
Resetting Infinite Time
Blum-Shub-Smale-Machines

Merlin Carl1 and Lorenzo Galeotti2

1 Europa-Universität Flensburg, 24943 Flensburg, Germany
2 Amsterdam University College, Postbus 94160, 1090 GD Amsterdam, The

Netherlands

Abstract. In this paper, we study strengthenings of Infinite Times
Blum-Shub-Smale-Machines (ITBMs) that were proposed by Seyfferth
in [14] and Welch in [15] obtained by modifying the behaviour of the
machines at limit stages. In particular, we study Strong Infinite Times
Blum-Shub-Smale-Machines (SITBMs), a variation of ITBMs where lim is
substituted by lim inf in computing the content of registers at limit steps.
We will provide lower bounds to the computational strength of such ma-
chines. Then, we will study the computational strength of restrictions of
SITBMs whose computations have low complexity. We will provide an
upper bound to the computational strength of these machines, in doing
so we will strenghten a result in [15] and we will give a partial answer to
a question posed by Welch in [15].

1 Introduction

In [1] Blum, Shub and Smale introduced register machines which compute over
real numbers called Blum-Shub-Smale-Machines (BSSMs). A BSSM is a regis-
ter machine whose registers contain real numbers and that at each step of the
computation can either check the content of the registers and perform a jump
based on the result, or apply a rational function to the registers. While being
quite powerful, BSSMs are still bound to work for a finite amount of time. This
limitation is in contrast with the fact that every real number is usually thought
as to encode an infinite amount of information. It is therefore natural to ask if
a transfinite version of these machines is possible. An answer to this question
was first given by Koepke and Seyfferth who in [14] and [12] introduced the no-
tion of Infinite Time Blum, Shub and Smale machine (ITBM). These machines
execute classical BSSM-programs1 but are capable of running for a transfinite
amount of time. More precisely, the behaviour of ITBMs at successor stages is
completely analogous to that of a normal BSSM. At limit stage an ITBM com-
putes the content of each register using the limit operation on R, and updates the
program counter using inferior limits. Infinite Time Blum-Shub-Smale-Machines
were further studied in [9].

1 With the limitation that every rational polynomial appearing in the program has
rational coefficients.

As mentioned in [7], the approach taken in extending BSSMs to ITBMs is
analogous to that used by Hamkins and Lewis in [8] and by Koepke and Miller
in [9] to introduce Infinite Time Turing machines (ITTMs) and Infinite Time
Register machines (ITRMs), respectively. A different approach to the generali-
sation of BSSMs analogous to that used by Koepke in [10] to introduce Ordinal
Turing Machines (OTM) was taken by the second author in [7, 6] where he in-
troduced the notion of Surreal Blum, Shub and Smale machine (SBSSM). A
complete account of all these models of computation can be found in [2].

As shown in [16, 9], because of the way in which they compute the content
of registers at limit stages, ITBMs have a limited computational power, which
is way below that of other notions of transfinite computability such as ITTMs,
OTMs, SBSSMs, ITRMs. In this paper we consider strengthenings of the limit
rule for ITBMs. We will first consider four natural modifications of the behaviour
of ITBMs at limit stages. For each such modification we show that it can either
be simulated by ITBMs or by machines that we will call Strong Infinite Time
Register machines (SITBMs). In the first part of the paper we will provide a
lower bound to the computational power of SITBMs. Then, we will restict our
attention to programs whose SITBM-computation is of low complexity. We will
show that Π3-reflection is an upper bound to the computational strength of
these low complexity machines, in doing so we will strengthen a result mentioned
without proof by Welch in [15] and we will give a partial negative answer to the
question asked by Welch of whether Π3-reflection is an optimal upper bound
to the halting times of BSSM-programs whose SITBM-computation uses only
rational numbers.

Many of the arguments in this paper are inspired by those in [3] and [4].

