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Abstract. We apply the technique of filtration to prove completeness for

a class of axiomatic extensions of modal logic with the master modality. It
suffices that the set of additional axioms is basic modal, canonical and admits

filtration. We also take some steps towards generalising our results to sets of

extra axioms formulated in the full language.

1. Introduction

Modal logic with master modality is the bimodal logic characterised by regular
frames, i.e. those frames (S,R,R∗) for which R∗ is the reflexive-transitive closure
of R. Throughout this note this logic will be denoted mK and its language mML.

In different contexts, such as program logics and epistemic logics, there exist
completeness results for extensions of mK characterised by specific classes of frames.
But while there are many general completeness results for (axiomatic) extensions
of basic modal logic, the authors are aware of no such results for mK. The biggest
obstacle in proving such result is the fact that mK and most of its extensions lack
the compactness property. One therefore has to resort to finitary methods.

In the following we shall use the technique of filtration for this purpose. We will
show that for an extension generated by a set of additional axioms it suffices that
this set is basic modal, canonical and admits filtration. We have not yet managed
to extend our results to a general set of axioms, which may also contain the master
modality �∗ , but we do take some steps towards this direction.

A key element of our method (Theorem 17) is based on the techniques used in
the completeness proof for PDL given in [3].

2. Modal logic with the master modality

In this section we define the language mML as well as the logic mK and its
axiomatic extensions. For the sake of simplicity, we confine ourselves to the case of
one basic modality, but our results can easily be extended to the case where there
are more. This means that for instance multi-agent epistemic logics with common
knowledge fall within the scope of this note.

Let P be a fixed countable set of propositional variables.

Definition 1 The syntax mML of modal m-formulas over P is generated by:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | �ϕ | �∗ϕ
where p ∈ P.
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2 COMPLETENESS FOR AXIOMATIC EXTENSIONS OF mK

We interpret mML on Kripke frames for two modalities in the standard way. The
intended interpretation of �∗ is as the reflexive-transitive closure of �. In terms of
the modal µ-calculus this can be formulated as follows:

�∗ϕ ≡ µx.ϕ ∨ �x.

The following proof system is based on Kozen’s axiomatisation of the modal µ-
calculus and the above equivalence.

Definition 2 The logic mK is axiomatised by the following Hilbert system:

K + ϕ ∨ � �∗ϕ→ �∗ϕ +
(ϕ ∨ �ψ)→ ψ

�∗ϕ→ ψ

We shall write pre for the additional axiom and min for the additional rule. The
system mK− is axiomatised by K + pre.

The dual of �∗ϕ is defined in the standard way:

�∗ϕ := ¬ �∗¬ϕ.
In terms of the modal µ-calculus, we have

�∗ϕ ≡ νx.ϕ ∧ �x.

As one would expect, the following axiom pos and rule max are derivable in mK:

�∗ϕ→ ϕ ∧ ��∗ϕ ψ → (ϕ ∧ �ψ)

ψ → �∗ϕ
Let F = (S,R,R∗) be a Kripke frame. We say that F is regular if R∗ = R∗, i.e.

if R∗ is the reflexive-transitive closure of R. We shall write RegFr for the class of
regular frames. It is left to the reader to verify that mK is sound with respect to
RegFr.

For Θ a set of modal m-formulas we let RegFr(Θ) denote the restriction of RegFr
to those frames on which all formulas in Θ are valid. On the syntactic side, we
let mK ⊕ Θ be the logic axiomatised by mK with the formulas in Θ as additional
axioms. Precisely, mK⊕Θ is the closure of mK ∪Θ under modus ponens, uniform
substitution and min. In the next sections we work with an arbitrary Θ and simply
denote the resulting logic mK⊕Θ by L.

3. Compactness and consistency

Modal logic with the master modality is not compact on the class of regular
frames, as witnessed by the following set of formulas:

{ �∗p,¬p,¬ �p,¬ � �p, . . .}.
This set is clearly finitely satisfiable, yet not satisfiable. We can therefore not hope
to prove strong completeness.

We shall write ` ϕ to mean that ϕ is derivable (in L). For a set Γ of formulas, we
write Γ ` ϕ whenever ` (γ0 ∧ . . .∧ γn)→ ϕ for some finite subset {γ0, . . . , γn} ⊆ Γ.
A set Γ is called consistent if Γ 6` ⊥.

