪ {ai}i<k

)
∪X

In the former case, let θ : X ∪N`(k)({ai}i<k) → X ∪N`(k)({bi}i<k) be the isomorphism
assumed in the induction hypothesis and let bk = θ(ak). Observe that 2 · 3n−k−1 +
3n−k−1 = 3n−k, so N`(k−1)({ai}i≤k) ⊆ N`(k)({ai}i<k) and the same for b. It follows
immediately that the restriction of θ is again an isomorphism between these two smaller
neighbourhoods.
In the second case, remark that N`(k)({bi}i<k) can only intersect at most k connec-

ted components. Because J was infinite per assumption, there is a ρ ∈ J such that
N`(k)({bi}i<k) ∩ Cρ = ∅. Per assumption, there is a π such that

N`(0)(ak) ∼= N`(0)(v) ⊆ Cπ ∼= Cρ

for some v. Therefore, there is a bk in Cρ (namely the image of v under the isomorphism
directly above) such that N`(0)(ak) ∼= N`(0)(bk). Choosing it, one obtains

N`(k+1)(ak) ∼= N`(k+1)(bk);

X ∪N`(k+1)({ai}i<k) ∼= X ∪N`(k+1)({ai}i<k) through restriction of θ;

X ∪N`(k+1)({ai}i≤k) = N`(k+1)(ak) t
(
X ∪N`(k+1)({ai}i<k)

)
∼= N`(k+1)(bk) t

(
X ∪N`(k+1)({bi}i<k)

)
= X ∪N`(k+1)({bi}i≤k),

where t denotes disjoint union and the isomorphism on the different disjoint components
is preserved, so that it is still the identity on X, and sends the ai to the bi.
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Symmetry of the models M and N guarantees that the exact same argument provides
a response ak to a move bk by Spoiler.
At the end, this gives Duplicator an isomorphism

X ∪N`(n)

(
{w0} ∪ {ai}i<n

)
∼= X ∪N`(n)

(
{w0} ∪ {ai}i<n

)
which, using `(n) = 1, can be restricted to a local isomorphism

{w0} ∪ {ai}i<n ∼= {v0} ∪ {bi}i<n,

winning the game for Duplicator.

This final lemma now permits a proof of Theorem 4.7

Proof of Theorem 4.7. Remark that the equivalence (2) ⇐⇒ (3) follows immediately
from Corollary 2.56. After all, supposing (2) and assuming m, w � n, v, it follows from
the corollary that m, w ↔ n, v so that the supposition of (2) gives agreement on α.
Exactly the same argument provides the other implication.
The implication (1) =⇒ (2), apart from being an extremely well-known result in

modal logic, again follows immediately from Corollary 2.60.
The only interesting implication is the implication towards (1). Towards the implic-

ation (2) =⇒ (1), it will turn out to be sufficient that Kripke-bisimulation-invariance
implies finite-bisimulation-invariance. Compare Lemmas 4.6 and 4.8.
Let α(x) be a bisimulation-invariant formula. Write ` = 2 ·3q(α) and assume that m, w

and n, v are pointed descriptive models with respective universes W and w̃ such that

• m |= α[w];

• m, w ↔` n, v over P := P(α).

Let κ be an infinite cardinal greater than those of the universes of m and n. Then the
order topology is compact and totally separated on the ordinal κ + 1. Write K for the
field of clopens of this topology. Remark 4.33 gives that m⊗K , (w, 0) ↔` n

⊗K , (v, 0) and
Corollary 4.27 implies

m̂⊗K , F((w,0)) ↔` n̂
⊗K , F((v,0)).

Write ŵ := F((w,0)) and v̂ := F((v,0)) to avoid unnecessarily complicated expressions.
Observe that the bisimulations provided by Remark 4.33 and Corollary 4.27, together
with the bisimulation-invariance of α imply that m̂⊗K |= α[ŵ]. Showing now that n̂⊗K |=
α[v̂] would, through the same bisimulations, then show n |= α[v], as desired.
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Following Theorem 4.26, the models m̂⊗K and n̂⊗K can be written as

m̂⊗K = L ] T(m⊗K)
∗
= L ]

⊎
α∈κ+1
w∈W

T(w,α)(m
⊗K);

n̂⊗K = Λ ] T(n⊗K)
∗
= Λ ]

⊎
α∈κ+1
v∈W̃

T(v,α)(n
⊗K);

m̂⊗K ] n̂⊗K = (L ] Λ) ]
⊎

α∈κ+1

( ⊎
w∈W

T(w,α)(m
⊗K) ]

⊎
v∈W̃

T(v,α)(n
⊗K)

)
,

where the equalities marked by ∗ follow from the fact that two paths can only be related
in the tree if one extends the other, and two paths with different starting points cannot
extend one another. The submodels L and Λ are unspecified frames of limit points.
For any α, β ∈ κ+ 1,⊎

w∈W
T(w,α)(m

⊗K) ]
⊎
v∈W̃

T(v,α)(n
⊗K) ∼=

⊎
w∈W

T(w,β)(m
⊗K) ]

⊎
v∈W̃

T(v,β)(n
⊗K)

through the map of switching the initial point. Moreover,

m̂⊗K , ŵ ↔ m̂⊗K ] n̂⊗K , ŵ =⇒ m̂⊗K ] n̂⊗K |= α[ŵ]

and

n̂⊗K , v̂ ↔ m̂⊗K ] n̂⊗K , v̂.

Therefore, if N m̂⊗K

` (ŵ) ∼= N n̂⊗K

` (v̂), applying Lemma 4.35 for

M = N := m̂⊗K ] n̂⊗K ;

I = J := κ+ 1;

Bα = Cα :=
⊎
w∈W

T(w,α)(m
⊗K) ]

⊎
v∈W̃

T(v,α)(n
⊗K);

X = L ] Λ

will prove that

M, ŵ ≡q(α) N, v̂.

