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Abstract

This thesis explores the idea that set theory and category theory represent dif-
ferent ways of thinking. Adopting the perspectives of various foundational sys-
tems based in set theory and category theory, we investigate two common and
informal conceptions about the distinction between set-theoretical and categor-
ical thinking. One concerns the intuition that set theory and category theory
respectively correspond to a bottom-up and a top-down approach to mathe-
matics. The other captures the idea that category theory represents a higher
level of abstraction than set theory. Our investigation brings us the two main
results of this thesis. First, we argue that the bottom-up/top-down distinction
is irrelevant to the distinction between set-theoretical and categorical thinking.
Second, we claim that, while categorical foundations are generally character-
ized by a higher level of abstraction compared to set-theoretical foundations,
this difference is more variable and more modest than generally thought.

In order to familiarize ourselves with the various foundational systems, we
discuss set-theoretical foundations in Chapter 2, and categorical foundations in
Chapter 3. Chapter 2 also treats the development of general category theory
from set-theoretical foundations so as to better delineate the categorical way of
thinking. The incorporation of a variety of systems in our approach is significant
for the arguments leading to the main results in Chapter 4. Additionally, the
arguments benefit from the new refinements we make to the bottom-up/top-
down distinction and of a method of abstraction coming from computer science.



Contents

1 Introduction 4
1.1 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 The basic notion of a category . . . . . . . . . . . . . . . . . . . . 6

2 Category theory from set theory 8
2.1 Requirements for set-theoretical foundations . . . . . . . . . . . . 9
2.1 A notion of set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Non–well-founded sets . . . . . . . . . . . . . . . . . . . . 12
2.2 A notion of largeness . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Inaccessibility assumptions . . . . . . . . . . . . . . . . . 13
2.2.2 Reflection principles . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Class theories . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 New Foundations . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Categorical foundations 23
3.1 Requirements for categorical foundations . . . . . . . . . . . . . 23
3.2 The category of sets . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 The category of classes . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 The category of categories . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Higher categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Mathematical thought 36
4.1 Bottom-up and top-down . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Relation to set theory . . . . . . . . . . . . . . . . . . . . 39
4.1.2 Relation to category theory . . . . . . . . . . . . . . . . . 42
4.1.3 Taking stock . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Abstraction of subject matter . . . . . . . . . . . . . . . . . . . . 46
4.2.1 A method of abstraction . . . . . . . . . . . . . . . . . . . 47
4.2.2 Applying the method . . . . . . . . . . . . . . . . . . . . . 49
4.2.3 EM-category theory from set theory . . . . . . . . . . . . . 66
4.2.4 Taking stock . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 The role of foundations . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Conclusion 73

2



Acknowledgements

I would like to express some words of gratitude here. Luca, thank you for
providing reliable and guiding supervision, and for always keeping a clear per-
spective on the development of the thesis. I was not very experienced in either
philosophy or mathematics before starting the thesis, but you made it possible
for me to write it in the exciting combination of these two fields — thank you
for that!

I want to thank Liesbeth, Mark and Myrthe for believing in me. Although
you may not have seen much of me in the period of writing my thesis, the
knowledge of your support has always been a comfort.

Thanks to the numerous fellow MoL students (in particular hallway inhab-
itants Jelly, David and Nuno) for always providing a pleasant distraction from
work. Thanks to Rachael, Dean and Zhuoye for letting me invade the Logic
House with rants about life (and death) and (square) horses. Special thanks to
Rachael for rubbing my arm when I needed it.

Finally, thank you Sam, for your steady supply of card games, your endless
patience in listening to my thesis-related thoughts, your belief in me — but
above all, thanks for being you.

3



Chapter 1

Introduction

This thesis occupies itself with the ways in which we can look at mathematics.
In particular, we take on perspectives from foundations for mathematics, each
of which sheds a fundamental light on what mathematics is about. We focus on
the often-made comparison between foundations based in set theory and those
based in category theory. Most of the philosophical debate has concentrated on
what the nature of a genuine foundation for mathematics should be, and how
set theory and category theory fit into this picture — however, this is not where
our interests will lie. Instead, we aim to identify what it is that characterizes
the distinction between a set-theoretical and a categorical way of thinking. Cat-
egory theory has been advocated as a theory of mathematics that, compared to
set theory, expresses a more natural and efficient approach towards mathemat-
ics (Lawvere, 1966). This intuition has not been properly formalized, however,
and we need to understand the difference between set-theoretical and categor-
ical thinking in order to verify it. Other than refining intuitions, it is generally
relevant for the practice of mathematics to understand how foundational sys-
tems relate to each other. Investigating the ways of thinking represented by two
different mathematical fields will eventually be relevant, as well, for the more
general goal of understanding the nature of mathematical thought. This latter
idea was introduced in (Mathias, 2001) and (Ernst, 2017), but has remained
essentially unexplored.

Hence, in this thesis, we are interested in answering the following research
question. How (if so) can we distinguish categorical thinking from set-theoretical
thinking? As this is a rather broad research question, we restrict ourselves to
the investigation of two common intuitions concerning its answer.

The first regards the informal distinction between a ‘bottom-up’ and a ‘top-
down’ approach to mathematics. The idea, here, is that set theory and, respec-
tively, category theory represent a bottom-up and a top-down manner of think-
ing, while regarding the same subject matter (this idea appears, for example, in
(Awodey, 2004)). In this thesis, we formalize the bottom-up/top-down distinc-
tion, and we argue that it is in fact independent from the distinction between
set-theoretical and categorical thinking.

Secondly, it is a broadly accepted claim that category theory is more abstract
than set theory (remarks along these lines can be found in many articles, for
instance in (Linnebo and Pettigrew, 2011) or (Landry, 2013)). This implies,
contrary to the previous intuition, that the difference between set-theoretical
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and categorical thinking may find its roots in the fact that they enjoy distinct
subject matters. We point out that the notion of ‘abstraction’ is consistently
used in an informal way, and that (even if our intuition regarding this matter
is true) it remains unclear exactly how much more abstract category theory is
compared to set theory. We address both issues by borrowing (and slightly
modifying) Floridi’s method of abstraction described in (Floridi, 2013). This
leads to our claim that, in general, categorical foundations embody a higher
level of abstraction than set-theoretical foundations, although in several cases
this difference is more modest than generally assumed.

In reaching the above-mentioned conclusions, we stress that our approach
provides us with a faithful representation of mathematics from the perspective
of set theory and category theory, by taking into account a variety of founda-
tional systems based in either theory. Close regard for the differences between
these foundations will be important for the development of our arguments. Our
approach thus combines a rich perspective on foundations with new methods of
distinguishing between set-theoretical and categorical thinking.

1.1 Structure of the thesis

In Chapter 2, we present an overview of the various set-theoretical foundations
for category theory. This will remind the reader of the properties of existing
set theories, and it will illustrate the means with which category theory can be
incorporated into set theory. By including results from a range of set theories,
we aim to get a good sense of what characterizes the set-theoretical approach
to mathematics and its ability to found category theory. Knowledge of the po-
tential of set theory to act as a foundation for category theory is a means to
indirectly characterize properties of categorical thinking — this will be useful
later, especially when categorical foundations themselves refuse to fully reveal
their nature. Following this is Chapter 3, which treats a number of categorical
foundations and their properties. This will, analogously, give us an idea of the
mathematical characteristics of the categorical perspective on mathematics.

The relation between Chapter 2 and Chapter 3 will become apparent in
Chapter 4. Here, knowledge from the previous two chapters is synthesized
into the development of the two ideas outlined above, based on the informal
distinctions between set-theoretical and categorical thinking. The first part of
Chapter 4 motivates viewing the distinction between set theory and category
theory separately from the bottom-up/top-down distinction. Subsequently, the
second part of Chapter 4 will begin by introducing the formalization (and our
modification) of the concept ‘level of abstraction’ that originates from computer
science. We argue that a distinction between set theory and category theory
based on abstraction levels tells part of the story. Nevertheless, we lie empha-
sis on our conclusion that the categorical abstraction of subject matter in the
discussed foundations is more variable, and less strong, than generally thought.
Our contributions to the debate on set-theoretical and categorical thinking can
be summarized as follows.

1. One general recommendation of this thesis is that imprecise terms that are
intended to link mathematical knowledge with philosophical reasoning
benefit from being made explicit. This avoids misunderstandings when
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such terms are used in different contexts. In this thesis, we contribute
by making more explicit the terms bottom-up, top-down and level of ab-
straction, and we apply them to various set-theoretical and categorical
foundations.

2. For the term level of abstraction, in particular, we call for a further im-
proved framework that can capture true abstraction relations. To this end,
we make a first modification to the method used in this thesis, but more
rigorous changes are required.

3. Specific to the research question, we have made a start to characterize the
distinction between categorical and set-theoretical thinking by singling
out properties that are (not) important to this distinction. That is, we sug-
gest that the bottom-up/top-down distinction is irrelevant to the research
question, whereas differences in levels of abstraction do play a role —
albeit less so than generally thought.

4. We relate the topic to the roles of foundations for mathematics. We sug-
gest, through responding to (Landry, 2013), that the goal of foundations
may be tied to their level of abstraction. The connection of set-theoretical
thinking and categorical thinking to this relation should be further ex-
plored. Generally, however, our findings advocate a pluralistic view on
the foundations for mathematics, where a situation is analyzed from the
perspective of a foundation of an abstraction level suitable to the purpose
on hand.

A remark. In this thesis we aim to discuss and compare a range of foundational
systems, so that it is necessary to limit ourselves to the relevant mathematical
properties of these systems that we use in our discussion. As such the level of
mathematical detail will vary. We always aim to give a comprehensive view of
the situation, and zoom in on technical notions when relevant. A more thor-
ough and deep understanding of the subject would of course be given by fully
exploring the mathematical properties of each system. We offer references to
more in-depth mathematical treatments at various points in the thesis.

1.2 The basic notion of a category

Throughout this thesis we will assume that the reader has a basic familiarity
with set theory and category theory. For an introduction to category theory,
we refer to (Awodey, 2010), and for more advanced material covering topos
theory to (Johnstone, 2002). Introductory and advanced material on set theory
may be found in many textbooks, for example (Jech, 2013). For completeness
we will state here the basic definition of a category as introduced by Eilenberg
and Mac Lane in 1945 (we adapt the definition from (Awodey, 2010)). This
definition is referred to as EM; besides being the main ingredient for category
theory developed from set theory in Chapter 2, it will also come up in Chapter
4, as it has been proposed as a categorical foundation for mathematics. We will
only briefly mention EM in Chapter 3, as the definition is already provided here.
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Definition 1. A category consists of the following components:

1. Objects A,B,C, ...

2. Arrows f, g, h, ...

3. For every arrow f , there exist objects D and C called the domain and
codomain of f , respectively (we write f : D Ñ C).

4. For every pair of arrows f : AÑ B, g : B Ñ C, there exists the composite
arrow g ˝ f : AÑ C.

5. For every object A, there exists the identity arrow 1A : AÑ A.

These ingredients of a category are additionally required to satisfy the following
laws:

1. Associativity: for arrows f : A Ñ B, g : B Ñ C and h : C Ñ D, it holds
that

h ˝ pg ˝ fq “ ph ˝ gq ˝ f .

2. Unit: for every arrow f : AÑ B, it holds that

f ˝ 1A “ f “ 1B ˝ f .

Thus, a category is taken to be anything satisfying this definition. We are
now ready to embark on the next chapter, which will explore set-theoretical
properties that affect the development of EM-category theory.
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Chapter 2

Category theory from set
theory

In this chapter, we give an overview of the set-theoretical systems that have been
developed to provide a foundation for category theory, in order to better char-
acterize EM-categorical thinking. Several main approaches to the founding of
category theory can be identified, and their workings are quite well understood.
As we will see, the key problem is to find a way to allow for the free construc-
tion of large categorical objects. This is not generally supported by standard set
theory, as its axiomatization imposes restrictions on what qualifies as a set and,
hence, a category (assuming the standard way of incorporating category theory
into set theory — this will be illustrated later). Thus, we will see that in nearly
every set-theoretical framework, some restriction to the development of cate-
gory theory has to be imposed which we might like to avoid. Besides technical
adequacy, some authors have also commented on the philosophical suitability
of set-theoretical frameworks for category theory. For, not every set-theoretical
system that allows for a large part of category theory is as intuitive and elegant
as we would like. We begin the chapter by elaborating on criteria that can be
imposed on set-theoretical foundations for mathematics, which will help us bet-
ter familiarize ourselves with the way they work. In the next part of the chapter
we will outline different set theories and their level of success in founding cate-
gory theory. Rather than ZFC itself, several extensions of ZFC with inaccessibility
assumptions or class axioms have proved to be successful in allowing for large
categories. Alternatively, the incorporation of a particular reflection principle
is a method worthwhile to pursue in several ways. We consider both variants
of methods, where illustrations are often inspired by (Shulman, 2008), which
provides an excellent mathematical discussion of the various approaches. We
additionally discuss the set theory New Foundations (NF), which originates from
type theory and regulates the formation of sets in a different way from ZFC. We
will conclude the chapter by discussing the key patterns that arise among the
different ways for set theory to found category theory.
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2.1 Requirements for set-theoretical foundations

Let us consider for a moment what we would like a set-theoretical founda-
tion for category theory to satisfy. This question has been asked and answered
(differently) by several authors. The particular requirements imposed on set-
theoretical systems tell us something about the way category theory is regarded.
For instance, Feferman would like for category theory to show that it is not sus-
ceptible to Russell-like paradoxes. Consider his system of requirements (R) as
described in (Feferman, 2011). For a foundational system S for category theory,
Feferman proposes that S should do the following:

(R1) Allow us to construct the category of all structures of a given kind, e.g.
the category Grp of all groups, Top of all topological spaces, and Cat of
all categories.

(R2) Allow us to construct the category BA of all functors from A to B, where
A and B are any categories.

(R3) Allow us to establish the existence of the usual basic mathematical struc-
tures and carry out the usual set-theoretical operations.

(R4) S should be established to be consistent relative to a currently accepted
system of set theory.

The first two requirements concern so-called unrestricted or unlimited categories,
which are intended to capture truly all constructions of a given kind without
somewhere restricting the universe that one works in. Thus, whereas the first
two requirements are easily supported if we adopt Feferman’s interest in unre-
stricted constructions, (R3) lacks a sense of formality that turns out to cost him
its consistency with (R1). Namely, (Ernst, 2015) shows that Feferman’s require-
ment that a foundation accommodates all categories of a given kind (R1) is in-
consistent with (R3). Briefly, this is because (R1) lets us construct the category
of all reflexive graphs — (R3) then implies that this category has several prop-
erties that allow for the construction of a particular contradictory arrow. The
proof resorts to Cantor’s diagonalization method in a category-theoretic con-
text. Thus, (R) is not an obvious combination of requirements to be satisfied.
In order to avoid contradictions within (R), (Enayat, Gorbow, and McKenzie,
2017) propose to weaken (R3) to the following.

(R3’) Ordinary mathematics and category theory, along with its distinction be-
tween large and small, are naturally implementable.

While the notion of natural implementability is again rather informal, Enayat,
Gorbow and McKenzie distinguish three levels of ‘decreasing user-friendliness’.
The friendliest option requires the underlying set theory to allow for category-
theoretic notions with its usual membership relation, without requiring a re-
striction for category theory to a set or class. If restriction to a set or class is
necessary, we find ourselves on the second level of user-friendliness. The least
user-friendly variant involves the additional requirement that the implementa-
tion of category-theoretic notions comes with a (well-motivated) membership
relation that is different from the membership symbol of the underlying lan-
guage. Allowing for these restrictions in requirement (R3’) sidesteps the con-
tradictions that arise with Feferman’s variant (R3). As we will see later, various
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set theories are able to satisfy such a weaker version of (R3). This asks for a
bit more tolerance towards the set-theoretical implementation of usual category
theory, however, in that its constructions should be representable in a slightly
more indirect way than we are perhaps used to. Still, the results from (Enayat,
Gorbow, and McKenzie, 2017) show that employing mathematically more nu-
anced requirements gives a good case for set-theoretic foundations for category
theory.

On the other hand, we might consider category theory to be independent
of its ability to accommodate unrestricted notions. Instead, we might take set
theory as usually known by ZFC as the starting point for category theory, and
formulate requirements from there that suit the development of category theory
best. In that case, we might end up with a set of requirements (S) as follows
(these are requirements that (Enayat, Gorbow, and McKenzie, 2017) implicitly
extracted from motivations given in (Shulman, 2008)).

(S1) Ordinary category theory, along with its distinction between large and
small, is naturally implementable.

(S2) The large/small distinction is relative, in the sense that for any x, there is
a notion of smallness such that x is small.

(S3) ZFC is interpreted by P, both when quantifiers are restricted to large sets,
and when quantifiers are restricted to small sets.

Here, the large/small distinction is required to be implementable in such a way
that any large object ‘might as well be small’. That is, we want to be able to
easily characterize the behaviour of large categories; the next section will elab-
orate on various ways of doing this. Furthermore, (S3) asks for the satisfaction
of anything that ZFC proves, both for large and small sets. The preservation of
ZFC in a set-theoretical foundation for category theory is useful if there is some
benefit from adhering to this well-known set-theoretic context. Indeed, the ad-
vantages and disadvantages of using (extensions of) ZFC for category theory are
well-known, and we mainly focus on such set theories in our comparison to cat-
egory theory. However, it should be kept in mind that additional non-classical
set theories may have interesting properties with respect to category theory, and
should be explored in a similar fashion for a more complete picture.

In this chapter, we are interested in keeping track of the effects on category
theory with respect to requirements like (R) and (S), when we consider differ-
ent set theories. Hence, we do not explicitly take a stand on these requirements,
although (R1) and (S3) are easy to motivate, as well as the requirement that
there is a way to deal with large categories - the latter is necessary already for
establishing familiar completeness results. Thus, we think it will be helpful to
look at the ways in which set theory allows for different categorical construc-
tions. When exploring unlimited, (R1)-like categories, we will assume a weaker
variant of (R3) such as (R3’), in order to avoid previously mentioned contra-
dictions. It will turn out that we can capture a lot of category theory already
with a large/small distinction in our set-theoretical universe, while disregarding
Feferman’s unlimited categories.
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The role of urelements

We take a brief excursion into explicit ways of accommodating (small) EM-
categories within set theory. Commonly, a category is represented inside set
theory as an ordered pair, containing a set of objects O, a set of arrows M ,
and a composition function ˝. While (Muller, 2001) and (Feferman and Kreisel,
1969) take such an ordered pair to be represented as pO,M, ˝q, (Feferman,
2011) expands this tuple to include explicit domain and codomain functions.
Analogously to the way (Benacerraf, 1965) argues there is no ‘one correct way’
to define the successor operation for the natural numbers, the different ways
of incorporating categories into set theory should all be taken as more or less
correct. Hence, the particular method used to translate category theory into set
theory is irrelevant for us — philosophically, there is the following relevant side
to it, however.

It is characteristic of EM-category theory to say little about its objects and
arrows except how they are related. When restricting category theory to a set-
theoretical basis, then, one might want to add as little extra information as
possible, in order to retain the apparent featurelessness of the objects and ar-
rows in EM-categories. To this end, we suggest the inclusion of urelements in
the reduction of category theory to set theory may be worthwhile. Where many
philosophers claim that sets are ‘constituted by their elements’ (Linnebo, 2013;
Boolos, 1971; and others), urelements are objects that do not have this property,
although they can be elements of a set. As urelements possess no elements, but
are not all equal to the empty set, they seem to have less features than usual
sets, and may hence be more compatible with the neutral nature of categori-
cal objects. Urelements could (in various ways) easily be incorporated into the
above-defined implementation of categories.

Keeping this possibility in mind, we should now be ready to embark on the
analysis of categorical constructions a little higher up inside various set theories,
which will prove to elicit some interesting behaviours.

2.1 A notion of set

It has previously been noted that ZFC is not a very suitable foundation for cat-
egory theory (see (Mac Lane, 1969), (Shulman, 2008), and others). We will
briefly examine why this is so. With the previous section in mind, we see that
the construction of a category inside set theory will rely on the collection of ob-
jects and arrows of the category being sets. Thus, when doing category theory
in ZFC, we are able to construct any small category, as these simply consist of the
relevant sets of objects and arrows. However, let us make a small counterpoint
here. Suppose that we take a small category that consists of one object and
its identity arrow, but its object is a large category (such as Set or Cat). Then
the object must clearly be represented as a set in ZFC as well, even though it
is a large category. In these situations we can simply take any set and identity
function to represent the large category. However, we might wonder whether we
find this implementation satisfying enough as a representation of our object and
arrow. Note that where we argued in the previous section that set-theoretical
representations of objects and arrows can say too much, in this case set theory
seems to say too little. Hence, while ZFC is mathematically a perfectly fine foun-
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dation for small categories, the molding of categories into sets can result in a
distorted picture.

In addition, ZFC can also handle working with a single large category. For
example, we can build the category of all sets Set (as an informal class), with
all sets as its objects, and all functions between sets as its arrows. This allows
us to work inside Set using ZFC, but we will not be able to do anything with
Set as a whole, as it is not a set itself. ZFC does not give us any tools to deal
with Set in another way. Indeed, we also cannot build even larger categories
or functors between large categories, which restricts the development of a large
part of category theory.

However, there is a way in which we can define large categories (which can
be informally thought of as non–set-like) while staying within ZFC (Shulman,
2008). For this we let classes be collections of sets defined by a property ex-
pressible in ZFC. Thus, we can express properties like ‘X is a group’ or ‘X is a
set’, so that we can conceive of a class of all groups or a class of all sets (defined
from the universe V ). Then we now let a large category be a category such that
its collections of objects and arrows are proper classes (i.e., classes that are not
sets). Using previously defined ‘class-properties’ we can construct new proper-
ties, which allows us to perform basic operations on classes (and thus on large
categories). For example, we can define the Cartesian product of two large cat-
egories, and we can prove that Set and other large categories are (co)complete.
This will still not be enough, however, as ZFC does not possess any axioms for
manipulating classes and lacks a way to quantify over them. Many theorems in
category theory (such as the Adjoint Functor Theorem) involve quantification
over large categories and are thus not even expressible in ZFC. The only way to
deal with classes is via the properties expressed in the language of ZFC, which
poses restrictions.

Thus, to define the collection of objects and arrows of a small category, a
notion of set can be used, and ZFC provides this. However, its lack of machinery
to deal with classes, which are merely implicit in the theory, provide serious
drawbacks to the suitability of ZFC as a foundation for category theory.

2.1.1 Non–well-founded sets

We briefly consider a non–well-founded set theory developed in (Aczel, 1988).
The motivation for this is based on (Incurvati, 2014), where it is argued that,
contrary to general opinion, non–well-founded set theories embody a concep-
tion of set. Whereas ZFC promotes the iterative conception of set, Incurvati argues
that the non–well-founded set theory ZFA embodies the graph conception of set.
Indeed, we can think of sets as what is depicted by an arbitrary graph. This
seems to be an interesting perspective for category theory, since a category is
essentially a reflexive graph satisfying the axioms for composition (Ernst, 2015).

For the graph conception of set, we let nodes and (directed) edges represent
sets and the converse membership relation, respectively. Then the edge a Ñ b
denotes that the set represented by b is an element of the set represented by a.
Furthermore, a graph is pointed if there is a unique, distinguished top node (the
point) that represents the set that the graph depicts. Finally, a graph is acces-
sible if each node can be reached by some finite path starting from the point.
Then we restrict our attention to directed accessible pointed graphs (apgs): this
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allows us to, from a given graph, uniquely recognize the set that it depicts. Gen-
erally, non–well-founded set theories are constructed from ZFC by eliminating
its Foundation axiom, and adding in a particular Anti-Foundation axiom. There
exist multiple such axioms that can be incorporated, and each specifies a slightly
different requirement on which non–well-founded sets may exist.

