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Abstract. In this paper, we offer a balanced response to the problem of
logical omniscience, whereby agents are modeled as non-omniscient yet
still logically competent reasoners. To achieve this, we account for the
deductive steps that form the epistemic state of an agent. In particular,
we introduce operators for applications of inference rules and design a
possible-worlds model which is (a) equipped with a syntactic valuation,
determining the agent’s (explicit) knowledge, and (b) suitably structured
by rule-induced transitions between worlds. As a result, we obtain a de-
tailed analysis of the agent’s reasoning processes. We then offer validities
that exemplify how the problem of logical omniscience is avoided and
compare our response to others in the literature. A sound and complete
axiomatization is also provided. We finally show how simple extensions
of this setting make it compatible with tools from Dynamic Epistemic
Logic (DEL) and open to the incorporation of empirical findings on hu-
man reasoning.
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1 Introduction

Standard (S5) epistemic logic, using possible-worlds semantics, suffers from the
problem of logical omniscience [13]: agents are modelled as reasoners with unlim-
ited inferential power, always knowing whatever follows logically from what they
know. This stark contrast with reality is also witnessed by experimental results
indicating that subjects are systematically fallible in reasoning tasks [21, 22].
It is even from a normative view that the standard account is insufficient, for
it disregards the underlying reasoning of the agent and thus the restrictions on
what can be feasibly asked of her. Therefore, knowledge should not be subject
to logical closure principles. This, however, need not entail that agents are log-
ically incompetent. While we often fail in complex inferences (e.g. due to lack
of resources), we do engage in bounded reasoning: knowing that it is raining,
and that we need a raincoat whenever it is raining, we do take a raincoat be-
fore leaving home. The empirical data also contributes to the case for logical
competence, and as proposed in [9], we should seek a standard of Minimal Ra-
tionality. Drawing on these, we aim at modelling how an agent should come to
know whatever can be feasibly reached from her epistemic state.
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In the twofold project of modelling a non-omniscient yet competent agent,
we take on board the observations found in [7]. The deductive steps underpin-
ning knowledge should be clearly reflected in an epistemic framework and this
should still be compatible with “external” informational acts, as studied in DEL.
We also place another desideratum: in principle, we should be able to employ
empirical facts provided by cognitive scientists.

While many attempts have dealt with logical omniscience, not every attempt
pursues a solution along the lines just described. Rule-based approaches, mainly
applied on Artificial Intelligence, have paved the way towards our direction.
Konolige [16] uses belief sets closed under an (incomplete) set of inference rules,
but such (weaker) closure properties do not suffice to capture the agent’s reason-
ing nor its cognitive load. Similar remarks apply to attempts which use modal-
ities for reasoning processes [11], state-transitions due to inference [2, 3, 4], or
arbitrary rule applications [14]. Collapsing reasoning processes to a modality,
without a detailed analysis of their composition, would not help us determine
what eventually makes them halt nor exploit investigations in psychology of rea-
soning which usually study individual inference rules on the grounds of cognitive
difficulty. Interestingly, in [17], the author develops a logic where rules, accom-
panied by cognitive costs, are explicitly introduced in the language, but he gives
no semantics, rendering the effect of his rule-operators unclear and the choice of
axioms controversial.1 Awareness settings [12] discern implicit and explicit at-
titudes, avoiding omniscience with respect to the latter, which additionally ask
that agents are aware of a formula. Yet, an arbitrary syntactic awareness-filter
cannot be associated with logical competence, and even if ad-hoc modifications
are imposed (e.g. awareness closure under subformulas), forms of the problem
are retained.2

The remainder is organized as follows: we first present our basic setting and
explain how it contributes to the solution of the problem (Section 2). We then
give a sound and complete axiomatization in Section 3 and in Section 4, we
discuss how the basic framework can be easily adjusted to accommodate other
directions and include sophisticated tools from logic and cognitive science.

2 The setting

We first construct our logical language, building on the following definitions:

Definition 1 (Inference rule). Given φ1, . . . , φn, ψ in the standard proposi-
tional language LP (based on a set of atoms Φ), an inference rule Ri is a formula
of the form {φ1, . . . , φn} ψ.

1 In [18] an impossible-worlds semantics is presented, but again reasoning is captured
via modalities standing for a number of steps; this raises concerns analogous to the
ones discussed before.