This implies m̂⊗K]n̂⊗K |= α[v̂], from which the bisimulation above provides n̂⊗K |= α[v̂],
which in turn shows n |= α[v] from the previous bisimulations. This implies that α is
preserved under finitary bisimulations. As Lemma 2.59 implies that bisimilarity up to
depth ` over finitely many propositional variables is identical to modal equivalence up
to depth `, this means that α is characterised by some collection of theories in ML`. As
there are finitely many such theories, and each can be characterised by a single formula,
there is a modal formula of depth up to ` equivalent to α, concluding the proof.
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This final claim of isomorphism of neighbourhoods will be achieved by showing induct-
ively that there exists a sequence of isomorphisms (fi)i≤` with

fi : N m̂⊗K

i (ŵ) ∼= N n̂⊗K

i (v̂);

fi � N m̂⊗K

j (ŵ) = fj for j ≤ i;

N m̂⊗K

i (ŵ) 3 x!`−i fi(x) ∈ N n̂⊗K

i (v̂) over P = P(α)

Clearly, the map f0 : N m̂⊗K

0 (ŵ) → N n̂⊗K

0 (v̂) is an isomorphism, since both consist
of a single irreflexive point and must satisfy the same propositional variables, because
m⊗K , ŵ ↔` n

⊗K , v̂, so they satisfy the same propositional variables, implying that f0 is
an isomorphism. Moreover, through Lemma 2.59, it implies that ŵ!` v̂.
Now suppose that fi : N m̂⊗K

i (ŵ) → N n̂⊗K

i (v̂) is an isomorphism. Since ŵ is the root
of its treelike connected component, if R is the relation on m̂⊗K , then

N m̂⊗K

j (ŵ) =
⋃
k≤j

Rk[ŵ],

so the isomorphism fi+1 only needs to extend fi on the successors of Ri[ŵ]. Because
the connected component under consideration is a tree, no two points share successors.
Therefore, the successors of each such point may be considered separately.
Let x ∈ Ri[ŵ]. Each theory in ML`−i−1(P) has a single characterising formula, as the

language is finite. Write Σ for the set of these formulae. For each ϕ ∈ Σ, observe that
if m⊗K , x  ♦ϕ, then this type occurs κ many times in R[x] and otherwise it occurs 0
times, because if it occurs once, then it must occur in all the K-duplicates. The same
reasoning applies to fi(x), so because they agree on each ♦ϕ per assumption, for each
theory x and fi(x) either both have κ many successors with that theory, or none.
It follows that for every ϕ ∈ Σ, there exists a bijection gxϕ between the successors of

x satisfying ϕ and the successors of fi(x) satisfying ϕ. Choosing one such gxϕ for each ϕ
allows the construction of

fi+1 = fi t
⊔

x∈Ri[{ŵ}]
ϕ∈Σ

gxϕ,

this preserves all new relations and predicates. Moreover, y ∈ R[x] with x ∈ Ri[ŵ] has
modal theory characterised by ϕ ∈ Σ, by construction y!`−i−1 g

x
ϕ(y). Since this also

held for fi by induction hypothesis, the inductive condition is satisfied again.
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5 Further analysis of the descriptive
unravelling

In terms of results, the key contribution of this thesis is the main theorem, the van
Benthem characterisation theorem. The essential technique in this proof, the descriptive
unravelling, is based on the more classical unravelling forest or unravelling tree, which
has proven an extremely powerful tool for the class of Kripke structures. Because the
limit points that disturb the treelike structure of the construction cannot be reached
from the treelike points, these constructions behave much alike and this may prove an
exceptionally useful tool when one is restricted to descriptive frames.
With this in mind, future research may benefit from this construction. To facilitate

this, a careful analysis of the exact structure of the descriptive unravelling is in order.
While usually the properties of the tree-like components will be most important, the
remaining structure may also be enlightening.

5.1 The g−∞-operation

Up to this point, the limit points in the descriptive unravelling have been treated rather
like a black box. They were unimportant for the argument and could safely be ignored.
However, future research using this technique might be forced to dive into the precise
details of these points and require them to be well-behaved.
As it turns out, the limit point structure is conveniently similar in structure to the

unravelling cover that is being completed. Specifically, Theorem 5.17 will show that
they can be recreated with a similar path-like construction and a comparable recursively
defined collection of admissible sets.
In this analysis, the topological toolbox introduced in Section 2.6.1 will prove excep-

tionally useful. Of course, because they are equivalent as proved in Theorem 2.88, the
proof techniques should translate immediately to proofs using only the ultrafilters, but
because ultrafilters not generated by elements are notoriously unintuitive and difficult to
work with, this will be undesirable. The topological toolbox will provide intuition into
the workings of the descriptive completion.

Recall from Theorem 4.26 that ĝ# = T(g)# ] L for some unspecified frame of limit
points L. The argument was based exclusively on the properties of filters and the result
provided little intuition. This section aims to pinpoint the precise structure of L. First
a new operation on descriptive frames is introduced, after which it is shown that this
operation gives the frame of limit points. In the next two sections, this operation is used
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to understand the exact structure of L.

It will turn out that the limit points in ĝ have the structure of what will be called the
g−∞-frame. This will be a general frame consisting of all infinitely descending paths in
g with appropriate relation and collection of admissible sets.