However, the framework suffers from similar shortcomings to ZFC-like set
theories considering its technical adequacy. Namely, every set in ZFA is ZF-
bijective to a well-founded set in ZF, and every object in a model of ZF also
exists in a model of ZFA (McLarty, 1993). Thus, ZFA does not allow for any
new isomorphism types compared to ZFC. Secondly, even though the accom-
modation for non–well-founded sets seems promising perhaps for unrestricted
categories, this is not the case. As ZFA, like ZFC, contains a restricted Compre-
hension axiom, the construction of an unlimited Set or Cat will still be blocked.
Hence, non–well-founded set theory (ZFA, in particular) is no more successful
as a foundation for category theory than ZFC.

(Incurvati, 2014) argues that the graph conception of set motivates most
axioms of ZFA, and that it naturally gives rise to the existence of non–well-
founded sets. The result that non–well-founded set theory motivates a different
conception of set than ZFC, but does not differ in its ability to found category
theory, will prove to be relevant for our characterization of categorical and set-
theoretical thinking in Chapter 4.

2.2 A notion of largeness

There exist several ways of accommodating large categories in set theories
based on ZFC, each of which has their own advantages and disadvantages for
category theory. Nearly all of them impose a sense of size to the universe that
we work in, and hand us a reference frame for the objects that we construct.
The general approaches can be divided into (1) adding inaccessibility assump-
tions, (2) introducing a set-class distinction, and (3) making use of reflection
principles. We finally consider a set-theoretical system that extends a theory
built in New Foundations as well as ZFC.

2.2.1 Inaccessibility assumptions

First, we consider what happens when we add an axiom to ZFC that postulates
the existence of a large cardinal. It has become convention to let this cardinal
be inaccessible (that is, uncountable, a strong limit, and regular). If α is an
inaccessible cardinal, then Vα is a model of the whole of ZFC and Vα is called
a Grothendieck universe. Equivalently, a Grothendieck universe is a transitive
set U that is closed under pairing, power sets and indexed unions. Indeed, the
existence of such a U is equivalent to the existence of an inaccessible cardinal
(Shulman, 2008; Feferman, 2011). If α is only a limit ordinal greater than ω,
Vα need not be a model of the Replacement axiom of ZFC, and thus Vα is not
necessarily a model of ZFC. However, it turns out that we do not have to go
as big as inaccessible. We call a cardinal κ worldly if Vκ models ZFC (Incurvati
and Löwe, 2016). Worldly cardinals are always strong limits, but they need not
be regular. Hence, where our discussion of previous research extends ZFC with

13



inaccessibles, we should keep in mind that the same result can be obtained with
worldly cardinals. We will come back to this a little later on.

Now let ZFC + I be ZFC + “there exists an inaccessible cardinal”. Note that
ZFC alone cannot prove the existence of an inaccessible cardinal, so that this
results in a theory strictly stronger than ZFC. Thus, pick an inaccessible cardinal
κ; then Vκ will act as our frame of reference. That is, we define elements of
Vκ to be small sets, and sets that are not necessarily elements of Vκ to be large
sets. With this large/small distinction, we can construct many large categories,
such as the functor category [A,B] for any two large categories A and B. This
approach also allows us to distinguish between the size of large sets: [A,B] is
larger than both A and B, which is not possible with class theories.

Still, it must be noted that this method does not allow us to be fully unre-
stricted in our constructions. In particular, it will not satisfy the requirements
(R1), (R2) and (S2) that we mentioned in the beginning. By assuming the exis-
tence of an inaccessible cardinal κ, the universe Vκ will set a limit. Consider, for
example, the category Set, which ideally should capture truly every set. What
we can do first is construct the category Set of all small sets, which will live
outside Vκ as a large category. However, clearly then Set does not include any
large sets. In this case, we could introduce classes, that are even larger than
large sets, or we could assume the existence of another large cardinal λ ą κ.
A redefinition of large set would then be ‘element of Vλ’, and we introduce the
notion of very large set (quasi- or meta-category are also used as terms for very
large categories) as a set that is not necessarily an element of Vλ. This would
allow for the construction of a new ‘Set’ that captures both small and large sets.
Still, it is clear that we have not captured the very large sets by doing this. Thus,
inaccessibles allow for safe construction of larger categories, but we will never
be able to define the category of, say, all sets, in a larger universe than the one
that we work in.

Another issue is that the distinction between large and small that we now
have, might not always behave the way we want it to. For example, if we have
an object that is large relative to Vκ, we may want to treat it as a small object,
for which we would want to switch to a bigger universe than Vκ. Grothendieck
proposed to add an axiom to ZFC that asserts the existence of arbitrarily large
inaccessibles, so that the size of the universe may always be changed, and we
can apply results about categories to larger categories. This gives us a denu-
merable number of inaccessible cardinals added to ZFC, resulting in the theory
ZFCω. In contrast, the single-universe system ZFCU proposed by Mac Lane (like
the assumption of a single inaccessible) is usually sufficient for ordinary math-
ematics. However, the fact remains that care is required in dealing with results
obtained in a particular universe. There exist categorical objects that depend
on size considerations for a particular other category (e.g., for the category of
all groups), meaning that the existence of these objects does in fact depend on
the size of the universe. Hence, when changing universes one must be precise
in making sure that arguments do not suffer from such a dependence.

Last, even though Grothendieck’s ZFCω can satisfy (S2), it (and the other
approaches based on inaccessible cardinals) presents a different worry. We are
strictly strengthening our set theory, and this is not something that category
theory desperately needs. In fact, it increases the risk that our theory is incon-
sistent, and we may make it incompatible with possible future axioms that could
be useful for category theory (Enayat, Gorbow, and McKenzie, 2017). These ob-
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jections are theoretical and perhaps pose a small risk in practice. However, it re-
mains the case that these systems give us much more than is required. (Muller,
2001) reasons that category theory only talks about objects in the classes V ,
PpV q, ..., PnpV q (V being the class of all sets, and n a fixed finite number).
Therefore, given that i is the first inaccessible cardinal, we only need a de-
numerable sequence of increasing universes Vi1`1, Vi1`1, ..., Vi1`ω. However,
ZFC+I, ZFCU, ZFCω and the theory ZMC (which will soon come up) give us far
more than this, up to Viω1 and further. It seems strange that we should assume
so much more than what we really need. The existence of large constructions is
not always directly necessary to prove statements about objects living in them.
Hence, it may be that the assumption of inaccessibles can actually be eliminated
from many arguments, making them excessive and not crucial to capturing what
category theory needs.

2.2.2 Reflection principles

(Feferman and Kreisel, 1969) showed that, in fact, working with universes may
be unnecessary for category theory. The size distinction between large and
small can be made in a different way, one that eliminates the need for switching
between universes. This requires the following notation. Let ϕ be any statement
and M any structure, such as a potential model for a theory. Then we define
ϕM as ϕ relativized to M , so that all quantifiers in ϕ are restricted to range only
over elements of M . Furthermore, suppose that M Ă N , then ϕpx1, ..., xnq is
reflected from N to M if

@x1 PM ¨ ¨ ¨ @xn PMpϕ
N px1, . . . , xnq ô ϕM px1, . . . , xnqq.

Note that ZF proves the Levy Reflection Principle: for every formula ϕ, there is a
set X such that ϕ is reflected from V to X. This principle is in fact equivalent to
Infinity and Replacement (in the presence of the other axioms of ZF) (Incurvati,
2017). We here define a new reflection principle using a constant symbol S.
Indeed, S is added to our language and denotes the universe of small sets, as
Vκ did before. Sets that are elements of S will now be called small, whereas
sets not necessarily in S are called large. Then when adding the axiom “S is
transitive and closed under subsets” and the instantiated reflection axiom

@x1 P S ¨ ¨ ¨ @xn P Spϕpx1, . . . , xnq ô ϕSpx1, . . . , xnqq

to ZFC, we obtain the system ZFC/S. Here, in the translation of a formula ϕ to its
relativized version ϕS, each pDxq and p@xq is replaced by pDx P Sq and p@x P Sq,
respectively. Thus, instead of assuming a large infinity to make the distinction
between large and small, we introduce a constant symbol and a reflection prin-
ciple, which achieve the same result. This allows us to work with small objects,
and use the reflection principle to apply our results to large objects. The use of
a reflection principle then formalizes the intuition that the notion of smallness
is a tool for legitimizing general constructions. Where we needed to be care-
ful with our proofs for theorems in ZFC+I for them to be preserved in larger
universes, this is unnecessary in ZFC/S. Unlike ZFC+I, furthermore, ZFC/S is a
conservative extension of ZFC, so that we manage without strictly strengthening
ZFC, although this comes with the following sacrifice.

The Replacement axiom (if a class F is a function, then for any set X there
exists a set Y “ F rXs “ tF pxq : x P Xu) must be weakened for small sets by
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imposing the requirement that F is small-definable. This means that F has to be
a subset of S of the form ts P S|ϕpsqu for a definable property ϕpsq that refers
only to elements of S. This turns out to restrict some of the category theory that
we can do. For example, suppose that we want to prove that Set is a complete
category. Here, Set equals SetrSs, denoting that its objects are all sets in the uni-
verse S. Then it should hold that Set has all limits for functors F : AÑ SetrSs
for small A. However, if F is not small, then it need not be small-definable, and
F pAq is not necessarily a set. Thus, the proof will not work, yet completeness
of Set is something we would like to have. In fact, small-definable categories
possess many of the properties that are desirable. This provides incentive to
change the definition of properties such as completeness or of adjoints: for ex-
ample, considering the functor category of small functors JA,SetK instead of
the whole functor category rA,Sets allows for successful proofs of adjoints. It
must be noted that in practice, we will not suffer from many restrictions be-
cause most categorical objects that we are interested in are already (equivalent
to) small-definable objects. Still, this remains tedious to establish, and so the
small-definability restrictions are something we would like to avoid. Thus, the
main issue with ZFC/S concerns the practical inconvenience of keeping track of
the small-definability restrictions. Dealing with large cardinals and construct-
ing ordinary category theory from this system is supported well, which perhaps
makes the small-definability limitation a minor one.

It turns out that strengthening ZFC/S further to ZMC/S by adding the axiom
“S “ Vκ for some inaccessible cardinal κ” solves the small-definability problems
(Shulman, 2008). This can easily be seen by the fact that Vκ will model ZFC

and hence also Replacement. Every functor with small domain will thus auto-
matically be small again. Repeatedly applying the reflection principle knowing
that κ is inaccessible tells us that there must be infinitely many small inaccessi-
bles and also arbitrarily large inaccessibles. ZMC/S is conservative over ZFC +
“any finite set of formulas is reflected in some Grothendieck universe”, so we
have actually strengthened the reflection principle (Shulman, 2008). Hence,
even though we do not have a category of all sets (which Feferman would still
desire), this set theory allows us to always pick a category of sets large enough
for any purpose that it might as well contain all of them. Thus ZMC/S is quite
an aesthetic solution to the small-definability problems of ZFC/S, but we do lose
conservativity over ZFC.

Alternatively, we can solve the problems from ZFC/S by using indexed cate-
gories. Indexed categories are formally defined in (Johnstone, 2002), and their
precise relation to ZFC/S is explored in (Shulman, 2008). We will not discuss
them in detail, however, as it concerns the incorporation of topological tools in
ZFC/S, which is not inherently characteristic of the way set theory founds cate-
gory theory. Additionally, their definition is quite intricate and not very relevant
for our purposes here. However, their general effect can be described as follows.
Essentially, indexed categories provide a more aesthetic way to deal with small-
definable categories, which makes it natural to work with them. This is done by
defining an indexing relative to our universe of sets; every small-definable cate-
gory will give rise to such an indexed category. An indexed category is a family
of categories consisting of a particular category for each object in the universe.
Where in ZFC/S we had to check whether categories were small-definable at
first, the indexing machinery will now do this for us. Depending on our prior set
theory, different types of indexings are required. Once indexed, the categories
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that were small-definable will contain the well-behaved objects, such that our
Replacement axiom can deal with them. It turns out that small-definability re-
strictions arose because, for example in ZFC/S, we implicitly used the wrong
type of indexing such that our (weakened) Replacement axiom could not deal
with this. Indexing corrects this ‘mistake’ so that categories will again naturally
fit the properties of, for example, completeness, that we want.

2.2.3 Class theories

The first class-set theory that we discuss has been proposed as a way of over-
coming some of the previously encountered difficulties, and is an extension of
Ackermann set theory described by (Muller, 2001). Class-set theories can in-
troduce a notion of largeness by the incorporation of classes as new types of
objects. Unlike the class theories that we describe next, classes in Ackermann
set theory are allowed to be elements of other classes. Like ZFC/S, Ackermann
set theory is a conservative extension of ZFC (Shulman, 2008). (Muller, 2001)
introduces an extension of Ackermann set theory that he intends to not be sus-
ceptible to at least conceptual limitations to founding category theory. First, the
axioms of A (a slight adaptation of Ackermann set theory) are as follows:

1. Axiom of Extensionality: classes are identical if they have the same mem-
bers.

2. Completeness: the class of all sets V is complete, i.e. all classes contained
or included in sets are sets.

3. Class Separation: for any predicate ϕp¨,Yq, where Y stands for any finite
number of class-parameters, and for every class Z, there exists a class A
which contains exactly those members of Z for which ϕp¨,Yq holds.

4. Set Existence: for any safe predicate ψpY, ¨q where Y stands for any finite
number of set-parameters, if the only classes for which it holds are sets,
then these sets form a set.

A predicate ψ is called safe if it only contains set-parameters and the class V of
all sets (which is unsharply delineated, as Ackermann calls it) does not occur in
it. (Muller, 2001) regards this notion as better than, for example, requirements
of predicativity or stratification (which we discuss later), as it still allows us to
pick elements from the whole class V , only with minor limitations. Predicativity
and stratification, on the other hand, actively prevent us from picking elements
from V if they already occur (in a particular way) in the predicate ψ. Now
(Muller, 2001) extends A by adding Regularity (R) and Choice (C) for sets,
resulting in the theory ARC. Muller argues that ARC is philosophically more
satisfying than the previous set theories that we discussed, as it does not suffer
from the objections that a universe much larger than needed is defined, and
still unrestricted categories are not supported. However, Ackermann set theory
as a foundation of category theory turns out to have similar problems to ZFC/S

and is in fact strictly weaker in its statements about classes (Shulman, 2008).
Recall that for ZFC/S we had to weaken the Replacement axiom and we ended
up with small-definability restrictions. As ARC merely adds a Regularity and
Choice axiom, we see that this will not avoid the same restrictions.
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Last, we mention two theories that also introduce classes as a new type of
object, but more quickly turn out to have limitations when it comes to construct-
ing categorical objects. Nonetheless, it is useful to see where things go wrong.
First, von Neumann-Bernays-Gödel set theory (NBG) includes axioms to deal with
classes, where only sets can be elements of sets or classes. NBG is conservative
over ZFC. It allows familiar axioms such as Extensionality and Foundation to be
applied to classes, and unlike in ZFC, we can quantify over classes. This facil-
itates dealing with large categories, which we can clearly now incorporate as
classes. However, it can be proven that the Class Comprehension scheme (if ϕ
is a property, then there exists a class Y “ tx : ϕpxqu) holds in NBG only for
a limited collection of formulas ϕ, namely those formulas which quantify only
over set variables (Shulman, 2008). This turns out to be problematic, as certain
basic mathematical principles cannot be verified. For example, while ZFC can
prove the induction principle for all statements ϕpnq, NBG can only do this if ϕ
does not quantify over classes. Consequently, there may be statements about
large categories for which a natural proof would use induction, but which can-
not be done in NBG. Additionally, we cannot form every (functor) category in
NBG (Ernst, 2017), and hence requirements (R1) and (R2) cannot be met. We
can only construct Cat or Set for small categories and sets. Similarly, what we
can do is form the functor category [A, B] for small A and large B. Namely, take
a functor F : A Ñ B, then Replacement will ensure that the functor is a set.
Then [A,B] will consist of all such functors, and will hence be a class. However,
suppose that A is also large. Then A is not a set, so that Replacement cannot be
applied and the existence of [A,B] is not guaranteed.

An adaptation of NBG results in Morse-Kelly set theory (MK), which supports
full Class Comprehension. Indeed, this means that the notion of mathemat-
ical induction is fully available again, and statements about large categories
are more easily proved. Unlike NBG, MK is strictly stronger than ZFC. Further-
more, even though we can do more with MK for category theory than with NBG,
arbitrary functor categories are still unattainable. To be able to define the col-
lection of functions between classes seems a reasonable request, and hence this
restriction is conceptually dissatisfying, certainly for Feferman’s requirements
(R). Additionally, not being able to have [A,B] for large A and B prevents re-
sults obtained from a perspective of higher category theory. We will not men-
tion details here, but we might want to say something about the cohomology
theories that satisfy the Eilenberg-Steenrod axioms, or about the 2-category of
Grothendieck toposes (see (González, 2018) for an application). This will not
be possible without arbitrary functor categories. Even though most results in or-
dinary mathematics will not depend on these constructions, we see that there do
exist mathematical results depending on such categories, and hence we would
like to accommodate them.

2.2.4 New Foundations

The set-theoretical foundations we have seen so far allow for the construction
of many desired large categories, but we are still not equipped to accommo-
date truly unrestricted categories. With this in mind, Feferman proposes a set-
theoretical system based in Quine’s New Foundations (NF) that should allow
for all unlimited categorical constructions (Feferman, 2011; Feferman, 2013).
This set theory uses the concept of type to enforce a well-foundedness in the
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description of sets that ZFC achieves in the constitution of sets with its restricted
Comprehension axiom. The language of NF is first-order, with a single sort vari-
able (which Feferman refers to as ‘classes’) and two relation symbols P and “.
Extending NF, Feferman constructs the system S˚ that, in order to impose a
sense of largeness, adds the class of all sets as a constant symbol, as we will
see. To build this system, we first define the system NFU, that allows for mul-
tiple urelements in NF by using a weakened form of Extensionality (Ext’). This
results in the following axiomatization for NFU:

(Ext’) pDXpX P Aq ^ @XpX P AØ X P Bqq Ñ A “ B

(SCA) DA@XpX P A Ø ϕq where ϕ is stratified and the variable A does not
occur in ϕ. (SCA) consists of all universal closures of this axiom.

(SCA) describes a Stratified Comprehension axiom: this is what avoids the usual
paradoxes. To see this we need to consider the following definition.

Definition 2. Let ϕ be a sentence of first-order logic that contains no relation
other than =, P. Then ϕ is stratified if it is possible to assign a nonnegative
integer (a type, or tppxq) to each variable x in ϕ such that:

1. Each variable has the same type wherever it appears.

2. In each atomic sentence x “ y in ϕ, tppxq “ tppyq.

3. In each atomic sentence x P y in ϕ, tppyq “ tppxq ` 1.

Thus, (SCA) allows for a universal class of all sets V (and we have V P V ).
(Feferman, 2013) applies the following extensions to make the framework suit-
able as a foundation for category theory. First, he includes a pairing axiom (P)
(pX1, X2q “ pY1, Y2q Ñ X1 “ Y1 ^X2 “ Y2) that results in the theory NFU(P).
The formation of arbitrary categories of a given kind (such as the category of all
groups, or all topological spaces) and that of arbitrary functor categories is al-
ready possible in NFU(P). For example, using the implementation of categories
in NFU(P) as described in the beginning of this chapter, one can define the class
of all categories (as the axiomatic definition of a category can be described in a
stratified way) and so construct the category with this class as its objects. This
results in the category of all categories.

The stratification condition, however, results in some type-shifting problems
when trying to define arbitrary Cartesian products and functions on equiva-
lence classes. To account for these problems in a better way, (Feferman, 2011)
constructed the system S˚, which is an extension of NFU(P) and of ZFC. The
language of S˚ introduces set variables next to class variables, and a constant
symbol V0 that represents the class of all sets. Then S˚ extends the axioms
(Ext’) and (SCA) with the following axioms.
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Sets and classes
@xDXpx “ Xq

X P V0 Ø Dxpx “ Xq
X P xÑ X P V0

Empty set D!z@ypy R zq

Operations on sets

tx, yu P V0
Ť

x P V0
Ppxq P V0

px, yq “ ttxu, tx, yuu

Infinite set DarDzpz P a^ @ypy R zqq ^ @xpx P aÑ xY txu P aqs

Replacement
@x, y1, y2rψpx, y1q ^ ψpx, y2q Ñ y1 “ y2s Ñ

@aDb@yry P bØ Dxpx P a^ ψpx, yqqs

Foundation
Dxψpxq Ñ Dxrψpxq ^ @ypy P xÑ  ψpyqqs,

where ψpxq is any L˚ formula not containing y

Universal Choice DC

„

@X,Y1, Y2ppX,Y1q P C ^ pX,Y2q P C Ñ Y1 “ Y2q
^@XpDY pY P Xq Ñ DY pY P X ^ pX, tY uq P Cqq



Feferman also notes that MK with Universal Choice is interpretable in S˚.
This system can deal with functions on equivalence classes in a stratified way,
by working with representatives of equivalence classes. However, the problems
with Cartesian products remain. Since the notion of Cartesian product is im-
portant to the construction of many structures and for checking properties like
completeness, we do not want to give up on it.

This problem still has not been solved, although we mentioned before that
it has to do with the inconsistency of Feferman’s requirement (R3) with (R1).
Since in the system Sp˚q unlimited collections are objects of the theory, it is not
surprising that we cannot carry over all familiar laws of mathematics. How-
ever, there is no clear selection criterion for which part of (R3) should be
preserved. In recent developments, (Thomas, 2018) comments on (McLarty,
1992), who showed that Set and Cat are not Cartesian closed in NF-style set
theories. Thomas points out that these categories do still have a property ap-
proximating Cartesian closure. However, because of numerous limitations in-
troduced by their stratification restrictions, Thomas still concludes that NF-style
set theories are not a good foundation for category theory.

A final variant on the use of New Foundations in a foundational theory for
category theory is discussed by (Enayat, Gorbow, and McKenzie, 2017). For this
we need the following notion.

Definition 3. A set A is cantorian if there is a bijection from A to ttau|a P Au.
A is strongly cantorian if there is a bijection from A to ttau|a P Au that maps
each a P A to tau.

The stratification property of (SCA) makes sure that you cannot show that ev-
ery cantorian set is strongly cantorian. Restricting to strongly cantorian classes
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solves the type-shifting problems (Feferman, 2011). Still, the collection of
strongly cantorian classes does not form a class, so that (R1) cannot be satisfied.
However, let us now define NFUA as NFU + Infinity + Choice + “every canto-
rian set is strongly cantorian”. Then NFUA satisfies (R1) and (R2), and (R3) can
be satisfied in a restricted way. (Enayat, Gorbow, and McKenzie, 2017) show
that ZMC/S may be interpreted inside NFUA. This results in a better accommo-
dation of (R3), while the requirements (S) are also fully solvable within this
interpretation.

In the end, it seems to come down to the question whether the accommoda-
tion of unrestricted categorical notions, besides being conceptually pleasing, has
other benefits for category theory. (Enayat, Gorbow, and McKenzie, 2017) sug-
gest this might be the case, by showing that the category Rel has (co)products,
and Set coproducts, that are indexed by the set of all singletons. In ZFC-like sys-
tems, however, the locally small versions of Rel and Set do not yield this result
for the set (or class) of all small singletons. Thus, NFU-based category theory
seems to provide results that ZFC-based category theory cannot. (Enayat, Gor-
bow, and McKenzie, 2017) conclude from this that the fully unrestricted (R1)-
categories may have categorical relevance other than philosophical, in that they
can induce relevant mathematical results. Hence, it may still be useful to con-
tinue to explore systems like NFU, NFUA and S˚.