2 A notable exception where awareness is affected by reasoning is given in [23]; in
what follows, we design a rule-based approach but without appealing to a notion of
awareness.
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Notice that, according to this definition, each Ri stands for an instance of a
rule (and not for a rule scheme). We then use pr(Ri) and con(Ri) to abbreviate
the set of premises and the conclusion of Ri.

3 The rule is to say that whenever
the premises are true, the conclusion is also true. We also use LR to denote the
set of inference rules and L := LP ∪ LR.

Definition 2 (Translation). The translation of a formula in L is defined as:
Tr(φ) := φ, if φ ∈ LP and Tr(Ri) :=

∧
φ∈pr(Ri)

φ→ con(Ri), if Ri ∈ LR.

We now define the language of this framework:

Definition 3 (Language LRB). Given a countable set of propositional atoms
Φ, the language LRB is defined inductively as follows:

φ ::= p | ¬φ | φ ∧ φ | Kψ | 〈Ri〉φ

with p ∈ Φ,ψ ∈ L, Ri ∈ LR.

As usual, Kψ reads “the agent knows ψ”. LRB includes knowledge assertions
for rules too. That is, apart of knowledge of facts, we can also express which
rules the agent knows (and is therefore capable of applying). Each 〈Ri〉 is seen
as a labeled operator for a rule-application. A formula 〈Ri〉φ reads “after some
application of inference rule Ri, φ is true”. Dual modalities of the form [Ri] such
that [Ri]φ expresses “after any application of Ri, φ is true”, and the remaining
Boolean connectives are defined as usual.

Next, we define our model motivated by the idea that reasoning steps, ex-
pressed through rule-applications, should be hardwired in it. We introduce pos-
sible worlds that are connected according to the effect of inference rules. Since an
agent’s reasoning affects the information she holds (rather than truth of facts),
the usual valuation function is accompanied by a function yielding which formu-
las the agent knows at each world. In this sense, each world represents what is
explicitly known at it and each rule triggers suitable transitions between them.

Definition 4 (Model). A model is a tuple M = 〈W,T, V1, V2〉 where

– W is a non-empty set of worlds.
– T : LR → P(W × W ) is a function such that a binary relation on W is

assigned to each inference rule in LR. That is, for Ri ∈ LR, T (Ri) = Ti ⊆
W ×W , standing for the transition between worlds induced by the rule Ri.

– V1 : W → P(Φ) is a valuation function assigning a set of propositional atoms
to each world; intuitively those that are true at the world.

– V2 : W → P(L) is a function assigning a set of formulas of L to each world;
intuitively those that the agent knows at the world.

3 We emphasize that Ri denotes a single rule instance. The rule, which is in fact a
pair, composed of the set of premises and the conclusion, is given in terms of the
notation  for readability and convenience.



4 A. Solaki

The truth clauses are given as follows:

Definition 5 (Truth clauses).

– M,w |= p if and only if p ∈ V1(w) for p ∈ Φ.
– M,w |= Kφ if and only if φ ∈ V2(w).
– M,w |= ¬φ if and only if M,w 6|= φ.
– M,w |= φ ∧ ψ if and only if M,w |= φ and M,w |= ψ.
– M,w |= 〈Ri〉φ if and only if there exists some u ∈ W such that wTiu and
M,u |= φ.

A formula is valid in a model if it is true at every world of the model and
valid if it is valid in the class of all models. However, certain conditions have
to be imposed on our initial, general class, to capture the desired effect of rule-
applications. To that end, we need the following:

Definition 6 (Propositional truths). Let M be a model and w ∈W a world
of the model. Its set of propositional truths is V ∗1 (w) = {φ ∈ LP |M,w |= φ}.

We can now fix an appropriate class of models, denoted by M. For any model
M (with T (Ri) = Ti as defined above), M ∈M if and only if:

1. For any inference rule Ri = {φ1, . . . , φn}  ψ, if w ∈ W is such that
Ri ∈ V2(w) and φ1, . . . , φn ∈ V2(w), then there exists a world u ∈ W such
that wTiu.