Definition 5.1. Let F = (W,R) be a frame. Then define F−∞ to be the frame of
infinitely descending paths defined by F−∞ = (W−∞, R−∞), where W−∞ is the set of
infinitely descending R-paths, formally defined by

W−∞ := {(wn)n∈N | wn+1Rwn}

and R−∞ connects paths that extend one another by one step. That is, (wn)n∈N is an
R−∞-successor of (vm)m∈N if and only if vn = wn+1. J

Remark 5.2. The convention for these paths is different from the convention for paths in
the tree from Definition 4.9. Specifically, these are formulated as R-descending sequences,
while in the unravelling tree, they are R-ascending sequences. The latter choice was
made to conform to convention for the unravelling tree. The sequences in W−∞ have
been chosen to be R-descending to avoid cumbersome notation. In Figure 5.1, a few
graphical examples of these paths have been given to clarify the point. J

w0 w1 w2 w3

. . .R R R

(a) An illustration of a path that be-
comes a point (wn)n∈N in W−∞.
Make special note of the direction
of R.

0

1

2

3

(b) A cycle that would produce a point
in W−∞ that would be written as
(0, 3, 2, 1, 0, 3, 2, 1, . . . ).

w0 w1

v0

w2

v1

w3

v2

w4

v3
. . .R

(c) An illustration of two points ~w = (wn)n∈N and ~v = (vn)n∈N such that
~vR−∞ ~w (that is, the former is an R−∞-successor of the latter).

Figure 5.1: A few figures to illustrate the structure on F−∞.

Note that the tail of any sequence (wn)n∈N ∈ W−∞ is still in W−∞. This motivates a
convenient notation.

Definition 5.3. Let ~w := (wn)n∈N ∈ W−∞ be an infinitely descending R-chain. Then
the k-shift of ~w, denoted by ~w[k], is the sequence (wn+k)n∈N = (wk, wk+1, wk+2, . . . ). In
this notation, it follows that ~vR−∞ ~w if and only if ~v = ~w[1]. See Figure 5.1c. J
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As with the unravelling forest, there is a natural map from F−∞ to F sending a path
to its endpoint.

Proposition 5.4. Let π−∞ : F−∞ → F be given by sending an infinite path (wn)n∈N to
the point w0. Then π−∞ is a bounded morphism.

Proof. Let ~w = (wn)n∈N be an R−∞-successor to ~v = (vm)m∈N = (wn+1)n∈N. Then note
in particular that w0 = π−∞(~w) is a R-successor to w1 = v0 = π−∞(~v) because ~w is an
infinite R-descending path.
Conversely, if ~w = (wn)n∈N is an infinite path and v is a successor of π−∞(~w), then it

follows that ~v := (v, w0, w1, . . . ) is an infinite descending R-path such that π−∞(~v) = v
and ~v is by definition an R−∞-successor to ~w.

This map π−∞ also allows for this construction to be extended to general frames by
taking the same admissible sets as were used for the unravelling forest.

Definition 5.5. Let g = (F, A) be a general frame based on a frame F = (W,R). Then
define g−∞ = (F−∞, A−∞) to be the general frame based on F−∞ with admissible sets
given by the recursion

a ∈ A =⇒ (π−∞)−1[a] ∈ A−∞;

b ∈ A−∞ =⇒ R−∞[b] ∈ A−∞;

b, b′ ∈ A−∞ =⇒ b ∪ b′, b ∩ b′ ∈ A−∞.

J

Proposition 5.6. Let g be a general frame. Then g−∞ is a general frame.

Proof. It should be checked that A−∞ is a field of sets closed under 〈R−∞〉. The recursion
is effectively identical to the one for AT, missing only the addition of the set of initial
points, since there are no points without predecessor1 and since in both each point has
at most one predecessor, which is the only property used in the proof for Proposition
4.11, the exact same proof provides the theorem here.

Analogues to Propositions 4.13 and 4.14 for the unravelling forest can be found, show-
ing that g−∞ inherits differentiatedness and the combination of differentiatedness and
tightness for the same reasons.

Proposition 5.7. Let g be a differentiated frame. Then g−∞ is differentiated.

Proof. Let ~w = (wn)n∈N and ~v = (vn)n∈N be distinct infinitely R-descending paths. Then
there must be a least m ∈ N such that wn 6= vn. As a consequence of differentiatedness
of g, there must be an admissible a such that wn ∈ a but vn /∈ a. Then ~w[m] ∈
(π−∞)−1[a] and ~v[m] /∈ (π−∞)−1[a]. It is then clear that ~w ∈ (R−∞)m[(π−∞)−1[a]] but
~v /∈ (R−∞)m[(π−∞)−1[a]] ∈ A−∞, showing differentiatedness.

1Strictly speaking, they could be added to the recursion, but the set would simply be empty.
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Proposition 5.8. Let g be a differentiated general frame. Then g−∞ is tight.

Proof. Let ~w = (wn)n∈N not extend ~v = (vm)m∈N. Then there must be a k ∈ N such that
wk+1 6= vk. From differentiatedness of g, the frame g−∞ is differentiated, so there is an
admissible a in g−∞ such that ~w[k+1] ∈ a but ~v[k] /∈ a. It follows that ~w ∈ (R−∞)k+1[a]
but ~v /∈ (R−∞)k[a] ⊇ 〈R−∞〉(R−∞)k+1[a].

In contrast to the unravelling cover, however, g−∞ even inherits compactness. The
proof is conveniently short when using nets, as there is a useful characterisation of com-
pactness in terms of ultranets. Recall from Definition 2.77 that an ultranet, or universal
net, on a topological space (X, T ) is a net that for every subset Y ⊆ X is eventually
in Y or in Y c. An important property of ultranets was formulated in Proposition 2.81,
stating that a space is compact if and only if all its ultranets converge, if and only if all
its semi-universal nets converge. This chapter will accomplish compactness results with
both ultranets or semi-universal nets, depending on which is convenient.
The proof is included in Section 2.6.2 and will not be repeated here. The reason why

universal nets will be so convenient, is that any shifted universal net remains universal.