2.3 Discussion

Summing up. We have described the set theories that are most used as a
foundation for category theory, and we analyzed their strengths and limitations
in doing so. Neither ZFC nor its non–well-founded variants can deal well with
large categories, calling for the implementation of more creative methods to al-
low for categorical results relying on a distinction between large and small sets.
In pursuance of such a distinction, we looked at ways to capture the universe
of sets we work in, so that objects living outside this universe can be regarded
as large. Taking the universe of sets to be defined by Vκ for κ inaccessible
(or a worldly cardinal) is one way; instantiating a reflection principle with a
‘universe’-constant S is another. Both methods allow for additional incorpora-
tion of bigger inaccessibles and constants, respectively. By letting S “ Vκ for κ
inaccessible, the combination of these methods results in a powerful candidate
for a foundation for category theory. Class theories like NBG and MK, on the
other hand, incorporate explicit axioms with which to manipulate large objects.
Although this method is effective, it lacks the power of the aforementioned
approaches. We should remain aware, though, that large cardinal assumptions
and reflection principles, the latter without strengthening ZFC, bring along some
technical inconveniences. Finally, the Stratified Comprehension Axiom of NFU

allows for unlimited constructions that are independent from universe restric-
tions. The introduction of a distinction between large and small objects on top
of this axiom, however, helps to partly solve type-shifting problems, although
Cartesian closedness of Set can not yet be attained. Still, systems like S˚ and
NFUA have been shown to make some (recent) strides in satisfying Feferman-like
requirements for a foundation of category theory.
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Take away. This chapter has brought to light several things that we can take
with us. First, it should be clear that it remains debatable what a foundation for
category theory should precisely be. Categorical results from a set-theoretical
perspective are dependent on size constraints; hence, each set-theoretic system
provides a somewhat different account of category theory. Setting requirements
like (R) and (S) may give us something to hold on to when trying to evaluate
set-theoretic foundations, but they also tend to oversimplify the situation. Such
requirements namely have to be rather general, as justifications for strict condi-
tions are absent. Consider (R3), which demands that the ‘usual basic mathemat-
ical structures’ exist and we can carry out the ‘usual set-theoretical operations’.
This allowed for the finding of a contradiction with (R1) in (Ernst, 2017), be-
cause the general nature of both requirements lead to a specific instance where
they clashed. Instead of taking such requirements very literally when investigat-
ing foundations for category theory, we argue that they should simply be taken
as a general set of guiding principles. The relevance of the quest of finding ‘the
one foundation’ for category theory is thereby weakened, as different require-
ments are desirable in different contexts. Depending on what mathematical or
philosophical glasses one puts on, it is relevant to include or exclude require-
ments such as the accommodation of unlimited categories. In this thesis, we
deliberately take various foundations into account so that a colourful picture of
set-theoretic category theory can be sketched.

Furthermore, the results from different foundations tell us that for the prac-
tical purposes of a mathematician, foundations such as ZFC/S, ZFC+I and class
theories suffice. Issues like universe-juggling and having to carry out small-
definability checks, however, make foundations philosophically less attractive.
In picking a foundation, then, a trade-off must be made between simplicity or
elegance of the system, and its strength. Importantly, this has shown us that
we cannot simply take the term ‘set-theoretic foundation for category theory’ to
denote one thing. Set theories vary substantially in their axioms and how these
affect category theory. For example, more tolerant Comprehension axioms in
class theories allow for the construction of more complex categories - here,
Stratified Comprehension requires the least number of restrictions by dealing
with the syntax of a class-describing formula. On the other hand, we saw that
Foundation has little to do with the construction of category theory. The heart
of the matter seems to really lie in sufficiently strong axioms that allow for a
distinction between familiar small sets and more external large sets.

What is next? We should keep in mind the set-theoretical systems we dis-
cussed in this chapter and which properties affect the construction of category
theory the most. They will come back in Chapter 4, where we base our argu-
ment concerning the distinction between set-theoretical and categorical think-
ing on these results. First, however, we will examine purely categorical imple-
mentations of a foundation for mathematics in Chapter 3. This will tell us more
explicitly how mathematics based in these foundations is developed, and will
allow us later to see where they differ from set-theoretical foundations. It will
additionally be informative to see whether this comparison is consistent with
the behaviour of category theory within set theory, as we analyzed it in the
current chapter.
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Chapter 3

Categorical foundations

Following on the previous chapter, we will here discuss purely categorical im-
plementations of a foundation for mathematics. That is, we will look at systems
with axioms that take categorical notions as primitive, such as arrows and a
composition operation. In this chapter, we discuss four attempts at founding
mathematics from a categorical system. Some systems rather explicitly incor-
porate set theory in a categorical way, for example by finding analogues for
set-theoretical relations such as membership, or by resembling axioms from
set-theoretical foundations. For other systems, the possibility of including set-
theoretical notions is only of secondary relevance to the system itself. We will
see that several attempts have been quite successful, and that there is still ongo-
ing research regarding the development of some more intricate systems. Note
that we also take EM as a categorical foundation: it is recommended as a suit-
able structuralist foundation for mathematics in (Landry, 2013). Although EM

perhaps seems an unlikely candidate for a foundation for mathematics at first
sight, the argument supporting the view that it is relies on the idea that foun-
dations for mathematics come with different purposes. This will be touched on
briefly in the next section, and we will refine this argument in Chapter 4. Before
discussing the other systems, we will elaborate on some of the difficulties which
exist in determining the exact requirements on a categorical foundation.

3.1 Requirements for categorical foundations

In order to get a better understanding of different categorical foundations, we
would like to discuss some possible requirements for categorical systems. We
will often remain neutral and limit ourselves to outlining the issues we treat,
but it is helpful to be aware of the main proposed requirements.

First, an obvious requirement and analogue of which we treated for set-
theoretical foundations of category theory, is that a categorical foundation should
allow for the ‘usual mathematical constructions’. That is, we should be able to
develop with our foundation the mathematical fields that are relevant for practi-
cal purposes. Similarly to its set-theoretical analogue, however, this will remain
a rather general condition that should not be taken too strictly.

Second, the role of set-theoretical notions in a categorical foundation is not
obvious. Various categorical foundational systems and particular axioms are ex-
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plicitly inspired or motivated by set-theoretical analogues. The question then
arises whether these statements are inherently set-theoretical (making the jus-
tification of categorical foundations ‘dependent’ on set theory), or whether they
stand independently as generally desired properties for mathematics. Related to
this is the position one takes regarding set theory as a foundation: if we take set
theory (in general, or a particular foundation like ZFC) to constitute the ‘official’
foundation for mathematics, we may care about shaping categorical founda-
tions similarly to set-theoretical ones. In this case, it is also relevant to consider
strengthening a categorical system in order that it can obtain a strength equal
to ZFC — even though it is arguably not the case that every axiom of ZFC is
necessary to get a powerful theory that supports a great deal of mathematics.
Although we do not concern ourselves in this thesis with the justification of
individual foundations, we do mention that we do not regard the possible con-
ceptual dependency of categorical foundations on set theory reason enough to
discard such set-theory–like systems. Note that all such theories are formulated
entirely in categorical terms, and they should provide an informative perspec-
tive on any possible encompassing distinction between set-theoretical thinking
and categorical thinking that we find in this thesis. Hence, they are useful for
us to include in our discussion. Concerning the comparison of the strength of
categorical systems to set theories, we regard this as a useful method that tells
us more about how to relate theories, but we will not maintain anything like it
as a strict requirement.

Furthermore, because the set-theoretical foundations for mathematics of the
previous chapter seemed to pursue an accomodation of larger and larger —
even unlimited — categories, we mention this requirement here, too. We note
that explicit size is of less importance in categorical foundations than in set-
theoretical ones, as sometimes there is simply no way to evaluate this from the
categorical theory itself. When it is possible, however, the categorical approach
does not magically provide the means to incorporate very large objects. In fact,
the category of sets (as axiomatized by ETCS) is similar to ZFC regarding the way
it deals with size. For the category of categories, it remains unclear whether it
can be a truly unrestricted category (incorporating all categories). More often
than not, size restrictions are not explicitly discussed for categorical systems,
because these systems appear more flexible regarding the specific models of the
theory, and this would narrow down the possible models too strongly. However,
as the matter is generally not discussed for foundational systems, we recom-
mend that it should be better investigated in the future which theories allow for
unlimited categories and why. Naturally, we do not take the incorporation for
unlimited categories as a requirement for our categorical foundations.

Finally, it should be noted that authors differ on what they think may be
called a foundation for mathematics, regarding the structure of the axioms. The
axioms of set-theoretical systems are generally assertoric: ZFC, for example, as-
serts the existence of an empty set, an infinite set, and from these sets the exis-
tence of infinitely many sets can be guaranteed. This way, a universe of sets can
be constructed explicitly from the axioms. It is sometimes thought (for exam-
ple, by (Hellman, 2003)) that such existence axioms are necessary for a system
that aspires to be a foundation of mathematics, and so also for category theory.
The categorical systems that we will discuss, however, differ in how much their
axioms assert. The category of sets as axiomatized by ETCS will prove to en-
sure the existence of many objects, like standard set theory itself. The axioms
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for algebraic set theory and the category of categories, on the other hand, se-
cure the existence of fewer constructions. This leads to results more often being
derived as hypotheticals instead. Note that EM, in fact, does not provide any
assertoric axioms at all. The question, then, is whether the fact that categor-
ical foundations do not allow us to explicitly construct all objects that we are
interested in is really problematic for their role as a foundation of mathemat-
ics. In (Landry, 2011) and (Landry, 2013), Landry has argued that, depending
on our objectives, we can indeed do without any assertoric axioms. Namely, it
is argued that foundations with and without assertoric axioms carry different
roles as a foundation for mathematics. This justifies the different formulations
of foundations which differ in their purposes. In Chapter 4, we will come back
to Landry’s argument concerning the purpose of foundations more elaborately,
and we will discuss how it relates to our findings. For now, recall that we aim to
take into account a variety of factors in this thesis that may turn out to be im-
portant in the distinction between the set-theoretical and categorical approach
to mathematics. Hence, we include both assertory and non-assertory theories
in our discussion of categorical foundations.

Now that we are aware of various possible requirements for categorical foun-
dations (and their complications), we are ready to embark on the discussion of
the first categorical foundational system.

3.2 The category of sets

We here consider a categorical axiomatization of set theory. Indeed, since set
theory has proven to be a successful foundation of mathematics, it makes sense
to construct a categorical analogue of it. In particular, we will look at an ax-
iomatization of the category of sets that is intended to be an analogue of ZFC.
This theory, called the Elementary Theory of the Category of Sets (ETCS), was
developed by Lawvere in 1964. It arose from the idea that set theory should
not take the element relation as primitive, but rather a relation that captures
isomorphism-invariant structure. Thus, the only properties that the ‘elements’
of ETCS-sets have are those relating them to other elements. This motivates the
fact that quantifiers in ETCS range over mappings only. Note that composition is
taken as a primitive relation for pairs of mappings f, g such that the codomain
of f is the domain of g. Before we list the axioms of ETCS, note that we need
a notion of set-theoretical elementhood that category theory does not possess.
We define the following.

Definition 4. (a) x is an element of A, denoted x P A, if and only if it is an
arrow x : 1Ñ A.

(b) a is a subset of A if and only if a is a monomorphism with codomain A.

This makes sense, as every subobject of an object A in Set is represented
by a set in PpAq. Now consider the axioms of ETCS (adapted from (Lawvere,
2005)), which describe the properties of the category Set.

1. The usual axioms for an abstract category (as given in the introductory
chapter of this thesis).
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2. All finite roots exist. Equivalently, it can be assumed that there exist a
terminal object 1 and initial object 0; for every pair of objects A,B the
coproductA`B exists; and for any pair of maps f, g : AÑ B the equalizer
k : E Ñ A and coequalizer q : B Ñ C exist.

3. For any pair of objects A,B, the exponential BA exists.

4. (‘Axiom of Infinity’) There exists a natural numbers object N .

5. (Well-pointedness) 1 is a generator. This means that if f, g : A Ñ B, then
f ‰ g implies Dapa P A^ af ‰ agq.

6. (Axiom of Choice) If the domain of f has elements, then there exists a g
such that fgf “ f .

7. Every object other than 0 has elements.

8. Every element of a coproduct is a member of one of the injections.

9. There is an object with more than one element.

The axioms above describe a particular kind of topos: a well-pointed topos with
an NNO and satisfying Choice. Well-pointedness and Choice separately ensure
that our topos is Boolean, and that ETCS is in fact equivalent to Bounded Zer-
melo set theory with Choice (BZC) (Shulman, 2008). BZC is exactly ZFC without
Replacement and with bounded Separation. Thus, if the axioms of ETCS are
intended to resemble ZFC, it is reasonable to consider strengthening ETCS with
a categorical Replacement axiom. As Replacement implies full Separation, this
would suffice. Obtaining the strength of ZFC may be attractive, as we lack the
tools to prove induction for any formula and perform transfinite constructions
on functors in BZC (Shulman, 2008). For example, we cannot iterate the power
set functor which sends n to Pnpωq even ω times, as without Replacement we
can have Vω¨2 as our universe, but |Pωω| “ iω R Vω¨2.

Shulman makes a distinction between two versions of categorical Replace-
ment that have been put forward. The first one comes from (McLarty, 2004)
and is the following:

Let X be an object and ϕpy, Zq a definable property such that for
any ‘element’ x : 1 Ñ X there exists an object Sx unique up to
isomorphism with ϕpx, Sxq. Then there exists a morphism S Ñ X
such that for any x there is a pullback square

Sx S

1 Xx

(3.1)

Equivalent versions have been described by other authors (Osius, 1974; Law-
vere, 2005). Adding this axiom (R) indeed leads to equiconsistence of ETCS+R

with ZFC. Intuitively, it is a categorical way of saying that S is the disjoint
union of each Sx, and hence S is the image of the fibers f´1pxq. This axiom is
strongly dependent on Well-pointedness, as we are representing elements of X
as arrows.
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We may not be willing to let Replacement be so dependent on Well-pointed-
ness, however, as none of the other axioms of ETCS require this. Therefore,
another possibility is to add what has been called the categorical axiom of it-
erative replacement in (Taylor, 1999). This axiom uses a categorical definition
of ordinals (as well-founded extensional coalgebras) and indexed families of
functor iterates are considered. The axiom then states that there exists a family
for each ordinal α and α-indexed functor T such that the former is isomorphic
to the colimit of T . This essentially says that we can have transfinite construc-
tions on functors (Shulman, 2008). The effects of adding this axiom to ETCS are
largely unknown.

It is good to keep in mind that for the purposes of reconstructing mathe-
matics, we do not have to assume a Replacement axiom or, in fact, many other
axioms of ETCS. Any elementary topos with an NNO will do for reconstructing
a good deal of mathematics already. Namely, in any elementary topos we can
develop an internal logic, in order to model a set-like theory. Here, for any for-
mula ϕpxq, we can define a subobject JϕK � A; we can think of this subobject
as a ‘set’ tx P A : ϕpxqu. Taking subobjects to be predicates, we can develop a
notion of truth, falsity and the usual logical connectives. Hence, this internal
logic allows us to reason with objects in our topos as if they are abstract sets.

However, this internal logic is in general intuitionistic (as we lack axioms
such as Well-pointedness and Choice). In an intuitionistic setting, categorical
Replacement (like the version from (McLarty, 2004)) no longer implies un-
bounded Separation, and we lose other results such as transfinite induction
the way we know it (Shulman, 2008). Namely, this categorical Replacement
was heavily dependent on Well-pointedness. Additionally, when constructing
mathematics in an intuitionistic topos, translating results obtained from classi-
cal logic is not always obvious, so care must be taken in doing this. However,
there do exist structuralist foundations for intuitionistic mathematics, such as
CETCS as described in (Palmgren, 2012). CETCS even includes an intuitionistic
version of Well-pointedness, and to strengthen Replacement there is an axiom
of Collection. Thus, in the presence of stronger axioms we might obtain a work-
able intuitionistic foundation. Still, we will here restrict our attention to the
better-known setting of classical logic.

3.3 The category of classes

A different approach is called algebraic set theory (AST). It uses the language of
category theory to axiomatize a category C. The axioms for C resemble those
for an elementary topos, and motivate the interpretation of C as a category
of classes. This idea starts from the fact that algebraic properties are strongly
related to set-theoretical ones, which allows for a characterization of set theory
based on arrows, instead of membership. The axioms imposed on C ensure
that C is a Heyting pretopos; hence, C will possess an internal logic. Additional
axioms in AST will assert the existence of a subcategory SC of C, which will give
rise to a notion of set. The internal logic of the categories, then, will allow for
ordinary set-theoretic reasoning. We will furthermore incorporate a power class
axiom, that also gives rise to the notion of universes. Let us begin by defining
our Heyting category C. The following conditions should hold, as described in
(Awodey, 2008):

27



1. C has all finite limits, including a terminal class 1.

2. C has all finite coproducts, including an initial class 0.

3. C has kernel quotients. This means that for every arrow f : C Ñ D, the
pullback of f against itself k1, k2 : K Ñ C (called the kernel pair) has a
coequalizer q : C Ñ Q.

K C Q

D

k1

k2

q

f (3.2)

4. C has dual images. To see what this entails, note that for any arrow
f : C Ñ D, we have a pullback functor f˚ : SubpDq Ñ SubpCq (with
SubpDq the category of subobjects of D). Then the axiom ensures that f˚

has a right adjoint f˚ : SubpCq Ñ SubpDq, so that it holds that, for any
U ď C and V ď D:

f˚V ď U iff V ď f˚U

These requirements allow for our category to be described as ‘regular’, which
leads to admittance of first-order logic. In particular, the axioms imply that for
any arrow f as in (4), f˚ will also have a left adjoint. These adjoints can repre-
sent existential and universal quantifiers and, like before, we can let operations
on subobjects correspond to logical connectives. Additionally, it can be seen
that for each object C, SubpCq is a Heyting algebra, so that we also have the
Heyting implication ‘ñ’. In short, C models intuitionistic, first-order logic with
equality.

At this point, we would like to obtain a notion of smallness, in order to de-
note which objects are sets. This is done by axiomatizing a collection S contain-
ing the small maps of C. The intuition as in (Joyal, Izak Moerdijk, Ieke Moerdijk,
et al., 1995) is that an arrow f : A Ñ B is small if each fiber f´1pbq Ď A is
small. Thus, the axioms capture some properties of maps with small fibers, and
they are stated as follows.

1. S ãÑ C is a subcategory and has the same objects as C.

2. The pullback of a small map along any map is small.

3. Every monomorphism m : C � D is small.

4. If f ˝ e is small and e is a regular epimorphism, then f is small.

5. If f : A Ñ C and g : B Ñ C are small, then so is the copair rf, gs :
A`B Ñ C.

Note that the first requirement ensures that every identity map and every
composite of two small maps are small. The second condition expresses that
the smallness property is indeed one of the fibers of the map, while the other
conditions ensure that the small maps are closed under basic operations on
classes. Now, it makes sense that we should call an object A small if, for some
f : A Ñ X and x P X, we have a small fiber such that f´1pxq “ A. Therefore,
we have the following definition:

Definition 5. X P C is small if X Ñ 1 is a small map.
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We furthermore let a relation R � C ˆ D be small if its second projection
R � C ˆ D Ñ D is a small map, and a subclass A � C is small if the class
A is small. We can now refer to the small classes as sets. With the axioms that
follow we formalize that each class has a powerclass representing its subsets. A
powerclass comes with a membership and subset relation, and with the notion
of powerset we can construct ‘cumulative hierarchies’ of sets built on any class.
First, consider the powerclass axioms.

(P1) Every class C has a powerclass: an object PC with a small relation
PC� C ˆ PC such that, for any class X and for any small relation
R � C ˆ X there is a unique arrow ρ : X Ñ PC such that the
following is a pullback diagram:

R PC

C ˆX C ˆ PC
1Cˆρ

(3.3)

(P2) The internal subset relation ĎC� PC ˆ PC is a small relation.

Hence, the powerclass operation classifies the small subobjects of a class, and
PC is small if C is. The first condition tells us that any small relation cRx can
be written as c PC ρpxq for the unique ρ : X Ñ PC such that ρpxq “ Rx. The
second requirement establishes the smallness of the powerclass tx : x ĎC yu
of any set y. Now the powerclass operation gives rise to the notion of a free
P-algebra, for which we use the following definition.

Definition 6. A ZF-algebra is a partially ordered class A that has all small joins
and is equipped with a successor operation s : AÑ A.

The free ZF-algebras have been shown to coincide with the free P-algebras
(Awodey, 2008). A P-algebra, then, is a pair pA,αq with object A and map
α : PA Ñ A (where P is the powerclass operation extended to a functor). A
free P-algebra FC on a class C, furthermore, is a P-algebra f : PpFCq Ñ FC
with a map µ : C Ñ FC that has a universal mapping property. Lambek has
proven that f and µ give rise to an isomorphism PFC ` C – FC. With this,
elements of FC can be regarded as, either, a subset of FC, or an element of
C. Thus, the intuition is that FC can be thought of as containing all ‘powerset-
levels’ of elements.

A free P-algebra for C is hence similar to the cumulative hierarchy V pCq
built on C. Then we let V pCq for a given C be the universe on C, and we as-
sume that for each class, such a universe exists. That means that V p0q exists,
and we call it the (initial) universe V , representing the class of all sets. Within
this universe we can have a membership relation by defining a P b if and only
if spaq ď b (Awodey, 2008). Similarly in terms of ZF-algebras, V is the free
ZF-algebra on 0, with the successor operation s : a Ñ tau and taking unions
as joins. Then pV, Pq models IZF. Here, it is possible to assume an axiom of
Collection to strengthen the axiom of Replacement. Furthermore, we can as-
sert that C is Boolean, for example by adding axioms of Well-pointedness and
Choice. Then clearly pV p0q, Pq will model classical ZF. We could finally assert an
axiom of Infinity. This can be done by asserting that there exists a small object I
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together with a monomorphism 1` I � I, with the intuition that I is Dedekind
infinite (Simpson, 1999). This is equivalent to asserting that C has a small NNO.

Any model of NBG is also a model of AST if we assert that smallness corre-
sponds to being a set (Shulman, 2008). The other way around does not work,
however, as AST allows for the existence of larger classes than NBG. By asserting
Well-pointedness, Choice and Infinity for C, the subcategory S of sets becomes
a WPTNC like ETCS was, and S will also satisfy the categorical Replacement we
saw before. Working in AST with these additional axioms closely corresponds to
working in NBG. We can furthermore assume that C is a topos, which gives us
equivalence to BZC+I. Finally, if we assume a Replacement axiom for C as well,
we obtain equivalence to ZFC+I (Shulman, 2008).

3.4 The category of categories

An intuitive idea for a categorical foundation of mathematics, furthermore, is to
axiomatize the category of categories. We will refer to the theory that does this
as the Category of Categories and Adjoint Functors (CCAF), a term introduced
by (Lawvere, 1966). We call the intended model CAT of this theory a metacat-
egory, which has categories as its objects, and functors as its arrows. This term
is mainly intended to avoid confusion with the terms ‘object’ and ‘arrow’, which
are only used for the categories inside CAT. CCAF is presented in a two-sorted
first-order logic, with function symbols dom, cod, 1 (identity) and ˝ (compo-
sition) satisfying the usual requirements. Furthermore, categories H,1,2,3,E
are introduced, as well as functors c, d, α, β, γ, e1, e2, and several sorted opera-
tors. Defining these particular categories and functors will allow for a notion
of ‘object’ and ‘arrow’ of a particular category in CAT. We present the axioms,
adapted from an improvement of the original theory by (McLarty, 1991), and
then clarify the role of the constant categories and functors.