2 ITBM Limit Rules

As we mentioned in the introduction, the value of registers of an ITBM at limit
stages is computed using Cauchy limits, i.e., the content of each register at
limit steps is the limit of the sequence obtained by considering the content of
the register at previous stages of the computation. The machine is assumed to
diverge if for at least one of the registers this limit does not exist. In this section
we will consider modified versions of the limit behaviour of ITBMs.

Let f : α→ R be an α-sequence on R. We call ` ∈ R a finite limit point of f
if for all β < α and for all positive ε ∈ R there is β < γ such that |f(γ)− `| < ε.
If for all x ∈ R and for all β < α there is β < γ < α such that x < f(γ) then
we will say that +∞ is an infinite limit point of f . Similarly for −∞. If for all
x ∈ R there is β < α such that for all β < γ < α we have x < f(γ) then we
will say that +∞ is an infinite strong limit point of f . Similarly, if for all x ∈ R
there is β < α such that for all β < γ < α we have x > f(γ) then we will say
that −∞ is an infinite strong limit point of f .

We will denote by LimP(f) ⊂ R ∪ {−∞,+∞} the set of finite and infinite
limit points of f , and by sLimP(f) ⊂ R∪{−∞,+∞} the set of finite limit points

and infinite strong limit points of f . Note that, if f has an infinite strong limit
point, then LimP(f) is a singleton containing either −∞ or +∞.

Remark 1. If f is Cauchy with limit `, then sLimP(f) = LimP(f) = {`}. The
converse is not true. Indeed, fix ρ : ω × ω → ω to be any computable bijection.
Let fn(m) = `+ n

m for n > 0. Each fn is a countable sequence which converges
to `. Then, setting s(ρ(n,m)) = fn(m) we see that the sequence s is such that
sLimP(s) = {`} but is not Cauchy.

Remark 2. Note that if α is a limit ordinal, f : α → R is an α-sequence, γ < α
is an ordinal, and g is the sequence g(β) = f(γ + β), then LimP(f) = LimP(g),
and sLimP(f) = sLimP(g).

Let λ be a limit ordinal and Ri be a register. Assume that for each α < λ the
register Ri had content Ri(α) in the αth step of the computation. We consider
ITBMs whose limit rule is modified as follows:

1. Weak ITBM (WITBM):

Ri(λ) =

{
` if Rλi is Cauchy with limit `;

0 if min(sLimP(Rλi)) is an infinite strong limit.

2. Strong ITBM (SITBM):

Ri(λ) =

{
min(LimP(Rλi)) if min(sLimP(Rλi)) ∈ R;

0 if min(sLimP(Rλi)) is an infinite strong limit.

3. Bounded-strong ITBM (BSITBM):

Ri(λ) = min(sLimP(Rλi)) if min(sLimP(Rλi)) ∈ R.

4. Super-strong ITBM (SSITBM):

Ri(λ) =

{
min(LimP(Rλi)) if LimP(Rλi) ∈ R;

0 if min(LimP(Rλi)) is infinite.

If LimP(Ri) = ∅, sLimP(Ri) = ∅, or in general if Ri(λ) is not defined, we will
assume that the machine crashes, i.e., the computation is considered divergent.
In each case the rest of the machine is left unchanged. We will also consider what
happens when the register contents of an SITBMs are required to belong to a
restricted set of real numbers; for X ⊆ R, an X-SITBM works like an SITBM,
but the computation is undefined when a state arises in which some register
content is not contained in X.

As for ITBMs all the machines we consider run BSSM-programs and work on
real numbers. Therefore, given Γ ∈ {SITBM,BSITBM,SSITBM}, the definitions
of Γ -computation, Γ -computable function, Γ -computable set, and Γ -clockable
ordinal are exactly the same as the correspondent notions for ITBMs, see, e.g.,

[12, Definition 1, Definition 2, Definition 3]. As noted in [12, Algorithm 4] ITBMs
are capable of computing the binary representation of a real number and perform
local changes to this infinite binary sequence. The same algorithms work for
SITBM, and therefore for BSITBM, and SSITBM. For this reason, in the rest of
the paper we will sometimes treat the content of the each register as an infinite
binary sequence. Since not all the binary sequences can be represented in this
way, whenever we need to treat a register as an infinite binary sequence, we
will do so by representing the sequence t : ω → 2 by the real r whose binary
representation is such that for every n ∈ N the (2n + 1)st bit is t(n) and all
the bits in even position are 0. In this case we will call t the binary sequence
represented by r.