Lemma 5.9. Let (~xd)d∈D be a (semi-)universal net in g−∞. Then the k-shifted net
(~xd[k])d∈D is a (semi-)universal net for every k ∈ N, where ~xd[k] is the k-shift of the
sequence xd ∈W−∞.

Proof. The universal case will be shown by induction on k. The semi-universal case is
identical. Suppose (~xd[k])d∈D is universal and let Y ⊆ W−∞. Then, by the induction
hypothesis, (~xd[k])d∈D is eventually in R−∞[Y ] or in (R−∞[Y ])c = R−∞[Y c], where the
equality was noted earlier to follow from disjointness of R-image sets. But note that
every point ~w in g−∞ has a unique predecessor ~w[1], so for any set X ⊆ W−∞ the net
(~xd[k])d∈D is eventually in R−∞[X] if and only if (~xd[k + 1])d∈D is eventually in X, so
that (~xd[k + 1])d∈D is eventually in Y or eventually in Y c. Because Y ⊆ W−∞ was
arbitrary, it follows that (~xd[k + 1])d∈D is universal.

From here, the compactness of g−∞ of a compact general frame g is straightforwardly
proven.

Theorem 5.10. Let g be a descriptive frame. Then g−∞ is descriptive.

Proof. For differentiatedness and tightness see Propositions 5.7 and 5.8. All that needs
to be proven is compactness.
For the characterisation of compactness from Proposition 2.81, let (~xd)d∈D be any

ultranet in g−∞. To show that it converges, an accumulation point first needs to be
found. To do this, every (~xd[n])d∈D can be projected under π−∞ to g, where it is still
universal. There, compactness guarantees an accumulation point. The sequence of these
accumulation points will turn out to be a point in W−∞, which will be an accumulation
point to which (~xd)d∈D converges. This convergence can be shown through a careful
induction on the elements of A−∞.
Then by Lemma 5.9, for any n the net (~xd[n])d∈D is universal. As a consequence, for

each n ∈ N the net (ynd )d∈D in g defined by ynd = π−∞(xd[n]) is universal. After all,
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let X be a subset of the universe of g. Then by universality of (~xd[n])d∈D it is either
eventually in (π−∞)−1[X] or eventually in (π−∞)−1[X]c = (π−∞)−1[Xc]. An immediate
consequence is that ynd = π−∞(xd[n]) is eventually in X or is eventually in Xc.
The compactness of g then implies through Proposition 2.81 that ynd is convergent.

Let wn then be the limit point of (ynd )d∈D for every n. Note that ynd is an R-successor of
yn+1
d in g. After all, the former is the head of ~xd[n] and the latter of ~xd[n+ 1]. Since ~xd
is a descending R-sequence, its n-th element, which will be the head of its n-shift ~xd[n],
is a successor of its (n+ 1)-th element, the head of its n+ 1-shift ~xd[n+ 1].
As such, for each n and d, the element ynd is a successor of yn+1

d . As R is fully continuous
from Proposition 2.73 and the assumed tightness, it follows that wn is an R-successor
of wn+1. As a consequence, the sequence ~w := (wn)n∈N is an infinitely R-descending
sequence and hence a point in W−∞.
An careful induction on the construction of A−∞ will now show for all n simultaneously

that (~xd[n])d∈D converges to ~w[n]. Specifically, it will be shown by induction that for a
given b ∈ A−∞, that for all n ∈ N, if ~w[n] ∈ b, then (~xd[n])d∈D is eventually in b.

• For a g-admissible set a, suppose that ~w[n] ∈ (π−∞)−1[a] for some n. Then wn ∈ a
and thus (ynd )d∈D is eventually in a, as it converges to wn by assumption. Then as
ynd = π−∞(~xd[n]), it follows that (~xd[n])d∈D is eventually in (π−∞)−1[a].

• Now suppose for the induction hypothesis that b ∈ A−∞ has the property that for
all n ∈ N if ~w[n] ∈ b, then (~xd[n])d∈D is eventually b. Let now m be arbitrary
and suppose that ~w[m] ∈ R−∞[b]. By disjointness of image-sets, it follows that
~w[m+1] ∈ b. The induction hypothesis then grants that (~xd[m+1])d∈D is eventually
in b, so that (~xd[m])d∈D ∈ R−∞[(~xd[m+ 1])d∈D] ⊆ R−∞[b].

• The cases b ∪ b′ and b ∩ b′ are easily checked by noting that a net is eventually in
b ∪ b′ if and only if it is eventually in b or eventually in b′ and a net is eventually
in b ∩ b′ if and only if it is both eventually in b and eventually in b′.

Thus the arbitrary universal net (~xd)d∈D converges, from which it follows that g−∞ is
compact.

5.2 The g−∞-frame as limit points

The infinite paths in W−∞ should remind the reader of the paths in the unravelling tree.
Noting how closely the structures resemble one another, it is perhaps unsurprising that
they embody the structure of the limit points.
To associate these with one another, it will be very useful to have a concrete grasp of

the limit points as a general frame. As a byproduct of the completion from the double
application of Jónsson-Tarski duality, it is hard to understand and work with. In its place,
the theory developed in Section 2.6.2 will allow the limit points to be viewed as nets,
which will turn out to be a sufficiently concrete image to understand it as g−∞-frame.
First, it will prove useful to revisit Theorem 4.26. It stated that for a descriptive

frame g, the descriptive unravelling ĝ as a Kripke frame was isomorphic to the disjoint

73



union of T(g) and a frame of limit points L. Together with the continuous embedding
ι̂ : T(g)� ĝ, this makes it possible to characterise the nets that become points in L in
the g•-construction.

Lemma 5.11. Let g = (W,R,A) be a descriptive frame and let ν be a universal net on
T(g). Then either ν converges to a point ~x in T(g) or it is eventually in (RT)n[WT] for
all n ∈ N.