1. CAT has all finite limits and colimits, with initial category H and terminal
category 1, and it is Cartesian closed. H is not isomorphic to 1.

2. The constants 2, d and c are such that d : 1Ñ 2 and c : 1Ñ 2.

3. The functor pdcq : 1 ` 1 Ñ 2 is not an epimorphism. Equivalently, if we
define a category E and arrows e1, e2 as the pushout of pdcq along itself, the
axiom amounts to requiring e1 ‰ e2. The diagram below depicts E.

d

c

e1 e2 (3.4)

4. Here we introduce the constants 3 and α, β and γ. This is a pushout:

1 2

2 3

c

d α

β

(3.5)

Additionally γ : 2Ñ 3 with γ ˝ d “ α ˝ d and γ ˝ c “ β ˝ c.

30



5. For every first-order expression Rpf, gq, with f, g variables of functor type,
it holds: if Rpf, gq defines a functorial relation from arrows of A to those
of B, then there is a functor F: A Ñ B such that Rpf, gq iff Ff “ g.

6. Some category has a non-identity isomorphic arrow.

7. There is a dual operator _op that preserves identity functors, domains,
codomains and composites of functors, and, for all categories A and func-
tors F, pAopqop “ A and pFopqop “ F.

8. dop “ c : 1Ñ 2.

Indeed, we start with the terminal category 1, which contains only one ob-
ject. Then for any category A in CAT, the objects of A are defined as functors
f : 1Ñ A. Instead, for arrows we need the category 2. As axiom 2 specifies, 2
has two objects, d and c. Then arrows are intuitively functors f : 1 Ñ A2, and
such a functor corresponds to a functor g : 2 Ñ A. Indeed, then g ˝ d : 1 Ñ A
equals dompgq and g ˝ c : 1Ñ A equals codpgq.

To account for composition of arrows within a category, we resort to axiom
4. Note that α, β and γ are arrows of 3. Furthermore, codpαq “ codpβq and
the equalities in the axiom tell us that dompγq “ dompαq and codpγq “ codpβq.
That is, γ “ β ˝ α. This allows us to define composites b ˝ a for any arrows
a, b in a category A such that a ˝ c “ b ˝ d. Namely, we have the existence of
the pushout of axiom 4. Then as we have another commutative square with
a, b : 2 Ñ A instead of α, β : 2 Ñ 3, there exists a unique functor t : 3 Ñ A,
where t ˝ α “ a and t ˝ β “ b. Then we can define the composition b ˝ a as the
arrow t ˝ γ : 2Ñ A, which will have the domain of a and the codomain of b.

It might help to consider the depictions of the categories 1, 2 and 3 as fol-
lows, based on (Ernst, 2017).

11 d c
12

α ˝ d α ˝ c

β ˝ c

α

γ
β (3.6)

The CCAF axioms plus an axiom of Infinity are equiconsistent with the axioms
for a well-pointed topos with a natural numbers object and satisfying Separation
(McLarty, 1991). We can consider strengthenings of CCAF to obtain a more
complete foundation of mathematics. For example, we can assert the existence
of a category A such that A is a model of ETCS. This means we could work with a
topos of sets and obtain the more higher-order results we can get from there. In
fact, we may assert the existence of any category or functor, should that benefit
the theory. Alternatively, axioms concerning CAT itself could be added, in order
to make CCAF a more encompassing theory. For example, it is unclear from this
system whether CAT should be an object of itself.

Besides the categories H, 1, 2, 3 and E, the axioms of CCAF prove the exis-
tence of several other finite categories. For this, it needs to be assumed that E
has no more than the four arrows that it is required to have (McLarty, 1991).
With this assumption, a theorem can be proven that implies the existence of par-
ticular categories. Out of these categories, the ones that have all finite products
are equivalent to lattices, and the ones that are Cartesian closed are equivalent
to Heyting algebras. In the theory, sets are then taken to be discrete categories.
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(McLarty, 1991) does not think that the CCAF axioms prove that every category
has a maximal discrete subcategory (that is, a set of objects), hence that there
likely will be large categories.

However, apart from these particular categories, no other category has to
exist according to the CCAF axioms. This means that the usual categorical results
must mainly be derived as hypotheticals. Hence, this gives us results in a more
general form, instead of providing specific instances.

3.5 Higher categories

A perspective discussed in (Shulman, 2008) is that for large sets, and similarly,
large categories, it often suffices to know them up to isomorphism or equiva-
lence (respectively). For smaller constructions, a more accurate representation
is sometimes desired. In order to provide this level of generalization for large
categories, however, we need to go further than axiomatizing a category of
categories. The notion of categorical equivalence requires that of natural trans-
formations, and hence we need to work in a 2-category. Thus, we may be inter-
ested in axiomatizing the 2-category of large categories CAT, as this represents
more accurately the way we might want to deal with large categories.

There is no universally agreed upon axiomatization of CAT. Attempts have
been made, however: for example, (Weber, 2007) gives a 2-categorical gener-
alization of an elementary topos, and investigates properties of the 2-category
CAT, where CAT has an internal category of sets. (Shulman, 2009) informally
lists several desired axioms for the 2-category. Here, it is suggested that CAT
should be a 2-pretopos, which gives us an internal logic, and it could assert the
existence of certain exponentials. Additionally, following (Weber, 2007), a cat-
egory of sets could be defined as a ‘classifying discrete opfibration’, satisfying
suitable axioms. Finally, an axiom of Well-pointedness would ensure that our 2-
category is indeed one of categories. Now the object of sets allows for the usual
categorical constructions with the help of 2-categorical limits and the internal
logic. This gives us an idea of what the axiomatization of CAT would look like;
we will not go into any more detail here.

Once we are willing to axiomatize 2-categories, we could similarly assemble
2-categories (of large categories) in a 3-category, and so on. It is unclear how
this would be axiomatized. However, there exist two theories, relating to each
other, that are inspired by higher-categorical ideas. We shortly wish to discuss
both here. The first, called FOLDS, was developed in (Makkai, 1998). Makkai
expressed the first understanding that Martin-Löf type theory can be used to
formalize (higher) categorical mathematics. Makkai looks for the universe and
the language for a structuralist foundation of abstract mathematics, as category
theory does not provide these notions clearly. That is, he aims to find a metathe-
oretic description of a category of categories. The idea is that First-Order Logic
with Dependent Sorts (FOLDS) suits to be the language, and the universe should
contain something called weak n-categories. First, a set A is defined as a type A,
and ‘elements’ of A possess a dependent type EpAq. Dependent types allow for
many more constructions in this way. Furthermore, an isomorphism principle is
asserted, saying that properties of objects in a category are invariant under iso-
morphism. This principle requires a change in the definition for a functor, and
this is given by the notion of a saturated anafunctor, of which we omit the tech-
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nical definition here. By replacing functors with saturated anafunctors, we get
from the 2-category CAT the bicategory SanaCat — an additional modification
gives us a so-called anabicategory.

The point is that (Makkai, 1998) suggests that for a 2-category CAT we
should take a saturated anabicategory. If we keep on increasing the dimension
(and hence, generality), then for an n-category we should take the general
notion of a weak n-category, a concept that is still being researched. The idea is,
then, that the universe of higher-dimensional categories (or weak n-categories)
is an alternative to the set-theoretic cumulative hierarchy. Now with FOLDS,
Makkai introduces the notion of a one-way category, which is a category where
each object can only be the domain of finitely many arrows and there cannot
be any infinite paths; a one-way category corresponds to a partially ordered set.
This is formalized by the notion of an L-structure, which is a functor from a
one-way category into Set. A one-way category L is called a similarity type, and
for each L there will exist the concept of L-equivalence of L-structures. That
is, FOLDS-expressible properties over L are invariant under L-equivalence. This
expresses the idea that the identity relation is something that is derived from a
context, instead of being provided a priori.

Now, Univalent Foundations (UF) followed from FOLDS as a further devel-
opment in the search for a way to syntactically restrict what we can express
about mathematical objects, and category-theoretic language is used in defin-
ing this theory. Indeed, Tsementzis (2017) argues that the “real culprit” of the
accommodation for more than just the essential properties of mathematical ob-
jects lies in “the availability of a global (untyped) identity predicate”. Essential
to the theory, then, is the idea that we should treat isomorphic mathematical
structures as being identical (as we already do this informally). Thus, it pro-
vides a richer notion of equality. This is formalized by the Univalence Axiom,
which says that, given elements of the universe as types, equivalence between
types is the same as equality between types (Kapulkin and Lumsdaine, 2012).
Informally, it can be phrased as follows:

(UA) Identity is isomorphic to isomorphism.

That is, for objects A,B (UA) says that pA “U Bq – pA – Bq. This allows UF to
succeed rather well in satisfying the by Tsementzis formulated property:

(SFOM) Any theoretical context can be naturally formalized in [a
foundational system] S in such a way that any grammatical property
of an object in S is invariant under the relevant criterion of identity
in that context.

Hence, in UF, given a set-, group- or category-theoretical identity criterion, we
can restrict the language in such a way that isomorphic objects with respect to
this criterion are made indistinguishable (even though we remain aware of the
multiple representations of this entity). This property prevents us from being
able to express properties that are not structural.

Tszementzis argues that this makes UF a better structural foundation than
(ZFC and) ETCS. Namely, ETCS incorporates a global, untyped identity rela-
tion, so that it can still express differences between, say, the additive group of
integers Z and the additive group of even integers 2Z, even though they are set-
theoretically isomorphic. To see this, define the arrow f : 1 Ñ Z (i.e., f P Z),
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Figure 3.1: Two isomorphic yet different NNOs in ETCS

and let the property ϕpxq be that codpfq “ x. Then ETCS will always satisfy ϕpZq
(i.e., codpfq “ Z), but not ϕp2Zq (i.e., codpfq “ 2Z). An analogous situation for
the natural numbers is illustrated by Figure 3.1. The problem is thus that ETCS

(and ZFC) still allow for the existence of distinct isomorphic objects, and that
they can detect this distinction. To solve this, we might for example formulate
ETCS inside Makkai’s system. However, this remains problematic for categories,
as the identity criterion here is that of categorical equivalence. Thus, FOLDS will
still express properties that are not invariant over equivalence.

We agree with Tsementzis that this argument makes ETCS a weaker candi-
date for a structuralist foundation. It remains unclear, however, to what extent
categorical foundations are characterized by structuralist properties. The result
given by Tsementzis currently gives us a property that ZFC and ETCS have in
common; it is possible, then, that a ‘structuralist’ way of thinking is not inher-
ent to categorical thinking compared to set-theoretical thinking. Of course, this
a rather quick conclusion to reach here. However, it provides an interesting
addition to the discussion concerning the relation between structuralism and
category theory, and is worthy to be explored further. Still, even if it is the case
that structuralism does not relate to an essential property of categorical think-
ing, it may still be the case that structuralist thinking is better accommodated
for in a categorical setting, compared to a set-theoretical one. This raises the
question when precisely something can be regarded as inherent to a certain the-
ory (which is a very interesting matter, but unfortunately we lack the time to
properly address it in this thesis).

Related to this (and returning to our purposes), is that in both FOLDS and
UF, the main method to improve the suitability of categorical theories as struc-
turalist foundations is by taking syntactical measures. However, we state that
this is not a method inherent to category theory itself, as it concerns changing
the way that identity is incorporated in the language of a theory. Again, such
changes may bring very useful properties with them in a categorical setting,
but they do not inform us about approaches inherent to categorical foundations
themselves. This is something the reader should keep in mind — because the
approach relates to the method of abstraction in Chapter 4, however, we will
briefly cover the effect of the current approach there, focusing on UF.

3.6 Discussion

Summing up. We have seen different approaches towards the axiomatization
of a categorical foundation for mathematics. Starting with an elementary topos
is a common approach for defining some category of sets. The theory ETCS adds
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axioms for Well-pointedness, an NNO, Choice (and optionally Replacement),
and thereby resembles standard set theory. These extra assumptions are merely
optional for the category of classes of AST — adding them would turn the sub-
category of small classes SC into a WPTNC as well. However, AST alone provides
a collection of axioms that introduces powerobjects and universes on top of
the notion of smallness. A different approach is taken for CCAF, where we are
merely told how categories are defined from functors in the meta-category and
what basic properties they satisfy. Here, the theory allows for a rather free im-
plementation of specific categories, which may be added as extra assumptions.
Finally, FOLDS, and inspired by it, UF, pursue a foundation based in category
theory that requires mathematical objects to be invariant under a suitable no-
tion of isomorphism. To this end, the Univalence Axiom in UF explicitly alters
the definition of identity.

Take away. From this chapter, we should take away that, similar to the set-
theoretical foundations for category theory, a good deal of variation exists among
categorical foundations. This shows that the categorical approach to mathemat-
ics possesses a certain flexibility with respect to its perspective on mathematics.
In particular, categorical foundations thrive when pushed close to set-theoretical
notions, but also appear in more neutral forms when sticking to basic categorical
notions. We also see that, compared to set-theoretical foundations, categorical
foundations vary more in the type of axioms they support. That is, whereas
set-theoretical foundations for category theory all explicitly construct their ob-
jects, categorical foundations are less settled on the objects they assert. Fur-
thermore, without the primitive notion of membership, categorical foundations
are shown to inhabit various levels of analysis. Where ETCS and AST analyze
the (set-representing) objects of a category, CCAF instead analyzes categories
themselves. EM, on the other hand, defines the notion of a single category, but
can clearly capture many of those with its definition. It should be kept in mind,
then, that these factors individually cannot pin down the categorical perspective
on mathematics. This will prove relevant in the following chapter.

A more coherent pattern which is seen in categorical foundations is that
arrow-relations replace the role of (set-theoretical) membership. In ETCS, this
is explicitly the case, as members of a set are directly taken to be arrows from
the terminal object. In AST, however, a local element relation belonging to
powerobjects is represented as a subobject, although specific members are not
recognizable from this definition. Where CCAF does not incorporate explicit set-
theoretical membership, it represents the ‘elements’ of specific categories (i.e.,
their objects and arrows) as particular functors. Thus, it seems that arrows are
a deciding factor in a great deal of the relevant notions in categories, and they,
too, are flexible in the role they can take on.

What is next? We hereby conclude the part of this thesis that concerns itself
with the introduction of foundational systems based in set theory and category
theory. That is, we are ready to apply our newly obtained knowledge of these
systems to the exciting and slightly mysterious domain of mathematical thought.

35



Chapter 4

Mathematical thought

With the knowledge of the behaviour of category theory in set-theoretical foun-
dations and the make-up of categorical foundations fresh in our minds, we are
all set to address the main research question of this thesis in the current chap-
ter. Recall that (Mathias, 2001) and (Ernst, 2017) have put forward the sug-
gestion that category theory and set theory represent ‘two distinct modes of
thought’. Their idea is that, by considering which fields of mathematics are
naturally captured by category theory (and set theory), and where categorical
(and set-theoretical) methods fail, it might become clear that a different kind
of mathematical thinking is at play in either theory. Although we consider this
worthwhile to pursue, our starting point is the idea that ways of mathematical
thinking are well-represented by foundations for mathematics — and that com-
bining the perspectives from various foundations within category theory and set
theory provides us with a realistic and complete view of what both theories are
about.

Then, instead of deducing from applications to various mathematical fields
what types of thinking are at play, we change the order. The approach from
foundations lends itself quite naturally to outline, first, factors that describe
a distinction in mathematical thinking, which can then be investigated with
respect to foundational systems. This will avoid the uninformative situation
where theories turn out to be suitable for mathematical fields that were devel-
oped inside them or with respect to them, and unsuitable for fields that have
been developed in other theories. In that sense, by beginning with a concep-
tion about mathematical thought that does not rely on technical mathematical
ideas, we hope to be able to investigate the distinction between set-theoretical
and categorical thought slightly more fruitfully.

Indeed, there exist several conceptions about the distinction between cate-
gory theory and set theory concerning mathematical thinking. In this chapter,
we investigate two such conceptions: one focuses on the idea that category the-
ory and set theory represent different ways of thinking about the same subject
matter, while the other suggests that they are perhaps similar ways of thinking
but have a varying subject matter. In particular, we focus first on the conception
that the contrast between set theory and category theory corresponds to the
distinction between the bottom-up and top-down approach, and second on the
idea that category theory analyzes mathematics with a higher level of abstrac-
tion than set theory. If these factors turn out to be important for the distinction
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between set-theoretical and categorical approaches for mathematics, further re-
search could investigate whether they indeed correspond to the mathematical
fields that are strongly and weakly supported by category theory and set theory.

The chapter is structured as follows. We clear up the definition of a bottom-
up and a top-down approach to mathematics first, after which we apply the
result to set-theoretical as well as categorical foundations to argue that these
terms do not carve up the conceptional space in terms of set theory and cate-
gory theory. Second, we borrow a formalization of abstraction levels developed
in (Floridi, 2013), and we argue it should incorporate an additional require-
ment for our purposes that helps capture true abstraction relations more di-
rectly. After applying the method to specific foundations for mathematics, we
suggest that in several cases, categorical foundations approach mathematics
from a higher level of abstraction than set-theoretical foundations. However,
we also find that the differences in abstraction between set-theoretical and cat-
egorical foundations are less big than commonly thought, as supported by the
lack of convincing satisfaction of our additional requirement. This leads us to
the last section of this chapter, which will take into account particular roles of
foundations.

4.1 Bottom-up and top-down

The distinction between a bottom-up and a top-down way of thinking appears
regularly in mathematics. As the distinction is applicable to various (non-)
mathematical processes, an informal description of the terms ‘bottom-up’ and
‘top-down’ is usually provided. Intuitively, both terms possess a dynamic com-
ponent, where ‘bottom-up’ tells us we are working towards bigger things, while
‘top-down’ somehow starts with a bird’s-eye view and zooms in. However, as
our aim is to identify different types of thinking, we shall need a more precise
definition of the terms. We will bring this about by responding to the use of the
terms ‘bottom-up’ and ‘top-down’ in (Awodey, 2004) and (Landry, 2013). In
both papers, a top-down approach is argued to fit a categorical way of working,
while the bottom-up approach is (implicitly) associated with the well-known
case for set theory. However, in this section we wish to argue that the con-
ception of ‘top-down’ used for this distinction does not capture what our basic
intuition tells us. Rather, we will see that Awodey’s definition is more an ad hoc
way of fitting it into a structuralist way of thinking. This, then, does not corre-
spond to how ‘top-down’ is commonly used, so that ‘top-down’ is perhaps not a
good indicator of the categorical way of thinking after all. With our cleared-up
definition of ‘bottom-up’ and ‘top-down’, we will argue against their carving up
of the conceptional space in terms of category theory and set theory.

First, consider the way in which Awodey and Landry use the distinction be-
tween bottom-up and top-down. We should note that the debate they focus on
mainly addresses the suitability of category theory as a foundation for math-
ematics, a matter we do not take up ourselves. However, their association of
different ways of working to category theory and set theory is relevant for us.
In (Landry, 2013), Landry uses Awodey’s conception of ‘bottom-up’ and ‘top-
down’ to argue that they correspond to a constitutive and organizational role
of foundations for mathematics, respectively. She argues, from there, that cat-
egory theory, with its various systems, can be a foundation for mathematics in
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the sense that it organizes mathematics. Relating the distinction between top-
down and bottom-up with this, Landry states that the category theory axioms
can be taken as “top-down implicit definitions”. She says:

[...] the [category-theoretic] axioms, as schematic implicit defini-
tions (as opposed to assertory truths), structure our mathematical
concepts in terms of the relations that bear between them (as op-
posed to in terms of the “subject matter” of which they are con-
structed or constituted) so that the mathematical structuralist, as
Awodey’s distinction between top-down and bottom-up ways of work-
ing suggests, begins with the axioms. (Landry, 2013, p. 41)

Then let us take a closer look at Awodey’s distinction. Awodey’s notion of a
‘bottom-up’ approach seems intuitive and clear-cut, and we will adopt it as the
basis of our own definition. As described in (Awodey, 2004), one here starts
with a “specific range of specific “objects”, presumed or constructed, but some-
how fixed and given”. A mathematical statement X is then interpreted inside
this range of objects: it is taken to apply to the objects that X talks about and
that are accessible to us from the given ‘domain’. We add to this that, when a
new entity is introduced, it is important that this happens along with an increase
in complexity. That is, with the available objects and application of the rules at
our disposal, via the bottom-up approach we construct more complex entities
than we had before. Doing so will give us increasingly more information about
the make-up and behaviour of a system as a whole.

For the top-down approach to mathematics, however, we wish to argue
against Awodey’s (and thereby also Landry’s) conception. For Awodey, the top-
down way of thinking does not presuppose a fixed universe of objects anymore.
Similarly, top-down mathematical statements do not concern universal quantifi-
cation over a given domain. Instead, a top-down statement X is “a schematic
statement about a structure [...] which can have various instances” (Awodey,
2004). The ‘schematic’ property of top-down statements is meant to convey
that they are if-then statements, where the range of the ‘if’ part does not need a
restriction. This is because we have not specified a collection of things, and we
can simply take anything that satisfies the if-requirement. Awodey explicitly re-
lates his top-down approach to structuralism, and he argues that, by having its
axioms ‘go down’ by specifying more and more structure of concepts (instead of
actually constructing objects), category theory is very effective as a structuralist
framework.

We wish to respond, however, that the conception of top-down as relating
to structuralism does not do justice to the true meaning of ‘top-down’. The in-
formal nature of ‘top-down’ allows for multiple interpretations of the concept,
including that of Awodey. However, this can lead to misunderstandings, and
we encourage a consistent use of the term. In particular, we favor an intuitive
definition that starts from the conception of ‘bottom-up’ and ‘top-down’ as op-
posites. Recall that for the bottom-up approach, we stated that a build-up of
complexity was characteristic. This suggests that for the top-down approach, a
breaking down or decrease in complexity is essential. That is, we start by ‘ex-
ternally’ considering a system of mathematical structures, which we can break
down into subsystems of lower complexity. This implies that (in well-founded
cases) we in the end reach the most basic elements of our theory, that have
lowest complexity. This requires that, as we are in general able to zoom in to
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the most basic elements we have, we should always have in mind, or at least
decide at some point, what universe we are working in. This corresponds to the
bottom-up way of working. In short, where the bottom-up-minded can build
from available elements a structure of higher complexity, the top-down-minded
can envisage a complex structure and ‘fill in the gaps’ with lower-complexity
elements to ensure its existence. This, then, forms our distinction between
bottom-up and top-down. Instead of ascribing the difference between bottom-
up and top-down to the explicit or implicit treatment of objects, corresponding
to a constructivist and structuralist approach, respectively, ‘bottom-up’ and ‘top-
down’ should be taken as differing in how they pass between various complexity
levels in mathematical structures.

Note that we, in turn, have not been fully explicit about the meaning of
increasing and decreasing ‘complexity’. This is because the exact interpretation
of our sense of complexity is dependent on the particular objects one works
with. Hence, when using this notion in our investigation of ‘bottom-up’ and
‘top-down’ ways of thinking in the various foundational systems, we will specify
each time what we mean by it.

We hope now to have cleared up our conception of top-down and bottom-
up. We will next argue that, by looking at the perspectives from categorical and
set-theoretical foundations for mathematics, the distinction between (our sense
of) top-down and bottom-up is not inherently related to the distinction between
category theory and set theory. Let us clarify that we do not take the bottom-
up/top-down distinction to be generally unhelpful: on the contrary, it allows
for an enriched characterization of many concepts. However, we argue that the
distinction is not helpful for discriminating a categorical from a set-theoretical
way of thinking. Using results from the previous chapters, we will see that set
theory and category theory allow for, and possess properties of, both ways of
thinking. Hence, neither way seems to capture entirely the nature of set theory
or category theory.