Given a set A ⊆ ω we say that it is Γ -writable if there is a BSSM-program
whose Γ -computation with no input outputs a real r such that for every n,
the nth bit in the binary sequence represented by r is 1 if and only if n ∈ A.
Similarly, we say that a countable ordinal α is Γ -writable if there is a Γ -writable
set A such that (α,<) ∼= (N, {(n,m) : ρ(n,m) ∈ A}).

Let P be a n-register2 BSSM-program, r1, . . . , rn ∈ R be a real numbers,
and (Cα)α<Θ = (R1(α) . . . Rn(α), I(α))α<Θ be the SITBM-computation of P
on input r1, . . . , rn. For every α < Θ we will call Cα the snapshot of the ex-
ecution at time α. Given an BSSM-program P and the SITBM-computation
((R1(α), . . . , Rn(α), I(α)))α<Θ of P on input R1(0), . . . , Rn(0), for every i ∈
{1, . . . , n} and α < Θ we will denote by Rαi : α → R the α-sequence such that
Rαi (β) = Ri(β) for all β < α. In the rest of the paper we will omit the superscript
α when it is clear from the context.

As Lemma 6, Lemma 7, and Lemma 8 show, SSITBMs, BSITBMs, and WITBMs
are inessential modifications of ITBMs and SITBMs. For this reason in the rest
of the paper we focus on the study of the computational strength of SITBMs. It
is worth noticing that a version of SITBMs was briefly considered by Welch in
[15], see, §4.

Lemma 3. Every ITBM-computable function is SITBM-computable.

Proof. The claim follows by Remark 1.

Remark 4. Since every ITRM program is essentially a BSSM-program, every
ITRM-computable function is SITBM-computable. Moreover, the simulation can
be performed in exactly the same number of steps.

By Remark 4 the result of Lemma 3 cannot be reversed.

Lemma 5. There is a SITBM-computable function which is not ITBM-computable.

Proof. It is enough to note that ωω is ITRM-computable [5, Lemma 1 & Theorem
7] and therefore SITBM-writable but not ITBM-writable.

2 Since the number of registers is not of importance in our results, and because of
Lemma 9, in the rest of the paper we will just refer to n-registers BSSM-programs
as BSSM-programs.

Lemma 6. A real function f is ITBM-computable iff it is WITBM-computable.

Proof. Trivially every ITBM-computable function is WITBM-computable. Now,
let f be any ITBM computable field isomorphism between R and (0, 1), e.g.,

G : x 7→ e2x

e2x+1 . Let f be a WITBM computable function and P be a program
computing it. One can define a program P ′ in which every constant c is replaced
by G(c) and all the fields operations are replaced with the correspondent opera-
tions in (0, 1). Moreover, at each step of the computation the program checks if
one of the registers is 0 or 1, if so the program sets the register to G(0). Finally
the program should compute G−1 of the output. It is not hard to see that the
program computes f .

Lemma 7. A function f : R → R is SITBM-computable iff it is BSITBM-
computable.

Proof. The proof is very similar to that of Lemma 6. Every BSITBM-computable
function is SITBM-computable. Now, let f be any ITBM-computable field isomor-

phism between R and (0, 1), e.g., G : x 7→ e2x

e2x+1 . Let f be an SITBM-computable
function and P be a program computing it. One can define a program P ′ in which
every constant c is replaced by G(c) and all the fields operations are replaced
with the correspondent operations in (0, 1). For each register Ri the machine
should have two auxiliary registers Ci and Di. Each time Ri is modified the
machine does the following:

If Di = 0 and the new value of Ri is smaller than the old value then set
Di = 1 and Ci = 0, if Di = 0 and the new value of Ri is bigger or equal to the
old value then set Ci = 1, if Di = 1 and the new value of Ri is smaller than
or equal to the old value then set Ci = 1, if Di = 1 and the new value of Ri is
bigger than the old value then set Di = 0 and Ci = 03.