Proof. From universality, it follows that for each n either ν is eventually in (RT)n[WT], or
in its complement,

⋃
0≤k<n(RT)k[I]. Suppose that there is an n such that ν is eventually

in the latter. This set is compact. After all, Proposition 4.24 states that ι̂ is an embedding
and a bounded morphism, so that as topological spaces

⋃
0≤k<n

(RT)k[I] ∼= ι̂

 ⋃
0≤k<n

(RT)k[I]

 =
⋃

0≤k<n
(R∗)

k [̂ι[I]].

Since I with the subspace topology is homeomorphic to the g-space by construction, it
is compact. By the fact that ι̂ is an embedding, then, Î := ι̂[I] is compact. As the
successor set of a compact set is compact by Lemma 2.34, each (R∗)

k[Î] is compact, so
that their finite union is as well.
In a compact space, every ultranet converges by Proposition 2.81, meaning that (xd)d∈D

must converge. As no point of T(g) is in (RT)n[WT] for all n, this proves the lemma.

As an application, this also provides an easy topological proof of Theorem 4.26, stating
that ĝ#

∼= (T(g)•)#
∼= T(g)# ] L.

Corollary 5.12. Let g be a descriptive frame. Then ĝ# = T(g)#]L for some unspecified
frame of limit points L, where # again takes the underlying Kripke frame.

Proof. It is easy to check that in the topological completion T(g)•, the constant nets
reproduce the structure of T(g). Now suppose that (~xd)d∈D is a universal net in T(g)
and let ν be a constant net of a point ~w. It is sufficient to show that if ν is R•-related
to (~xd)d∈D, then (~xd)d∈D is equivalent to a constant net on T(g).
For (xd)d∈D to be R•-related to ~w, it must frequently be in RT[~w] or 〈RT〉{~w}. But, if

n is the length of the path ~w, this means that (xd)d∈D is not eventually in (RT)n+2[WT],
from which it follows that (xd)d∈D converges by Lemma 5.11. As it converges, there
must be a point ~v in T(g) such that for every open set a on T(g) containing ~v, it lands
eventually in a. As such, it must be equivalent to the constant net at ~v.

This characterisation of the non-convergent nets then allows an exact and explicit
construction of the descriptive unravelling.

Definition 5.13. Let F = (W,R) be a Kripke frame. Then the infinitary unravelling
forest T−∞ = (WT−∞ , RT−∞) is given by

T−∞(F) := T(F) ] F−∞

is the frame on all R-paths, finite or infinite, with a final point. J
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The bounded morphisms π : T(F) → F and π−∞ : F−∞ → F now give rise to a
bounded morphism πT−∞ : T−∞(F) → F by applying π to points in T(F) and π−∞ to
points in F−∞. It is immediate that this is a bounded morphism, since no points from
the two frames are related. Just as these two maps gave the unravelling cover and the
g−∞-frame their admissible sets, this map can also be used to give T−∞(F) the structure
of a general frame.

Definition 5.14. Let g = (F, A) be a general frame based on a Kripke frame F = (W,R).
Then the infinitary unravelling cover T−∞(g) = (T−∞(F), AT−∞) is the general frame
with admissible sets AT−∞ recursively defined using πT−∞ : T−∞(F)→ F through

I ∈ AT−∞ ;

a ∈ A =⇒ (πT−∞)−1[a] ∈ AT−∞ ;

b ∈ AT−∞ =⇒ RT−∞ [b] ∈ AT−∞ ;

b, b′ ∈ AT−∞ =⇒ b ∪ b′, b ∩ b′ ∈ AT−∞ .

J

Proposition 5.15. If g is a general frame, then T−∞(g) is a general frame.

Proof. Once again, the recursion has the exact same structure as the recursion for AT.
Since still every point has at most one predecessor, the proof for Proposition 4.11 may
be repeated word for word, replacing only every instance of T with T−∞.

The structure of the infinitary unravelling cover is expressly designed to extend and
unite the unravelling cover and the g−∞-structure.

Lemma 5.16. Let g = (F, A) be a descriptive frame. Then the maps ι−∞ : F−∞ �
T(F) ] F−∞ and ιT : T(F) � T(F) ] F−∞, when considered as maps between general
frames ι−∞ : g−∞ → T−∞(g) and ιT : T(g)→ T−∞(g) are embeddings in the sense that
they are homeomorphisms onto the image.

Proof. Injectivity is immediate. To see that they are homeomorphisms, it is sufficient to
see that the admissible sets restricted to WT and W−∞ are exactly the collections AT

and A−∞ respectively. This can be done by an induction on the recursive construction
of T−∞. The proof is easy, but notationally involved.
For the initial paths, note that I ∩WT = I, and I ∩W−∞ = ∅. For the inverse images,

(πT−∞)−1[a] ∩WT = π−1[a] and (πT−∞)−1[a] ∩W−∞ = (π−∞)−1[a], as π and π−∞ are
exactly the restrictions of πT−∞ to WT and W−∞ respectively.
Now suppose for the induction hypothesis that for b, b′ ∈ AT−∞ the intersections b ∩

WT, b′ ∩WT are in AT and that b ∩W−∞ and b′ ∩W−∞ are in A−∞. Then note that
RT−∞ [b] ∩WT = RT−∞ [b ∩WT] = RT[b ∩WT] and RT−∞ [b] ∩W−∞ = R−∞[b ∩W−∞],
because RT−∞ does not connect points from the two sets and restricts to their relations.
Moreover, intersecting withWT andW−∞ distribute over union and intersection, com-

pleting the induction.
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With the concrete structure of the infinitary unravelling cover in place, it can be used
to understand the descriptive unravelling.