Definition 3 A set Γ is maximal consistent if it is consistent and maximal in that
respect, i.e.

Γ ⊂ Γ′ implies that Γ′ is inconsistent.

We write MCS(L) for the collection of maximal L-consistent sets of modal m-
formulas.
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Lemma 4 Let Γ be a maximal consistent set. Then:

(i) If ` ϕ, then ϕ ∈ Γ;
(ii) ¬ϕ ∈ Γ if and only ϕ 6∈ Γ;

(iii) ϕ ∨ ψ ∈ Γ if and only ϕ ∈ Γ or ψ ∈ Γ.
(iv) �∗ϕ ∈ Γ if and only if ϕ ∈ Γ or � �∗ϕ ∈ Γ.

Lemma 5 (Lindenbaum) Every consistent set can be extended to be maximal.

The above lemma is less useful due to the lack of compactness. Indeed, a satisfi-
able set may very well be extended to a consistent, yet unsatisfiable set. This could
indicate that we should strengthen the notion of consistency. We do, for instance,
know the following.

Lemma 6 Let Γ be a satisfiable maximal consistent set. Then:

�∗ϕ ∈ Γ⇒ �
nϕ ∈ Γ for some n.

4. The Canonical model

Definition 7 The canonical model for L is given byML := (SL, RL, RL
∗, V

L), where:

SL := MCS(L)

ΓRL∆ :⇔ ϕ ∈ ∆ implies �ϕ ∈ Γ

ΓRL
∗∆ :⇔ ϕ ∈ ∆ implies �∗ϕ ∈ Γ

V L(p) := {Γ | p ∈ Γ}

When clear from the context we shall omit the superscript L′s. As usual, we
have the following lemma.

Lemma 8 (Truth Lemma) For all ϕ, we have M,Γ  ϕ⇔ ϕ ∈ Γ.

Since pre is a Sahlqvist formula, we know ML � pre and thus Id ∪ R;R∗ ⊆ R∗.
However, the rule min is not valid on the canonical frame. Take for example the
formula ϕ := p ∨ �∗ (¬p ∧ �p). We have,

mK− ` p ∨ �ϕ→ ϕ

and thus by min, we have

(*) mK ` �∗p→ ϕ.

Now let Γ be a maximal consistent set extending the set given at the beginning of
Section 3. By the Truth Lemma there must be a ∆0 such that ΓRmK

∗ ∆0 but not
Γ(RmK)∗∆0. Setting V (p) := SmK \ {∆ | Γ(RmK)∗∆} we obtain a valuation on the
canonical frame of mK that falsifies �∗p→ ϕ at Γ.

5. Filtrations of the canonical model

We define the notion of filtration for models of a general similarity type ε. Here
ε is simply a finite alphabet containing indices for modalities. Modal formulas con-
taining only modalities in ε are called ε-formulas. For instance, modal m-formulas
are { �, �∗}-formulas.
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Definition 9 Let S = (S, (Re)e∈ε, V ) be a Kripke model and Σ a finite subformula
closed set of ε-formulas. Let ∼ be the equivalence relation given by:

s ∼ s′ if and only if s  ϕ⇔ s′  ϕ for all ϕ ∈ Σ.

For δ ⊆ ε, a δ-filtration of S through Σ is a model Sf = (Sf , (Rfe )e∈δ, V
f ) such that

(i) Sf = S/∼;
(ii) Rmin

e ⊆ Rfe ⊆ Rmax
e for all e ∈ δ;

(iii) V f (p) = {[s] | S, s  p} for all p ∈ Σ.

where for each e ∈ ε:

Rmin
e := {([s], [t]) | there are s′ ∼ s and t′ ∼ t such that Res

′t′},
Rmax
e := {([s], [t]) | for all �eϕ ∈ Σ: if t  ϕ, then s  �eϕ}.

Note that the set of states of any filtration is finite. The following standard
theorem can be proven by induction on formulas.

Theorem 10 Let Sf be a δ-filtration of S trough Σ. Then for all δ-formulas ϕ ∈ Σ:

S, s  ϕ⇔ Sf , [s]  ϕ.