At each step of the computation the machine should check that all the regis-
ters of the original program are not 0 or 1. If a register Ri is 0 or 1 and Ci 6= 0
then the machine sets Ri to G(0) and continues the computation otherwise the
program enters an infinite loop.

Finally, the program should compute G−1 of the output. It is not hard to see
that the program computes f .

Finally, we note that, once more by shrinking the computation to (0, 1) as
we did in the proof of Lemma 7, one can show that SSITBMs can be simulated
by SITBMs, and therefore the two models compute exactly the same functions.

Lemma 8. A function f : R → R is SITBM-computable iff it is SSITBM-
computable.

We end this section by noticing that, coding finitely many real numbers in
one register one can easily build a universal SITBM machine.

Lemma 9. There is a BSSM-program U which given a real number r coding a
BSSM-program P and the values r of the input registers of P , executes P on r.
3 This algorithm checks if the content of Ri is due to a proper limit to infinity.

3 Bounding the Computational Power of SITBMs

In this section we will provide a lower bound to the computational strength of
SITBMs.

In particular we shall show that SITBMs are stronger than ITRMs. Given
X ⊆ ω we will denote by OX the hyperjump of X, see, e.g., [13].

In order to show that SITBMs are stronger than ITRMs we will prove that
SITBMs can compute the ω iteration of the hyperjump function and much more.
First, we note that as in [9, Proposition 2.8], if a function f is SITBM-computable,
then iterations of f along a SITBM-clockable ordinal are also computable. Let
f : R → R be a function, Θ be an infinite countable ordinal, and h : ω → Θ be
a bijection, we define:

f0h = 0,

fα+1
h = f(fαh) for α+ 1 ≤ Θ,

fλh =

h⊕
α∈λ

fαh for λ ≤ Θ limit,

where
⊕h

α∈λ f
α
h is the real r such that if n = ρ(i, h(α)) then the nth bit of

the binary sequence represented by r is the same as the ith bit of the binary
representation of fαh for all i ∈ N and α < λ, and 0 for λ < α.

Similarly to [12, Proposition 2.7], one can easily see that SITBMs can compute
iterations of SITBM-computable function over an SITBM-writable ordinal.

Lemma 10 (Iteration Lemma). Let f : R → R be a SITBM-computable
function, and Θ be SITBM-writable. Then there is a bijection h : ω → Θ such
that fΘh is SITBM-computable.

Proof (Sketch). We will only sketch the proof and we leave the details to the
reader.

Assume that Θ is SITBM-writable. Let h be such that h : (N, {(n,m) :
the ρ(n,m)th bit of the binary sequence represented by r is 1}) ∼= (Θ,<) where
r is the SITBM-writable real coding Θ. There is a machine that computes fΘh .

Note that, since Θ is SITBM-writable, essentially by using the classical ITTM
algorithm, given a set of natural numbers we can always compute their least
upper bound (if it exists) according to the order induced by h. Therefore, we
can generate the sequence h−1(0)h−1(2) . . . h−1(ω)

As noted in [9, Proposition 2.8] the main problem in proving this lemma is
to show that we can iterate the same program infinitely many times ensuring
that no register in the program will diverge because of the iteration4. To solve
this problem we note that by Lemma 8 it is enough to show that the function
is SSITBM-computable. Note that SSITBM-computations are obviously closed

4 Note that, while the example mentioned in [9, p.42] is not problematic for SITBMs,
our machines could still diverge if for example in the infinite iteration one of the
registers of the program assumes values 0, 1,−1, 2,−2, 3,−3,

under transfinite iterations since SSITBMs never brake because of a diverging
register.