Theorem 5.17. Let g = (W,R,A) be a descriptive frame. Then the topological descript-
ive completion is isomorphic to the infinitary unravelling, T(g)• ∼= T−∞(g) through the
map Θ : WT−∞ → W• that sends each path to the net of finite paths leading up to it.
Specifically,

Θ : WT−∞ →W• :

{
~w 7→ [(~w)]A constant net if ~w ∈WT,

~w = (wn)n∈N 7→ [((wm, . . . , w0))m∈N]A

maps finite paths in WT to the equivalence class of a constant net at that point and
infinite paths to the equivalence class of the net of all finite paths with which the infinite
path ends.

The proof of this theorem is extremely involved, not because it is conceptually difficult,
but because the isomorphism provided has to be checked on all counts: well-definedness,
injectivity, surjectivity, relation-preservation in both directions, and inducing an iso-
morphism between the collections admissible sets. For the sake of completeness, the
proof has been included, but the theorem is much more important and insightful than
the proof.

Proof of Theorem 5.17. For ~w ∈ WT, this is well-defined, because constant nets are
certainly semi-universal. By induction on the construction of AT over all simultaneous
~w, it can be seen that Θ(~w) = (~xm)m∈N is also well-defined for ~w ∈ W−∞. This is easy
to see for the induction basis, as

~xm = (wm, wm−1, . . . , w1, w0) ∈ π−1[a] ⇐⇒ w0 ∈ a ⇐⇒ w0 /∈ ac

⇐⇒ ~xm = (wm, wm−1, . . . , w1, w0) /∈ π−1[ac] = π−1[a]c,

so that (xm)m∈N is either constantly (and thus eventually) in π−1[a] or constantly in
π−1[a]c. The case for union and intersection follows immediately from the De Morgan
laws.
For the case RT[b] with b ∈ AT , define (~yk)k∈N = Θ(~w[1]). By the induction hypo-

thesis (~yk)k∈N is eventually in b or eventually in bc, meaning that ~yk ∈ b or ~yk ∈ bc

for sufficiently large k ≥ k0. But since for m ≥ 1, ~xm = (wm, wm−1, . . . , w1, w0) and
~ym−1 = (wm, . . . , w1), this means that ~xm is a successor to ~ym−1, so that ~xm is in RT[b]
for sufficiently large m ≥ k0 + 1. The same reasoning applies if ~yk is eventually in bc so
that then xm eventually in RT[bc] ⊆ RT[bc] ∪ I = (RT[b])c.

To see that Θ is injective, let ~w = (wn)n∈N, ~v = (vn)n∈N ∈ W−∞ be distinct, infin-
itely R-descending paths. Then there must be some natural number k ∈ N such that
wk 6= vk. By differentiatedness of g, there is an a ∈ A such that wk ∈ a but vk /∈ a. Writ-
ing Θ(~w) = (~xm)m∈N and Θ(~v) = (~ym)m∈N, note that for m ≥ k the finite paths ~xm =
(wm, . . . , wk, . . . , w0) must in (RT)k[wk] ⊆ (RT)k[π−1[a]], while ~ym = (vm, . . . , vk, . . . , w0)
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must be in (RT)k[vk] ⊆ (RT)k[π−1[ac]] ⊆ (RT)k[π−1[a]c] ∪ I = ((RT)k[π−1[a]])c, so that
they are not semi-equivalent.

For surjectivity, the trick from Theorem 5.18 can be applied to use the projection
π : T(g) → g to construct from a semi-universal net on T(g) a point in WT−∞ . So let
(~xd)d∈D be a semi-universal net on T(g). Recall from Lemma 5.11 that either (~xd)d∈D
converges or it is eventually in (RT)n[WT] for all n. If it converges to a point ~x, then it is
semi-equivalent to the constant path at ~x (see also Corollary 2.84), so that its equivalence
class is reached by Θ(~x).
So assume now it is eventually in (RT)n[WT] for all n ∈ N. Fix an n and a dn ∈

D such that d � dn =⇒ ~xd ∈ (RT)n[WT]. In this case, for each such d, if ~xd =
(wdr , . . . , w

d
n, . . . , w

d
0), it can be shifted by n to become ~xd[n] = (wdr , . . . , w

d
n). Exactly

the arguments given in Lemma 5.9 to show that the shift of an semi-universal net on
g−∞ was a semi-universal net can be applied to show that (~xd[n])d�dn is a semi-universal
net on T(g). Projecting then to g by applying π to get a net (wdn)d∈D for each n gives
again a semi-universal net on g, because the π-inverse image of admissible sets on g is
admissible on T(g). By Proposition 2.81 and compactness of g, each (wdn)d∈D must have
a limit point wn.
If ~w = (wn)n∈N, then (~xd[k])d�dk is in the equivalence class Θ(~w[k]), which can again

be seen from induction on the construction of AT for all simultaneous k. If (~xd[k])d∈D
is eventually in π−1[a], then (wdk)d∈D is eventually in a, so that Proposition 2.83 implies
that its convergence to wk grants wk ∈ a. From this, it follows that (wm, . . . , wk) ∈ π−1[a]
for all m ≥ k.
Now since the union and intersection are again trivial, the only interesting case to

consider is RT[b] for an admissible b ∈ AT in which either both (~xd[k])d�dk and the net
of finite paths ((wm, . . . , wk))m∈N are eventually or are both eventually not, for all k.
If (~xd[k])d�dk is eventually in RT[b], then (~xd[k + 1])d�dk+1

is eventually in b, so that
the induction hypothesis grants that ((wm, . . . , wk+1))m∈N is eventually in b and thus
((wm, . . . , wk))m∈N is eventually in RT[b]. Therefore, (~xd[k])d�dk is in the equivalence
class Θ(~w).