In this section we will in particular be concerned with filtrations of the canonical
model through some Σ. We shall use the letters A,B,C, . . . to denote equivalence
classes of maximal consistent sets. For A = [Γ] we shall write ϕ ∈ A whenever
ϕ ∈ Γ ∩ Σ (note that this is well-defined). Since such A is finite, we can take its

conjunction
∧
A, which will be denoted Â.

The following is an immediate consequence of the Truth Lemma.

Lemma 11 For any filtration Mf of a canonical model ML it holds that

Mf , A  B̂ ⇔ A = B.

As a consequence every point of Mf can be distinguished by a formula. Such a
model is often said to be named. Filtrations of the canonical model have another
remarkable property.

Proposition 12 ([2, Proposition 5.27]) IfMf is a filtration of the canonical model
ML of L such that Mf � L, then Mf is the minimal filtration.

Proof. First note that for any world [∆] of Mf , the theory of [∆], i.e. the set

Th([∆]) := {ϕ | Mf , [∆]  ϕ}

is maximally L-consistent. Indeed, suppose not, then L ` (ϕ0 ∧ . . . ∧ ϕn) → ⊥ for
some finite sequence of ϕi’s in Th([∆]). But since L ⊆ Th([∆]) it follows by the
semantics of → that Mf , [∆]  ⊥, a contradiction.

Now suppose that [Γ]Rfe [∆]. It holds by the Filtration Theorem that Th([Γ]) ∼ Γ
and Th([∆]) ∼ ∆. Moreover, for all ϕ ∈ Th([∆]), we have that �eϕ ∈ Th([Γ]). It
follows that by definition Th([Γ])RLTh([∆]), as required. �

The relation Rmin
e has a useful characterisation.

Proposition 13 For any filtration of ML:

ARmin
e B if and only if Â ∧ �eB̂ is consistent.



COMPLETENESS FOR AXIOMATIC EXTENSIONS OF mK 5

Proof. ⇒. If ARmin
e B, then there are [Γ] = A and [∆] = B such that ΓRL

e∆. It

follows that Â ∧ �eB̂ ∈ Γ and thus is consistent.

⇐. Conversely, if Â ∧ �eB̂ is consistent, then we can extend it to a maximal
consistent set Γ. By the Truth Lemma, there is a maximal consistent set ∆ such that

ΓRL∆ and B̂ ∈ ∆. The result follows from the fact that A = [Γ] and B = [∆]. �

We will also use the following property of filtrations of ML.

Proposition 14 L `
∨
A∈SΣ Â.

Proof. Suppose not, then ¬
∨
A∈SΣ Â is consistent and as such contained in a max-

imal consistent set Γ. But then for B = [Γ], we have B̂ ∈ Γ and ¬B̂ ∈ Γ, a
contradiction. �

Definition 15 The FL-closure of a set Φ of formulas is the least Ψ ⊇ Φ such that:

(i) If ¬ϕ ∈ Ψ, then ϕ ∈ Ψ;
(ii) If ¬ϕ ∨ ψ ∈ Ψ, then ϕ,ψ ∈ Ψ;
(iii) If �ϕ ∈ Ψ, then ϕ ∈ Ψ;
(iv) If �∗ϕ ∈ Ψ, then ϕ ∨ � �∗ϕ ∈ Ψ.

Let ∼ : mML→ mML be the function that sends each ϕ to ¬ϕ and ¬ϕ to ϕ.

Definition 16 The ¬FL-closure of a set is the ∼-closure of its FL-closure.

We write FL(Φ) for the FL-closure of Φ and ¬FL(Φ) for its ¬FL-closure. Note
that FL(¬FL(Φ)) = ¬FL(Φ), i.e. ¬FL(Φ) is FL-closed. It is a well-known fact that
the ¬FL-closure of a finite set of formulas is finite.

The following theorem repackages the key elements of a common completeness
proof for PDL (originally from [3]) into a statement about filtrations of the canonical
model.

Theorem 17 Let Σ be a finite ¬FL-closed set of formulas and (SΣ, RΣ, V Σ) a

�-filtration of ML. Then (SΣ, RΣ, (RΣ)∗, V Σ) is a { �, �∗ }-filtration of ML.