The SSITBM algorithm to compute the function is the following: the machine
first writes Θ in one of the registers say R1. Then, our machine starts computing
f(0) and saves the result in the register R2 by copying the ith bit of f(0) in
position ρ(i, h−1(0)) of the binary sequence represented by R2. In general, the
machine should compute f(fαh) and save the result in R2 according to h−1 as
we did for f(0). Checking the correctness of the sketched algorithm is left to the
reader.

Now, we can prove that SITBMs are strictly stronger than ITRMs. First note
that since ITRMs can compute the hyperjump of a set, by Remark 4, so can
SITBMs.

Lemma 11. Let X ⊆ ω. The hyperjump OX in the oracle X is SITBM-computable.

By Lemma 10 we have the following result:

Lemma 12. Let α be SITBM-clockable. Then the αth iteration of the hyperjump
is SITBM-computable.

But since by [11, Proposition 12] ITRMs cannot compute the ω-iteration of
the hyperjump we have that SITBMs are strictly stronger than ITRMs.

Corollary 13. There is a subset of natural numbers A ⊆ N which is SITBM-
computable but not ITRM-computable, and thus A /∈ LωCK .

We end this section by proving a looping criterion for the divergence of
SITBMs which is analogous to those for ITTMs [8, Theorem 1.1], ITRMs [5,
Theorem 5], and ITBMs [12, Theorem 1].

Lemma 14 (Strong Loop Lemma). Let P be a BSSM-program, (Cα)α<Θ =
((R1(α), . . . , Rn(α), I(α)))α<Θ be a SITBM-computation of P , and let γ < β < Θ
be such that:

1. (R1(γ), . . . , Rn(γ), I(γ)) = (R1(β), . . . , Rn(β), I(β));
2. for all γ ≤ α ≤ β we have I(β) ≤ I(α) and for all i ∈ {1 . . . n} we have

Ri(β) ≤ Ri(α).

Then P diverges.

Proof. Without loss of generality we will assume that n = 1, a similar proof
works for an arbitrary number of registers. Note that since (R1(γ), I(γ)) =
(R1(β), I(β)) the machine is in a loop. Let us call L = ((R1(α), I(α)))γ≤α≤β
the looping block of the computation. Let δ be the smallest ordinal such that
γ + δ = β, we will call δ the length of L.

Claim 1 If α = γ + δ × ν for some ν > 0 is such that (R1(γ), I(γ)) =
(R1(α), I(α)) then for all µ < δ we have (R1(γ + µ), I(γ + µ)) = (R1(α +
µ), I(α + µ)), i.e., if α = γ + δ × ν is such that (R1(γ), I(γ)) = (R1(α), I(α))
then the computation from α to α+ δ is the loop L.

Proof. We prove the claim by induction on µ. If µ = 0 the claim follows trivially
from the hypothesis. If µ = η+ 1 then by inductive hypothesis (R1(γ+ η), I(γ+
η)) = (R1(α+η), I(α+η)). But then (R1(γ+η+1), I(γ+η+1)) = (R1(α+η+
1), I(α+η+1)) follows from the fact that our machines are deterministic. Finally
for µ limit the claim follows from the inductive hypothesis and from Remark 2.

Claim 2 For all ν > 0 we have (R1(γ), I(γ)) = (R1(γ + δ × ν), I(γ + δ × ν)).

Proof. We prove the claim by induction on ν. If ν = 1 the claim follows from
the assumptions. For ν = η + 1 then the claim follows from Claim 1. Assume
that ν is a limit ordinal. By inductive hypothesis and by Claim 1 the com-
putation from step γ to step γ + δ × ν consists of ν-many repetitions of the
loop L. In particular this means that the snapshot (R1(γ), I(γ)) appears co-

finally often in the computation up to ν. Therefore R1(γ) ∈ sLimP(Rγ+δ×ν1).
Finally, by 2 we have that I(γ) = lim infα<γ+δ×ν I(γ) = I(γ + δ × ν) and

R1(γ) = min(sLimP(Rγ+δ×ν1)) = R1(γ + δ × ν) as desired.