2. For any w, u ∈ W and inference rule Ri = {φ1, . . . , φn}  ψ, if wTiu then
Ri ∈ V2(w), φ1, . . . , φn ∈ V2(w) and V2(u) = V2(w) ∪ {ψ}.

3. For any w ∈W and φ ∈ L, if φ ∈ V2(w) then Tr(φ) ∈ V ∗1 (w).
4. For any w, u ∈W and inference rule Ri, if wTiu then V ∗1 (w) = V ∗1 (u).

Condition 1 says that if a world represents an epistemic state containing the
premises of a known rule Ri, then it must be connected to some other world
by the corresponding Ti. Condition 2 says that if w is Ti-connected to u, then
it must be that u enriches the epistemic state of w in terms of Ri. This is to
ensure that each transition is associated with some addition of a conclusion
to an epistemic state. Condition 3 is imposed to guarantee the veridicality of
knowledge and the soundness of the known rules.4 Finally, condition 4 states
that Ti-connected worlds are propositionally indiscernible, i.e. transitions stand
for purely epistemic actions.

We present some validities that illustrate desirable properties of reasoning
processes and will be instrumental for a balanced response against logical omni-
science. For notational convenience, we abbreviate sequences of rules as follows:

- 〈‡〉 := 〈R1〉 . . . 〈Rn〉
4 Recall that V2 : W → P(L) and that L := LP ∪LR. Moreover, it should be clear that

the world u whose existence is guaranteed by condition 1, is such that it contains
the conclusion of Ri, by condition 2, and the rule Ri is necessarily sound due to
condition 3.
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- 〈†〉 := 〈R′1〉 . . . 〈R′m〉
standing for “after some application of R1(R′1), followed by some application of
R2(R′2), . . ., followed by some application of Rn(R′m)” (in that order). Similar ab-
breviations can be defined for the dual cases; for example, by using [R1], . . . , [Rn]
for the first sequence and [R′1], . . . , [R′m] for the second.

Theorem 1 (M-validities).

1. 〈‡〉Kφ→ Tr(φ) is valid in the class M. (Factivity)
2. 〈‡〉Kφ→ 〈‡〉[†]Kφ is valid in the class M. (Persistence)
3. 〈‡〉Kφ ∧ 〈†〉Kψ → 〈‡〉〈†〉(Kφ ∧Kψ) is valid in the class M. (Merge)
4. For any inference rule Ri, KRi ∧

∧
φ∈pr(Ri)

Kφ → 〈Ri〉Kcon(Ri) is valid in

the class M. (Success)

Proof.
1. Take arbitrary model M ∈ M and arbitrary world w ∈ W of the model.

Suppose M,w |= 〈‡〉Kφ. Unpacking the sequence according to the abbrevi-
ation, M,w |= 〈R1〉 . . . 〈Rn〉Kφ, for the inference rules R1, . . . , Rn. Follow-
ing Definition 5, there is a world u1 ∈ W such that wT1u1 and M,u1 |=
〈R2〉 . . . 〈Rn〉Kφ. Continuing like that, there is a world un ∈ W such that
un−1Tnun and M,un |= Kφ, which in turn amounts to φ ∈ V2(un). Then,
by condition 3, Tr(φ) ∈ V ∗1 (un). From condition 4, Tr(φ) ∈ V ∗1 (un−1). Con-
tinuing this process backwards, Tr(φ) ∈ V ∗1 (w). Therefore M,w |= Tr(φ).
Given the arbitrariness of M ∈M and w ∈W , we finally conclude that the
formula is valid in the class M.

2. Take arbitrary model M ∈ M and arbitrary world w ∈ W of the model.
Suppose M,w |= 〈‡〉Kφ. Unpacking the sequence according to the abbrevi-
ation, this amounts to M,w |= 〈R1〉 . . . 〈Rn〉Kφ. As in the previous case, we
obtain a chain wT1u1 . . . un−1Tnun such that M,un |= Kφ, which in turn
amounts to φ ∈ V2(un) (1). It suffices to show that M,un |= [†]Kφ, i.e.,
by repeating the unpacking, now for [†] = [R′1] . . . [R′m], that for every world
v1 ∈W such that unT

′
1v1, . . ., for every world vm ∈W such that vm−1T

′
mvm,

M, vm |= Kφ, i.e. φ ∈ V2(vm). Take arbitrary such v1, . . . , vm. Then due
to condition 2 and (1), φ ∈ V2(v1) and continuing in the same fashion
φ ∈ V2(vm). Therefore, M,w |= 〈‡〉[†]Kφ, hence M,w |= 〈‡〉Kφ→ 〈‡〉[†]Kφ,
as desired.