The relation is obviously preserved in both directions on T(g), as it is the iden-
tity. By injectivity, it follows that g−∞ is mapped to L. Since there are no RT−∞-
relations between T(g) and g−∞ by construction, and no R•-relations between the con-
stant nets and the nets representing the limit points, all that needs to be checked is
that ~wR−∞~v if and only if Θ(~w)R•Θ(~v) for ~w,~v ∈W−∞. The infinite path ~v is a R−∞-
successor of ~w if and only if v0 is an R-successor of w0. If it is, then (wm, . . . , w0) and
(vm+1, . . . , v0) are RT-related for all m, so Θ(~v) is an R•-successor of Θ(~w). If v0 is not
an R-successor of w0, then by tightness of g, there exists an a 3 v0 such that w0 /∈ 〈R〉a.
As such, all nets in Θ(~v) must be eventually in π−1[a] and all nets in Θ(~w) must even-
tually be in π−1[(〈R〉a)c] = (〈RT〉π−1[a])c, guaranteeing that Θ(~v) is not a R•-successor
of Θ(~w).
Finally, it must be checked that Θ maps admissible sets in AT−∞ to admissible sets
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in A•. Under Θ a set b ∈ AT−∞ is mapped to ˜b ∩WT, where ã is the set of equivalence
classes of semi-universal nets eventually in a. For points ~w ∈ WT, it is trivial that
~w ∈ ˜b ∩WT. For points ~w ∈WT−∞ , it can be seen through an inductive argument

~w ∈ (π−∞)−1[a] ⇐⇒ w0 ∈ a ⇐⇒ ∀m (wm, . . . , w0) ∈ π−1[a] ⇐⇒ Θ(~w) ∈ π̃−1[a];

~w ∈ RT−∞ [b] ⇐⇒ ~w[1] ∈ b IH⇐⇒ Θ(~w[1]) ∈ ˜b ∩WT ⇐⇒ Θ(~w) ∈ ˜RT[b ∩WT]

= ˜RT−∞ [b] ∩WT,

where use of the induction hypothesis is marked by IH and the fact that Θ preserves the
relation is used. The induction step for union and intersection is trivial. Lemma 5.16
then gives that this is surjective on A• and a map between fields of sets induced by a
bijection is always injective.

5.3 The structure of the g−∞-frame

Having established that the g−∞-construction provides the limit points of the descript-
ive unravelling, the next step is to understand what it looks like. It turns out to be
remarkably well-behaved.

Theorem 5.18. Let F be a Kripke frame. Then each R−∞-connected component in F−∞
is either a non-well-founded tree or an n-cycle for n ≥ 1 with possibly a tree attached at
each point along the cycle. Examples for these two options are illustrated in Figure 5.2.

Proof of Theorem 5.18. This theorem is a consequence of the fact that each point in
W−∞ has exactly one predecessor. If ~w ∈ W−∞, then its only R−∞-predecessor is ~w[1].
This also means immediately that the sequence (~w[k])k∈N is an infinite R−∞-descending
path, meaning that no connected component may be well-founded.
Now from the fact that each point has a unique R−∞-predecessor, it follows that each

point in W−∞ can be part of at most one cycle. After all, any cycle must include its
unique predecessor, and its unique predecessor, et cetera. When this process finally
returns to the original point, the cycle is complete.
If ~w is in a cycle and ~v is an R−∞-successor of ~w but not in the cycle, then ~v is in no

cycle. After all, suppose it is. Then surely its unique predecessor must be in this cycle.
But that is ~w and by the previous claim ~w cannot be in two cycles.
Finally, if ~w is not in a cycle, then its generated subframe

⋃
n∈N(R−∞)n[w] is a tree.

After all, by the uniqueness of R−∞-predecessors, it can never happen that two distinct
points share a successor. Moreover, no cycle can happen in the successors of ~w, because
by the uniqueness of predecessors, ~w must be a part of that cycle, in contradiction with
the assumption.
Combining all of the above, it follows that any point must either be reachable through

an R−∞-path from a cycle or be part of a non-well-founded tree. In the former case,
each point in this cycle must have a successor set containing the next point in the cycle
and furthermore some number of points (possibly none) that are the root of a tree that
is their generated subframe. This proves the theorem.
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...

(a) A non-well-founded tree
as an example of what an
R−∞-connected compon-
ent of a frame F−∞ might
look like. Note specific-
ally that the dots are
meant to indicate that
the downwards chain un-
der the tree goes on
forever. The upwards
chains may or may not go
on forever.

. . .

(b) A 4-cycle with at three
of the four points a tree-
like structure attached,
as an example of what
an R−∞-connected com-
ponent might look like.
Some of the points have
no tree attached, which
is also acceptable. Of
the trees attached at the
cycle, two are finite, and
one is an infinite chain.

...

(c) A final example of what
an R−∞-connected com-
ponent might look like.
Note that at the root of
this tree is a reflexive
point, which can be con-
sidered a 1-cycle, which
is also allowed. Observe
also that some of the
branches of the attached
tree are finite and some
are not.

Figure 5.2: Three examples of the possible structures of R−∞-connected components in
F−∞. All of them are non-well-founded, either due to an infinite descending
chain or because of a cycle.

5.4 A review of the descriptive unravelling

A vital tool and key contribution of this thesis has been the descriptive unravelling
construction. Unravelling constructions have proven extremely useful to obtain results
about bisimulation-invariant phenomena.
In particular, many recent incarnations of the van Benthem Characterisation Theorem

[14, 34, 33], as well as other modal characterisation results like the Janin-Walukiewicz
Theorem [23] depend on some unravelling construction. Any future modal characterisa-
tion theorems over the class of descriptive models would likely have use for an unravelling
construction in this class.
In this thesis, three different constructions of the descriptive unravelling are given.