Proof. We must show that Rmin
∗ ⊆ (RΣ)∗ ⊆ Rmax

∗ .
For the first inclusion, suppose that ARmin

∗ B. By Proposition 13, we have that

Â ∧ �∗ B̂ is consistent. We claim that there is a chain

A = C0R
min · · ·RminCn = B,

from which the required inclusion follows.
Let D be the set of equivalence classes for which there is such a chain. We

will show that B ∈ D. To that end, let δ =
∨
D∈D D̂. We claim that δ ∧ �¬δ is

inconsistent. Suppose not, then there must be some E /∈ D such that δ ∧ �Ê is
consistent. Indeed, otherwise we would have

L ` (δ ∧ �¬δ)→ �¬
∨

A∈SΣ

Â,

which contradicts Proposition 14. From the consistency of δ ∧ �Ê it follows that

also D̂ ∧ �Ê is consistent for some D ∈ D. But then DRminE, which is again a
contradiction by the fact that E /∈ D.

Thus L ` δ → �δ and by pos it follows that L ` δ → �∗δ. Since Â is one of the

disjuncts of δ, we find L ` Â → �∗δ. It follows that Â ∧ �∗ (B̂ ∧ δ) is consistent.
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Therefore we have that Â ∧ �∗ (B̂ ∧ D̂) is consistent for some D ∈ D. Since Σ is

¬-closed this must mean B̂ = D̂.
For the second inclusion, suppose that there is a chain

A = C0R
max · · ·RmaxCn = B,

and �∗ϕ ∈ Σ. Pick maximal consistent sets ∆i such that [∆i] = Ci for each
0 ≤ i ≤ n. We must show that if ∆n  ϕ, then ∆0  �∗ϕ. Since Id ⊆ RL we
have ∆n  �∗ϕ. By the FL-closure of Σ and the fact that Cn−1R

maxCn it follows
that ∆n−1  � �∗ϕ. But from the fact that RL;RL

∗ ⊆ RL
∗ we can again derive that

∆n−1  �∗ϕ. Continuing in this way we eventually find ∆0  �∗ϕ, as required. �

We can use the results of this section so far to prove some general properties of
the canonical model of mK, i.e. for the logic L obtained by setting Θ = ∅.

Lemma 18 For a given filtration Mf of the canonical model MmK, we have:

(i) Rmin = Rmax;
(ii) not generally Rmin

∗ = Rmax
∗ ;

(iii) Mf need not be regular.

Proof. (i). Since (SΣ, Rmax, V Σ) is a �-filtration, it follows from Theorem 17 that
the model (SΣ, Rmax, (Rmax)∗, V Σ) is a { �, �∗ }-filtration of MmK. But since this
model is regular, it is a model of mK and thus, by Proposition 12, it is the minimal
filtration. It follows that Rmin = Rmax.

(ii). Since always Rmin
∗ ⊆ Rmax

∗ , we must invalidate Rmax
∗ ⊆ Rmin

∗ . Suppose we
filtrate through Σ = ¬FL({ �∗p}), i.e.

Σ = { �∗p, p ∨ � �∗p, p, � �∗p,¬ �∗p,¬(p ∨ � �∗p),¬p,¬ � �∗p}.

We consider maximal consistent sets Γ ⊇ {�∗p} and ∆ ⊇ {¬p}. Since p /∈ ∆,
we vacuously have [Γ]Rmax

∗ [∆]. However, it does not hold that [Γ]Rmin
∗ [∆] since

�∗p ∧ �∗¬p is inconsistent.
(iii). By the same argument as for (i) we have that (Rmin)∗ = Rmin

∗ . It then
follows from (ii) that the filtration (SΣ, Rmin, Rmax

∗ , V Σ) need not be regular. �

We end this section with a definition that will be useful in the following.

Definition 19 Let Γ be a set of ε-formulas. We say that Γ admits filtration if
for every model S = (S, (Re)e∈ε, V ) such that (S, (Re)e∈ε) |= Γ and finite subfor-
mula closed set Σ, there is a filtration (Sf , (Rfe )e∈ε, V

f ) of S through Σ such that
(Sf , (Re)e∈ε) |= Γ.

Example 20 Since any filtration of a reflexive model is reflexive, the axioms p→
�p and p → �∗p admit filtration. The following extensions of K are among those

known to admit filtration: T, D, 4, B, S5, D4, S4, K4.2, K4.3, S4.2, S4.3.

6. Basic modal Θ

In this section we suppose that the set Θ of additional axioms for L consists of
only basic modal formulas.