3. Take arbitrary model M ∈ M and arbitrary world w ∈ W of the model.
Suppose M,w |= 〈‡〉Kφ∧ 〈†〉Kψ. So M,w |= 〈‡〉Kφ and M,w |= 〈†〉Kψ. As
above, we obtain a chain wT1u1 . . . un−1Tnun such that M,un |= Kφ, i.e.
φ ∈ V2(un), and a chain wT ′1v1 . . . vm−1T

′
nvm such that M, vm |= Kψ, i.e.

ψ ∈ V2(vm). The rough idea of the proof is to make use of the conditions of
M to merge the two chains. By condition 2, we know that V2(w) ⊆ V2(un)
and that V2(w) contains all the premises of rule R′1, as well as the rule
itself. Therefore, V2(un) in turn contains all the premises of rule R′1 and
the rule itself. By conditions 1 and 2, there is a world z1 such that unT

′
1z1

and V2(z1) = V2(un) ∪ {con(R′1)}. Now again, by condition 2, V2(v1) =



6 A. Solaki

V2(w) ∪ {con(R′1)} and since V2(w) ⊆ V2(un): V2(v1) ⊆ V2(z1), so we know
that z1 contains the premises for R′2 and the rule itself. Again by conditions 1
and 2, there is a world z2 such that z1T

′
2z2 and V2(z2) = V2(z1)∪{con(R′2)}.

Continuing like that, the alternations of condition 2 and condition 1, based on
the initial assumptions, yield a world zm such that zm−1T

′
mzm and V2(zm) =

V2(zm−1) ∪ {con(R′m)} with V2(vm) ⊆ V2(zm). Therefore ψ ∈ V2(zm). In
addition, as the constructed chain is of the form unT

′
1z1T

′
2z2 . . . T

′
mzm and

due to condition 2, φ ∈ V2(zm). So M, zm |= Kφ∧Kψ, i.e. M,un |= 〈†〉(Kφ∧
Kψ). So finally M,w |= 〈‡〉〈†〉(Kφ ∧Kψ), as desired.

4. Take arbitrary model M ∈ M and arbitrary world w ∈ W of the model.
Suppose M,w |= KRi ∧

∧
φ∈pr(Ri)

Kφ. Then Ri ∈ V2(w) and φ ∈ V2(w), for

every φ ∈ pr(Ri). Next, from conditions 1 and 2, there is v ∈ W such that
wTiv and V2(v) = V2(w)∪{con(Ri)}. As a result, M, v |= Kcon(Ri). Finally,
M,w |= 〈Ri〉Kcon(Ri), as desired.

Factivity says that whatever comes to be known is true, i.e. only true informa-
tion or sound rules become known after reasoning, and Persistence says that it
remains to be known throughout subsequent reasoning processes. Merge exempli-
fies how the agent merges different reasoning processes, thereby coming to know
their outcomes. Success captures the effect of applying a rule: the conclusion is
added in the agent’s epistemic stack. As a concrete example, take the validity
of

∧
Ri=DNE,MP,CI

KRi ∧K¬¬φ ∧K(φ→ ψ)→ 〈DNE〉〈MP 〉〈CI〉K(φ ∧ ψ): af-

ter successive applications of specific rules, namely Double Negation Elimination
({¬¬φ}  φ), Modus Ponens ({φ, φ → ψ}  ψ) and Conjunction Introduction
({φ, ψ} φ ∧ ψ), the agent’s knowledge is gradually increased.5

V2 = {¬¬φ,
φ→ ψ,

DNE,MP,CI}

w

V2 = {¬¬φ,
φ→ ψ, φ,

DNE,MP,CI}

v

DNE V2 = {¬¬φ, φ,
φ→ ψ,ψ,

DNE,MP,CI}

u

MP
V2 = {¬¬φ, φ,
φ→ ψ,ψ,
φ ∧ ψ,

DNE,MP,CI}

z

CI

Fig. 1. A model where the reasoning steps of Double Negation Elimination, Modus
Ponens, and Conjunction Introduction, taken in this order, correspond to transitions
between worlds and reflect how the agent’s knowledge is gradually increased.