4.1.1 Relation to set theory

By considering set-theoretical foundations and how they form mathematical
objects, we recognize two main properties that motivate the answer to whether
they advocate a bottom-up or a top-down way of thinking. The first is well-
foundedness, relating to the conception behind a set theory, and the second
concerns the specific workings of particular axioms in a system. We argue that
both allow for an upward and downward direction of complexity change. For
the application of the term ‘complexity’ to sets, we would like to distinguish be-
tween two natural ways in which sets possess complexity. These do not define a
universally acknowledged description of ‘set-theoretic complexity’, but they cor-
respond to notions of membership-related structure that are well-known within
set theory.

1. First, each set has a cardinality representing its size. It is simple and
natural to think of a setX as being more complex than a set Y if |X| ą |Y |.

2. Intuitively, the membership relation also expresses differences in depth
(i.e., length of membership chains) in each set. For well-founded hered-
itarily finite sets, the longest membership chain can be determined by
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taking the maximum depth in a graph representation of a set, such as the
apg-representation described in (Incurvati, 2014) (recall the definition of
an apg from Chapter 2). This notion happens to correspond exactly to
the notion of rank. Whereas the rank is also an appropriate measure of
complexity for well-founded non-hereditarily finite sets, it here no longer
corresponds to the maximum depth of its apg-representation. For exam-
ple, ω will only contain finite membership chains, but it has infinite rank.
In the non–well-founded case, neither rank nor the depth of an apg-set is
an appropriate measure of complexity.

Hence, we will take as our definite (and more encompassing) measure
of complexity for an apg-representation of a set, the number of its non-
isomorphic sub-apgs. This approach is advocated for and applied to gen-
eral graphs by (Kim and Wilhelm, 2008); the situation is easily adapted
to apgs.

The measure of non-isomorphic sub-apgs, combined with the cardinality of a
set, is then what we adopt in order to evaluate the build-up and breakdown of
complexity in set theories. This will reveal how different axiomatizations and
conceptions of set theory approach the formation of objects in their theory.

Well-foundedness and non–well-foundedness. Starting with the property of
(non–)well-foundedness, recall that we pointed out in Chapter 2 that the Foun-
dation axiom (absent in non–well-founded set theories like ZFA) plays an im-
portant role in generating the iterative conception of set. In fact, it corresponds
explicitly to this conception, as the requirement that there can be no infinite
descending chain of sets is equivalent to saying that for every set X, there ex-
ists an ordinal number α such that X P Vα (for Vα a level of the cumulative
hierarchy V ) (Moss, 2018). This allows us to argue that, depending on the in-
corporation of a Foundation axiom or not, set theory can accommodate both a
bottom-up and a top-down conception towards its objects. Should we choose to
incorporate Foundation, then the iterative conception of set reflects a bottom-
up approach. For this, we have the empty set as a base element, and the Power
Set axiom as the main complexity-increasing factor. Observe that the Power Set
axiom increases both the rank and cardinality of sets (and the number of sub-
graphs of the apg-representation), although its effect on cardinality is notably
stronger than on rank (if a set has n members, its power set has 2n, whereas
one application of the power operation adds just one extra ‘level’ in the mem-
bership chains). Then, when considering an individual set, it is natural to ask
what level of the cumulative hierarchy it is part of, and to regard it as a product
of a complexity-increasing operation. That is, a set is here something that is
constructed from prior-existing, less complex sets.

This perspective is countered by the graph conception of set. The approach
here is to begin with the whole conception of a set, and to repeatedly apply
the reverse membership relation to unravel its members. Hence, the whole
set ‘exists first’, and we are pursuing its less-complex members. Note that, while
this unravelling of sets results in sets with membership chains that are no longer
than before, we are not necessarily pursuing sets with fewer members than
before, or equally many. In fact, if we start from any singleton tXu containing a
set X with more than one member, applying the reverse membership operation
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leaves us with a set with more members than before. Still, the measure of non-
isomorphic sub-apgs provides a more consistent picture, as applying the reverse
membership operation to an apg will always leave us with an apg that has no
more non-isomorphic subgraphs than before.

In short, the graph conception of set then has a top-down nature, relying
on the idea that “a set simply is [...] an object having a (hereditary) member-
ship structure” (Incurvati, 2014). By allowing for downward infinity, non–well-
founded set theory encourages the unravelling of sets, and by that a top-down
approach to sets. If we only allow for upward infinity, the bottom-up view of sets
is more intuitive. Thus, the perspective towards infinity we take affects the di-
rection of complexity changes in the conception of set, and it even affects which
objects may exist. Still, note that neither conception rules out occurrences of
the other direction of complexity change in the theory.

Workings of the axioms. This relates to the second argument we make here,
which concerns the particular workings of the axioms of a foundation. First,
we claim that practically every set theory contains ‘bottom-up axioms’ as well
as ‘top-down axioms’. In ZFC, (and hence any extension of ZFC), the Pairing
and Power Set axiom acting on available sets are clear examples of (non-strict)
complexity-increasing operations (in both senses mentioned before). The Union
axiom often (non-strictly) increases the cardinality of a set, suggesting it has
bottom-up characteristics. For Union, the measure of non-isomorphic sub-apgs
tells us, however, that the top node in the set-representing apg should discard
all the first edges it is connected to, and create new edges to the nodes that
were ‘second in line’. This certainly corresponds to a (non-strict) decrease in
the number of non-isomorphic subgraphs. Hence, the Union axiom correponds
to a top-down approach to sets. The point here, then, is that, whereas the
conception of set (iterative, graph, or something else) may advocate a general
sense of top-down or bottom-up for a foundation, individual axioms often still
allow for both approaches in the construction of sets.

Note that NFU is a bit of a special case here. If we take the system S˚ de-
scribed in Chapter 2, we see that it fits in with the previous paragraph as it
extends ZFC. However, NFU by itself is axiomatized only by (weakened) Exten-
sionality and Stratified Comprehension. While Extensionality only tells us when
two sets are equal, we claim that Stratified Comprehension exhibits a top-down
way of working. This axiom tells us that sets in NFU are simply ‘predicates in
extension’, without a sense of which class exists prior to another. When apply-
ing the axiom, we create a set that contains every set satisfying some stratified
property. We remark here that this presupposes a collection of all stratified sets
that we can quantify over, and out of which we may select a subset. Clearly,
this subset will be of lower complexity than the implicit universal collection of
NFU-sets—hence, it advocates a top-down approach. We might argue that NFU

allows for a simulation of a bottom-up construction of sets, by for instance ap-
plying Comprehension for a (stratified) property ϕ, a (stratified) property ψ,
and subsequently forming a more complex set by taking the property ϕ ^ ψ.
However, we note that the more complex set is here constructed by a separate
application of Comprehension, involving once more a complete quantification
over all stratified sets, instead of building on the actual sets represented by ϕ
and ψ. Thus, the method by which NFU forms sets is essentially always top-
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down, even though indirectly we can detect a build-up of complexity. Note that
the Comprehension axiom also has a top-down working in the form of full Com-
prehension (in MK), restricted Comprehension (in NBG) and Separation (in ZFC

and various extensions).
Furthermore, in NFU, Stratified Comprehension certainly allows for non–

well-founded sets in the theory (such as a set of all sets), although note that
the graph conception cannot be applied here. Similarly, one could envision
an iterative conception of set by taking the urelements allowed by weakened
Extensionality to form the basic elements of the theory. However, these elements
do not at all form the basis of a complexity-increasing hierarchy induced by the
axioms. The universe of New Foundations is untyped, so that there is no explicit
idea of a bottom-up construction from these elements or a top-down unravelling
of objects up to these urelements. Thus, NFU lacks a compelling conception of
its sets that advocates either a top-down or bottom-up approach. The workings
of the particular NFU-axioms themselves, however, represent a top-down way of
working.

Finally, we recall from Chapter 2 that ZFC-classes can be defined implicitly by
taking a ZFC-definable property. Through an informal use of (class) Comprehen-
sion, ZFC can here ‘imagine’ that classes exist somewhere outside its universe,
and using ZFC they can be manipulated. As these classes are objects that can
be thought of only as instances of (informal) Comprehension, we can only asso-
ciate them with a top-down construction. This is in line with the fact that they
cannot be reached by the power set operation on another set, and are hence not
part of the (bottom-up) iterative conception of set. A similar argument works
for NBG, where the informal use of Comprehension in ZFC is included explicitly
in the theory of NBG to allow for the construction of proper classes. Thus here,
we see a distinction between small and large (definable) sets that relates to the
distinction between bottom-up and top-down.

4.1.2 Relation to category theory

The knowledge we obtained of categorical foundational systems will help form
our claim that category theory, too, exhibits both bottom-up and top-down char-
acteristics. As before, we will consider both the more conceptional approach to
mathematics of a foundation, and its axiomatization. While conceptions of cat-
egorical foundations are more often top-down than bottom-up, most categorical
axioms turn out to have a bottom-up nature (although explicit bottom-up con-
struction of objects generally does not encompass all objects that categorical
theories aim to talk about). Several foundations, additionally, take a neutral
position regarding the bottom-up/top-down distinction.

In order to talk about complexity in categorical foundations, we should take
into account the different types of objects that each foundation looks at: each
will require a different sense of complexity. Below, we will describe a semi-
formal measure of complexity for each foundation. It is not the purpose of this
thesis to dive into the precise complexity of various categorical objects, so that
we remain a little general here at times. Our purpose here, then, is to show that
there exist measures of complexity for categorical foundations that we can relate
to the notions of bottom-up and top-down approaches to mathematics. Thus,
consider the following foundations and corresponding complexity measures.
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CCAF The objects of study in CCAF are categories. The complexity of a category
should intuitively capture the complexity of its structure in terms of ob-
jects and arrows. A rather simple way of formalizing this is to consider
its size, i.e. the number of objects and arrows in a category. However,
this tells us nothing about the complexity difference between two cate-
gories that have the same number of objects and arrows (even though
we could imagine one has a simpler structure than the other). There-
fore, we additionally take on the previously used approach from (Kim and
Wilhelm, 2008). That is, we will take a category to have a higher com-
plexity than one with the same number of nodes and edges, if it has more
non-isomorphic subcategories than the other.

ETCS As a categorical set theory, the objects of study of ETCS are sets and their
members, instead of entire categories. Thus, we would like to have a no-
tion of complexity for categorical sets. As we retain the dependency of
sets on their members in ETCS, we will adhere to the notion of member-
ship for our complexity measure. We took a cardinality increase to be part
of a complexity increase in set theory—the same requirement can be ap-
plied to ETCS. Indeed, we take sets X in ETCS for which there exist many
arrows x : 1Ñ X to be more complex than sets for which there are fewer
such arrows. However, as membership chains of length >1 are not for-
malized in ETCS, the apg-representation of an ETCS-set would only give us
its cardinality without any further membership structure. Thus, as mem-
bership chains do not play a role here, we can simply take the cardinality
of a set to represent its complexity.

AST In AST, membership does not let itself be captured by specification of indi-
vidual members. However, the theory does impose a notion of smallness
on some of its classes, which encompasses the objects and arrows with the
most straightforward properties (such as being an identity arrow). Thus,
we let small AST-classes be of lower complexity than proper AST-classes.
Furthermore, the relation of the powerclass operation to its analogue in
set theory, and the intention of a powerclass to represent the subsets of a
class suggests that a powerclass PC should be taken to be of higher com-
plexity than C (even for proper classes, as a powerclass PC is only small
if C is). Similarly, a universe V pCq, intended to represent the cumulative
hierarchy built on C, should be taken as more complex object relative to
C. Finally, note that C has finite limits and finite coproducts, which are
notions that should be taken as more complex than the objects from which
they can be constructed.

It seems that we have to make do with these general and relative require-
ments for a sense of complexity in AST: we do not seem to be able to
capture absolute complexity in the sense that we can always compare ob-
jects in terms of their complexity. The issue with this is, of course, that we
are here already looking at the axioms and deriving from them notions of
complexity. Our intention was, instead, to come up with an intuitive mea-
sure of AST-complexity first, and then apply this to the axioms. However,
a natural candidate for this does not present itself in AST.

We can now apply these requirements to the relevant foundations. Starting
with CCAF, its assertion that the ‘metacategory’ CAT has all finite limits and col-
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imits, and is Cartesian closed, certainly increases the number of subcategories
of CAT. Namely, the exclusion of limits and colimits already creates various non-
isomorphic subcategories of CAT. The given properties of categories H,1, 2, 3
and E, furthermore, provide explicit categories and functors to include or ex-
clude in CAT, acting on its number of subcategories. Similarly, the CCAF axioms
provide the existence of functors defined by a relation, and for every category it
harbors they provide a dual (opposite) category. These axioms affect the com-
plexity of the metacategory CAT, but note that the assumption of finite limits
and colimits also acts on the complexity of individual categories: a limit cate-
gory will be more complex than the categories it was constructed from. Fur-
thermore, to directly affect the complexity of an individual category, the axioms
should act on the construction of functors from 1 and 2 (i.e., the objects and
arrows of a category, respectively). The only axiom that does this, however,
asserts that some category has a non-identity isomorphic arrow (technically in-
creasing the number of subcategories of this category).

Thus, CCAF does not have a lot of axioms that act on complexity, but the
ones that do seem to increase it. This suggests that the CCAF axioms represent
a more bottom-up than top-down approach to mathematics. Furthermore, we
also maintain that categories made up of more arrows and objects (i.e., of a
bigger size) are more complex. As the individual categories are defined from
the metacategory, the conception of individual categories starts by conceiving
the whole CCAF-universe. Only then can we focus on a particular category in the
metacategory by considering a particular subset of functors that commute with
a particular category. This ‘zooming in’ corresponds both to a size reduction
and a decrease in non-isomorphic subcategories of CAT. In this sense, then, the
conception of CCAF advocates a more top-down approach to the make-up of
individual categories in the theory.

The axioms of ETCS say more about complexity changes. For example, they
assert that the coproduct A ` B of two sets A,B always exists. A ` B will,
through composition, have as many members as A plus B; taking the coprod-
uct in ETCS hence increases the complexity of sets. It can also be shown that
exponentials AB (which are additionally ensured to exist for sets A,B) gen-
erally have more members than A (the situation is less clear for B). Hence,
these axioms represent bottom-up ways of thinking. Additionally, objects like
0, 1 and an NNO are specifically assumed to exist in the theory and are suit-
able for applications of bottom-up axioms. The other axioms mostly provide
general requirements for the make-up of the model of ETCS, and do not indi-
cate complexity changes. Concerning the conception towards mathematics that
categorical foundations employ, we see that the axioms for ETCS are similar to
those of ZFC. We are told what a category is, followed by several existence
claims and properties of categories. As we have no membership chains, how-
ever, the Axiom of Foundation is irrelevant and gives us no incentive to either
adopt the iterative or the graph conception of set. A similar argument has been
made in (Linnebo and Pettigrew, 2011), where it was concluded that the con-
ception of the iterative hierarchy depends strongly on the membership relation
between sets, which ETCS does not provide. Hence, we claim that the conception
of ETCS is neutral in terms of the distinction between bottom-up and top-down.
Then, by our observation that the axioms of ETCS express mainly bottom-up
ways of constructing categorical sets, we conclude that the bottom-up approach
is slightly better represented.
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For AST, note that we already largely gave away the effect of the axioms
on complexity. For its conception, we observe that the axioms first of all start
with a category of classes, from which the notion of smallness is subsequently
derived. Hence, this resembles a complexity-decreasing process. Furthermore,
bottom-up axioms establish, for every class, the existence of a powerclass and
a universe based on it. The axiom ensuring the existence of limits and finite
coproducts also has a bottom-up nature. These are the main notions in the
axiomatization of AST that we pointed out as possessing comparable complexity.
It thus seems that AST combines bottom-up and top-down axioms acting on its
objects, although bottom-up axioms are more common.

EM-category theory. We here separately consider the EM-axioms. EM tells us
what a category is: there is no explicit existence assumption of a category, nor
of an object or arrow. We could perhaps infer a measure of complexity, where
objects that have more arrows going to and from them than other objects are
relatively more complex; or we can take into account the number of objects
that a particular object is related to. However, this gives us nothing to hold
on to with respect to the EM-axioms, as it is entirely neutral about the specific
structure of categories. That is, with its axiomatization, we claim that EM does
not express a top-down or bottom-up approach. We mean here that EM does
not tell us how to approach or understand the concept of category. Of course,
the definition itself has many instances and it captures all structures that are
categories. However, there is no sense of movement or direction of complexity
in the axioms, something that the bottom-up and top-down approach both re-
quire. Thus, we conclude that EM-category theory is neutral with regard to this
distinction.

Finally, we see that the type of set theory that successfully founds EM-category
theory also does not characterize a sharp distinction between bottom-up and
top-down. First, compared to ZFC, the assumption of an inaccessible is clearly
one of increasing complexity. The reflection principle, however, provides a con-
nection between objects of higher and lower complexity, while it remains of
itself rather neutral of the direction of this movement. Thus, compared to ZFC,
the more successful category theory founding capacities of ZMC/S rely mostly
on a bottom-up axiom. On the other hand, NFU constructs its categories with
the top-down Comprehension axiom—its success in founding (unlimited) cat-
egory theory compared to ZFC can thus here be taken to rely on a top-down
approach. Furthermore, the inclusion or exclusion of a Foundation axiom (that
determines the bottom-up or top-down conception of set) does not affect at
all how EM-category theory is supported. These claims are then in line with
our suggestion that EM-category theory is neutral with respect to the distinction
between bottom-up and top-down.

4.1.3 Taking stock

In this section, we fine-tuned the bottom-up/top-down distinction, after which
we explored the representation of bottom-up and top-down approaches in dif-
ferent set theories and category theories. In both cases, the formation of math-
ematical objects can be done in a bottom-up as well as a top-down manner. Set
theory allows in particular for a bottom-up and a top-down approach to the con-
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ception of sets by (not) incorporating the Foundation axiom. This shows that it
is misleading to claim that set theory and category theory can be distinguished
by the fact that the former represents a bottom-up, and the latter a top-down
approach to mathematics. Differences between, but also within particular foun-
dations are important to take into account when characterizing set theory and
category theory as wholes. It seems that the distinction between bottom-up and
top-down is a property of the formulation of axioms and the type of objects they
allow for. However, it does not so much correspond to an intrinsic property of
a foundational system itself. A complication in our application of the distinc-
tion between bottom-up and top-down to set theory and category theory is that
there is no universal notion of ‘complexity’ for foundational theories, so that we
had to adapt the definition for different foundations. A more precise and formal
description of complexity of objects should shed more light on the topic.

Still, the current result give reason to believe that category theory and set
theory do not represent different approaches to the same thing. Perhaps, then,
they have a different subject matter, in the sense that their respective objects
come with a different level of abstraction. This is what we will explore in the
next section.

4.2 Abstraction of subject matter

Awodey’s original definition of top-down resorts to a structuralist view, where
entities exist independently of their instances, and theorems are ‘schemata’.
Although we argued against this characterization of top-down, it might come
closer to what is really at play for category theory. Perhaps what really captures
Awodey’s perspective, then, is that category theory embodies a higher level of
abstraction than set theory. The existence of a difference in the level of abstrac-
tion between category theory and set theory has (informally) been suggested
various times (see (Linnebo and Pettigrew, 2011), (Landry, 2013), and others).
Intuitively, an increase in the level of abstraction of some system is character-
ized by, for one, a process of ignoring details from lower levels that have become
irrelevant, and secondly by identifying new concepts that capture the essential
objects, relations or properties at the higher level. This intuition, however, is
seldom made explicit, so that arguments concerning the levels of abstraction of
set theory and category theory become rather informal. Similarly to the distinc-
tion between bottom-up and top-down, then, we maintain that a more formal
notion of abstraction is desired and would provide a better understanding of
the way set theory and category differ with respect to it.

In the interest of this, we will borrow a method developed in (Floridi, 2013)
based in the field of philosophy of information. Here, levels of abstraction are
formalized as expressing an increasing epistemic clarity, and levels are related
to each other by means of so-called gradients of abstraction. In what follows,
we will define the main concepts that we will use from this method, after which
we will provide an addition to the method related to our purposes. The main
part of this section will then show that, from our definition, categorical founda-
tions generally reflect higher, but varying, levels of abstraction (that are still less
high than generally thought) with respect to set-theoretical counterparts. This
entails that the distinction between levels of abstraction cannot be completely
associated with the distinction between set-theoretical and categorical thinking,
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either. Furthermore, we claim that set-theoretical systems that can harbor many
large categorical constructions act on properties that are related to the method
of abstraction, and we suggest that this may allow them to ‘simulate’ a higher
level of abstraction. Finally, we argue that the purpose of a foundational system
is connected to the level of abstraction it possesses. At this point it is time to
introduce the main formal notions we will concern ourselves with.

4.2.1 A method of abstraction

The method described in (Floridi, 2013) involves a form of ‘levelism’ that is in-
tended to be the main working method in the philosophy of information. It has
broad applications to different fields of study. As Floridi’s method encompasses
various other methods and it supports an epistemological approach, it generally
suits our purposes here. However, the role of the method in the philosophy of
information is rather different from its role in the philosophy of mathematics: in
particular, we will see that the notions of ‘level of abstraction’ in the two fields
do not always coincide. Thus, we make our own additional requirement to the
definition later on. For now, note that levels of abstraction should be considered
as “levels of observation or interpretation of a system”. This comes with the idea
that such a level should not be considered independently, without a purpose or
context. Surely, we can imagine that each foundational system for mathematics
is created with a purpose in mind; the relation of levels of abstraction to this
will come back in the last part of our argument. Consider, first, the following
three-part definition adapted from (Floridi, 2013) that captures the notion of a
level of abstraction.

Definition 7. (a) x is a variable of type X (written x : X) if x is a uniquely
defined conceptual entity, and X is a set that comprises all values that x
may take on.

(b) A typed variable x : X together with a statement α that clarifies the fea-
ture of the relevant system that x represents (i.e. an ‘interpreted’ typed
variable), is called an observable.

(c) L is a level of abstraction (LoA) if it is a finite and non-empty set of observ-
ables.

Thus, a LoA1 is essentially a set of ‘conceptual entities’, each capturing an
aspect of the system at hand. A distinction is made between discrete observables
(observables whose type is a finite set) and analogue observables (otherwise).
Whereas most of the types that we will define will be analogue, we need to
be slightly careful with their characterization as sets. Namely, we will often be
ranging over set-theoretical or categorical objects in the metatheory, so that the
type for us then comprises an external collection. Furthermore, the behaviour of
a system at a particular LoA is given by a predicate, that takes observables as
values. Any instantiation of types for the observables that the predicate makes
true is called a system behaviour. A LoA together with a behaviour is called a
moderated LoA.

1We write ‘a LoA’ with the pronunciation of LoA as the non-existent word loa in mind, instead of
‘an LoA’, which presumes the separate pronunciation of the letters ‘l’, ‘o’ and ‘a’.
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Some examples. In order to provide a basic intuition for the concepts just for-
malized, we provide some examples used by (Floridi, 2013). Suppose that our
object of study is a human: then we could define a variable h (representing
height) of type R and interpreted by the unit of metres (making it an observ-
able). The behaviour of the system is then given by the predicate 0 ă h ă 3, as
the length of humans is clearly bounded above and below. Alternatively, if we
are evaluating wine, we could have observables for colour, clarity, alcohol level,
price, and so on, each with its own type. In this case, different LoAs will consist
of the observables that suit our purpose for the wine: for example, the price
of the wine is important if we would like to purchase a wine, but the colour of
a wine is more important for the purpose of tasting it. Of course, observables
between such LoAs could overlap. There are many more examples, but it should
be clear that there is a certain level of freedom in the implementation of LoAs
with respect to the analyzed system. This is part of why the method is so widely
applicable, but it also requires us to justify the way we choose to apply it to
mathematics later on.