Theorem 21 If Θ is basic modal, canonical and admits filtration, then L is complete
wrt RegFr(Θ).
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Proof. Suppose L 6` ϕ. Then {¬ϕ} is consistent and can be extended to a maximal
consistent set ∆. Let Σ = ¬FL({¬ϕ}). Since Θ admits filtration, there is a

�-filtration MΣ of ML through Σ such that MΣ is based on a Θ-frame. By
assumption Θ does not contain �∗ , therefore it is also valid on the regular filtration
Mr of Theorem 17. It follows from soundness that Mr |= L and by the Filtration
Theorem that Mr, [∆]  ¬ϕ. Thus L 6� ϕ, as required. �

Remark 22 By Propositon 12 the filtration Mr in the proof of Theorem 21 is in
fact the minimal filtration.

In particular it follows that mK ⊕ Lb is complete with respect to RegFr(Lb) for
all logics Lb mentioned in Example 20.

7. General Θ

In this exploratory section we consider a general Θ ⊆ mML as set of extra axioms.
We do not yet have a general completeness result in this setting, but make a few
observations that could help towards that goal.

Lemma 23 For any filtration of ML through a ¬FL-closed set, we have:

(Rmin)∗ = (Rmin
∗ )∗.

Proof. ⊆. By the monotonicity of the reflexive-transitive closure operation, it suf-
fices to show that Rmin ⊆ Rmin

∗ . This follows from Proposition 13 and the fact that
L ` �ϕ→ �∗ϕ.
⊇. Again by general properties of the reflexive-transitive closure, it suffices to

show that Rmin
∗ ⊆ (Rmin)∗. This is simply one part of Theorem 17. �

Note that the direction of Theorem 17 used in the above proof of Lemma 23 does
not require the filter to be FL-closed. This give us more room to experiment with
different filters. Since a bigger filter makes the filtration inherit more properties
from the original model, we could hope to always be able to find a filter as in part
(iii) of the hypothesis of the following proposition.

Proposition 24 Let Θ be a set of additional axioms such that:

(i) Θ is canonical;
(ii) Θ is preserved by the minimal filtration of the canonical model;

(iii) any finite filter can be extended to a finite filter through which the minimal
filtration Rmin

∗ preserves the transitivity of R∗.

Then L is complete with respect to RegFr(L).

Proof. As in the proof of Theorem 21, we take some L 6` ϕ and extend {¬ϕ} to a
maximal consistent set ∆. Now let Σ ⊇ {ϕ} as given by part (iii) of the hypothesis.
By parts (i) and (ii), the minimal filtration through Σ:

Mf := (SΣ, Rmin, Rmin
∗ , V Σ),

is based on a Θ frame. Since Rmin
∗ is transitive and every filtration preserves re-

flexivity, we have Rmin
∗ = (Rmin

∗ )∗. From Lemma 23 we deduce that Mf is based
on a regular frame, which by soundness becomes an L-frame. The rest of the proof
proceeds exactly as that of Theorem 21. �
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Example 25 Let Θ = {p → �∗ �∗p}. This is canonical for the symmetry of R∗.
Note that this does not in general mean that R is symmetric. Since this property
is preserved by the minimal filtration, it satisfies part (i) and (ii) of the hypothesis
of Theorem 24. It is unknown to the authors whether it also satisfies part (iii).

Remark 26 In a sense the hypothesis of Proposition 24 is not only sufficient but
also necessary for proving completeness using filtration. Indeed, by Proposition 12
any filtration of ML based on an L-frame is the minimal filtration.

Remark 27 Possible options for extending a filter Σ in order to satisfy part (iii)
are:

(i) closing under conjunction, such that each state of the filtration is named
by a formula that is in the filter ;

(ii) closing under (definable) �∗ -modalities, of which there are up to equivalence
only finitely many (since the �∗ -fragment of L extend S4).

Both of these extensions may very well result in an infinite filter, but it should
always remain finitely based, i.e. finite up to L-equivalence.

8. Conclusion

We have provided a set of sufficient conditions for the completeness of exten-
sions of modal logic with the master modality generated by additional basic modal
axioms. When the additional axioms are allowed to contain the master modality
the proof breaks down, but we have given some possible directions for enlarging the
scope of our method.

Another avenue for further research is to try to extend these results to more
complex fragments of the modal µ-calculus, such as PDL and CTL.
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