Logical omniscience is indeed avoided in a balanced way, i.e. still escaping
trivialized, totally ignorant agents. The values of knowledge assertions are de-
termined by V2, which need not obey any closure principle. On the other hand,

5 We use DNE, MP , and CI to label particular instances of Double Negation Elimi-
nation, Modus Ponens, and Conjunction Introduction – the ones indicated in paren-
theses. This labeling only serves the readability of the formulas.
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suitable applications of inference rules, reflecting the effort to eventually reach a
conclusion, ensure that an agent can come to know consequences of her knowl-
edge, provided that she follows the appropriate reasoning track. This is how we
avoid an implausible commitment to an automatic and effortless way to expand
one’s knowledge, as the standard validity Kφ1∧ . . .∧Kφn → Kψ would dictate.
Besides, Cherniak [9] emphasizes that we should view complex deductive rea-
soning as a task consisting of simple reasoning steps conjoined together. He also
argues for a “well-ordering of inferences” in terms of their difficulty, depending
both on the rule scheme in question and the logical complexity of its compo-
nents. Similarly, according to Rips [20], deductive reasoning is a psychological
procedure in which sets of formulas are connected via links, that essentially
amount to applications of inference rules, just as our framework predicts. Over-
all, competence is preserved because we unfold the actual processes that result
in knowledge and account for their dynamic nature. Logical ignorance is thus
ruled out because of a more realistic modelling of the underlying reasoning and
not because of ad-hoc restrictions imposed on an inflexible notion of knowledge.

It is interesting to see how our rule-based setting fits in the landscape of
similar attempts. As in [1, 14], temporal-style connections encode the progress in
the agent’s reasoning.6 Unlike [4, 11, 14, 18], we abstain from a generic notion of
reasoning process, instead accounting explicitly for (a) specific rules available to
the agent, (b) their individual applications, (c) their chronology, thus monitoring
the path that eventually leads to knowledge. This elaborate analysis is, as we
remarked above and will further discuss in Section 4, crucial in bridging epistemic
frameworks with empirical facts.7 Furthermore, the enterprise of providing a
semantics contributes to Rasmussen’s attempt [17], who keeps track of rules
applied by the agent, on one hand, but lacks a principled way to assess the
validity of his proposed axioms, on the other. Constructing a suitable semantic
model that reflects rule-based reasoning gives a concrete view on the credibility
of axioms and the adequacy of the solution. Finally, implicit and explicit notions
can be discerned, not through an arbitrary filter (as with awareness), but through
the analysis of the agent’s reasoning.

3 Axiomatization

In this section, we develop the logic ΛRB. We thus obtain a full-fledged logical
response against the problem and solid ground to defend our selected axioms.

Definition 7 (Axiomatization of ΛRB). The axiomatization of ΛRB is given
by Table 1.

Theorem 2 (Soundness). The logic ΛRB is sound with respect to M.

6 We note that the frameworks described in [1, 2, 3] that extend the idea of state-
transitions to multi-agent settings are particularly interesting for the development
of multi-agent variants of our framework too.

7 More on why this is a worthwhile task can be found in [6].
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Table 1.

Axioms

PC All instances of classical propositional tautologies
K [Ri](φ→ ψ) → ([Ri]φ→ [Ri]ψ)
T Kφ→ Tr(φ)
Succession KRi ∧

∧
φ∈pr(Ri)

Kφ→ 〈Ri〉>

Tracking knowledge 〈Ri〉Kχ→
∧

φ∈pr(Ri)

Kφ ∧KRi ∧Kχ, for χ 6= con(Ri)

Knowledge of conclusions [Ri]Kcon(Ri)
Prop1 〈Ri〉φ→ φ, for φ ∈ LP
Prop2 φ→ [Ri]φ, for φ ∈ LP
Monotonicity Kχ→ [Ri]Kχ

Rules

Modus Ponens From φ and φ→ ψ, infer ψ
Necessitation From φ infer [Ri]φ

Proof. It suffices to show that the axioms of Definition 7 are valid in the class
M, as our rules preserve validity as usual.