The last relevant notion that we adopt from (Floridi, 2013) allows for the con-
nection of different LoAs by means of a relation. A relation between sets A and
C is simply taken to be a subset of Aˆ C. If A has a predicate p for its observ-
able, R relates it to the predicate PRppq on C that holds just at those c : C that
are related by R to some a : A satisfying p. With this, a system can be discussed
at various LoAs, as follows.

Definition 8. A gradient of abstractions (GoA) consists of the following.

1. A finite set of moderated LoAs Li (i ď n).

2. A family of relations Ri,j Ď Li ˆ Lj (0 ď i ‰ j ă n). The family of
relations Ri,j relates the observables from each pair Li, Lj of distinct LoAs
such that:

(a) For i ‰ j, Ri,j is the reverse of Rj,i.
(b) The behaviour pj at Lj is at least as strong as the translated be-

haviour PRi,j ppiq, i.e. pj implies PRi,j ppiq.

3. For each interpreted type x : X, y : Y in Li, Lj (respectively) such that
px : X, y : Y q P Ri,j , a relation Rxy Ă X ˆ Y .

Thus, a GoA establishes an explicit connection between the observables at
multiple LoAs, allowing one to unambiguously reveal the way aspects of a sys-
tem correspond to each other. Although this method acquires elegance from its
simplicity, we cannot completely justify this way of relating LoAs for our pur-
poses. The next section will therefore elaborate on the way in which we will
apply the method to foundational systems. Note that (Van Leeuwen, 2014) ar-
gues that, additionally, annotations (i.e. meta-data) should be added to a LoA in
order to be able to express the “micro-structure” that exists between successive
LoAs. This is meant to refine the gradient between such LoAs. The annotations
should “describe how observables of an LoA are constrained or otherwise to be
used, as a guide to a deeper insight or capability at this level”. We will not ex-
plicitly use the method of annotations here, as we will provide our formalization
with enough explanation that it will not give us any other benefits. This seems
more relevant for looking at more concrete systems from different perspectives.

48



4.2.2 Applying the method

The method of abstraction we just described has mostly been illustrated with
real-world examples, in order to clarify its workings. The subject matter of this
thesis, however, is mathematics, and our aim is to analyze LoAs that are charac-
teristic for set theory and category theory. Taking the angle from foundations,
we support the view that each particular system based in set theory or category
theory reveals some information about the way the respective theory looks at
mathematics. In particular, we wish to avoid the treatment of each founda-
tion simply as a representation of ‘set theory’ or ‘category theory’. Instead, we
maintain that knowledge about the differences between particular systems will
allow us to form a more nuanced picture of their approaches to mathematics.
Then, a natural idea is to formalize the various set-theoretical and categorical
foundations as occupying a particular LoA. That is, we regard each foundation
as individually selecting essential aspects of mathematics. The formalization of
these aspects into observables will let us form a GoA between foundations that
are related to each other by a difference in level of abstraction. Now let us
consider the suitability of the discussed method of abstraction for this purpose.

We can envision several requirements that we need the method of abstrac-
tion to satisfy in order to provide reliable results. When we obtain a GoA be-
tween two foundations of mathematics, we would like for it to express the two
intuitively characterizing properties for a change in abstraction. That is, the
GoA should tell us that there is a loss of information when going from one
foundation of mathematics to the other, and it should point out the higher-level
concepts that are identified in the foundation of a higher level of abstraction.
Furthermore, it should generally be the case that the defined observables are
natural and their choice can be justified, i.e. they are a reasonable pick and
capture characterizing aspects of the relevant system. The respective types of
related observables should ideally capture properties that are only present at
a particular LoA, so that we can tell what really characterizes it. If this holds,
we would also like the (type) relations in the GoA to be strict, in the sense that
they can only go one way. Namely, if the types allow for a two-way GoA, we
surely cannot tell which observable is part of the higher LoA with respect to the
other. To do this, then, we should also require some kind of ‘naturality’ in the
relation. That is, we should not be able to define an arbitrary relation between
observables; we really want to relate concepts to abstractions of themselves.
This is hard to formalize, but we argue that in the relation between types it is
already helpful to keep track of where information is lost—this should indicate
the direction of the change in abstraction. To make sure that the type relation
specifies an abstraction, furthermore, it is natural to require that the higher LoA
identifies concepts that group together elements of the lower LoA. This we can
better incorporate in the method by adding to Definition 8 one of the following
requirements (we elaborate more on the justification of these requirements af-
ter defining them). Here we take type X to belong to an observable of a lower
LoA than that of the observable with type Y .

Take a relation Ri,j , and interpreted types x : X P Li, y : Y P Lj
such that px : X, y : Y q P Ri,j .

R1. We require the inverse of the relation Rxy Ă X ˆ Y to be
(necessarily) injective. That is, suppose that y1, y2 P Y and that
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there exist x1, x2 P X such thatRx1y1 andRx2y2. Then y1 ‰ y2
implies x1 ‰ x2.

R2. We require the inverse of the relation Rxy Ă X ˆ Y to be
injective. Additionally, for at least two elements x1, x2 P X,
there (necessarily) exists a y P Y such that px1, yq P Rxy and
px2, yq P Rxy.

More concretely, by not assuming either R1 or R2, we allow for a grouping of
different elements x1, x2 : X of type X under one element y : Y , as well as
a grouping of y1, y2 : Y under an element x : X. To us, this suggests that
the observables are not well-defined, as the types do not seem to capture a
consistent level of abstraction. In R1, we require such a grouping process, if it
occurs, to only go one way. That is, R1 still allows for an inclusion GoA, where
no grouping of elements takes place. This is because we do not wish to commit
ourselves to R2, as there can be a one-to-one mapping that still expresses a
change in abstraction. In particular, this could be a loss of information alone,
leading to a creation of higher-level concepts without a collapsing or grouping
process of elements — however, mere loss of information should generally of
course not be taken to express a difference in the level of abstraction. Hence, we
regard a strict R1-GoA to be weaker than an R2-GoA. Observe, furthermore, that
we formulated R1 and R2 with ‘necessarily’ between brackets. This is because
we would also like to know when R1- and R2-relations are accommodated,
yet in a less convincing way. This will inform us about the naturality of the
pairing of observables. Also, we do not wish to impose either the R1- or R2-
relation on our GoAs, as our goal here includes getting a complete picture and
characterizing possibly different relations between LoAs, as well. We think it is
important, however, in the case where relations deviate from R1 and R2, to be
clear about what they represent.

Enforcing the second requirement comes down to explicitly demanding an
instance of a generalization in a GoA. Making this distinction will allow us to
judge the significance of GoAs we establish a little better. Additionally, R2 allows
us to explicitly recognize where concepts are grouped together (i.e., abstracted)
to form higher-level concepts. This means that R2 identifies the creation of
higher-level concepts that go directly together with a collapsing process of type
instantiations. Plenty of concrete examples motivate this requirement: for in-
stance, biologists can analyze the human body in terms of molecules, whole
cells, organs, or as a whole. Each level can be analyzed on its own, without
he or she needing, or in fact having, the complete information of the make-up
of the relevant structure in terms of atoms. Relations between the levels are
clearly R2-relations. A simple mathematical example is given by the equations
(1) 1 ¨1 “ 1, (2) 2 ¨1 “ 2, (3) 3 ¨1 “ 3, and so on. We would like these to abstract
to the equation n ¨ 1 “ n, instead of a one-to-one relation of (1) to n ¨ 1 “ n,
(2) to m ¨ 1 “ m, etcetera - clearly, n ¨ 1 “ n and m ¨ 1 “ m should be taken to
be the same, and we want (1), (2), (3), and so on, to collapse onto the same
abstraction. This allows us to more formally, and with more certainty, recognize
abstraction relations.

Our added requirements lack in Floridi’s approach, as the primary goal of
his abstraction method is to capture associations between the way we (as hu-
mans) analyze a system with a particular goal in mind. For example, we may
make a GoA from the wine tasting LoA to the wine purchasing LoA, by mapping
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similar observables such as colour to themselves, and relating the types with a
(possibly) different interpretation to each other. Similarly, if a LoA is extended
by adding extra observables, the inclusion relation R that sends each observable
in the first LoA to itself in the second LoA, forms a GoA for Floridi. For us, it
results in an R1-relation for the types of each observable. This makes sense to
us, as adding an observable intuitively means that a different aspect of a system
is analyzed, yet with the same level of detail. For Floridi, instead, the addition
of the observable and its implied change in the purpose behind the analysis of
the system directly stands for a change in abstraction level.

Several remarks on the reliability of the method of abstraction are still in
order. The relations of a GoA expanded with our R1- and R2-requirement allow
for a characterization of the generation of higher-level concepts on a higher
level of abstraction. Namely, this shows directly and clearly how concepts are
related to each other to form new ones. However, the relation process is heavily
dependent on the interpretation of the system by the user of the method, as
she may define observables with their interpreted types in nearly any way she
likes. This large amount of freedom makes it tempting for the user to mold the
observables and types exactly in such a way that the desired GoA is attained.
This may be especially tricky in a theoretical subject such as mathematics, that
does not provide us with a fixed subject matter with perceptible properties.
Additionally, the loss of information aspect of an increase in abstraction remains
implicit in the method. Hence, we will have to elaborate on this part separately
for every GoA that we create. Even with our adaptations, then, the results from
the method should be interpreted carefully.

In the following subsections, we explore several GoAs by first making the
observables in the relevant foundations explicit, followed by the relations of the
GoA. In particular, this will reveal an explicit GoA between ZFC and ETCS+R,
and various possible ones between NBG and AST. Additionally, we discuss sev-
eral ways to incorporate CCAF. After that, we will more generally discuss the
relation of UF and EM to the method of abstraction. For the types of our ob-
servables, the specific implementation of (meta-)quantification can be chosen
in various ways. We shortly outline the possibilities and their strengths and
weaknesses; however, it should be stressed that the argument we make will
work with any of these methods. We take as preparatory example the observ-
able members that we will use the most. In short, this observable should, for
any set, output a collection of its members. Thus, suppose we are working in
ZFC, then the type ideally consists of all possible collections of sets. The motiva-
tion for this observable will be given in the next section. For now, consider the
various possible implementations of the type of members. Various advantages
and disadvantages of these methods specific to the LoAs will be discussed along
with their introduction.

1. First, we can restrict to ZFC-definable sets. Here, we take a definable
property ϕ to be a formula such that ZFC proves that there is a unique
element x such that ϕpxq holds. Then, given a ZFC-definable set ϕpxq,
the observable members can tell us what its members are by outputting
the collection of its ZFC-definable members. That is, ϕpxq is assigned
tψpyq : ZFC $ Dx, ypϕpxq ^ ψpyq ^ y P xqu (where the brackets tu should
be understood as defining an ‘external’ collection). Thus, the type of the
whole observable then becomes tX : X is a collection of ZFC-definable
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membersu.

2. Another way to go is to consider, for ZFC, all its models M and take their
(class) union Z. Some might prefer this method over the first one as the
quantification will be over actual sets, instead of formulas. It will turn out
to be relevant to the argument to assume that the models in Z are disjoint.
We can easily see that we may do this (without loss of generality), by the
simple fact that we can replace each model M by M ˆ tMu. That is, we
can label all of our elements with their model (although other ways exist).
Then, however, in the union of models there now exist multiple copies of
the empty set, the natural numbers, and other sets, which are not of use
to us.

3. Alternatively, we could assume that there is one canonical model of ZFC.
This would get rid of multiple occurrences of sets as in the union of mod-
els, but it might be less clear if we have all the sets we want when com-
paring theories.

Besides these mathematical approaches, an option that requires a little more tol-
erance is one that considers a meta-universe of mathematical objects. The idea
is that this universe is neutral in the sense that it does not belong to any foun-
dational point of view. Hence, it can be shaped into a ZFC-accessible universe V
(and thus capturing all objects its theory allows for), while other theories inter-
pret the meta-universe in different ways. This approach ensures that we have all
the objects we want, and from the ZFC-point of view we can talk about actual
sets and their members. While this approach is similar to the general way of
thinking in this thesis, it is admittedly not very well-defined. Perhaps if worked
out a little more carefully, it is as viable an option as the above three, and we
should keep in mind that it is a (possibly quite elegant) method. However, we
will currently motivate our definitions of LoAs and GoAs with the more sharply
delineated methods that we just discussed.

We add that the GoAs we create will require us to relate objects of a partic-
ular theory to objects of a different theory. In the definable case, it is not clear
if we can relate definable objects in one theory canonically to definable objects
in another theory — that is, it is unclear how the respective formulas should
correspond. When considering the union of models of a particular theory, it
is sometimes obscure how one should relate the models of particular type in-
stances. For some theories there may exist a canonical model correspondence
that leads to an obvious choice of models to relate. This type of relation in a GoA
has our preference, as it can reveal abstraction relations directly between cor-
responding type instances. If this is not the case, however, an arbitrary choice
of model and particular type instance will have to be made. This will work fine,
too, but it is a little less elegant. As it is not always known whether a canonical
correspondence between models of different theories exists, we will leave the
exact choice between the two methods open when constructing our GoAs —
this section may be seen as a template for making this choice with the proper
knowledge.

At times the implementation of GoAs involves several technicalities. We
outline the more general idea of the argument at the beginning of every GoA.
After discussing our GoAs between set-theoretical and categorical foundations,
we will elaborate briefly on the role of set-theoretical foundations for category
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theory with respect to the method of abstraction. Note that we do not claim
to exhaustively specify the differences in LoAs between foundations, nor that
our implementation of the method of abstraction is the only reasonable one.
However, we regard our attempt as a start of the formalization of mathematical
concepts such as abstraction, which can be used in the philosophy of mathemat-
ics to characterize the distinction between set theory and category theory.

Relating ZFC to ETCS+R

We are not the first to propose that there is a difference in the level of abstraction
between set theory and ETCS(+R). McLarty says that

The sets of ETCS are abstract structures in exactly [the following]
sense. An element x P S in ETCS has no properties except that it
is an element of S and is distinct from any other elements of S.
(Lawvere, 2005, p. 3)

Thus, we see that McLarty’s conception of abstraction more or less coincides
with the process of losing irrelevant information. We have claimed, however,
that identification of higher-level concepts is an additional (stronger) indication
of abstraction. This is not obvious from McLarty’s clarification. More generally,
ETCS(+R) is commonly referred to as axiomatizing the ‘category of abstract
sets’ ((Linnebo and Pettigrew, 2011), (Landry, 2013), and others). However,
this characterization of ETCS(+R) has been used informally and has never been
questioned. We argue that this use of abstractness conceals a more nuanced
picture of the situation. In fact, we will show that with our definition of levels
of abstraction, there does exist a difference in abstraction between ZFC and
ETCS+R, yet it is markedly less big than generally assumed. We make this idea
precise with the defined framework for abstraction, an approach which has not
been taken before. First, we will motivate and establish a LoA for ZFC, followed
by one for ETCS+R. Consequently, we can formulate a GoA between the two
defined LoAs, which will allow for an R1- and an R2-relation, but not in a
necessary way.

Defining the LoAs. In order to form an observable for ZFC, we should consider
the perspective of ZFC on mathematics. An observable should tell us something
about this point of view, and it should capture a property that can always be
assessed. Just like determining the colour of wine or the height of humans
gives us knowledge about the object of study, we are looking for properties that
characterize mathematics from the point of view of ZFC. This quickly leads us
to the notion of set, the only type of object ZFC believes exists. We note that
sets have many properties, all of which could be formalized into separate ob-
servables. That is, we could have observables for cardinality, rank, the number
of ordered tuples a set contains, its intersection with a particular other set, and
so on. However, we observe that all of these properties can be inferred from
the characterization of the members of a set (by formalizing the observables as
described below). As the members of a ZFC-set are sets themselves, looking at
membership will give use the entire internal structure of a set, from which we
can deduce other properties. Then, it seems that we can make do with just one
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‘membership observable’ OZFC that does exactly this. Hence, we define our LoA
LZFC “ tOZFCu.

We see that ETCS+R naturally gives rise to a similar LoA. The theory sup-
ports the two sorts object and arrow, with the former representing sets and the
latter forming the members of sets as arrows from the terminal object. Unlike
in ZFC, then, members should not be thought of as sets, and there exists no
explicit notion of membership chains. Still, knowledge of the members of an
ETCS+R-set will provide a thorough characterization of the set itself, as aside
from their members, ETCS+R-sets are merely characterless ‘points’. Hence, we
can introduce the membership observable OETCS+R that, like OZFC, for a given
set outputs a collection of its members. Additional observables for properties
such as cardinality are, like before, derivable from OETCS+R. This allows us to
define our second LoA as LETCS+R “ tOETCS+Ru.

The natural idea for the GoA between LZFC and LETCS+R is then to relate a
ZFC-set with a particular cardinality to an ETCS+R-set with that same cardinal-
ity. Namely, this is the closest correspondence we get between the two types of
sets, and it allows us to directly examine the change in abstraction between the
two notions.

Formalizing the observables. Note that we can formalize the observables in
the various ways described earlier (and perhaps even more). The approach
from definable sets results in the following definition of the observables.

OZFC := members : tX|X is a collection of ZFC-definable setsu
OETCS+R := members : tX|X is a collection of ETCS+R-definable
arrows with domain 1 and codomain a particular objectu

However, this is not the most satisfactory approach here. This is because there
exist only countably many formulas ϕ that can describe a definable set. This
means for example that, if the observable outputs a collection of countably many
definable sets as the members of a certain definable set, we do not know if the
latter was indeed countably infinite, or if it was actually uncountable. We care
about making this distinction, as we motivated our membership observable with
the idea that knowledge of the members of a set gives us all other information
we would like to know about it. This method then does not seem to suffice for
this, if we wish to take uncountable sets into account. Of course, we could make
the approach work by adding another observable for cardinality, but this seems
to (partly) undo the motivation for the membership observable that it provides
enough information by itself. Nevertheless, for finite sets this method works
well enough.

Alternatively, then, we could use a model approach. Taking the (class) union
Z of models of ZFC and the union E of models of ETCS+R, our observables look
as follows.

OZFC := members : tX|X is a collection of sets x PM for some M P

Zu
OETCS+R := members : tX|X is a collection of arrows with domain 1
and codomain a particular object x P N for some N P Eu

Here, our sets and members are not dependent on size limitations, although
recall that we assume disjointness of the models, so that multiple copies of
various sets will exist in the model unions.
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Finally, we stress that, although technical details of the quantification pro-
cess may seem irrelevant, it is important to be aware of the possible formaliza-
tions. The purpose of this part of the argument is to show that we can compare
observables in different theories and explicitly point to a process of abstraction.
Whereas the idea for the relations between observables will often be quite in-
tuitive, showing that it can be formally implemented considerably strengthens
the argument, as it shows us that such an abstraction process can actually take
place, and it is not just an unattainable idea confined to philosophical debates.

Now that we know how to make the type of our observables precise, we can
relate them to constitute a GoA between LZFC and LETCS+R.

Defining a GoA. A natural requirement for connecting the observables is to
have the cardinality of collections of ZFC- and ETCS+R-sets match up. That is,
we want to define RZFC,ETCS+R “ tpOZFC,OETCS+Rqu with the following property.
Let typeZFC and typeETCS+R stand for the respective types we outlined above: then
the relation Rxy Ă typeZFC ˆ typeETCS+R should be such that for every collection
of ZFC-members X, R picks a collection of ETCS+R-members Y such that |X| “
|Y |. This requirement seems easy to justify, as we are essentially mapping ZFC-
sets to their isomorphism class in ETCS+R.

There are multiple ways of formally implementing this, i.e. of deciding ex-
actly which Y it is thatR should pick. The idea is that we want to select the most
natural way, and that this will tell us whetherR is a weak or a strong abstraction
relation. We observe that letting R pick an arbitrary ETCS+R-collection Y for
every ZFC-collection of members X is not the most attractive way. This would
require some application of a Choice principle, which cannot register the actual
link between X and Y — this is, however, what a GoA is intended to do. Thus,
we consider another way.

We here work from the approach that takes the elements of the types of
both observables to come from the union of the relevant models. If x is a ZFC-
set in model M , let XM be the collection of its members. We have that “ETCS

plus replacement is equivalent to ZFC, in the strong sense of an equivalence of
models” (Shulman, 2008). That is, given our model M , there exists a model M 1

of ETCS+R that contains an analogue x1 of x. M 1 is created by taking the sets of
M as its objects, and letting the functions in M be additionally represented as
the arrows (note that, for every ZFC-set y, this will automatically give rise to the
corresponding number of ‘elements’ for y1, i.e. arrows f : 1 Ñ y1). Then define
X 1M 1 to be the collection of arrows 1Ñ x1; let R relate XM with X 1M 1 . This gives
us a unique correspondence between collections of ZFC-sets and ETCS+R-sets.

Hence, we see that the most natural implementation of R is an R1-relation,
and not an R2-relation. Of course, there do exist R2-relations between the ob-
servables of ZFC and ETCS+R. For example, if R maps ZFC-collection X to
ETCS+R-collection Y in the way just defined, we may then modify the relation
by letting all ZFC-collections with cardinality |X| be related to Y . This might be
worth considering, as (assuming pX,Y q P R) it is unclear whether an ETCS+R-
set Z ‰ Y such that |X| “ |Z|, apart from the difference in name, would be
an inherently different choice for X to map to. We saw in Chapter 3 that the
NNOs N and 2N , while having the same cardinality, can be distinguished by
properties inherent to themselves.

Hence, although we can define an R2-relation, it is not so much a neces-
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sary one. First, because the R1-relation defined above seems the most natural
and avoids potential problems like the one Tsementzis points out; second, be-
cause we could change R in the opposite way as well, by letting it relate a
ZFC-collection X to all ETCS+R-collections with cardinality |X|. Thus, where
the implementation of a relation that preserves cardinalities can be done in
several ways (including R2-relations), we conclude that the natural relation
satisfies only R1, and is therefore not a strict abstraction relation in our sense.
Additionally, it is not even the case that R1 is necessary, since there exist other
possible (non-R1) relations. As relations in a GoA should go together with infor-
mation loss, however, the latter possible relations are not completely justifiable
(even though our method does not explicitly require an indication of informa-
tion loss).

Our results show that ETCS+R treats members of sets largely on the same
level of detail as ZFC, except that it forgets information about the internal struc-
ture of sets. Whereas this might intuitively correspond to an abstraction rela-
tion, our two-part definition of increased abstraction and our method show that
the relation expresses a rather weak increase in abstraction. Still, note that the
way ETCS+R considers mathematics compared to ZFC is affected. Even though
ZFC-bijectivity does not translate to equality via the natural relation we defined
above, ETCS+R supports a more local perspective on membership and hides
some details in the description of sets that distract from their relevant proper-
ties. Concerning abstraction relations from ZFC, however, there does not appear
to be a successful or unique identification of a higher-level concept of members
in ETCS+R.

Taking stock. The employed method of abstraction has allowed us to form
a GoA between ZFC and ETCS+R, but it has left us without confidence in the
necessary nature of the R2- and even the R1-relations. Thus, the use of a frame-
work of abstraction has helped verify, even weaken, the intuition that ETCS+R

is more abstract than ZFC. We have explored several ways of relating the two
membership properties of sets, which turned out to enjoy more freedom than
desired. It should be kept in mind that, despite the absence of the creation of
unique higher-level concepts, our GoA does come with a process of suppression
of irrelevant details, which partly characterizes an increase in abstraction. Al-
though this part is currently not well-represented in our framework of levels of
abstraction, our use of the method has still contributed to a refined compari-
son between ZFC and ETCS+R with respect to abstraction. We conclude that a
formal approach to the concept of abstraction is required to have an accurate
sense of its characterization of these two foundational systems.