Finally, note that Claim 2 implies that the computation of P diverges as desired.

We call a computation L = ((R1(α), . . . , Rn(α), I(α)))α<Θ as the one in
Lemma 14 a strong loop.

4 Low Complexity Machines

In the rest of the paper we investigate the ordinals which are clockable by SITBMs
whose computations are of low complexity. In particular, we strengthen Lemma
15 which was mentioned without proof in [15]5.

Theorem 15 (Welch). Let β be the first Π3-reflecting ordinal. Then, for every
rational BSSM-program P we have that the SITBM-computation of P with input
0 either diverges or halts before β.

Lemma 16. Let β be Π3-reflecting, Θ > β, r ∈ R ∩ Lβ be a real number,
and (Cα)α∈Θ be an SITBM-computation with Ri(β) = r. Then Ri has value r
cofinally often below β, i.e., for all γ < β there is γ < α < β such that Ri(α) = r.
In fact, there are cofinally in β many τ such that Cτ = Cβ.

Proof. Note that for every τ < β the following sentences φi := ∀r′ < r∃α >
τ∀γ > αRi(γ) > r′, and ψi := ∀r′ > r∀α > τ∃γ > αRi(γ) < r′ are Π3 in
Lβ . Moreover, they are both true in Lβ since Ri(β) = r. Consequently, there
are cofinally in β many τ such that both statements hold in Lτ . However, this

5 In [15, p.31] Welch mentions that the first Π3-reflecting ordinal is an upper bound
to the computational strength of SITBMs. In a private communication he clarified to
the authors that the machines he was referring to are actually machines which only
work on rational numbers. The question of whether the first Π3-reflecting ordinal is
an upper bound to the computational strength of SITBMs is still open.

implies that Ri(τ) = Ri(β). Thus, for every τ < β there is τ < α < β such that
Ri(α) = r.

Now let n be the maximal register index appearing in P . Then the conjunc-
tion

∧
i≤n(φi ∧ ψi) is still Π3 and thus holds at cofinally often in β. Thus, the

register contents at time β have appeared cofinally often before time β. Modify-
ing P slightly to P ′ by storing the active program line in an additional register,
we see that the same actually holds for the whole configuration.

Theorem 17. Let β be a Π3-reflecting ordinal. Then, for every (Lβ∩R)-SITBM
computation (Cα)α∈Θ we have that either Θ = On or Θ < β. Moreover, if
Θ = On then the machine is in a strong loop.

Proof. Assume that Θ > β. By Lemma 16, we have that the snapshot Cβ appears
cofinally often before β. Now, we want to show that this means that the program
is in a strong loop. Let δ < β be such that Cδ = Cβ . If there is no strong loop
between times δ and β, there are a register index i and an ordinal γ such that
δ + γ < β and r := Ri(δ + γ) < Ri(δ). Note, however, that the snapshot of a
computation at time η + γ is determined by the snapshot at time η. Thus, for
every τ < β such that Cτ = Cβ , we have Ri(τ+γ) = Ri(δ+γ) = r. Since β is Π3-
reflecting, we have τ+γ < β for every τ < β. Thus, the content of Ri is equal to r
cofinally often before β. Consequently, we have r < Ri(β) = liminfι<βRi(ι) ≤ r,
a contradiction. Thus, the computation is in a strong loop. The claim follows by
Lemma 14.

In [15, p.31] Welch asked if the bound of Lemma 15 was optimal. The fol-
lowing lemma shows that this is not the case.

Lemma 18. The supremum of the SITBM-clockable ordinals is not a Π3-reflecting
ordinal.

Proof. It is enough to note that the sentence expressing the fact that every
SITBM-computation either diverges or stops is Π3, and can therefore be reflected
below any Π3-reflecting ordinal.

Corollary 19. Let α be an ordinal. The supremum of the ordinals clockable by
an (Lα ∩ R)-SITBM is strictly smaller than the first Π3-reflecting ordinal above
α.