- The claim for PC and K is trivial.
- The claim for T follows immediately from condition 3.
- The claim for Succession follows from condition 1.
- For Tracking knowledge: Take any model M ∈ M and world w ∈ W of the

model such that M,w |= 〈Ri〉Kχ, for Ri = {φ1, . . . , φn}  ψ. So there is
u ∈W such that wTiu and χ ∈ V2(u). By condition 2, φ1, . . . , φn, Ri ∈ V2(w)
and since V2(u) = V2(w) ∪ {ψ}, χ ∈ V2(w) ∪ {ψ}. So either χ ∈ V2(w) or
χ = ψ. Finally, M,w |= Kφ1 ∧ . . . ∧Kφn ∧KRi ∧Kχ, for χ 6= ψ.

- The claim for Knowledge of conclusions follows from condition 2.
- For Prop1: Take any model M ∈ M and world w ∈ W of the model such

that M,w |= 〈Ri〉φ for φ ∈ LP . Then, there is u ∈ W such that wTiu and
M,u |= φ, i.e. φ ∈ V ∗1 (u). By condition 4, φ ∈ V ∗1 (w), i.e. M,w |= φ as
desired.

- For Prop2: Take any model M ∈ M and world w ∈ W of the model such
that M,w |= φ. Take any u ∈ W such that wTiu. Then by condition 4,
φ ∈ V ∗1 (u), i.e. M,u |= φ so M,w |= [Ri]φ, as desired.

- For Monotonicity : Take any model M ∈M and world w ∈ W of the model
such that M,w |= Kχ, i.e. χ ∈ V2(w). Take any u ∈W such that wTiu. From
condition 2, χ ∈ V2(u), i.e. M,u |= Kχ. But then indeed M,w |= [Ri]Kχ.

Aiming at completeness, we follow the procedure of [8], employing canonical
models.

Lemma 1 (Lindenbaum’s Lemma). If Γ is a ΛRB-consistent set of formu-
las, then it can be extended to a maximal ΛRB-consistent set Γ+.

Proof. The proof goes as usual in these cases. After enumerating φ0, φ1, . . ., the
formulas of our language, one constructs the set Γ+ as

⋃
n≥0 Γ

n where: Γ 0 = Γ ,
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Γn+1 = Γn ∪ {φn}, if this is ΛRB-consistent and Γn ∪ {¬φn} otherwise. The
desired properties are easily obtained due to this construction.

Definition 8 (Canonical Model). The canonical modelM for ΛRB is a tuple
〈W, T ,V1,V2〉 where:

– W = {w | w a maximal ΛRB-consistent set}.
– T : LR → P(W ×W), such that for Ri ∈ LR, T (Ri) = Ti, where wTiu if

and only if {〈Ri〉φ | φ ∈ u} ⊆ w.
– V1 :W → P(Φ) such that V1(w) = {p ∈ Φ | p ∈ w}.
– V2 :W → P(L) such that V2(w) = {φ ∈ L | Kφ ∈ w}.

It is easy to see that an equivalent formulation for the definition of Ti is
{φ | [Ri]φ ∈ w} ⊆ u. Given the definition of the canonical model and our
language LRB, we show:

Lemma 2 (Existence lemma). For any formula φ in our language and w ∈
W, if 〈Ri〉φ ∈ w then there is u ∈ W such that wTiu and φ ∈ u.

Proof. Suppose 〈Ri〉φ ∈ w. Take S = {φ} ∪ {ψ | [Ri]ψ ∈ w}. This set is con-
sistent. Were it inconsistent, there would be ψ1, . . . , ψn such that `ΛRB ψ1 ∧
. . . ∧ ψn → ¬φ. Using [Ri]-necessitation, distribution and propositional tautolo-
gies we obtain `ΛRB

([Ri]ψ1 ∧ . . . ∧ [Ri]ψn) → [Ri]¬φ. By the property of w as
maximal consistent set and since [Ri]ψ1, . . . , [Ri]ψn ∈ w: [Ri]¬φ ∈ w. Therefore
¬〈Ri〉φ ∈ w. Indeed, we have reached a contradiction. Next, we extend S to
S+ according to Lindenbaum’s lemma. Then, φ ∈ S+ and [Ri]ψ ∈ w implies
ψ ∈ S+. Take u := S+. As a result, wTiu and φ ∈ u.