One is constructed algebraically through Jónsson-Tarski duality in Definition 2.50 as the
double dual of an appropriate general frame based on the classical unravelling.
Secondly, in Definition 2.86, it is constructed topologically by adding semi-universal

nets wherever needed to compactify the space, which turn out to be all semi-universal
nets eventually escaping to arbitrarily long paths on the classical unravelling. Finally, the
infinitary unravelling construction, given in Definition 5.13, gives an explicit construction
of the descriptive unravelling as consisting of all paths on the original frame that are finite
in the future and either finite or infinite in the past.
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Note that all of these constructions have unique advantages that make them a useful
way of looking at the descriptive unravelling. The descriptive unravelling through algeb-
raic methods uses exclusively functorial constructions, because the unravelling tree, even
when turned into a general frame, is functorial and the duality used is a composition of
two contrapositive functors. This makes it very suitable for coalgebraic analyses.
The infinitary unravelling also has a somewhat coalgebraic flavour, in that it resembles

other closure constructions in coalgebraic contexts. Moreover, as seen in the previous
section, it lends itself to much more convenient structural analysis. Pinning down the
exact structure of the tree is particularly useful for game-theoretic contexts, which means
that Ehrenfeucht-Fraïssé-type arguments become more applicable, and languages with
game-theoretic semantics, like automata-languages, are more easily analysed on this con-
struction.
Finally, the construction through nets is designed explicitly to make topological ana-

lyses more convenient. In particular, frames of which the topology is well-understood
will allow for an effective analysis of the nets on the frame, which in turn facilitates the
analysis of the descriptive completion.
As Theorems 2.88 and 5.17 show these three structures are isomorphic, anyone wishing

to analyse the descriptive unravelling can switch back and forth between these construc-
tions depending on whichever one is more convenient, possibly linking properties derived
from one analysis to properties derived in the other. These three perspectives on the
unravelling are a key contribution of this thesis.
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6 Conclusions and future work

6.1 Conclusion

This thesis investigates the modal and first-order model theory of descriptive models. The
main theorem was the van Benthem Characterisation Theorem for descriptive models
(Theorem 4.7). It states that any first-order formula in one free variable that is invariant
under (Vietoris) bisimulations, is in fact equivalent to a modal formula on the class of
descriptive models. Chapter 4 is dedicated entirely to a proof of this theorem.
Chapter 3 investigates the model theory of descriptive models and demonstrates the

failure of a number of classical model-theoretic results, including the Compactness The-
orem for first-order logic and the upward Löwenheim-Skolem Theorem, on the class of
descriptive models. This necessitated the use of methods from finite model theory to
achieve the van Benthem Characterisation Theorem, especially the Ehrenfeucht-Fraïssé
method.
The main tool developed in order to permit these arguments is the “descriptive unrav-

elling” of descriptive frame g, written as ĝ, from Definition 4.9, adapting the commonly
used tool of the unravelling tree to the context of descriptive models. Using Jónsson-
Tarski duality, the regular unravelling can be compactified into a descriptive frame to
obtain the descriptive unravelling.
Chapter 2 provides a topological toolkit of nets fine-tuned especially for topological

spaces associated with general frames, to understand such compactifications better. As
the precise structure of the descriptive unravelling is key to the proof of the main theorem,
much attention has been given to applying these topological tools to the descriptive
unravelling, achieving an isomorphic topological construction.
Chapter 5 provides a third, explicit, isomorphic construction, which is used to char-

acterise exactly the structure of the descriptive unravelling. A brief elaboration is given
on the three constructions and their potential uses in future research.

6.2 Directions for future research

This final section is dedicated to a discussion of potential directions for future work. As
discussed in the introduction, many generalisations and adaptations exist of the classical
van Benthem Characterisation Theorem. Directions that will be mentioned are a Janin-
Walukiewicz-type result for descriptive models, coalgebraic generalisations, intuitionistic
van Benthem-like theorems on Esakia spaces and a characterisation result for neighbour-
hood models. Especially the first two will be discussed elaborately.
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Deserving special mention is the Janin-Walukiewicz Theorem [23]. This theorem is
an analogue of the van Benthem Characterisation Theorem for the modal µ-calculus.
It states that the modal µ-calculus is the bisimulation-invariant fragment of monadic
first-order logic. The proof of this theorem also relies centrally on unravelling trees
and the convenient properties of trees for game-theoretic semantics. In [6], a subclass
of descriptive frames is designed to allow interpretation of the modal µ-calculus. To
adapt this theorem to this class of descriptive models, one might use the descriptive
unravelling to achieve similar results. As was shown in Chapter 5, the shape of descriptive
unravellings is quite well-behaved and they, too, will likely satisfy desirable properties
for game-theoretic semantics.
The coalgebraic generalisations of the van Benthem Characterisation Theorem for finite

frames are inspired by the view of Kripke frames as coalgebras for the powerset functor
on the category of sets. Similarly, the finite Kripke frames can be viewed as coalgebras
for the powerset functor in the category of finite sets. This then leads to a strategy based
on the pseudotrees as in [33] to obtain the van Benthem Characterisation Theorem for
finite supported coalgebras. As was shown in this thesis, descriptive frames are model-
theoretically highly similar to finite frames. As descriptive frames are coalgebras for
the Vietoris functor on the category of Stone spaces, one could consider combining the
constructions from this thesis with the approach used in [34]. There again, a type of
pseudotree is introduced to apply arguments from finite model theory to obtain the
result. Replacing the pseudotree with the descriptive unravelling could give way to a
similar result for alternative Vietoris-like coalgebras on Stone spaces.
In [31, 32], the van Benthem Characterisation Theorem is treated for intuitionistic

frames. Descriptive intuitionistic frames are known as Esakia spaces [18] and with the
techniques from this thesis, one could pursue modal characterisation theorems on these
classes.
Finally, neighbourhood structures have been given the structure of Stone coalgebras in

[22], so that the constructions presented here may be combined with the approach from
[21] to achieve a modal characterisation result on these neighbourhood structures over
Stone spaces.
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