A BSSM-program slow if its SITBM-computation (Cβ)β∈Θ is such that for
every ω ≤ β ≤ Θ we have Cβ ∈ Lβ .

Corollary 20. For every α the supremum of the ordinals that are (Lα ∩ R)-
SITBM-clockable by a slow program is smaller than or equal to the first Π3-
reflecting ordinal.

Let P be a BSSM-program whose SITBM-computation (Cβ)β∈On diverges.
We will call the strong looping time of P the least ordinal α such that there is
β < α and (Cγ)β≤γ≤α is a strong loop. Analogously to what was proved in [5,
Theorem 5] for ITRM, one can prove that strong loops characterise divergent
SITBM-computation.

Lemma 21. Every program P whose SITBM-computation (Cβ)β∈On diverges
has a strong looping time.

Proof. Take β = ω1 in Theorem 176. Then, every divergent (Lω1
∩RL)-SITBM-

computation must have a strong loop. Finally, it is enough to note that since
Lω1∩R = RL we have that (Lω1∩RL)-SITBM-computation and SITBM-computations
coincide.

The following is an analogue of the observation in [8] that the supremum Σ
of the looping times for ITTMs is not admissible.

Lemma 22. The supremum γ of the strong looping times is not Π2-reflecting
thus in particular not admissible.

Proof. Suppose otherwise. Let U be the universal program introduced above.
Since U does not halt, it will loop. By definition of γ, the first loop of U will
be finished exactly at time γ. Thus, there is ι < γ such that the configurations
of U at times ι and γ agree and are component-wise (weakly) majorized by all
configurations occuring in between. Let φ denote the statement “for all ξ > ι,
the configuration at time ξ is component-wise greater than or equal to that at
time ι”; clearly, φ is Π2.

Now let i be the index of a register used in U , and let r be its content at
time ι (and thus at time γ). Now let ψi be the statement “for all rational q > r
and all τ , there is ζ > τ such that, at time ζ, the content of Ri is < q”, which
is again Π2.

Now, the conjunction φ̃ of φ and all the ψi is a Π2-formula expressing that U
strongly loops. Since γ is Π2-reflecting by assumption, there is τ < γ such that
Lτ |= φ̃. But then, U already loops at time τ , contradicting the definition of γ.

We end this section by showing that the model of computation obtained
by restricting SITBMs to reals in BSSM-programs is strictly weaker than the
unrestricted one.

Lemma 23. Let β be such that there is an SITBM-computable code for Lβ.
There is a BSSM-program P whose SITBM-computation decides the halting prob-
lem for (Lβ ∩ R)-SITBMs, i.e., given the code c for a BSSM-program, P halts
with output 0 if the (Lβ ∩R)-SITBM-computation of the program coded by c with
input 0 halts, and P halts with output 1 if the (Lβ ∩ R)-SITBM-computation of
the program coded by c with input 0 diverges. (If c codes a program that does
not produce an (Lβ ∩ R)-SITBM-computation, we make no statement about the
behaviour of P , although it is easily possible to arrange P to, e.g., diverge or halt
with output 2 in this case.)

6 It is a classical result of set theory that ω1 is a Π3-reflecting ordinal. Indeed, via a
classical hull construction and an application of the Condensation Lemma one can
easily find an α ∈ ω1 such that Lα ≺ Lω1 .

Proof. Let U be the universal SITBM machine of Lemma 9. We will describe
the program P and leave the precise implementation to the reader. We start by
computing a real number b coding Lβ .

Given a code c for a BSSM-program P ′ as input P starts executing U on
c. The program P will use the register R to keep track of the snapshots that
appeared in the computation. At each step of the computation P first checks if
the simulation halted, in which case halts with output 0. If the current snapshot
C of the simulation of P ′ is not an halting snapshot, P will use b to find a natural
number n that codes C in the sense of b.