Lemma 3 (Truth lemma). For any formula φ in our language and w ∈ W:
M, w |= φ if and only if φ ∈ w.

Proof. The proof is by induction on the complexity of φ.

– Base cases: Consider φ := p with p ∈ Φ. Then M, w |= p if and only if
p ∈ V1(w), and by definition, this is the case if and only if p ∈ w. Next, take
φ := Kψ with ψ ∈ L. Then M, w |= Kψ if and only if ψ ∈ V2(w), and by
definition, this is the case if and only if Kψ ∈ w.

– For φ := ¬ψ and φ := ψ ∧ χ, the claim follows easily from I.H. and the
maximal consistency of w.

– For φ := 〈Ri〉ψ with I.H. that the result holds for ψ. Then M, w |= 〈Ri〉ψ
if and only if there is u ∈ W such that wTiu and M, u |= ψ. By I.H. this is
the case if and only if ψ ∈ u, and by definition of Ti, we get 〈Ri〉ψ ∈ w. The
other direction follows immediately from the existence lemma.

Theorem 3 (Completeness). For any set of formulas Γ and formula φ in
our language: Γ |=M φ only if Γ `ΛRB

φ.

Proof.
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– We first expand Γ to a maximal ΛRB-consistent set Γ+. Then, let the canoni-
cal modelM be as constructed according to Definition 8. Then by Lemma 3,
M, Γ+ |= Γ . It suffices to show that M fulfills the conditions of M.

– Condition 1 is satisfied.
Take inference rule Ri= {φ1, . . . , φn} ψ and w ∈ W with Ri, φ1, . . . , φn ∈
V2(w), i.e. KRi, Kφ1, . . . ,Kφn ∈ w (1). We want to show that there is a
world u ∈ W such that wTiu. From (1), KRi ∧Kφ1 ∧ . . . ∧Kφn ∈ w. But
from Succession, we get that 〈Ri〉> ∈ w. Using the existence lemma, there
is indeed u ∈ W such that wTiu.

– Condition 2 is satisfied.
Suppose that wTiu with Ri = {φ1, . . . , φn}  ψ, i.e. if φ ∈ u then 〈Ri〉φ ∈
w. Take arbitrary χ ∈ V2(u). That is, Kχ ∈ u. Therefore, 〈Ri〉Kχ ∈
w. From Tracking knowledge, φ1, . . . , φn, Ri ∈ V2(w). From Knowledge of
conclusions and definition of Ti, Kψ ∈ u, i.e. ψ ∈ V2(u). Furthermore by
this definition and Monotonicity we obtain that V2(w) ⊆ V2(u). Therefore,
V2(w) ∪ {ψ} ⊆ V2(u). Next take φ ∈ V2(u) with φ 6= ψ. Then 〈Ri〉Kφ ∈ w.
From Tracking knowledge, Kφ ∈ w. As a result, φ ∈ V2(w). Clearly then,
V2(u) = V2(w) ∪ {ψ}.

– Condition 3 is satisfied.
Let φ be a formula in L. Suppose that φ ∈ V2(w). That is, Kφ ∈ w. Then by
T we obtain, Tr(φ) ∈ w, that isM, w |= Tr(φ) and therefore Tr(φ) ∈ V∗1 (w).

– Condition 4 is satisfied.
Take w, u ∈ W and wTiu. By definition of Ti, if φ ∈ u then 〈Ri〉φ ∈ w.
Now take arbitrary φ ∈ LP such that M, u |= φ, i.e. φ ∈ V∗1 (u). This
means that φ ∈ u, therefore 〈Ri〉φ ∈ w. From Prop1, we obtain φ ∈ w, i.e.
M, w |= φ so φ ∈ V∗1 (w). As φ was arbitrary, V∗1 (u) ⊆ V∗1 (w). For the other
inclusion, take arbitrary φ ∈ LP such that M, w |= φ, i.e. φ ∈ V∗1 (w). This
means that φ ∈ w. From Prop2, we get that [Ri]φ ∈ w too. Then we exploit
the alternative definition of Ti; since [Ri]φ ∈ w, φ ∈ u, i.e. M, u |= φ so
φ ∈ V∗1 (u). As φ was arbitrary, V∗1 (w) ⊆ V∗1 (u). Overall, V∗1 (w) = V∗1 (u).