Relating NBG to AST

Whereas ZFC and ETCS+R supported a rather intuitive GoA that quickly showed
its strengths and weaknesses, the situation becomes a little less precise here. We
examine the relation between NBG and AST, both of which incorporate class-like
objects. However, although membership in NBG plays a similar role to that in
ZFC, we will see that AST assigns a different role to membership than ETCS+R,
and we are forced to be more resourceful in the design of observables. Still,
AST has been described as capturing abstract versions of set-theoretical notions.
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Awodey mentions:

AST thus separates two distinct aspects of set theory in a novel way:
the limitative aspect is captured by an abstract notion of "small-
ness", while the elementary membership relation is determined al-
gebraically. The second aspect depends on the first in a uniform
way, so that by changing the underlying, abstract notion of small-
ness, different set theories can result by the same algebraic method.
(Awodey, 2008, p. 4)

This already suggests to us that both the notion of smallness and the notion of
power set (that induces a ‘membership relation’) play an important role in shap-
ing the perspective of AST on mathematics. In this section, we will consider two
GoAs between NBG and AST. The first is rather self-evident, while the second
is a little more technical; both will turn out to have their own strengths and
weaknesses. Let us consider the observables.

Defining the observables. As an extension of ZFC, NBG takes into account
the same definable sets as ZFC. Additionally, however, it incorporates (proper)
classes definable by a property that only ranges over sets. Thus, compared to
before we are including new objects, so that NBG approaches mathematics from
a broader perspective than ZFC. It seems then that what we are dealing with in
terms of observables is a widening of the type of the ZFC-observable. It might
also be argued that classes here essentially are predicates in extension instead of
actual objects, for which we cannot really talk about members and for which the
observable cannot explicitly output a collection of its members. However, we
note that NBG does not necessitate that classes be definable by a predicate; there
exist models of NBG where ‘undefinable’ classes exist. Hence, we do not wish to
take up the distinction between sets and classes based on predicates here. Fur-
thermore, the definability and model approach to the type of an observable both
allow us to talk about and point to the members of classes, because we always
start with a background of all of the available sets and classes. This means that
we regard classes as having the same fundamental nature as sets here. Since
this view relies in part on the methodology we use concerning observables, we
think it is still philosophically interesting to analyze the idea that classes and
sets may be distinguished otherwise further. The fact that our method allows
us to regard classes similarly to sets tells us that the membership observable is
suitable for the LoA we create for NBG. Hence, we will introduce a membership
observable ONBG and define LNBG “ tONBGu. The various implementations of
this observable are thus essentially the same as its ZFC-counterpart. And here,
too, knowing the members of a set or a class in NBG will provide us with other
useful properties we are interested in. In particular, note that because of the
available background of objects in the model approach, we will be able to tell
from an arbitrary collection of members whether it is a class or set.

For this, recall that all models in the union of NBG-models N may be assumed
to be disjoint. Recall also that the observable will look as follows.

ONBG := members : tX|X is a collection of sets x PM for some M P

Nu

Like before, for any NBG-set or -class x, the observable will output the collec-
tion containing every member of x. If the observable outputs a collection X
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of members, the set or class x with these members will belong to one of the
disjoint models we started with, and we can deduce which one this is from the
collection of members X. From this, then, we can deduce whether X represents
a set or a class. All we have to do for this is check in the relevant model whether
there exists a set s such that x P s (as NBG-sets are always members of some
other set). This can be verified simply by the predicate Setpxq :“ Dypx P yq. Still,
we should note that this argument depends on the clever use of the disjointness
property of the models and it is not generally true without this assumption. We
maintain, though, that knowledge of the members of a set or class should come
with the framework that it belongs to, as without this context we cannot really
make sense of this knowledge at all. As in the examples of the colour of a wine,
the length of a human, and so on, the system that is analyzed (the wine or hu-
man) is given before analyzing a property. Hence, we argue that knowledge of
the model that a collection of members belongs to is reasonable to have. If we
take the approach from NBG-definable sets and classes, it is a little more com-
plicated to deduce the property of being a set or class. Still, we may regard that
here as a weakness of the definability approach.

Hence, this allows us to leave out an observable in NBG that tell us whether
an object is a set or a class. Of course, we still can include one, but we would
like our LoAs to capture only the essential properties of a system, so that within
a level of abstraction it is clear what is truly characteristic of the perspective the
system embodies.

Turning now to AST, we observe that the situation is a little different. The
properties that define classes in AST do not resort to explicit membership, and
hence there is no absolute notion of size. Each powerobject does come with
a (local) membership relation as a subobject, and membership within a uni-
verse (which is a ZF-algebra) can be defined in terms of the successor opera-
tion. However, both of these notions characterize membership more externally
and locally without giving an explicit way to quantify over members of classes.
Hence, classes in AST are not defined by their explicit members; instead, what
characterizes a class in AST is first of all the size it takes on, in the form of some-
thing we cannot derive from the knowledge of members. This results in a first,
simple observable as defined below.

OAST1 := size : tsmall, largeu

Indeed, given an AST-class X (a definable class, or a class from a given
model), OAST1 tells us whether X is small or large. There exist other properties,
in addition, that further characterize classes in AST. Note that while the mem-
bership observable used before is very powerful in that it determines practically
all properties of a set, analogous properties in AST are not connected with or
determined by a membership-like concept. Instead, to better capture classes in
AST, more observables are needed. As the powerobject (which represents the
‘subsets’ of a particular class) plays an important part in the theory, as well as
the notion of universe, we define the following additional observables.

OAST2 := subsets : tX : X is of the form PC for an AST-class Cu

OAST3 := universes : tX : X is of the form V pCq for an AST-class Cu

Given an AST-class C, OAST2 and OAST3 provide us with its powerobject PC and
universe V pCq, respectively. Note here again that quantification over subsets
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and universes can be done according to the various discussed methods. As we
are not relying on one of the observables for additional properties, the objection
against the approach concerning definable classes becomes less strong here. We
can now take LAST = tOAST1, OAST2, OAST3u.

Defining a GoA. Our GoA between NBG and AST will ideally consist of re-
lations RNBG,AST “ tpONBG,OAST1qu, PNBG,AST “ tpONBG,OAST2qu and QNBG,AST “

tpONBG,OAST3qu. However, whereas RNBG,AST is easily implemented, possible re-
lations for PNBG,AST and QNBG,AST are harder to motivate. This suggests that the
latter observables do not capture a direct abstraction of NBG-membership. Al-
though they are essential for describing classes in AST, they do not group col-
lections of members under one concept. We will elaborate on this later and the
implications this has for our method of abstraction. First, consider the more
obvious relation RNBG,AST.

RNBG,AST “ tpONBG,OAST1qu rather easily allows for connections between the
respective types. Namely, we define the relation Rxy Ă typeNBG ˆ typeAST1 as
follows. Take a collection of NBG-members X. Then if this collection is a proper
NBG-class, we let R relate X to large. Otherwise R relates X to small. Clearly,
this has to result in an R2-relation, as small and large cannot both be related
to a particular NBG-set or proper class. Thus, this GoA appears to express a
stronger difference in abstraction than the one between ZFC and ETCS+R. Of
course, this idea is quickly undermined by the previously made observation that
one can create a similar observable for size in NBG, with type tset, classu, which
could have a reversed GoA mapping small AST-objects to set and large ones to
class. However, we have noted before that the notion of size in NBG is deriv-
able by the knowledge of its members. That is, NBG contains more information
about its sets that makes it more natural (and more characteristic of LNBG) to
create an encompassing observable for members, than it is to create one for the
distinction between sets and classes, as this leaves out much information that
NBG characteristically gives. Hence, we argue that the size observable is more
suitable for AST. Still, the matching of members with size may not be completely
natural — this will come to light even more with the next observables, and we
explore this further there.

For the relations PNBG,AST “ tpONBG,OAST2qu and QNBG,AST “ tpONBG,OAST3qu,
we will remain a little more informal here. Despite various possibilities for the
relations, we have not been able to properly justify any of them. We will argue
that this is because of the limits of the method of abstraction for our purposes,
and that this gives incentive to add an additional requirement to make sure
related observables match up. It is interesting to consider, however, possible
relations between our current observables: consider the following options.

1. As each model of NBG gives rise to a model of AST when we take ‘set’ to
mean ‘small’ (Shulman, 2008), the approach that defines the type as the
union of all models of the respective theories will give us a natural way
to relate models of NBG to those of AST. This gives rise to a relation as
follows. If x is an NBG-set or -class in model M , let XM be the collection
of its members. Furthermore, let x1M 1 be the analogue of x in the AST-
model M 1 induced by M . Then it is a natural choice to let PNBG,AST relate
X to Px1M 1 .
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Clearly, a similar relation works for QNBG,AST. Similarly to the situation
concerning ZFC and ETCS+R, we can modify the relation (so that it satis-
fies R2) by making all NBG-sets map to the same powerobject or universe.
However, if the AST-model induced by an NBG-model can tell the differ-
ence between all of its objects, this is not completely justifiable. In that
case, this type of mapping gives us at most an R1-relation.

2. Alternatively, we can consider the definable sets and classes of our the-
ories. Note that AST gives us the existence of the object 0, from which
the theory may define a ‘hierarchy’ of objects P0, PP0, and so on. These
objects may be regarded as corresponding to the finite levels of the cumu-
lative hierarchy (indeed, finite, as AST only guarantees finite coproducts).
Then a straightforward PNBG,AST-relation is defined as follows: if a collec-
tion X of NBG-sets is an element of Vα (with α finite) in the cumulative
hierarchy in NBG, PNBG,AST maps X to the AST-object Pα0. This gives us
an R2-relation, as we are essentially mapping all sets of a particular hier-
archy level to the same object. However, clearly this only works for the
finite levels of the hierarchy, and we are left without an obvious correspon-
dence for bigger NBG-sets. The case for QNBG,AST, concerning universes, is
even less clear. There exist NBG-classes (like V , but also others) that act
as universes — these classes could be justifiably related to AST-universes.
Then, however, sets in NBG are here the questionable cases, as there is no
definable universe that naturally corresponds to an NBG-set.

Matching up the observables. Note that in both possibilities for P and Q, we
are relating the broad members observable of NBG to the more particular AST-
observables of powerobjects and universes. That is, where every NBG-object
can itself be a member, not all AST-objects are instances of powerobjects or
universes. Furthermore, while the members observable, because of its detailed
information, allows us to deduce properties of sets (like their powersets, or
the hierarchy built on them) from their members, the loss of information about
specific elements in AST forced us to separate these notions into new observ-
ables. This makes it rather unnatural to relate the members observable to only
powerobjects or universes, as the abstraction relation should ideally capture ab-
stractions of particular observables. That is, a GoA from NBG should capture an
abstraction of the notion of ‘member’ (something that was clearly there in the
relation between ZFC and ETCS+R). Hence, as our observables do not match
up right now, the relations we defined are not very reliable. Note that the same
applies to the GoA relating members to size. However, this GoA allows more
naturally for a relation as, contrarily to the subsets and universes observables,
every AST-object does take on an instance of size.

Still, the relations we managed to define here are informative to some ex-
tent. By mapping a collection of NBG-members (defined with detail) to a power-
object (of an arbitrary class or one representing the appropriate level of the
cumulative hierarchy) or a universe, we are still given information about how
our knowledge of an NBG-object differs with that of a particular AST-object. For
example, whereas P in NBG explicitly picks out all possible subsets of a set, in
AST it defines an object PC that helps define the ‘universal small relation’ on C,
so that the internal logic can think of it as a set of subsets. Similarly, the free
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P-algebras give us properties that we associate with universes, such as that they
capture all powersets of their elements.

Of course, this is better formalized by a match-up of observables. For ZFC

and ETCS+R, the observables happened to match up, whereas the relation here
requires an evaluation first. This suggests, then, that observables should be de-
fined after deciding which two LoAs to connect. However, this is not an obvious
requirement to make. For NBG then, we could make observables, and relate
them to AST as follows.

1. We keep the notion of membership, so that we have our original observ-
able members. Note that AST says that membership of a class is the uni-
versal small relation on it: each class C comes with a subobject PC . Then,
for a collection of NBG-members X, we would like to relate it to the sub-
object PC of a particular class C. As before, however, we do not have a
natural way to pick C. And, as AST contains many of such subobjects, this
will not naturally give rise to an R2-relation. We do see, however, that in-
formation is lost and we focus on the essential properties of membership.
Instead of pointing to particular members, AST-membership is specified by
a universal small relation (see Chapter 3); i.e. the relation satisfying just
the important properties and nothing else.

2. As mentioned before, we could introduce a size observable size of type
tset, classu. This leads to the one-to-one (R1-)relation mapping set to small
and class to large. Still here, too, we note a loss of information: X is an
NBG-set if there is no bijection f : X Ñ V (V being the class of all sets);
hence, this relies again on membership, in particular on cardinality. AST-
smallness, on the other hand, is defined from the smallness of arrows
towards 1. This relies on the uniqueness of this arrow, instead of absolute
size, which is irrelevant.

3. Third, we could create the NBG-observable powerset (or similarly uni-
verses), essentially selecting out of the type of the members observable
all collections that contain all subsets of a set. The relation to AST with
this observable remains R1 at most. However, we do see that, while the
members of NBG-powersets PpXq relate to the elements X in a unique
way, this is also captured in AST. For a class C, PC should capture the
idea that it contains all subsets of (i.e. monomorphisms to) C. This is
done by letting P be a subobject to C ˆ PC.

Thus, matching up of observables makes the relations in GoAs at least more
justifiable, and it pinpoints where information is lost. In the case of NBG and
AST, however, it still does not elicit strong abstraction relations.

Taking stock. The method of abstraction applied to NBG and AST has led us
to an R2-relation concerning the size of objects. By moving from NBG to AST,
we lose information about the precise cardinality of a set or class, and we in-
troduce the higher-level concepts small and large that cannot even talk about
members or cardinality. The notions of power set and universe, according to
our method, do not elicit a true abstraction relation with the NBG-observable.
Hence, the method has allowed us to pinpoint which aspects of AST contribute
more and which contribute less to an increase in abstraction. Note, as well, that

61



compared to set theory, the loss of information aspect of abstraction is present
more strongly in AST than ETCS, as we lose information about the precise cardi-
nality of sets (and classes) as well as their internal structure. This section has
also given us incentive to reconsider our method of abstraction and encourage
the matching up of observables.

Bringing CCAF into the picture

Other than ETCS and AST, which are theories that explicitly resort to set-theoretical
notions, we would like to apply the method of abstraction to CCAF. McLarty
states about this theory: “I regard these axioms as a background theory to be
used with axioms on particular categories or functors” (McLarty, 1991), and he
suggests one of these particular categories could model ETCS. As CCAF obtains
full potential with such additional assumptions, we are interested in the observ-
ables of CCAF by itself, as well as those of ETCS incorporated in CCAF. Similarly,
the inclusion of a model of AST will be of interest. We will see that the members
observable of previous theories allows for a GoA with CCAF — although its fur-
ther separation from set-theoretical notions leads to the ‘matching-up problem’
of observables we discussed before. The set-derived notions from AST face this
issue as well. In contrast to the situation of the previous section, there is no
intuitive way to remedy this problem. However, although CCAF does not reveal
R2-relations from our GoAs, it does allow for a very flexible and neutral theory
where the loss of information aspect of abstraction is clearly present. Let us
consider how we can introduce observables for CCAF.

Defining the observables. Recall that CCAF provides the given categories H,
1, 2, 3 and E, which act as tools with which one can determine the objects and
arrows of additional categories. The axiomatization of CCAF focuses on these
categories, while specifying few specific properties of other categories, or their
objects and arrows. Just like we took sets to be the primary object of study
in ETCS, and classes in AST, we take categories (with their objects and arrows
defined as particular functors) to be the primary type of object in CCAF. Then
our observables should say something about categories. We could also imagine
observables that act on particular functors (for example an observable for sort
with type tobject, arrowu), but we will here be consistent with the idea that
the observables should be applicable to the primary subject matter of CCAF, i.e.
entire categories. The following two observables then come to mind (illustrated
by the approach of taking the union C of all models of CCAF).

OCCAF1 := objects : tX|X is a collection of functors with domain 1
and codomain a particular category C PM for some M P Cu

OCCAF2 := arrows : tX|X is a collection of functors with domain 2
and codomain a particular category C PM for some M P Cu

That is, when we put in a particular category (represented in CCAF by a char-
acterless point), these observables will give us the collections of its objects and
arrows. Alternatively, we can combine these observables into one observable
OCCAF3 called structure and let it output the collections of objects and arrows of
a particular category simultaneously. Note that essentially, structure gives you
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the same information as arrows (as each (identity) arrow comes with a domain
and codomain object already), only more explicitly. Hence, both OCCAF2 and
OCCAF3 will give us a complete characterization of categories in CCAF, and we
define without loss of generality LCCAF “ tOCCAF3u.

Defining possible GoAs. We can create several GoAs relating LCCAF to the set
theory LoAs LZFC and LNBG, and to category theory LoAs LETCS+R and LAST. For
each GoA to LCCAF, its observable OCCAF3 requires us to relate the type instances
of the other LoA to a collection of objects and arrows specifying a whole cate-
gory. With this in mind, let us consider the members observables of ZFC, NBG

and ETCS+R first. Two possible GoAs come to mind: one relates a collection
of set members to a category ‘representing’ that set — the other embeds the
collection into a bigger category of sets representing the model it is part of. In
the spirit of matching up our observables, however, our GoA should capture an
abstraction in the representation of an individual set; hence, we omit the latter
option. We treat all three members observables together. Hence, without loss
of generality we will define RZFC, CCAF “ tpOZFC,OCCAF3qu. We mention the fol-
lowing options for the implementation of the relation between types (note that
other possibilities exist, but we feel these capture the most intuitive ones).

1. Let X be a collection of ZFC-members. Then R relates X to the discrete
category whose collection of objects equals X and whose arrows are only
identity arrows. Note that there could surely exist multiple discrete cate-
gories of the same cardinality in CCAF (whose objects are different), but
(certainly in the union of models approach) there will always exist a cat-
egory whose objects are ‘named’ precisely after the elements of X. The
uniqueness of models guarantees the uniqueness of this category. Thus, R
can map X to a natural unique category. Still, this will only leave us with
an R1-relation.

And once more, like in the case of ETCS+R, we can modify this relation
to create a (non-neccessary) R2-relation, by relating all ZFC-sets X of a
particular cardinality to the same discrete category of that cardinality. The
similarity to ETCS+R is highlighted even more by considering what this
CCAF-representation of sets means for membership. Suppose we represent
a ZFC-set X by a discrete CCAF-category. Then x P X if and only if x : 1 Ñ
X, i.e., x is a functor in the metacategory CAT. This is of course precisely
the ETCS+R-notion of membership, only on a metacategory level. This
shows that we are not given a higher level of abstraction than ETCS+R by
this representation of sets.

2. Of course, R could also send X to an ETCS+R-style representation of its
set. Alternatively, X could be related to a category that forms the tree
representing the membership structure of X; the latter representation is
described in (McLarty, 2004). Both ways display the membership struc-
ture of X a little better. However, the former option ‘borrows’ a method
that is arguably not inherent to CCAF — and the GoA becomes essentially
the same as the one defined for ETCS+R. The second option is no dif-
ferent, as it will relate X to the unique tree-structured category that has
objects named just like the members of X. Again, we are left with only a
justifiable R1-relation.
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Hence, the membership observables do not very naturally form GoAs that cap-
ture an abstraction relation. For option 1, we obtain a non-necessary R2-
relation, where the CCAF-representation of an ETCS+R-set seems to be essen-
tially a rewriting of notions that possess the same level of information. For ZFC-
and NBG-sets, then, we lose knowledge of the internal structure of a set, but re-
tain the cardinality. Still, we note that the categories representing membership
are here represented as particular functors. Hence, while we lost information
with other methods about the internal structure of sets and their cardinality, we
keep knowledge about cardinality here. Note that in the metacategory CAT, sets
themselves are represented as (characterless) points (‘categories’), while their
members are the functors from category 1. Alternatively, through commutativ-
ity properties, the members correspond to the identity arrows on themselves,
i.e. the corresponding functors from 2. In that sense, compared to the ETCS+R-
representation of sets, CCAF provides unnecessary information by supporting a
double representation of members of sets with the inclusion of arrows.

For AST, we find ourselves in a little more trouble again. Individual repre-
sentations as categories of the type instantiations small, large do not seem to
make sense. Similarly, relating individual powerobjects or universes to cate-
gories does not seem very useful at all. While small and large do not belong
to a particular set or even a particular model, powerobjects and universes have
no internal structure or explicit cardinality, so that a representation of these as
a category would result in a singleton category for each of them. This leaves
us with few options to naturally obtain a relation to a category. The problem,
of course, is that CCAF does not present itself with notions of size differences,
power operations or universes.

We conclude that the correspondence of the AST-observables to the notion of
a category is not a very fruitful one, while the relation of the members observable
to CCAF reveals a level of information about sets similar to ETCS+R. Even if we
incorporate a model of ETCS+R and AST as whole categories Set and Class
(respectively) explicitly in CCAF, it is quickly seen that the ‘functorization’ of
objects and arrows from ETCS+R and AST retains basically all properties they
had before. In this case, as there exists exactly one functor for a member of
an ETCS+R-set, the cardinality of such sets is retained. Similarly, we should
be able to detect properties like smallness, powerobjects and universes with
the representation of an AST-model in CCAF. The only point of interest is that
ETCS+R explicitly calls particular arrows ‘members’, whereas in CCAF it is only
the functors from 2 to our category Set that represent members, and it is not
inherent to the theory itself. In that sense, CCAF is perhaps more flexible with
respect to the notions that it can incorporate, but its axiomatization does not
provide an abstraction of these theories.

Relation of CCAF to EM. The consideration of EM adds two things here. First,
we would like to observe that EM, by simply providing the ingredients of a cate-
gory with its axioms, is similar to CCAF, only does not consider several categories
at once with relations between them. That is, each EM-category in a way exists
by itself. This suggests that, as for ETCS+R and AST, its objects of study consist
of the individual objects and arrows of a category (instead of the category as a
whole). Still, the EM-observable that can give us most information provides, for
a given object, the objects and arrows it is (not) related to, thereby characteriz-
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ing the entire category. Hence, EM-observables can essentially provide the same
information as the CCAF-observables; they are merely given from a different per-
spective. Then, the relations (and their implications) between the membership
observables of ZFC, NBG and ETCS+R, as well as the other AST-observables, are
similarly defined as in the CCAF case, and we will not repeat them here.

Second, if we want to relate CCAF and EM to each other with a GoA, the natu-
ral relation is one-to-one, mapping a CCAF-category to itself in EM. However, we
may also relate these two theories to each other via a different route, to more
explicitly capture their differences. For this we create an observable similar to
one that we rejected before, because it acted on CCAF-functors instead of its cat-
egories. Here, however we implement it as an observable that acts not on cate-
gories, nor on functors, but on both of them. We define sort1 : tcategory, functoru
for CCAF and sort2 : tobject, arrowu for EM. Then an obvious (R2-)GoA from EM

to CCAF relates both object and arrow (of a category, not a metacategory) to
functor. Thus, we see here that CCAF seems to abstract the notion of category
by representing the structure of categories merely with the notion of functor. Of
course, among functors, we can still differentiate between objects and arrows,
but it shows that we may think of categories as containing a single sort of ob-
ject only. The loss of information for this GoA concerns the precise identity of
‘objects’ (of a category). Whereas in EM, objects have their own independent
identity, in CCAF they are defined as compositions of arrows with the domain
or codomain arrow. Indeed, a CCAF-object is defined by all of the arrows it is a
codomain or domain of. The arrow that describes an object the most, then, is
the identity arrow, for which the object is both the codomain and the domain.
Still, this is a more subtle loss of information than, say, the cardinality of a
set. Hence, even though our GoA is R2, the lack of clear information slightly
weakens the strength of the abstraction relation.