Once P finds the code for the snapshot it will check if the nth bit of binary
sequence represented by the real in register R is one, in which case the P halts
with output 1. If not then for every i ∈ N the program P checks if the ith bit
of the binary sequence represented by the register register R is 1 in this case
computes the snapshot coded by i and checks that every element of the snapshot
is smaller than or equal to the corresponding element in the snapshot coded by
n. If this is the case then P sets the (2n + 1)st bit of R to 1 and continues. If
not then machine erases R, set the (2n+ 1)st bit of R to 1 and continues.

One can check that the P does compute the halting problem restricted to
(Lβ ∩ R)-ITBMs.

As usual a subset A of real numbers is called SITBM-semi decidable if there
is a BSSM-program P such that for every r ∈ A the SITBM-computation of P
with input r halts, and for every r /∈ A the SITBM-computation of P with input
r diverges. Moreover, if P can be chosen in such a way that for every r ∈ A
the Q-SITBM-computation of P with input r halts, and for every r /∈ A the
Q-SITBM-computation of P with input r diverges. Then we will say that A is
rationally SITBM-semi decidable.

Corollary 24. Every rationally SITBM-semi decidable set is SITBM-computable.

Corollary 25. There is a SITBM-semi decidable set which is not rationally
SITBM-semi decidable.

References

[1] Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines.
Bulletin of the American Mathematical Society 21, 1–46 (1989)

[2] Carl, M.: Ordinal Computability. An Introduction to Infinitary Machines. De
Gruyter (2019)

[3] Carl, M.: Space and time complexity for Infinite Time Turing Machines (2019),
arXiv:1905.06832

[4] Carl, M.: Taming Koepke’s zoo II: Register machines (2019), arXiv:1907.09513
[5] Carl, M., Fischbach, T., Koepke, P., Miller, R., Nasfi, M., Weckbecker, G.: The

basic theory of infinite time register machines. Archive for Mathematical Logic
49(2), 249 – 273 (2010)

[6] Galeotti, L.: The theory of generalised real numbers and other topics in logic.
Ph.D. thesis, Universität Hamburg (2019)

[7] Galeotti, L.: Surreal blum-shub-smale machines. In: Manea, F., Martin, B.,
Paulusma, D., Primiero, G. (eds.) Computing with Foresight and Industry. pp.
13–24. Springer International Publishing, Cham (2019)

[8] Hamkins, J.D., Lewis, A.: Infinite time Turing machines. Journal of Symbolic
Logic 65, 567–604 (2000). https://doi.org/10.2307/2586556

[9] Koepke, P., Morozov, A.S.: The computational power of infinite time Blum-Shub-
Smale machines. Algebra and Logic 56(1), 37–62 (2017)

[10] Koepke, P., Seyfferth, B.: Ordinal machines and admissible recursion theory. An-
nals of Pure and Applied Logic 160(3), 310 – 318 (2009)

[11] Koepke, P.: Ordinal computability. In: Ambos-Spies, K., Löwe, B., Merkle, W.
(eds.) Mathematical Theory and Computational Practice. pp. 280–289. Springer
Berlin Heidelberg, Berlin, Heidelberg (2009)

[12] Koepke, P., Seyfferth, B.: Towards a theory of infinite time Blum-Shub-Smale
Machines. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) How the World Computes:
Turing Centenary Conference and 8th Conference on Computability in Europe,
CiE 2012, Cambridge, UK, June 18-23, 2012. Proceedings. vol. 7318, pp. 405–415.
Springer (2012)

[13] Sacks, G.E.: Higher Recursion Theory. Perspectives in Logic, Cambridge Univer-
sity Press (2017). https://doi.org/10.1017/9781316717301

[14] Seyfferth, B.: Three Models of Ordinal Computability. Ph.D. thesis, Rheinische
Friedrich-Wilhelms-Universität Bonn (2013)

[15] Welch, P.D.: Turing’s legacy: developments from Turing’s ideas in logic. Lecture
Notes in Logic (42), 493–529 (2014)

[16] Welch, P.D.: Discrete transfinite computation. In: Sommaruga, G., Strahm, T.
(eds.) Turing’s Revolution: the impact of his ideas about computability. pp. 161–
185. Springer Verlag, Basel (2016)