4 Extensions

This setting, whose key elements have been hitherto described, can also accom-
modate more intricate scenarios and facilitate applications informed by other
disciplines. In particular, we briefly explain that other tools from (D)EL can
be naturally combined with our rule-based logic and that, apart from AI, our
syntactic approach can be also relevant for cognitive science.

First, a notion of implicit knowledge is not precluded in our framework, for
it too employs possible worlds and can be easily endowed with an accessibility
relation. Notions of belief can be also included along the lines presented so far,
i.e. by simply attaching another function to the model, now yielding the explicit
beliefs. Nevertheless, one might drop conditions on factivity or monotonicity.
Regarding higher-order knowledge – provided that the language and the range
of V2 are extended – we can also avoid unlimited introspection, as is arguably de-
sired for non-ideal agents. Just as with factual reasoning though, our framework
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can model moderate introspective abilities, via the introduction of introspective
rules, whose semantic effect is similarly captured via world transitions.

Moreover, just like public announcements of DEL,8 which may enhance the
agent’s knowledge, there can be actions for the learning of formulas in L, that
is not only of propositional formulas, but also of rules. Their effect is captured
by (suitably) tweaking the components of our model to ensure that the formula
or rule in question is included. In this way we can bring together external infor-
mation and the agent’s internal reasoning processes. For instance, consider an
agent who knows φ → ψ and ¬ψ, but comes to learn the Modus Tollens rule
({φ→ ψ,¬ψ} ¬φ}). The combination of this learning action and the applica-
tion of the rule leads to the agent coming to know that ¬φ too. Notice that the
inclusion of DEL-style operators in this framework still allows for a sound and
complete logic. This is because their effect is reducible to formulas not involving
such operators. More specifically, reduction axioms can gradually “reduce” the
truth of complicated formulas in the extended language to the truth of simpler
formulas, up until the point where no operator is needed. Provided that these
axioms are valid in M, we may simply refer to the completeness of ΛRB and
show that a logic built from Definition 7 and the reduction axioms is sound and
complete w.r.t. M.

The use of labeled operators and the order-sensitivity of applications of rules
make it easier to exploit the observations of cognitive scientists for a precise
modelling of resource-bounded reasoners. For example, [15, 20, 22] suggest that
not all rules are equally difficult for agents. According to Rips [20], the length
and the difficulty of the rules involved in the mental proof constructed for a com-
plex reasoning task determines its overall difficulty. In [19] the need to assign
different weights to different rules is experimentally verified and in [24] empiri-
cally calculated weights are attached to different rules. Our framework can take
these points into consideration. By fixing the agent’s capacity (c), attaching em-
pirically indicated weights to rules and introducing inequality formulas to the
language (of the form c ≥ cRi

, where cRi
is intuitively interpreted as the weight

of Ri), we can place preconditions to applications of rules and therefore pinpoint
where the cutoff of a reasoning process lies.9

On a more technical note, while we have presented a Hilbert-style axiomati-
zation of ΛRB, it would be interesting to develop a labeled sequent calculus alter-
native to this and investigate the proof-theoretic properties of our system. This
investigation can be especially relevant to the state-transition settings study-
ing single- or multi-agent reasoning processes. In this way, we can obtain other
independent technical results to motivate the use of such systems.

8 As usual in DEL [5, 10], we can add action operators to our language and capture
their effect via model transformations triggered by the action. A formula with dy-
namic operators, of the form [α]φ, is evaluated by examining what the truth value
of φ is at a transformed model, obtained via action α.

9 In fact, this idea can be also pursued along the lines of DEL. The reasoning capacity
c of the agent, as an additional component of our models, can be updated (i.e.
reduced) following each rule application.
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5 Conclusions

We argued that one of the important challenges for epistemic logic is not only to
overcome logical omniscience, but to do so while securing the logical competence
of agents. We located this endeavour’s key parameter in bounded reasoning and
spelled it out in logical terms by keeping track of the inference rules the agent
applies. We explained how this enriches existing rule-based approaches and ex-
pands the scope of their applications. A sound and complete axiomatization was
also provided, followed by a summary of our extensions of the core setting.
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