Taking stock. The method of abstraction has here shown us that CCAF surely
has the resources to capture as much detail about the objects of ETCS+R and
AST as the respective theories themselves. That is, there is no necessary and
natural relation that captures a true abstraction process for their observables.
In the case of set theories like ZFC, the abstraction relations of members are
similar to those of ETCS+R, and give us only justifiable R1-relations. We note,
however, that CCAF is not intended to represent sets by itself (unlike ETCS+R

and AST), and is not designed to provide abstractions of them. This gives us the
same problem as before, where our observables are arguably not harmonized
well enough to provide a suitable GoA between them. We finally found an R2-
abstraction relation between the sort observables of EM and CCAF.

Thus, our method of abstraction suggests that CCAF shows variable behaviours
when related to other theories. This tells us that foundations of mathematics
cannot be taken to possess an absolute value with regard to their level of ab-
straction, but that this is a notion that should be considered relative to other
foundations.

An application to UF

We shortly elaborate on the relation of the method of abstraction to UF. Recall
that the Univalence Axiom says that ‘identity is isomorphic to isomorphism’.
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This may essentially be taken as implying that, if two objects have the same
structure, they are identical. That is, mathematical objects are structures—this
makes UF philosophically so attractive for structuralism. We saw before that
we can take a suitable version of isomorphism in a particular context, and then
allow for strict identity of objects to not be tracked. Awodey says the following
about the implication of this for objects.

Rather than viewing it as identifying equivalent objects, and thus
collapsing distinct objects, it is more useful to regard it as expanding
the notion of identity to that of equivalence. For mathematical pur-
poses, this is the sharpest notion of identity available; the question
whether two equivalent mathematical objects are “really” identical
in some stronger, non-logical sense, is thus outside of mathematics.
(Awodey, 2014, p. 10)

In order to define GoAs with respect to UF, of course, our method of ab-
straction encourages the ‘collapsing’ way of thinking. Take two objects tHu and
ttHuu in ZFC, for example. Then ZFC tells us these are distinct: the collections
X and Y containing H and tHu, respectively, are two different instances of the
type of the members observable. When relating these by means of a GoA to a
members-like observable OUF of UF, however, without working out the details
we may suppose that both X and Y are (R2-)related to the same instance of the
isomorphism-invariant type of OUF.

In that sense, UF has us lose information about the strict identity of objects,
which is now a notion only present external to the theory. The new sense of
identity can be seen as the introduction of a higher-level concept in UF. How-
ever, recall that the isomorphism-invariant notion of identity is caused by a
restriction in the syntax of the theory. Hence, we argue that this R2-relation
may not be viewed as inherently caused by category theory. We consider UF

as a very interesting and promising theory, but perhaps not of use for making a
distinction between set-theoretical and categorical ways of thinking. This claim,
however, should be investigated further, something we lack the time for in this
thesis.

4.2.3 EM-category theory from set theory

Various processes that induce a loss of information, as well as some identi-
fications of higher-level concepts, have shown to characterize the categorical
approach to mathematics compared to the set-theoretical approach. This result
has been obtained by taking the perspective of foundations for mathematics,
where it was regularly the case that categorical notions derivable from set the-
ory were responsible for the increase in abstraction. The method was success-
ful, then, in capturing abstraction relations between concepts that are already
closely connected. On the one hand, this makes sense, as something can really
only be abstract with respect to something else. On the other hand, this still
leaves us without a good way to compare the level of abstraction of set theories
to that of (parts of) AST, CCAF, higher categorical foundations and EM.

In order to provide additional support to the results obtained from categori-
cal foundations, then, we once more take the general notion of a category as in
Chapter 2. As we there investigated which properties of set theories allow for
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more category theory built from this basic definition, we can here investigate
the level of abstraction of various set theories. Namely, if general EM-category
theory (which provides the basis for most categorical foundations) reflects a
higher level of abstraction compared to set theory (but our current method of
abstraction is unable to show this), we should be able to detect a change in
abstraction between set theories that support category theory in different ways.
Indeed, if a set theory allows for a lot of category theory after the addition of
particular axioms, these axioms might according to our method of abstraction
add a new observable or change the type of an old observable. While we al-
ready argued that NBG adds objects to the type of the observable for ZFC, we
also claim that the assumption of an inaccessible, and the NFU-based system S˚

have a similar effect. Reflection principles, on the other hand, more strongly
involve a change of the actual values of the type of members, instead of just
adding to it. We suggest that the first process generally allows for increased
complexity of objects, but not a higher level of abstraction. The second process,
however, may represent a higher abstraction level compared to ZFC. We argue
as follows.

1. Adding an inaccessible to ZFC explicitly increases the size of the universe,
and hence of the type of the members observable. Thus, we can have
the ‘inclusion’ R1-GoA between ZFC and ZFC+I, and similarly between
ZFC and NBG or S˚. Note that we (as mentioned before) take classes to
embody a similar type of object as sets concerning their members, as the
different approaches we take towards the type of members explicitly tells
us what members we have available — this allows for a similar treatment
of sets and classes. These GoAs, however, do not come with either loss
of information, or identification of higher-level concepts as indicated by
an R2-mapping. What is new, instead, is the incorporation of new, larger
objects that are built out of smaller sets. This indicates the introduction of
new complexity levels; however, there is no sign of an abstraction process
that generalizes the notion of membership. Still, this type ‘enrichment’
allows for the construction of larger categorical objects than before, and
might be regarded as an ‘illusion’ of a higher level of abstraction. It can
boost the capacities for supporting category theory by upping the limit
on size tremendously. However, all the level of detail of sets and their
members is retained.

2. The reflection principle in ZFC/S provides a new kind of independence
from size, however, as ‘anything we prove in ZFC/S about small objects is
also true about large objects’ (Shulman, 2008). That is, the small sets can
be viewed as being inherently ‘coupled’ to the large sets. Hence, the type
of members for ZFC/S is not increased by adding new instances; instead,
we add some sort of meta-information to the types of small sets that tells
us we can transfer results to large sets. In that sense, the type instanti-
ations do embody a kind of higher-level object, because of the ‘internal
relating process’ of sets of different sizes. This is more like an abstrac-
tion relation than just a size increase; we treat multiple different objects
similarly with regards to their properties, and ZFC/S talks about a concept
of set that is independent from strict cardinality. However, as ZFC/S does
not literally define ‘set’ as this more encompassing concept, the reflection
principle may be said here, too, to provide the illusion of increasing the
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level of abstraction. In reality, however, ZFC/S-sets possess the same level
of detail as ZFC-sets.

Recall that ZMC/S, which combines the inaccessibility assumption and use of a
reflection principle, was arguably the most successful set-theoretical foundation
for category theory. By using both ways of ‘simulating’ a higher level of abstrac-
tion, then, it seems that EM-category theory is accommodated better. The two
processes of increase in type complexity, and an internal coupling of type instan-
tiations, however, may be viewed as ‘abstraction-like’ processes that thereby as-
sist further development of category theory. However, we have not seen any
truly convincing instances of abstraction relations among the set-theoretical
foundations for category theory. This supports the idea that set theories in gen-
eral occupy a similar level of abstraction, whereas categorical foundations show
more variation.

4.2.4 Taking stock

The results from the method of abstraction applied to categorical foundations
and counterparts reveal several things. Almost none of the GoAs we constructed
are necessary R2-relations, except the relation between the size observables of
NBG and AST, and the one between the sort observables of EM and CCAF. Re-
lating set-theoretic membership to ETCS+R and CCAF, furthermore, allowed for
natural R1-relations and non-necessary R2-relations. Together with the knowl-
edge of where information is lost, this gives us a newly found characterization of
abstraction relations between set-theoretical and categorical foundations. Gen-
erally, then, we see that categorical foundations do find themselves on a higher
level of abstraction than set-theoretical theories. However, the different axiom-
atizations of categorical foundations allow for quite some variety in the imple-
mentation and strength of GoAs. As the only explicit R2-abstraction relation
between a set theory and a category theory here concerns that of small- and
largeness, we conclude that the difference in abstraction between set-theoretical
and categorical foundations is less big than generally thought. Most abstraction
relations do not involve a necessary collapsing of type instances onto another
type instance.

Furthermore, we have seen that the method of abstraction needs improve-
ment in several ways. For one, it needs a better way of denoting the information
that is lost by going from one LoA to another. Second, we saw that a better
framework is called for in order to have GoAs only be defined between observ-
ables that are properly matched up. Possible ways to improve the method are
further discussed at the end of this chapter. Right now, we will briefly discuss
the purpose of set-theoretical and categorical foundations.

4.3 The role of foundations

We end this chapter by addressing the role of set-theoretical and categorical
foundations, and how the method of abstraction relates to these. Instead of
considering all perspectives on the goals of foundations from scratch, we focus
mainly on the perspectives discussed in (Landry, 2013). Based on these views,
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we refine the idea that set-theoretical and categorical foundations may be dis-
tinguished by their purpose. We end by advocating the naturally arising position
of foundational pluralism in mathematics.

Recall that Landry takes Awodey’s distinction between bottom-up and top-
down (that we redefined) and relates it to two different roles of foundations.
Indeed, Landry argues that a (set-theoretical) bottom-up foundation for mathe-
matics has a constitutive role, whereas a (categorical) top-down foundation for
mathematics has an organizing role. According to Landry, a constitutive founda-
tion is concerned with

[...] constructing the structure of concepts by beginning with some
fixed domain of facts as its constitutive subject matter (Landry, 2013,
p. 41)

We note that this can be related to the (philosophical) goal of foundations de-
scribed in (Shapiro, 2004) to create a suitable ontology for mathematics (al-
though this goal does not necessarily pursue the ‘one correct’ ontology). That
is, the constitutive role of a foundation gives us an account of exactly what our
structures are made up of, which sheds light on the nature of mathematical
objects. On the other hand, an organizing foundation

[...] “takes place through” the axiomatic method, which itself aims
to “structure” concepts in terms of their relations, and so organizes
or founds “the facts” that fall under such concepts by beginning with
the axioms. (Landry, 2013, p. 41)

The axiomatic method is a notion borrowed from Hilbert, who defines it in a
way that reminds of Awodey’s notion of top-down. That, is we start with the
assumed existence of elements, and then relate these to each other by means of
(implicit) axioms. We observe that this is perhaps more related to the (mathe-
matical) goal of foundations treated in (Shapiro, 2004), which is to serve math-
ematics by providing insights into mathematical fields. In what follows, we
will argue for the following claims. Since we argued against the description of
‘top-down’ as in (Awodey, 2004) and (Landry, 2013), we do not think that the
described sense of an ‘organizing’ role of mathematics inherently relates to the
term ‘top-down’. Rather, we suggest that this ‘organizing’ role of mathematics
may be more connected to levels of abstraction that are higher than needed for
the constitutive role. We then note that this will still not allow us to fully asso-
ciate categorical foundations with an organizing role and set-theoretical foun-
dations with a constitutive role. Although we regard this association helpful
for a general characterization of the current foundations, we argue that a literal
interpretation resembles a rather hasty generalization that hides the variety in
roles and levels of abstraction between individual foundations. In line with this,
we will claim that the distinction between the organizational and constitutive
role should not be thought of as inherent to the distinction between categorical
and set-theoretical foundations.

First, note that we showed earlier in this chapter that neither the bottom-up,
nor the top-down approach is exclusive to set-theoretical or categorical founda-
tions. In line with this, we argue that they are both applicable to the constitutive
role and to the organizational role of foundations. Namely, we argued that both
‘bottom-up’ and ‘top-down’ require knowledge of what their structures are made

69



up of, but that they express a difference in the direction of changes in complex-
ity. The constitutive role of foundations ensures that we know the precise na-
ture of our objects in the sense of their construction; hence, with the top-down
and bottom-up method, we can work our way up or down with particular ax-
ioms to characterize our objects. On the other hand, the organizational role of
foundations does not require knowledge of the precise make-up of mathemat-
ical objects. Instead, the relations that the axioms imply between systems that
instantiate these axioms are primary. This should quickly remind us of a differ-
ence in abstraction. An organizational foundation should highlight the essential
properties and concepts belonging to mathematics, where these are understood
without the exact notion of the construction of its instantiations. However, we
maintain that both bottom-up and top-down ways of thought are possible for an
organizational role, in the sense that axioms can express changes in complexity
levels. Still, for organizing notions and capturing relations between them, full
detail of their nature is not necessary. In that sense, a loss of information is tak-
ing place when going from constitutive foundations to organizing foundations,
as the former by definition need full knowledge of their objects, while the latter
do not. As the notions of an organizing foundation, then, are independent from
their specific make-up, they ‘collect’ more constitutive notions under (imagin-
ably) higher-level concepts. That is, we argue that the role of an organizing
foundation should be recognized as approaching mathematics from a higher
level of abstraction compared to the role of a constitutive foundation.

We take care, however, not to bluntly associate set theory or category theory
with either side of this distinction. In the previous section, we saw that categor-
ical foundations rather consistently demonstrate some kind of loss of informa-
tion aspect when compared to set-theoretical counterparts. Categorical notions,
then, automatically take on a more general nature. However, it does not always
seem to be the case (based on our current method of abstraction) that there is
an identification of higher-level concepts. This has led us to conclude that the
categorical foundations we discussed find themselves on lower levels of abstrac-
tion than generally assumed, although still on higher levels than the various set
theories. Here, then, we argue against Landry’s association of set theory and cat-
egory to a constitutive and organizational foundational role, respectively, as the
distinction is simply not that clear. With respect to the current foundations we
discussed, however, the general pattern seems to be that categorical foundations
approach mathematics from a higher LoA than set-theoretical foundations—as
a consequence, this entails that categorical foundations generally succeed bet-
ter in organizing mathematics, and less in providing a constitutive account of
mathematics, than set-theoretical foundations.

However, we stress that this general pattern found in this thesis should be
taken to apply to the foundational systems we discussed here, but perhaps not
to any set-theoretical and categorical foundation in general. That is, there
should be more investigations into whether the better suitability of the organi-
zational role to categorical foundations, and that of the constitutive role to set-
theoretical foundations, is in fact intrinsic to the distinction between set theory
and category theory. Take, for example, the EM-axioms, which Landry adopts
as the ultimate structural (and organizational) foundation for mathematics. We
might imagine that a similar axiomatization of a set theory is possible, where we
start by defining the ingredients of a set (which are other sets), and add Exten-
sionality (perhaps Foundation, too, or other suitable axioms) as laws. Without
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the explicit existence of elements, and the existence of power sets, unions, and
so on merely as instantiations of the definition of ‘set’, we seem to come close to
a set-theoretical foundation with an organizing role. Whether this is truly fea-
sible is yet unclear, but it opens up the suggestion that the organizational and
constitutive role of foundations may be more a property of the formulation of
axioms, instead of the axiomatized theory itself. For now, however, we maintain
the tentative conclusion that categorical foundations are more characterized by
a higher level of abstraction than set-theoretical foundations, and are hence
more susceptible to taking on an organizing role towards mathematics.

This perspective finally leads us to advocate a sense of foundational plural-
ism. Namely, taking one particular (categorical or set-theoretical) foundation
for mathematics as the ‘correct’ one now seems to come down to saying that
mathematics is associated with certain levels of abstraction and not with oth-
ers, and that it has a preference over constituting its objects versus organizing
them. This should not agree with our intuitions about mathematics: instead,
what characterizes mathematics is the combination of various levels of abstrac-
tion and goals to analyze its objects, which enriches our understanding of them.
This is where the purpose of a mathematician comes in, as well, as (s)he can
then pick a foundation for mathematics, depending on the level of abstraction
or the perspective (s)he is looking for. This chapter has shown us that varia-
tion is abundant among foundational systems, and that each system comes with
its own strengths and weaknesses for different purposes. Then, provided one
remains clear about their purposes and is aware of the relations between foun-
dational systems, foundational pluralism should allow for a better adaptation
of methods to the goal one is working towards.

4.4 Discussion

Summing up. In this chapter, we have explicitly cleared up the difference
between a bottom-up and a top-down approach to mathematics, arguing against
the use of ‘top-down’ employed by Awodey and Landry. Subsequently, we saw
that both set-theoretical and categorical foundations allow for bottom-up and
top-down ways of thinking. We concluded that this distinction is not inherent
to the difference between set-theoretical and categorical thinking.

Next, we embarked upon an analysis of the levels of abstraction of various
foundations, by using the method of abstraction (with an additional require-
ment) of (Floridi, 2013). Our results show that ETCS+R, CCAF and EM are more
abstract than ZFC, but fail to present a true abstraction relation. Furthermore,
AST seems partly more abstract than NBG, as shown by an R2-relation, although
we lack proper ways of relating a different part of AST to NBG. Additionally, we
found an R2-relation showing that CCAF is more abstract than EM. These rela-
tions were obtained from observables that naturally arise from the perspectives
of the relevant theories on mathematics.

Finally, we suggested that the level of abstraction of various foundations
corresponds to the role they intend to play. Where Landry has argued that the
constitutive role and the organizational role of foundations for mathematics cor-
respond to a bottom-up and a top-down approach to mathematics, respectively,
we take a different stand. We propose that the constitutive role of foundations
is more characterized by lower abstraction levels, whereas higher abstraction
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levels better capture the organizational role.

Take away. This chapter has taught us several things. First, we have seen that
it is important to maintain clear definitions of concepts that can have multi-
ple interpretations. The interpretation of a concept that one adopts can quite
drastically change the philosophical ideas that arise from it. We have seen this
in the first part of this chapter, where Awodey’s structuralist interpretation of
‘top-down’ led to the idea (argued against by us) that category theory is not
identifiable with bottom-up characteristics.

Second, we have seen that categorical foundations and set-theoretical foun-
dations show varying behaviour with respect to the two conceptions we ana-
lyzed. Variation among set-theoretical and categorical foundations, that already
became apparent in Chapter 2 and 3, has here shown to truly matter. It ex-
plicitly revealed that the categorical and set-theoretical way of thinking cannot
be pinned down by the terms ‘bottom-up’ and ‘top-down’, and that categorical
foundations cannot be regarded as expressing one level of abstraction. The gen-
eral pattern of categorical foundations as expressing a higher level of abstraction
than set-theoretical foundations, however, gains strength from our approach, as
it persisted despite the varying properties of categorical foundations. Still, as
this result is a generally accepted one, we simultaneously lay emphasis on the
fact that the more nuanced picture shows variable abstraction levels and several
rather weak abstraction relations with set-theoretical foundations.

Third, we have seen that the level of abstraction of theories is an interest-
ing area that needs further research. We suggest that, to allow for a better
comparison of set theories to categorical theories, the currently used method of
abstraction be adapted and specialized to our purposes. The aim here is to for-
malize the method such that any GoA that can be defined with it provides a truly
reliable and informative abstraction relation. Our added requirements R1 and
R2 have already started to provide an indication of the strength of abstraction
relations, so that there are more resources with which to describe and compare
the significance of relations. Furthermore, we recommend that (among others)
the following aspects are addressed. First, the method of abstraction should
make sure that only observables which already display similarities are related
by a GoA. To start, then, it could be required that the names of observables have
the approximate same meaning. Second, the method should explicitly require
its user to identify a loss of information along with a GoA-relation between
types. This can simply be implemented as an annotation, or by using more
formal methods. Finally, the method can be made more reliable in capturing
the essence of a system, by providing guidance on how to introduce observ-
ables. Of course, the appropriate way of doing this differs per system that is
analyzed. This entails that such guidance should be offered and justified sep-
arately for each system. For foundations of mathematics, it can for example
be recommended to consider the individual axioms and, in a more determined
way, select out of these essential properties of the structures they define.

What is next? We conclude this thesis by evaluating our results and relating
them to future research in the final chapter.
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Chapter 5

Conclusion

After an excursion into various set-theoretical and categorical foundations for
mathematics and an analysis of two commonly held conceptions concerning the
distinction between their approach to mathematics, it is time to come back to
the original research question and evaluate our approach.

Answering the research question. This thesis concerned itself with charac-
terizing the distinction between set-theoretical and categorical approaches to
mathematics. We contribute to the attainment of this goal in two ways. First,
we narrow down the scope of the research question by arguing that it should ex-
clude the bottom-up/top-down distinction from its possible answers. The main
arguments supporting this claim rely on the varying effects of set-theoretical
axioms on the bottom-up or top-down conception of set, the varying (some-
times even neutral) ways that categorical axioms act on complexity, and the
fact that the development of EM-category theory is not affected by changes in
the bottom-up or top-down nature of the set theories taken as its foundation.
We surveyed the necessary knowledge for these arguments in Chapter 2 and 3.
Second, we put forward a candidate positive answer to the research question
with the suggestion that categorical foundations possess a higher level of ab-
straction than set-theoretical foundations. This is the first time that this result
has found support from a formalization of levels of abstraction. Furthermore,
the method has revealed a general consistency in levels of abstraction among
set-theoretical foundations, as opposed to a more fluctuating picture on the cat-
egorical side. This suggests that category theory has the resources to cover a
range of abstraction levels; however, it is too early to tell whether this funda-
mentally characterizes the distinction between set-theoretical and categorical
thinking. We additionally suggest that Landry’s distinction between the consti-
tutive and organizational role of foundations, instead of corresponding to the
bottom-up/top-down distinction, should be associated with differences in levels
of abstraction.

Relevance of this thesis. We maintain that elucidation of the motivations and
justifications of foundations for mathematics is important for the interpretation
of mathematical results from different fields. Being able to transfer a result
between foundations helps shed light on the different perspectives towards it.
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However, such a characterization of a result will only truly be understood if we
can make the differences between the foundations themselves explicit. Our re-
sults, in particular, give reason to regard the differences in set-theoretical results
and categorical results as obtained from a particular level of abstraction. Alter-
natively, it is relevant to be aware of the level of abstraction one is occupying
while working towards a result, as this entails knowing the capacities and limits
of the theory that is used. Of course, it remains to be seen if our interpretation
is consistent with the successful and less successful applications of either theory.

Independently from the research question, this thesis has also contributed to
the sharpening of terms with multiple interpretations towards definitions more
usable in the philosophy of mathematics. We discovered that incautious use of
terms such as ‘bottom-up’, ‘top-down’ and ‘abstractness’ can lead to overgener-
alized and uninformative conclusions. Hence, we stress generally that concepts
on the border of mathematics and philosophy benefit from being made explicit.

Open questions. Future research should continue the quest of distinguish-
ing set-theoretical from categorical thinking. Different conceptions of ways
of thinking can be analyzed and applied to various foundations — for exam-
ple, the idea that categorical foundations represent a more structuralist way
of thinking than set-theoretical foundations can be investigated. Furthermore,
the idea from (Mathias, 2001) and (Ernst, 2017) of analyzing the strengths
and weaknesses of set-theoretical and categorical foundations in various fields
is a different approach to characterizing the distinction. Our suggestion that
category-theoretic foundations embody a higher level of abstraction than set-
theoretical foundations deserves additional support, which may be found here.
Still, the possibility exists that the variation in abstraction indeed corresponds
to the set theory/category theory contrast, but that it is not characteristic of it.
That is, it could be more of a byproduct than an actual underlying cause of this
distinction.

Furthermore, additional (set-theoretical and categorical, but also other foun-
dational) theories should have a place in the hierarchy of levels of abstraction.
Foundational systems based in homotopy type theory, for example, may fit into
the picture, thereby further elucidating the way theories relate to each other via
abstraction.

Last, we have seen that the method of abstraction can be improved in several
ways. Future research should investigate whether there exists a method that
reliably provides relations between mathematical levels of abstraction, and in
what ways the current method can be developed further.

Finally. This thesis sets in motion the quest to understand what different foun-
dations for mathematics can tell us about mathematical thought. We eagerly
anticipate further developments and enlightenment in this intriguing area.
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